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ABSTRACT 

When seismic waves propagate through the Earth, they are affected by numerous 

inelastic effects of the medium. These effects are usually characterized by the concept of the Q-

factor and lead to variations of spectra of the signal and shapes of the waveforms, which further 

affect the results of reflection seismic imaging. Attenuation compensation, also often called the 

inverse Q filtering is a signal-processing procedure broadly used to compensate both of these 

effects of attenuation in reflection sections or volumes. The objective of this thesis is to present 

and investigate a new attenuation-compensation approach that is much more general than the 

conventional inverse Q filtering. This approach is based on splitting the attenuation-correction 

procedure into two parts: 1) modeling of the propagating waveform affected not only by a Q but 

potentially by multiple physical factors within the medium, and 2) time-variant deconvolution of 

the modeled waveform from the data, also performed by (optionally) using multiple methods. 

The modeling includes multiple types and frequency dependences of the Q-factor as well as 

possible non-Q type effects such as solid viscosity, scattering, wavefront focusing and 

defocusing, and geometric spreading. The approach is analyzed on application to two real, 

stacked reflection seismic datasets from China. One of the datasets is a raw 2-D seismic line 

which I also process in this Thesis to achieve the necessary stacked section. The second dataset 

from a different area was obtained in already stacked form. In both datasets, application of the 

inverse attenuation filtering method shows improvements of the waveforms and amplitude 

spectra of seismic records and increases in seismic resolution. Several types of Q and solid-

viscosity models are tested. Two approaches to deconvolution are compared, which are the 



 

X 

 

conventional frequency-domain Wiener deconvolution and a new time-domain approach called 

the Iterative Time-Domain deconvolution (ITD). The ITD approach achieves particularly good 

results in terms of improving the resolution of the images as well as the spectra of the records. 

The tests also illustrate the necessity for spatially smooth attenuation models in Q-compensation, 

which was suggested recently by Morozov and Baharvand Ahmadi (2015). 
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CHAPTER 1 

INTRODUCTION 

Reflection seismic imaging is one of most effective methods for studying the interior of 

the Earth, particularly for the purposes of oil and gas exploration. Reflection imaging produces 

high-resolution images of large zones within the Earth’s subsurface, which are very important for 

geological interpretations. However, there are several limiting factors reducing the quality of 

reflection seismic images, which are the effects of the source, variabilities of the shallow 

subsurface near receivers, path effects, and various types of noise. In this study, I focus on one of 

these factors related to path effects of the medium on seismic waveforms. These factors represent 

the phenomenon of seismic attenuation. 

Seismic waves propagating through the Earth subsurface are almost always affected by 

the inelasticity of the medium. In this Thesis, I do not consider the physical mechanisms of 

inelasticity but rather focus on its effects on the waveforms and on the ways these effects can be 

corrected for. Generally, attenuation effects cause amplitude decays in the propagating wave and 

a corresponding distortion of the seismic waveforms. In order to produce high-resolution seismic 

images, it is necessary to remove these attenuation effects, thereby recovering the true shapes 

and amplitudes of the waveforms. There exist several techniques for reducing the attenuation 

effects in seismic records, such as the inverse Q-filtering (Q-compensation) and several types of 

spectral transformations of the signal. These methods are based on the viscoelastic (based on the 

concept of the quality factor, or Q). A brief discussion of this concept and a summary of Q-based 

attenuation models are given below in this Chapter. 
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In this study, I contribute to the development, investigate, and test a novel broad 

approach to inverse Q-filtering, which corrects not only for the Q-based, but also other models of 

seismic attenuation. By analogy with Q-compensation but with a much broader approach to 

seismic attenuation and inversion (deconvolution), the new method is called attenuation-

compensation, or A-compensation by Morozov et al. (2018) and in this thesis. A-compensation is 

a broad concept consisting of forward modeling of the propagating source waveform followed by 

inverse filtering, with options for using a variety of modeling and deconvolution algorithms 

depending on the properties of the acquired data. This approach is significantly more general 

than inverse Q-filtering, makes fewer assumptions and offers a range of options for modeling 

various types of attenuation mechanisms. 

In this Chapter, I describe the general concept of seismic attenuation and its correction in 

seismic records (section 1.1), summarize the objectives of this Thesis (section 1.2), and outline 

its structure (section 1.3). 

1.1 Problem Overview  

All inelastic media absorb energy from propagating waves. Seismic attenuation is caused 

by various physical properties of the medium and greatly complicates the study of reflection 

seismology. Wave attenuation features in fractured and weathered zones, in rock saturated with 

fluids, in partial melts, and in hydrocarbon reservoirs. All of these factors cause a significant 

amplitude loss, velocity dispersion and phase distortions of the waveforms (Zhou et al., 2011). 

An example of attenuation in gas reservoirs is the amplitude loss due to gas chimneys, which 
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occur when gas diffuses through a fracture system into the surrounding area of the reservoir. This 

process creates an inhomogeneous gas-saturated zone which results in an inhomogeneous 

velocity field, causing distortion of the seismic waveforms (Arntsen et al., 2007).  

Attenuation-related properties of the wavefield are usually described by the Q factor. 

Knowledge of the Q factor is very important, and several types of measurement techniques exist 

based on using direct waves, reflections, coda observations (in earthquake seismology), and 

ultrasonic and seismic-frequency laboratory experiments. However, direct measurement of Q is a 

large and complicated subject, which lies outside of the scope of this Thesis.  

Generally, seismic attenuation is inversely proportional to Q. Dry rocks are characterized 

by a high Q (low attenuation) whereas fully liquid-saturated rocks have a low Q (high 

attenuation) (Aki and Richards, 2002; Li et al., 2006). The amplitude decay of a propagating 

waveform as a function of angular frequency ( = 2f) and propagation time (t) can be described 

as: 

2

0( , ) ,

t

QA t A e




−

=  (1.1) 

where 0A  is the amplitude at time t = 0, ω is the angular frequency, Q is the apparent quality 

factor of the propagation path. The inverse Q factor is defined as the ratio of the energy loss W  

per cycle to the peak elastic energy .W  

1 1
.

2

W

Q W

 
=  

 
  (1.2) 
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One key characteristic of seismic attenuation is that high-frequency waves tend to 

attenuate faster (reduce in amplitude with propagation distance) than the low-frequency ones. 

Amplitude decay (1.1) can also be described as a function of travel distance x Vt= , as  

0( , ) .xA x A e  −=  (1.3) 

In the above, the spatial attenuation coefficient, α, generally increases with frequency and 

models the various physics, including: intrinsic attenuation, reflectivity (elastic scattering), and 

geometrical spreading. The attenuation coefficient can be further separated into zero-frequency 

and frequency-dependent parts. It can be related to Q and the phase velocity, V, of the 

propagating wave as: 

1
.

2V Q




 
=  

 
 (1.4) 

Here, the phase velocity is related to ω as: 

,V
k


=  (1.5)  

where k  = 2/ is the wavenumber, and  is the wavelength. In the presence of attenuation, k is 

not simply proportional to , and consequently V is frequency-dependent Figure 1.1 (Aki and 

Richards, 2002). This dependence V() is called the phase-velocity dispersion, and it is 

responsible for deformation of the waveform. 
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Measurement of seismic attenuation are usually achieved by using one of several 

methods to estimate Q factor. One of the most commonly used techniques for Q estimation is the 

spectral-ratio method. In this method, the Q factor is evaluated by fitting a straight line to the 

logarithm of spectral ratio over a finite frequency range: 

2 2 2 1

1 1

( ) ( ) ( )
ln ln ,

( ) ( )

A f g t f t t

A f g t Q

    −
= −    

  
  (1.6) 

where 1 2 ,A A  are the amplitude spectra of the traveling wave at two different times t1 and t2 and 

g(t1) and g(t2) are the geometric spreading factors at these times. If the negative slope of this 

Figure 1.1  Velocity dispersion and frequency relation using Azimi Q model 
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linear dependence is denoted 
2

1

( )
ln

( )

A f
k f

A f

 
=   

 
, then the Q can be estimated as: 

2 1( )
.estimation

f t t
Q

k

 −
 −   (1.7) 

Measurements of the values of Q and the attenuation coefficient  provide important 

information about the subsurface such as subsurface lithology, presence of melts, or gas and fluid 

saturation. The determination of Q is the necessary starting point for the process of inverse 

attenuation filtering. Only once we know Q, we can effectively correct for the detrimental effects 

of Q such as amplitude decay, phase distortion and scattering. 

Within the general attenuation phenomena, the elastic and inelastic effects are usually 

differentiated. To differentiate them, we need to consider the general underlying physics of 

energy dissipation. First, elastic phenomena conserve the total mechanical energy of the 

wavefield but redistribute it in time and space, so that the measured wave amplitudes are 

diminished. This elastic attenuation (and Q) broadly includes geometrical spreading/multi-

pathing, focusing/defocusing, reflectivity due to layered media, and elastic scattering. By 

comparison, inelastic phenomena involve transformations of the mechanical energy of the wave 

into heat. These mechanical-energy losses can be due to mechanical friction, such as grain-

boundary sliding, or viscosity of pore fluids within the rock, or to non-mechanical phenomena 

such as temperature variations, heat flows, electrical or magnetic interactions. 

Elastic-attenuation factors such as geometrical spreading are often corrected prior to Q 

measurements, and consequently, it is often assumed that the measured Q is the intrinsic 
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(inelastic) Q. However, elastic effects caused by short-scale heterogeneities of the 

velocity/density structure can extremely complex and impossible to model completely (Morozov, 

2010). Therefore, elastic effects are typically calculated using simplifying assumptions such as 

uniform velocity models and straight rays. The remaining uncorrected-for elastic effects are then 

included in the so-called “scattering Q”. Therefore, the corrections for geometric-spreading 

effects often affect the Q values derived by several types of measurements (Morozov, 2008, 

2010). This trade-off of Q with geometric spreading and scattering is particularly strong in 

earthquake seismology, where frequency-dependent ( )Q   values are often observed (Morozov, 

2008). In cases where the size of heterogeneity is too small to be modeled as elastic 

(geometrical-spreading) and too large for to be modeled as scattering, the resulting Q can be 

highly variable; a so-called “fluctuation Q” (Morozov and Baharvand Ahmadi, 2015). These 

questions of the uniqueness, trade-off with elastic structures, and apparent character of Q are 

very complicated and are outside of the scope of this Thesis. In this study, instead of considering 

the physical meanings of the Q, I treat the Q as an apparent, intermediate property, which is 

measured empirically. This Q can be modeled by a variety of physical approaches and 

algorithms, but details of these algorithms are insignificant for A-compensation (Morozov et al., 

2018). 

Depending on the specific physical mechanism, wave attenuation is always associated 

with some form of wave-velocity dispersion. Dispersion has a great impact on changing or 

distortion the shape of wavelet. In conventional seismic processing procedures, velocity 

dispersion is often omitted due to the lack of insufficient observations. This simplification, 



 

8 

 

however, sometimes causes losses of the seismic information and sometimes leads to artefacts in 

seismic images. 

Historically, in practical work with seismic records, and in the viscoelastic theory, it is 

usually assumed that the P-wave and S-wave Q-factors (QP and QS) are some effective properties 

of the medium (Wang, 2008). These Qs are assumed to be the same for different waves within 

medium: for traveling body waves, surface waves, or standing waves. However, the above 

arguments and also Morozov and Baharvand Ahmadi (2015) show that more precisely, Q is only 

an apparent (or measured) property of the given wave propagating through the medium or of an 

oscillation of a finite body. This property depends on the way by which the attenuation is 

measured. For example, the Q factor of a sandstone cylinder depends on whether its surface is 

insulated or permeable for pore-fluid flow (Dunn, 1987). However, and fortunately for the 

present project, knowledge of this apparent Q is sufficient for correcting for attenuation effects 

(Morozov et al., 2018). In this Thesis, I will first utilize several alternate models of physical 

mechanisms to produce apparent Q factors and further use these modeled Q factors to perform 

attenuation corrections. 

1.2 Objectives of this Thesis 

In this study, I focus on removing attenuation effects in real seismic reflection data by 

using the procedure of “Inverse attenuation-filtering” or “A-compensation”, which is a 

generalized approach to attenuation corrections which we proposed recently (Morozov et al., 

2018). This approach performs corrections for attenuation effects by forward modeling of a 
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propagating waveforms and applying several types of inverse filtering algorithms. My general 

goal in this Thesis consists in comparative analysis of different modeling and deconvolution 

algorithms and making recommendations regarding their applications to the data. The art of 

determining the Q values for real or synthetic seismic data is an ongoing area of research which 

lies beyond the scope of this study.  

The specific objectives and data analysis steps of the present study include: 

1) Preparation and processing of the stacked seismic section used an input in the 

inverse A-compensation method. This step involves a complete cycle of 

standard reflection processing with additional consideration for noise 

reduction and for the preservation of true amplitudes. 

2) Application of the A-compensation method to two seismic data sets. The first 

of these data sets is already stacked, and therefore the application of A-

compensation to it focuses on demonstrating and testing the attenuation-

correction method. The second data set is a raw, pre-stack 2-D seismic line in 

which I also perform a complete reflection processing and data analysis. 

1.3 Structure of this Thesis  

In the present Chapter, I give a brief introduction about seismic wave attenuation and its 

effects on seismic reflection images. At the end of this Chapter, I outline the objectives of this 

project. 
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In Chapter 2, I describe the seismic data and processing performed on the second (pre-

stack) dataset of this study. With respect to the main objectives of this study, this is a preparatory 

work; however, it requires substantial effort using a variety of reflection-data approaches and 

solving a number of problems related to these particular seismic data. In addition to standard data 

processing, I describe several filtering procedures aimed at reducing the surface wave noise in 

the data set to get a satisfying seismic section. The final processed seismic section will be the 

input for inverse attenuation-filtering in Chapter 4. 

In Chapter 3, I present the theory of forward and inverse attenuation-filtering and 

describe the technique of A-compensation (inverse attenuation-filtering). In addition, in this 

Chapter, I discuss several attenuation mechanisms and Q models. Finally, I introduce several 

deconvolution methods for inverse attenuation-filtering, particularly emphasizing the Wiener and 

iterative time-domain deconvolution methods that are used in further applications. 

In Chapter 4, I illustrate applications of several forward modeling and A-compensation 

approaches on the two data sets of this study. These illustrations are conducted for several types 

of attenuation models. 

In Chapter 5, I summarize the conclusions and offer recommendations for future 

research. 
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CHAPTER 2 

SEISMIC DATA PROCESSING  

The inverse attenuation filtering and data analysis in this Thesis are performed by using 

two seismic datasets provided by a Saskatoon-based company called PanImaging Software 

Development Limited (http://www.panimaging.com). At the early stages of this project, this 

company expressed interest in the attenuation-compensation research and software and provided 

the test data for this study. One of these test datasets is a two-dimensional (2-D), 9.8 km long 

stacked seismic line, and the other dataset was received in pre-stack form. Both datasets were 

acquired in western China, but geographic locations and geological details were not disclosed to 

us. Some of the acquisition details important for data processing will be discussed later in 

Chapter 2 and Chapter 4. 

Before applying inverse-attenuation filtering, the seismic data need to be completely 

processed to the form of stacked images. In principle, A-compensation should be applicable to 

pre-stack reflection as well as other (refraction, earthquake) data, but I only consider the stacked 

(single-trace reflection) applications in this Thesis for simplicity, similar to most other 

applications of Q compensation. However, pre-stack applications should still be considered in 

future research. For the stacked dataset examples used in Chapter 4, only filtering spectral 

analysis, and f-x deconvolution was required in order to analyze the image quality and effects of 

attenuation corrections. For the pre-stack dataset, complete processing was required, which is 

described in the present Chapter. In sections 2.1 to 2.5, I describe key processing procedures and 

preview the results. 

http://www.panimaging.com)./
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I processed the pre-stack PanImaging dataset by utilizing ProMAX software to produce a 

final seismic section, which was further used in the inverse-attenuation filtering applications. 

Several data processing procedures are required in order to produce a high-quality seismic 

section suitable for inverse attenuating-filtering process. Some of these processing steps are 

standard in reflection seismic processing, and some of them are optional depending on the 

quality of the acquired data and final goals of processing. Table 2.1 summarizes the processing 

sequence for the pre-stack seismic dataset.  

Table 2.1 Seismic data processing sequence 

SEG-Y data input 

2D Geometry assignment and trace editing 

First arrival picks (First break) 

Velocity model and total statics for shots and receivers 

Ground roll filtering 

Velocity analysis 

Normal move out corrections 

Brute CMP stack 

Residual statics corrections 

Dip move out corrections 

Redo velocity analysis 

Normal move out corrections 

CMP stack 

F-X deconvolution  
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In the following sections, I describe six selected steps of this procedure in more detail. 

These steps are the most essential for improving the data in terms of reducing the noise, 

increasing signal to noise ratio, collecting important information such as velocities, and 

producing a final stacked seismic section 

Table 2.2 Key geometry parameters 

Number of shots 216 

Number of receivers 834 

Numbers of CMP 1268 

Average CMP spacing 12.5 m 

Average receiver spacing  25 m 

Record length 2200 ms 

Number of recording channels 400 

Shot hole average depth 25 m 

Sample interval 2 ms 

Maximum CMP fold 105 

Maximum offset  5061 m  

2.1 Preprocessing and Picking First Arrivals 

The initial preparation of pre-stack dataset is a time-consuming procedure consisting of 

preprocessing (creation of geometry database, binning, trace editing, and quality control) and 

picking first arrivals). Geometry assignment is a process creating an accurate description of the 

field geometry and tying this geometry information to the data traces. This operation is one of 

the most important steps in any seismic data processing. Geometric accuracy is critical for 
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processing the data and obtaining interpretable seismic images. Two-dimensional (2-D) 

geometry assignment provides the geographical reference of our data. Geometry parameters are 

used in many processing steps described below.  

Geometry data for the pre-stack seismic line were imported from three types of SPS 

(Shell Processing Support) files: the so-called S file (for shot points), R (for receiver groups), 

and X (for shot-receiver relation records). These data were input into the ProMAX geometry 

database. Geometry assignment was followed by CMP (common mid-point) binning. The 

resulting binned dataset contains 1200 CMPs. Figure 2.1 shows the resulting CMP fold 

distribution in the dataset.  

Figure 2.1 CMP fold coverage for the binned dataset. The maximum obtained 

CMP fold (top of the plot) is 105. 
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As Figure 2.1 shows, within the middle about one-third of the line (from CMP 880 to 

about 1400, the CMP fold is near-constant and equals about 96, and outside of this range, the 

fold linearly reduces toward the ends of the line. 

First-arrival (direct- and head-wave, or first-break) picking is a processing step essential 

for building the initial velocity model for the near surface and determining static corrections. I 

performed first-break picking by using the GeoTomo software. In this procedure, there are 

several options for achieving consistent picking, such as selection of the peaks, troughs, or zero 

crossings for picking or applying AGC (Automatic Gain Control) for improved displays.  

After finishing the first-break picking, I calculated the reciprocal travel-time errors Figure 

2.2. Reciprocal points within a seismic dataset are such that the source and receiver locations in 

one shot are approximately equal the receiver and source locations, respectively, for the second 

shot. Figure 2.2 b) shows the depth variation of the shots and receivers. The shot depth varies 

along the profile from 5m to 20m. 

By the fundamental principle of reciprocity (reversibility of wave propagation), the first-

arrival times for reciprocal records should be equal regardless of the subsurface structure and 

seismic velocities. Wherever reciprocal-time mismatches were found, I reviewed and revised the 

picks for each shot so that no more than 20 ms of average reciprocal errors were obtained in it. 

The reciprocal-error test (Figure 2.2c) helped ensuring consistent picking of multiple shots and 

obtaining a reliable initial velocity model. The principle of reciprocity suggests that the travel 

time of a seismic wave is independent of the propagation direction, so that if we switch the 

source and receiver positions, the travel time should be the same. The reciprocal error calculates 
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the time difference when we switch the direction of the traveling waves. Mismatches between 

reciprocal times often indicate errors in shot coordinates or effects of near-surface velocities 

above the sources, such as uphole times. In the process of checking reciprocal times, I had to 

reject one shot from the dataset because it resulted in reciprocal-time errors greater than 20 ms. 

2.2 Refraction velocity Model and Static corrections 

Following the first-break picking in ProMAX, the picked travel times were transferred 

into the GLI2D program by Hampson-Russel (currently included in GeoTomo software). This 

Figure 2.2 First-arrival travel-times: a) Displays the first arrival time picks for all shots; b) elevation 

of the shots (red), and receivers (yellow). c) reciprocal errors calculated at each receiver  
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program was used to calculate the statics for all sources and receivers and to build the weathering 

layer model. Within GeoTomo, I started building the initial velocity model by defining three 

control points and creating an initial 1-D velocity model. The 1-D models were obtained by 

identifying the refracted arrivals and measuring their intercept times and moveouts. Figure 2.3 

shows all of the first-break picks together with the control points (red diamonds). I chose as 

indicating the changes in the time-distance slopes (moveouts).  

 

From these changes of moveouts, I determined that my initial model should include two 

layers. By using these initial models as input for program GLI2D and making 10 iterations of 

velocity tomography, I obtained the final velocity model shown in Figure 2.4. 

Figure 2.3 Travel time display in offset domain. The three red circles show 

the ends of near-linear segments of travel-time curves 
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Figure 2.4 shows the resulting 2-D refraction velocity model. In this model, the near-

surface velocities range from 1602 m/s (top layer) to 2764 m/s (bottom layer). The second model 

layer has a horizontal velocity variation (shown by the color bar), and the boundary has some 

steep changes of depth. By evaluating travel times for rays crossing this model vertically, static 

terms were evaluated for subsequent reflection data processing. 

By using the near-surface velocity model (Figure 2.4), the receiver and source statics 

were calculated by using GeoTomo tools. After this, I calculated the total statics for both 

receivers and sources by using the obtained near-surface model, floating datum, intermediate 

Figure 2.4. Final near-surface velocity model.  
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datum, and the replacement velocity. Figure 2.5 shows the static calculation results. The time 

shifts of the sources and receivers are similar and vary from –60 to –10 ms. As expected, the 

general trend of those time shifts follows the topography of the area.  

 

Static corrections performed to remove the irregularities in the near surface. These 

irregularities affect the reflections time of the subsurface and distort their hyperbolic shapes. 

Removing this distortion of the reflectors time is done by decreasing the source and receivers 

lowering the position of the receivers and sources vertically to a datum below the weathering 

Figure 2.5 Calculation of refraction statics. Values of statics for receivers 

(blue) and sources (red) 
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layer. By applying these static shifts to seismic data, shots and receivers were relocated from 

their original positions: first, to the intermediate datum by using the velocity field associated 

third, to the final flat datum. These relocations were performed by subtracting the corresponding 

static time corrections from the times of the records with the near-surface area; second, to the 

floating datum by using the replacement velocity; and  

2.3 Ground Roll Filtering 

Ground roll in seismic sections consists of recordings of high-amplitude, large-moveout, 

low-frequency surface waves, which often have strong detrimental effects on the resulting 

images. In attempting to remove the surface wave from the pre-stack dataset, I tried two 

techniques, both of which produced satisfactory results.  

The first method consisted in applying a zero-phase band-pass filter with carefully 

selected low-cut ramp frequency of 15 to 20 Hz. Figure 2.6 shows a comparison of one shot 

before (right panel) and after (left panel) removing the ground-roll by utilizing an Ormsby band-

pass filter. The red circled area indicates the ground-roll which is removed on the left side plot. 

This shows that the band-pass filter is successful in removing both the ground-roll and other 

noise in the presented shot gathers. 

In the second technique for ground-roll reduction, I applied the so-called radial transform 

to the dataset. The radial trace transformation transforms the data into the so-called radial 

domain (lines of constant moveouts in a shot gather), so that the coherent noise with a particular 

(low for ground roll) velocity can be filtered out by ordinary band-pass filtering or muting of the 
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Figure 2.6 Comparison of a shot record before (left panel) and after (right) applying a band-pass filter. 

The ground-roll (red circled area) has been removed significantly after applying the filter 

constant-moveout records. The radial transform is a geometric repositioning of trace amplitudes 

from offset axis to velocity axis by linear interpolation which represent linear apparent velocity. 

After filtering, inverse radial transform is applied to convert the data back to the original form in 

the time-space domain, with coherent noise reduced.  

Figure 2.7 illustrates forward radial-transform before (top) and after frequency filtering 

(bottom) of one shot gather in the pre-stack dataset of this study. After the transform, the ground 

roll is confined to a narrow range of traces near the middle of the section, indicated by the ellipse 

in Figure 2.7 (upper plot).  
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These ground-roll waveforms are of much lower frequency than in the original input 

record. Therefore, the ground-roll signals are effectively removed by a low-cut filter while 

retaining the reflection signal as shown in Figure 2.7 (bottom plot)  

After removing the ground roll, an inverse radial transform was applied to transform the 

dataset back to time domain Figure 2.8 (right panel). Note that the result is similar to the result 

using the first technique to remove the ground-roll. When applying the inverse radial transform, 

some artifacts arose in two shot gathers, but the overall results of radial transform filtering are 

Figure 2.7 Radial transform applied to one shot record. Ground roll (surface 

wave) is indicated by the red circled area. 
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promising and show a better result than Ormsby band-pass filter in some shot gathers among the 

entire dataset.  

2.4 Velocity Analysis 

Following the statics calculations, I switched back to ProMAX software to apply the 

derived static corrections. These corrections are necessary in order to prepare the data for the 

stacking velocity analysis. To begin the velocity analysis, I built CMP supergathers (groups of 

CMP gathers) to increase the number of traces at each analysis point and to ensure accurate 

velocity picks. To define the supergathers, I combined each 5 CMPs into one display, with an 

interval of fifteen CMP through the entire line. 

Figure 2.8 Comparison between ground-roll filtering using an Ormsby filter (left panel) and radial 

transform filtered shot (right panel) shot gather filter 
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Figure 2.9 shows a sample screen-shot for CMP 725 of interactive stacking-velocity 

analysis in ProMAX. The plot on the left shows the waveform semblance in which I picked the 

stacking velocities.  

In these displays, velocity picks are made by following the highest semblance (white line 

on the left-hand side of Figure 2.9) and matching them to the corresponding reflectors on the 

trace-gather screen (plot in the middle of Figure 2.9). The velocity picks usually have a trend of 

increasing with depth. The white dots represent the picks, and each pick is matching a reflector 

Figure 2.9 Velocity analysis panel for one supergather. 
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interface with velocity contrast. The panel on the right in Figure 2.9 shows velocity functions 

(partial stacks of the records). These functions also help in identifying the correct stacking 

velocity (red line on the right-hand side of the panel). 

The picked stacking-velocity profiles at each supergather location were further smoothed 

and interpolated into a continuous 2-D velocity field and used for Normal Moveout (NMO) 

corrections. NMO is the difference between the two-way time at a given offset and the two-way 

time at normal incidence (zero offset for a horizontal reflector). Figure 2.10 shows how the 

reflections in five CMP gathers (left in the Figure 2.10a) were aligned by the NMO correction 

(Figure 2.10b). Thus, NMO corrections align the reflections well and allow their stacking in 

order to produce the final image. 

The alignment of reflections in Figure 2.10b depends on the residual statics and dip 

moveout (DMO) corrections, described below. I therefore repeated the velocity analysis, NMO, 

DMO, and residual statics three times in order to improve the above picking of stacking 

velocities. Because of lateral velocity variations and reflector dips, reflections in a CMP gather 

are not always perfectly aligned after NMO correction. In addition, near-surface velocity 

heterogeneity can cause additional statics or time delay problems not corrected for by the 

refraction statics (section 2.2 ). To reduce such variations, I use residual static corrections, which 

are time shifts applied to traces in order to correct for arbitrary time delays 
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In ProMAX, I calculated the residual statics by using the correlation autostatics 

algorithm. Correlation autostatics measures the time shifts relative to a model trace and uses a 

modified Gauss-Seidel method to partition these time shifts into source and receiver statics 

(Yilmaz., 2001). The result in Figure 2.11 shows the time shifts for the source in the seismic line. 

The inverted residual time shifts vary from -18 ms to 80 ms, and the variation of time shift has a 

trend similar to the topography, as shown in Figure 2.11 

Figure 2.10 CMP gather before (a), and after the applying NMO correction (b). 
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Figure 2.12 shows the correlation autostatics results calculated for receivers. The time 

shifts for receivers generally vary from –30 to 25 ms and tend to increase toward the Eastern end 

of the seismic line. This increasing trend may also be due to the rough topography on the east 

side of the survey area. 

  

Figure 2.11 Residual statics of the sources, calculated by maximizing the power of the stack in 

each CMP gather 
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2.5 Stacked Section 

After completing the iterative velocity analysis and evaluations of residual statics, the 

final 2-D stacked section was obtained by stacking the traces within each CMP gather in the 

dataset (Figure 2.13). In order to enhance the signal and attenuate random noise in this image I 

also applied a F-X deconvolution filter in ProMAX. The F-X (frequency-spatial) deconvolution 

operation includes transforming the data in each trace from time to frequency domain, and then 

applying a complex-valued Wiener prediction filter with respect to the distance at each 

frequency. This “predictable” signal in distance includes near-constant values (which represents 

Figure 2.12 Residual statics for receivers, calculated by maximizing the 

CMP stacked power in each CMP gather 
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horizontally aligned reflections) plus any type of periodic signal, corresponding to linear 

reflections at any arbitrary dips. After the predictive deconvolution, the inverse Fourier transform 

is used to transform the records back into the time domain. As a result, linear reflections with 

arbitrary dips become enhanced in the output section, and the random noise is reduced. Some 

key parameters of the F-X deconvolution are the time window length and the F-X filter start and 

end frequencies. The time window length is the time gate window of the prediction window. 

This time should be below 300 ms in case of conflicting dips and event curvature. The F-X start 

frequency is the minimum frequency of any signal or noise in the dataset in this case I set it as 6 

Hz, and the F-X end frequency is the maximum frequency of any signal or noise in the dataset 

(160 Hz) and higher frequency will be attenuated The resulting stacked section (Figure 2.13) 

shows clear dipping reflections between 400 to 2000 ms, particularly between CMPs 700 and 

1400. Some deeper reflections are seen to about 2800 ms near the beginning of the profile 

(Figure 2.13). Unfortunately, there is a strong gap between about CMPs 1100 and 1200, which 

could not be corrected by data processing. This gap is likely caused by poor near-surface 

conditions: large statics (Figure 4.5), high attenuation, likely poorer source conditions, and 

strong surface waves. These effects could be due to recording over the very soft sedimentary 

rocks of the Loess Plateau in China. Similar problems occur in the area of high topography near 

the end of the profile (CMPs exceeding 1460). In this area, the CMP fold is also reduced (Figure 

2.1), which may also affect the quality of imaging. Nevertheless, keeping in mind these 

difficulties, this section is covering a significant range of reflection times and distances, and it is 

suitable for application of attenuation-compensation techniques in Chapter 4. 
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Figure 2.13 Final stacked seismic section. 
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CHAPTER 3 

METHODOLOGY OF INVERSE ATTENUATION FILTERING 

The inverse attenuation-filtering procedure used in this Thesis consists of two principal 

operations: 1) forward modeling of the propagating waveform, followed by 2) inverse filtering in 

order to remove the effects of attenuation. As mentioned in Chapter 1, a propagating waveform 

through the Earth subsurface experiences transformations in the form of amplitude reduction and 

waveform (phase) distortions. In forward modeling, our effort is to accurately model the source 

waveform as it propagates through the medium taking into account the various factors which 

lead to wave attenuation. The forward modeling process aims at a true modeling of these 

physical mechanisms and considering Q-type of overall attenuation.  

This Chapter and Chapter 4 are based on my contributions to the following published 

paper: 

• Morozov, I., Haiba, M., and Deng, W., 2018, Inverse attenuation filtering: Geophysics,  

83, no. 2, p. V135–V147. 

The copyright for this paper belongs to the Society of Exploration Geophysicists, which allows 

authors to use their papers in their theses. The text was modified and reformatted for inclusion in 

this Thesis. 
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3.1 Principles of Inverse Attenuation Filtering 

Inverse attenuation-filtering is a general approach to remove attenuation effects from 

seismic records. In contrast to inverse Q filtering (Wang, 2008) this method does not start by  

assuming a Q factor existing within the subsurface but rather considers the various physical 

mechanisms at work. As outlined in Chapter 1, the apparent Q factors representing different 

amplitude-decay and phase-distortion patterns (Figure 3.2) caused by combinations of physical 

factors. As will be shown in section 3.2, these different physical factors produce different values 

and frequency dependencies of Q. However, combinations of physical mechanisms may not lead 

to simple combinations of Q-factors (Morozov and Ahmadi, 2015). For example, Deng and 

Morozov (2017) showed that an almost arbitrary frequency-dependence can arise in Q for 

reflection seismic data produced by only elastic layering, without any intrinsic dissipation. 

Therefore, the first principle of inverse attenuation filtering consists in modeling the attenuation 

effects directly, by using the specific physical mechanisms (if known) (Morozov et al., 2017). In 

this Thesis, I consider three of such mechanisms: 

1) Wavefront focusing/defocusing (geometric spreading). This is the most common, first-

order, frequency-independent effect on seismic waves;  

2) Solid viscosity. This is a physical attenuation mechanism common in fluids, and as we 

argue (Morozov et al., 2018), it should also be common in solid, particularly layered 

and porous rock. 
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3) “Phenomenological Q”, which can be used to describe poorly-known mechanisms, such 

as scattering. This phenomenological “mechanism” is not truly physical, but it is 

necessary for comparisons with the conventional inverse-Q filtering. 

The second principle of inverse attenuation filtering consists in a substantial 

generalization of the inverse-Q filtering (Morozov et al., 2018). Instead of only a single 

algorithm for correcting the signal spectra for the effects of Q (such as Wang, 2008), the 

modeled propagating source waveform by using any of the mechanisms 1), 2) or 3) above is 

deconvolved from the seismic record by using several time-variant deconvolution methods. This 

separation of the procedure into independent modeling and inversion steps leads to improved 

flexibility and physical accuracy of the approach (described in this Chapter), and to improved 

deconvolution and imaging results (discussed in Chapter 4). 

3.2 Implementation of the Algorithm 

When implementing the inverse-attenuation filtering we aimed at allowing various types 

of input data (prestack or stacked), multiple modeling approaches, velocity and 

attenuation/dispersion models, and multiple deconvolution methods selectable by the user 

(Morozov et al, 2018). Such flexibility was possible because of the modular structure of IGeoS 

processing system (Morozov, 2008), In this system, seismic data processing is described by 

processing “job” script illustrated in Appendix A. Loading the data, velocity, attenuation, and 

other models is performed by several IGeoS tools, and all A-compensation operations are 
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combined into the tool named ‘acomp’ (highlighted in Appendix A). Figure 3.1 shows a 

flowchart implemented by this tool showing its procedures and the key options available 

 

3.3 Attenuation Phenomena 

To illustrate the phenomenon of seismic attenuation, Figure 3.2 shows its effect on a 

propagating waveform for several values of Q. The effects of attenuation are an exponential 

reduction in the amplitude and a change or distortion of the wave shape. Figure 3.2a shows a 

harmonic sinusoidal wave propagating in a non-attenuating medium (Q = ∞), and we can 

observe that the shape and the amplitude of the wave is the same through the travel time. Figure 

Figure 3.1 Flowchart of Inverse-attenuation filtering 
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3.2 b shows the same wave propagating through an attenuated medium. Generally, both the 

logarithmic-amplitude reduction and the phase delays are inversely proportional to Q. 

As shown in Figure 3.2, velocity dispersion effects (distortion of waveforms) are easily 

noted in the case of Q = 5 within the medium. The low value of Q indicates a highly attenuating 

medium which significantly changes the phase of the waveforms. 

In general, seismic attenuation of a propagating waveform can manifests as amplitude 

loss, while velocity dispersion effects may or may not be observed, depending on physical 

mechanism at work. Dispersion effects can be caused due to elastic mechanisms such as focusing 

Figure 3.2 Effects of attenuation on seismic waveforms: a) a harmonic sinusoidal wave propagating in a 

non- attenuating medium, b) the same wave in an attenuating medium with four different Q = 5 (blue 

line), Q =25 (red), Q =50, and Q=100 (black). The frequency of the source is 65 Hz in all examples. 

(km) 

(km) 
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and defocusing, scattering and geometrical spreading. Inelastic mechanisms include grain 

boundary sliding, large scale intrinsic friction, and small scale defects migration (Yao, 2013). 

Geometrical spreading is a frequency-independent attenuation. It depends on the 

wavefront and its propagating path or angels or spreading, which cause wave focusing and 

defocusing. Also, frequency-independent scattering is phenomenologically equivalent to 

geometrical spreading, and it as non-dispersive. 

Seismic wave dispersion changes the velocity of the propagating waveforms with 

changing in the frequency. Velocity dispersion leads to wavelet shape distortion and this causes a 

difference between the velocities measured in sonic logs compared to the actual velocities in 

seismic data (Stewart et al., 1984). 

Studies have shown that various factor influence velocity dispersion, such as porosity, 

fractures, and fluid mobility. In some cases, effects of velocity dispersion is neglected due to the 

difficulties of measuring the velocity dispersion over the seismic frequency band (Sun et al., 

2009). As mentioned above, the inverse Q filtering methods are limited because of the 

assumption that velocity dispersion model can be inferred from Q. Changing in velocity with 

frequency (velocity dispersion V(ω)) is usually assumed from 
1
( )Q 

−

 by causality relations 

(Kramers-Krönig, or K-K), which state that V(ω) is always positive and proportional to 
1
( )Q 

−

. 

However, the K-K relation is constructed over an infinite frequency band extending well-beyond 

the seismic range of interest (Futterman, 1962). In inverse attenuation-filtering, we restrict 

ourselves to causal relations built on frequencies within or near the seismic frequency band. 
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Figure 3.3 shows Ricker wavelet propagating in a non-attenuating medium (red) and in a 

medium (black) with Q = 45. It is clearly shown how the amplitude dropped and the shape of the 

same wavelet changed when propagating in an attenuating medium. 

Figure 3.4 illustrates the attenuation effects on the amplitude spectrum and the wavelet 

phase shape. The frequency peak of the original wavelet is shifted to lower frequency after 

propagating in an attenuated medium and it lost more than half of its amplitude (black line 

Figure 3.4 a). The original wavelet was zero phase (red line Figure 3.4 b) and after the 

Figure 3.3 Attenuating Ricker wavelet. The red line shows a Ricker wavelet propagating for 1 s in non-

attenuated medium, and the black line show the same Ricker wavelet propagating in a medium with Q=45.  
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propagation the phase is changed (black line Figure 3.4 b) illustrates the attenuation effects on 

the signal spectra. 

When we correct for attenuation and waveform distortions due to velocity dispersion, we 

broaden the spectra and increase the resolution of seismic data. There exist several approaches to 

remove the attenuation effects from the seismic records such as the conventional inverse Q 

filtering. However, those approaches have some limitations due to their dependence on two 

assumptions: firstly, the viscoelastic-Q model for attenuation, and secondly, in their use of the K-

K relations to calculate velocity dispersion assuming that it can be inferred from the Q. Both 

assumptions are inaccurate, as can be seen, for example, from the fact that pore-fluid related 

Figure 3.4 a) shows the frequency spectra corresponding to the wavelets in Figure 3.3. and Figure 3.4 

b) is the phase changes of the attenuated Ricker wavelet comparing with the original Ricker wavelet phase  

b) 

a) 
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attenuation involves two types of P waves (fast and slow) which cannot be accurately described 

by a single P-wave Q-factor (Morozov and Deng, 2016). 

In the study by Morozov et al. (2018), we remove these limiting assumptions and propose 

a general approach of inverse attenuation-filtering. In inverse attenuation filtering, Q factor is 

considered as an apparent attribute of waveforms traveling through a medium which expands the 

attenuation filtering proposed in this Thesis. 

Inverse attenuation-filtering method has the advantage to imply the apparent characters of 

Q and V to formulate general approach for attenuation corrections due to the effects of the 

apparent Q and V on the waveforms. Attenuation correction requires forward modeling of the 

attenuation effects and inverse filtering of these effects. Generally, these effects can be 

approximated by linear filters with parameters slowly varying with time. In this manner, the 

forward modeling and the inverse filtering can be performed separately and then combined in a 

simple time-windowing procedure. 

The attenuation of a propagating wave due to any effect may be described in terms of α 

and k , or equivalently by parameters Q-1(ω) (attenuation) and V-1(ω) (phase slowness), at each 

point along its path. It is convenient to combine these parameters in the complex-valued 

slowness parameter: 

* 1 11
( ) ( ) ( ) ( ) 1 ( ) .

2
s s is V Q    − − 

 +  + 
 

  (3.1) 

In Q-filtering literature, it is often stated that “the dispersion is a result of requirement 

that the wave propagation in an absorbing medium must be causal” (Hargreaves and Calvert, 
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1991). It is also often inferred from the K-K relations that /dV d  is positive within the seismic 

band (e.g., Wang, 2008). Nevertheless, causality still does not imply that the dispersion is due to 

attenuation nor that it must have a definite sign. The K-K relations consist of slowly-converging 

integrals (Aki and Richards, 2002), and definitive relations between Q-1() and V-1() can only 

be found for certain forms of these functions defined across infinite frequency bands (Futterman, 

1962; Aki and Richards, 2002; Wang, 2008). Within the narrow exploration-seismic frequency 

band, the K-K relations do not dictate any particular relation between of Q-1 and /dV d . 

In practice, the K-K relations represent a fairly weak constraint only expressing the 

causality of the wave-propagation process. In the time domain, causality simply means that at 

any travel distance x, the amplitude of the wave equals zero at all times preceding some “wave 

onset:” 
1

0
,

onset
t t xV

−
 =  where V0 is some velocity. In Futterman’s (1962) model, V0 equals 

0( )V 

at an extremely low cutoff frequency 0
 . In several other models (Azimi, 1968, or linear solids), 

V0 is the phase velocity at infinite frequency (denoted V∞), and in the constant-Q and power-law 

models (Kjartansson, 1979; Műller, 1983), V0 = ∞. Intuitively, it seems clear that such a basic 

assumptions ought not constrain the relation between Q-1(ω) and V-1(ω) at any given frequency. 

In the frequency domain, the identity ( ) 0
onset

w t t   yields a reciprocal integral relation between 

the real and imaginary parts of phase slowness in equation (1.3) (Aki and Richards, 2002): 

 1 10
0 0( ) ( ) ,and ( ) ( ) ,s V s s s V


   



− −   = +  =  −    (3.2) 

where   is the Hilbert transform, and α0 is another arbitrary constant of dimensionality 
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[1/distance]. 

To illustrate the causality constraints in the frequency domain, Figure 3.5 shows a 

hypothetical attenuation spectrum ( )s   with a trough and a peak and the corresponding phase-

delay spectrum s(ω) evaluated by equation (3.2). The complex slowness s is+  is transformed 

into an inverse Q factor and phase velocity by using relations 
1 2sQ

s
− =  and 1V s−= . 

Assuming our measurements take place within a relatively narrow frequency band, three 

characteristic regimes can be recognized (labels A, B, C in Figure 3.5). If the observation band is 

located near the attenuation peak (regime A in Figure 3.5Figure 3.3) or trough (regime B), a 

near-constant Q would be observed, and velocity dispersion is positive or negative, respectively. 

The rate of dispersion dV
d

 is not proportional to Q-1 as in Futterman’s and other common 

Figure 3.5 Relations between frequency-dependent inverse Q-factor (solid line) and phase-velocity 

dispersion (dashed line) for a simple waveform with one through and one peak 
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models (Wang, 2008). Instead, the dV
d

 is related to the variation in Q-1 at these much lower 

and much larger frequencies (Figure 3.5). If the observations happen to be made between the 

peak and trough of Q-1, the dispersion is near zero (regime C in Figure 3.5). 

Models commonly used in inverse Q filtering (e.g., Futterman, 1962) imply a sole peak in 

1
( )Q 

−

 (regime A in Figure 3.5), despite the fact that this is often not the case in practice. While 

variations of Q are difficult to measure within the seismic band, asymptotes of 
1
( )Q 

−

 at 0 →  

and  →  are totally unknown. Consequently, regimes A to C can be difficult to identify. In a 

given measurement, we can expect arbitrary velocity dispersion dV
d

 alongside a (relatively) 

arbitrary frequency-dependence of Q. These dependences can be approximated by linear 

functions of log ω: 

1 1

1 1
( ) 1 log ,  and ( ) 1 log ,

2r r r r r

s s s s
V V Q

 
 

 

   
  = + = +   

   
  (3.3) 

where ωr is some reference frequency, and s1 and 1s  are dimensionless parameters characterizing 

the velocity dispersion and frequency-dependence of Q for the wave. Parameterization in terms 

of log ω is chosen to resemble Futterman’s (1962) dispersion relation and similar equations. For 

measurements at the top of a dissipation peak (regime A in Figure 3.5), 𝑠1  takes on the smallest 

value of 1
1

( )r

s
Q

−  (Futterman, 1962). With this parameterization, group slowness differs 

from the phase one by a constant: 
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1 1( )
( ) ( ) ,

r

sd s
U s

d V


 



− = = +   (3.4) 

and the frequency dependence of 
1

q Q
−

 : 

1

1

1 log
1 1

( ) .

1 log

r

r r

r

s

q
Q Q

s










+

= 

+

  (3.5) 

Although 1s  is difficult to measure, equation (3.4) shows that both 1s  and s1 are equally 

important for the effect of attenuation. Figure 3.4 shows the relations given by equations (3.3) 

with compared to several standard dispersion laws and a solid-viscosity relation. 

3.4 Time-Variant Modeling and Deconvolution 

Time-variant filtering is an efficient and convenient method for attenuation 

compensation, spectral whitening, time-spectral analysis, and other reflection seismic processing 

applications. Time-variant filtering is a convolutional operators which depends on Fourier 

transform variables to shape the spectrum of a time series (Margrave, 1998). 

In a linear time-variant system, the relation between the output u2 (t) and the input u1(t) is 

presented by 

2 1( ) ( , ) ( ) ,u t f t t u t dt



−

  =    (3.6) 

where ( , )f t t  is the response measured at time t to an delta-function impulse at time at time t′ 
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This function is nonzero only for t t  (within wavelet length), where it approximately depends 

only on the time difference: 0
( , ) ( )f t t f t t  − . Therefore, within a vicinity of a point within the 

seismic record, the time-variant transformation (3.6) approximately represents ordinary 

convolution: 
2 0 1( ) ( ) ( )u t f t t u t dt



−

   − . This approximation is used in the time-variant filtering 

included in IGeoS tool ‘acomp’. 

To implement time-variant modeling and deconvolution in tool ‘acomp’, I apply a series 

of overlapping Hanning taper functions n(t) to each seismic record. Each taper element consists 

of a flat portion centered on time t with two cosine-shaped ramps of durations t, which is 

estimated by scaling the duration of the source wavelet Tw. The intervals between time tapers, are 

selected equal the same t, so that a sum of all tapered records produces the untampered one 

(Morozov et al., 2018). Within each window, the time-variant filtering is implemented by 

convolution or ordinary frequency-domain filtering, and the resulting records are summed to 

achieve an attenuation-filtered signal: 

 ( ) * ( ) ( ) .el n n

n

u t F t u t=    (3.7) 

The windowing functions are shown in Figure 3.6 and normalized by the condition 

( ) 1
n

n

t   at any time t, so that the input signal is unchanged ( )( ) ( )elu t u t  when no filters Fn 

are applied. Two general types of filters Fn in eq. (3.7) are used in subsequent processing. First, 

to implement forward modeling of seismic wavelets, filters representing physical or Q-type 
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effects of attenuation are used. These filters implement the time-variant “attenuation operators” 

( )Â t , which transforms the source waveform at time t that would have been measured within a 

perfectly elastic subsurface (denoted wel(t)) into the actual attenuated wavelet w(t). Â elw w= . 

Three forms of such operators are described in subsection 3.3. Second, in order to 

perform A-compensation, inverse attenuation operators 1ˆ( ) A ( )nF t t−=  are used. Because 

attenuation reduces the high-frequency energy of the wavelet and can bring it below the noise 

level, evaluation of the operators at large times t requires careful regularization, as described by 

Wang (2008). In data applications in Chapter 4, I compare the well-known frequency-domain 

Figure 3.6 Overlapping Hanning-tapered time windows n(t) used for modeling the propagating 

waveform and deconvolution procedures. Times t ∆t, and  are indicated. 
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approach to such regularization called Wiener deconvolution (Morozov et al., 2018) and a novel 

iterative time-domain deconvolution (ITD) technique. The ITD approach is described in 

subsection 3.6. 

3.5 Modeling of Attenuation Effects  

In this section, I describe three key physical effects leading to seismic wave attenuation.  

These physical effects or their combinations can be used for constructing the attenuation operator 

in IGeoS tool ‘acomp’ which is further utilized for compensation of the attenuation effects. 

Measuring and modeling the attenuation effects requires good knowledge of rock-physics 

mechanisms of internal friction which is not well known and sometimes controversial subject. 

However, attenuation effects can always be modelled by composing an appropriate time-

dependent attenuation operator. 

Modeling of attenuation accumulated along a propagation path is a complex task. In 

current attenuation-modeling methods, there are two general approaches to forward modeling of 

seismic waves in spatially-heterogeneous an elastic media frequency-domain and time-domain. 

In frequency-domain methods (for example, (Štekl and Pratt (1998)), forward modeling is 

implemented by wave equations utilizing complex-valued and frequency-dependent viscoelastic 

moduli. This method is suitable and advantageous for full waveform inversion when only a 

limited number of frequencies are needed. By contrast, in order to reproduce the variation of a 

seismic waveform with time, time-domain finite-difference methods can be used. In these 
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methods, the attenuated wavefield is calculated by time stepping the differential equations over 

the time-dependent viscoelastic moduli (Blanch et al., 1995). 

Generally, in the above and other waveform modeling approaches, and also in inverse-Q 

filtering methods, the Q factor is considered to be the key physical property of the medium. 

However, the physical character of the Q is actually quite a complicated problem. Since Q is 

defined as a property of propagating seismic waves or oscillations compared to an elastic case 

(Chapter 1) but no “elastic” equivalent of the Earth is available, the Q cannot be measured 

directly by any other physical experiment. Furthermore, because Q can only be measured from 

seismic waveforms of sufficient lengths, it cannot be rigorously attributed to an individual point 

within the subsurface. For example, White (1992) showed that in order to measure a Q =100 with 

30% accuracy in vertical seismic profile (VSP) records, a roughly 100-ms waveform is needed. 

Morozov and Ahmadi (2015) argued that the Q factor is only a mathematical hypothesis 

(“apparent” property) and, as such, it is unclear how accurately it can be used to describe the 

heterogeneous Earth. However, Morozov et al. (2018) argued that for attenuation compensation 

in seismic records, the apparent character of Q is sufficient, and it does not need to be property of 

the medium. Thus, if the subsurface structure is known, the effects of multiple physical 

mechanisms on the propagating waveform can be modeled, giving the apparent Q and dispersion 

effects. Only these quantities are needed for attenuation corrections. 

In the A-compensation approach (Morozov et al., 2018), the attenuation and dispersion 

corrections at time t are obtained by comparing the “elastic” and “inelastic” waveforms at time t. 
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For a plane wave propagating through an elastic homogenous medium, the waveform at time t 

can be described as: 

0 0( , ) exp( ),elw x t A i t ik x= − +   (3.8) 

where x is the coordinate (depth in this case), k0 is the wavenumber, and A0 is the amplitude. The 

same plane wave traveling through an inelastic medium it can be described as: 

*( , ) exp( ) exp( ),w x t A i t ikx x A i t ik x  = − + − = − +  (3.9) 

where 
*k k i= +  is the complex-valued wavenumber. Due to attenuation effects, the amplitude 

changes from A0 to A and the wave number changes from k0 to k=k0+∆. The new parameter  in 

equation (3.9) is the frequency-dependent spatial attenuation coefficient, which can be estimated 

from the logarithmic spatial decrement of the amplitude. The transformation from the elastic case 

( , )
el

w x t  to the inelastic case ( , )w x t  can be described by a linear operator Â,  as Â .
el

w w=  In the 

limit of zero frequency, there should be no attenuation, and A is simply A0 (Morozov et al., 

2018). Consequently, wel represent an eigenvector of operator A : 

Â ,el elw w=   (3.10) 

where the eigenvalue equal: 

( ) exp( ).x i kx x   −  (3.11) 
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From the modified k and A, the phase velocity and Q can be obtained as: / ( )V k k
o

 + 

and º ( ) / 2Q k k
o

+  . The quantities k, V,  and Q define the amplitude decay of the propagating 

waveform through a medium (Morozov and Ahmadi, 2015). 

In application to an “elastic” seismic waveform wel, the attenuation operator Â  represents 

a filter applied by using the convolution operation. This operator also consists of various 

attenuation mechanisms such as geometric spreading, solid viscosity, scattering and the 

traditional Q-type (viscoelastic) attenuation. This combination of different physical factors can 

be represented by a convolution of filters corresponding to each of these factors: 

cos
ˆ ˆ ˆ ˆ ˆA = A  * A  * A  * A .Geometric Scattring Q Vis ity   (3.12) 

Now let us discuss the effect of the attenuation operator on the reflection seismic 

waveform. A plane seismic wave reflected from layered Earth can be described by the 

convolutional model. To illustrate the convolutional model, let us consider a time window 

centered at some two-way reflection time t, and denote the seismic reflectivity r(t,), where  is 

the local time of the waveform selected be 0 = at the center of the window. The reflected 

waveform ( )u   is a convolution of reflectivity ( )r   with source signature ( ),S   receiver 

response ( ),R   and downward and upward propagation-path effects denoted D*A  

* * * * .u S R D A r=   (3.13) 

In this relation, factor D  represent the deterministic effects (such as geometrical 

spreading or amplitude variations with offset), which are corrected for in seismic reflection data 
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processing procedure, factor A  represents the time-domain attenuation operator equation (3.12) 

and the source and receiver effects can be combined in a source wavelet, *
S

w S R . 

To remove the attenuation effects from seismic records, we need to construct an inverse 

of the modeling operator. The filter would transfer the inelastic case to an elastic one. To correct 

for attenuation effects, we must remove factor “A” in equation (3.13). This is done by applying 

the inverse attenuation filter -1F=A  which will produce a non-attenuated reflected waveform 

which would thus be recorded over a theoretical elastic medium: 

( ) * * * .el Su F u w D r = =   (3.14) 

After modeling the attenuation filter A  for the propagating waveform, a deconvolution 

process is applied to evaluate the filter F above or to directly evaluate the corrected uel(). 

Multiple deconvolution methods can be applied depending of the properties of datasets and the 

purpose of the deconvolution process. 

3.5.1 Geometric Spreading 

Elastic mechanisms are the redistribution of wave energy and without net energy loss. 

These effects can be divided into geometric spreading, multipathing, wavefront focusing and 

defocusing, and scattering on layers and small-scale heterogeneities within the medium. 

Geometric spreading is one of the strongest effects that cause seismic amplitude reduction. It 

dominates the frequency-independent portion of the waveform attenuation. In conventional Q-

filtering, geometric spreading effects usually neglected because it is expected to be corrected 
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prior to applying the inverse-Q filtering algorithms. Frequency-independent small-scale 

scattering is phenomenologically equivalent to variations of geometric spreading (Morozov, 

2010), and therefore it is phenomenologically included in geometrical spreading. Multipathing 

and local focusing/defocusing may similarly represent very complex processes, but frequency-

independent parts of their effects on seismic waveforms can be phenomenologically attributed to 

geometric spreading (Morozov, 2010).  

In the convolutional equation (3.12), the empirical geometric-spreading effects above, can be 

represented by multiplication of several factors describing the various types of possible geometric 

spreading effects: 

Geometric 0

0 Ray path

1 1 1
( , , ) exp( ) exp .

V

RMS

A t x G t dt
V t t R 

  
 

=     −  − 
 
 

  (3.15) 

In IGeoS tool ‘acomp’, combinations of these factors can be selected during data 

processing, and some of the factors are also available in geometrical-spreading corrections in 

ProMAX reflection seismic processing software. In eq (3.15), the factor 0
G  is a normalization 

constant selected to ensure ( ,0) 1refG t =  at the reference time .reft factor 
0

1

RMSV t  is the 

approximation for the geometric spreading in a layered Earth by Newman (1973). 
RMSV  represent 

the RMS velocity at two-way normal incident time 0t . The value of the exponent   is kept as an 

arbitrary value for simplicity as in (Newman, 1973) model exponent 2, =  also a value of can be 
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used in ProMAX. For refractions, additional frequency-dependent factors can also be included in 

geometric spreading (Yang et al., 2007); however, I do not consider them in this Thesis. 

3.5.2 Phenomenological (Q-type) Attenuation 

In contrast to energy-conserving elastic effects, inelastic effects cause intrinsic 

attenuation resulting in dispersion and a reduction of wave energy, as described in section. The 

forward modeling aims at a true modeling of these physical mechanisms and considering Q-type 

of overall attenuation. While there are several approaches to modeling of these effects and their 

compensation, the most common is the phenomenological attenuation model in which a Q-factor 

is assumed to represent the mechanical friction within the medium.  

Different Q models have been developed for forward modeling of attenuation effects, 

such as the constant-Q model (Kjartansson, 1979), Klosky’s model (Futterman, 1962), and Strik-

Azimi’s model (Futterman, 1962; Strick, 1967; Azimi et al., 1968). The constant-Q model 

(Kjartansson, 1979) is most commonly used in forward modeling. 

Frequency-dependent phenomenological models, Q(), may be used to represent the 

seismic wave propagating in an inelastic/attenuating medium. In order to satisfy the causality 

principle, the phase velocity must also be frequency-dependent (Aki and Richards, 2002): 

,
( ) 2V V V Q

  

  

 
= +   

 
  (3.16) 

where  H  is the Hilbert transform and V  is the wave velocity at the infinite angular 

frequency. For weak and near-constant attenuation (Q >> 1), within the range of frequencies 
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used in seismic exploration, V should increase with frequency as approximated by Aki and 

Richards (2002): 

( ) 1
1 log

( )r r

V

V Q

 

  

 
= +  

 
 , (3.17) 

where r is an arbitrary reference frequency. 

Figure 3.7 shows this relation for different values of the Q. Because of attenuation, the 

phase velocity also becomes complex-valued (Aki and Richards, 2002), which can be described 

by introducing a complex-valued slowness 
* *

1s V : 

Figure 3.7 Phase velocity vs frequency along with different values of Q. The curves represent velocity 

dispersion described in equation (3.15). The reference frequency wref is taken equal 200 Hz. 
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* 1 1( ) ( ) ( ) ( ) 1 ( ) .
2

i
s s is V Q    − − 

 +  + 
 

  (3.18) 

In each specific attenuation model, the reference frequency r and reference phase 

velocity V(r) and quality factor Q(r) may be chosen by using different principles. For 

example, Kjartansson (1979) chose the reference velocity to be the velocity at extremely high 

frequency, well above the seismic frequency band, whereas Futterman (1962) used an extremely 

low value of r By contrast, our approach, is to set the reference frequency equal the dominant 

frequency of the signal and adjust V(r) and quality factor Q(r) after each iteration of 

attenuation corrections (Morozov et al., 2018). This removes from our work any dependence on 

a fixed velocity relation and on the arbitrary parameter ref 

Finally, using our phenomenological Q-type attenuation models allows combining 

multiple forms of Q()in the convolution process equation (3.12). For example, using the 

‘acomp’ tool, we can combine the intrinsic and scattering attenuations by adding their inverse Q-

factors as: 

1 1 1

observed intrinsic scattering.Q Q Q− − −= +   (3.19) 

3.5.3 Solid Viscosity 

In contrast to the phenomenological Q described in subsection 3.3.2, solid viscosity (for 

rocks) and ordinary viscosity (for fluids) are true properties of the medium. These properties can 

be rigorously characterized by continuum mechanics without the use of internal degrees of 

freedom (Morozov and Deng, 2016). To model seismic P-waves traveling through an isotropic 



 

55 

 

medium of modulus M and solid viscosity M the mechanical wave equation is given by 

Morozov and Deng, (2016): 

,
M

u Mu u  = +   (3.20) 

where the primes denote the spatial derivatives in the direction of propagation X, and the over 

dots are the time derivatives. 

One of the general solutions of this equation is an exponentially decaying plane wave 

propagating in the positive X direction is given by equation (3.11), where the complex 

wavenumber equals: 

*

0

1
( ) ,

1M el

k
M i V

i

 
 

  



= =
−

−

  (3.21) 

the elastic velocity el
V  is defined by 

2

el
M V= , and the characteristic frequency is 0

M = . 

The apparent V and Q are defined as ( )*1 Re 1V V=  and ( ) ( )* *Re 1 2Im 1Q V V =
 

, where 

the complex phase velocity equals 
* *

0

1elV k V i





= = − . From these relations, the V and Q 

are 

1
0

0

1 1
( ) ,   and   ( ) cot Arg 1 .

2 2
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elV
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
 
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

−

  
= = − −  

    
 −
 
 

  (3.22) 



 

56 

 

From the second of these equations, at seismic frequencies, ( 0  ) the Q is inversely 

proportional to frequency: 0
( )Q    . This frequency dependence is used for modeling solid 

viscosity in IGeoS tool ‘acomp’ (Morozov et al., 2018),  

3.6 Iterative Time Domain Deconvolution 

Among a broad variety of deconvolution methods that can be used as inverse A-

compensation filters Fn, in this section, I only describe the promising new, iterative time-domain 

(ITD) method suggested in our recent paper (Morozov et al., 2018). The advantage of time-

domain deconvolution is that it does not require constructing an inverse attenuation 

operator  ( )1Â t−
 and considering its regularization. Instead, According to the linear 

convolutional model (section 3.3), the recorded reflected waveform u() (where  is the “local” 

time in the vicinity of reflection time t) is a convolution of r() with the current source wavelet 

w(): 

*u w r=  (3.23) 

If the subsurface is “elastic” (for example, after A-compensation is applied), the same 

relation holds, and it is assumed that the reflectivity is the same (it is always “elastic”): 

*
el el

u w r=  By considering realistic forms of r(t) such as sequences in which the stronger 

reflections are sparse, u(t) can be transformed into uel(t) without evaluating the operator ( )1Â t−
. 

In addition, r(t) can be constrained by geological or well-log data, for example, by emphasizing 
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the reflections from horizons identified in well logs. Such constraints increase resolution and 

allow focusing on the structure of interest.  

The ITD method follows the approach broadly used to compute receiver functions in 

earthquake seismology (Ligorría and Ammon, 1999). In this approach, the time series r(t) is 

sought in the form of a series of spikes of amplitudes ri located at times i: 

( ) ( )
1

N

i i

i

r r   
=

= − ,  (3.24) 

where () is the delta function. The input (attenuated) signal is therefore approximated as 

( ) ( )
1

N

i i

i

u r w  
=

= − .  (3.25) 

The determination of the values of i  and ,ir  details of the algorithm, and numerical tests of 

this method are described by Morozov et al. (2018). Because of the limited bandwidth of the 

wavelet w(), the times it  tend to be separated by at least half of the dominant period of the data, 

and therefore the strongest reflections accounting for most of the energy are “sparse”. Equation 

(3.24) can also be used to form a “skeletonized” image of two-way travel times i offering 

additional interpretational value (Li et al., 1997). 

In the output of the iterative deconvolution equation (3.8), the “skeleton” signal r(t) is 

often convolved with a zero-phase wavelet ws(t) of some simple shape and bandwidth close to 

that of the expected wel(t). Ligorría and Ammon (1999) recommend using a Gaussian wavelet for 
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this purpose. In IGeoS ‘acomp’ tool, this wavelet is called the “shaping” wavelet and viewed as 

an approximation for wel(t). Therefore, the resulting A-compensated waveform becomes 

( ) ( )el

1

N

i s i

i

u r w  
=

= − .  (3.26) 

Equation (3.26) gives a new seismic section with relatively sparse, zero-phase reflections 

having correct times, amplitudes, and dominant periods of the principal attenuation-corrected 

reflectors. At the same time, the wavelet ws(t) underlying an ITD-deconvolved image may be 

strongly different from the actual source waveform. Therefore, the ITD is not a pure attenuation-

correction procedure but a broader signal-enhancement filter with A-compensation capabilities. 

ITD represents the seismogram as a superposition of non-stationary source wavelets 

modeled using an appropriate empirical attenuation model. Because of the use of an iterative 

data-fitting procedure in time domain, this approach can be viewed as a wavelet transform or 

matching pursuit algorithm based on modeling the source waveform propagating through the 

section. The ITD method detects reflections principally by their dominant-frequency 

components. Thus, the ITD operates in the most advantageous part of the spectrum and has 

lower sensitivity to frequencies at which signal is weak. By identifying the time of the signal, 

this method is able to recover all frequency components (Deng, 2017). On the other hand, 

frequency-domain deconvolution methods tend to lose the highest-frequency component in the 

noise due to restoring each frequency component separately. 

As shown on data examples in Chapter 4, the ITD offers significant improvements in 

enhancing the resolution, equalizing the amplitudes, and flattening the spectra of reflections in 
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seismic images. As also illustrated in Chapter 4, ITD has the advantage of not boosting the high-

frequency noise and it is less sensitive to the accuracy of the Q model. 

3.7 Q Models  

Q models are mathematical models that describe the Earth respond to the propagating 

waveforms. There are various Q models which are used for modeling the wave propagation in 

the medium. In this section I am summarizing the two of those models; Azimi’s Q model, and 

Kjartansson’s Constant Q model. 

3.7.1 Azimi’s Q Model  

Azimi Q model is one of the popular Q models. It suggests that the attenuation coefficient 

is proportional to the frequency at frequencies below the reference frequency r and becomes 

near-constant above this frequency. Azimi Q model satisfies causality, and the attenuation 

coefficient can be described as: 

1

2

( ) ,
1

a

a


 


=

+
 (3.27) 

where 1

3
,

4 r r

a
V Q

=  and 2

1

r

a


= , and 
r  is the reference frequency. The inverse phase velocity 

for this model equals: 

( )1
2

21 1
ln

( ) r

a
a

V V


 
= −  (3.28) 

and the Q: 
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( )2

1

1 1
( ) ln

2 r

Q a
a V

 


 − . (3.29) 

Figure 3.8 Shows the attenuation and phase velocity and Q profile in Azimi Q model. As 

mentioned above, the attenuation () is proportional to the frequency in almost linear trend at 

seismic frequencies. 

3.7.2 Kjartansson’s Constant Q Model  

The constant-Q theory of Kjartansson is considered as the simplest attenuation theory. It 

suggests that Q factor is of the frequency, and the phase velocity at the reference frequency is 

zero. The constant-Q attenuation given by Kjartansson (1979) is described as: 

1

3( ) a


  
−

=  (3.30) 

Figure 3.8 Azimi Q model  
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The phase velocity: 

3
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−  
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The Q model: 

1
( ) cot tan ,
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where the factor 
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Figure 3.9 displays the attenuation, phase velocity, and Q profile for Kjartansson’s 

constant-Q model 

Figure 3.9 Kjartansson’s Constant Q model 



 

62 

 

3.8 Discussion: Spatial Smoothness of Q Models 

As argued by Morozov and Baharvand Ahmadi (2015) and Morozov et al. (2018), 

spatially smooth models are required for consistent interpretation of Q and modeling attenuation 

effects. Apparent-Q profiles always contain inherent averaging and cannot be accurately defined 

in the vicinities of boundaries (Deng and Morozov, 2017). The Q is simply not the type of 

property that can be measured and localized on both sides of a reflecting boundary. In particular, 

spatial variations of Q trade off with reflectivity and can hardly be consistently considered at 

reflection-time scales shorter than about 100 ms (White, 1992; Morozov and Baharvand 

Ahmadi, 2015). This shows that if reflection-time dependent Q(t) is used for Q compensation, 

the Q relation should be smooth. As argued by Morozov et al. (2018), the same argument about 

spatial smoothness applies to empirical phase-velocity profiles V(t) required for dispersion 

corrections. This analogy is easy to understand because by eq. (3.1), V and Q simply represent 

the real and imaginary parts of the complex phase velocity V*. 

Viscoelastic Q-factors attributed to the material are often arbitrarily detailed (Blias, 2012; 

Wang, 2008), but in almost all realistic cases, the Q is only a limited approximation for true 

mechanisms of internal friction. This approximation works for uniform media but is not 

guaranteed near boundaries.  For example, in a layered poroelastic medium (Biot, 1956), slow 

waves are present near all boundaries, but these waves are not accounted for in the Q-based 

approximation. These slow waves contribute to reflectivity, and therefore the reflectivity from 

poroelastic layering differs from the one in a Q model (Morozov, 2015). Furthermore, in most 

cases, reflections from Q variation cannot be removed by Q-compensation due to the fact that it 
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would still contain time averaging in local Fourier transform (Hale, 1982), or inverse-Q filter 

(Wang, 2008).  

For a simple argument showing that Q and phase-velocity models cannot be arbitrarily 

spatially detailed, consider, for example, the case of full-waveform inversion (FWI). In FWI, 

detailed, wavelength-scale variations of Q are often obtained (Prieux et al., 2013; Wang, 2008). 

However, because the spatial sampling of the model is always less dense than that of the 

recorded waveforms, FWI always requires regularization of the inverse problem and selection of 

optimization strategies (Prieux et al., 2013). It is easy to see that if a FWI is formulated on a very 

finely sampled grid of elastic moduli and density without regularization, then it should always be 

able to reproduce any input wavefield by using pure elastic modeling, i.e. with Q-1 = 0. For 1-D, 

this observation is rigorously illustrated by Deng and Morozov (2017), who show that Q-

contrasts inverted from reflection records can always be explained by thin elastic layering and 

vice versa. Therefore, a short-scale variation of attenuation of Q-1 can always be interpreted as 

thin-layer reflectivity of the same relative magnitude. Also, because of the necessary use of 

regularization and optimization, FWI does not predict the recorded wavefield exactly, and the 

corresponding reflectivity error should be of the same order as the apparent Q-1.  

Thus, in FWI-based as well as in any finely-sampled velocity/density model, there is a 

fundamental trade-off between subwavelength-scale velocity variations and Q values. This trade-

off is due to the nature of seismic Q (it is representing the complex part of phase velocity). To 

remove this trade-off, Morozov and Bahrvand Ahmadi (2015) recommended using only 

smoothly-varying Q models. 
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CHAPTER 4 

APPLICATIONS OF ATTENUATION CORRECTIONS TO SEISMIC 

DATASETS 

In this Chapter, I apply the inverse attenuation-filtering algorithms described in Chapter 3 

to two stacked reflection datasets from Western China and provided by PanImaging. The first 

dataset is the 2-D seismic line which I described and processed in Chapter 2. The second dataset 

was provided already in the form of a stacked section by PanImaging. The goal of these 

examples is to illustrate the A-compensation approach for different data, different types of 

attenuation models, noise environments, and particularly to analyze the results of using the ITD 

and conventional Wiener deconvolution approaches. 

This Chapter represents an expanded version of on my contributions to the following 

published paper: 

• Morozov, I., Haiba, M., and Deng, W., 2018, Inverse attenuation filtering: Geophysics,  

83, no. 2, p. V135–V147. 

The copyright for this paper belongs to the Society of Exploration Geophysicists, which 

allows authors using their papers in their theses. Compared to the above paper, additional 

descriptions of the model and examples were added in this Chapter. 

In the following section 4.1, I start by presenting the results of applying A-compensation 

to the first (pre-stack) dataset described in Chapter 2. This example was not included in the paper 
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above (Morozov et al, 2018). In section 4.2, I similarly describe the results with the dataset 

received in stacked form.  

4.1 Pre- stack Dataset 

This data set has a record length of 3000 ms. As described in Chapter 1, this dataset is 

hampered with significant noise, which was interpreted as caused by near-surface attenuation 

and strong surface waves. These effects could be due to recording over the very soft sedimentary 

rocks of the Loess Plateau in China. During the processing stage, I had to apply several filters 

specifically to reduce the effects of surface waves. 

Spectral analysis of the seismic data shows that the dominant frequency within the 

shallow part of the data is about fdom ≈ 25 Hz. This frequency is used as the reference frequency 

ωr = 2πf in dispersion relations. Unfortunately, no acoustic logs or laboratory data are available 

for both datasets, and therefore, it seems impossible to determine the accurate velocity dispersion 

law. Even with the availability of acoustic logs, velocity dispersion would be difficult to 

constrain. As shown by Deng and Morozov (2017) and at the end of Chapter 3, attenuation and 

dispersion effects on reflections trade off with layering thinner than about a quarter of the 

dominant wavelength, and this layering is impossible to determine from seismic data. In other 

words, the reflectivity can always be somewhat “colored,” which may affect the Q and 

particularly the phase-delay spectra. Figure 4.1 shows the original seismic section before 

applying the inverse attenuation-filtering. The tapered time windows are displayed on the section 
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diagonally for better display. The length of those time tapers depends on the length of the 

waveform used in the convolution process. 

 

In the following subsections, I describe several A-compensation tests using several useful 

forms of attenuation models and deconvolution approaches in IGeoS tool ‘acomp’. In all cases, 

the depth models are parameterized by two-way normal-incidence times t0. The r.m.s. velocity 

profile was derived from the results of seismic processing (Chapter 2) as a function of two-way 

Figure 4.1 Color display of the stacked seismic section derived in Chapter 2 (Figure 2.12), with 

tapered time windows used in A-compensation shown along the diagonal. 
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reflection time Vrms(t0) and transformed into interval velocities Vint(t0) within the processing job 

(Appendix A). Attenuation corrections are conducted within individual trace records, by using 

identical sets of overlapping tapered time windows shown in Figure 4.1 

4.1.1 Constant Q, Wiener Deconvolution  

Figure 4.2b shows the result of applying inverse attenuation filtering by using 

Kjartansson’s (1979) constant-Q model with phase corrections (i.e., Q constant with frequency 

but varying with depth), and Wiener deconvolution. The Q profile was estimated from P-wave 

velocities using the relation suggested by (Li, 1993): 

214 pQ V=  (4.1)  

This transformation of V to Q was also performed by IGeoS tools placed above the 

‘acomp’ tool in the processing job (Appendix A). A small zoomed-in portion of the resulting 

section is section is shown in Figure 4.2b. Compared to Figure 4.2a (the same fragment before 

applying inverse attenuation filtering), there is some improvement in terms of event details and 

sharpness. 

The improvement of the records by attenuation corrections can be judged more accurately 

and quantitatively by the spectra of the signals at different depths. I measured the power spectra 

of the seismic section before and after attenuation filtering Figure 4.3 shows the spectra at two 

different depth levels: shallow (around 300 ms of two-way reflection time (TWTT); blue lines in 

Figure 4.3) and deep (near 2500 ms; red lines).  
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Dashed lines in this figure show the spectra before attenuation corrections, and solid lines 

show the spectra of corrected data. As seen from the differences between these lines at higher 

frequencies, the amplitude recovery of the deep part (solid lines) is significant and varying with 

frequency. Because prior to processing, the data are scaled by the amplitudes of the shallow part 

of the records, both input and the shallow output spectra (both dashed and red solid lines Figure 

4.3) are close near the dominant frequency of the signal. Within the deep part or the records, the 

amplitude is increased (solid red line). In the shallow part, the amplitude is also increased at low 

frequencies (below about 15 Hz), which is not expected from Wiener Q-compensation but is 

likely due to the effects of the relatively short tapered windows. In any case, this increase leads 

Figure 4.2 A comparison between original section a), and attenuation compensated section b) by 

inverse attenuation-filtering using constant Q model and Wiener deconvolution. 
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to flattening of the spectrum, which is a desirable effect. As a principal effect of Q-

compensation, the spectra are boosted and flattened in the higher frequency ranges (60 to about 

100Hz). However, between 100 and 140 Hz, an additional peak was created, particularly within 

the deeper part of the records (red line). This peak is likely caused by noise being boosted by Q-

compensation. In subsequent processing and interpretation (not done in this Thesis), this part of 

the frequency band should be corrected by time-variant band-pass filtering. 

 

4.1.2 Azimi Attenuation Model and Wiener Deconvolution 

Similar to the preceding subsection, Figure 4.4 shows a comparison between the original 

data (plot a), and the filtered result (plot b) by applying inverse attenuation filtering using the 

Figure 4.3 Averaged power spectra of the records before (dotted lines) and after Wiener deconvolution 

(solid lines) using the constant-Q attenuation model. 
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Azimi’s Q model (Chapter 2) and Wiener deconvolution. The results are improved in terms of 

events details and enhancing the resolution.  

The power spectra comparison Figure 4.5 shows a significant amplitude recovery. The 

decrease of the amplitudes with frequency (above approximately 30 Hz) is corrected, and the 

amplitude spectra are flattened within this frequency range. As in the preceding case, the average 

amplitudes of the deeper parts of the records are strongly increased by the attenuation-correction 

processing (solid red line in Figure 4.5). 

Figure 4.4 A comparison between original section a), and attenuation compensated section b) by inverse 

attenuation-filtering using Azimi model and Wiener deconvolution 
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Also, as in the preceding subsection, an over-corrected peak, is present at frequencies 

above 130 Hz (Figure 4.3). This peak is likely caused by noise. Compared to the preceding 

example, the model shows a much stronger increase of high-frequency amplitudes and 

resolution. This increase occurs because of the Q decreasing with frequency in Azimi’s model 

(Chapter 3), and therefore the Q-compensation gain is increased. However, this increase of gain 

also causes an increase of noise. The noise seems to lead to a peculiar “staircase” pattern in the 

output section (Figure 4.4b). This pattern is spurious and could be due to the spatial structure of 

this Q model. The model is defined at selected CMPs (those used in velocity analysis, Chapter 2) 

Figure 4.5 Averaged power spectra of the records before (dotted lines) and after Wiener 

deconvolution (solid lines) using the Azimi’s Q attenuation model.  
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and is constant between these CMPs. This is a drawback of the present algorithm (Appendix A), 

because as argued by Morozov and Ahmadi (2015) and Morozov et al. (2018), the Q model 

should always be smooth. The peculiar form of the “staircase” imaging artifact illustrates one 

kind of spurious “reflectivity” that can be produced by Q models with sharp horizontal contrasts. 

Generally, these results show high sensitivity of Q-compensation to this kind of Q models.  

4.1.3 Amplitude-only Q Model and Attenuation Correction by ITD 

To apply the ITD, an estimate of the source wavelet is needed, and I used a wavelet 

estimated from the upper part of the seismic section after an initial pass of Wiener inverse-Q 

filtering (subsection 4.1.1). By applying Wiener compensation, the wavelet becomes stationary 

(time-independent) and closer to the one originating from the source. By using the approximate 

Q-compensated section, I estimated the source wavelet in ProMAX by using the function called 

‘Derive Average Wavelet’. This function estimates the average wavelet for the entire data set. 

The method of this estimation consists in averaging the spectra of all traces within the specified 

time gate to produce the wavelet spectrum. By using this spectrum, the algorithm offers options 

to construct a zero, minimum-, or averaged-phase time-domain waveforms. 

Figure 4.6 shows a detailed comparison between a fragment of the original dataset and 

the same ITD-filtered dataset. In Figure 4.6b, there are significant improvements in several areas. 

The vertical and horizontal resolution of the image is improved significantly, the reflectors are 

sharp and have more details without boosting the high-frequency components, and there is no 

spurious “staircase” pattern and over-boosting of the noise.  
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The power spectra of the result. (Figure 4.7) also show a significant enhancement. After 

inverse attenuation-filtering, the spectra flatten at higher frequencies without noise or windowing 

effects (Figure 4.7). Significant amplitude recovery and flattening of the spectra are achieved 

across the entire frequency band. The ITD boosted the high-frequency spectra for both shallow 

and deep parts of the records. 

In contrast to the Wiener deconvolution results (preceding subsections), the average 

amplitudes of the resulting signals are close for ITD inversion (solid red and blue lines in Figure 

4.7). This is because as mentioned in Chapter 3, the ITD is not an amplitude-correction but a 

signal-extraction procedure. After ITD, the average amplitudes and spectra of the outputs are 

Figure 4.6 A comparison between original section a), and attenuation compensated section b) by 

inverse attenuation-filtering using Q-only model and ITD. 
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determined by the spectra of the source wavelet, and therefore they are close everywhere within 

the seismic section. Again, this is actually a desirable property for interpretation of seismic 

images. 

 

4.2 Stacked Dataset 

The second application of inverse attenuation filtering is made with the stacked reflection 

dataset provided by PanImaging. This dataset is dataset was used in data examples by Morozov 

et al. (2018). No acoustic logs were provided with these data, which prevent us to determine the 

Figure 4.7 Averaged power spectra of the records before (dotted lines) and after Wiener deconvolution 

(solid lines) using the Q-only model and ITD. 
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accurate velocity dispersion law. Here, as in Morozov et al. (2018), I use two fragments of the 

stacked section extracted from shallower (900–1700 ms two-way travel times) and deep (2500–

4300 ms). 

To this dataset, I applied two types of dispersion relations: the constant-Q, and the solid 

viscosity model (Chapter 3). The values of Q in these tests (Table 4.1 ) were established by trials 

and modified to achieve the best improvement of the stacked records and the spectral slopes of 

reflectivity spectra measured at several depths. Figure 4.8 shows the shallow part (a) and deep 

Figure 4.8 a) Shallow and b) deep portions of the stacked section used in inverse-attenuation filtering 

examples. Black lines in plot b) show the overlapping taper functions used for windowing the data. 
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part (b) of the original dataset before applying our method. Black lines in Figure 4.8b displays 

the overlapping taper function used for widowing the data. All of these widows belong to every 

trace but are shown as horizontally separated for clarity. 

Table 4.1 Velocity and Q model used in field data examples 

Two-way time (ms) Interval velocity (m/ms) Q 

300 1.650 70 

1000 2.100 70 

2000 2.370 90 

3000 2.900 140 

4000 3.335 190 

5000 3.570 190 

Spectral analysis of this dataset shows that the dominant frequency is about 55 Hz. This 

frequency is used as a reference frequency in the velocity dispersion relations. Similarly to the 

previous dataset (section 4.1), the source wavelet was derived from the shallow part (around 100-

200 ms TWTT) after applying initial inverse-Q filtering using a constant-Q model and Wiener 

deconvolution. The source wavelet was estimated in ProMAX by using the algorithm by 

Oppenheim and Schafer (1975) and assuming a zero-phase wavelet. Figure 4.9 shows the 

estimated wavelet (black solid line). The Q values in the selected zone for estimation are 

relatively low, and therefore, there is a significant attenuation causing the estimated wavelet to 

be somewhat narrow-band and reverberatory. To overcome these effects, a simplified Gaussian 
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wavelet was constructed by approximating the main lobe of the extracted wavelet (dotted line in 

Figure 4.9). This Gaussian wavelet will be used later for ITD. 

4.2.1 Amplitude-only Constant-Q, Amplitude-only and Zero-phase Wiener Deconvolution. 

In this test, I consider only amplitude effect of the Q during forward modeling and 

disregard the dispersion (Chapter 3). Similar to the results of section 4.1, application of A-

compensation (Figure 4.10) shows an improvement in resolution more noticeable in the deeper 

part compared to the original dataset Figure 4.8. This is equivalent to the results of conventional 

inverse-Q filtering. 

A comparison of the averaged power spectra of the records before and after filtering is 

shown in Figure 4.11. There is a noticeable amplitude recovery and flattening of the spectra, 

particularly for the shallow part of the data within the displayed frequency band.  

Figure 4.9 Derived source wavelet from-compensated record (solid line) and a simplified Gaussian 

wavelet used for shaping in the time-domain deconvolution example (dotted line) 
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Figure 4.10 Attenuation-compensation using constant-Q model, amplitude-only corrections, and Wiener 

deconvolution a) shallow part of the record b) deep part of the record. 

Figure 4.11 Averaged power spectra of the records before (dashed lines) and after Attenuation-

compensation using constant-Q model, amplitude-only corrections, and Wiener deconvolution (solid 

lines). 
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4.2.2 Full Constant-Q Model and Zero-phase Wiener Deconvolution. 

In this test, I use the full attenuation/dispersion constant-Q model, similar to the case of 

subsection 4.1.1.The results (Figure 4.12) show improvements of the images in terms of the 

appearance of the weak reflection, particularly in the deeper parts. The resolution of the section 

is also enhanced compared to the original dataset. The differences from using the amplitude-only 

model (Figure 4.10) are small but noticeable. 

Figure 4.12 Attenuation-compensation using Kjartansson’s constant-Q model, and Wiener 

deconvolution: a) shallower portion of the record; b) deeper portion 



 

80 

 

Figure 4.13 compares the spectra of the data before and after the inverse attenuation-

filtering. For the shallow depth spectra (blue line), there is a noticeable amplitude recovery and 

significant flattening of the spectra, especially between 20 Hz to 70 Hz. The amplitude decrease 

with reflection time is also reduced. For the spectra of the deeper records, the spectral flattening 

is significant across the entire useable frequency band (approximately 10–60 Hz for such large 

depths). The flattened portion of the amplitude spectra extends to about 40 Hz. This 

improvement appears to be good, although it is of course not as significant as for the shallow 

parts of the records. 

Figure 4.13 Averaged power spectra of the records before (dashed lines) and after Attenuation-

compensation using Kjartansson’s constant-Q model, and Wiener deconvolution (solid lines). 
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4.2.3 Solid-viscosity Attenuation Model and Wiener Deconvolution. 

The next test examines the case of a solid-viscosity model implemented by Q inversely 

proportional to frequency (Chapter 3). The results in Figure 4.14 show improvement in the deep 

portion showing weak reflection and sharp details. High frequencies are gradually amplified in 

the solid-viscosity model stronger than in the constant-Q model. This is shown by increased 

high-frequency reflectors within the shallow part of the section (Figure 4.14a). However, these 

reflections also become reverberatory and may be over-gained. 

Figure 4.14 Attenuation-compensation using the solid-viscosity model and Wiener 

deconvolution: a) shallower portion of the record; b) deeper portion 
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The power spectra of the results (Figure 4.15) show strong enhancement of high-

frequency amplitudes. Figure 4.15. also show that the spectra at shallow depths are boosted 

stronger than those at large depth. 

 

4.2.4 Amplitude-only Constant-Q Model and ITD 

Finally, I test a constant-Q model, amplitude-only forward modeling, and iterative time-

domain deconvolution (ITD). The ITD method is less sensitive to the accuracy of Q-model and 

to the estimated source wavelet. Compared to the preceding cases, the results in Figure 4.16 

show significantly different images compared to Figure 4.12. The resolution, event details and 

Figure 4.15 Averaged power spectra of the records before (dotted lines) and after Wiener 

deconvolution (solid lines) using the solid-viscosity model. 
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sharpness are improved, particularly in the deeper parts of the seismic section. The ITD appears 

to recover more reflectors and enhance their sharpness, and the signal to noise ratio appears to be 

also improved. 

 

Figure 4.17 compares the average spectra of the data before and after applying the 

inverse attenuation-filtering. Prior to this filtering, the high-frequency components starting at 

40 Hz for the deep part and 60 Hz for the shallow part steeply decay with reflection time. These 

decays can be seen by increasing vertical distances between the red and blue dashed lines in 

Figure 4.17. 

Figure 4.16 Attenuation-compensation using a constant-Q model, amplitude-only corrections, and iterative 

time-domain deconvolution: a) shallower portion of the record; b) deeper portion 
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The ITD A-compensation procedure boosted the high-frequency components for both 

shallow and deep parts to close levels. For the shallow part (blue lines) the recovered spectrum is 

close to that of the shaping wavelet. The spectral recovery is significantly better than in the 

results using Wiener deconvolution and constant Q model (subsections 4.2.1 and 4.2.2). For the 

deeper part of the section (red lines), the A-compensation provides strong enhancement of the 

spectra and good flattening of the spectra.  

  

Figure 4.17 Averaged power spectra of the records before (dashed lines) and after ITD (solid 

lines) using a constant-Q attenuation model. 
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CHAPTER 5 

CONCLUSIONS 

This Thesis illustrates that modeling of attenuation effects and correction for them in 

seismic data is a much broader problem than the traditional forward and inverse Q filtering. 

Within the limited exploration-seismic frequency band, velocity dispersion relations can be 

relatively independent of the Q, and therefore independent amplitude and dispersion corrections 

need to be considered.  

In addition to the phenomenological (apparent) Q, several non-Q type effects can and 

need to be included: focusing and defocusing of wavefronts (variations of geometric spreading), 

forward- and back-scattering, solid viscosity, and potentially, pore-flow related effects. In 

particular, solid viscosity studied on the examples of this Thesis appears to be a broad 

phenomenon that should be present within the Earth at all scales. At the same time, strong 

increase of attenuation with frequency requires accurate measurements of new properties of the 

medium, such as its solid viscosity.  

For all types of attenuation and velocity dispersion mechanisms, corrections for their 

effects on seismic reflection records can be performed by modeling the propagating wavelet 

during its two-way propagation and deconvolving it from the records. These applications were 

implemented in flexible and convenient processing flows in our IGeoS seismic processing 

system. 
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Inverse attenuation filtering is a general and powerful approach to correcting for the 

effects of decaying amplitudes and velocity dispersion in seismic records. Real-data examples 

show that the inverse attenuation filter is practical and achieves improvements in the resulting 

sections while offering variety of modeling and deconvolution choices.  

The iterative time-domain deconvolution (ITD) method is particularly effective, and it 

should be useful in exploration seismic applications. This method enhances the resolution of the 

attenuation-corrected records. Based on the examples tested in this Thesis, this method appears 

to be superior to the deconvolution methods commonly used in Q-compensation. 

5.1 Recommendations for Future Research 

Seismic attenuation is a very common phenomenon in seismic wave propagation. Inverse 

attenuation filtering aims to remove the effects of the attenuation. Provided that the properties of 

the attenuation (Q or non-Q type) model is known, the A-compensation approach is relatively 

straightforward, and several approaches to deconvolution can be used (Chapters 3 and 4). Thus, 

the key difficulty in applying this method is in determining the attenuation model of the 

subsurface. This problem is also present in the difficulty in determining the quality factor Q and 

its frequency dependence in conventional Q-compensation, However, in A-compensation, we 

need to also investigate different types of attenuation, such as waveform focusing/defocusing and 

solid viscosity. 

Measuring the Q factors and determination of the physical models of attenuation is 

beyond the scope of this thesis, but I think such investigations should lead to most a significant 
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improvement of results compared to the conventional constant-Q inverse attenuation filtering. It 

should be useful to try tying the A-compensation algorithms to some methods of measuring the Q 

factor. For example, the Q could potentially be measured by optimizing the outputs of ITD 

inversion. As criteria of such optimization, sparseness of reflectors and flatness of the resulting 

spectra of the records could be used. 

An interesting extension of the ITD to the determination of the effective Q factor could 

be derived from a recent study of source waveform estimation by Wang and Morozov (2020). 

This approach is similar to ITD and derives the source waveform by using sparse, highest-

amplitude peaks from the reflection record. According to Wang and Morozov (2020), by 

optimizing the shape of the resulting source waveform (its shortest durations lowest side lobes, 

and optionally minimum or zero phase) may allow obtaining the Q factor. Although maybe 

ambiguous as a measure of physical properties of the subsurface, this Q-factor might be optimal 

for Q-compensation. 

In addition to utilizing optimization methods for the determination of Q, analysis of well 

logging data could provide useful information for improving the accuracy and efficiency of the 

methods of this Thesis. This improvement could be obtained by providing more accurate velocity 

models, better correlations of velocities to Q-factors, or possibly to other types of attenuation 

models.  
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APPENDIX A  

This Appendix contains a fragment of the IGeoS data processing job and a Unix shell script performing key tasks of data 

analysis and plotting described in Chapter 4.  

A 1.1 IGeoS Processing Job 

The IGeoS job is presented in the “Fortran”-style scripts formatted by using tabulation characters. This simple format was used 

by one of the most popular seismic processing systems in the past called DISCO, and it is also the primary format used in IGeoS. 

In the following script, various tools are invoked sequentially by statements “*call” and parameterized by multiple options 

shown after these calls. These tools perform all data processing and produce most data plots shown in Chapter 4 of this thesis. 

############################################################################## 

## input previously modeled wavelet: 

############################################################################## 

*call load acomp-wiener-gauss-2-8.sia  

## store the wavelet in memory buffer 'waveforms': 

*call store waveforms 

*end keep # block these traces from passing further in the job 

############################################################################## 

## Step 1: Form the required 1-D models  

############################################################################## 

#1-D RMS velocity column: 

*call readtab table vrms_tab # read in the file as a database table 'vrms_tab' 

cdp integer 1   # table arguments are called 'cdp' and 'time' 

time float 2 
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vrms float    # table entry is called 'vrms' 

file all radial_dmo_residuals_smooth_RMS_pick.txt 

*call pritab   # test printout of the table 

vrms_tab 

 

############################################################################## 

## Interval velocity column: 

*call model1 vint_model   

use vrms_model  # for each CMP, take the profile from vrms_model 

transf vrms->vint  # transform it to interval velocities 

############################################################################## 

## Derive a reference velocity model from interval velocity. 

## The reference velocity is the velocity Vr used in modeling dispersion.  

*call model1 vref_model   

linear 1.0  # constant = 1 (test) 

## A new model for 1/Q: 

*call model1 q_model  

use vint_model  

transf vp->q  14 2.2 # transform the values of Vp into 1/Q  

attrib freq  25 # frequency of the Q model 

 

############################################################################## 

## Step 2: Start over with trace data input and processing  

############################################################################## 

 

## load data traces from SEGY file(s): 

*call load Q_TEST_PROMAX/FX_stack_before.segy 

  

############################################################################## 

 # attenuation modeling options. You can use multiple entries of each type: 

############################################################################## 

a-q ampl qonly const 20 q_model  1.0   # constant Q and no dispersion 

#a-q full constq const 20 q_model  1.0  # Constant-Q (Kjartansson's) model 

#a-q full futter const 20 q_model  vref_model # using Kolsky's (Futterman) model 

#a-q full azimi const 20 q_model  vref_model  # using Azimi's model 
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#a-q full powlaw const 20 q_model  vref_model 0.1 # using power-law Q (Muller's) 

model 

#a-q full visc const 20 q_model  vref_model  # using solid-viscosity model 

 

############################################################################## 

# deconvolution parameters: 

############################################################################## 

fband     # time-variant frequency band (Ormsby-type) 

0 15 20 120 240  

2000 15 20 80 100  

2700 15 20 60 65   

decon zero 0.0 wiener 40   decsrc  # Wiener deconvolution   

    

#decon model  itd 40 40 0.05   # Iterative time-domain deconvolution  

############################################################################## 

#output 

############################################################################## 

output decon   # output final deconvolved records 

##############################################################################    
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A 1.2 Plotting script  

The following is an example of the Unix Bourne shell used for plotting. This script is invoked by the IGeoS script 

(section A 1.2) and contains calls to Generic Mapping Tools (GMT) producing the desired PostScript files of the image. 

#!/bin/sh 

gmtset PAPER_MEDIA letter 

gmtset ANOT_FONT_SIZE 10 LABEL_FONT_SIZE 10 MEASURE_UNIT inch HEADER_FONT_SIZE 10 

 

ps=PS/$2.ps 

 

echo plot_gmt_region is '>'$plot_gmt_region'<' 

echo plot_gmt_gridding is '>'$plot_gmt_gridding'<' 

 

region=-R700/750/1000/1800r  

proj=-JX2.5i/-3.5i     

 

palette=-Crwb-1.0.cpt  # red-white-blue  

#palette=-Crwbk-1.0.cpt  # red-white-black 

#palette=-Ctest2.cpt  # custom palette 

 

# example of making a custom palette: 

 

colortable=jet   # color table  

makecpt -C$colortable -D -Z -T-1/1/0.1 > test2.cpt  

 

xyz2grd $region $plot_gmt_gridding $1/traces.xyz -G/tmp/temp.grd 

 

psbasemap $region $proj -B:."$2": -K -Y1i -X1i > $ps 

psbasemap $region $proj -Ba50f50:"CDP":/f50g100a100:"TWTT (ms)":WsNe -O -K  >> $ps 

 

grdimage /tmp/temp.grd $region $proj $palette -V -O >> $ps 

evince $ps  &  


