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Abstract

The purpose of this research is to inspect the statistical power of studies that investigate

the effects of low dose ionizing radiation on the incidence of/mortality from cancer. I use

a procedure proposed in a similar study to handle a problem regarding the incidence of

childhood leukemia from background ionizing radiation. I study this procedure critically

and make some adjustments to make its performance better. I also propose some substitute

methods to the methods proposed in the aforementioned reference in order to calculate

the power. In addition, I propose other methods not used in the study mentioned above.

I evaluate the efficiency of my proposed approaches using simulated data. The improved

method can be applied to the National Dose Registry of Canada (NDR) to produce the

power curves. The outcomes then can be used to propose the most suitable study design.

Some of the previous epidemiological studies based on NDR can also be evaluated in terms

of power.
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Chapter 1

Preliminaries

In this chapter first, I explain the motivations for carrying out this research. Then, I

present the concept of statistical power (henceforth I will refer to it simply as power), and

its calculation based on closed-form formulas and simulations. I also discuss factors that can

potentially impact the power of study design. Since my study mainly deals with cohort and

case-control studies, I then define these two study designs in a general context.

1.1 Motivations for the study

As described in Gordis (2014; page 7): “Epidemiologic reasoning is whether an association

exists between exposure to a factor”. Depending on the study design the association is

evaluated based on some measures of association such as the risk ratio (RR) in cohort

studies and the odds ratio (OR) in case-control studies (Ahrens and Pigeot. 2015; Chapters

I.5 and I.6). If RR/OR falls between 0 and 1, the association is interpreted as being inverse

or negative, i.e., an increase in the exposure is associated with a decrease in the outcome

variable. On the other hand, a value of RR/OR greater than 1 indicates a positive/direct

association between the exposure and the outcome variable. Note that 1 is the null value

for RR/OR, implying that there is no association between the exposure and the outcome

variable. In practice, the RR/OR is an unknown quantity and is estimated from a sample.

Then we rely on statistical methods to test whether or not it is significantly different from the
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null value 1. An insignificant result leads to the conclusion that there is not enough evidence

to support the association between the exposure and the outcome. In general, significance is

determined through a hypothesis test. It should be noted that an insignificant result might

stem from several factors, including:

1. no true association between the exposure and the outcome,

2. selection and/or information bias (Gordis 2014; Chapter 15),

3. low power to detect an association (Ellis 2010; Chapter 1).

Therefore, knowledge about power is importnat. The reason is that if the epidemiologists

already control the bias and are informed that the power of their study is high enough, then

a non-significant result can be considered as a strong evidence of no association between the

exposure and the outcome. Otherwise, if the power is low, the non-significant result should

not be interpreted as the lack of association. In general, the power of a statistical test is

defined as the probability of rejecting the null hypothesis when it is true (i.e., the probability

of making a correct decision). In this regard, a low power indicates higher uncertainty as to

whether a statistically insignificant result is due to an actual lack of difference or simply due

to the sample size that is insufficient to detect the effects of the exposure.

Knowledge regarding the power of a study is crucially important: if the researcher is aware

that the study is powerful enough, then an insignificant result could be strong evidence that

there is truly no association (provided that other issues such as bias are also under control).

By contrast, if he/she knows that the study has low power, then the insignificant association

should not be interpreted as a lack of association.

In this research, the exposure and outcome of interest are exposed to low dose levels of

ionizing radiation and all health outcomes of cancer (incidence or mortality), respectively.

In the next section, I will briefly present different types of studies that try to detect an

association between the aforementioned exposure and outcome. One type of such study
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is occupational studies that aim to establish the association by studying occupations that

are exposed to low dose levels of ionizing radiation, yet higher than that of the general

public (Beebe et al. 1998, Richardson and Wing 1999, Sun et al. 2016). Examples of such

occupations are nuclear plant workers and health workers such as dentists, nurses, etc. The

National Dose Registry (NDR) of Canada (NDR website 2020) is a database which has been

recording the information of such workers since 1951. Epidemiological researches in the area

of ionizing radiation and cancer have been carried out based on this database. A couple

of such studies are Ashmore et al. (1998), Gribbin et al. (1993). Each of these studies has

covered different periods and consequently, they have different sample sizes. As a result (as

will be explained in the coming sections) they have different powers to detect the association.

my purpose is to determine the power of NDR-based studies for different periods of

follow-up. In this way, I will be able to relax the epidemiologist’s concern regarding the

power as explained above. In particular, I will answer the following questions:

1. What is the best study design in terms of power? cohort or case-control? Also, what

is the optimum number of controls per case for the case-control study?

2. Have the previous studies been powerful enough to detect an effect?

1.2 About the cohort and case-control studies

Cohort and case-control studies are two very common study designs in epidemiology.

Most ionizing radiation-cancer studies are of these two types. The main difference between

the two designs is that the cohort study starts with individuals whose exposure status is

known. They are followed up for some time to determine the status of the outcome. In

comparison, the case-control studies first determine the status of the outcome and then try

to find the history of exposure. More precisely the two study designs are defined in Gordis

(2014) as follows:
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• Cohort study. “In a cohort study, the investigator selects a group of exposed individuals

and a group of non-exposed individuals and follows up both groups to compare the

incidence of disease (or rate of death from disease) in the two groups. The design may

include more than two groups, although only two groups are shown for diagrammatic

purposes.” (Gordis 2014; Chapter 9)

• Case-control study. “We begin by selecting cases (with the disease) and controls

(without the disease), and then measure past exposure by interview and by review of

medical or employee records or of results of chemical or biologic assays of blood, urine,

or tissues.” (Gordis 2014; Chapter 10)

The most commonly used measure of association in cohort studies is the Risk Ratio (RR).

If both exposure and outcome are binary (i.e. two possible outcomes), then RR is defined as

RR =
Probability of being a case in exposed group

Probability of being a case in non-exposed group

=
a/(a + b)
c/(c + d)

, (1.1)

where a and b are, respectively, the number of cases and non-cases in the exposed group

, and c and d are those in the non-exposed group (See Table 1.1). Risk ratio can also be

written as RR = 1 + ERR where ERR is defined as the Excess Relative Risk.

The odds ratio is the most commonly used measure of association for case-control studies,

defined as

OR =
Odds of being exposed as a case

Odds of being exposed as a control

=
a/c
b/d

(1.2)

where a and c are numbers of exposed and non-exposed cases, respectively. b and d are
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number of exposed and non-exposed controls, respectively (See Table 1.1). The odds ratio

can be written as OR = 1 + EOR where EOR is the Excess Odds Ratio.

Table 1.1: Contingency table for cohort and case-control studies

Remark 1.1. It is proven in Greenland and Thomas (1982) that when the outcome of interest

is rare, the odds ratio and risk ratio are almost equal.

1.3 Power

Assume that we are testing H0 : θ ∈ Θ0 versus H1 : θ ∈ Θc
0. This test can make two types

of errors (Casella and Berger 1990; Section 8.3):

1. type I error: if the true parameter belongs to Θ0 but the test rejects it in favor of

θ ∈ Θc
0, then a type I error has occurred.

2. type II error: if the true parameter belongs to Θc
0 but the test decides not to reject

the null in favor of θ ∈ Θc
0, then a type II error has occurred.

The probability of the complement of type II error is called the power of the test. Therefore,

the power of a test is the probability to truly reject the null in favor of the alternative. In

epidemiological terms, the power is usually interpreted as the ability to detect an effect when

it truly exists. In every hypothesis test we have two competing factors that we would like to

optimize: On one hand, we want to keep the probability of the type I error to a minimum.
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On the other hand, we try to maximize the power of the test. As will be explained in the

next section, optimizing any of these factors hurts the optimality of the other one.

In many cases, the null hypothesis has a simple form H0 : θ = θ0 for some θ0. In such a

case, the alternative is usually H1 : θ , θ0. Calculating the power then requires finding the

distribution of the test statistic under the single value of θ0. However, when it comes to the

alternative, in practice, not all the parameters θ , θ0 are considered. Rather, usually a single

value θ1 , θ0 is picked. Then, to calculate the power, one way is to find the distribution of

the test statistic at the null under the alternative. This means that the formula of the test

statistic is calculated at θ = θ0 but the distribution of interest is the one with samples from

θ = θ1. Another way is to take samples from alternative and check whether the test statistic

under the null rejects it or not. The proportion of the rejections is then reported as power.

The value θ1 as defined above is usually the parameter which is believed to be the true

parameter or at least closer to θ0 than the true parameter. The latter means we need to find

the power for an effect size smaller than the true effect. In such a case we need a higher

power to detect θ1 and we can rest assured that with such a power we will be able to detect

the true parameter too.

1.3.1 Factors that impact the power of a test

There are mainly 4 factors that can impact the power of a test (Norton and Strube 2001).

Note that the first three factors as described below can directly change the power. Therefore,

the designer can change any of them to reach a higher power. The fourth factor, as described

below, is a kind of inherent and seems to be not adjustable. This is why most references do

not refer to this factor. However, we will give an example to show that in some cases one

can design the experiment in a way to obtain higher power even in case all the other three

factors are fixed.

Below, I explain the impact of each factor using a plot. For simplicity, I assume that
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the test statistic under both null and alternative is known and is normally distributed. The

dashed area in each figure represents the power of the test.

1. The significance level. The probability of the type I error is referred to as the sig-

nificance level (also, the size of the test (See Casella and Berger (1990; Section 8.3)).

There is a trade-off between the significance level and power. This means increasing

any of them causes the other one to increase as well. One simple explanation is that a

higher significance level means that we have to reject more often (we are conservative),

as a result, the chance of a correct rejection increases too, which means using threshold

we get higher power.

Figure 1.1: Two tests with α = 0.03 (left) and α = 0.05 (right), adjusted for the other
factors.

Figure 1.1 represents this fact (dashed area represents the power of the test). While
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the shape and position of the test statistic under both null and alternative remains the

same (as a result of keeping the sample size and the effect size fixed), increasing the

significance level shifts the dashed area to the left and causes the power to go up.

2. The effect size. As defined in Ellis (2010; Chapter 1): “An effect size refers to the

magnitude of the result as it occurs, or would be found, in the population”. It was

mentioned above that to calculate the power we usually fix one parameter in the

alternative space such as θ = θ1. The closer θ1 to θ0, the more mixed the distribution

under the null and alternative. As a result, the test statistic under the null is more

likely not to reject in favor of the alternative.

Figure 1.2: Two tests with θ0 = 0, θ1 = 1 (left) and θ1 = 3 (right), adjusted for the
other factors.

Figure 1.2 shows the impact of effect size on the power. Notice that the shapes of the

8



test statistic and the start point of the dashed area remain the same (as a result of

keeping the sample size and the significance level fixed). However, shifting the test

statistic under alternative to the right in the right frame causes the power to increase.

3. The sample size. Larger sample size results in a higher power. A simple explanation

is that there is a reverse relationship between the sample size and the variance of the

test statistic under both null and alternative. For example, recall that the variance of

X̄ (the sample mean) which is the test statistic for the population mean is given by
σ√

n where σ is the variance of X and n is the sample size. This shows that a small

sample size causes the variance of the test statistic to increase. This makes the test

statistics under both null and alternative flatter and causes them to be more mixed

which results in lower power. This fact has been represented in Figure 1.3. While the

significance level and the effect size are the same in both tests, smaller sample size

results in a flatter shape on the left.

The effect of sample size on the power can also be justified using another argument.

By definition

power = P(Re ject|S hould be truly re jected).

In this definition, the condition part, i.e.“Should be truly rejected” refers to the real

population while the event, i.e.“Reject” refers to the sample. As a result, the larger the

sample size, the better the true state of the population reflects on the sample. This

results in more true rejections which imply higher power.

4. Variability in the data. The larger the variance of the sample, the larger the variance of

the test statistic. As explained for the impact of the sample size, the large variance of

the test statistic results in lower power. Again, a good example is X̄ where its variance

( σ√n) directly depends on the variance of the sample. The impact of the sample’s
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Figure 1.3: Two tests with different sizes: small (left) and large (right), adjusted for
the other factors.

variance can be similarly represented using Figure 1.3.

It should be pointed out that this factor is less studied as compared to the other three

factors. One main reason is that it seems to be inherent to the data and not fairly

adjustable. So, it can not be deployed to improve the power of the test. However, an

example is provided in Friedman et al. (2010; Chapter 8) to show that with a better

study design one can improve the power while keeping the sample size, the significance

level, and the effect size fixed. The example is regarding a clinical trial where the

impact of a new drug on the cholesterol level is of interest. The sample is divided

into the intervention and the control group. The impact of the drug can be measured

by comparing the mean value of the cholesterol level in two groups. There are two

possible designs. One can only measure the cholesterol level at the end of the trial and
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just compare the mean values in the two groups. Another possibility is to measure it

both at the beginning and the end of the trial, then calculate the differences for each

individual and finally make an inference by comparing the mean of the differences. It

is proven in Friedman et al. (2010; Chapter 8) that the latter trial results in lower

variance and consequently higher power.

1.3.2 Why Monte-Carlo simulation to find the power?

Calculation of power using the analytical method, i.e. based on a closed-form formula,

requires the distribution of the test statistic under both null and alternative to be known

(Landau and Sathi 2012). In many cases, there are some tools (particularly, asymptotic

tools) to deal with the distribution of the test statistic under the null. However, distribution

under the alternative is usually more awkward. If any of the two distributions can not

be determined analytically one needs to use sampling (Monte-Carlo simulation) to find the

power (Landau and Sathi 2012). Notice that even this latter approach requires information

about the distribution of samples when the true parameter is the alternative.

Apart from the case above, there are also some special complex cases which can be

handled better using Mont-Carlo simulation. Two of such cases are as follows (Monte-Carlo

for power 2019):

1. multiple tests: We would like to implement different tests at the same time. Such a

test is of the form

(H0i : θ ∈ Θ0i vs H1i : θ ∈ Θ1i )n
i=1 .

2. multiple alternatives: We require at least one of the multiple alternative to be true.

This test is of the form

H0 : θ ∈ Θ0 vs H1 : (θ ∈ Θ1 or θ ∈ Θ2 · · · or θ ∈ Θn).
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1.3.3 Score test statistic

The test statistic that I use for my research is the score test statistic derived from some

specific likelihoods as described in Chapter 3 and 4.

Assume that we have a vector of parameters θ with the corresponding likelihood function

L. Then the score function is defined with

U(θ) = ∇(logL(θ)) = (
∂logL(θ)
∂θi

)n
i=1.

The fisher information is defined with

I(θ) = −E[∇2log(L(θ))|θ].

The score test statistic is then defined with

S (θ) = U(θ)T I(θ)−1U(θ).

Assume that θ is a vector of length p and assume that we want to test for H0 : θ = θ0. The

score test statistic for this hypothesis test is then S (θ0). In 1948, Rao proved that the score

test statistic under the null has asymptotic χ2
p distribution (Rao 1948). In particular if θ is

a single parameter then S (θ) = U(θ)2

var(U(θ)) has asymptotic χ2
1 distribution. Equivalently U(θ))√

var(U(θ))

is asymptotically normally distributed.

Remark 1.2. At this point, we would like to highlight a point regarding terms such as “test

statistic under null” and “test statistic under the alternative”. Assume that we test H0 : θ = θ0

and we are interested in detecting effect θ = θ1. It should be carried in mind that the

test statistic under the alternative might be not necessarily the test statistic when we test

H0 : θ = θ1. In some simple cases, it turns out to be correct. For instance, in case of testing
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for the mean value of a normal population, the test statistic under the alternative is the

same as the test statistic under null when the null is H0 : θ = θ1. However, in general, this

might be not true. It seems that simple cases such as this, in addition to the vague nature

of the aforementioned terms, sometimes lead to confusion. Notice that when we use a term

such as“test statistic under the alternative” we are referring to the distribution of the test

statistic for the null when samples come from alternative! For example, if we use the score

test statistic, then by the distribution of the score test under the alternative we don’t mean

the distribution of S (θ1) but we mean the distribution of S (θ0) when samples come from θ1.

1.4 Organization of the thesis

I proceed in Chapter 2 by presenting a literature review on both ionizing radiation-

cancer studies and power studies of case-control and cohort designs. In Chapters 3 and 4 I

will discuss the power model for cohort and case-control studies, respectively. The models

have already been developed in Little et al. (2010). I will spot some problems regarding

the model and propose solutions. I also provide the algorithms required to implement the

model. In Chapter 4, I provide some additional results which can be used to improve the

performance of the model. I will address some points in Little et al. (2010) which seem to

require revision and propose substitute methods. Some other approaches to calculate power

are also presented. Based on a literature review, I provide required information such as the

break-down of the dose parameter and estimates for the ERR parameter. In Appendix A, I

use some simulated data to illustrate my proposals throughout the thesis.
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Chapter 2

Literature review

This chapter provides an overview of the subject. The first section presents a brief de-

scription of radiation, introduces different types of radiation, basic facts regarding radiation

and different trends to study the relationship between ionizing radiation and cancer. We

review the epidemiological studies of low dose levels of ionizing radiation and cancer in the

second section. The final section gives a review of the statistical studies that provide a model

to evaluate the power and sample size for the cohort and case-control studies.

2.1 About ionizing radiation and studies related to cancer

Ionizing radiation is a kind of radiation with high energy that can remove electrons from

atoms and molecules (Canadian Nuclear Safety Commission 2020). There are two general

sources of ionizing radiation (Canadian Nuclear Safety Commission 2020):

1. natural: Space and cosmic radiation, terrestrial radiation, etc.

2. artificial: X-ray, nuclear power plants, etc.

The unit used to measure the amount of ionizing radiation received for each person (usually

per year) is millisievert denoted by mSv (or mSv/y for per year measurements).

Four categories of annual effective doses of ionizing radiation are as follows (Fazel et al.

2009):
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1. low: Doses between 0 mSv/y and 3 mSv/y.

2. moderate: Doses between 3 mSv/y and 20 mSv/y.

3. high: Doses between 20 mSv/y and 50 mSv/y.

4. very high: Doses over 50 mSv/y.

Notice that doses below a specific threshold (usually 0.1 or 0.2 mSv/y) are recorded as 0.

Ionizing radiation-Cancer studies can be divided into two general categories:

1. The oldest and the most studied category is related to the low dose levels of ionizing

radiation (presented with details in the following section).

2. A relatively new study deals with high dose levels of ionizing radiation which, for

instance, studies long term radiology survivors.

In the following section, I review studies of the first type.

2.2 Epidemiological studies of low dose levels of ionizing radiation

Low dose levels of ionizing radiation-cancer studies are followed in 3 general trends:

1. studies based on the atomic bomb event.

2. other ionizing radiation-cancer studies:

(a) based on background ionizing radiation

(b) based on occupational ionizing radiation.
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2.2.1 Studies based on atomic bomb event

Since the early days, the survivors of the atomic bomb in Hiroshima and Nagasaki have

been the main subjects of cancer and ionizing radiation studies. Studies based on these

subjects has provided remarkable results. Contributions based on this study continue to

come out.

The first study related to the impact of ionizing radiation on the mortality and incidence

of cancer dates to 1950 when the Atomic Bomb Casualty Commission (ABCC) started

studying a fixed cohort of A-bomb survivors and suitable comparison subjects (as a non-

exposed group). ABCC was established to investigate the health effects of atomic bombs

in Hiroshima in 1947 and Nagasaki in 1948 by the US National Academy of Science and

the National Research Council. The sample known as the Life Span Study (LSS) sample

was later followed up by the successor of ABCC, the Radiation Effects Research Foundation

(RERF) which substituted ABCC in 1975. The RERF cohort now includes the atomic bomb

survivors (LSS), a cohort of those who were exposed in their mother’s womb (in utter) and a

cohort including the children of survivors who were conceived after paternal exposure (F1).

The results are regularly updated and published. The first results of this series were

published in 1962 (Beebe et al. 1962). The study is based on the LSS cohort. One major

finding of these studies was that an excess incidence of leukemia was observed while for other

cancers (as a whole), the results were insignificant. Similar results persisted to show in future

studies suggesting that leukemia should be the main focus of the study. This direction is

still followed in ionizing radiation-cancer studies: Most studies consider leukemia separately.

The first study to publish results in this area is Beebe et al. (1962). This study is based

on the follow-up of the LSS cohort from 1950 to 1958. The main results of this study are

presented in Beebe et al. (1962; Table IX). This table shows that the p-value for the relative

risk for leukemia is less than .01 while it is non-significant for that of other cancers.
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Remark 2.1. One important point regarding this study is that the sample size has been

relatively small at the time the study was carried out. Sampling which was based on sampling

distance from the point where the bombs were detonated has been explained with details

in the aforementioned reference. The sample size problem has also been addressed there.

In the following years, more subjects were included and the sample size gradually grew. As

explained before, a result of the smallness of the sample size is low power. Therefore, the

non-significant p-value for ”other cancer” in this study “ might” reflect not the truth but it

could be a result of low power to detect an effect.

The results for the LSS study for the period of 1950-1985 are provided in Shimizu et al.

(1990). There are 75, 991 eligible individuals included in this study (referred to as DS86) of

which 5, 936 individuals in the cohort died of cancer. Shimizu et al. (1990; Table II) presents

the results of this study. Notice that the results of this study for leukemia alone, all cancers

and all cancers except leukemia are all significant.

Remark 2.2. Table II in Shimizu et al. (1990), in particular, shows a very strong relationship

between all cancers and radiation. As presented above, the very early study covering the

period of 1950-1958 was unable to detect such an effect. It should be mentioned that the

total number of deaths from all cancers at the time this study was carried out was 199

(compared with 5, 936 deaths in the latter study). This observation “could” be a result of

the difference between the powers in the two studies. This can emphasize the importance of

taking the power into account before interpreting the results of any study.

Table 2 in Ozasa et al. (2019) provides the results for the cancer mortality and incidence

rate based on the most recent studies of the LSS cohort. Notice that all the results show a

positive ERR/Gy both for incidence and mortality for a full range of doses.

Remark 2.3. Notice that the part of Ozasa et al. (2019; Table 2) representing ‘Lowest dose

range with significant risk “can” give some indication of increase in the statistical power
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with increase in the number of years of follow-up: For the incidence report, the evidence can

clearly support this idea as the lowest effective dose has fallen from .15 Gy in 2007 to .10

Gy in 2015 and simultaneously the significance level has been reduced from .1 to .038. The

results for mortality are not nearly as clear. The lowest effective dose has increased from .12

Gy in 2003 to .2 in 2012. However the fact that the significance level has been reduced from

.1 to .05 should be taken into account.

2.2.2 Other ionizing radiation-cancer studies

The results of the atomic bomb studies rose the question of whether other sources of

ionizing radiation are carcinogen. These studies can generally be divided into two types:

1. Natural background ionizing radiation studies

2. Occupational ionizing radiation studies

Natural background ionizing radiation studies

Background ionizing radiation is a source of radiation which has always been present in

the environment (UN committee 2000). Based on United Nations report (UN committee

2000; Annex B), there are four major sources of natural ionizing radiation:

1. cosmic radiation (such as radiation emitted by the sun)

2. terrestrial radiation (such as radiation caused by the natural deposits of uranium)

3. radionuclides present in the air

4. radionuclides present in the food

Although published results in this area mostly support the harmful effects of ionizing radia-

tion on the incidence of cancer, some studies favor a harmless effect. A review on the papers
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of the first type is provided in Hendry et al. (2009) while Dobrzynski1 et al. (1998) reviews

papers of the second type.

Some studies in this field are based on recruited individuals. However, major studies

rely on national registries. Two important examples of such studies are the US surveillance,

Epidemiological, and End Results (SEER) program (SEER 2009) and studies based on UK

National Registry of Childhood Tumors (UK cancer study 1; 2, Wakeford et al. 2009) present

results based on this database.

Some results on the relationship between ionizing radiation and childhood cancer in Great

Britain based on the aforementioned database are presented in UK cancer study (1). The

main results of this study are shown in UK cancer study (1; Table3).

Remark 2.4. Table 3 in UK cancer study (1) shows that the results for all dose categories

are insignificant. This could be a reflection of truth or a result of low power. This paper has

been evaluated in Little et al. (2010) in terms of power. It is shown there that the relatively

small number of cases and controls results in a low power to detect the true effect. Therefore,

the insignificant results of the paper are not surprising and should be expected due to low

power.

Occupational ionizing radiation

Some occupations inevitably require exposure to higher-level doses of radiation than

that of the general public. The most important of such occupations are related to nuclear

power plants, uranium mines, health care units. Workers in each of these fields are not only

exposed to the background ionizing radiation but also exposed to radiation-related to their

profession. As a result, studies of mortality and morbidity of such occupations can provide

some insight into the nature of the relationship between ionizing radiation and cancer. Such

studies usually rely on national databases.

One of the oldest and largest of such databases is Canada’s National Dose Registry (NDR
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website 2020). NDR was founded in 1951 and has continually been in operation thereafter.

This is the largest national database on occupational radiation. NDR contains the records

of more than half a million workers of which 150, 000 are the present-day workforce (NDR

website 2020).

Ashmore et al. (1998) published in 1998 is the first large scale mortality study based

on the National Dose Registry of Canada. This study inspects the database for the period

of 1951-1983. The study cohort consists of 256, 425 individuals. The results are presented

both in terms of standardized mortality rate (SMR)which is based on comparing the death

results with the general population of Canada and also in terms of Excess relative risk (ERR)

which is based on comparing the exposed groups with the non-exposed group in the cohort.

The results of these two measurements are contradictory! Results for the SMR show lower

death risk for the cohort while ERR results prove something in contrast to that of SMR as

the relative risk for the exposed groups is higher than that of the non-exposed group. This

feature, less and more, shows in other occupational studies. It is widely believed that SMR

is not a good measurement for occupational studies as the truth is masked by the so-called

‘healthy worker effect’.

When each cancer is considered independently, the ERR results of the aforementioned

study are mostly insignificant. However, for all cancers as a whole ERR is significantly non-

zero. Table 7 in Ashmore et al. (1998) and Table 8 in Ashmore et al. (1998) (for males and

females, respectively) presents the results of this study.

Remark 2.5. Significant results for ‘all cancers’ in Ashmore et al. (1998; Tables 7 and 8)

could be a result of enough power due to a sufficient number of cancers as a whole while

breaking down cancers into specific types reduces the number of cases and lowers the power.

Therefore, insignificant results for each type of cancer independently “might” be attributable

to low power.

Although NDR studies that include all types of radiation workers are few, there are more
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studies solely based on nuclear workers in NDR. These types of studies started earlier with

Gribbin et al. (1993) having been published in 1993. These studies are naturally based on

fewer observations. The said study included only 8, 977 individuals. The results of this study

even for solid cancer (i.e. all cancers as a unit) was insignificant. Zablotska et al. (2014) is a

more recent study of this type published in 2013. The results of this study for solid cancer

were still non-significant.

Remark 2.6. Comparison of the earlier NDR study reviewed above with the latter two studies

“could” again emphasize the role of power as the first study that included a much larger

dataset was able to detect a significant result for solid cancer while the last two which are

based on smaller databases didn’t detect any significant effect.

2.3 Power studies of the cohort and case-control designs

The results of a statistical test could turn out to be insignificant due to several reasons.

One possibility is that the result truly reveals the real nature of the relationship, i.e. the

exposure is not related to the outcome. However, it can also be a result of some defect in

the study. Such a defect might be related to some sort of bias in the study design or due to

low power which in turn can be attributed to an insufficient number of participants in the

study.

There are a couple of works in the literature that try to address the latter problem of

power, particularly for cohort and case-control studies. I focus on the cohort and case-control

studies as the majority of studies in the area of ionizing radiation-cancer are of these types.

The results of one of the earliest studies to address the problem of power and sample

size both for cohort and case-control studies were published in Schlesselman (1974). The

paper deals with the simplest type of epidemiological studies where the relationship between

the disease status and a binary exposure is of interest. Although the study is general, it
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specifically solves the power/sample size problem for an epidemiological study that tries to

answer the question of whether there is an increased risk of giving birth to a child with a

congenital heart defect (CHD) among mothers who have oral contraceptive (OC) exposure

three months before or after conception.

The formula provided power and sample size in the said reference is based on a simple

assumption of the normal distribution for RR and OR in cohort and case-control studies

respectively. The results showed that a case-control study is more powerful in detecting

CHD/OC relationship.

In most case-control and cohort studies usually, more complex conditions result in the

need for models that are more complicated to find the statistical power. The most natural

problem that can be posed after handling discrete exposures is how to deal with continuous

exposures. The simplest approach is to dichotomize the exposure to use the discrete formula.

However, as noted in Lubin et al. (1990), since the risk patterns might be monotonic with

increasing exposure, an explicit category of ‘not exposed’ might be not meaningful. Also,

this approach has been proven to overestimate the required sample size (and equivalently

underestimate the power)(Lubin et al. 1990).

Mckeown-eyssen and Thomas (1985) is one of the earliest papers to address the problem

of continuous exposure. The paper considers case-control studies and proposes the idea of

comparing the mean of exposure between cases and controls to test any effect of the exposure.

Based on this idea the formula for power and sample size is provided. In particular, the

following formula is given for the sample size,

n =
2(tα − tβ)2σ2

(µ1 − µ0)2

where t stands for the t-distribution, α and 1 − β denote the level of the test and desired

power respectively, σ2 denotes variance of exposure and µ0 and µ1 is the mean of the exposure

22



in cases and controls. The paper also explains an apparent paradox in this formula: The

formula suggests that smaller variability in exposure results in smaller sample size while

epidemiological studies prove something in contrast. The model proposed by this paper has

been specifically applied to cancer and diet problems.

Using a logistic regression model with an exposure x (either continuous or discrete), the

probability of having the disease is given by

p(x;α, θ) =
eα+θx

1 + eα+θx
. (2.1)

This can provide the bases for calculating the power and sample size in a case-control study.

However, in practice more complex conditions may arise which can not be handled well

with this simple approach. A couple of such conditions are addressed in Lubin and Gail

(1988). This reference tries to solve the power/sample size problem based on a fairly unified

method which provides a general framework for all problems simultaneously. The models

are specifically applied to the study of lung cancer risk associated with exposure in the home

to radon-222 and its short progeny. The need to develop new power/sample size models all

arose from this study but, as explained in the said paper, can be applied to any study with

similar problems.

The first problem in this study came from the analysis of underground miners which

showed that the standard exponential trend as in model (2.1) can not explain the true

nature of relationship. Rather, it is well characterized by a linear model. They proposed the

following model

p(x;α, θ) =
r(x)

1 + r(x)

=
eαR(x;α, θ)

1 + eαR(x; θ)
(2.2)
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where R(x) = 1 + θx. Testing the null hypothesis of no association is then equivalent to

H0 : θ = 0. Based on this model, formulas for power and sample size are provided.

By changing the definition of function R, they also provide the formula to handle a more

complex situation that can not be dealt with using typical models. One such situation arises

when one wishes to test curvilinearity in the trend. For example, there has been evidence

that suggests that the increase in the relative odds of lung cancer from exposure to radon is

not linear over the entire range of exposure. The model which is proposed is based on (2.2)

and the following model based on which power and sample size for such a test are provided

R(x) = (1 + βx)e−θx.

Test for curvilinearity is again H0 : θ = 0.

Other complex circumstances considered in this reference are:

1. Testing whether the gradient is equal to a specified non-zero value.

2. Testing for no effect after adjustment for second risk factor under a multiplicative

model.

3. Testing for an additive joint association for two risk factors under a multiplicative

alternative.

The first power model specifically designed for ionizing radiation-cancer studies is provided

in Little et al. (2010). The model proposed tries to follow the usual traditions which are

considered in epidemiological studies of ionizing radiation-cancer. This includes breaking

the dataset into substrata where each substratum is a combination of age and sex. It also

dichotomizes the ionizing radiation dose variable. The model has been used to detect the

power of ‘background ionizing radiation-childhood leukemia’ studies in Great Britain. Such

epidemiological studies have already been underway for several decades. However, the model
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is fairly general so that it can be deployed in other settings such as ‘Occupational ionizing

radiation-solid cancer’ studies. My research falls under the latter.

The model is obtained based on Monte-Carlo simulation. Age+sex strata are considered

independently. The dose variable is broken down into a few categories. The model makes

two basic assumptions:

1. The dose of ionizing radiation is assumed to have a linear effect on RR (in the cohort)

and OR (in case-control). For example, in the cohort study, it is assumed that

RiskRatio =
Risk for dose category with D

Risk for category unexposed to radiation

= 1 + θD.

2. Fixed number of cases at each age/sex stratum. These numbers are obtained from the

observed dataset.

The number of cases mentioned above serves as the number of trials in a multinomial model.

To produce simulated samples (under both null and alternative), it is assumed that the

number of cases at each age+sex stratum is distributed among dose categories according to

a multinomial distribution the probabilities of which depend on parameter θ. More precisely,

assume that we break down the i-th age+sex stratum into K dose categories. Assume also

that in the observed data set, we have mi j cases (deaths) in the j-th dose category of the i-th

age+sex stratum and that the population proportion of the same category is pi j. Then we

assign a multinomial distribution to this stratum with number of trials given by

Mi =

K∑
j=1

mi j
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and corresponding probabilities calculated as

πi j =
pi j(1 + θDi j)∑K

j=1 pi j(1 + θDi j)
.

The likelihood function and the score test statistic are then calculated based on the indepen-

dent multinomial distributions. Using the Rao’s theorem (Rao 1948), the score test statistic

is assumed to have asymptotic normal distribution under the null which is H0 : θ = 0.

A sample of size 100, 000 is then randomly sampled from the alternative. The power

is then calculated as the proportion of samples rejected. This procedure is repeated for

every year of follow-up and power curves are drawn based on the information for all years of

follow-up.

Results of this study provide two important pieces of information:

1. What is the best study design in terms of power? Figure 1 in Little et al. (2010)

provides an answer to this question. As the graph shows, a cohort study with homoge-

neous ERR gives the largest power for any given year of follow up. Cohort study with

heterogeneous ERR, ecological study and case-control study with 5 controls per case

have slightly smaller power while case-control study with only one control per case has

remarkably smaller power. Figure 2 in Little et al. (2010) presents the comparison

between case-control studies with different numbers of control per case. It was sug-

gested that the optimum number of controls per case is 5: This number is proposed

based on the observation that fewer controls provide remarkably lower power while

more controls don’t significantly improve the power.

2. Some previous epidemiological studies which reported an insignificant result for the

background ionizing radiation-childhood leukemia relationship were evaluated based

on this power study. Many such studies were found to be underpowered. Conse-

quently, the insignificant result of such studies can not reflect the true nature of the
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relationship between ionizing radiation and childhood leukemia. Therefore, they should

be interpreted with caution!

2.4 Conclusion

In this chapter, I gave a brief introduction to ionizing radiation. Sources of ionizing

radiation and studies of ionizing radiation-cancer were reviewed. I also presented an overview

of studies that provide a model to detect the power of cohort and case-control studies.
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Chapter 3

Procedure to calculate the power for the cohort study

In this chapter, I develop the formal procedure which is used to estimate the power of the

cohort design for ionizing radiation-cancer studies. The model which is used to estimate the

power is called the “linear dose-effect” model which is explained with details in the following

section. The procedure has been presented in Little et al. (2010) without details. I bridge

all the gaps in the aforementioned reference. I spot some problems in the procedure and

propose new approaches. As a result, I provide formulas that are slightly different from the

formulas presented in that reference. I use simulated data to demonstrate that my formula

for the power and sample size are more reliable.

I describe the algorithm which is used in Little et al. (2010) to calculate the power based

on a normal-sampling approach: distribution of the score test statistic under null is assumed

normal. The power is then calculated by sampling from the alternative. However, using

simulated data (which is presented in Section 6.3) I realized that the score test statistic

seems not only to be approximately normal under the null but it is also approximately

normal under the alternative. In Corollary 5.1, I show why this seemingly unusual feature

is the case (notice that Rao’s theorem (Rao 1948) only states that the score test statistic is

asymptotically normal under the null).

Similar results will be presented in the next chapter for the case-control studies.

Notice that for both study designs we use the score tests statistics. One could develop

the model based on two other well-known test statistics, i.e. the Wald and the LRT. One
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important advantage of the score statistic against the Wald statistic is that it doesn’t require

the point estimation for the parameter. Regarding the LRT, it is possible to reconstruct the

models proposed in this chapter and the next chapter by replacing score with LRT. All the

basics are the same, only the formula for the test statistic changes. Using the fact that

the LRT is asymptotically normal (just as the score is), all the methods proposed with

the score still work with the LRT. However, our main focus in this research is to improve

th performance of the model proposed in Little et al. (2010) which is based on the score

statistic.

3.1 Development of the procedure

The procedure for my study is developed based on a Monte-Carlo approach. I derive

some basic information about the population under study from the given sample. I assume

that any other possible sample (with the same size) would share some features with the

current sample. The assumption is that after drawing samples, the total number of cases

(deaths) in each stratum of age+sex (e.g., ”males, age 30” or ”females, age 32”) will be the

same as the observed value in our single sample. Variability in the samples, i.e. variation in

the incidence of death from cancer, comes from the distribution of cases among dose groups

at any stratum of sex+age. This variation is determined through multinomial distributions

for any stratum in two steps:

1. The number of trials at each stratum is obtained from the observed sample (denoted

by Mi).

2. I break down each stratum into Ki dose categories. The multinomial probabilities are

then found based on a linear-dose effect model for the risk ratio as discussed below.
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Figure 3.1 illustrates how I break down the dataset into age+sex strata and dose categories.

Each row in this table represents one age+sex stratum. Also, Each column is corresponding

to one dose category (in this table we assume Ki = K for I ≤ i ≤ I). A multinomial

distribution is assigned to each row (strata). In this table, pp stands for the population

proportion of each cell in its row. Notice that

Mi =

K∑
j=1

mi j,

K∑
j=1

pi j = 1 1 ≤ i ≤ I.

Figure 3.1: Break-down of dataset into age+sex strata and dose categories

Let i ∈ I be the index for some stratum of age+sex, and let Di j for j ∈ Ki denote the

average dose of some dose category in the i-th stratum. As mentioned above we would like

to find the probability that some cases (whether incidence or death) in stratum i falls in

category j of dose. To link probabilities of multinomial distributions to the excess relative

risk, we use a linear dose-effect model for the risk ratio which is very common in the literature

(See in particular BEIR V (1990)). Then, we will be able to derive the likelihood function
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for the ERR parameter. The linear dose-effect model is defined as follows:

Risk Ratio for category ij =
probability of being a case in the dose category i j (mean dose=Di j)
probability of being a case in the non-exposed category (Dose=0)

=
P(case − i j)

P(case − nonexposed)

= 1 + θiDi j. (3.1)

This model is used to extract information regarding the probabilities of the multinomial

distribution. Consequently, we can insert our desired parameters in the likelihood function.

In this formula, “case-non exposed ” means a case of cancer (either incidence or mortality,

depending on study) int the non-exposed group. Notice that at this stage, for sake of

generality, we assume that each stratum i has its specific ERR parameter θi. In practice, we

usually assume one parameter for all strata.

The linear dose-effect model is one of the two common models used in the study of

ionizing radiation and cancer, the other being the quadrative dose-effect model (BEIR V

1990). It has been proposed in (BEIR V 1990) that for low dose levels of ionizing radiation,

the linear dose-effect model works well enough. So, we stick to this simpler model. Using

equation (3.1) we proceed to find the probabilities of the multinomial distribution described

above.

Remark 3.1. It should be mentioned that the main reference in which this procedure has

been developed (Little et al. 2010) derives the formula for the probabilities of multinomial

distributions using a different approach than what we present below. Actually, to derive the

said formula they assume that pi j(1 + θiDi j) is cancer risk where pi j denotes the proportion

of the population of stratum i which falls in category i j of dose. However, I prefer not to

make this assumption as it seems that there is no evidence why the above value should fall

between 0 and 1 (Notice that risk is a probability and should be between 0 and 1).
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Using equation (3.1) we can write

P(case − i j) = P(case-non exposed)(1 + θiDi j). (3.2)

On the other hand,

P(case − i j) =
Number o f cases in categoryi j

size o f i j

=
Mi j

pi jTi
. (3.3)

where pi j is as defined above, Ti denotes the total population of stratum i and Mi j is the

number of cases in category i j of dose. Now combining equations (3.2) and (3.3) we get

Mi j = pi jTiP(case non − exposed)(1 + θiDi j).

As a result total number of cases in stratum i is given by,

Mi =

Ki∑
j=1

Mi j

=

Ki∑
j=1

pi jTiP(case non − exposed)(1 + θiDi j)

Now, we can provide πi j’s, the probabilities of multinomial distribution at each stratum i.

As mentioned above, πi j is probability that a case in stratum i falls in category j of dose. It
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is given by

πi j =
Mi j

Mi

=
pi jTiP(case non − exposed)(1 + θiDi j)∑Ki

j=1 pi jTiP(case − non exposed)(1 + θiDi j)

=
pi j(1 + θiDi j)∑Ki

j=1 pi j(1 + θiDi j)
. (3.4)

Notice that in equation (3.4) if we set θi = 0, then using the fact that ∑Ki
j=1 pi j = 1, we would

get πi j = pi j. This is natural as when there is no relationship between the exposure and

outcome, the number of cases at each category is only proportional to the size (population)

of the category.

Now, we are ready to provide formula for the Likelihood function. First of all notice that

samples are drawn independently. Therefore, the general Likelihood function is given by

L =
∏I

i=1 Li where li denotes the Likelihood function for stratum i. To calculate the formula

for li notice that samples in stratum i are assumed to occur according to a multinomial

distribution with Mi trials and probabilities (πi j)
Ki
j=1 given by equation (3.4). Therefore, if we

assume that mi j is the variable representing number of cases in category i j, then we will have

Li(θi|(mi j)
Ki
j=1) =

Mi!∏Ki
j=1 mi j!

Ki∏
j=1

π
mi j

i j

Therefore,

L((θi)I
i=1|((mi j)

Ki
j=1)I

i=1) =
I∏

i=1

Li(θi|(mi j)
Ki
j=1)

=

 I∏
i=1

Mi!∏Ki
j=1 mi j!


 I∏

i=1

Ki∏
j=1

 pi j(1 + θiDi j)∑Ki
j=1 pi j(1 + θiDi j)


mi j


Notice that c =

∏I
i=1

Mi!∏Ki
j=1 mi j!

does not depend on θi and is a fixed scalar. Now, we can rewrite
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the above equation as

L((θi)I
i=1|((mi j)

Ki
j=1)I

i=1) = c
I∏

i=1

∏Ki
j=1(pi j(1 + θiDi j))mi j[∑Ki

j=1 pi j(1 + θiDi j)
]∑Ki

j=1 mi j

.

Finally, using the fact that ∑Ki
j=1 mi j = Mi, we can write

L((θi)I
i=1|((mi j)

Ki
j=1)I

i=1) = c
I∏

i=1

∏Ki
j=1(pi j(1 + θiDi j))mi j

[
∑Ki

j=1 pi j(1 + θiDi j)]Mi
.

Now, the log-Likelihood function is given by

l = l((θi)I
i=1|((mi j)

Ki
j=1)I

i=1)

= log(l((θi)I
i=1|((mi j)

Ki
j=1)I

i=1))

= c′ +
I∑

i=1

{ Ki∑
j=1

mi jln[pi j(1 + θiDi j)]

− Miln[pi j(1 + θiDi j)]
}
. (3.5)

So far we have assumed that each strata might have a different ERR parameter θi. Now, we

assume that this parameter is the same for all strata. So, let θi = θ for all i ∈ I. Carrying

this fact in mind and using equation (3.5) we obtain the formula of the score test statistic,

dl
dθ
=

I∑
i=1

 Ki∑
j=1

mi jDi j

1 + θDi j
− Mi

∑Ki
j=1 pi jDi j∑Ki

j=1 pi j(1 + θDi j)

 (3.6)

As explained in the first chapter, the score test statistic is usually defied as (
dL
dθ

)2/var(
dL
dθ

)

which has asymptotic chi-squared distribution. Since, we have only one unknown variable,

the score test statistic has asymptotic chi-squared distribution with one degree of freedom

under the null hypothesis. Using the fact that the square root of χ2
1 is normal, we prefer to
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work with dL
dθ
/(var(

dL
dθ

))1/2.

The goal of my research is to find the power to detect a true effect. An effect here is equivalent

to a non-zero ERR value θ1 , 0. Therefore, our hypothesis test should be H0 : θ = 0. Then

we need to check how often we truly reject H0 in favor of H1 : θ , 0 when the samples

come from the true value θ1. So, we need to calculate the score statistic under θ = 0. Using

equation (3.6) this is given by

dL
dθ
|θ=0 =

I∑
i=1

 Ki∑
j=1

mi jDi j − Mi

Ki∑
j=1

pi jDi j

 . (3.7)

As explained in the first chapter, in order to obtain a closed-form formula for the power

(in particular to calculate a formula for the sample size) we need to know a theoretical

distribution for the score test under the null both when samples come from θ = 0 and when

they come from another desired value such as θ1 which we wish to be able to detect. As

described there, under the null the standardized score test has χ2
1 distribution (or equivalently

its square root has a normal distribution) provided that sample size is large enough. However,

under θ1 , 0 this might be not true. Actually, this is one reason why Little et al. (2010)

chooses a sampling approach under θ1 side to calculate the power.

The aforementioned reference needs to assume a normal distribution for the score test

under the null when samples come from θ1 too. In the following section, we will prove

a theorem showing that in this specific study the score test under the null when samples

come from θ1 is as good normally distributed as it is when samples come from θ = 0. As

a result, we will be able to theoretically prove that the closed form-formula for the power

is nearly as reliable as the sampling approach. Also, the sample size formula will find a

stronger foundation. I use a different formula than the one provided in Little et al. (2010)

to calculate the power closed-form formula and the sample size. Simulation studies that are

presented in Appendix A show that my formula provides power estimates which are closer
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to power estimates from the Monte-Carlo method.

We need to find the mean and the variance of score test statistic under the null when

samples come from some parameter θ. Using equation (3.7) we can write

Eθ[
dl
dθ
|θ=0] =

I∑
i=1

 Ki∑
j=1

Eθ[mi j]Di j − Mi

Ki∑
j=1

pi jDi j

 . (3.8)

It should be pointed out that from now on an explicit subscript θ = 0 means that the

parameter is equal to 0 while a general parameter θ (such as in Eθ below) means that the

parameter could be any arbitrary value (possibly non-zero). Notice that each mi j is a binomial

variable with n = Mi trials and

p = πi j =
pi j(1 + θDi j)∑Ki

j=1 pi j(1 + θDi j)

success rate. Therefore, its mean is given by

Eθ[mi j] = np = Miπi j

= Mi
pi j(1 + θDi j)∑Ki

j=1 pi j(1 + θDi j)
. (3.9)

Putting equations (3.8) and (3.9) we get

Eθ[
dl
dθ
|θ=0] =

I∑
i=1

 Ki∑
j=1

Mi
pi j(1 + θDi j)Di j∑Ki

j=1 pi j(1 + θDi j)
− Mi

Ki∑
j=1

pi jDi j


=

I∑
i=1

Mi


∑Ki

j=1 pi j(1 + θDi j)Di j∑Ki
j=1 pi j(1 + θDi j)

−
Ki∑
j=1

pi jDi j


= θ

I∑
i=1

Mi


∑Ki

j=1 pi jD2
i j − [

∑Ki
j=1 pi jDi j]2

1 + θ
∑Ki

j=1 pi jDi j

 . (3.10)

Variance of the score test under the null when samples come from some θ can also be
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calculated using the formula

varθ[
dl
dθ
|θ=0] = cov(

dl
dθ
|θ=0,

dl
dθ
|θ=0)

= cov(
I∑

i=1

Ki∑
j=1

mi jDi j,

I∑
i=1

Ki∑
j=1

mi jDi j) (3.11)

Notice that for i and i′ ∈ I all mi j variables are independent from all mi′ j′ variables. Also,

using properties of binomial variables, each mi j has variance

var[mi j] = np(1 − p) = Miπi j(1 − πi j)

= Mi
pi j(1 + θDi j)∑Ki

j=1 pi j(1 + θDi j)

1 − pi j(1 + θDi j)∑Ki
j=1 pi j(1 + θDi j)

 . (3.12)

In addition, using properties of multinomial distribution, the covariance between two vari-

ables mi j and mi j′ is given by

cov(mi j,mi j′) = −Miπi jπi j′ .

Putting all this facts together and using equation (3.11) we can write

varθ[
dl
dθ
|θ=0] =

I∑
i=1

cov(
Ki∑
j=1

mi jDi j,

Ki∑
j=1

mi jDi j)

=

I∑
i=1

 Ki∑
j=1

[
D2

i jvarθ[mi j]
]
+ 2

∑
1≤ j′< j≤Ki

[
Di jDi j′cov(mi j,mi j′)

]
=

I∑
i=1

Mi

{ Ki∑
j=1

D2
i j

pi j(1 + θDi j)∑Ki
j=1 pi j(1 + θDi j)

1 − pi j(1 + θDi j)∑Ki
j=1 pi j(1 + θDi j)




− 2
∑

1≤ j′< j≤Ki

Di jDi j′ pi j pi j′(1 + θDi j)(1 + θDi j′)(∑Ki
j=1 pi j(1 + θDi j)

)2


}
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=

I∑
i=1

Mi


∑Ki

j=1 D2
i j pi j(1 + θDi j)∑Ki

j=1 pi j(1 + θDi j)
−


∑Ki

j=1 Di j pi j(1 + θDi j)∑Ki
j=1 pi j(1 + θDi j)


2

=

I∑
i=1

Mi


[∑Ki

j=1 D2
i j pi j + θ

∑Ki
j=1 D3

i j pi j

] [
1 + θ

∑Ki
j=1 pi jDi j

]
−

[∑Ki
j=1 Di j pi j + θ

∑Ki
j=1 D2

i j pi j

]2[
1 + θ

∑Ki
j=1 pi jDi j

]2

 .
(3.13)

Now let

µθ = E[
dl
dθ
|θ=0] , σθ =

√
varθ[

dl
dθ
|θ=0].

Then,the distribution of the score test statistic under an arbitrary parameter θ is normal

Z(µθ, σ2
θ).

Next, we proceed to calculate a closed-form formula for power.

Remark 3.2. At this point, it should be pointed out that in the main reference (Little et al.

2010), the closed-form formula for provided for the power seems to be inappropriate. The

reason is that one has to notice the difference between the variance of the score statistic under

null and alternative. In many statistical studies of power the variance of test statistic under

both null and alternative are equal. Therefore, in order to obtain the power they usually

start from the standardized score statistic under null (i.e. score test divided by the SE under

null). The results remain valid as the score statistic under the alternative is automatically

standardized as well. However, equation (3.13) shows that in my study the variance (hence,

SE) under null and alternative are unequal. Therefore, starting from standardized score

statistic leads to inappropriate formula for power. This is what Little et al. (2010) does. In

the sequel I take the a different approach and provide a different formula. In Section 6.5 I

will use some simulated data to compare the power based on the closed-form formula given

in Little et al. (2010) and closed-form formula proposed here. We will see that my formula

provides results very close to the power result from the sampling method while results from

the formula given in Little et al. (2010) are not close enough to the sampling values and
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sometimes they are even completely irrelevant.

Notice that we need to calculate the distribution of score statistic under null H0 : θ = 0.

Using formulas (3.13) and (3.10) we can see that

Eθ=0[
dl
dθ
|θ=0] = 0.

Also we have

varθ=0[
dl
dθ
|θ=0] =

I∑
i=1

Mi

{ Ki∑
j=1

[
D2

i j pi j(1 − pi j)
]

− 2
∑

1≤ j′< j≤Ki

[
Di jDi j′ pi j pi j′

] }
. (3.14)

Let σ0 =

√
varθ=0[

dl
dθ
|θ=0], then score statistic under θ = 0 is Z(0, σ2

0).

Remark 3.3. To calculate the power we can take samples from alternative and assume a

normal distribution for the score statistic under null. The formula for the score statistic

under null is

Z =
dl
dθ
|θ=0

/√
varθ=0[

dL
dθ
|θ=0]. (3.15)

As this equation shows the variance in the denominator is the variance under null (as rep-

resented by subscript θ = 0 in the variance). However, in Little et al. (2010) the variance

under alternative is included which seems to be inappropriate in case one wishes to assume

a standard normal distribution for the score statistic under the null. Table 1 and Table 2

in Little et al. (2010) show that the said reference assumes a standard normal distribution

under null. Therefore, the variance in the normalized score statistic should be the one under

the null. Using simulated data, I can show that if we use the formula proposed in Little et al.

39



(2010), then the distribution of the score test statistic under null is not standard normal. In

Section 6.4, simulated data has been used to show that the score test under null is very well

normal when we use equation (3.15) while it is not nearly as good when we use the formula

proposed in Little et al. (2010).

To calculate the power assume that we have a test with significance level α. Also assume

that, we would like to be able to detect an effect of size θ1. The power of such a test is given

by

P = P(Score test under θ1 > Qα)

= 1 − P(N(µθ, σ2
θ) < Qα) (3.16)

where Qα is the %100(1 − α) quantile of the test statistic under null. In other words, we

must have

1 − α = P(Score test under θ0 < Qα)

= P(N(0, σ2
0) < Qα)

= P(N(0, 1) <
Qα
σ0

).

Hence, Z1−α =
Qα
σ0

or equivalently,

Qα = σ0Z1−α (3.17)

where Z1−α is the %100(1−α) quantile of the standard normal distribution. Using equations
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(3.16) and (3.17) we can provide a closed-form formula for the power:

P = 1 − P(N(µθ, σ2
θ) < Qα)

= 1 − P(N(0, 1) <
σ0Z1−α − µθ
σθ

). (3.18)

Notice that, by contrast, the formula given in Little et al. (2010) is

P = 1 − P(N(0, 1) < Z1−α −
µθ
σθ

). (3.19)

3.1.1 Formula for the sample size

Using formula (3.18) and under certain conditions, we are able to calculate the sample

size in order to have tests with a desired power P. For this purpose we need to consider a

single stratum. The reason is that we need to plug equation (3.13) in equation (3.18) and

then solve it for the number of cases Mi, i ∈ I. However, if I > 1 we can not solve this

equation strictly. Therefore, we need to assume I = 1.

Remark 3.4. Formula of the sample size is derived from the formula of the power. Since Little

et al. (2010) provides a different formula for power, their formula for sample size which is

based on equation (3.19) is different too. We use equation (3.18) to provide a different

formula. In Section 6.6 we use some simulated data to compare the sample size derived from

both formulas.

Let I = 1, M1 = M and K1 = K. Then, from equation (3.18) we can write

1 − P = P(N(0, 1) <
σ0Z1−α − µθ
σθ

).
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Therefore,

Z1−p =
σ0Z1−α − µθ
σθ

(3.20)

where Z1−P is the %100(1 − P) quantile of the normal standard distribution. Let Z0 =
µθ
σθ
.

Then, by equation (3.20) we have

Z0 = (
σ0

σθ
)Z1−α − Z1−P (3.21)

Notice that using equations (3.10) and (3.13) we can derive the following formula for Z0,

Z0 =
θMF1√

MF2
(3.22)

where

F1 =

∑K
j=1 p jD2

j −
(∑K

j=1 p jD j

)2∑K
j=1 p j(1 + θDi j)

(3.23)

and

F2 =

∑K
j=1

{
D2

j p j(1 + θD j)
([∑K

n=1 pn(1 + θDn)
]
− p j(1 + θD j)

)}
− 2

∑
1≤ j′< j≤K

p j p j′(1 + θD j)(1 + θD j′)[∑K
j=1 p j(1 + θD j)

]2

(3.24)

Using equations (3.21) and (3.22) we infer that

θ
√

M
F1√
F2
=
σ0

σθ
Z1−α − Z1−P
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Therefore,

θ2M
F2

1

F2
= (
σ0

σθ
Z1−α − Z1−P)2

which implies

M =
F2

θ2F2
1

(
σ0

σθ
Z1−α − Z1−P)2

=

∑K
j=1

{
D2

j p j(1 + θD j)
([∑K

n=1 pn(1 + θDn)
]
− p j(1 + θD j)

)}
− 2

∑
1≤ j′< j≤K

p j p j′(1 + θD j)(1 + θD j′)

θ2
[∑K

j=1 p jD2
j −

(∑K
j=1 p jD j

)2
]2

× (
σ0

σθ
Z1−α − Z1−P)2.

3.1.2 Sampling algorithm to calculate the power for the cohort study

Now that we have derived the formula for the score test statistic, we can design the

sampling procedure to find the power for my study. The objective is to evaluate the power

of the cohort study based on the years of follow up. The general algorithm is as follows:

• Step 0. Fix the effect size to be detected, i.e. fix parameter θ.

• Step 1. Fix number of years of follow-up.

• Step 2. Break down the dataset into I strata and each stratum into J cells. Strata I

is defined as a combination of year (single years) and sex. Cells are defined as dose

categories. Dose categories are defined according to the conventional method in the

literature.

• Step 3. Obtain required information from the dataset (NDR). This includes the fol-

lowing information:

1. Mi for i ∈ I: Number of cases (incidence or death) in stratum i.
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2. Di j for i ∈ I and j ∈ J: Average dose in cell j of stratum i

3. pi j for i ∈ I and j ∈ J: Proportion of the population of cell i j in stratum i.

• Step 4. Sampling:

– Step 4-1. Fix i ∈ I and draw a sample from a multinomial distribution with Mi

trials and J possible outcomes each with probability

πi j =
pi j(1 + θiDi j)∑Ki

j=1 pi j(1 + θiDi j)
.

– Step 4-2. Repeat Step 4-1 for all i ∈ I. Then using formula (3.15) calculate the

value of the test statistic for this sample.

– Step 4-3. Check whether the value from Step 4-2 is greater than Z1−α (where α is

the level of the test, usually α = .05). If so, we mark this trial as a success.

• Step 5. Repeat Step 4 , 100, 000 times. The power is then calculated using the formula

power =
# of successful trials

100, 000

where successful trial is defined in Step 4-3.

• Step 6. Return to Step 1 and choose another number of years of follow up.

• Step 7. If a different effect size is also of interest , return to Step 0 and change θ.
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Chapter 4

Procedure to calculate the power for the case-control study

This chapter is the counterpart of Chapter 3 for the case-control study. This is designed,

less and more, in the same way, that Chapter 3 was done. Again, a linear dose-effect model

is used to estimate the power (see the following section). I explain, with all the details, the

procedure which has been presented in Little et al. (2010). I bridge all the gaps and spot

some problems in the procedure and provide substitute approaches. Similar to the cohort

study I provide new formulas and use simulated data to prove that our formulas for the

power and sample size are more reliable.

I describe the algorithm to calculate the power using a normal-sampling approach. Simu-

lated data which appears in Section 6.3 show that the score test statistic for the case-control

study is approximately normal under both null and alternative. This is a result of Corollary

5.2.

4.1 Development of the procedure

As mentioned in the first chapter, the measure of association in case-control studies is

the odds ratio which compares the status of exposure in cases and controls. In our study,

exposure is defined as ‘being exposed to some level of radiation dose’. Therefore, in the

case-control study levels of dose are of direct interest. So, we assume that there are ND + 1
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dose groups 0, 1, · · · ,ND with associated doses

D0 < D1 < · · · < DND .

The dose categories are defined in the conventional way as used in the epidemiological studies.

For simplicity, at this stage we implement the case-control studies for each case indepen-

dently. Later, we will put together cases which share similar characteristic in terms of age

and sex. Let’s assume that there are S cases. For each case i, we assign Ki controls. So, we

have S independent case-control studies each with 1 case and Ki controls. For study i ∈ S

we define (Pd1i)
ND
d=0 to be probability that the case falls in groups d of dose. Similarly, assume

that (Pd0i)
ND
d=0 represents probabilities for controls corresponding to case i. By definition

Odds ratio =
P(case exposed)/P(case non-exposed)

P(control exposed)/P(control non-exposed) .

So, as long as we are concerned with level d of dose, the odds ratio in the case-control study

i denoted by λd given by

λd =
Pd1i/P01i

Pd0i/P00i
. (4.1)

Here by exposure we mean being exposed to level d of dose. At this point, two fact should

be emphasized:

1. As presented in the first chapter, for studies with low incidence rate (such as cancer),

odds ratio and risk ratio are approximately equal. As a result, if we apply a linear-dose

effect model as proposed in BEIR V (1990), we can still apply the excess relative risk

parameter θ for the case-control studies. Therefore, we must have

λd = λd(θ) = 1 + θd. (4.2)
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2. The power procedure for the case-control study is more complex than that for the

cohort study in several aspects. One reason, as evident in equation (4.1), is that we

have 4 unknown parameters while we want to reduce our problem to a single parameter

θ. We do this step by step. The first step is to apply equation (4.1) to write

Pd1i =
P01i

P00i
Pd0iλd. (4.3)

Using this equation and the fact that ∑ND
d=0 Pd1i = 1, we can write

ND∑
d=0

Pd1i =

ND∑
d=0

P01i

P00i
Pd0iλd

=
P01i

P00i

ND∑
d=0

Pd0iλd = 1.

Therefore, we should have

P01i

P00i
=

1∑ND
d=0 Pd0iλd

. (4.4)

Putting equations (4.3) and (4.4) together we conclude that

Pd1i =
Pd0iλd∑ND

d=0 Pd0iλd
. (4.5)

Notice that cases and controls are chosen independently (this is an ordinary case-control

study not a matched one). Also, each case and each control can belong to D+1 dose groups.

Therefore, for each i ∈ I we have two binomial distributions:

• For case: With 1 trial and probabilities (Pd1i)I
i=1.

• For controls: With Ki trials and probabilities (Pd0i)I
i=1.

Let (nd0i)
ND
d=0 and (nd1i)

ND
d=0 denote the number of controls and cases in these multinomial
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distributions that belong to group d of dose. So,

ND∑
d=0

nd1i = 1 ,
ND∑
d=0

nd1i = Ki. (4.6)

Since the corresponding multinomial distribution for cases has only one trial, its probability

distribution is given by

P(n01i, · · · , nd1i|(Pd1i)
ND
d=0) =

ND∏
d=0

Pnd1i
d1i .

Similarly, for controls the corresponding probability distribution is

P(n00i, · · · , nd0i|(Pd0i)
ND
d=0) =

ND∏
d=0

Pnd0i
d0i

Ki!∏ND
d=0 nd0i!

.

Finally, since the I sets of case-controls are independent and in each case-control set, cases

and controls are chosen independently, we see that the likelihood function is given by

L = L(θ, (Pd0i)
ND
d=0, (Pd1i)

ND
d=0|(nd0i)

ND
d=0, (nd1i)

ND
d=0)

=

S∏
i=1

 ND∏
d=0

Pnd1i
d1i

ND∏
d=0

Pnd0i
d0i

Ki!∏ND
d=0 nd0i!

 . (4.7)

If we replace Pd1i in equation (4.7) by the value given in equation (4.3) we can remove (Pd0i)
ND
d=0

and write

L = L(θ, (Pd0i)
ND
d=0|(nd0i)

ND
d=0, (nd1i)

ND
d=0)

=

S∏
i=1

 ND∏
d=0

 Pd0iλd∑ND
d=0 Pd0iλd

nd1i ND∏
d=0

Pnd0i
d0i

Ki!∏ND
d=0 nd0i!


=

 ND∏
d=0

λ

S∑
i=1

nd1i

d




S∏
i=1

1(∑ND
d=0 Pd0iλd

)∑ND
d=0 nd1i

ND∏
d=0

Pnd0i+nd1i
d0i

Ki!∏ND
d=0 nd0i!


=

 ND∏
d=0

(1 + θDd)
S∑

i=1
nd1i

  S∏
i=1

1∑ND
d=0 Pd0i(1 + θDd)

ND∏
d=0

Pnd0i+nd1i
d0i

Ki!∏ND
d=0 nd0i!

 (4.8)
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where the last equation is written according to the linear-dose effect model as given in

equation (4.2) and the fact that ∑ND
d=0 nd1i = 1 . Notice that in equation (4.8) apart from θ,

we have other parameters which are
(
(Pd0i)

ND
d=0

)S

i=1
. Since we just want to test for θ, we need

to remove other parameters by calculating the profile likelihood: We find MLE for all the

parameters other than θ and plug all the MLEs in the likelihood function in order to obtain

the profile likelihood.

To calculate MLE for
(
(Pd0i)

ND
d=0

)S

i=1
notice that Ki , nd0i and Dd are fixed. Also we treat

θ as fixed at this point. Taking a glimpse at the likelihood function given in equation (4.8)

reveals that this function has a nice simple form in that terms for each Pd0i appears as a

multiplicand and there is no interaction between them for any two different values of i. As

a result to maximize the likelihood function with respect to these parameters all we need is

to maximize the functions for each i independently. Therefore, disregarding the fixed terms

we need to maximize each of the following functions

fi(pd0i) =

ND∏
d=0

Pnd0i+nd1i
d0i

ND∑
d=0

Pd0i(1 + θDd)
, i ∈ I.

We need to solve I equations

∂ fi

∂Pd0i
= 0. (4.9)

We have,

∂ fi

∂Pd0i
=

(nd0i + nd1i)P
nd0i+nd1i−1
d0i

ND∏
d′,d

Pnd′0i+nd′1i
d′0i

(
ND∑

d′=0
Pd′0i(1 + θDd′)

)
− (1 + θDd)

ND∏
d=0

Pnd0i+nd1i
d0i(

ND∑
d=0

Pd0i(1 + θDd)
)2 .

49



Plugging in equation (4.9) we get

(1 + θDd)
ND∏
d=0

Pnd0i+nd1i
d0i = (nd0i + nd1i)P

nd0i+nd1i−1
d0i

ND∏
d′,d

Pnd′0i+nd′1i
d′0i

 ND∑
d′=0

Pd′0i(1 + θDd′)

 .
Dividing both sides of this equation by

(1 + θDd)Pnd0i+nd1i−1
d0i

ND∏
d′,d

Pnd′0i+nd′1i
d′0i ,

we find that

Pd0i =
(nd0i + nd1i)

1 + θDd

ND∑
d′=0

Pd′0i(1 + θDd′). (4.10)

Notice that from the multinomial distribution and equation (4.10) we can write,

1 =
ND∑
d=0

Pd0i

=

 ND∑
d=0

(nd0i + nd1i)
1 + θDd

  ND∑
d′=0

Pd′0i(1 + θDd′)


This implies that

ND∑
d′=0

Pd′0i(1 + θDd′) =
1

ND∑
d=0

(nd0i + nd1i)/(1 + θDd)
. (4.11)

Finally, putting equations (4.10) and (4.11) we find the desired MLEs as follows

Pd0i =
(nd0i + nd1i)/(1 + θDd)

ND∑
d′=0

(nd′0i + nd′1i)/(1 + θDd′)
. (4.12)

Now we proceed to find the profile log-likelihood. Notice that in this procedure, all terms
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that do not include parameter θ are assumed fix and we collect them under a generic term

C. First, taking log from equation (4.8), we get

l = ln(L) =
ND∑
d=0


 S∑

i=1

nd1i

 ln((1 + θDd))

 − S∑
i=1

ln

 ND∑
d=0

Pd0i(1 + θDd)


+

ND∑
d=0

(nd0i + nd1i)ln(Pd0i) + ln

 Ki!∏ND
d=0 nd0i!

 . (4.13)

The last term is fixed. Let’s denote it by C. Also, notice that

ND∑
d=0

Pd0i(1 + θDd) =
ND∑
d=0

[nd0i + nd1i]/(1 + θDd)
ND∑

d′=0
[nd′0i + nd′1i]/(1 + θDd′)]

× (1 + θDd)

=

ND∑
d=0

[nd0i + nd1i]

ND∑
d′=0

[nd′0i + nd′1i]/(1 + θDd′)

=
Ki + 1

ND∑
d′=0

[nd′0i + nd′1i]/(1 + θDd′)
.

Therefore,

ln

 ND∑
d=0

Pd0i(1 + θDd)

 = ln(Ki + 1) − ln

 ND∑
d′=0

[nd′0i + nd′1i]/(1 + θDd′)

 . (4.14)

Since ln(Ki + 1) is fixed, we will collect it under the generic term C. We can also write:

ln(pd0i) = ln(nd0i + nd1i) − ln(1 + θDd)

− ln(
ND∑

d′=0

[nd′0i + nd′1i]/(1 + θDd′)). (4.15)

Again, we collect ln(nd0i+nd1i) in C. Now plug equations (4.14) and (4.15) in equation (4.13)
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to get

l =

 ND∑
d=0

 S∑
i=1

nd1i

 ln(1 + θDd)

 + S∑
i=1

ln

 ND∑
d′=0

[nd′0i + nd′1i]/(1 + θDd′)


+

S∑
i=1

ND∑
d=0

(nd0i + nd1i)

−ln(1 + θDd) − ln

 ND∑
d′=0

[nd′0i + nd′1i/(1 + θDd′)]

 +C


= −

ND∑
d=0

 S∑
i=1

nd0i

 ln(1 + θDd) −
S∑

i=1

ND∑
d=0

nd0iln

 ND∑
d=0

[nd0i + nd1i]/(1 + θDd)

 +C

=

ND∑
d=0

 S∑
i=1

nd0i

 ln(1 + θDd) −
S∑

i=1

Kiln

 ND∑
d=0

[nd0i + nd1i]/(1 + θDd)

 +C.

where the last two equations are written using equations (4.6).

Now we can calculate the score test statistic by taking derivative from equation (4.15)

as follows.

S (θ) =
dl
dθ
= −

ND∑
d=0

 S∑
i=1

nd0i

 1
(1 + θDd)

Dd

+

S∑
i=1

Ki

ND∑
d=0

[nd0i+nd1i]
(1+θDd)2 Dd

ND∑
d=0

[nd0i+nd1i]
(1+θDd)

. (4.16)

To calculate the score test statistic under null we set θ = 0 in equation (4.15). So that we

will get,

S (0) =
dl
dθ
|θ=0

= −
ND∑
d=0

 S∑
i=1

nd0i

 Dd +

S∑
i=1

Ki

ND∑
d=0

[nd0i + nd1i]Dd

ND∑
d=0

[nd0i + nd1i]

= −
ND∑
d=0

 S∑
i=1

nd0i

 Dd +

S∑
i=1

Ki

ND∑
d=0

[nd0i + nd1i]Dd

Ki + 1
. (4.17)
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Finally, if in equation (4.17) we collect all terms with nd0i together and all terms with nd1i

together, then we will get

S (0) =
S∑

i=1

ND∑
d=0

[
−1 +

Ki

Ki + 1

]
nd0iDd +

S∑
i=1

Ki

Ki + 1

ND∑
d=0

nd1iDd

= −
S∑

i=1

1
Ki + 1

ND∑
d=0

nd0iDd +

S∑
i=1

Ki

Ki + 1

ND∑
d=0

nd1iDd. (4.18)

Similar to the cohort study, we will derive the formula for the variance and expectations in

order to find the normal distribution of the score statistic under null and alternative. For

this purpose notice that for each 1 ≤ i ≤ S and 0 ≤ d ≤ ND, nd0i and nd1i are binomial

distributions with success rates Pd0i and Pd1i and number of trials Ki and 1 respectively.

Also, equation (4.5) shows that

Pd1i =
Pd0i(1 + θDd)

ND∑
d=0

pd0i(1 + θDd)
.

Recall that if X ∼ binomial(n, p), then

E[X] = np , var[X] = np(1 − p).

Therefore, using equation (4.18) we can write

Eθ[
dl
dθ
|θ=0] = −

S∑
i=1

1
Ki + 1

ND∑
d=0

Eθ[nd0i]Dd +

S∑
i=1

Ki

Ki + 1

ND∑
d=0

Eθ[nd1i]Dd

=

S∑
i=1

1
Ki + 1

ND∑
d=0

Ki pd0iDd +

S∑
i=1

Ki

Ki + 1

ND∑
d=0

Pd0i(1 + θDd)
ND∑
d=0

pd0i(1 + θDd)
Dd

=

S∑
i=1

Ki

Ki + 1

ND∑
d=0


Pd0i(1 + θDd)

ND∑
d=0

pd0i(1 + θDd)
− pd0i

 Dd. (4.19)
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To calculate the variance, note further that all S case-control sets are independent and so

are cases and controls in each set of case-controls. Therefore, in equation (4.18), the only

terms with possibly non-zero covariance are (nd0i)
ND
d=0 among themselves and (nd1i)

ND
d=0 among

themselves, for each 1 ≤ i ≤ S .

Recall that the covariance between two marginal binomial distributions X and Y that

come from a multinomial distribution with n trials is −nPXPY where PX and PY are the

success rate for X and Y respectively. Using all this facts and equation (4.18) we can write

varθ(
dl
dθ
|θ=0) = covθ(

dl
dθ
|θ=0,

dl
dθ
|θ=0)

=

S∑
i=1

[
1

Ki + 1

]2
 ND∑

d=0

varθ(nd0i)D2
d − 2

∑
1≤d<d′≤ND

DdDd′cov(nd0i, nd′0i)


+

S∑
i=1

[
Ki

Ki + 1

]2
 ND∑

d=0

varθ(nd1i)D2
d − 2

∑
1≤d<d′≤ND

DdDd′cov(nd1i, nd′1i)


=

S∑
i=1

1
[Ki + 1]2

 ND∑
d=0

D2
d pd0i(1 − pd0i) − 2

∑
1≤d<d′≤ND

DdDd′ pd0i pd′0i


+

S∑
i=1

[
Ki

Ki + 1

]2
 ND∑

d=0

D2
d pd1i(1 − pd1i) − 2

∑
1≤d<d′≤ND

DdDd′ pd1i pd′1i


=

S∑
i=1

Ki

[Ki + 1]2

 ND∑
d=0

D2
d pd0i(1 − pd0i) − 2

∑
1≤d<d′≤ND

DdDd′ pd0i pd′0i


+

S∑
i=1

[
Ki

Ki + 1

]2 [ ND∑
d=0

D2
d

Pd0i(1 + θDd)
ND∑
d=0

pd0i(1 + θDd)

1 −
Pd0i(1 + θDd)

ND∑
d=0

pd0i(1 + θDd)


− 2

∑
1≤d<d′≤ND

DdDd′
Pd0i pd′0i(1 + θDd)(1 + θDd′)[

ND∑
d=0

pd0i(1 + θDd)
]2

]
. (4.20)

In particular, if we assign the same number of controls to each case so that for each 1 ≤ i ≤ S ,
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Ki = K and assume that Pd0i = Pd0 and Pd1i = Pd1 , then equation (4.19) can be simplified to

Eθ[
dl
dθ
|θ=0] =

S K
K + 1

ND∑
d=0


Pd0(1 + θDd)

ND∑
d=0

pd0(1 + θDd)
− Pd0

 Dd. (4.21)

Also equation (4.20) can be written as

varθ[
dl
dθ
|θ=0] =

S K
[K + 1]2

 ND∑
d=0

D2
d pd0(1 − pd0) − 2

∑
1≤d<d′≤ND

DdDd′ pd0 pd′0


+ S

[ K
K + 1

]2 [ ND∑
d=0

D2
d

Pd0(1 + θDd)
ND∑
d=0

pd0(1 + θDd)

1 −
Pd0(1 + θDd)

ND∑
d=0

pd0(1 + θDd)


− 2

∑
1≤d<d′≤ND

DdDd′
Pd0 pd′0(1 + θDd)(1 + θDd′)[

ND∑
d=0

pd0(1 + θDd)
]2

]
. (4.22)

So far, we have considered only one general strata. However, similar to the cohort procedure

we would like to break down the dataset into strata of sex and age in order to follow the

convention in the epidemiological studies. So, assume that we have M independent strata

(studies) and implement each study in the way that was just presented. Notice that in this

case the likelihood function can be written as

L =
M∏

m=1

Lm,

where each Lm is the likelihood function of the m-th strata. Therefore, assuming that in all

strata and for each case we assign K controls, the profile log-likelihood using equation (4.18)
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would be

dl
dθ
|θ=0 =

dlog(L)
dθ

|θ=0 =

M∑
m=1

− S m∑
i=1

1
K + 1

ND,m∑
d=0

nd0imDmd +

S m∑
i=1

K
K + 1

ND,m∑
d=0

nd1imDmd

 . (4.23)

Here, S m represents total number of cases in stratum m and Dmd represents the average dose

of category d of dose in stratum m. Also, nd0im (nd1im) is total number of controls (cases)

in the i-th case-control set in stratum m that falls in category d of dose. Notice that as

explained

1. nd0im is determined from a multinomial distribution with 1 trial and probabilities given

by

Pd1m =
Pd0m(1 + θDd)

ND∑
d=0

pd0m(1 + θDd)
.

2. nd1im is obtained from a multinomial distribution with K trials and probabilities Pd0m.

We can simplify equation (4.23). Notice that all case-control sets are independent and in each

stratum m, all cases follow similar multinomial distributions and so do controls. Therefore,

by putting terms with common distribution in equation (4.23) we can conclude that

dl
dθ
|θ=0 =

dln(L)
dθ
|θ=0 =

M∑
m=1

− 1
K + 1

ND,m∑
d=0

nd0mDmd +
K

K + 1

ND,m∑
d=0

nd1mDmd

 . (4.24)

In this formula nd0m and nd1m are determined as follows

1. nd0m is determined from a multinomial distribution with S m trial (where S m is number

of cases in stratum m) and probabilities given by

Pd1m =
Pd0m(1 + θDd)

ND∑
d=0

pd0m(1 + θDd)
.
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2. nd1m is obtained from a multinomial distribution with KS m trials and probabilities Pd0m.

From equation (4.24) we find the mean of the score statisitc as follows

Eθ[
dl
dθ
|θ=0] =

M∑
m=1

− 1
K + 1

ND,m∑
d=0

K pd0mDmd +
K

K + 1

ND,m∑
d=0

S mKDmd pd1m


=

K
K + 1

M∑
m=1

S m

ND,m∑
d=0


Pd0m(1 + θDd)

ND∑
d=0

pd0m(1 + θDd)
− Pd0m

 Dmd. (4.25)

Also, using the same argument as that used to derive equation (4.20), I can propose the

following formula for the variance of this latest model

varθ[
dl
dθ
|θ=0] =

K
[K + 1]2

M∑
m=1

S m

ND,m∑
d=0

D2
md pd0m(1 − pd0m) − 2

∑
1≤d<d′≤ND

DmdDmd′ pd0m pd′0m


+

[ K
K + 1

]2 M∑
m=1

[ ND,m∑
d=0

D2
md

Pd0m(1 + θDd)∑ND,m
d=0 pd0m(1 + θDd)

1 −
Pd0m(1 + θDd)

ND,m∑
d=0

pd0m(1 + θDd)


− 2

∑
1≤d<d′≤ND

DmdDmd′
Pd0m pd′0m(1 + θDd)(1 + θDd′)[

ND,m∑
d=0

pd0m(1 + θDd)
]2

]
. (4.26)

Equations (4.24), (4.25) and (4.26) provide the framework to calculate the power for case-

control studies.

Remark 4.1. In Chapter 3 some substitutes to the formulas in Little et al. (2010) were

proposed in order to derive the algorithm for the cohort study. Similar substitutes can be

made in providing the formulas for the case-control study. The first required substitute is

similar to that explained in Remark 3.2. Actually, to calculate the power based on a normal-

sampling approach (i.e. assuming normal distribution for the score statistic under the null

and sampling from alternative) the following formula which is assumed to be approximately
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normally distributed is used for the score test under null

Z =
dl
dθ
|θ=0

/√
varθ[

dl
dθ
|θ=0]. (4.27)

So, the variance included is under the parameter which is of interest (θ). However, the same

explanation as that in Remark 3.2 proves that the formula should be as follows,

Z =
dl
dθ
|θ=0

/√
varθ=0[

dl
dθ
|θ=0]. (4.28)

I can propose a closed-form formula for the power of case-control studies by assuming

a normal distribution for the score statistic under alternative. In the next Chapter I prove

the fact that the score statistic is as good normally distributed under the alternative as it is

under the null. The closed-form formula is as follows. It is obtained from the same argument

as that for the cohort study. So, I skip the proof.

P = 1 − P(N(µθ, σ2
θ) < Qα)

= 1 − P(N(0, 1) <
σ0Z1−α − µθ
σθ

). (4.29)

where α is the level of the test and

µθ = Eθ[
dl
dθ
|θ=0] , σθ =

√
varθ[

dl
dθ
|θ=0]

are calculated from equations (4.19) and (4.20).

Remark 4.2. Notice that just like the formula for the power of the cohort study, the formula

given in Little et al. (2010) for the power of case-control study needs to be changed as it

doesn’t take into account difference between variances of the score statistic under null and

alternative. For more information see Remark 3.2. In Section 6.5, some simulated data has
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been used that shows this fact.

4.1.1 Formula for the sample size

To provide a formula for the sample size, we need to assume a single stratum in order to

be able to solve the problem for S . From equation (4.29) we can write

Z0 = (
σ0

σθ
)Z1−α − Z1−P (4.30)

where Z0 =
µθ
σθ
. Notice that here µθ = Eθ[ dl

dθ |θ=0] and σθ = varθ[ dl
dθ |θ=0] are calculated from

equations (4.21) and (4.22). One can also check that equation (4.21) can be simplified to

Eθ[
dl
dθ
|θ=0] = θ

S K
K + 1

ND∑
d=0

pd0D2
d −

[
ND∑
d=0

pd0Dd

]2

ND∑
d=0

pd0(1 + θDd)
. (4.31)

Therefore, we can write

Z0 =
θS H1√

S H2

where H1 and H2 are defined appropriately by applying equations (4.22) and (4.31). Now

using a similar argument as that used in subsection 3.1.1, one can derive the following formula

for the required number of cases in a case-control study with significance level α and desired

power P

S =
{ ND∑

d=0
D2

d pd0(1 − pd0) − 2
∑

1≤d<d′≤ND

DdDd′ pd0 pd′0

Kθ2


ND∑
d=0

pd0D2
d−

ND∑
d=0

pd0Dd

2

ND∑
d=0

pd0(1+θDd)


2
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+

ND∑
d=0

D2
d

Pd0(1+θDd)
ND∑
d=0

pd0(1+θDd)

1 − Pd0(1+θDd)
ND∑
d=0

pd0(1+θDd)

 − 2
∑

1≤d<d′≤ND

DdDd′
Pd0 pd′0(1+θDd)(1+θDd′ )ND∑

d=0
pd0(1+θDd)

2

θ2


ND∑
d=0

pd0D2
d−

ND∑
d=0

pd0Dd

2

ND∑
d=0

pd0(1+θDd)


2

}

× (
σ0

σθ
Z1−α − Z1−P)2. (4.32)

Remark 4.3. Since the main reference uses a different closed-form formula, the formula pro-

vided for the sample size of case-control studies is different too. In Section 6.6 I use some

simulated data to compare the required sample size based on formulas given here and in the

main reference.

4.1.2 Sampling algorithm to calculate the power for the case-control study

Using the formula derived above for the score test statistic, we can implement the sam-

pling procedure to find the power for the case-control studies. The algorithm for this proce-

dure is as follows:

• Step 0. Fix the effect size to be detected (i.e. parameter θ) and number of controls

per case (K).

• Step 1. Fix number of years of follow-up.

• Step 2. Break down the dataset into M strata where each stratum is defined based on

a combination of age and sex. Then, break down each strata into ND cells defined by

dose categories.

• Step 3. Obtain required information from the dataset. This include:

1. S m: Number of cases in stratum m.
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2. Dmd: Average dose of individuals in category d of dose in stratum m.

3.
(
(Pd0m)ND

d=0

)M

m=1
: Probability that a non-diseased individual in stratum m falls in

category d of dose. These parameters can be calculated by dividing the total

number of non-diseased individuals in dose category d in stratum m by the total

number of non-diseased individuals in the stratum. Notice that since cancer is

a rare disease, Pd0m is approximately equal to the proportion of category d in

stratum m.

• Step 4. Sampling procedure:

– Step 4-1. Fix an stratum m ∈ M:

∗ Step 4-1-1. Find one sample (nd0m)ND
d=0 by drawing from a multinomial distri-

bution with KS m trials and probabilities Pd0m.

∗ Step 4-1-2. Find one sample (nd1m)ND
d=0 by drawing from a multinomial distri-

bution with S m trials and probabilities

Pd1m =
Pd0m(1 + θDd)

ND∑
d=0

Pd0m(1 + θDd)
.

– Step 4-2. Repeat Step 4-1 for all m ∈ M in order to find a complete sample. Then

calculate the value of the score test statistic for this sample using equation (4.28).

– Step 4-3. Check whether the value from step 4-1 is greater than Z1−α (α being

the level of the test, usually α = .05). If so, mark this trial as a success.

• Step 5. Repeat Step 4, 100, 000 times. The power is then calculated from

power =
# o f success f ul trials

100, 000

where successful trial is defined in Step 4-3.
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• Step 6. Return to Step 1 and choose another number of years of follow up.

• Step 7. For a different effect size or/and different number of controls per case return

to Step 0 and change θ or/and K.
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Chapter 5

Further discussions on the procedures

In this chapter, we present some discussions that provide a new approach or some substi-

tute for the methods discussed in the previous chapters. In particular, we prove the normality

of the score test statistic under both null and alternative for both cohort and case-control

studies. We also argue that the formula for the Monte-Carlo Error (MCE) given in Little

et al. (2010) needs to be modified. We propose some possible substitutes. We discuss three

possible approaches that can be used to calculate the power for the epidemiological stud-

ies. This includes normal-sampling, normal-normal and sampling-sampling approaches. It

should be pointed out that Little et al. (2010) uses a normal-sampling approach to calculate

power. We also argue that the procedure presented for the cohort study can be used in

studies the measure of association of which is SIR (standardized incidence ratio) or SMR

(standardized mortality rate).

5.1 Monte-Carlo Error

When using Monte-Carlo estimation to evaluate any quantity, one usually gets some

error. The reason is that the finite number of samples is drawn and based on this samples the

desired quantity is estimated. However, if one draws another set of samples and recalculates

the estimated quantity based on the new samples, a different result will come out. Although

in most cases this difference is slight, there is no guarantee to get the same results. For

63



instance, in our context we draw 100, 000 samples from alternative. Based on these samples

we find an approximate distribution for the score statistic under the alternative. Now, if we

draw another 100, 000 samples we will get another distribution which is (probably slightly)

different from the first one. Therefore, the value that we obtain for power would be different.

This fact reflects the issue of Monte-Carlo Error (MCE).

The MCE index in simulated studies is very important and should be addressed. Based

on MCE one can justify the number of repetitions in the Monte-Carlo procedure. However,

as noted in Koehler et al. (2009), most studies that use the Monte-Carlo procedure don’t

report MCE and don’t justify their number of repetitions. It is reported in Koehler et al.

(2009) that out of 223 reviewed papers only 8 report MCE. my main reference (Little et al.

2010) reports the MCE using the formula 1√
N
where N is the number of repetitions in the

Monte-Carlo. Notice that there is no general formula for MCE and this index should be

proposed based on the quantity of interest and the Monte-Carlo procedure to estimate it.

Some formulas for MCE to be used in different contexts are proposed in Koehler et al. (2009).

Here, we justify the formula proposed in Little et al. (2010) for MCE and explain why it

needs adjustment. We propose other approaches to deal with MCE. As mentioned above, in

my context different sample sets provide different estimated distributions for the score statis-

tic under the alternative. Therefore, we need a measure to compare these two distributions.

One possible approach is to calculate the average value of the distributions and evaluate

the precision of the Monte-Carlo based on the precision of this average. In other words, we

report the standard deviation of the sample means as the MCE whereby a sample we mean

a full simulated data from Monte-Carlo. According to CLT, this is given by σS√
N
where σS

is the standard deviation of the normalized score test statistic under the alternative and N

is number of repetitions. It is assumed in Little et al. (2010) that σS = 1. In the sequel,

we explain why this seems to be improper. The problem arises from the fact that in the

aforementioned reference the variance included in the formula of normalized score statistic
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is the variance under alternative (See Remark 3.3 and Remark 4.1 ). Since we are applying

the Monte-Carlo procedure to draw from alternative, the variance of the normalized score

statistic under alternative turns out to be 1. Therefore, regardless of the effect size (θ) and

the year of follow-up we always get a fixed MCE which is 1√
N
. Unfortunately, the issue is

not this simple! As explained in Remark 3.3, in such a case one can not assume the score

statistic under the null to be standard normal. In other words, there is a trade-off between

‘permanent standard normal distribution under the null’ and ‘fixed MCE’. If we would like to

use the formula proposed in Little et al. (2010) for the normalized score statistic, then each

time, depending on the alternative parameter θ and the year of follow-up, we need to adjust

the variance of the score statistic under the null to obtain the correct quantile corresponding

to the test significance level (α). On the other hand, if we would like to always keep the

score statistic under the null standard normal, we need to use the variance under the null to

normalize the score statistic (as explained in Remark 3.3 and Remark 4.1). This face is not

taken into account in Little et al. (2010) and at the same time assumes a standard normal

distribution for the score statistic under the null (which is evident from Table 1 and Table

2 in the said reference) and a fixed MCE.

It seems that a permanent standard normal distribution under null is more useful in my

context as it relaxes the need to adjust the score statistic under the null for different values

of θ and different years of follow-up. However, in such a case we get σS =
σθ
σ0

where σθ and

σ0 are the variance of the score statistic under the alternative and null, respectively. As a

result, the MCE with N repetition is given by.

MCE =
σθ/σ0√

N
. (5.1)

Notice that this value depends on the study design, θ and years of follow-up. Assume that

we fix θ. To deal with the problem of MCE, one possible solution is to pick one value of
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N such that MCE for all the years of follow-up is smaller than the desired value. Another

possible approach is to obtain a fixed MCE by not using a fixed number of repetitions for

different years of follow-up but determine the number of repetitions independently. Using

Equation 5.1, we can see that the formula for the number of repetitions for each year of

follow-up is

NY =

(σθ/σ0

MCE

)2 + 1.

where [·] stands for the integer part. It is recommended in Little et al. (2010) that .0032 as

a low MCE. In such a case, for each year of follow-up, the required number of repetition is

NY =

(σθ/σ0

.0032

)2 + 1.

In Section 6.2, simulated data has been used to compare the number of iterations that are

required to attain MCE = .0032.

5.2 Asymptotic normality of the score test statistic under null and

alternative

The well-known theorem of Rao, as presented in the first chapter, states that the score

test statistic under null is asymptotically normal. This means that assuming a large sample

size if one draws samples from null and plug in the score test statistics (at the null value), he

or she will get an approximately normal distribution. However, when it comes to alternative,

the Rao’s theorem doesn’t explicitly say anything. For the procedures proposed in this study,

we can see that the corresponding score statistic formulas have a nice form that forces them

to be asymptotically normal under both null and alternative for both cohort and case-control

studies. We present the proof below.

The key tool in my approach is to rely on an indirect application of Rao’s theorem rather
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than using a direct application as presented in the following theorem.

Theorem 5.1. Let M be a multinomial distribution with l possible outcomes with probabilities

(p1, · · · , pk). Let Di for 1 ≤ i ≤ k be some real numbers with

0 < D1 < D2 < · · · < Dk.

Then
k∑

i=1
miDi has an asymptotic normal distribution where each mi is the binomial distribu-

tion derived from multinomial M for the i-th outcome.

Proof. We set up an artificial experiment as follows: Assume that we have n dose categories

with average dose Di in each category i for 1 ≤ i ≤ k. Also, assume that we have a population

which is distributed among the dose categories with proportions pi for 1 ≤ i ≤ k. Let’s here

denote the ERR parameter with β and assume a linear dose effect model, i.e.

Risk ratio for group i of dose = 1 + βDi.

Then, using equation (3.7), we see that for such an experiment the score test statistic (as-

suming that we are testing for β = 0) is given by

dL
dβ
|β=0 =

k∑
i=1

miDi − N
k∑

i=1

piDi.

According to the Rao’s theorem this should be asymptotically normally distributed. Consid-

ering the fact that N
k∑

i=1
piDi is a fixed term, we conclude that

k∑
i=1

miDi has asymptotic normal

distribution. This proves the claim. �

Notice the difference between a direct and an indirect application of the Rao’s theorem.

If we were to use the Rao’s theorem directly, then for example in (3.7), we had to always

restrict to the case where binomial variables come from a multinomial distribution with
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probabilities (Pi j) (i.e. θ = 0) while Theorem 5.1 removes this restriction. So, we can write

the following corollaries.

Corollary 5.1. The score test statistic for the cohort study is asymptotically normal under

both null and alternative.

Proof. The score test statistic for the cohort study is given by

dL
dθ
|θ=0 =

I∑
i=1

 Ki∑
j=1

mi jDi j − Mi

Ki∑
j=1

pi jDi j

 .
Under the null, for a fixed 1 ≤ i ≤ I, {mi j}Ki

j=1 are binomial variables that come from a

multinomial distribution with Mi trials and probabilities {pi j}Ki
j=1. Under the alternative they

are again binomial variables that come from a multinomial distribution with probabilities

πi j =
pi j(1 + θDi j)

Ki∑
j=1

pi j(1 + θDi j)
.

In any case according to Theorem 5.1, ∑Ki
j=1 mi jDi j is asymptotically normal. Since multino-

mial distributions for 1 ≤ i ≤ I are independent and sum of independent normal variables is

again normal, we conclude that the score statistic under the null and alternative is asymp-

totically normal. �

Corollary 5.2. The score test statistic for the case-control study is asymptotically normal

under both null and alternative.

Proof. The score test statistic for the case-control study is given by

dl
dθ
|θ =

M∑
m=1

− 1
K + 1

ND,m∑
d=0

nd0mDmd +
K

K + 1

ND,m∑
d=0

nd1mDmd

 .
Under the null for a fixed 1 ≤ m ≤ M each (nd0m)ND,m

d=0 and (nd1m)ND,m
d=0 are both binomial variables
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coming from two independent multinomial distributions both with probabilities (pd0m)ND,m
d=0 and

each with KS m and S m trials respectively. Under the alternative (nd0m)ND,m
d=0 is as before while

(nd1m)ND,m
d=0 comes from a multinomial distribution with S m trials and probabilities

pd0m(1 + θDd0m)
ND,m∑
d=0

pd0m(1 + θDd0m)
.

In any case, according to Theorem 5.1
ND,m∑
d=0

nd0mDmd and
ND,m∑
d=0

nd1mDmd are asymptotically nor-

mally distributed. Since these are independent for each m and the multinomial distributions

are independent for all 1 ≤ m ≤ M, we conclude that the score test statistic for the case-

control study should be asymptotically normally distributed. �

5.3 Different approaches to calculate the power

Using the results from the previous section we can see that assuming a normal distribution

for the score statistic under both null and alternative is reasonable in case the asymptotic

assumption is met. If not, we can make no assumption on the distribution of neither of

them. Therefore, we can propose the following three methods to calculate the power for

both cohort and case-control studies:

1. Normal-sampling: As explained in subsection 3.1.2 and subsection 4.1.2, Little et al.

(2010) uses this approach. It assumes a normal distribution for the score test under

null and takes samples from the alternative to calculate the power. We would like to

refer to this procedure as normal-sampling. This procedure relies on the Rao’s theorem

that states the normality of the score test under the null.

2. Normal-normal: As we proved in the previous section, in procedures for both cohort

and case-control studies the score statistic under the alternative is as good asymptot-
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ically normal as it is under the null. Therefore, if we believe that the score statistic

under the null meets the asymptotic assumption, then it is very likely to meet the as-

sumption under the alternative. This suggests that in such a case using a closed-form

formula for the power is reasonable. In Chapters 3 and 4 we corrected the closed-form

formulas for the power that were proposed in Little et al. (2010). Therefore, as long

as the sample size is large enough we can be sure that those formulas provide reliable

results. Here, we will refer to the closed-form formula method as the normal-normal

procedure.

3. Sampling-sampling: What if the sample size is small? In such a case chances are that

score test under none of null and alternative is normal. Then, we can first calculate

the distribution of the score test under the null using a sampling procedure too! The

algorithm for this procedure is explained below.

In Section 6.5, we use some simulated data and compare the results for the power of cohort

and case-control studies based on all the methods explained above.

5.3.1 The sampling-sampling algorithm to calculate the power

All steps in the sampling-sampling algorithm are similar to those in algorithms described

in Sections 3.1.2 and 4.1.2. However, we need to add two extra steps and adjust another

step as described below:

The cohort study. We need to add two extra steps between steps 3 and 4, in the algorithm

described in Section 3.1.2, to determine the distribution of score statistic under the null.

Let’s denote these steps by Step ⋆ and Step ⋆⋆. The algorithm for these steps is as follows:

• Step ⋆. Define a vector named NL which is initially empty.

– Step ⋆-1. Fix i ∈ I and draw a sample from a multinomial distribution with Mi

trials and J possible outcomes each with probability (pi j)J
j=1.
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– Step ⋆-2. Repeat Step ⋆-1 for all i ∈ I. Then using formula (3.15) calculate the

value of the test statistic for this sample.

– Step ⋆-3. Add the value calculated in Step ⋆-2 to vector NL.

• Step ⋆⋆. Repeat Step ⋆, 100, 000 times. The vector NL now has 100, 000 components.

Sort them increasingly. For a test with significance level α chose the ([(1−α)×100, 000]+

1)-th component of the sorted NL vector as the threshold and denote it by TS (here

[·] stands for the integer part).

We also need to change Step 4-3:

- Step 4.3. Check whether the value from Step 4-2 is greater than TS . If so, mark it as a

success.

The case-control study. Again, we need to add two extra steps between steps 3 and 4, in

the algorithm described in subsection 4.1.2. Let’s use the same notation as above to refer to

these extra steps: Step ⋆ and Step ⋆⋆.

• Step ⋆. Define a vector named NL which is initially empty.

– Step ⋆-1.

∗ Step ⋆-1-1. Find one sample (nd0m)ND
d=0 by drawing from a multinomial distri-

bution with KS m trials and probabilities (pd0m)ND
d=0.

∗ Step ⋆-1-2. Find one sample (nd1m)ND
d=0 by drawing from a multinomial distri-

bution with S m trials and probabilities (pd0m)ND
d=0.

– Step ⋆-2. Repeat Step ⋆-1 for all m ∈ M. Then using formula (4.24) calculate

the value of the test statistic for this sample.

– Step ⋆-3. Add the value calculated in Step ⋆-2 to vector NL.

• Step ⋆⋆. Repeat Step ⋆, 100, 000 times. The vector NL now has 100, 000 components.
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Sort them increasingly. For a test with significance level α chose the ([(1−α)×100, 000]+

1)-th component of the sorted NL vector as the threshold and denote it by TS .

Again we need to change Step 4-3:

- Step 4.3. Check whether the value from Step 4-2 is greater than TS . If so, mark it as a

success.

5.4 A Bayesian approach to specifying a distribution for the power

To calculate the power, one has to pick a value for the alternative which is possibly as

close to the true value as possible. One possible approach is to pick the value based on

the studies already carried out. Since different studies might suggest different values (see

Section 7.1), choosing a single parameter might be kind of subjective. The methods we have

been discussing so far (following Little et al. (2010)) require the specification of a single

estimation.

One possible approach to deal with this problem is to specify a range (rather than a

single value) for the parameter and then implement a Bayesian model. Notice that in such

a case we obtain a distribution for the power rather than a single estimation.

A method to find such a distribution is suggested in Lunn et al. (2012; Section 5.3):

Based on a literature review find a range for the parameter of interest. Assume a normal

distribution for the parameter and consider the given range as the 67% interval,i.e., mean ±1

standard deviation. Using this information, calculate the mean and the standard deviation.

A big advantage of this approach is the inclusion of a range of possible values for θ rather

than relying on a single value. Notice, however, that this approach still carries some sort

of subjectivity as one might argue why we can assume a normal distribution and why the

observed range is considered the 67% interval.

Remark 5.1. Some previous major studies suggest that ERR parameter falls somewhere
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between .28 and .97 (see Section 7.1). We use the method explained above to find a normal

distribution for the ERR parameter. The mean value of this interval is .625. Also, we can

find the standard deviation based on the method proposed above.

.625 + σ = .97⇒ σ = .345.

Therefore, we can assign the following distribution to the ERR parameter

θ ∼ Normal(.625, .3452).

Remark 5.2. (The issue of running time). An important advantage of the normal-normal

approach that we proposed to calculate the power is that it remarkably reduces the running

time of the Bayesian model. Notice that if we were to use a normal-sampling approach, then

for any of the θ sample points, we have to draw a sample of size says 100, 000 subsequently,

from the corresponding multinomial distribution! Using the normal-normal approach, all we

need is the initial sample for θ as the power is calculated based on a closed-form formula.

This issue will be addressed in Remark 6.1 too.

5.5 Studies whose measure of association is SIR or SMR

Standardized Mortality Ratio (SMR) and Standardized Incident Ratio (SIR) are com-

monly used to deal with the problem of confounding. In these methods, the dataset stratified

by the confounder and the results are modified by comparison against a standard population.

There are some studies of ionizing radiation-cancer based on NDR that use this measure of

association (see for example Ashmore et al. (1998)). However, it has been noted in Zielinski

et al. (2008) that for occupational studies, SMR and SIR might be affected by another

problem called the ‘healthy worker effect’. As a result, the mortality and incidence rate
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in the exposed group might seem to be lower. This might not reflect the truth. Therefore,

measures of association such as risk ratio (for cohort studies) and odds ratio (for case-control

studies) which use an internal non-exposed group seem to be more reliable.

Despite all the facts stated above, here we explain why the power procedure derived for

the cohort study works for the SMR and SIR studies too. The main reason is that the power

procedure for the cohort study already uses stratification. This helps in solving the equation

for the number of cases in each stratum for SMR/SIR studies. Recall that from Equation

3.3, we could simply solve for Mi j the number of cases in category i j of dose. Using these

values we found the probabilities of the multinomial distributions which provide the basic

information for the power procedure. Notice that although this formula was calculated for

the stratified dataset, one can simply check that when there are no strata the argument to

derive the formula still works. For the SMR procedure, the general formula (assuming no

initial strata) for the SMR (or SIR) corresponding to category j of the dose can be written

as

S MR j =
# observed cases
# expected cases

=

N1 j

L1 j
p1 +

N2 j

L2 j
p2 + · · · + Nk j

Lk j
pK

# cases in the standard population
(5.2)

where Ni j is number of cases in stratum i of the dose category j, Li j is its population and pi is

population of stratum i in the standard population. To derive a power procedure, we need to

obtain multinomial probabilities. For this purpose, we should find a value of Ni j. However,

using a single equation such as 5.2 it’s impossible as we have several unknown parameters.

But we are already breaking down the dataset into age+sex strata. Therefore, at each

stratum we only have a single age+sex stratum. The formula for SMR at strata i for dose
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group j is then

S MRi j =

Ni j

Li j
pi

Ni

=
Ni j/Li j

Ni/pi

=
probability o f being a case in the dose category i j (Dose = Di j)
probability o f being a case in stratum i o f standard population

(5.3)

This formula is similar to that given in (3.1). The only difference is that probability o f being a case in the non−

exposed category (Dose = 0) is replaced by probability o f being a case in stratum i o f standard population.

This doesn’t affect the formula derived for the multinomial probabilities and the final pro-

cedure. So, we will get the same procedure as that for the cohort study.

5.6 Derivation of an interval estimation for ERR parameter

In this section, I prove a theorem that allows derivation of an interval estimation for the

Relative risk of a general disease from the relative risks of some sub-diseases. This result

enables us to give an interval estimation for the ERR parameter of the general cancer from

the given ERR parameters of various cancer types. I will employ this fact in the next chapter.

Theorem 5.2. Let RRi for 1 ≤ i ≤ n be the mortality relative risk of some disease i. Let RR

denote the relative risk to die from any of the given diseases. Then we have,

min{RRi, i = 1, · · · , n} ≤ RR ≤ max{RRi, i = 1, · · · , n}. (5.4)

Proof. Let S e and S u denote the population of exposed and non-exposed groups. Let Ne
i and

Nu
i denote number of deaths of disease i in the exposed and non-exposed groups respectively.

Similarly, assume that Ne and Nu represent the total number of deaths (of any kind) in those
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groups. Then the relative risk for disease i is given by

RRi =
Ne

i /S
e

Nu
i /S u

=
S u

S e ·
Ne

i

Nu
i
. (5.5)

On the other hand, we can write

RR =
Ne/S e

Nu/S u

=
S u

S e ·
Ne

Nu

=
S u

S e ·
Ne

1 + · · · + Ne
n

Nu
1 + · · · + Nu

n
. (5.6)

But we have

min{
Ne

i

Nu
i
, i = 1, · · · , n} ≤

Ne
1 + · · · + Ne

n

Nu
1 + · · · + Nu

n
≤ max{

Ne
i

Nu
i
, i = 1, · · · , n} (5.7)

Putting (5.5), (5.6) and (5.7) together, we derive (5.4). �

Corollary 5.3. Let θ denote the ERR parameter for general cancer and assume that θi for

1 ≤ i ≤ n denotes the ERR parameter for various cancer types. Then we have

min{θi, i = 1, · · · , n} ≤ θ ≤ max{θi, i = 1, · · · , n}.

Proof. We can use Theorem 5.2 to write

min{RRi, i = 1, · · · , n} ≤ RR ≤ max{RRi, i = 1, · · · , n}.
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This together with the linear-dose effect implies that for any arbitrary mean dose D we have

min{1 + θiD, i = 1, · · · , n} ≤ 1 + θD ≤ max{1 + θiD, i = 1, · · · , n}.

This is equivalent to

1 +min{θi, i = 1, · · · , n}D ≤ 1 + θD ≤ 1 +max{θi, i = 1, · · · , n}D.

which implies

min{θi, i = 1, · · · , n} ≤ θ ≤ max{θi, i = 1, · · · , n}.

�

Remark 5.3. The reason why Theorem 5.2 is stated only for mortality and not for incidence

is that for the latter we might be not able to write Ne = Ne
1 + · · · + Ne

n (similarly for Nu).

The issue of multiple diseases (such as multiple cancers) can be well resolved for mortality

but not for incidence. Multiple incidence of cancers, for instance, occurs when an individual

suffers from multiple types of cancer during his/her life (either concurrently or not). When

counting cases for different types of cancers, one should count it both towards all the relevant

Ne
i ,s (or Nu

i ,s). Now the problem is whether this individual should be counted as one case of

general cancer or two when calculating Ne (or Nu).

When it comes to mortality, we don’t have to deal with this problem as death marks a

unique event! If an individual with multiple cancers dies, the death is linked to latter cancer.

Therefore, categories of death from different types of cancer remain fairly disjoint even in

the presence of multiple cancers. One very unlikely possibility is dying simultaneously of

several cancers. In such a case, it is more reasonable to define a new category for the cause of

death including those cancer types collectively. So, categories for the cause of death remain

disjoint.
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For incidence, the issue is not so clear and the problem of counting multiple incidences (at

least for the ionizing radiation studies) has not been referred to in the literature. Therefore,

I prefer to keep Theorem 5.2 only for mortality. However, depending on the method used

to count cases, it might work for incidence as well. Furthermore, if multiple diseases are

infrequent, the said theorem still works “approximately” for incidence.
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Chapter 6

Simulation studies

In this chapter, we use some simulated data to visually prove the claims made in the

previous chapters and also to compare the different methods proposed. These includes:

1. The issue of Monte-Carlo error presented in Section 5.1.

2. Normality of score test statistic under null and alternative for cohort and case-control

studies

3. The proper formula to be used for the normalized score test statistic under the null.

4. Comparison of the closed-form formulas (normal-normal) proposed in Little et al.

(2010) and the one proposed in Chapters 3 and 4. We also compare both of them

against two other methods: Normal-sampling and Sampling-sampling as proposed in

Chapter 5.

5. Comparison of sample sizes for both cohort and case-control studies based on the

formulas proposed in Little et al. (2010) and those proposed in Chapters 3 and 4.

6. A Bayesian approach to provide a distribution for the power as described in Section

5.4
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6.1 simulated datasets

We will use the following datasets in our simulation studies. Each dataset is presented

using four pieces of information. these includes:

1. Mi a vector the length of which equals to the number of age+sex strata in the dataset

and each component of which represents the number of cases in each strata.

2. A matrix Di the dimension of which is n×m where n is number of dose categories and

m is number of age+sex strata. (Di) jk is the average of the dose in the j-th category

of dose in stratum k. In each column they are arranged increasingly.

3. A matrix Pi with the same dimension as Di. (pi) jk is the proportion of the population

of dose category j that contributes to stratum k.

4. A number Ki which is the number of controls assigned to a case in the case-control

study.

We define 6 datasets as follows:

• Dataset 1. M1 = (2, 5, 3, 2), K1 = 4 and

D1 =


1 1 2 1.5

1.8 4.3 3 2

2.9 7 4.7 4

 , P1 =


.5 .6 .5 .4

.3 .3 .27 .3

.2 .1 .23 .3


• Dataset 2. M2 = (5, 7), K2 = 4 and

D2 =

 1 2

3 7

 , P2 =

 .6 .2

.4 .8


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• Dataset 3. M3 = (17, 15), K3 = 4 and

D3 =

 1 2

3 7

 , P3 =

 .6 .2

.4 .8


• Dataset 4. M4 = (4, 18, 3, 11), K4 = 4 and

D4 =


1 1 2 1.5

2.8 3.3 3 2

7.9 4 4.7 4

 , P4 =


.8 .7 .2 .8

.1 .2 .5 .1

.1 .1 .3 .1


• Dataset 5. M5 = (4, 18, 3, 11), K5 = 4 and

D5 =


1 1 2 1.5

2.8 3.3 3 2

7.9 4 4.7 4

 , P5 =


.9 .05 .9 .1

0 .9 .09 0

.1 .05 .01 .9


• Dataset 6. M6 = (12), K6 = 4 and

D6 =


1.375

2.775

4.650

 , P6 =


.2075

.2925

.5



6.2 Monte-Carlo Error

As explained in Section 5.1, reference (Little et al. 2010) reports a fixed number of

iterations to obtain a desired MCE regardless of study design, effect size (θ) and years of

follow-up. However, as shown there all this factors should be taken into account. Bellow,
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we use our simulated datasets to obtain the required number of iterations for MCE = .0032

and θ = 2. Notice that if we use the formula given in Little et al. (2010), then we require

100, 000 iterations for both study designs and all datasets.

Table 6.1: Number of iterations for MCE = .0032 and θ = 2

6.3 Asymptotic normality of the score test statistic under null and

alternative

We proved asymptotic normality of the score test under the null and alternative for both

cohort and case-control studies in Section 5.2. Here, we use datasets defined in Section 6.1 to

visually see this fact. It should be pointed out that datasets defined in the aforementioned

section have been defined in pair: We manipulate one dataset in some specific way to see the

impact of manipulation on the asymptotic normality of the score test statistic. We check

asymptotic normality using the p-value validity test of the hypothesis test. This test relies

on the fact that F(X) ∼ U where X is a random variable, F is its CDF and U is the uniform

distribution. Notice that the flatter the p-value histogram, the better normally distributed

the score test statistic. Below we evaluate each dataset by drawing four histograms: Score

test statistic for cohort and case-control study under both null and alternative. All the his-
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Figure 6.1: Histograms of asymptotic normality for Dataset 1

tograms are drawn based on a simulation of size 100, 000. We set α = .05 and θ = 2 (for

alternative).

1. Dataset 1: Histograms for this dataset are given in Figure 6.1.

2. Dataset 6: Dataset 6 is obtained from Dataset 1 by collapsing 4 strata into 1. The

result for cohort in 6.2 suggests that more strata can cause the score statistic to be

better normally distributed.

3. Dataset 2: Histograms for this dataset are given in Figure 6.3.

4. Dataset 3: Dataset 3 is similar to Dataset 2. The only difference is that we increase

the number of observations from 12 to 32 which results in flatter histograms (Figure

6.4).
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Figure 6.2: Histograms of asymptotic normality for Dataset 6

Figure 6.3: Histograms of asymptotic normality for Dataset 2
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Figure 6.4: Histograms of asymptotic normality for Dataset 3

5. Dataset 4: Histograms for this dataset are given in Figure 6.5.

6. Dataset 5: Dataset 5 is obtained from Dataset 4 by making the population distribution

among dose categories very heterogeneous. It seems to worsen the normality (Figure

6.6).

6.4 Formula for the score test statistic for the normal-sampling ap-

proach

As pointed out in Remark 3.3 and Remark 4.1, the formula proposed for the score

test statistic for the normal-sampling approach in Little et al. (2010) needs modification

as it includes the variance under alternative rather than the variance under null. Here, we

specifically use Dataset 3 and check the normality of the score test statistic for the cohort

study based on both approaches. As Figure 6.7 and Figure 6.8 depict, the one with null

variance is much flatter!
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Figure 6.5: Histograms of asymptotic normality for Dataset 4

Figure 6.6: Histograms of asymptotic normality for Dataset 5
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Figure 6.7: Histograms of the score test statistic with null variance (Dataset 3-cohort)

Figure 6.8: Histograms of the score test statistic with alternative variance (Dataset
3-cohort)

6.5 Different approaches to calculate the power

In Section 5.3 we proposed three different approaches to calculate the power for both

cohort and case-control studies. this includes Normal-Sampling (N-S), Normal-Normal (N-

N) and Sampling-Sampling (S-S). Also for the N-N approach, we explained in Remark 3.2

and Remark 4.2 that the formulas are given in Little et al. (2010) (here referred to as old

formula) should be revisited. We provided substitute formulas (here referred to as new

formula). In Table 6.2 below we use all these methods and apply them to Datasets 1 to 5
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defined in Section 6.1 to derive the power for both cohort and case-control studies. From

this table, it is clear that: 1. The values for N-N (new formula) are always fairly close to

both values from N-S and S-S method. 2. The value given by N-N (old formula) is not close

to those of N-S and S-S and in many cases completely irrelevant!

6.6 Sample size

As explained in Remark 3.4 and Remark 4.3 the formulas proposed in Little et al. (2010)

(here referred to as old formula) for the sample size needs to be changed for both cohort

and case-control studies. In Table 6.3 we use two datasets to compare the sample size for

powers .8 and .9 based on the formulas proposed in Little et al. (2010) and also based on

the formulas we obtained in Chapters 3 and 4 (referred to as new formula).

Recall that for the sample size the dataset shouldn’t be stratified. So we improvise two

datasets:

1. Dataset 6: 2 Dose categories with average group dose D=(1,2)and distribution of

population among the dose groups p=(.4,.6). Also, let α = .05 and θ = 2. For the case

control study, assume 5 controls per case.

2. Dataset 7: : 4 Dose categories with average group dose D=(.5,1.4,2.5,4) and distribu-

tion of population among the dose groups p=(.5,.3,.15,.05). Also, let α = .1 and θ = 1.

For the case control study, assume 4 controls per case.
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Table 6.2: Comparison of power for Datasets 1 to 5 using four methods
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Table 6.3: Comparison of sample size based on old and new formulas

6.7 A Bayesian approach to specifying a distribution for the power

In Section 5.4 we explained a Bayesian method to find the power to include a range of

possible values for the ERR parameter rather than relying upon a single value. We illustrate

the proposed approach by applying it to dataset 4 to derive a distribution for the power of

the cohort study. We assume that the 67% interval for θ is [1, 3].

Using Winbugs, we can see that a sample of size 5000 converges to the distribution specified

for θ which is Normal(2,1). The history plot shows that convergence is attained with 5000

samples (Figure 6.9).
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Figure 6.9: History plot for 5000 samples from θ

Figure 6.10 shows the density plot of the drawn sample.

Figure 6.10: density plot for 5000 samples from θ
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Figure 6.11: Distribution of Power for the cohort study, dataset 4

Now, for each sample point, we can apply one of the three methods explained in Section

5.3 to calculate the corresponding power. Finally, we can make inference based on the power

sample we have found. The power distribution of the cohort study for dataset 4 is shown in

Figure 6.11. Based on the drawn sample, we can also find that there is 77% chance for this

study to have a power of .8 or higher.

Remark 6.1. In Remark 5.2, we addressed the issue of running time. Notice that for the

example presented above, if we use the normal-sampling approach, then we need to sample

500, 000, 000 times while using the normal-normal approach all we need is the initial sample

for θ of size 5000. We found the above power distribution using both methods. The running

time is dramatically different. Using the normal-normal approach the running time is only

.9 seconds while using the normal-sampling approach it is 1929 seconds!
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Chapter 7

Conclusion

In this thesis we considered procedures developed in Little et al. (2010) to calculate the

power of studies related to low-level doses of ionizing radiation and cancer health outcomes.

We explained the procedures with mathematical and statistical details and proposed several

substitutes to methods proposed in the mentioned reference to improve its performance.

The improvement includes: Changing the formula for the score statistic for both cohort and

case-control studies, proposing a more effective closed-form formula for the power, changing

the formula for the sample size and redefining the formula for the Monte-Carlo Error. We

also present a third method to calculate the power which is a sampling-sampling approach.

We laid out the algorithm to implement all the methods. This could help researchers who

are interested in carrying out the same kind of study in the future. We also proposed a

Bayesian approach to find distribution for the power. We address the issue of running time

for the Bayesian model to explain why a closed-form formula for the power is indispensable.

Therefore, the closed-form formula we proposed before becomes more prominent.

We also dealt with some secondary issues including Calculation of an interval estimation for

the ERR parameter and studies with SMR/SIR as the measure of association.

The R codes to implement all such methods are presented in the appendix. We illustrated

our work using simulation which is presented in Chapter 6.

Future work. Notice that one goal of this research is to calculate the power of ionizing

radiation-cancer studies based on the National Dose Registry of Canada. Since at this point
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the data is not ready, this will be done in the future. However, the required information to

analyze the data are presented in the following section.

7.1 Future studies

In this section, we provide the information required to analyze the National Dose Registry

of Canada (and any similar data set). The information provided in this section together with

the procedures we discussed in the previous chapters can be used to obtain the power of

cohort and case-control studies for all the possible years of follow-up. Based on the analysis,

it will be possible to suggest the best study design for ionizing radiation-cancer studies.

One can also evaluate the power of the previous studies and suggest the minimum year of

follow-up to attain a satisfactory power (widely considered to be 0.8).

7.1.1 Dose categories

The first step in analyzing the data is to break down the dose variable into a few dose

categories. We will use the following dose categories which are widely used in the literature.

In particular, Beebe et al. (1998) which is a well-known study comprising data from nuclear

power workers from 15 countries uses these categories to evaluate the ERR parameter. Other

ionizing radiation studies such as CVD studies useless and more the same categories (see for

example Zielinski et al. (2009)). The categories are as follow:

0, 0− < 5, 5− < 10, 10− < 20, 20− < 50, 50− < 100, 100− < 150, 150− < 200, 200− < 300,

300− < 400, 400− < 500, > 500.
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7.1.2 The ERR parameter

Beebe et al. (1998) is the most well-known study to evaluate The Excess Relative Risk

parameter for ionizing radiation-cancer. This study combines information on nuclear power

workers in 15 countries across the world. It includes information of over 600, 000 individuals.

The ERR parameter as reported by this study is .97 S v−1 for all cancers excluding leukemia

and 1.93 S v−1 for leukemia excluding chronic lymphocytic leukemia. Another study (Kres-

tinina et al. 2005) that follows the residence of a highly radiation-exposed area in Russia

reports the parameter for all cancers to be .92 S v−1. A smaller ERR parameter is proposed

in Muirhead et al. (2009): .28 S v−1 . Notice also that BEIR V (BEIR V 1990) provides the

parameter for all types of cancer independently. However, cancer as a whole has not been

referred to there. Table 7.1 summarizes the results of this study on the ERR parameter of

various cancers. The ERR parameter for most major cancers is around 1 S v−1. Using this

table and Corollary 5.3, we can see that the ERR parameter for general cancer should fall

between 0 S v−1 and 8.3 S v−1. Although this range is wide, it matches the estimations pro-

vided in Beebe et al. (1998) and Krestinina et al. (2005). Notice that we can argue to shrink

this range as most ERR parameters are near 1 S v−1 except those for leukemia, salivary, brain

and thyroid cancers. If we remove these four cancer types, we will find out that the ERR

parameter for all cancers except those four types falls between 0 S v−1 and 2.3 S v−1. This

result seems to provide a fairly narrow interval that encompasses the estimations given in

Beebe et al. (1998) and Krestinina et al. (2005). It should be pointed out that the propor-

tion of leukemia, salivary, brain and thyroid cancers in all types of cancer is 2.6%, .3% 1.7%

and 3.3%, respectively (7.9% altogether). Therefore, the ERR parameter for general cancer

should be closer to that of all the other cancer types than to the ERR parameter of the four

types mentioned.

Based on all the results provided above, we judge that θ = 1 S v−1 is a fair choice for the
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ERR parameter. Notice that in our study dose amounts are given in milli-Sievert. Therefore,

we will use θ = .001 mS v−1.In a Bayesian approach, as explained in Section 5.4, we assume a

normal distribution for the ERR parameter with [.28, .97] as the 67% interval (±1 standard

deviation).

Table 7.1: BEIR V results on ERR parameter (per Sv) for various cancer types

7.1.3 What is the practical implications of this power study?

Using this power study, after analyzing the data, I will be able to provide three important

pieces of information for the epidemiologists working on the NDR:

• I can determine which study design is more suitale for the ionizing radiatoin-cancer

study based on the NDR, the cohort or the case-control study?

• There are already several papers in the litterature based on the NDR that try to

detect an ionizing radiation-cancer relationship. Many of such studies fail to detect a

significant result. I will be able to answer whether the insignificant result is due to

low power or not? If I realize that the power of such studies has been low, then the
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non-significant result should not be interpreted as a true lack of association between

ionizing radiation and cancer.

• Finally, I can propose the minimum number of the years of follow-up to attain a

satisfactory power (say 80%) based on the NDR. Therefore, for future epidemiological

studies, this important factor will be taken into account.
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Appendix

In this chapter we present the R programming codes used to implement the power models

discussed throughout the thesis.

# CODES FOR THE PROJECT: STATISTICAL POWEROF EPIDEMIOLOGICAL STUDIES TO

# DETEDCT THE EFFECT OF IONIZING RADIATION ON THE MORTALITY

# RATE FROMCANCER BASED ON THE NATIONAL DOSE REGISTRY OF CANADA

#ALL THE CODES AREWRITTEN BASEDONAVECTORIZATION APPROACHAS FAR AS

#POSSIBLE. WE TRY TO AVOID WRITING LOOPS TO SPEED UP CODES

#WHICH IS NECCESSARY IN THIS STUDY CINSIDERING LARGEDIMENSIONSWEDEALWITH.

#------------------------------------------------------------------------------------------------------------------------------------------

# COHORT STUDY

#function in this part might possibly takes all or some of the following five

# parameters:

# 1. M: a FIXED vector containing the totall number of cases (deaths) at

# each stratum of dataset.

# 2. D: a FIXED matrix the ij-th entry of which shows the average dose of

# individuals at the j-th cell in the i-th strata of dataset.

# 3. p: a FIXED matrix the ij-th entry of which represents the proportion

# of cases in the j-th cell of the i-th stratum of dataset.

102



# 4. v: a matrix of VARIABLES the ij-th entry of which represents observed

# number of cases (deaths) at the j-th cell in the i-th stratum.

# of dataset. The i-th column of v (related to the i-th stratum) forms

# a multinomial variable.

# 5.theta: The true ERR parameter.

#-----------------------------------------------------------------------------------

#Non-normalized score function for cohort

score_coh_nonnrm<-function(M,D,p,v){

score<-sum(colSums(v*D)-M*colSums(p*D))

score

}

#TEST score_coh_nonnrm

score_coh_nonnrm(M0,D0,p0,v0) #PASSED

#--------------------------------------------

#Expectation of the non-normalized score for cohort under parameter theta.

expectation_score_coh<-function(M,D,p,theta){

cols_pD<-colSums(p*D)

expectation<-theta*sum(M*(colSums(p*D**2)-cols_pD**2)/(1+theta*cols_pD))

expectation

}

#--------------------------------------------
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#Variance of the non-normalized score for cohort under parameter theta.

variance_score_coh<-function(M,D,p,theta){

cols_pD<-colSums(p*(1+theta*D))

#print(cols_pD)

part1<-colSums((D**2)*t((t(p*(1+theta*D))/cols_pD))*(1-t((t(p*(1+theta*D))

/cols_pD))))

n_col<-length(M)

n_row<-nrow(D)

part2<-NULL

for(i in 1:n_col){

new_ent<-0

for(j in 1:(n_row-1)){

for(k in (j+1):n_row){

new_ent<-new_ent+(D[j,i]*D[k,i]*p[j,i]*p[k,i]*(1+theta*D[j,i])

*(1+theta*D[k,i]))

}

}

part2<-c(part2,new_ent)

}

part2<-part2/cols_pD**2

#print(part2)

variance<-sum(M*(part1-2*part2))

variance

}

#---------------------------------------------
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# Number of cases to be observed in a cohort study to acheive a desired power:

# For future studies, this function gives the required number of cases to

# be observed in order to achieve a desired power.

# only a single strata is assumed (e.g. no age/sex stratum is considered.

# The cohort is treated a single study).

# We need some prior knowledge to calculate the sample size:

# 1. First fix the number of dose categories. D which is a vector that represents

# average population dose at each category must be known.

# 2. p, The proportion of the population of interest which falls in category j

# of dose should be provided.

# In addition, we need the following information:

# 3. Specify alpha, the size of the test and pow, the desired power.

# 4.Fix theta which is the smallest effect size we wish to detect at the given power.

Num_cases_coh<-function(D,p,theta,alpha,pow){

D_mat<-matrix(D,nrow=length(D))

p_mat<-matrix(p,nrow=length(p))

var_0<-variance_score_coh(c(1),D_mat,p_mat,0)

var_theta<-variance_score_coh(c(1),D_mat,p_mat,theta)

p1<-sum(D**2*p)+theta*sum(D**3*p)

p2<-1+theta*sum(p*D)

p3<-sum(D*p)+theta*sum(D**2*p)

p4<-sqrt(var_0/var_theta)

p5<-theta*(sum(p*D**2)-(sum(p*D))**2)
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#print(list(p1=p1,p2=p2,p3=p3,p5=p5))

size_new_formula<-ceiling((((p1*p2)-p3**2)*(p4*qnorm(1-alpha)-qnorm(1-pow))**2)

/p5**2)

size_old_formula<-ceiling((((p1*p2)-p3**2)*(qnorm(1-alpha)-qnorm(1-pow))**2)/p5**2)

list(size_new_formula=size_new_formula,size_old_formula=size_old_formula)

}

#----------------------------------------------

# The following function can be used for two different tasks. First, it can take the

# essential characteristic of the dataset including D,p, M and theta as explained in

# the beginning of this section. Also takes the following extra parameters:

# 1. alpha: Size of the test.

# 2. n: Number of simulations.

# Then returns the power.

# The function can also be used to calculate proportion of rejected samples under null

# if we change the variance of test

# statistic from var_0 to to var_theta (in such a case parameter test_var should be set

# to anything other than ”n”).

power_coh<-function(M,D,p,theta,alpha,n,test_var=”n”){

var_0<-variance_score_coh(M,D,p,0)

var_theta<-variance_score_coh(M,D,p,theta)

if(test_var!=”n”){score_var<-var_0}

else{score_var<-var_theta}
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exp_theta<-expectation_score_coh(M,D,p,theta)

SE_ratio<-sqrt(var_0/var_theta)

if(test_var!=”n”){sim_probs<-p}

else{sim_probs<-t(t((p*(1+theta*D)))/(colSums(p*(1+theta*D))))}

vector_rejected<-NULL

n_row<-nrow(D)

n_col<-ncol(D)

for(k in 1:n){

one_samp<-matrix(rep(0,n_row*n_col),nrow=n_row)

for(i in 1:n_col){

one_samp[,i]<-rmultinom(1,M[i],sim_probs[,i])

}

normalized_score<-score_coh_nonnrm(M,D,p,one_samp)/sqrt(score_var)

vector_rejected<-c(vector_rejected,normalized_score>qnorm(1-alpha))

}

power_sim<-mean(vector_rejected)

if(test_var!=”n”){return(power_sim)}

power_formula_old<-(1-pnorm(qnorm(1-alpha)-exp_theta/sqrt(var_theta)))

power_formula_new<-(1-pnorm(SE_ratio*qnorm(1-alpha)-exp_theta/sqrt(var_theta)))

list(power_sim=power_sim,power_formula_old=power_formula_old,

power_formula_new=power_formula_new)

}

#-----------------------------------------------

# The function below calculates the power based on a naive approach. i.e., assumes no
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# theoretical distribution for the score test statiastic neither under null nor under

# alternative. The idea is to construct the distribution of score under null

# experimentally and then take samples from alternative and compare it against the

# experimental distribution under null.

# The parameters are as before. There are two new parameters though:

# 1. n1: Number of samples to be drawn from null in order to derive its experimental

# distribution.

# 2. n2: Number of samples to be drawn from alternative to calculate the power.

power_coh_naive<-function(M,D,p,theta,alpha,n1,n2){

score_null<-NULL

vector_rejected<-NULL

n_row<-nrow(D)

n_col<-ncol(D)

sim_probs_null<-p

sim_probs_alter<-t(t((p*(1+theta*D)))/(colSums(p*(1+theta*D))))

for(k in 1:n1){

one_samp<-matrix(rep(0,n_row*n_col),nrow=n_row)

for(i in 1:n_col){

one_samp[,i]<-rmultinom(1,M[i],sim_probs_null[,i])

}

score_null<-c(score_null,score_coh_nonnrm(M,D,p,one_samp))

}

treshold<-sort(score_null)[floor((1-alpha)*n1)+1]

for(k in 1:n1){

one_samp<-matrix(rep(0,n_row*n_col),nrow=n_row)
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for(i in 1:n_col){

one_samp[,i]<-rmultinom(1,M[i],sim_probs_alter[,i])

}

vector_rejected<-c(vector_rejected,score_coh_nonnrm(M,D,p,one_samp)>treshold)

}

mean(vector_rejected)

}

#-----------------------------------------------

#TEST normality of null and alternative:

# According to Rao’s theorem the score statistic under null is assymptotically normal.

# However, In their model (sample size), they assume a normal distribution for the

# score test under alternative as well. There is no theoretical approach to prove

# this claim. However, we can test normality of score under null and alternative

# using Monte-Carlo simulation. See the function below.

test_norm_coh<-function(M,D,p,theta,n,test_var=”n”){

var<-variance_score_coh(M,D,p,theta)

if(test_var!=”n”){expect<-0}

else{expect<-expectation_score_coh(M,D,p,theta)}

if(test_var!=”n”){sim_probs<-p}

else{sim_probs<-t(t((p*(1+theta*D)))/(colSums(p*(1+theta*D))))}

p_values<-NULL

score_dist<-NULL

n_row<-nrow(D)
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n_col<-ncol(D)

for(k in 1:n){

one_samp<-matrix(rep(0,n_row*n_col),nrow=n_row)

for(i in 1:n_col){

one_samp[,i]<-rmultinom(1,M[i],sim_probs[,i])

}

normalized_score<-(score_coh_nonnrm(M,D,p,one_samp)-expect)/sqrt(var)

score_dist<-c(score_dist,normalized_score)

p_values<-c(p_values,1-pnorm(normalized_score))

}

list(dist=score_dist,p_values=p_values)

}

#------------------------------------------------------------------------------------------------------------------------------------------

# CASE-CONTROL STUDY

#function in this part might possibly takes all or some of the following five

# parameters:

# 1. S: a FIXED vector containing the totall number of cases (deaths) at each

# stratum of dataset.

# 2. K: number of controls per case.

# 3. D: a FIXED matrix the ij-th entry of which shows the average dose of

# individuals at the j-th cell in the i-th strata of dataset.

# 4. p: a FIXED matrix the ij-th entry of which is given by:

# (non-diseased individuals in cell j of stratum i)
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# /(total number of non-diseased individuals in stratum i)

# 5. n_0: a matrix of VARIABLES the ij-th entry of which represents number of

# controls that fall in the j-th cell of the

# i-th stratum of dataset. The i-th column (related to the i-th stratum) forms

# a multinomial variable.

# 6. n_1: a matrix of VARIABLES the ij-th entry of which represents number of cases

# (deaths) that fall in the j-th cell of the

# i-th stratum of dataset. The i-th column (related to the i-th stratum) forms a

# multinomial variable.

# 7.theta: The true EOR parameter.

#-----------------------------------------------------------------------------------

#Non-normalized score function for case-control

score_cascnt_nonnrm<-function(D,K,n_0,n_1){

score<-sum((-1/(K+1))*colSums(n_0*D)+(K/(K+1))*colSums(n_1*D))

score

}

#-------------------------------------------------

#Expectation of the non-normalized score for case-control under parameter theta.

expectation_score_cascnt<-function(S,K,p,D,theta){

expectation<-(K/(K+1))*sum(S*colSums((t(t(p*(1+theta*D))

/colSums(p*(1+theta*D)))-p)*D))

expectation

}
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#-------------------------------------------------

#Variance of the non-normalized score for cohort under parameter theta.

variance_score_cascnt<-function(S,K,p,D,theta){

n_col<-length(S)

n_row<-nrow(D)

cols_pD<-colSums(p*(1+theta*D))

#cat(”cols_pD”,cols_pD,”\n”)

part0_1<-colSums((D**2)*p*(1-p))

#cat(”part0_1”,(D**2)*p*(1-p),”\n”)

part0_2<-NULL

for(i in 1:n_col){

new_ent<-0

for(j in 1:(n_row-1)){

for(k in (j+1):n_row){

new_ent<-new_ent+(D[j,i]*D[k,i]*p[j,i]*p[k,i])

}

}

part0_2<-c(part0_2,new_ent)

}

#cat(”part0_2”,part0_2,”\n”)

part1_1<-colSums((D**2)*t((t(p*(1+theta*D))/cols_pD))*(1-t((t(p*(1+theta*D))

/cols_pD))))

#cat(”part1_1”,part1_1,”\n”)

part1_2<-NULL
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for(i in 1:n_col){

new_ent<-0

for(j in 1:(n_row-1)){

for(k in (j+1):n_row){

new_ent<-new_ent+(D[j,i]*D[k,i]*p[j,i]*p[k,i]*(1+theta*D[j,i])*(1+theta*D[k,i]))

}

}

part1_2<-c(part1_2,new_ent)

}

part1_2<-part1_2/cols_pD**2

#cat(”part1_2”,part1_2,”\n”)

variance<-(K/(K+1)**2)*sum(S*(part0_1-2*part0_2))+(K/(K+1))

**2*sum(S*(part1_1-2*part1_2))

variance

}

#---------------------------------------------------

# Sample size for case-control studies with K control per case:

# This function gives number of cases to be included in a study with K control per

# case in order to acheive the desired power.

# Notice that unlike the cohort studies where the sample size couldn’t be directly

# calculated (rather, we only got number of

# cases to be observed as study goes on), for the case-control we can calculate the

# sample size. To determine the sample size (# of cases) for future studies assuming

# only a single strata (e.g. no age/sex stratum is considered.
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# The cohort is treated a single study). We need some prior knowledge to calculate

# the sample size:

# 1. First fix the number of dose categories. D which is a vector that represents

# average population dose at each category must be known.

# 2. p, The proportion of the non-diseased population of interest which falls in

# category j of dose should be provided.

# In addition, we need the following information:

# 3. Specify alpha, the size of the test and pow, the desired power.

# 4.Fix theta which is the smallest effect size we wish to detect at the given power.

Num_cases_cascnt<-function(K,p,D,theta,alpha,pow){

D_mat<-matrix(D,nrow=length(D))

p_mat<-matrix(p,nrow=length(p))

var_0<-variance_score_cascnt(c(1),K,p_mat,D_mat,0)

var_theta<-variance_score_cascnt(c(1),K,p_mat,D_mat,theta)

SE_ratio<-sqrt(var_0/var_theta)

#print(SE_ratio)

pD<-sum(p*(1+theta*D))

part0_1<-sum((D**2)*p*(1-p))

part0_2<-0

for(j in 1:(length(D)-1)){

for(k in (j+1):length(D)){

part0_2<-part0_2+(D[j]*D[k]*p[j]*p[k])

}

}
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part1_1<-sum(((D**2)*(p*(1+theta*D))/(pD))*(1-(p*(1+theta*D))/(pD)))

sum((D**2)*p*(1-p))

part1_2<-0

for(j in 1:(length(D)-1)){

for(k in (j+1):length(D)){

part1_2<-part1_2+(D[j]*D[k]*p[j]*p[k]*(1+theta*D[j])*(1+theta*D[k]))

}

}

part1_2<-part1_2/pD**2

part2<-((sum(p*D**2)-(sum(p*D))**2)/(pD))**2

size_new_formula<-ceiling(((SE_ratio*qnorm(1-alpha)-qnorm(1-pow))

**2*((part0_1-2*part0_2)+K*(part1_1-2*part1_2)))/(K*theta**2*part2))

size_old_formula<-ceiling(((qnorm(1-alpha)-qnorm(1-pow))**2*((part0_1-2*part0_2)+

K*(part1_1-2*part1_2)))/(K*theta**2*part2))

list(size_new_formula=size_new_formula,size_old_formula=size_old_formula)

}

#---------------------------------------------------

# The following function takes the essential characteristic of the dataset including

# S,K,p,D and theta as explained in the beggining

# of this section. Also takes the following extrta parameters:

# 1. alpha: Size of the test.

# 2. n: Number of simulations.

# Then returns the power.
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power_cascnt<-function(S,K,p,D,theta,alpha,n){

var_0<-variance_score_cascnt(S,K,p,D,0)

var_theta<-variance_score_cascnt(S,K,p,D,theta)

exp_theta<-expectation_score_cascnt(S,K,p,D,theta)

SE_ratio<-sqrt(var_0/var_theta)

sim_probs_control<-p

sim_probs_case<-t(t((p*(1+theta*D)))/(colSums(p*(1+theta*D))))

vector_rejected<-NULL

n_row<-nrow(D)

n_col<-ncol(D)

for(k in 1:n){

one_samp_control<-matrix(rep(0,n_row*n_col),nrow=n_row)

one_samp_case<-matrix(rep(0,n_row*n_col),nrow=n_row)

for(i in 1:n_col){

one_samp_control[,i]<-rmultinom(1,K*S[i],sim_probs_control[,i])

one_samp_case[,i]<-rmultinom(1,S[i],sim_probs_case[,i])

}

normalized_score<-score_cascnt_nonnrm(D,K,one_samp_control,one_samp_case)

/sqrt(var_0)

vector_rejected<-c(vector_rejected,normalized_score>qnorm(1-alpha))

}

power_sim<-mean(vector_rejected)

power_formula_new<-(1-pnorm(SE_ratio*qnorm(1-alpha)-exp_theta/sqrt(var_theta)))

power_formula_old<-(1-pnorm(qnorm(1-alpha)-exp_theta/sqrt(var_theta)))

list(power_sim=power_sim,power_formula_old=power_formula_old,

power_formula_new=power_formula_new)
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}

#---------------------------------------------------

# The function below calculates the power based on a naive approach. i.e., assumes no

# theoretical distribution for the

# score test statiastic neither under null nor under alternative. The idea is to

# construct the distribution of score under null

# experimentally and then take samples from alternative and compare it against the

# experimental distribution under null.

# The parameters are as before. There are two new parameters though:

# 1. n1: Number of samples to be drawn from null in order to derive its

# experimental distribution.

# 2. n2: Number of samples to be drawn from alternative to calculate the power.

power_cascnt_naive<-function(S,K,p,D,theta,alpha,n1,n2){

score_null<-NULL

vector_rejected<-NULL

n_row<-nrow(D)

n_col<-ncol(D)

sim_probs_control<-p

sim_probs_case<-t(t((p*(1+theta*D)))/(colSums(p*(1+theta*D))))

for(k in 1:n1){

one_samp_control<-matrix(rep(0,n_row*n_col),nrow=n_row)

one_samp_case<-matrix(rep(0,n_row*n_col),nrow=n_row)

for(i in 1:n_col){
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one_samp_control[,i]<-rmultinom(1,K*S[i],sim_probs_control[,i])

one_samp_case[,i]<-rmultinom(1,S[i],sim_probs_control[,i])

}

score_null<-c(score_null,score_cascnt_nonnrm(D,K,one_samp_control,one_samp_case))

}

treshold<-sort(score_null)[floor((1-alpha)*n1)+1]

for(k in 1:n2){

one_samp_control<-matrix(rep(0,n_row*n_col),nrow=n_row)

one_samp_case<-matrix(rep(0,n_row*n_col),nrow=n_row)

for(i in 1:n_col){

one_samp_control[,i]<-rmultinom(1,K*S[i],sim_probs_control[,i])

one_samp_case[,i]<-rmultinom(1,S[i],sim_probs_case[,i])

}

vector_rejected<-c(vector_rejected,score_cascnt_nonnrm(D,K,one_samp_control,

one_samp_case)>treshold)

}

mean(vector_rejected)

}

#---------------------------------------------------

#TEST normality of null and alternative:

# According to Rao’s theorem the score statistic under null is assymptotically normal.

# However, In their model (sample size), they assume a normal distribution for the

# score test under alternative as well.

# There is no theoretical approach to prove this claim. However, we can test normality

# of score under null and alternative
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# using Monte-Carlo simulation. See the function below.

test_norm_cascnt<-function(S,K,p,D,theta,n){

var<-variance_score_cascnt(S,K,p,D,theta)

expect<-expectation_score_cascnt(S,K,p,D,theta)

sim_probs_control<-p

sim_probs_case<-t(t((p*(1+theta*D)))/(colSums(p*(1+theta*D))))

score_dist<-NULL

p_values<-NULL

n_row<-nrow(D)

n_col<-ncol(D)

for(k in 1:n){

one_samp_control<-matrix(rep(0,n_row*n_col),nrow=n_row)

one_samp_case<-matrix(rep(0,n_row*n_col),nrow=n_row)

for(i in 1:n_col){

one_samp_control[,i]<-rmultinom(1,K*S[i],sim_probs_control[,i])

one_samp_case[,i]<-rmultinom(1,S[i],sim_probs_case[,i])

}

normalized_score<-(score_cascnt_nonnrm(D,K,one_samp_control,one_samp_case

)-expect)/sqrt(var)

score_dist<-c(score_dist,normalized_score)

p_values<-c(p_values,1-pnorm(normalized_score))

}

list(dist=score_dist,p_values=p_values)

}
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#---------------------------------------------------

# The function below puts out the p-vlue plots for null and alternative for both

# cohort and case-control in a single image. The parameteers are as before.

# There are 3 extra parameters:

# 1. r: The dataset number to be printed on the plots and (if applicable)

# stored image.

# 2. sim: Number of simulations. Default is 10000.

# 3. save: to store or not the image. default is ”no”. Any other string value

# results in image to be stored in the directory.

plot_norm_altogether<-function(M,K,p,D,theta,r,sim=10000,save=”no”){

test_coh_null<-test_norm_coh(M,D,p,0,sim)

test_coh_alter<-test_norm_coh(M,D,p,theta,sim)

test_null_cascnt<-test_norm_cascnt(M,K,p,D,0,sim)

test_alter_cascnt<-test_norm_cascnt(M,K,p,D,theta,sim)

if(save!=”no”){

jpeg(paste(”dataset”,r,”.jpeg”))

}

par(mfrow=c(2,2))

hist(test_coh_null$p_values,main = paste(”dataset”,r,”-null (cohort study)”),

xlab = ”p-value”,xlim=c(0,1),breaks = seq(from=0, to=1, by=.1))

hist(test_coh_alter$p_values,main = paste(”dataset”,r,”-alternative (cohort study)”)

,xlab = ”p-value”,xlim=c(0,1),breaks = seq(from=0, to=1, by=.1))

hist(test_null_cascnt$p_values,main = paste(”dataset”,r,”-null (case-control study)”)

,xlab = ”p-value”,xlim=c(0,1),breaks = seq(from=0, to=1, by=.1))
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hist(test_alter_cascnt$p_values,main = paste(”dataset”,r,

”-alternative (case-control study)”),xlab = ”p-value”,xlim=c(0,1),

breaks = seq(from=0, to=1, by=.1))

if(save!=”no”){

dev.off()

}

}

#---------------------------------------------------
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