
Joint modeling of binary longitudinal measurement
and time-to-event: An application to depression and

time-to-dementia

A Thesis Submitted to the

College of Graduate and Postdoctoral Studies

in Partial Fulfillment of the Requirements

for the degree of Master of Science

in the Collaborative Program in Biostatistics of School of Public Health

University of Saskatchewan

Saskatoon, Canada

by

Md Rasel Kabir

c©Md Rasel Kabir, May/2020. All rights reserved.



Permission to Use

In presenting this thesis in partial fulfillment of the requirements for a Postgraduate de-

gree from the University of Saskatchewan, I agree that the Libraries of this University

may make it freely available for inspection. I further agree that permission for copying

of this thesis in any manner, in whole or in part, for scholarly purposes may be granted

by the professor or professors who supervised my thesis work or, in their absence, by the

Head of the Department or the Dean of the College in which my thesis work was done.

It is understood that any copying or publication or use of this thesis or parts thereof for

financial gain shall not be allowed without my written permission. It is also understood

that due recognition shall be given to me and to the University of Saskatchewan in any

scholarly use which may be made of any material in my thesis.

Requests for permission to copy or to make other use of material in this thesis in wholeor

part should be addressed to:

Director of School of Public Health

Health Sciences Building E-Wing, 104 Clinic Place

University of Saskatchewan

Saskatoon, Saskatchewan S7N 2Z4, Canada

OR

Dean

College of Graduate and Postdoctoral Studies

University of Saskatchewan

116 Thorvaldson Building, 110 Science Place

Saskatoon, Saskatchewan S7N 5C9, Canada

i



Abstract

In recent years, the methodological development of joint models of longitudinal and time-

to-event data has become one of the most popular areas of studies in clinical research

and its application has increased substantially over the past decades. Joint model in this

area combines both the longitudinal and survival data into a single statistical model to

obtain robust estimates and draw valid inference. While most of studies concentrate on

continuous longitudinal measurements, little attention has been paid to joint modeling

for binary longitudinal outcome and event time data. In clinical research, patients often

have binary longitudinal measurement that affects the main event of interest during the

follow-up time. For example, depression, a dichotomous longitudinal measurement, might

have relationship with dementia. However, no study has examined this association using

a joint model.

This study focuses on the joint modeling technique for binary repeated measurement and

time-to-event data. This approach mainly models the longitudinal and survival processes

for each individual through a shared random effect jointly, where the longitudinal part

is supposed to be modeled by a generalized linear mixed model and time-to-event com-

ponent is characterized by employing a parametric survival model. We applied the joint

modeling technique to the Korean Health Panel Study. A generalized linear mixed model

was used to model the binary repeated measurements of depression and a piecewise con-

stant hazard model was employed for time-to-dementia. A total of 3,611 individuals aged

65 years or older were eligible for this study between 2008 and 2015. Depression and

dementia were identified by the diagnosis code in medical data.
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In this study, 215 (6%) were diagnosed with dementia during the 8-year follow-up period.

The mean age at entry was 72.2 (±5.7) years. The overall median follow-up time was

5.8 years; 3.6 years for people living with dementia compared to 5.9 years for people

without dementia. Baseline depression and sex were not significantly associated with time-

to-dementia. However, time-varying depression and baseline covariates including age,

economic activity, education, walking frequency/week, living with other family members

and diabetes were significant in multivariable joint modeling. The risk of dementia was

2.4 times (95% CI: 1.30-4.50, p-value = 0.005) higher among depressed people compared

to non-depressed people. This study also found that walking not at all or less than three

days a week, being older (>70 years old), having diabetes, being less educated and living

in a household with multiple generations increased the risk of dementia.
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Chapter 1

Introduction

1.1 Rationale for the study

In clinical research and health studies, it is very common to collect information about

longitudinal measurements until the occurrence of an event (failure time) or censoring

(censored time); interest often lies in determining the relationship between these two

variables and examining the impact of longitudinal covariate(s) on survival outcome. In

health sciences, longitudinal data mostly comprise the repeated measurement of a variable

and binary indicators for the event of interest (live, or death). In this situation, there is

always a strong possibility that the time-to-event of interest might be associated with the

trajectories of longitudinal measurements and that statistical methods that ignore this

repeated measurement and the course of covariates during this follow-up period might

shed the etiological history of the disease (Arbeev, Akushevich, Kulminski, Ukraintseva,

& Yashin, 2014; Gasparini et al., 2020). Furthermore, the dropout/ missing value of lon-

gitudinal response and measurement error complicates the survival analysis. However,

joint modeling techniques in this context play a significant role in linking both models
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and incorporating all information simultaneously to draw valid inferences.

The extended Cox model or time-dependent variable in the Cox hazards model is a popular

method in survival analysis and can be used to examine the relationship of a covariate to

survival time (Cox, 1972), particularly when incorporating an external time-dependent co-

variate (exogenous variable), that is, when an event that occurred at a previous time point

does not affect the covariate value at a later time point (Kalbfleisch & Prentice, 2011).

When the longitudinal measurements, for example CD4 (a biomarker for HIV/AIDS), are

considered as endogenous, the application of the standard extended Cox model, which

assumes constant values for the time-varying covariate between two occasions in this con-

text is inappropriate and results in biased estimates and standard errors (Prentice, 1982).

Alternatively, the two-stage modeling approach deals with survival as a function of a

covariate that is measured longitudinally. In the first stage, the longitudinal covariate

with random effects is fitted using growth curve models (Laird, Ware, et al., 1982). The

estimated value from this first stage is then used as a time-dependent covariate for the

Cox model in second stage and the partial likelihood is maximized (Dafni & Tsiatis, 1998;

Tsiatis, Degruttola, & Wulfsohn, 1995). It is a very common scenario in most of the

follow-up studies that subjects are dropping out and/ or visiting irregularly. However,

this dropout due to unobserved longitudinal measurements will no longer be random; in-

stead, it is defined as non-random and informative. Joint distribution of the longitudinal

measurements and the missingness process takes this issue into account and provides valid

inference (Rizopoulos, 2012).

Most of the joint modeling approaches concentrate on continuous longitudinal measure-
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ment and focus on the association between a single longitudinal outcome and a single

time-to-event. AIDS research is a very common example, where a longitudinal biomarker

such as CD4 lymphocyte count is measured in time to determine its relationship with

time-to-seroconversion or death (Faucett & Thomas, 1996; Henderson, Diggle, & Dobson,

2000; Mondal, Lim, Team, et al., 2018; Tsiatis & Davidian, 2004; Tsiatis et al., 1995;

Wulfsohn & Tsiatis, 1997). There is also some available research, where a single out-

come is extended to multiple longitudinal outcomes (Chi & Ibrahim, 2006; Rizopoulos &

Ghosh, 2011) and multiple recurrent or competing events (Hu, Li, & Li, 2009; X. Huang,

Li, Elashoff, & Pan, 2011).

Similar to HIV studies, many of the dementia disease trials collect two types of data:

the time to diagnosis of dementia and longitudinal measurements of some endogenous

variables. Although they are closely associated, data are analyzed separately most of the

studies, which might lead to biased estimates and misleading inferences. Joint models

take this association into account by combining both longitudinal and survival data into

a single statistical model. In joint model, longitudinal measurements can be either con-

tinuous (e.g. Gaussian) or discrete (e.g. binary, count). This thesis focused on binary

repeated measurements.

Several previous dementia studies used the joint modeling technique for determining the

association between continuous longitudinal outcome and dementia risk (Jacqmin-Gadda,

Commenges, & Dartigues, 2006; S. Li, Zheng, & Gao, 2017). One study conducted by Yu

and Ghosh (2010) proposed a Bayesian change-point model to fit the trajectory of cogni-

tive function for the individuals who developed dementia and determined when cognitive
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decline rates started to accelerate. S. Li et al. (2017) applied this modeling approach on

the basis of shared random effect to identify the association between longitudinal choles-

terol measurements and the timing of the onset of dementia. Singh-Manoux et al. (2017)

carried out a 28-year follow-up study of depression trajectories that failed to reveal an

association between depressive symptoms and the risk of dementia.

Though joint modeling with continuous longitudinal outcome has been extensively studied

over the past two decades, little work has been done for categorical longitudinal outcome.

So there is room to work with binary longitudinal outcome and many interesting features

of research in this area remain left. This thesis mainly focuses on joint modeling for binary

longitudinal outcome and time-to-event data. Since the relationship between depression

and the timing of onset of dementia is complex and unclear, we investigated it further in

this study by polishing conventional statistical methods and employing a joint modeling

approach that includes the mechanism to address the factors that lead to biased and

misleading inferences.

1.2 Study objectives

The main objectives of this study:

1. To determine the association between binary repeated measurements of depression
and time-to-dementia from the joint modeling of longitudinal submodel and time-to-
event submodel;

2. To identify the potential risk factors of dementia from separate time-to-event sur-
vival model; and

3. To examine the association between covariates and repeated measurement of de-
pression from separate longitudinal model.

4



Chapter 2

Literature Review

2.1 Literature review for statistical methods

In this section, we review the literature on methodology that is pertinent to our study.

Joint modeling approach has received much more attention in recent decades and research

activities has increased in the area of simultaneously modeling longitudinal biomarkers

with a time-to-event outcome of interest. The underlying interest in this kind of research,

particularly in psychology research, is always in examining the association between the

long-term individual trajectories of cognitive functioning and either the diagnosis of a

certain disease or death.

Before the development of the joint modeling technique, analyzing outcomes separately

was well established in the literature; the mixed-effects model was frequently used for

longitudinal data and the standard Cox proportional hazards model for time-to-event

data (Cox, 1972; Laird et al., 1982). However, modeling the longitudinal and survival

outcome separately can lead to biased estimates (Ibrahim, Chu, & Chen, 2010). Apply-
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ing the extended Cox model is inappropriate for handling the longitudinal measurements

(biomarker) of covariates, which are called internal covariate. Doing so results in biased

estimates and standard errors (Prentice, 1982). Joint modeling, on the other hand, leads

to less biased estimates and improvements in the efficiency of statistical inference (Hogan

& Laird, 1998).

Tsiatis and Davidian (2004) have a comprehensive overviews of joint modeling. There

are two basic approaches generally used for estimating parameters in the joint model:

(i) a two-stage approach and (ii) a likelihood-based method. In two-stage approach, es-

timations are conducted separately in two different steps. In first stage, a linear mixed

effects (LME) model is used for modeling continuous longitudinal data. The predicted

longitudinal responses from first stage are used in the survival model as an independent

variable in the second stage (Lin, Taylor, & Ye, 2008).

The two-stage method, however, often results in estimation biases and a loss of efficiency.

There are several reasons for this. First, the estimation of parameters in the longitudinal

model fitted at the first stage can be biased because it does not account for informative

dropout (survival outcomes) (Albert & Shih, 2010; Faucett & Thomas, 1996; Ghisletta,

McArdle, & Lindenberger, 2006; Sweeting & Thompson, 2011). That is, longitudinal tra-

jectories for the subject experiencing the event and the subject not experiencing the event

may be different. Therefore, in the first stage, the parameter estimates associated with

the longitudinal model that are based only on observed data, might be biased, a bias that

may depend on the strength of the association between longitudinal and event processes.

Second, in all two-stage modeling approaches, uncertainty in the estimates made in first
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stage may not be taken into account in the second stage (i.e., the survival model). This

failure to incorporate the uncertainty of the estimation from the first stage may result in

an underestimation of the standard error in parameter estimates in the survival model.

Bias due to ignoring the uncertainty of estimates in Stage 1 may depend on the magnitude

of measurement errors in longitudinal response (Wu, Liu, Yi, & Huang, 2012).

Several attempts have been made to improve estimation techniques and correct for biases

in the two-stage approach. Joint models developed by Pawitan and Self (1993) basically

fitted time-to-event parametrically. Here, a straightforward likelihood inference was fa-

cilitated to model the markers of disease as a function of time by considering the joint

distribution of markers, infection time, and the time to AIDS. Other authors also adopted

some modifications for improving estimates in the two-stage approach (Bycott & Taylor,

1998; Dafni & Tsiatis, 1998; Tsiatis et al., 1995). However, although various modification

attempts have been made to incorporate the informative dropout and measurement error

issues, the two-stage approach may still result in biased estimates (Wu et al., 2012).

In contrast, the likelihood-based approach considers joint likelihood functions from both

the longitudinal and survival models to estimate parameter and draw the statistical in-

ference. This approach mainly includes the concept of Expectation-Maximization (EM)

algorithm and the Bayesian technique for maximum likelihood. There is an extensive

body of literature that discusses EM-based likelihood methods (J. Choi, Cai, Zeng, &

Olshan, 2015; De Gruttola & Tu, 1994; Rizopoulos, Verbeke, & Lesaffre, 2009; Tseng,

Hsieh, & Wang, 2005; Wu, Liu, & Hu, 2010; Wulfsohn & Tsiatis, 1997). Other researchers

have considered the Bayesian approach in joint models (Brown & Ibrahim, 2003; Chi
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& Ibrahim, 2006; Faucett & Thomas, 1996; Hatfield, Boye, Hackshaw, & Carlin, 2012;

Y. Huang, Dagne, & Wu, 2011; Law, Taylor, & Sandler, 2002; R. Brown & G. Ibrahim,

2003; Rizopoulos & Ghosh, 2011; Sweeting & Thompson, 2011; Wang & Taylor, 2001;

Xu & Zeger, 2001). The advantage of both EM algorithm and Bayesian likelihood-based

approaches is that they lead to valid and efficient inferences (Wu et al., 2012). That said,

the major challenge of the EM-based approach for joint modeling is that it is compu-

tationally intensive, particularly when the dimension of random effects is not small. As

well, there may also be convergence issues (Wu et al., 2012).

Most of the works mentioned above focus on continuous longitudinal outcomes. Very

little attention has been paid to categorical longitudinal measurements in the context of

joint modeling studies. J. Choi et al. (2015) proposed a joint model where a survival

model was adopted by a stratified Cox model and the longitudinal categorical outcome

was characterized by a generalized linear mixed model. In their modeling approach, the

shared random effects mainly played the role of linking the survival and longitudinal

process. J. Choi, Zeng, Olshan, and Cai (2018) allowed both the Gaussian process as

well as distribution free assumptions for these random effects in their joint model. First,

they assumed the multivariate Gaussian process for the random effects to account for

the dependence between longitudinal measurement and survival time due to unobserved

factors. Second, the normality assumption was relaxed by assuming that the distribution

of random effects was unknown and mixture of Gaussian distribution was proposed. Both

approaches adopted the EM algorithm for computing the estimates and model parameters.

A Study conducted by Rizopoulos, Verbeke, Lesaffre, and Vanrenterghem (2008) sug-
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gested using a parametric survival model with random effect to accommodate unobserved

heterogeneity and a mixed effects logistic regression was employed to model the binary

longitudinal response. The researches assumed that the random effects from these lon-

gitudinal and survival model have a multiplicative relation. Both Garcia-Hernandez and

Rizopoulos (2018) and Rizopoulos (2014) described the likelihood based approach and

computational details with example for modeling jointly the categorical outcome and

time-to-event data.

2.2 Literature review for dementia

2.2.1 Introduction

The estimated number of dementia people living worldwide in 2013 was 44.35 million, hit-

ting to 75.62 million in 2030 and the figure of 135.46 million in 2050 respectively (Prince,

Guerchet, & Prina, 2013). In East Asian countries, dementia has become one of the most

pressing public health concerns given these countries’ rapidly aging population. It has

been identified as the highest burden of disease in older Korean population; Park, Eum,

Bold, and Cheong (2013) project three times as many Koreans will suffer from dementia

in 2050 compared to 2010. Moreover, there is currently no treatment for dementia, ei-

ther to cure it or to alter its progressive course (Canada, 2018) (https://alzheimer.ca/

en/Home/About-dementia/Treatment-options). Therefore, investigating and identify-

ing the risk factors and determining their etiological relationship with dementia could be

the potential strategy for reducing the prevalence and incidence of dementia .
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2.2.2 Dementia and types

The World Health Organization, (WHO) defines dementia as a syndrome of a chronic

or progressive nature- in which cognitive function deteriorates (WHO, 2019), (https://

www.who.int/news-room/fact-sheets/detail/dementia). Thus, memory, thinking ca-

pacity, orientation, understanding, calculation, learning capability, language, and judg-

ment are progressively impaired, eventually leading to the impossibility of performing

regular activities. However, consciousness is not affected (PHA, 2019).

It is important to remember that dementia is set of symptoms rather than a disease. These

symptoms are the result of various diseases and injuries that directly or indirectly affect

the brain, such as vascular disease, Alzheimer’s disease, or stroke (PHA, 2019; WHO,

2019). Dementia has become a great burden worldwide, particularly for the elderly. It is

one of the main causes of both disability and dependency among this population. It also

has a negative impact on mood and behavior (PHA, 2019). Finally, the physical, psycho-

logical, socio-economic impact of dementia on carers, care-givers, family, and society are

enormous.

Alzheimer’s disease

Alzheimer’s disease irreversibly destroys brain cells. This disease reduces thinking abil-

ity and deteriorates memory capacity. Alzheimer’s disease is the most common among

all causes of dementia and does not occur as part of the normal aging process (PHA, 2019).

Other dementias

Like Alzheimer’s disease, “Other dementias” are characterized by a progressive degener-
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ation of brain cells. There are various types of dementia (see below), some of which are

more common than others (PHA, 2019).

• Vascular dementia

• Lewy body dementia

• Frontotemporal dementia

• Young onset dementia

• Parkinson’s disease

• Mild cognitive impairment

• Huntington’s disease

• Mixed dementia

• Creutzfeldt-Jakob disease

• Down syndrome

• Rarer forms of dementia

2.2.3 Risk factors for dementia

Dementia, the very common public health problem among the older people of age over 65

has reached to the epidemic proportion and has a age related prevalence (van der Flier

& Scheltens, 2005). However, research shows that this epidemic could be curbed. One

study conducted by Norton, Matthews, Barnes, Yaffe, and Brayne (2014) revealed that

the worldwide prevalence of Alzheimer’s disease could be reduced by intervening to these
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seven modifiable risk factors: diabetes, physical inactivity, midlife hypertension, midlife

obesity, depression, smoking, and low educational attainment. So the disease burden of

dementia in the the population could be lessened by preventing /controlling these risk

factors. Some studies reported other baseline covariates as the risk factors for develop-

ing dementia. Age (Deng et al., 2018; Read, Wittenberg, Karagiannidou, Anderson, &

Knapp, 2017; Yang et al., 2016); ethnicity, sex, genetic factors (Corder et al., 1993; Gatz

et al., 2005); physical inactivity (Baumgart et al., 2015; Mukamal et al., 2003; Yang et al.,

2016); drug use and alcohol, level of education (R. Chen et al., 2011); tobacco consump-

tion (Deng et al., 2018); comorbidity (Hypertension (Deng et al., 2018), Type 2 diabetes),

personal income (R. Chen et al., 2011); and lower income (Ren et al., 2018) were also

considered in determining the risk factors of dementia. Deng et al. (2018); Starkstein and

Almeida (2003) also showed that around half of the individuals with vascular cognitive

impairment might develop dementia. On the other hand, protective factors for dementia

include higher education levels, moderate alcohol consumption (Deng et al., 2018), use

of hormone replacement therapy (HRT) for women, use of anti inflammatory drugs, and

diet (J.-H. Chen, Lin, & Chen, 2009).

Studies have revealed conflicting results regarding the effect of smoking and drinking on

developing dementia. Some studies (R. Chen et al., 2011; Deng et al., 2018) showed smok-

ing as a significant risk factor, while another study (D. Choi, Choi, & Park, 2018) reported

the decreasing risk of dementia among individuals who quit smoking long ago or who never

smoked compared to long-term smokers. On the other hand, a study conducted among

elderly people in East Boston, Massachusetts, showed no association between smoking

and Alzheimer’s Disease. Researchers also concluded that recent mild-to-moderate alco-
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hol consumption was not substantially related to the incidence of dementia (Hebert et

al., 1992). The analysis of the prospective population based cohort study found that the

incidence of dementia among older adults who consume one to six drinks per week is lower

compared with those who abstain (Mukamal et al., 2003).

2.3 Literature review for depression

2.3.1 Introduction

WHO states depression as a common mental disorder and identifies it as one of the leading

causes of disability as well as a key contributor to the global disease burden (Organiza-

tion et al., 2017). Depression, a common illness is characterized by persistent sadness,

loss of interest in activities, disturbance of sleep and appetite; tiredness and poor concen-

tration. Sometimes it can lead to suicidal thought (https://www.nia.nih.gov/health/

depression-and-older-adults). It is estimated that more than 264 million people of

all ages around the world suffer from depression (NIH, 2020). This is a very common

problem in older population but is not a normal part of aging. Depression becomes a

more serious health condition when it is long-lasting with moderate to severe intensity

(https://www.nia.nih.gov/health/depression-and-older-adults).

2.3.2 Types of depression

Depression usually persists for a longer time and it can be recurrent, considerably impair-

ing the ability of an individual to continue his work or cope with daily activities. The two
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main subcategories of depressive disorder are: (i) major depressive disorder/ depressive

episode (ii) dysthymia (Organization et al., 2017).

Major depressive disorder/ depressive episode

Major depressive disorder includes symptoms such as mood disorder, lack of interest and

enjoyment, and less energy. A depressive episode again can be classified as mild, mod-

erate, or severe based on the number and severity of symptoms (Organization et al., 2017).

Dysthymia

Dysthymia is a chronic form of mild depression. Although the symptoms of dysthymia

are similar to the symptoms of a depressive episode, comparatively it tends to be less

intense (Organization et al., 2017).

Another important distinction to make regarding depression is whether an individual has

a history of manic episodes or not. Bipolar affective disorder is characterized by both

manic and depressive episodes separated by periods of time where the individual’s mood

is normal. Individuals with bipolar disorder experience elevated or irritable moods, speech

pressure, over activity, euphoria, and reduced sleep (Organization et al., 2017).

2.3.3 Risk factors for depression

The consequences and public health implications of depression among the elderly are enor-

mous. Late life depression is associated with functional disability, suicidal tendencies, and

higher rates of medical morbidity and mortality (Steffens et al., 2006).
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Various factors or combinations of factors may contribute to the risk of depression. The

most common risk factors for depression are sex, family history, trauma or stress, and

physical illnesses (NIMH, 2020; Organization et al., 2017). For example, Anand (2015)’s

study of older adults in six low and middle-income countries showed the difference in the

prevalence of depression between the sexes. Female respondents were found to suffer from

depression at higher rates compared to males. This finding was consistent with other stud-

ies (J.-H. Lee, Park, Park, & Jo, 2018; Meng et al., 2017; Mirkena, Reta, Haile, Nassir, &

Sisay, 2018). Although depression happens at any age, it is more prevalent in adulthood,

particularly older people living with serious medical condition such as diabetes, CVD,

cancer etc. (NIMH, 2020).

Other risk factors for depression in older adults are stressful life events, divorce, widow,

living alone, low income, low educational level (Iliffe et al., 2005; J.-H. Lee et al., 2018;

N. Li et al., 2011; Rajkumar et al., 2009; Yunming et al., 2012). People living in areas

with higher unemployment rates and higher proportions of visible minorities consistently

had an elevated risk of experiencing a major depressive disorder (Meng et al., 2017).

Individuals in poor health are more likely to suffer from depression (Cheruvu & Chiyaka,

2019; N. Li et al., 2011). Some prevalent illnesses, such as cardiovascular disease (CVD),

previous head injuries, diabetes, and cancer are associated with depression among the

elderly (Alamri, Bari, & Ali, 2017; Rajkumar et al., 2009; Yunming et al., 2012). Yun-

ming et al. (2012) also showed that the odds ratio for depression was higher among those

with functional impairments, more than three chronic diseases and who had experienced
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an adverse life event. Multiple medical conditions such as dual sensory loss (hearing and

vision) had a significant effect on depressive symptoms (Capella-McDonnall, 2005).

Other studies have identified additional risk factors. L. Li, Wu, Gan, Qu, and Lu (2016)

showed the positive relationship between insomnia and depression. Similar findings were

also observed in other studies (Cui et al., 2017). Chang-Quan et al. (2009) determined a

set of five risk factors independently associated with depression: poor self rated health,

poor cognitive status, two or more clinic visits in the past month, and slow walking speed.

Apart from these risk factors, depression was also associated with more disability, poorer

life satisfaction, alcohol intake, smoking and drug use, physical inactivity, unhealthy eating

styles, living with children and medical comorbidity (Haseen & Prasartkul, 2011; He et

al., 2014; J.-H. Lee et al., 2018; Meng & D’Arcy, 2013; Mirkena et al., 2018; Organization

et al., 2004; Rawana, Morgan, Nguyen, & Craig, 2010; Subramaniam et al., 2016).
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Chapter 3

Statistical Methods and Materials

3.1 Survival analysis

In health science and biomedical research, time to a certain event is the primary endpoint

of interest. Survival analysis usually focuses on analyzing data where time-to-event is our

main interest. Survival analysis deals with the time that passes from a well-defined time

origin to the occurrence of specific event. This type of data is often called life time, failure

time, or survival data (Collett, 2015; Lawless, 2011).

Survival analysis comprises the wide range of methods for dealing with the timing of

events. Mostly, it includes the technique for positive valued random variables. For exam-

ples:

• time to diagnosis of dementia,

• time to death,

• time to failure of a machine,
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• time from treatment to cure,

• time from remission to relapse of a disease, and

• time from HIV infection to AIDS

In survival analysis, interest often lies in determining the features and characteristics of

the distribution of time-to-event for a given population. It also includes the statistical

comparison of time-to-event among different groups (e.g., intervention vs. control group

in clinical studies ). Researchers are also often interested in examining the relationship

of time-to-event to other potential covariates and quantifying their association through

different modeling approaches (Clark, Bradburn, Love, & Altman, 2003).

3.1.1 Survival data and censoring

Standard statistical procedures are not entirely appropriate in dealing with the survival

data. One reason why is that survival times are generally non-negative and are not sym-

metric. Usually, histogram constructed from survival time is positively skewed, that is,

it has a longer tail to the right side, so it is not reasonable to consider the normality

assumptions of this type of data (Collett, 2015).

Another key feature of survival data that makes conventional statistical methods inap-

propriate is survival times are censored. It is common in survival analyses that complete

information for all observations is not available during the specified time frame; rather,

some information is only partially observed, leading to what is known as “censoring”

(Kleinbaum & Klein, 2011).

The followings are common reasons for censoring (Collett, 2015):

18



• Termination of the study before the event occurs,

• Death due to a cause not related to the event of interest,

• Failure to experience the event before the study ended, and

• Individual lost to follow-up (e.g., patient emigrates or no longer traced).

Types of censoring

There are three main types of censoring (Lawless, 2011):

• Right censoring

• Left censoring

• Interval censoring

Right censoring

Right censoring describes a situation when individuals do not experience the event before

the termination of the study or are lost to follow-up (Lawless, 2011). For example, in a

study of pregnancy duration, if some women are still pregnant at the end of the study or

some are lost to follow-up, these observations will be right-censored. Right-censoring can

further be classified as Type I, Type II, and random censoring scheme (Indrayan, 2012).

Most of survival analyses deal with random censoring. This study also focused on random

censoring.

Left censoring

If the actual survival time is less than what is observed by the investigator, it is called

left-censoring (Lawless, 2011). For example, consider a study observing the time to the
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recurrence of a particular cancer after the surgical removal of tumor. Patients are re-

examined three months of their operation to see whether their cancer has reappeared.

However, if some cancers have already recurred (that is, the time to the recurrence is less

than three months), these observations are left-censored (Collett, 2015).

Interval censoring

If the event of interest occurs in a time interval (left, right), but we do not know exactly

when is this interval, it is often call interval censoring (E. T. Lee & Wang, 2003). For

instance, in a study of HIV surveillance, a subject might have two tests, where the test

result is negative at first visit (say t1) but the result is positive at second time (t2). In this

case, actual survival time lies between this two time points and this is interval censored

in the interval of (t1, t2).

3.1.2 Terminology, notation and some important concepts

Survival function

Let T be a random variable which is continuous, non-negative and represents the true life

time with probability density function (p.d.f.), f(t) and cumulative distribution function

(c.d.f.), F (t) = Pr(T < t), determining the probability of occurring event by time t.

Survival probability, S(t) is defined as the probability that a person survives longer than

a specified time (say t) or is alive just before duration t, or more and it is expressed by

survival function as follows (Lawless, 2011)
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S(t) = Pr(T ≥ t) = 1− F (t) =

∫ ∞
t

f(x)dx (3.1)

with t ranging from 0 to∞, the survival function has the following characteristics (Lawless,

2011)

• It is non-increasing,

• At time t = 0, S(0) = 1, and

• At time t =∞, S(∞) = 0

Hazard function

Hazard function, h(t) an alternative characteristic of the distribution of T , is defined as

the probability of failure during a small interval of time given no previous events. It is

also called the instantaneous failure rate (Lawless, 2011).

h(t) = lim
∆t→0

Pr(t ≤ T < t+ dt|T ≥ t)

∆t
=
f(t)

S(t)
(3.2)

The cumulative hazard, H(t) represents the aggregated risk up to time t and expressed

as (Lawless, 2011)

H(t) =

∫ t

0

h(u)du (3.3)

and the survival function in-terms of cumulative hazard function can be defined as follows

(Lawless, 2011)

S(t) = exp(−H(t)) = exp(−
∫ t

0

h(u)du) (3.4)
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3.1.3 Non-parametric estimate of survival function

The Kaplan–Meier (K-M) estimator (Kaplan & Meier, 1958), is one of the non-parametric

approaches for estimating survival function and comparing survival functions between two

or more groups. It is also known as the product limit estimator. Let us consider an n

random sample and there are k (k ≤ n) distinct life times t1 < t2 < ... < tk at which death

occurs. More than one death at tj, j = 1, 2, ..., k is also allowed. Suppose dj indicates

the number of individuals who die at tj, then the K-M estimator, ˆS(t) takes the following

form:

ˆS(t) =
∏
j:tj≤t

(1− dj
nj

) (3.5)

where nj indicates the number of individuals at risk set (alive and not censored) just prior

to time tj.

Log-rank test

Plots of K-M curves roughly tell us which group has a better survival prognostic than

that of other group. However, statistical tests are required to examine whether or not

the K-M curves are statistically equivalent (Kleinbaum & Klein, 2011). A log-rank test is

a commonly used non-parametric test to compare two or more survival curves. At each

observed failure time, the estimated hazard functions of two groups are compared under

the proportionality assumption (Bland & Altman, 2004). Under the null hypothesis of all

equivalent survival curves, this log rank statistic is approximately chi-square and deter-

mines the P-value from tables of chi-square distribution (Kleinbaum & Klein, 2011). The

log-rank test is more powerful if the proportionality assumption holds (Hazra & Gogtay,

2017).
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Wilcoxon test

There are a few alternative techniques to the log-rank test for testing the hypothesis that

two or more survival curves are equivalent. The wilcoxon test is one of them and it is

more powerful when hazard functions are not proportional. Unlike log-rank test, where

equal weight is given to deaths at all time points, the wilcoxon method gives more weight

to deaths at the beginning of the survival curve than later failures (Kleinbaum & Klein,

2011).

3.1.4 Survival models

One of the most interesting research areas in health science is determining the associa-

tion between potential covariates and time-to-event. Conventional regression approaches

are not appropriate for handling the life time data due to the censoring issue and non-

normal response. In this situation, Cox proportional hazard model for failure time is often

recommended as it does not require assumptions about underlying survival distribution

(Schober & Vetter, 2018).

Cox proportional hazards model

Cox proportional hazards (PH) model (Cox, 1972) is the most widely used statistical

method to measure the impact of different covariates on failure time. The standard Cox

model deals with time independent covariates. However, if the covariate changes over

time (time dependent), the Cox proportional hazards model is inappropriate. The PH

model describing the hazard for failure time, T with covariate vectors X, is assumed to

be (Lawless, 2011; E. T. Lee & Wang, 2003).
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h(t) = h0(t) exp{βTX} (3.6)

where, X = (X1, X2, ..., Xp)
T is p vector of covariates and β = (β1, β2, ..., βp)

T denotes

the corresponding coefficients of these covariates. In equation (3.6), h0(t) is the baseline

hazard function that describes the risk for individuals for x = 0 and it usually remains

unspecified. One of the interesting properties of cox model is that that it is possible to

obtain estimates for β ’s, even though h0(t) in the equation (3.6) is unspecified. We need

to estimate β and the measure of effects, often expressed in term of hazard ratio, eβ, to

determine the effect of exposure or explanatory variables. The PH assumption for the

Cox model in the above equation requires the hazard ratio to be constant over time, that

is, hazard is always proportional to each other irrespective the value of time t.

Let T be the actual event time of interest, C denote the potential censoring time (meaning

that the study subject cannot be observed beyond the time of the study ), and t the actual

observing time. Suppose the true life times of n individuals are represented by random

variables T1, ..., Tn. Let us consider ti = min{Ti, Ci} where Ti, Ci are assumed to be in-

dependent and ti is known as either life time or censoring time. Define another variable,

δ = I(Ti < Ci) as an indicator for failure, where I(.) is called an indicator function. δ = 1

indicates failure time and 0 if it is censored, it tells whether ti, i = 1, 2, .., n is observed

life time or censoring time. So we only observe (t1, δ1), ..., (tn, δn) instead of T1, ..., Tn, the

true life times.

Likelihood estimation for PH model
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Suppose, the censored random sample (ti, δi), i = 1, 2, ..., n, has the k distinct failure

times, t(1) < t(2) <, ...t(k) and n − k are censored observations. Let Ri = R(t(i)) be

the risk set at time t(i). This risk set indicates the group of individuals who are alive

or unenclosed prior to t(i). Cox (1972, 1975) proposed the following partial likelihood

approach for estimating the parameters of β without the involvement of h0(t)

L(β) =
k∏
i=1

 hi(ti|X(i))∑
l∈Ri

hl(ti|Xl)

 =
n∏
i=1

 exp{βTX(i)}∑
l∈Ri

exp{βTXl}

 (3.7)

where Xi is associated covariates with individuals dying at ti. If a death occurs at t, then

the probability that it will be individual l ∈ Rt who dies is (Lawless, 2011)

h(t|Xi)∑
l∈R(t)

h((t)|Xl)
=

exp{βTX(i)}∑
l∈R(t)

exp{βTXl}

However, it is also reasonable to consider that more than one death at time t(j) is possible

where , j = 1, 2, ..., k are distinct life times. For this purpose we need to define the

followings

Yi(t) = I(ti ≥ t) , i = 1, ...

Then Yi(t) = 1 if i ∈ R(t) and the equation (3.7) can be rewritten

L(β) =
n∏
i=1

[
exp{βTXi}∑n

l=1 Yl(ti) exp{βTXl}

]δi
(3.8)

Now, the log-partial likelihood function of the form from equation (3.8) is:

l(β) =
n∑
i=1

δi

[
βTXi − log

{
n∑
l=1

Yl(ti) exp{βTXl

}]
(3.9)

Define the score vectors as U(β)=(∂l/∂β1, ..., ∂l/∂βp)
′ and for any t > 0, define p × 1
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vector as (Lawless, 2011)

X̄(t, β) =

∑n
l=1 Yl(t)Xl exp{βTXl}∑n
l=1 Yl(t) exp{βTXl}

which indicates the weighted mean of the covariate vectors for the individuals who are at

risk at time t. The score takes the following straightforward form, defined as

U(β) =
n∑
i=1

δi[Xi − X̄(ti, β)] (3.10)

and the form of p× p information matrix I(β)= −∂2l/∂β∂β′ can be obtained as follows

(Lawless, 2011)

I(β) =
n∑
i=1

δi

{∑n
l=1 Yl(ti) exp{βTXl}[Xl − X̄(ti, β)][Xl − X̄(ti, β)]′∑n

l=1 Yl(ti) exp{βTXl}

}
(3.11)

Iterative methods, such as Newton-Raphson method (Collett, 2015) is generally used to

solve the score equation with a view to determining the estimates of β.

3.2 Longitudinal modeling

The key feature of longitudinal study is to measure the same outcome from same individ-

ual at multiple times or measurement from same subject taken repeatedly over the time.

The primary objective of this kind of study is to characterize changes in response over

time and identify the factors that influence these changes (Fitzmaurice, Laird, & Ware,

2012). The outcome variable in longitudinal study can be continuous, binary, or count.

There may also be an incomplete data set due to missing/dropout.

26



Since responses are measured at different time points, the correlation due to repeated

measurements from the same individual often violates the assumption of independence

under general linear model (GLM). Therefore, in order to draw valid scientific inferences,

some special statistical methods for longitudinal studies are required to take into account

this correlation.

The statistical areas that address these correlated data includes (i) repeated measures

analysis, (ii) linear mixed models, (iii) generalized linear mixed models, and (iv) multi-

level models (Fitzmaurice et al., 2012). This thesis focuses on the random effects model,

one of three generalized linear models for longitudinal data (the other models are marginal

model and transitional model). Generalized linear mixed models (GLMM) can be under-

stood as extensions of the generalized linear model to correlated data. The important

feature of GLMM is its emphasis on discrete response (binary or count), although con-

tinuous response is a special case under GLMM. However, making assumption about

multivariate or joint distribution is an appropriate way to deal with correlated longitu-

dinal data. This multivariate distribution can be specified by three different modeling

approaches: (i) marginal models, (ii) mixed effects models, and (iii) transitional models.

Of these, transitional models are the least popular for modeling the effects of covariates

because inferences made based on these models could be misleading if treatment or ex-

posure alters the risk level during the observation period. Marginal models are used to

make inference about the population averages (Fitzmaurice et al., 2012). Based on some

assumptions regarding covariance structure of observations, this approach is mainly used

to model the mean response conditioning on covariates but not on random effects. On

the other hand, the random effects model is used to make inferences about the individual
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level, rather than the general population level (Fitzmaurice et al., 2012).

3.2.1 Generalized linear mixed effects model (GLMM)

A generalized linear mixed model (GLMM) is an extension of a generalized linear model

(GLM) that contains random effects along with the fixed effects. This modeling approach

takes the shared random effects that results from the repeated measurements on the same

individual into account (Fitzmaurice et al., 2012). The basic assumption is that there is

natural heterogeneity across individuals and that a subset of regression coefficients (for

example, random intercept and slope) is assumed to vary from individual to individual

according to some distribution. Here we also assume that, given the random effects, the

data for an individual are independent and drawn from a distribution that belongs to an

exponential family (Fitzmaurice et al., 2012).

The specifications of generalized linear model with random effects are: (Fitzmaurice et

al., 2012)

Suppose that, yi = (yi1, yi2, ...yimi
) is the mi × 1 vector of mi correlated longitudinal

responses for the ith subject, that is, response yij for the ith subject is measured at jth

time point, denoted by tij, where i = 1, 2, ..., n and j = 1, 2, ...,mi. Here, n is total number

of subjects in the longitudinal study. Let bi = (bi0, bi1, ...biq) be the (q + 1) × 1 vector of

random effects and this unobservable variables, bi is mainly responsible for the correlation

among observations for a single individual. However, the response (yi1, yi2, ...yimi
) are

conditionally independent given the random effects bi = (bi0, bi1, ...biq), and follows a
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distribution belonging to an exponential family of density defined as (J. Choi et al., 2015;

Fitzmaurice et al., 2012)

f(yij|biβ) = exp[{(yijθij − ψ(θij))/φ+ c(yij, φ)}] (3.12)

where ψ(.) and c(., .) are known functions, φ is the dispersion parameter and θ is canon-

ical parameter. Define the conditional mean as, µij = E(yij|bi) = ψ′(θij)φ and variance,

vij = V ar(yij|bi) = ψ′′(θij), like glm here this form has g(µij) = xTβ + zTijbi and vij =

v(µijφ) where g(.) and v is the link and variance function receptively, β = (β0, β1, ..., βp)
T

is vector of parameter for fixed effect, xij and zij are the vectors of covariate with length

(p+ 1) and (q + 1) respectively. zij may be the subset of xij (J. Choi et al., 2015).

It is also assumed that the random effect, bi, i = 1, 2, ..., n, are iid with density function

f(bi; Σ), where Σ is variance covariance matrix of random effects.

Consider the response, yij i = 1, 2, ..., n, j = 1, 2, ...,mi for the ith subject at jth time

point, random effects, bi, p covariates, x’s for fixed effects and q covariates, z’s for random

effect coefficients. Now, using the link function g(.), the relationship can be established

as follows

g(E(yij|bi)) = g(µij) = β0 + β1xij1 + ...β1xij1p + bi0 + bi1zij1, ...biqzijq (3.13)

Here, E(.) is used to indicate the expected value. It is important to note that the conse-

quences of dependence among the longitudinal measurements from the same subject are

considered through the working correlation structure. However, in GLMM, the sources of
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dependence among the measurements on same subject are explained by random effects in-

stead of the working correlation structure (Fitzmaurice et al., 2012). The common choice

of distributional form of random effects, bi in equation (3.13), is that it follows normal

distribution, usually expressed as bi ∼ N (0,Σ(θ)), where Σ(θ) has a known form with

unknown parameters such as Σ(θ) = θI, where I is an identity matrix with dimension of

(q + 1)× (q + 1). The possible covariance structure for random effects includes unstruc-

tured, Toeplitz, compound symmetry, and first order auto-regressive (AR1).

Since this thesis deals with binary longitudinal outcome, including a specific example

here is useful. Consider the longitudinal data set with dichotomous response, yi =

(yi1, yi2, ...yimi
), (mi × 1) vector of mi binary repeated measurements for the ith subject,

that is, response yij for the ith subject is measured at jth time point, tij where i = 1, 2, ..., n

and j = 1, 2, ...,mi. Now for the given random effects bi (say intercept only), the response

yij follows a Bernouli (Binomial) distribution with probability of success (Hwang, Huang,

Wang, Lin, & Tseng, 2019)

P (yij = 1|bi) =
eβ0+β1x1+bi0

1 + eβ0+β1x1+bi0
, (3.14)

where bi0 ∼ N (0, σ2
b ), Here, bi0 in equation (3.14) is the intercept. The model defined in

this equation is sometimes called a random intercept logistic regression model.

3.2.2 Likelihood based inference in GLMMs

Random effects, bi defined in equation (3.13) is assumed as unobserved variables that is

to be integrated out of the likelihood in maximum likelihood method and they are also

treated as a sample of independent variables from the distribution of random effects. The
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joint distribution of responses yij’s, i = 1, 2, ..., n , j = 1, 2, ...,mi is (Fitzmaurice et al.,

2012)

f(y|β, θ) =
n∏
i=1

f(yi|β, θ) =
n∏
i=1

∫
{
mi∏
j=1

f(yij|bi, β, θ)}f(bi|θ)dbi (3.15)

Now the likelihood function can be expressed as (Fitzmaurice et al., 2012)

L(β, θ|y) =
n∏
i=1

∫
{
mi∏
j=1

f(yij|bi, β, θ)}f(bi|θ)dbi (3.16)

Therefore, the log-likelihood function is

l(β, θ|y) = log f(y|β, θ) =
n∑
i=1

log

[∫
{
mi∏
j=1

f(yij|bi, β, θ)}f(bi|θ)dbi

]
(3.17)

Now maximum likelihood estimates (MLEs) can be obtained by maximizing this log like-

lihood function that is:

(β̂MLE, θ̂MLE) = argmax l(β, θ|y)

Equation (3.16) basically reflects the kind of marginal distribution of y that is obtained

from the integration of joint distribution of y and b with respect to b. For linear mixed

model, there is a closed form for the integral in (3.16) and it is computationally feasible.

However, numerical methods are needed to compute the integration in (3.16), particularly

for non-Gaussian models in GLMMs. Here, computing is still feasible if the number of

random effects, q is small but computation is really expensive for large number of random

effects (Schabenberger et al., 2005; Ye & Wu, 2017). There are several approaches to

deal with many random effects in GLMMs models including: Monte Carlo methods, ap-

proximation approaches, Bayes methods (McCulloch, 1997; Schabenberger et al., 2005).
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However, the EM algorithm is a very common and widely used approach to find MLE of

β, θ (J. Choi et al., 2015).

3.3 Joint modeling of longitudinal and time-to-event

data

There are two situations where joint modeling is useful: (i) when a study interest lies in

evaluating the repeated measurements over time and analyzing the longitudinal response

with time to the termination of the study, adjusting for informative dropouts, and (ii)

when measuring the impact of longitudinal surrogate marker on time-to-event, adjusting

for the measurement error/ missing value of this longitudinal response (Garcia-Hernandez

& Rizopoulos, 2018). Furthermore, this modeling approach is also employed when a sur-

vival and a longitudinal process are associated through latent variables and interest lies

in determining and quantifying this association (Wu et al., 2012).

This joint modeling approach works through a group of latent variable models by which

the association structure between outcomes is modeled. Normally-distributed random

effects, bi are used to capture the association between the longitudinal and the event

model. Conditioning on random effects bi, the longitudinal response yi and the time-to-

event responses Ti, are assumed to be independent and thus defined as follows (Garcia-

Hernandez & Rizopoulos, 2018)

p(Ti, δi, yi|bi, θ) = p(Ti, δi|bi, θT , θy)p(yi|bi, θy) (3.18)
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where Ti is the observed survival time (time-to-event) or time-to-censoring, δi is censoring

indicator (denoting either event or censoring), yi = (yi1, yi2, ..., yimi
) the collection of mi

observations in the longitudinal response for subject i, i = 1, 2, ...n where, n is the total

number of subject in the study and θ = (θT , θy) is the vector of parameters from two

parts: (i) longitudinal and (ii) survival model. Suppose the set of parameters from the

model of the time-to-event response is defined by θT and for the longitudinal model, by

θy.

3.3.1 Longitudinal submodel

Suppose yij = yi(tij), i = 1, 2, ..., n; j = 1, 2, ...,mi indicates the longitudinal response

for the ith subject measured at jth time point, defined as, tij, where n is the total num-

ber of study subjects and mi is the number of repeated measurements for the ith sub-

ject. Consider the following general conditional mixed models framework that uses la-

tent random effects vectors bi defined in section (3.2.1), independent across subjects, to

model within-subject covariance. Given random effects bi, the longitudinal responses,

yi = (yi(ti1), ..., yi(timi
)) on the same subject are assumed to be independent (Garcia-

Hernandez & Rizopoulos, 2018).

p(yi|θy, bi) =
∏
j

p(yi(tij)|biθy) (3.19)

where θy denotes the vectors of parameters from longitudinal model defined in equation

(3.13) under section 3.2.1

More specifically, to incorporate the binary repeated measurements into the Cox model,

consider the Bernoulli distribution with the probability of success defined as (Garcia-
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Hernandez & Rizopoulos, 2018)

πi(t) =
eβ0+β1t+β2Xi+bi0+bi1t

1 + eβ0+β1t+β2Xi+bi0+bi1t
(3.20)

where Xi is the time-independent covariate associated with ith subject, β’s are the re-

gression coefficients for the fixed effects, bi’s are random effects. The model in equation

(3.20) includes only two random effects (random intercept, bi0 and slope, bi1 ) in addition

to fixed effects t,Xi.

Therefore, the logit function can be expressed as follows (Garcia-Hernandez & Rizopoulos,

2018)

logit(πi(t)) = log(
πi(t)

1− πi(t)
) = β0 + β1t+ β2Xi + bi0 + bi1t (3.21)

More specifically, generalized linear mixed effects model can be represented as (Garcia-

Hernandez & Rizopoulos, 2018):

g{mi(t)} = g[E{yi(t)}|bi] = Xi(t)(βt + bi) + Ziβb (3.22)

where mi(t) is the expected value for the longitudinal response, yi(t) of subject i at time

t given the random effects, bi, g() denotes the link function, Xi(t) is the design matrix of

fixed and random effects modeling the trajectories of the longitudinal response over time.

The corresponding coefficients for these fixed and random effects are βt and bi respectively,

and Zi, βb are the design matrix and coefficients associated with the baseline covariates

respectively.
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Random intercepts and slopes

There are several options available for random-effects linear models, particularly for mod-

eling the trajectories of longitudinal variable over time. If we consider the simple random

intercept and slope model, it includes only β0 fixed-effect intercept, β1 fixed-effect slope,

bi0, intercept for random-effect; bi1 is slope for random-effect and βb the vector of coeffi-

cients associated with baseline covariates, Z and can be expressed as (Garcia-Hernandez

& Rizopoulos, 2018)

g{mi(t)} = β0 + bi0 + (β1 + bi1)t+ Ziβb (3.23)

The variance covariance matrix of bi0 and bi1 is denoted by Σ and defined as follows:

Σ =

σ00 σ01

σ01 σ11


where σ00 and σ11 indicates the variance of random effect bi0 and bi1 receptively and σ01

is their covariance. However, if the random effects are assumed to be independent then

the covariance term will be zero and no longer to be estimated. On the other hand, if the

number of random effects increases, possible structures for covariance matrix, Σ may be

unstructured, variance-components etc. Estimation procedures are discussed in section

3.2.1.
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3.3.2 Time-to-event submodel

The variable of interest is the time to the event, T̃i that is, true survival time for the ith

subject and it might not be observed for all subjects. Two variables are observed: time-

to-event or time to censoring Ti and event indicator δi=I(T̃i≤Ci). The general expression

for Cox model with a covaraite, xi associated with ith subject can be defined as follows

(Cox, 1972)

hi(t) = h0(t) exp(λ1xi) (3.24)

where h0(t) is the baseline hazard that is to be specified, xi indicates the single covariate

and λ1 represents the corresponding regression coefficient. In the subsequent section, a

single covariate, xi in the Cox model is considered for simplicity, however, multiple co-

variates are also possible as like as the form of Cox model in equation (3.6).

Parametric survival models

The Cox model for analyzing survival data does not need to assume a specific probability

distribution for survival time and there is no restriction on the functional form of the

hazard function. The Cox model, therefore, has widespread application. However, if the

assumptions regarding the probability distribution for the data are correct and valid, in-

ferences will be more precise compared to the Cox model (Collett, 2015). For example,

the standard error of the estimates of measures such as median survival time and the

hazard ratio will be smaller than that of the model without distributional assumptions.

The models with the assumption of parametric distribution for the survival time are called

parametric model. This parametric version of the Cox model, where baseline hazard is

specified with a parametric model, is discussed as follows:
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Exponential

Assuming that the constant baseline risk is the simplest form for time-to-event of interest

and that it is defined as follows (Kleinbaum & Klein, 2011; Lawless, 2011)

h0(t) = λ (3.25)

The full expression of the exponential model, that is, the hazard for the ith subject is

given as

hi(t) = λ exp{λ1xi} (3.26)

Here, the baseline hazard, h0(t) in cox model in equation (3.24) is replaced with λ.

Piecewise exponential

In most cases, the baseline hazard risk, h0(.) remains unspecified in the Cox model.

However, this un-specification of baseline hazard risk in joint modeling may underestimate

the standard errors of the parameter estimates (Hsieh, Tseng, & Wang, 2006) and it is

always better idea to incorporate this function. Piecewise-constant model with following

hazard function could be a standard approach (Garcia-Hernandez & Rizopoulos, 2018).

h0(t) =

Q+1∑
q=1

ξqI(vq−1 < t < vq) (3.27)

where v0 = 0, v1, ..., vQ areQ knots that divide the range of times into manyQ+1 intervals,

the value of vQ+1 is higher than the maximum observed time and ξq is the hazard in the

interval of (vq−1, vq). For example, the hazard has following form for different values of q
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h0(t) =ξ1, if, v0 < t < v1

.

.

.

ξQ+1, if, vQ < t < vQ+1

(3.28)

The full expression of piecewise exponential model is

hiq = ξq exp{λ1xi} (3.29)

where hiq indicates the hazard corresponding to the ith individual at qth interval and ξq is

the constant baseline hazard in the qth interval but it may vary across the interval. The

closer form of the unspecified Cox model can be approximated with piecewise exponential

model. Maintaining at least 10–20 failure per parameter is recommended to avoid the

underestimation of standard errors (Harrell Jr, 2015).

Weibull

This is a very popular and commonly used distribution for baseline risk particularly for

describing a scenario where the hazard risk increases or decreases over time. The hazard

is given as (Kleinbaum & Klein, 2011; Lawless, 2011)

h0(t) =
k

λk
tk−1 (3.30)

where λ is the scale and k is the shape parameter, and λ, k > 0. The hazard increases

when k > 0 and decreases when k < 1 with time. For k = 1, the hazard rate remains

constant and returns to the exponential model.
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The hazard for the ith subject with a covariate xi under the Weibull model is defined as

hi(t) =
k

λk
tk−1 exp{λ1xi} (3.31)

3.3.3 Joint model with current-value shared parameter

The most standard approach for linking the longitudinal model and the time-to-event

model in the random-effects shared-parameter models framework is to assume that the

risk of event at a given time t depends on the estimated value for the longitudinal response

at that time. This is expressed as follows (Garcia-Hernandez & Rizopoulos, 2018)

hi(t) = h0(t) exp{λ1xi + α1πi(t)} (3.32)

where scalar λ1 indicates the regression coefficient corresponding to the covariate, xi

, πi(t) is defined in equation (3.20) in subsection (3.3.1) and α1 is the single shared

parameter that links the longitudinal process with the survival process. If the baseline

hazard, h0(t) in equation (3.32) is specified with exponential model, we see that, once the

shared parameter α1 is incorporated between the subject-specific estimate of longitudinal

response, πi(t) and event time process Ti, the resulting hazard for the ith subject is no

longer constant, rather it changes with the change of longitudinal response over time.

3.3.4 Joint model with slope-dependent shared parameter

Sometimes it may not be the always case that the longitudinal response is associated with

the risk of event through the currentvalue shared parameter, α1 in equation (3.32) but

the rate of range (increase or decrease) of the longitudinal response may alter the risk
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of event. This relationship can be expressed as follows (Garcia-Hernandez & Rizopoulos,

2018)

hi(t) = h0(t) exp{λ1xi + α2π
′
i(t)} (3.33)

hi(t) specifies that the hazard for ith subjects at time t is now assumed to be associated

with its current rate of change (i.e., slope of longitudinal response) at time t, denoted by

π′i(t). π′i(t) is a derivative of equation (3.20) with respect to t. Here, α2 is a corresponding

coefficient to π′i(t).
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Characteristics of current-value and slope-dependent parameter

The basic features of joint model with current-value shared parameter and slope-dependent

parameters are described briefly in the following table

Table 3.1: Key features of current-value and slope-dependent model

Current-value Parameter Slope-dependent Parameter

1. This association structure assumes
that the log hazard of event at time t is
linearly associated with the true value
of the longitudinal response evaluated
at that time, t.

2. The true value of the longitudinal mea-
sure at time t is predictive of the risk
of experiencing the event at that same
time t.

3. In the situation when statistical mod-
els incorporate the “true” value of the
biomarker as a time-dependent covari-
ate in the event submodel, the current-
value association structure is consid-
ered in the model.

4. The current-value shared parameter,
α1 in equation (3.32) is interpreted
interms of hazard ratio such as the
hazard ratio for one unit increase in
current-value of longitudinal response
is exp(α1).

1. This association structure assumes
that the log hazard of event at time t
is linearly associated with the current
rate of change (slope) of the longitudi-
nal submodel’s linear predictor.

2. The true value of the slope at time t
is predictive of the risk of experiencing
the event at that same time t.

3. On the other hand, slope-dependent
parameter is meaningful to use when
the longitudinal scores of individuals at
a specific time are same but they have
different rate of change of this score (for
example, one may have increasing tra-
jectory, another may have decreasing
trajectory).

4. The slope-dependent parameter, α2 in
equation (3.33) is interpreted interms
of hazard ratio such as the hazard ra-
tio for one unit increase in the current
rate of change of the (true) trajectory
is exp(α2).

3.3.5 Marginal log-likelihood function and inference

Let yi(tij), i = 1, 2, ..., n; j = 1, 2, ...,mi be the longitudinal response for the ith subject

measured at jth time point, that is, time tij, where n is total study subjects and mi is the

41



number of repeated measurements for the ith subject. Suppose the random effects, bi =

(bi0, bi1, ...biq) has multivariable normal distribution with mean vector, µ = (µ0, ..., µq)
T

and (q+1)× (q+1) variance covariance matrix, Σ. Here, q indicates the number random

effects considered in the model. Usually random effects, bi is assumed to follow multivari-

ate normal distribution with mean vector, 0 and variance covariance matrix, Σ. Based

on the discussion and assumptions described in the joint modeling section and subsec-

tion on the longitudinal submodel (subsection 3.3.1) and time-to-event submodel (3.3.2),

the marginal (joint) likelihood of the observations on subject i, is expressed as follows

(Garcia-Hernandez & Rizopoulos, 2018):

p(Ti, δi, yi|θy, θT ) =

∫
p(Ti, δi|bi, θy, θT )[

mi∏
j=1

p(yi(tij)|bi, θy)]p(bi, θb)dbi (3.34)

where Ti is failure or censoring time, δi is the censoring indicator, θT and θy indicates

the set of parameter from time-to-event and longitudinal model described in section 3.3.2

and section 3.3.1 respectively. θb denotes the unique parameters of the random effects

covariance matrix, Σ.

Now the joint likelihood function for the observable data can be constructed as follows and

model estimators from the likelihood function can be obtained. Thus, the joint likelihood

function (Hwang et al., 2019) is

L(θ) =
n∏
i=1

p(Ti, δi, yi|θy, θT ) =
n∏
i=1

∫
p(Ti, δi|bi, θy, θT )[

∏
j

p(yi(tij)|bi, θy)]p(bi, θb)dbi

(3.35)

42



where

p(yi(tij)|bi, θy) = π(tij)
yi(tij)(1− π(tij))

(1−yi(tij)),

p(bi|µ,Σ) = exp{−(bi−µ)′Σ−1(bi−µ)/2}
(2π)q/2|Σ|1/2 and

p(Ti, δi|bi, θy, θT ) = [h0(Ti) exp{λ1xi + α1πi(t)}]δi×exp[−
∫ Ti

0
h0(s) exp{λ1xi+α1πi(s)}ds]

For the log-likelihood function, we will have log transformation both for the longitudinal

and survival portion. The log transformation of probability function for longitudinal

response conditional on random effects always has a closed form solution and for the

time-to-event model, this log transformation of probability function conditional on random

effects parameters can expressed as

log{p(Ti, δi|bi, θy, θT )} = δilog{hi(ti|bi, θ)} −
∫ Ti

0
hi(Ti|bi, θ)dt

The integration of the second part of the hazard function ranging from 0 to Ti may or

may not have the closed form solution depending on the chosen model for both longitu-

dinal and time-to-event outcome. Usually the 15-point Gauss-Kronrod rule is used for

approximating this integration and is defined as follows (Garcia-Hernandez & Rizopoulos,

2018).

∫ Ti

0

hi(Ti|bi, θ)dt ≈
Ti
2

15∑
1

wkhi(tik|bi, θ) (3.36)

where tik are called 15 Kronrod-rule nodes for the integral re-scaling from -1 to 1 into 0

to Ti interval, and wk are the weights for the integral from -1 to 1. However, if the mi(t),

the true longitudinal response, is modeled with spline it requires to add multiple variables

to work data set (Garcia-Hernandez & Rizopoulos, 2018).
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The marginal loglikelihood function of the form in equation (3.35) can be expressed as

l(θ) = log
n∏
i=1

p(Ti, δi, yi|θy, θT ) =
n∏
i=1

log

∫
p(Ti, δi|bi, θy, θT )[

∏
j

p(yi(tij)|bi, θy)]p(bi, θb)dbi

(3.37)

This marginal log-likelihood is approximated by the approximation of integral of the

conditional probability function over the random effects and adaptive or non-adaptive

Gauss-Hermite quadrature rules are applied for approximating this integration (Garcia-

Hernandez & Rizopoulos, 2018).

3.3.6 Expectation Maximization (EM) algorithm-based parame-

ter estimation technique

Since the underlying random effects in our model are not directly observable, we can not

find the estimates in a straightforward way. One of the solutions is to apply the EM algo-

rithm (J. Choi et al., 2015). For current E-step, let us consider the estimates denoted as

Ω̂ = {µ̂, Σ̂, α̂, λ̂, ĥ0}. We can compute the expected log-likelihood value in E step since we

already have the estimated value, Ω̂. Now, given the observed data and estimated value

of parameters, the conditional probability density function for random effect is expressed

as (Hwang et al., 2019)

p(bi|Ti, δi, yi, Ω̂) =
p(Ti, δi|bi, α̂, λ̂, ĥ0)p(bi|yi, µ̂, Σ̂)∫∞

−∞ p(Ti, δi|bi, α̂, λ̂, ĥ0)p(bi|yi, µ̂, Σ̂)dbi
(3.38)

Let g(.) be an arbitrary function. The conditional expectation of g(.) given the observed
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data and estimated parameter value, is defined as follows

Ei[g(π(bi, t)|yi, µ̂, Ω̂] = Ei[g(π(bi, t))] =

∫∞
−∞ g(π(bi, t))p(Ti, δi|bi, α̂, λ̂, ĥ0)p(bi|yi, ti, µ̂, Σ̂)dbi∫∞

−∞ p(Ti, δi|bi, α̂, λ̂, ĥ0)p(bi|yi, µ̂, Σ̂)dbi

(3.39)

However, the probability function, p(bi|yi, ti, µ̂) in equation (3.38) is a mixture distribution

and we can not generate the random sample in a straight forward way. One solution for

drawing this random sample is to use the Metropolis Hasting (MH) algorithm proposed

by Metropolis and Ulam (1949) and Hastings (1970). For details on how to generate

a sample, particularly for this problem, see Hwang et al. (2019). Let us consider M

metropolis samples denoted by π(b
(k)
i , t), k = 1, 2, ...,M and use the last B number of

samples for computing this term. In the above equation in (3.39), approximation of

conditional expectation is presented as follows

Ei[g(π(bi, t))] ≈
∑M

k=B+1 g(π(bi, t))p(Ti, δi|b(k)
i , α̂, λ̂, ĥ0)/(M −B)∑M

k=B+1 p(Ti, δi|b
(k)
i , α̂, λ̂, ĥ0)/(M −B)

(3.40)

Now, based on the complete data obtained from E-step, the MLE of Ω can be found. .

The next step is maximization of the M-step, and we will have the following estimates

µ̂ =
1

n

n∑
1

Ei(bi) (3.41)

Σ̂ =
1

n

n∑
1

Ei[(bi − µ̂)(bi − µ̂)′] (3.42)

See Viviani, Alfó, and Rizopoulos (2014) and Hwang et al. (2019) for detailed procedure.
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3.3.7 Software and level of significance

Packages available in R were used to manage the entire data set and prepare the master

database required for the analysis. All primary analyses were performed in R version

3.6.3 (R Core Team, 2013). The longitudinal analysis and joint modeling were carried out

using SAS version 9.4 (Instiute, 2015). The level of significance was set at 0.05 for this

thesis.
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Chapter 4

Application to KHP Study

4.1 Background

The relationship between depression and risk of dementia is complex and still unclear. As

a result, the relationship requires further investigation. In this chapter, we applied the

joint modeling technique to KHP data to determine the association between depression

and the risk of dementia.

Depressive symptoms in older people have been studied extensively to establish their rela-

tionship with dementia incidence, but they have been considered as a baseline covariate or

have been assessed at a single point of time (Andersen, Lolk, Kragh-Sørensen, Petersen, &

Green, 2005; R. Chen et al., 2008; Ganguli, Du, Dodge, Ratcliff, & Chang, 2006; Saczyn-

ski et al., 2010). These approaches neglect the longitudinal impact through the course of

depression, which might provide additional insights into the complex association between

depression and dementia. Some prospective studies showed the impact of depression or

depressive symptoms on cognitive decline or dementia (Gatchel et al., 2019; Gracia-García
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et al., 2015; Luppa et al., 2013; Mukamal et al., 2003). Another large scale longitudinal

study (Helvik et al., 2019) showed the interconnection and positive association between

the severity of cognitive decline and average depressive symptoms, though the strength of

association became weaker with the passage of time. However, these studies’ statistical

analytic methodology differed greatly and led to inconsistent results. Taken together,

none of these studies took into account the correlation structure due to the longitudinal

measurements of depression.

Many of the dementia disease trials collect two types of data: the time to clinical diagnosis

of dementia and longitudinal measurements of some endogenous variables. Although they

can be strongly associated, in most of the cases, data are analyzed separately which leads

to the biased estimates and misleading inference. Joint models take into account this

association by combining both the longitudinal and survival data into a single statistical

model. That said, most existing joint modeling approaches have concentrated on continu-

ous longitudinal measurement (Tsiatis & Davidian, 2004) and have paid little attention to

joint modeling for binary longitudinal outcome and event time data. In clinical research,

patients often have binary longitudinal outcomes that affect the main event of interest

during follow up. In our study, we determined the time until clinical diagnosis of dementia

among a Korean cohort of subjects aged 65 or older as well as binary longitudinal infor-

mation of depression diagnosed by a clinician. Since previous studies have shown that

the relationship between depression and the timing of the onset of dementia is complex,

we further investigate it in this study by polishing conventional statistical methods and

employing a new approach that addresses the factors that commonly lead to biased and

misleading inferences. Here, we mainly applied the joint modeling of binary longitudinal
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outcome (depression) and the time-to-event (dementia) approach for producing less bi-

ased and more efficient inferences.

4.2 Data source and sampling design

The current study utilizes the 2008 - 2015 Korea Health Panel (KHP) data as the sec-

ondary source of information. This study originally intended to focus on the use of public

health care services and resulting expenditures, as well as to determine the factors affect-

ing the use of health care services, spending on health care, and financial resources. The

survey prepared a sampling frame from the list of 2005 Population and Housing Census

and used 90% of the total data. The extraction method employed for determining the

subject for this survey is stochastic proportional 2-step stratified cluster sampling where,

region (16 metropolitan cities), East & local small town (Eup, Meon) are considered as

the stratification variables. The study was approved by the University of Saskatchewan’s

Behavioural Research Ethics Board (See Appendix).

4.3 Study population

In 2008, information on a total of 21,283 respondents was recorded and followed up to

wave 10. This sampling frame was constructed as 90% of the total data contained in

the 2005 Population and Housing Census. However, due to continuous dropout from the

2010 Population and Housing Census, new household members were attracted in 2012 to

secure statistical reliability using the same extraction method as in 2008. At this stage,
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the sampling frame was 90% of the total data in 2010 Population and Housing Census

and targeted about 2,500 new households to build a total of 8,000 panel households.

Their survey data is integrated with the original annual panel data from 2014, in wave

9. Altogether the total number of respondents entered into this panel study is 28,528.

Out of the total follow up subject, the number of the respondents of age 65 or older is

3,983, of them 287 respondents once enter the study were not found later and 85 of them

were initially diagnosed with dementia. Finally, the data set for this analysis includes

3611 participants as our study population after excluding the number who had initially

prevalent dementia and once entered the study but never found later.

Figure 4.1: Study flowchart

Total respondents in this

Panel Study(n=28528)

Excluded (n=24545):

Inclusion criteria of Age ≥ 65 not meet

Satisfying eligibility criteria

of age ≥65 (n=3983)

Excluded (n=372):

a) Initially diagnosed with dementia (n=85)

b) Entered once and never found (n=287)

Respondents for final

analysis (n=3611)

4.4 Variables

4.4.1 Outcome variable

Dementia is the main event of interest for this analysis and the study population were

followed up to year 2015. To determine or approximate the clinically diagnosis date of de-

mentia, we went through the inpatient, outpatient, emergency and chronic disease records

for each of the patients, searched for the dementia disease codes (1501, 15011, F03) and
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finally, the most backward date among them was considered as the diagnosis time of de-

mentia. We recorded the earlier date for multiple report of dementia. Respondents once

having any of these disease codes in any time during this follow up-period was identified

as demented otherwise, it was non-demented or censored. Time-to-dementia was the du-

ration from entering time to clinically diagnosis of dementia and the censoring time was

the period from entrance time to the survey date when they appeared last time or date

of termination of the study in 2015.

4.4.2 Potential covariates

The following socio-demographic and economic characteristics were considered as base-

line covariates: sex, age, level of education, economic activity, living arrangement, liv-

ing in a multi-generational household, marital status, baseline comorbidities (such as

cardiovascular disease, diabetes, hypertension, and gum disease), the presence of more

than three chronic diseases, and self-reported behaviors (such as alcohol intake, smok-

ing, intense/moderate physical activity, and walking activity). Economic activity and the

presence of more than three chronic disease both had two levels: yes and no. Years of

schooling were categorized into three different groups: 0 = no education, 1-5 = primary

education, and 5+ = above primary education. Living in a multi-generational household

was recoded as first generation (i.e. single or couple), second generation (i.e. single or

couple, with child), and third generation (single or couple, with child and grandchild

and/or other relations). Current marital status was categorized as married (including

putative marriage) versus other (separated, divorced, widowed, unmarried). Frequency

of intense and medium physical activity in a week were combined to create a variable
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indicating intense/medium physical activity, with three categories: never, ≤ 3 days and

>3 days per week. Originally, the categories of alcohol consumption were never, recently

non-drinking, less than once per month, once per month, 2-3 times per month, once per

week, 2-3 times per week, almost daily, which were recoded as “never,” “recently not drink-

ing,” “drink monthly/weekly,” and “drink daily.” The self-reported variable for smoking

was re-categorized as “never,” “current daily smoker/occasional smoker,” and “ex-smoker.”

This data also had information regarding the subject’s walking frequency during a one

week period which was re-coded as “never,” “three days or less,” or “more than three days

per week”. The presence or absence of each co-morbidity (anxiety, depression, cardio-

vascular disease, diabetes, hypertension, and gum disease) was determined by comparing

the disease codes to those contained in the data and recoding the finding as yes or no.

A variable was also available that indicates the presence or absence of more than three

chronic diseases.

4.5 Statistical Analysis

4.5.1 Descriptive analysis

Demographic characteristics

This study included 3,611 individuals aged 65 years or older who were eligible for the

study. Of them 2,055 (56.9%) were female, the mean age was 72.2 years (s.d=± 5.7) and

1,927 (53.4%) were older than 70. In all, 2,390 (66.2%) were married, and 2,290 (63.4%)

and 781 (21.6%) lived in first-generation or second-generation household, respectively. At

baseline, 17.6% reported they never walked, whereas 12.7% walked less than or equal to
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three days in a week. Also, 59.1% were non-smokers, 40.1% did not drink alcohol and

61.7% did not have any economic activity (see Table 4.1).

Clinical characteristics

The majority (87.8%) had more than three chronic disease. Hypertension, cardiovascular

disease, diabetes, and gum disease were present in 49.9%, 9.9%, 17.9%, and 12.5% of

individuals, respectively. This analysis also found that most of the respondents (87.8%)

had more than three chronic diseases. A small number of individuals had anxiety (1.9%)

or depression (2.7%) at the baseline. Table 4.1 shows the details of these baseline char-

acteristics.

Prevalence measurement for depression

This study identified 58 (2.2%) people who were initially diagnosed with depression in

the beginning cohort in 2008. This percentage increased with the passage of time. Due to

ongoing dropout, additional samples were added to the original population-based cohort

in 2014. At that time point, the number of people with a clinical diagnosis of depression

was 149 (5.35%). This figure increased to 5.48% in 2015, the end point of the study.
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Table 4.1: Baseline characteristics (N=3611)

Variables m e a n ( ±sd);      
n (%) 

Variables m e a n ( ±sd);      
n (%) 

Age (mean, sd)  72.2 (±5.7)   

Gender  Hypertension  
Male 1556 (43.1) No 1810 (50.1) 

Female 2055 (56.9) Yes 1801 (49.9) 

Age category  Cardiovascular disease  
≤70 years 1687 (46.6) No 3254 (90.1) 

>70 years 1927 (53.4) Yes 357 (9.9) 

Marital status  Diabetes  
Married 2390 (66.2) No 2964 (82.1) 

Other (Separated, widowed, 

divorced) 
1221(31.8) Yes 647(17.9) 

Living arrangement 

 
 

 

 

  Gum disease 

 

 

 

 

 

 

Together (not alone) 

 

3582(99.2) 

 

No 

 

3161 (87.5) 

 Alone 29(0.8) Yes 450 (12.5) 

 Economic activity   >3 chronic diseases  
No 2228 (61.7) No 439 (12.2) 

Yes 1383 (38.3) Yes 3172 (87.8) 

Generations within household  Depression  
One 2290 (63.4) No 3514 (97.3) 

Two 781 (21.6) Yes 97 (2.7) 
Three 540 (15.0)    

Education  Anxiety  
No Formal Education 700 (19.4) No 3542 (98.1) 

Primary 1570 (43.5) Yes 69 (1.9) 

Above primary 1341 (37.1)    

Walking in a week  Smoking  
Never 632 (17.6) Never 2092 (59.1) 

≤3 days 450 (12.7)      Occasionally/Current daily 488 (13.8) 

>3 days 2459 (69.4) Ex-smoker 961 (27.1) 

Moderate/intense physical activity in a 

week 

Never 

≤3 days 

>3 days 

 

 

 

 

 

2339(66.1) 

1011(28.5) 

191(5.4) 

  Alcohol intake 

Never 

             Recently not drinking 

Monthly/weekly 

Daily 

 

 

 

 

 

 

 

1421 (40.1) 

534 (15.1) 

1305 (36.9) 

281 (7.9) 

 

 
Hospitalization 

No 

Yes 

 

 

2988(82.8) 

623(17.2) 

  Overall follow-up time  

    (median, IQR) 

5.8 (5.7) 
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4.5.2 Survival analysis for time-to-dementia

Variables associated with dementia risk

Kaplan-Meier (K-M) estimates

During the 8-year follow-up period, 215 (about 6%) respondents developed dementia. The

overall median follow-up time was 5.8 years (3.6 years for people living with dementia

versus 5.9 years for people without dementia). Figure 4.2 shows Kaplan-Meier (K-M)

estimates of the survival time for diagnosis of dementia by sex, age category, educational

attainment, having diabetes, depression and economic activity.

Figure 4.2: Kaplan-Meier survival estimates for sex, age category, educational attainment,
diabetes, depression, and economic activity and the p-value from log-rank test

The K-M survival estimates (Figure: 4.2) showed that the survival curves for male sex,

people aged 70 years or less, individual without diabetes, those who had comparatively
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higher education and economic activity were significantly higher than their corresponding

comparison groups. However, the survival curve for depressed people was not significantly

different from the non-depressed people.

Univariate Cox PH model

Univariate analyses between potential factors and the risk of dementia were assessed in

this study (Table 2). The age was highly associated with developing dementia and the

risk was higher among the individuals older than 70. The dementia risk was lower among

males than females (hazard ratio [HR]=0.66, 95% CI: 0.50 - 0.88, p-value=0.005). The

hazard ratio was higher for those with no formal education (HR= 2.07, 95% CI: 1.43 - 3.00,

p-value=0.011) and primary-educated (HR=1.53, 95% CI: 1.10 - 2.13, p-value=<0.001)

participants compared to individuals who had relatively higher education. Involvement in

economic activity was significantly associated with lower risk of dementia (HR=0.52, 95%

CI: 0.38 - 0.71, p-value=<0.001). For individuals having more than three chronic diseases

compared with the ones with fewer, the hazard ratio was 2.22 (95% CI: 1.29 - 3.82, p-

value=0.004). The dementia risk among the participants who did not marry ever was 61%

higher than that of ever-married participants. Individuals reporting no physical activity

(HR= 2.60, 95% CI: 1.15 - 5.86, p-value=0.022) were at higher risk of dementia than the

group undertaking physical activity at least three days per week. Individuals without

diabetes (HR=0.70, 95% CI: 0.50 - 0.96, p-value=0.029) and hypertension (HR= 0.70,

95% CI: 0.53 - 0.91, p-value=0.009) were both at 30% lower risk of dementia than people

having these conditions. Baseline walking frequency, number of generations living in the

household, and hospitalization status were also significantly associated with dementia.
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Table 4.2: Univariate Cox model for time-to-dementia

Variables Hazard Ratio (95% CI) p-value 

Gender 

Female* 

Male 

 

 

0.66(0.50, 0.88) 

 

 

0.005 

Age Category 

>70 

≤70 

 

 

0.34 (0.25, 0.46) 

 

 

<0.0001 

Gum disease 

Yes*  

No 1.06 (0.70, 1.61) 0.778 
Cardiovascular disease 

Yes* 
No 1.23 (0.75, 2.02) 0.413 

Economic activity 

Yes*  

No 

 

 

0.52 (0.38, 0.71) <.0001 
More than three chronic diseases 
           No* 
          Yes 

 

2.22 (1.29, 3.82) 

 

0.004 

Education 

Above primary* 

No formal education 

Primary 

 

 

2.07(1.43, 3.00) 

1.53 (1.10, 2.13 

 

 

<0.001 

0.011 

Marital status 

Married* 

Others (Separated, widowed, divorced) 

 

 

1.61 (1.23, 2.11) 

 

 

<0.001 

Living arrangement 

Together (not single) 

Alone 

 

 

2.62 (0.84, 8.21) 

 

 

0.097 

Diabetes 

Yes*  

No 

 

 

0.70 (0.50, 0.96) 

 

 

0.029 

Depression 

Yes*  

No 

 

 

0.58 (0.29, 1.13) 

 

 

0.107 

Anxiety 

Yes* 

No 

 

 

1.50 (0.48, 4.70) 

 

 

0.483 

Intense/medium physical activity in a week 

>3 days* 

Never 

≤3 days 

 

 

2.60 (1.15, 5.86) 

1.33 (0.56, 3.13) 

 

 

0.022 

0.520 

Alcohol intake 

Daily* 

Never 

Not recent 

Monthly/weekly 

 

 

1.66 (0.93, 2.96) 
1.52 (0.81, 2.87 ) 
0.90 (0.49, 1.64) 

 

 

0.087 

0.197 

0.721 

Walking 

>3 days* 

Never 

≤3 days 

 

 
1.76 (1.25, 2.48) 
0.96 (0.61, 1.51) 

 

 
0.001 
0.867 
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Variables Hazard Ratio (95% CI) p-value 

Smoking 

Ex-smoker* 

Never 

Current daily/occasionally 

 

 

0.98 (0.71, 1.34) 

0.70 (0.43, 1.14) 

 

 

0.888 

0.152 

Hospitalization 

Yes*  

No 

 

 

0.59 (0.43, 0.81) 

 

 

<0.001 

Hypertension 

Yes*  

No 

 

 

0.70 (0.53, 0.91) 

 

 

0.009 

Generations within household 

Three* 

One 

Two 

 

 

0.45 (0.33, 0.62) 

0.51 (0.35, 0.76) 

 

 

<0.0001 

0.001 

 

However, this univariate analysis did not find any association of gum disease, cardiovascu-

lar disease, depression, anxiety, smoking, or alcohol intake, and living arrangement with

the development of dementia.

Multivariable Cox PH model

There were fourteen variables significant at 10 % level in univariate Cox model: gender,

age category, education, marital status, living arrangement, economic activity, alcohol

intake, more than three diseases, hypertension, diabetes, hospitalization, physical activity,

walking activity/week, and generation setting in household. Variables significant at 10 %

level in univaraite Cox model were entered into the multivariable Cox model to build the

final model.
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Table 4.3: Multivariable Cox model for time-to-dementia

Covariates Estimate SE Hazard Ratio 95% CI of HR P-value
Age category

≤ 70*
>70 0.90 0.16 2.46 1.80, 3.36 <0.001

Education
Above Primary*
No education 0.45 0.20 1.57 1.07,2.30 0.022
Primary Level 0.38 0.17 1.46 1.05, 2.04 0.025

Economic Activity
Yes*
No 0.38 0.16 1.46 1.06, 2.01 0.021

Diabetic condition
No*
Yes 0.35 0.17 1.41 1.02, 1.97 0.04

Walking Activity/week
>3 days*
Never 0.35 0.18 1.42 1.01,2.01 0.046
≤ 3 days 0.18 0.20 1.20 0.81, 1.76 0.369

Generations in household
3rd generation*
1st generation -0.56 0.17 0.57 0.41, 0.79 <0.001
2nd generation -0.45 0.20 0.64 0.43, 0.95 0.028

Along with the likelihood ratio test (LRT), Akaike information criterion (AIC) as an ad-

ditional criteria were used to determine the possible and final subset of covariates in the

final multivariable Cox model (Table 4.3). After multivariable adjustment, the final model

retained six variables that were independently associated with the risk of dementia: age,

education, economic activity, diabetes, walking activity/week, and generation setting in

household.

Individuals older than 70 years were at 2.46 times higher risk for dementia than younger

ones of age 70 or less (adjusted hazard ration, AHR= 2.46, 95% CI: 1.80 - 3.36, p-

value=<0.001) after adjusting other covariates. Compared with people having more than

primary education, individuals with no formal education or only primary education had

57% and 46% more risk, respectively (AHR=1.57, 95% CI: 1.07 - 2.30, p-value=0.022;

AHR=1.46, 95% CI: 1.05 - 2.04, p-value=0.025). Never walking significantly predicted
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42% higher risk of dementia than walking more than three days per week (AHR= 1.42,

95% CI: 1.01 - 2.01, p-value=0.046). People with diabetes (AHR= 1.41, 95% CI: 1.02 -

1.97, p-value=0.040) had an elevated risk of developing dementia compared to the non-

diabetic people. Time-to-dementia within the non-economic activity group was 1.46 times

more likely than within the economic activity group (AHR= 1.46, 95% CI: 1.06 - 2.01,

p-value=0.021). We observed a lower risk of dementia among the people living in sin-

gle generation (AHR= 0.57, 95% CI: 0.41 - 0.79, p-value=<0.001) or second generation

(AHR= 0.64, 95% CI: 0.43 - 0.95, p-value=0.028) settings compared to those living with

three generations [see Table 4.3 & Figure: 4.3 ].

Although sex, hypertension, marital status, and physical activity were significant at uni-

variate analysis, they were no longer significant in the multivariable model. Variable

indicating more than three chronic disease was significant for both univariate and multi-

variable analysis. However, since there was no specified information about which diseases

were included, we decided to exclude this variable from the final analysis. Possible inter-

actions among the variables were also tested. However, we found no significant interaction

between covariates retained in the model and no violation of proportionality assumptions.

The proportional hazards assumption was assessed with log-log plots and Schoenfeld resid-

uals (Fitrianto & Jiin, 2013); the goodness of fit was assessed by the log-likelihood test.
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Figure 4.3: Hazard ratio plot of Cox model for time-to-dementia
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4.5.3 GLMM analysis for longitudinal outcome

Depression was the longitudinal outcome in this study. Subject specific information of

depression was used in joint modeling of longitudinal depression and time-to-dementia.

Since the repeated measurement of depression was categorical that was dichotomous (yes

or no) in this data set and the primary interest was in subject-specific effects rather

than the population level, generalized linear mixed model (GLMM) was applied to fit

the conditional model using G-side random effects and subject specific estimates were ob-

tained. The covariance structure for the random effects includes unstructured, Toeplitz,

compound symmetry, firs order auto-regressive (AR1). Since the GLMM for longitudinal

outcome in this study included only two random effects (random intercept and random

slope), choosing the covariance structure for a single covariance was not a great concern.

However, during the analysis, unstructured covariance structure was specified for the ran-

dom component.

Univariable analysis

Univariate generalized linear mixed effects models in which the linear predictor included

random effects in addition to the fixed effects were conducted. At univariable analysis, for

the binary repeated measurement of depression, single covariate was considered as a part

of fixed effect and random intercept and slope was taken into account for random effects in

each of the models. This univariable GLMM analysis identified four covariates including

gender, CVD, more than three chronic disease, and anxiety as significant variables at 10%

level. This longitudinal analysis found that depression among males, individuals who had

not been diagnosed with a CVD and did not have anxiety was lower compared to their

corresponding comparison group. People with more than three chronic disease had higher
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odds of depression compared to the people with lower number of chronic disease. Again,

since we did not have specific information about which chronic diseases were included, it

was excluded and individual diseases such as hypertension, anxiety, CVD, and diabetes

were used for the analysis. The rest of the covariates were insignificant in this model.

The results were shown in the the Table 4.4.
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Table 4.4: Univariable analysis from GLMM for repeated measurements of depression.

Covariates Estimate (95% CI) P-value 

Gender  

Female 

Male  

 

 

-0.80 (-1.62, 0.01) 

 

 

0.053 

Economic Activity 

Yes  

No 

 

 

- 0.58 (-1.38, 0.22) 

 

 

0.156 

Gum disease 

Yes  

No 

 

 

-0.13 (-1.21, 0.94) 

 

 

0.811 

CVD 

Yes  

No 

 

 

-0.96 (-1.93, 0.01) 

 

 

0.054 

Diabetes 

Yes  

No 

 

 

-0.29 (-1.20, 0.61) 

 

 

0.532 

Anxiety 

Yes  

No 

 

 

-2.3 (-3.81, -0.79) 

 

 

0.003 

Age category 

>70 

≤70 

 

 

-0.17 (-.90, 0.56) 

 

 

0.65 

Education 

Above Primary 

Illiterate 

Primary 

 

 

0.21(-0.80, 1.21) 

0.04(-0.80, 0.87) 

 

 

0.689 

0.933 

Living 

Together 

Not together 

 

 

-0.002(-4.73, 4.73) 

 

 

0.999 

Marriage 

 Married 

Other (Separate, widow, divorce) 

 

 

0.10 (-.68, 0.87) 

 

 

0.803 

>3 disease persistent 

No 

Yes  

 

 

1.75 (-0.33, 3.83) 

 

 

0.099 

Medium and intense physical activity 

Both>3 

Never 

Any catrgory≤3 

 

 

0.59 (-1.25, 2.44) 

0.26 (-1.68, 2.19) 

 

 

0.530 

0.797 

Drinks  

Daily   

Monthly/weekly 

Never 

Recently not drink 

 

 

0.73 (-0.86, 2.32) 

0.16 (-1.67, 1.99) 

0.16 (-1.47, 1.79) 

 

 

0.369 

0.868 

0.845 
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Covariates Estimate (95% CI) P-value 

Smoking 

Smoked but not now  

Never 

Current daily/ Occasionally 

 

 

0.69 (-0.29, 1.67) 

0.22 (-1.15, 1.59) 

 

 

0.167 

0.756 

Walking/week 

>3 

Never 

≤3 

 

 

0.40 (-0.60, 1.40) 

-0.38 (-1.21, 0.45) 

 

 

0.437 

0.368 

Hypertension 

Yes 

No 

 

 

-0.64 (-1.50, 0.22) 

 

 

0.142 

Generation 

Third 

First/couple 

Second 

 

 

0.06 (-0.99, 1.12) 

-0.21 (-1.50, 1.09) 

 

 

0.907 

0.756 

Time (months) -0.001 (-0.02, 0.01) 0.877 
 

Multivariable analysis

The covariates significant at 10% in the univariable analysis were included in the multi-

variable generalized linear mixed model. The four variables (that is, gender, CVD, more

than three chronic diseases, and anxiety) significant in the univariable GLMM analysis

were entered into the model for determining the final model. The final model retained

only three variables: gender, CVD and anxiety. The findings from this multivariable

GLMM model showed that female had higher depression than male. The odds of depres-

sion among those diagnosed with CVD and anxiety were also higher than people without

CVD or anxiety (Table 4.5). The estimate, 0.66 corresponding to CVD from this general-

ized linear mixed model indicates that an individual subject’s odds of having depression

was exp(0.66) = 1.93 times higher for the subject diagnosed with CVD at baseline com-

pared with a subject that was not diagnosed. Interaction among the covariates as well

as time by other covariate were checked, however no significant interaction was found in

this model.
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Table 4.5: Multivariable generalized linear mixed effects model for depression
 

Covariates Estimate (95% CI) P-value 

Gender 

Male  

Female 

 

 

0.82 (.001, 1.62) 

 

 

0.048 

CVD 

No 

Yes 

 

 

0.66 (0.01, 1.31) 

 

 

0.046 

Anxiety  

No 

Yes 

 

 

2.14 (0.61, 3.67) 

 

 

0.006 

 

4.5.4 Joint analysis of longitudinal and survival data

The joint modeling approach mentioned in Chapter 3 was applied to KHP study. A like-

lihood ratio test was used to select the final model with a potential subset of covariates

for both the longitudinal and survival submodels. The finally selected model, that is,

model with current-value shared parameter also had the lowest AIC compared to the sec-

ond model, that is, model with current-value plus slope-dependent parameter. Basically,

we considered two joint models with the same set of covariates for both longitudinal and

survival processes. The only difference between them was the addition of slope-dependent

shared parameters alongside the current-value in the second model. More clearly, the first

joint model considered the hazard function using only the current-value shared parame-

ter, whereas the second model incorporated both the current-value and slope-dependent

shared parameters.Finally, the best fitted model was selected using AIC (a lower AIC

indicates a better fit). Since the AIC of both models were very close to each other and

the slope-dependent shared parameter was not significant, the first model (the model only

with the current shared parameter and that had the lowest AIC) was finally chosen as

the parsimonious model.

66



The models are given below:

Joint model with current-value shared parameter

Longitudinal submodel

The following longitudinal submodel was considered for the ith subject

log(
πi(tij)

1− πi(tij)
) = β0 + β1tij + βTXi + bi0 + bi1tij (4.1)

Time-to-event submodel

The following time-to-event model with the current-value of the longitudinal variable was

used for this analysis

hi(t) = h0(t) exp(λTWi + α1πi(t)) (4.2)

Joint model with current-value plus slope-dependent shared parameter

log(
πi(tij)

1− πi(t)
) = β0 + β1tij + βTXi + bi0 + bi1tij

hi(t) = h0(t) exp(λTWi + α1πi(t) + α2π
′
i(t)) (4.3)

where Xi in the longitudinal submodel is a vector of covariates and β is the corresponding

vector of regression coefficients. Wi is vectors of baseline covariates in the survival model,

and λ is the corresponding vector of coefficient. All or some of the covariates may or
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may not be common in both Xi and Wi. Here, hi(t) is basically the hazard of dementia

diagnosis at time t for the ith patient and h0(t) is baseline hazard specified with piece-wise

constant hazard model. The main interest is parameter α1 in the first model defined in

equation (4.2) and in second model defined in equation (4.3), that is, α = (α1, α2) that

links the longitudinal process (the trajectory function of depression ) to the survival pro-

cess.

In the above model described in equation (4.1), the design matrix Xi in the longitudi-

nal model included the baseline information of walking activity in a week, generations

in household, gender. We also added some potential covariates that were expected to

have a significant impact on the longitudinal process of depression. However, insignificant

variables were finally dropped from the model to make it more parsimonious. We also

incorporated interaction terms (covariate by time) to the longitudinal model for inves-

tigating the probable time-varying coefficients of the baseline covariates. However, no

interaction terms were statistically significant so we decided to exclude those term to get

our final longitudinal model. In addition, we used linear effects of time (β1) for modeling

average trajectories but more complex functions of time (for instance quadratic term or

higher order polynomials or splines) are also possible.

In the survival submodel, the baseline covariate vector,Wi included age of the respondents

(≤70, >70), educational attainment (no formal education, primary education, above pri-

mary), walking activity per week (never, ≤ 3 days, >3 days), generations in household

(1st, 2nd and other), diabetes (yes, no) and economic activity (yes, no). Similar to the lon-

gitudinal process, we incorporated the other potential covariates and possible interactions
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in survival submodel. We dropped the insignificant variable and no significant interaction

was found. We also incorporated the longitudinal process through shared random effects

and linked it by α1 in equation (4.2). The quantity exp(α1) expressed the hazard ratio at

time t for a one-unit increase in the trajectory of the longitudinal response at the same

time point. This measure expresses, how much the hazard is higher among the exposed

group compared to the reference group.

The above model described in equation (4.2) is a standard joint model that assumes the

relationship between the current-value of longitudinal depression and the risk of dementia

at the same time point. However, this naive assumption between these two processes

could be more complicated in practice. The simple assumed trajectories for longitudi-

nal response sometimes may not adequately demonstrate the longitudinal profile of the

individual and sometimes only the current-value shared parameter could not be able to

capture the entire picture of actual relationship. For this purpose we also compared joint

models with different association structures between longitudinal and survival processes.

For example, in addition to current-value πi(t) of depression, we also included the slope

(rate change), π′i(t) to verify whether it contained additional information for the risk of

developing dementia (see equation (4.3)). It indicates how much the longitudinal response

is increasing or decreasing at a particular time point. More specifically, it can be stated

that two patients with same condition of depression at the current time point do not nec-

essarily show the same level of risk for developing dementia, for example, if the trajectory

of longitudinal depression for one patient stepped up swiftly, while the trajectory of the

other patient remained constant over time and always little bit higher up to a particular

time point comparing to the trajectory of the first patient (the higher the trajectory, the
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more they have depression). Since the trajectory of the first patient is stepping up, at

some point (say current time point) it will cross the trajectory of the second patient.

Then it is very natural to assume that the value of depression for this two patient are

same at this current time point and they are assumed to have same risk of developing

dementia. However, their trajectories were not changing in the same way and the rate of

change of longitudinal response for the first patient increased, that is, the trajectory of

this patient is associated with greater risk of dementia. Joint model with more complex

structure such as cumulative effect, time-lagged effect, and random spline could also be

considered. We avoided these models just to make our final model parsimonious.

Model selection

The model with a possible subset of covariates for both the longitudinal and survival

submodel was finalized based on the likelihood ratio test. We also checked the AIC for

different sets of joint model. The final model retained five variables for the longitudinal

submodel and seven for the survival part. The recorded AIC for this final current-value

shared parameter model was also lowest (AIC=7301.4) compared to second model, slope-

dependent shared parameter (AIC=7307.0).

Common risk factors shared by depression and dementia

The link between depression and dementia could be apparent if they shared common risk

factors. We found that the risk factors for depression have a little overlap with risk factors

for dementia. However, preexisting vascular disease could be associated with an elevated

risk of vascular dementia and may also increase depression incidence since disability of

any kind often causes depression. In this study, the identified significant common risk
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factors for both dementia and depression were economic activity, walking frequency in a

week, and living in a multi-generation household.

In the joint modeling of longitudinal depression and time-to-dementia submodels, gener-

ation setting in household, walking in a week, and economic activity were significant in

both submodel. However, diabetes, education, and age were significant only in survival

submodel while gender was only significant in the longitudinal submodel (Table 4.6). The

odds of depression was significantly higher among female, respondents having no eco-

nomic activity, less walking frequency and the individuals living with higher generation in

household. The odds of depression also increased with time. In survival submodel of joint

model, association parameter corresponding to the current-value was significantly differ-

ent from zero (pval=0.005), indicating a significant association between depression and

the risk of dementia. The positive estimated value of the association parameters (0.88)

indicated that the risk of dementia was 2.41 times higher among the depressed compared

to non-depressed people (HR=2.41, 95% CI:1.30, 4.50) (see Table 4.6).

While walking frequency, time, generation setting in household and economic activity

were not significant in separate analysis of longitudinal depression (Table 4.5), the lon-

gitudinal submodel of joint model identified those variables as significant predictors for

depression. On the other hand, similar associations from both standard Cox model and

survival submodel of joint model were observed for the potential covariates. However,

the corresponding magnitudes to those covariates in separate analysis of cox model were

different from the survival submodel in joint model. Comparing the results from Cox

model and survival submodel, this study found that, though the depression measurement
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Table 4.6: Results from joint model with current-value shared parameter

Variables Estimate SE 95% CI P-value
Longitudinal depression
Intercept -19.77 1.63 -22.97, -16.58 <0.001
Time 0.04 0.01 0.01, 0.06 0.002
Gender

Male*
Female 2.64 0.57 1.52, 3.75 <0.001

Economic Activity
Yes*
No 1.42 0.45 0.53, 2.31 <0.001

Walking Activity/week
>3 days*
Never 1.29 0.46 0.38, 2.19 0.005
≤ 3 days 1.06 0.50 0.09, 2.03 0.032

Generations in household
3rd generation*
1st generation 1.37 0.57 0.25, 2.49 0.017
2nd generation 0.35 0.67 -0.96, 1.67 0.601

log sd(bi0), σ0 1.83 0.08 1.67, 1.99 <0.001
log sd(bi1), σ1 -3.03 0.11 -3.25, -2.80 <0.001
Cov(bi0, bi1), σ01 -0.10 0.05 -0.20, 0.001 0.054
Variables Estimate SE Hazard Ratio 95% CI of HR P-value
Time-to-dementia
Age category

≤ 70*
>70 0.91 0.16 2.49 1.82, 3.39 <0.001

Education
Above Primary*
No education 0.41 0.20 1.50 1.02, 2.21 0.039
Primary Level 0.37 0.17 1.45 1.04, 2.02 0.028

Economic Activity
Yes*
No 0.36 0.16 1.43 1.06, 2.01 0.030

Diabetic condition
No*
Yes 0.33 0.17 1.38 1.01, 1.93 0.054

Walking Activity/week
>3 days*
Never 0.36 0.17 1.43 1.02, 2.02 0.038
≤ 3 days 0.15 0.20 1.16 0.79, 1.72 0.439

Generations in household
3rd generation*
1st generation -0.59 0.17 0.56 0.40, 0.77 <0.001
2nd generation -0.42 0.20 0.66 0.44, 0.97 0.037

Associations(Current-value) 0.88 0.32 2.41 1.30, 4.50 0.005
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at baseline was not predictive of dementia in standard Cox model, the time variant mea-

surement of depression was significantly associated with dementia risk in joint model.

The results presented in Table 4.7 show additional information regarding the slope-

dependent shared parameter. Two individuals might have same current-value of depres-

sion trajectories, but their trajectories’ rate of change might be associated with different

risks of dementia. Since this study did not find any significant association of dementia

risk with the slope, we dropped the slope from the model and considered the model with

a current-value shared parameter. Therefore, all of this discussion is based on the analysis

of a joint model with current-value (Table 4.6).

73



Table 4.7: Results from joint model with current-value and slope-dependent shared parameter

Variables Estimate SE 95% CI P-value
Longitudinal depression
Intercept -20.02 1.68 -23.32, -16.72 <0.001
Time 0.04 0.01 0.01, 0.06 0.002
Gender

Male*
Female 2.78 0.64 1.52, 4.04 <0.001

Economic Activity
Yes*
No 1.42 0.45 0.53, 2.32 <0.002

Walking Activity/week
>3 days*
Never 1.30 0.47 0.38, 2.21 0.005
≤ 3 days 1.08 0.49 0.11, 2.04 0.028

Generations in household
3rd generation*
1st generation 1.37 0.57 0.19, 2.42 0.022
2nd generation 0.30 0.66 -1.0, 1.61 0.647

log sd(bi0), σ0 1.83 0.08 1.68, 1.20 <0.001
log sd(bi1), σ1 -2.99 0.13 -3.25, -2.74 <0.001
Cov(bi0, bi1), σ01 -0.10 0.05 -0.20, -0.002 0.045
Variables Estimate SE 95% CI P-value
Time-to-dementia
Age category

≤ 70*
>70 0.91 0.16 0.60, 1.22 <0.001

Education
Above Primary*
No education 0.41 0.20 0.02,0.79 0.038
Primary Level 0.38 0.17 0.04, 0.71 0.027

Economic Activity
Yes*
No 0.34 0.16 0.02, 0.67 0.038

Diabetic condition
No*
Yes 0.32 0.17 -0.01, 0.65 0.056

Walking Activity/week
>3 days*
Never 0.36 0.17 0.02, 0.71 0.037
≤ 3 days 0.14 0.20 -0.24, 0.53 0.467

Generations in household
3rd generation*
1st generation -0.59 0.17 -0.92, -0.26 <0.001
2nd generation -0.43 0.20 -0.83, -0.04 0.033

Associations(Current-value) 0.75 0.35 0.06, 1.43 0.034
Associations(Slope-dependent) 39.05 29.21 -18.22, 96.32 0.181

74



Chapter 5

Discussion

In this thesis, we applied the shared random effects joint model dealing with categori-

cal longitudinal outcomes Garcia-Hernandez and Rizopoulos (2018) to KHP study. This

study mainly focused on the joint modeling approach for determining the association be-

tween endogenous time-dependent variable and time-to-dementia.

Generalized linear mixed effects model was applied to characterize binary repeated mea-

surements of depression. Random intercept and slope terms were included in this model.

A Cox model, on the other hand, was used to characterize the time-to-dementia process.

Since un-specification of the baseline hazard in joint modeling approach always produces

misleading inference, the baseline hazard was specified using a piece-wise constant hazard

model, which is one of the most commonly used models (Garcia-Hernandez & Rizopoulos,

2018).

The dependence between time-varying depression and the risk of dementia was assumed

through the current-value parameterization, which is a widely used and standard approach
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to link the longitudinal and the time-to-event models in the context of the random-effects

shared-parameter models framework.

Since the literature indicates that the relation between depression and the risk of demen-

tia is unclear, we further investigated this association using the joint model. Here, the

joint model combined the longitudinal model for depression and the survival model for

time-to-dementia into a single statistical model to obtain more robust estimates and draw

valid inferences. To the best of our knowledge, there has been no attempt to examine

the impact of binary repeated measurements of depression on dementia risk using a joint

model. This study found that time-varying depression, old age, lower educational attain-

ment, diabetes, and less frequent walking were the significant factors associated with an

increased risk of dementia.

The analysis of this 8-year longitudinal study showed that, although the depression mea-

surement at the baseline was not predictive of dementia, the time variant measurement of

depression was significantly associated with dementia risk. One of the important merits

of this project was to properly use the longitudinal information of depression up to the

time of dementia diagnosis. Ignoring this depression trajectory may conceal the associ-

ation between depression and dementia . The longitudinal process in this analysis took

into account the issues of random effects and the missingness of repeated depression for

estimating the true value that is associated with risk of dementia.

Our finding was consistent with Holmquist, Nordström, and Nordström’s (2020) recent

study where depression was significantly associated with increased odds of dementia,
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which was still evident more than 20 years after the diagnosis of depression. As well, the

researchers discovered that the dementia risk was higher among severely depressed people

compared to those with mild depression.

The Framingham Heart Study also reported a similar finding even after participants tak-

ing antidepressant medications were included (Saczynski et al., 2010). A study conducted

by Almeida, Hankey, Yeap, Golledge, and Flicker (2017) showed the graded association

between the severity of depressive symptoms and the risk of dementia, though this asso-

ciation disappeared after the five-year follow up period.

A 28-year follow-up study (Singh-Manoux et al., 2017) demonstrated that depressive

symptoms in late life were associated with a higher risk for dementia and that this rela-

tion was more apparent when depressive symptoms were measured just before the decade

of dementia diagnosis. Midlife depressive symptoms were not significantly associated with

dementia in this study. Combining these association structures, the authors reported that

depressive symptoms may be a prodromal feature of dementia.

A comprehensive review (Fountoulakis et al., 2003) suggests that geriatric depression

varies from depression in younger patients in many aspects and that late-life depression

is related to structural brain abnormalities and cerebrovascular changes. This type of

depression is called vascular depression (Alexopoulos et al., 1997). Butters et al. (2008)

proposed that depression can alter the risk of cognitive dysfunction and can also shorten

the latent period between AD neuropathology development and the onset of dementia,

thus accelerating incidence among older population with depression.
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The finding from a study by Butters et al. (2008) could be supported by previous study

of his (Butters et al., 2000), where elderly depressed people taking antidepressant may

experience better conditions in specific domains but can not achieve normal performance

levels. This late-life depressed group of patients were at high risk of developing dementia.

Results from other studies (Johansson et al., 2019; G. Li et al., 2011; Rasmussen et al.,

2018) are also consistent with our finding.

In contrast to our results, some studies (Becker et al., 2009; Ganguli et al., 2006) did not

find an association between depression and the incidence of dementia. Olazaran, Trincado,

and Bermejo-Pareja (2013) reported the cumulative effects of depression on both preva-

lence and incidence of dementia and showed that especially the combination of present

and past depression was associated with dementia prevalence, but not with incidence.

One of the reasons for these conflicting findings might be the approach used for determin-

ing depressive symptoms. It is more likely for recall bias to occur in self-reported midlife

depression and when discussing a past history of depression among elderly people aged

65 years or more. Thus, the retrospective or self-reported assessment of depression may

substantially misclassify this risk factors and result in unreliable association. However,

registry based studies and clinical diagnoses can easily avoid this recall bias by following

patients routinely and recording their data longitudinally.

Another possible reason for conflicting results relates to the statistical method used to

determine the association between depression and dementia. It is important to point out
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that all the studies mentioned conducted separate analyses either for the survival or lon-

gitudinal portions of the studies. Most of the studies took the depression measurement

at a single point, whereas a limited number of studies (G. Li et al., 2011; Singh-Manoux

et al., 2017) considered the temporal issue or depression measurement at few points but

separate analysis for each of the points.

Therefore, these analyses completely ignore an individual’s depression trajectory which

might be associated with the risk of dementia. Furthermore, the literature reviewed in

this thesis shows that these separate analyses, even the time-varying nature of endoge-

nous variables in the extended Cox model, always produce biased estimates and invalid

inferences. The literature also shows that the likelihood for cognitive impairment may be

increased due to recurrent depressive episodes, a finding that reinforces taking repeated

measurements of depression (Donix et al., 2019; Kessing, 2012; PRESENT, 2012).

One of the main advantages of the present study over other studies is that the shared

random effects joint modeling technique used for this analysis address the issues identified

above by combining longitudinal process for depression and survival process for dementia

into a single model. This statistical approach to data analysis increased our confidence

level that our results are most likely efficient and valid. However, the causal relation can

not be directly established from this study.

There is also possibility that the common risk factors for both depression and dementia

may explain the observed association between two diseases. Our findings determined that

a lack of economic activity and walking less frequently are common risk factors both for

79



depression and dementia. It is also documented that memory impairment, sleep distur-

bances, and impaired social functioning are common to both conditions and that common

pathophysiological pathways, such as inflammation, neurodegeneration, and vascular risk

factors, may very well explain the diseases’ association (Singh-Manoux et al., 2017).

In addition, our study lacked information about the medications, including antidepres-

sants, that respondents took that might have potential effect in modifying the association.

Competing risk related bias is also important to take into account for true association.

Older people with depression have a higher chance of dying earlier than those without.

Therefore, this type of early censoring of depressed older people can lead to a biased lower

risk of dementia.

Dementia is widely known to have a disproportionate impact on people over 65 (van der

Flier & Scheltens, 2005) and, indeed, our study found age to be a significant risk factor

for dementia risk. This is consistent with other studies (Kuo et al., 2015; Parikh et al.,

2011; Qiu, De Ronchi, & Fratiglioni, 2007). Several cohort studies from the USA and

Europe have also shown that the risk of dementia increases with age (Ganguli, Dodge,

Chen, Belle, & DeKosky, 2000; Kukull et al., 2002; Launer et al., 1999; Ravaglia et al.,

2005).

Although being male was significantly associated with a lower risk of dementia in univari-

ate analysis, it was insignificant in the multivariable model (Andersen et al., 1999; Barnes

et al., 2003; Ganguli et al., 2000; Karp et al., 2009; Ruitenberg, Ott, van Swieten, Hof-

man, & Breteler, 2001). This finding from our adjusted model is inconsistent with other
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studies (Kuo et al., 2015; McAdams-DeMarco et al., 2018), where female has a higher risk

of dementia.

In this follow-up study, respondents with no or less formal education had a greater risk of

dementia compared to those who completed more than primary school (Katzman, 1993;

Mortimer, Graves, et al., 1993). There are several longitudinal studies (Evans et al., 1997;

Letenneur et al., 1999; Stern et al., 1994) that showed that individuals with higher edu-

cation at younger age were at lower risk of developing dementia later in life. Education

is therefore thought to protect against dementia-related pathology.

Though many studies (Flicker et al., 2005; Laurin, Verreault, Lindsay, MacPherson, &

Rockwood, 2001; Sumic, Michael, Carlson, Howieson, & Kaye, 2007; Weuve et al., 2004)

have determined that regular physical activity is a protective factor against the onset

of dementia, our study did not find any form of physical activity (intense, medium, or

a combination of the two) was a significant predictor of dementia. However, consistent

with other works (Barendregt & Ott, 2005; Simons, Simons, McCallum, & Friedlander,

2006) walking in a week was identified as a factor in lowering the risk of dementia. A

meta-analysis conducted by Quan et al. (2017) found that a low or decreased walking

pace is significantly associated with an elevated risk of developing dementia in elderly.

Another study also showed that regular exercise as simple as brisk walking for as little as

15 minutes a day protects brain structure and function (Sabayan & Sorond, 2017).

The univariate analysis determined the higher risk of dementia among people with co-

morbidities including hypertension,and diabetes (Barendregt & Ott, 2005; Flicker et al.,
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2005; Whitmer, Sidney, Selby, Johnston, & Yaffe, 2005), however, these were insignifi-

cant in multivariable model (Gilsanz et al., 2017). This finding is consistent with a co-

hort study of dementia in older Canadians where diabetes was not associated with mixed

Alzheimer’s/vascular dementia, incident Alzheimer’s disease or all dementias (MacKnight,

Rockwood, Awalt, & McDowell, 2002). Another study in Rochester, Minnesota, reported

twice risk of Alzheimer’s disease among men with diabetes vs non-diabetes and an in-

significant association among women (Leibson et al., 1997). In contrast to other studies

(Simard, Hudon, & van Reekum, 2009; Whitmer et al., 2005), we did not find any signifi-

cant relation between the risk of dementia and other comorbidities (that is, CVD, anxiety,

and gum disease) in both the univariate, and gum disease and multivariable analysis. This

finding is consistent with a population-based Rotterdam study where, no association be-

tween anxiety and dementia is reported (de Bruijn et al., 2014).

Like Tyas, Manfreda, Strain, and Montgomery (2001) and Broe et al. (1990), we did not

find any association between drinking alcohol and smoking and the incidence of dementia.

Our findings contrast with other studies where monthly and weekly intake of alcohol (Tru-

elsen, Thudium, & Grønbæk, 2002) or moderate alcohol use (Deng et al., 2006; Simons

et al., 2006) significantly reduce the risk of dementia. Various studies found that current

daily or more frequent smokers (Fillit, Nash, Rundek, & Zuckerman, 2008; Flicker et al.,

2005; Ott et al., 1998; Reitz, den Heijer, van Duijn, Hofman, & Breteler, 2007; Whitmer et

al., 2005) had a higher chance of developing dementia, but found no association between

past smoking and the risk of dementia (Reitz et al., 2007).

Our finding is consistent with other studies (Evans et al., 1997; Fischer et al., 2009;
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Scazufca, Almeida, & Menezes, 2010) that determined a significant association between

no economic activity and an elevated risk dementia.

Although many studies (Helmer et al., 1999; Sundström, Westerlund, & Kotyrlo, 2016)

reported a significant association between never having been married or living alone (Sund-

ström et al., 2016) and dementia risk, our study did not find any association. This is also

the finding from a case control study conducted by Beard, Kokmen, Offord, and Kurland

(1992). Our study, however, observed the lowers risk of dementia among the people living

with first and second generation household setting.

5.1 Strength and limitations

Among the strengths of this study is the fact that the KHPS permitted us to work with

large scale, national level, prospective cohort data, where the identification of the main

event of interest (dementia) and other co-morbidities was confirmed by clinical diagnosis

codes. KHP is a population based study, so the results represent the general population.

It also allowed for assessment of a relatively large number of potential social covariates.

Moreover, this study is assumed to be free from interviewer bias as physicians and oth-

ers contributing to the data did not know the hypothesis of our current study. All the

co-morbidities of this data set are clinically diagnosed and there is very little chance of

mis-classification of these diseases.

There are a few limitations of this study. The main limitation of this study is that

we identified individuals with dementia from those who visited a medical clinic, health
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complex, or hospital and were diagnosed with dementia. However, there may be ad-

ditional study participants, particularly less severe cases, who were not assessed, thus

potentially underestimating the true incidence of dementia. This concern also holds for

all other comorbidities that were included in our analysis. Another limitation is that

some relevant information (e.g. insomnia, head injury, cognitive impairment scores etc)

were not available; thus, the confounding effect of these unmeasured variables cannot be

controlled. Risk factors found in our study were only associated with the incidence of

dementia, but causality cannot be determined with certainty due to other confounding

factors which are not directly available in this data. Additionally, we have completely

relied on medical record linkage without further validation. As this study was exclu-

sively undertaken in Korea, generalizability to other countries is uncertain. Our data also

did not include individuals living in long-term care, a potentially emerging demographic.

From the methodological perspective, death might be the competing event of this study

and this event alter the probability of occurring dementia. The total number of death in

our study population was around 180, which might be not ignorable. So, there is still pos-

sibility to produce more valid and correct inference after addressing all of this information.

Another limitation of this study was that the computational part of joint analysis was

very expensive. It took one and half days to get the output for current-value shared

parameter model in this study. However, computing time increased as the number of

complex structure and terms (number of random effects) increased. For example, when

an interaction term was included in longitudinal submodel in addition to other setting of

covariates, it took more than three days for getting the output of this analysis. Even the

reported time by the author who developed the sas macro for this joint analysis with a
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small number subjects was one and half hours (Garcia-Hernandez & Rizopoulos, 2018).
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Chapter 6

Conclusion and Future Research

6.1 Concluding remarks

Determining the relation between depression and dementia is an ongoing and debated

issue. We chose to investigate it once again using appropriate statistical methods to

address gaps in previous research. Our research objective was to check whether endoge-

nous time-dependent depression was associated with dementia and to measure its effects

on dementia risk. Since conventional statistical methods could not properly address a

time-varying variable that is endogenous in nature, we applied a joint modeling technique

to deal with this problem. Our study found that single and baseline measurement of

depression was not associated with the risk of developing dementia. However, repeated

measurements of depression was significantly associated with dementia, meaning that peo-

ple suffering from depression are at higher risk of developing dementia than those who do

not suffer from depression.

We also found that walking not at all or less than three days in a week, being compar-
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atively older (age>70 years old), having diabetes, having lower levels of education, and

living in a household with multiple generations setting increased the risk of dementia.

Risk factors for longitudinal measurements of depression were also identified from this

analysis. The univariate and even the separate multivariable analysis of these repeated

measurements found that only CVD and anxiety are significant variables. However, the

longitudinal submodel under joint modeling retained five variables (that is, sex, economic

activity, walking in a week, and living with multiple generations in one household). The

information of these variables are assumed to construct the better trajectories for indi-

viduals and this would be very useful to determine the association between longitudinal

and survival outcome through current-value.

6.2 Future research

Since the longitudinal measurement of this joint model is binary and very limited research

is done in this area, the joint modeling method will provide opportunity for researchers to

have a more in-depth understanding of their study application. We can extend our work

in several directions, some of which are listed below.

1. We know there is an extensive literature on the joint modeling technique dealing

with one failure type for the time-to-event outcome. . However, in medical stud-

ies, researchers are sometimes interested in more than one possible time-to-event or

where censoring is informative. These data are often called competing risks setting

. To produce unbiased and efficient estimates, the informative dropout due to com-
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peting risks or non-random censoring should be taken into account in joint models

at the time of data analysis. Very little research considers competing risk in the joint

model. Most joint modeling studies concentrate on continuous longitudinal measure-

ment; no research focuses on joint modeling for categorical longitudinal outcomes

and time-to-event data, particularly the competing risk data. For example, depres-

sion, a binary repeated measurement, might be associated with time-to-dementia

and death preceding to the onset of dementia is competing event as it precludes the

development of dementia. Ignoring this competing event in the joint model may

lead to misleading inferences, especially in study of the elderly.

2. There might be two or more possible endogenous variables in a same study and

they may be independent of each other. Since there is no available research that

addresses these two independent endogenous variables at the same time in a joint

model, there is an opportunity to work on this problem.

3. Most of the joint modeling approaches assume that the random effects are normally

distributed. However, this assumption can be violated particularly, when dealing

with medical or health data. There are several directions that this kind of research

could go in, all of which are important.
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