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ABSTRACT 

Influenza A viruses (IAV) are classified into the Orthomyxoviridae family and are 

composed of segmented, negative-sense, single-stranded ribonucleic acid (ssRNA) genomes in 

an enveloped particle. IAV is capable of infecting a wide variety of species, including but not 

limited to humans, birds, pigs, bats, and sea mammals. Up until 2013, H7N9 IAV was only 

prevalent in poultry; however, at this time H7N9 began infecting humans in China. Since 2013, 

China has seen six epidemic waves of the H7N9 virus, with human cases and deaths totaling 

1,568 and 616, respectively, as of March 4, 2020. Although this virus presents high morbidity 

and mortality rates in humans, the majority of human cases have been a result of close contact to 

poultry in live poultry markets (LPMs). Fortunately, the change for sustained human-to-human 

transmission has not yet been acquired in this virus. However, due to IAVs evolutionary 

mechanisms of antigenic shift and antigenic drift, H7N9 could gain sustained transmission 

among humans at any time, which poses a severe threat to public health. Therefore, preventive 

control methods must be developed in an effort to control the spread of this influenza virus.  

Vaccination is currently the main method for controlling the spread and preventing 

influenza infection. Currently, the two available types of vaccines are the inactivated influenza 

vaccines (IIV) and the live attenuated influenza vaccines (LAIV). IIVs are composed of either 

whole influenza virions or portions of its virion produced in large volumes, followed by 

inactivation of the virus with either β-propiolactone or formaldehyde. IIVs are commonly 

administered intramuscularly, and sometimes include adjuvants to boost their immune responses. 

IIVs have been countlessly demonstrated to be highly safe for all populations. LAIVs on the 

other hand, are composed of live viruses of which their virulence is reduced through limited 

replication in the vaccinated host. LAIVs are administered intranasally and do not require an 

adjuvant because they are capable of stimulating stronger immune responses compared to IIVs. 

However, one common drawback towards the use of LAIVs is the possibility of virulence 

reversion. On the contrary, replication-defective virus vaccines are made up of viruses defective 

in either viral replication, synthesis, or assembly. These replication-defective virus vaccines, 

therefore, consist of very limited replication in the vaccinated host and have been found to 

possess the advantages of both IIVs and LAIVs. These advantages include the high safety profile 

due to the low risk of virulence reversion, as well as the ability to induce a strong immune 

response. To date, no commercial vaccine is available for the H7N9 influenza viruses.  
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The first step in the influenza replication cycle is the binding of the virus to the host cell, 

which is followed by receptor-mediated endocytosis. After endocytosis occurs, in order for 

influenza virus to become infective, cleavage of the hemagglutinin (HA) precursor form, HA0, 

into HA1 and HA2 must occur. This cleavage is most often mediated by trypsin-like host 

proteases, inducing fusion between the viral and endosomal membranes. Therefore, this 

particular step is essential for determining viral pathogenicity.  

For this Masters project, the goal was to generate a replication-defective virus vaccine 

derived from H7N9 IAV, that is composed of an altered HA cleavage site that can only be 

cleaved and thus activated in vitro by the exogenous protease elastase which is not readily 

available in the respiratory tract. This replication-defective virus vaccine would, therefore, be 

inactive during natural infection, but active in vitro if the appropriate protease was provided. 

Previous studies have proven this replication-defective nature through the mutation of the HA 

cleavage site from a trypsin-sensitive motif to an elastase-sensitive motif. However, these studies 

have only been performed with the swine influenza virus (SIV) H1N1, a human-derived H7N7 

HPAI, a mouse-adapted human-derived H1N1 virus, as well as an influenza B virus (IBV) 

(Babiuk et al., 2011; Gabriel et al., 2008; Mamerow et al., 2019; Masic et al., 2009; Masic et al., 

2010; Masic et al., 2013; Stech et al., 2011; Stech et al., 2005). Using the technique of reverse 

genetics, we generated a recombinant mutant H7N9 virus, BC15-HA/QTV/NA (PR8), derived 

from the human isolate A/British Columbia/01/2015 (H7N9) [BC15 (H7N9)] with a backbone 

from A/Puerto Rico/8 (H1N1) [PR8 (H1N1)]. This recombinant mutant BC15-HA/QTV/NA 

(PR8) virus possesses a mutant HA composed of three mutations at the HA cleavage site: lysine 

to glutamine at amino acid (aa) 337 (Lys-Gln), glycine to threonine at aa 338 (Gly-Thr), and 

arginine to valine at aa 339 (Arg-Val). In addition to the mutant HA, this recombinant mutant 

BC15-HA/QTV/NA (PR8) virus also contains the neuraminidase (NA) from BC15 (H7N9) and 

the six internal proteins from PR8 (H1N1). 

In the first part of our study, we established a mouse model of BC15 (H7N9) influenza 

virus. BALB/c mice were intranasally infected with various doses of BC15 (H7N9) (103 PFU, 

104 PFU, and 105 PFU), and were monitored daily for 14 days post-infection (d.p.i.). In this 

study, we found BC15 (H7N9) to affect mice in a dose-dependent manner: the 103 dose killing 

all mice by 8 d.p.i.; the 104 dose by 6 d.p.i.; and the 105 dose by 5 d.p.i. In addition, all doses 

were capable of inducing high viral replication, pathology, and proinflammatory cytokine 
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induction in the mouse lung. From this study, we concluded 103 PFU to be the chosen dose for 

future experiments.  

In the second part of this study, we developed and characterized the recombinant mutant 

BC15-HA/QTV/NA (PR8) virus, which showed this virus to be entirely dependent on elastase 

for its replication, contain similar growth properties to its wild-type counterpart, and be 

genetically stable in vitro. In addition, when this recombinant mutant BC15-HA/QTV/NA (PR8) 

virus was intranasally administered in BALB/c mice, it was found to be non-virulent and 

replication-defective, evident by a lack of body weight loss, 100% survival rate, and no viral 

replication detected in the mouse lung. 

Since we established this recombinant mutant BC15-HA/QTV/NA (PR8) virus to be 

replication-defective in mice, in order to consider this virus as a replication-defective virus 

vaccine candidate, we needed to test the immunogenicity and protective efficacy in BALB/c 

mice. To do this, we intranasally vaccinated mice twice with this recombinant mutant BC15-

HA/QTV/NA (PR8) virus and then challenged the mice with a lethal dose of BC15 (H7N9). In 

this study, we reported that the intranasally administered BC15-HA/QTV/NA (PR8) virus 

induced significantly elevated levels of antigen-specific IFN-γ and IL-5 secreting cells in the 

splenocytes, which is evidence of a strong cell-mediated response. In addition, this virus 

increased the levels of neutralizing antibodies in the mouse serum, evident by both the 

hemagglutinin inhibition (HAI) and serum virus neutralization (SVN) assays, as well as 

heightened the levels of antigen-specific IgG, IgG1, and IgG2a in the mouse serum. Once the 

mice were challenged with BC15 (H7N9), our data showed that two intranasal vaccinations with 

BC15-HA/QTV/NA (PR8) were sufficient to provide complete protection of the mice from a 

homologous challenge. This complete protection was evident by the lack of body weight loss, 

100% survival rate, lack of viral replication detected in the mouse lung, as well as the complete 

abolishment of proinflammatory cytokine induction in the mouse lung associated with the 

influenza disease. Taken together, this study demonstrates the strong potential the BC15-

HA/QTV/NA (PR8) virus possesses to serve as a replication-defective virus vaccine candidate 

against H7N9 influenza viruses.  
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CHAPTER 1 LITERATURE REVIEW 

1.1 INFLUENZA VIRUS 

1.1.1 Classification and nomenclature 

Influenza viruses contain segmented, negative-sense, single-stranded ribonucleic acid 

(ssRNA) genomes and are members of the Orthomyxoviridae family (Bouvier and Palese, 2011). 

Interestingly, the Orthomyxoviridae family also contains the genera’s Thogotovirus, Isavirus, 

and Quaranjavirus. Thogotovirus and Quaranjavirus are transmitted by ticks and infect a variety 

of mammalian species, including humans, where Isavirus primarily infects the fish population, 

specifically salmon (Acheson, 2011). Influenza viruses are categorized into four genera 

(Influenza A virus [IAV], Influenza B virus [IBV], Influenza C virus [ICV], and Influenza D 

virus [IDV]) based on the antigenic variances found on the two main structural components of 

the virion, the nucleocapsid (NP) and matrix (M) proteins (Couch, 1996; Noda, 2011). Among 

the four genera of influenza viruses, IAV is the most prevalent due to its ability to produce 

variants through mechanisms such as antigenic shift and antigenic drift. These variants of IAV 

are grouped into subtypes based on the antigenic differences found on the hemagglutinin (HA) 

and neuraminidase (NA) glycoproteins. Antigenic shift and antigenic drift have also led to 

different variants within the HA subtypes, known as group 1 and group 2 for IAV. Within IAV, 

group 1 includes the H1 clade (H1, H2, H5, H6, H11, H13, and H16), and the H9 clade (H8, H9, 

and H12). Group 2 includes the H3 clade (H3, H4, and H14) and the H7 clade (H7, H10, and 

H15). The two other HA subtypes (H17 and H18) have only been recently discovered in bats 

(Shao et al., 2017). Currently, 18 HA subtypes and 11 NA subtypes have been identified for 

IAV, although it is hypothesized that more will arise in the upcoming years (Subbarao, 2019).  

The categorization of IAV, IBV, ICV, and IDV viruses is not only based on the antigenic 

variances found on the NP and M proteins, but also the permissive species and the severity of the 

disease. The permissive species IAV infects comprises a range of mammalian hosts, including 

wild birds, bats, pigs, whales, horses, seals, cats, dogs, and humans, whereas the permissive 

species for IBV although mainly restricted to humans, has also been isolated from dogs, 

pheasants, seals, and pigs (Shao et al., 2017; Subbarao, 2019). IAV and IBV have been the main 

subtypes during the human seasonal epidemics, whereas IAV has been the main subtype during 

pandemics. This lack of IBV prevalence during pandemics has been attributed to its lack of 
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antigenic diversity and minimal reassortment potential; it is categorized into two distinct 

lineages: the Victoria-like lineage (B/Victoria/2/1987) and the Yamagata-like lineage 

(B/Yamagata/16/1988) (Subbarao, 2019). The permissive species of ICV, like IBV, has been 

mainly limited to humans, except for some cases found in pigs and dogs. Although ICV 

frequently infects humans, its severity and proportion compared to IAV and IBV infections is 

lower (Subbarao, 2019; Webster et al., 1992a). The permissive species of IDV has mainly been 

cattle, with studies showing cattle to be the original host. Interestingly, although cattle are the 

primary host for IDV, antibodies have also been detected among sheep, goat, equine, and camel 

populations. These antibodies against IDV have also been isolated among humans who work 

with cattle, raising the concern for the potential of IDV to infect humans (Ferguson et al., 2016; 

Subbarao, 2019).  

Besides the antigenic variances, the permissive species, and the severity of the disease, the 

different types of influenza virus can also vary both morphologically and genetically. 

Morphologically, IAV and IBV can be spherical or filamentous, and thus cannot be 

differentiated by electron microscopy (Bouvier and Palese, 2011). However, ICV has been found 

to form ICV-specific cord-like structures (CLSs) inside infected cells besides spherical and 

elliptical virions, allowing them to be differentiated from IAV and IBV (Nakatsu et al., 2018). 

Genetically, IAV and IBV are composed of an RNA genome with eight segments, whereas the 

genomes of ICV and IDV are comprised of only seven segments. However, the single-stranded, 

negative-sense RNA nature is consistent among the four types of influenza virus (Bouvier and 

Palese, 2011; Ferguson et al., 2016; Nakatsu et al., 2018).  

For the nomenclature system of influenza virus, a World Health Organization (WHO) 

standard was developed in the 1980s. This system uses the following information in consecutive 

order: virus type; species of isolation (for non-human); place of isolation; isolate number; isolate 

year; and for IAV, the HA and NA subtype (CDC, 2017). For example, the nomenclature: 

A/British Columbia/01/2015 (H7N9) denotes this IAV was isolated from humans in British 

Columbia, Canada as isolate number 1 in the year 2015, and has the H7N9 subtype based on the 

HA and NA characteristics. 
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1.1.2 IAV virion structure 

IAVs are enveloped virions that can be spherical or filamentous, ranging in a diameter of 

80 to 120 nanometers (nm) if in the spherical form, and up to 300 nm if in the filamentous form, 

with filaments about 20 micrometers (µm) in length (Acheson, 2011; Bouvier and Palese, 2011). 

Interestingly, the shape of IAV is partly determined on whether the strain is laboratory-adapted, 

egg-adapted, or directly isolated from clinical samples. If a strain is laboratory-adapted its shape 

is predominately spherical or elliptical, whereas strains found in clinical isolates are mostly 

filamentous, and egg-adapted strains lose this filamentous morphology to become spherical 

(Bouvier and Palese, 2011). Although the underlying biological functions of these morphologies 

are currently unknown, researchers have attempted to understand these functions by focusing on 

the various viral and host determinants. For example, researchers have alluded to the matrix 1 

(M1) and matrix 2 (M2) proteins being essential components for the development of the 

filamentous morphology (Noda, 2011). It has also been demonstrated that a filamentous clinical 

isolate can become a spherical virus through repetitive passaging in chicken eggs (Badham and 

Rossman, 2016). These findings, along with many others, have led researchers to believe the 

filamentous morphology to be vital for influenza’s existence in the environment (Noda, 2011).  

The outer lipid envelope of IAV is formed during the budding process of the replication 

cycle (Acheson, 2011; Noda, 2011). Embedded and protruding from this envelope to form 

distinctive spikes are the two proteins, HA and NA, found at a four to one proportion. While HA 

and NA are both composed of identical subunits, HA forms a spike-like trimer, and NA forms a 

mushroom-like tetramer (Gamblin and Skehel, 2010). The M2 protein that spans the lipid 

envelope is found at a smaller ratio compared to the HA and NA, specifically, there is one M2 

ion channel per 101 - 102 HA molecules (Badham and Rossman, 2016; Bouvier and Palese, 2011; 

Chlanda et al., 2015). These three proteins, HA, NA, and M2 overlie M1, a virion protein that 

surrounds the virion core. The M1 protein is essential for the virions morphology and is found at 

the highest abundance compared to the other proteins (Bouvier and Palese, 2011; Noda, 2011). 

The M1 protein can also associate with influenza’s genome within the ribonucleoprotein (RNP) 

complex, acting as an anchor to hold HA, NA, and M2 in place (Badham and Rossman, 2016).  

Within the virion core of IAV resides the nuclear export protein (NEP, formerly known 

as non-structural protein 2, NS2) and the RNP complex. Although NEP is a non-structural 

protein, research has shown that it also possesses structural properties within the virion. For 
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example, the C-terminal domain of NEP has been shown to aid in the release of progeny viral 

RNP (vRNP) from the nucleus by binding to the M1 protein (Shimizu et al., 2011; Yasuda et al., 

1993). The RNP complex is composed of viral RNA (vRNA) and an RNA-dependent RNA 

polymerase (RdRp) that is coated with several NP (Figure 1.1). More precisely, each viral 

segment is encapsulated within several NP to generate an RNP complex. Each RNP complex 

contains its own heterotrimeric RdRp, made up of the polymerase basic protein 2 (PB2), the 

polymerase basic protein 1 (PB1), and the polymerase acidic protein (PA) (Baudin et al., 1994; 

Bouvier and Palese, 2011). These components contribute to maintaining the virion structure of 

IAV. 

 

Reprint with permission from [RightsLink®]: [Springer Nature] [Nature Reviews Disease 

Primers] [Influenza, Florian Krammer, Gavin J. D. Smith, Ron A. M. Fouchier, Malik Peiris, 

Katherine Kedzierska, Peter C. Doherty, Peter Palese, Megan L. Shaw, John Treanor, Robert G. 

Webster & Adolfo García-Sastre], [License Number 4690830306430] [2018]. Figure 

description modified from the original article. 

 

https://www.nature.com/articles/s41572-018-0002-y#auth-11
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Figure 1.1. IAV virion structure. 

IAVs are composed of negative-sense RNA within an enveloped virus particle, with genomes 

composed of eight ssRNA segments. The viral genome of IAV is derived from the following 

viral proteins that possess precise functions; (i) PB2, PB1, and PA generate the viral RdRp. They 

are the three largest RNA segments and function in RNA synthesis and viral replication; (ii) HA 

and NA are the two glycoproteins, where HA functions as a sialic acid receptor binding protein, 

and NA aids in the release of viruses; (iii) NP binds the RNA genome; (iii) M1, M2, NS1 (not 

shown), and NEP protein. The M1 protein supports the structure of the virion. The M1 and NEP 

monitor the movement of vRNA segments. The M2 protein acts as a proton ion channel that 

maintains the pH across the viral envelope and trans-Golgi membrane. The NS1 protein 

functions as a virulence factor by inhibiting the antiviral response induced in the host.  

 

1.1.3 Genome structure and organization 

IAV is a negative-sense, ssRNA virus that consists of eight different segments (PB2, PB1, 

PA, HA, NP, NA, M1, M2, and NS1) numbered according to their length, in decreasing order 

(Figure 1.1). These segments encode at least 17 gene products: PB2, PB1, PB1-F2, PA, HA, NP, 

NA, M1, M2, NS1, NEP/NS2, PB1-N40, PA-X, PA-N155, PA-N182, M42, and NS3 (Vasin et 

al., 2014). Interestingly, each IAV segment is composed of conserved sequences at the 5’ and 3’ 

non-coding regions (NCR) that enable universal amplification of all IAVs with a single primer 

set (Figure 1.2). The 5’ NCR has 13 conserved nucleotides, while the 3’ NCR has 12 conserved 

nucleotides. These conserved sequences are followed by a segment-specific NCR that allows the 

individual amplification of the different segments (Hoffmann et al., 2001). 
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Reprint with permission from [RightsLink®]: [Springer Nature] [Archives of Virology] 

[Universal primer set for the full-length amplification of all influenza A viruses, E. Hoffmann, J. 

Stech, Y. Guan, R. G. Webster, D. R Perez], [License Number 4690840683391] [2001]. Figure 

description modified from the original article. 

Figure 1.2 Schematic representation of the conserved terminal regions of the eight 

segments of IAV vRNA and the universal primers. 
A. Each NCR of the vRNA segments is different by length and sequence, although each is 

unique for the eight segments. There are 13 conserved nucleotides at the 5’ terminus, and 12 

conserved nucleotides at the 3’ terminus. The dotted line for each vRNA segment parallels to the 

NCR of the vRNA segment. 

B. These primers were created to contain complementary sequences to the conserved sequences 

of the segment-specific influenza virus. 

 

The PB2 protein is the largest protein found within IAV and is encoded by the RNA 

segment 1. This enzymatic protein is part of the RdRp and is capable of undergoing a mechanism 
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known as cap snatching. This mechanism entails PB2 binding to the hosts 5’-capped structure 

found on eukaryotic messenger RNA (mRNA), and then using this host structure as a primer to 

initiate viral transcription (Acheson, 2011; Graef et al., 2010). The PB2 protein also seems to 

play a role in determining the viral replication efficiency in various hosts; for example, if PB2 

possesses the amino acid (aa) glutamic acid (E) at position 627, it preferentially replicates in 

avian species, while a lysine (K) at this position results in the preferential amplification in 

mammalian species (Hatta et al., 2001b). In conjunction with the viral replication efficiency, 

PB2 may also affect the virulence of IAV through its interaction with the mitochondrial antiviral 

signalling (MAVS) protein to inhibit interferon-beta (IFN-β) expression. This role is supported 

by research that has found PB2 to not only accumulate in the nucleus but also in the 

mitochondria (Graef et al., 2010). 

 RNA segment 2 was originally known to encode at least two proteins, the PB1 protein, 

and in some IAV strains, a small 87-aa protein, PB1-F2 (Bouvier and Palese, 2011). However, a 

third protein, PB1-N40, was recently discovered to be an N-terminally truncated form of PB1 

(Wise et al., 2009). In addition to the PB2 protein, the PB1 protein is the second polymerase 

subunit found within the RdRp. This protein functions mainly as a nuclease, cleaving cellular 

pre-mRNAs at either adenosine (A) or guanine (G) approximately 10 to 13 nucleotides from the 

5’-cap. This cleavage results in the PB2 complex, coupled to the capped structure that binds viral 

genome RNA, to initiate RNA elongation (Acheson, 2011). 

 A second reading frame in a +1 open reading frame (ORF) orientation translates the other 

protein encoded by RNA segment 2, PB1-F2. Although this protein is only found in some IAV 

strains, it has been found to have pro-apoptotic activity, contribute to viral pathogenicity, and be 

localized to the mitochondria (Acheson, 2011; Bouvier and Palese, 2011). The PB1-F2 protein 

co-localizes with MAVS to inhibit IFN production and potentially increases viral pathogenicity. 

The influenza pandemics that occurred in 1918, 1957, and 1968, along with the H5N1 pandemic 

all possessed the PB1-F2 protein. Interestingly, the increased virulence associated with the 1918 

and H5N1 pandemics could be associated with an asparagine (66N) to serine (66S) mutation at 

aa-66 (Varga et al., 2011). However, not all influenza pandemic strains possess this protein: the 

2009 H1N1 pandemic influenza virus lacks the PB1-F2 protein due to three stop codons within 

its genome that prevent it from being expressed (Hai et al., 2010). The PB1-F2 protein has also 

not been found in IBV or ICV (Bouvier and Palese, 2011).  
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 The third protein encoded by RNA segment 2, PB1-N40, is an N-terminally truncated 

form of PB1 that is 718 aa in length. This protein has been detected in several IAV, including 

human, equine, and avian strains. PB1-N40, translated because of leaky ribosomal scanning, is 

undistinguishable from PB1 apart from the 39 aa deleted at the N-terminal that play an essential 

role in the interaction with PA. Although there are conflicting hypotheses on the functionality of 

PB1-N40, research has agreed that while PB1-N40 expression is essential for virus replication in 

vitro and in vivo, it is dispensable for the viability of IAV. Therefore, PB1-N40 plays an essential 

role in controlling the balanced expression of PB1 and PB1-F2 so that influenza virus can 

maintain its viral fitness (Tauber et al., 2012; Wise et al., 2009). 

 RNA segment 3 encodes the third member of the RdRp, the PA protein (Acheson, 2011). 

This segment is also capable of translating three other proteins, PA-X, PA-N155, and PA-N182 

(Vasin et al., 2014). Although the definite function of PA is currently unknown, there are many 

hypotheses. For example, certain regions of the PA protein might be involved in vRNA and 

complementary RNA (cRNA) promoter binding (Maier et al., 2008). The PA protein may also 

play an essential role in transcription and replication through the proper assembly and packaging 

of vRNA into the IAV virions (Regan et al., 2006). Other studies have alluded to the PA protein 

possessing proteolytic activity through the introduction of point mutations, although the overall 

importance of this activity for influenza virus is unknown (Huarte et al., 2001). 

 A second reading frame in a +1 ORF translates the second protein encoded by RNA 

segment 3, PA-X (Vasin et al., 2014). PA-X is generated through the fusion of the 191 aa N-

terminal domain of PA with the 61 aa C-terminal domain produced by the second reading frame 

in a +1 ORF, called X-ORF (Jagger et al., 2012). The X-domain of PA-X has been found to be 

highly conserved among all IAV strains and all host species, alluding to its importance for the 

viral life cycle (Shi et al., 2012). PA-X has been shown to be involved in modifying the host 

response to influenza viral infection in a variety of manners. Some of these modifications include 

the degradation of host mRNA, the ability to shut-off host-cell gene expression to decrease the 

antiviral response mounted, and the ability to switch host ribosome functionality from the 

translation of host mRNA to viral mRNA (Jagger et al., 2012; Weber and Haller, 2007). The two 

other proteins encoded by RNA segment 3, PA-N155 and PA182, are N-terminal truncated 

forms of PA that are translated in-frame because of leaky ribosomal scanning (Muramoto et al., 
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2013). The functionality of these two proteins likely resides within the replication cycle of IAV, 

however, the exact mechanisms have yet to be discovered (Muramoto et al., 2013). 

 RNA segment 4 encodes one of the major glycoproteins found on the exterior surface of 

the virus, HA. HA has three major roles: (i) it enables attachment of the virus to the cell by 

interacting and binding to the sialic acid receptors found on the surface of the host cell (Bouvier 

and Palese, 2011); (ii) it enables the fusion of the viral envelope to the host endosomal 

membrane, allowing IAV to enter the cytoplasm and continue its replication cycle; and (iii) HA 

is the major antigen to which the immune system produces neutralizing antibodies against. For 

IAV to become infectious, cleavage of the HA single polypeptide precursor, HA0, must occur. 

The cleavage of HA0 is not only essential for infectivity but it also determines the pathogenicity 

and tissue tropism. The cleavage of HA0 most often occurs in the trans-Golgi network (TGN) or 

on the surface of the cell, and is induced by various host trypsin-like proteases to result in the 

formation of HA1 and HA2 connected by disulfide linkages. Two such trypsin-like proteases 

include TMPRSS2 (transmembrane protease serine S1 membrane 2) and HAT (human air-way 

trypsin-like protease). HA1 is composed of the N-terminus of HA0, while HA2 is composed of 

the C-terminus (Böttcher et al., 2006; Masic et al., 2008; Skehel and Wiley, 2000). The cleavage 

of HA0 into HA1 and HA2 enables the exposure of a hidden fusion peptide found within HA2. 

Therefore, when HA undergoes its conformational change as a result of the low pH within the 

endosomes, the now exposed fusion peptide can induce fusion of the virus to the endosomal 

membrane (Figure 1.3) (Böttcher-Friebertshäuser et al., 2013).  

As mentioned above, the cleavage of HA0 results in the formation of HA1 and HA2 

connected by disulfide linkages. These two portions, HA1 and HA2, make up the globular head 

and stalk domain of HA in a homotrimer formation (Figure 1.4). More specifically, the globular 

head is composed of HA1 and contains the sialic acid receptor binding site, while the stalk 

domain is composed of the entire HA2 and some portions of HA1 (Bouvier and Palese, 2011). 

Unlike the globular head, the stalk domain is highly conserved among different IAV subtypes, 

which has been strongly taken into account with the development of a universal vaccine (Gao et 

al., 2017). 
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Reprint with permission from (Influenza HA Subtypes Demonstrate Divergent Phenotypes for 

Cleavage Activation and pH of Fusion: Implications for Host Range and Adaptation. Galloway 

S.E. et al. PLOS Pathogens. 2013. 9(2): e1003151. https://doi.org/10.1371/journal.ppat.1003151. 

Figure description modified from the original article. 

 

Figure 1.3. Structures of the conformations assumed by HA during the virus life cycle. 
The HA protein is a trimer. The HA1 subunit is blue, whereas the HA2 subunit is red. The fusion 

peptide region is yellow. (A) The arrow parallels to the cleavage loop that encloses the HA 

cleavage site. (B) Once proteolytic activation occurs, the N-terminus of HA2 subunit moves to 

form an intertwined connection with the fusion peptide pocket, priming for fusion. (C) Once a 

low pH occurs HA undergoes a conformational change to result in membrane fusion between the 

virus and endosomal membranes. 

https://doi.org/10.1371/journal.ppat.1003151
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Reprint with permission from [RightsLink®]: [Vaccine] [Elsevier] [The biology of influenza 

viruses, Nicole M. Bouvier, Peter Palese], [License Number 4690870265128] [2008]. Figure 

description modified from the original article. 

Figure 1.4. Ribbon diagram of an uncleaved HA monomer from the 1918 IAV (H1N1), the 

causative agent of the “Spanish flu” pandemic. 

The HA head is composed of the sialic acid receptor binding site. The stem is composed of 

helices A and B as well as the fusion peptide. The five antigenic sites around the HA head are 

Sa, Sb, Ca1, Ca2, and Cb. 

 

RNA segment 5 encodes the NP, which functions to bind and encapsidate newly 

synthesized vRNA (Acheson, 2011). There has also been evidence of NP playing a role in 

switching RNA synthesis from the production of mRNAs through transcription to the production 

of cRNA and vRNA through genome replication (Portela and Digard, 2002). NP also plays a 

major role in importing nucleocapsids from the cytoplasm to the nucleus by using a nuclear 
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localization signal (NLS) that interacts with the cellular importin-α factor. When the NP protein 

interacts with importin-α, it forms a complex which then interacts with importin-β, facilitating 

the entry of the nucleocapsids into the nucleus to promote transcription (Acheson, 2011).  

 RNA segment 6 encodes the NA protein, the other major surface glycoprotein in addition 

to HA. The NA protein is a mushroom-shaped integral membrane glycoprotein tetramer that 

traverses as well as protrudes from the viral envelope. The major role of NA is to release newly 

budded virions from the cell through cleavage of the sialic acid receptors, allowing the virions to 

spread to neighbouring cells. Interestingly, NA may also play a role in the entry of the virus into 

host cells (Bouvier and Palese, 2011). The NA protein is primarily known to intensify infectivity 

by reducing the virus aggregate formation through its removal of sialic acid residues on the viral 

envelope. Various antibodies and NA inhibitors, like oseltamivir and zanamivir, function in 

blocking the release of the budded virus to prevent infection of the neighbouring cells (Bouvier 

and Palese, 2011). 

 RNA segment 7 encodes two proteins, the M1 and M2 proteins. For IAV, the M1 protein 

is transcribed from RNA segment 7, while the M2 protein is transcribed by RNA splicing. The 

M1 protein is involved in the nuclear export of vRNA through its interaction with NEP, and is 

thought to play a role in the recruitment and assembly of various proteins at the plasma 

membrane. The M1 protein is also the bridge between vRNA and NP, allowing these two 

components to come together to form the RNP complex. Lastly, the M1 protein may be 

important for the initiation of the budding process, conceivably from the build-up of this protein 

underneath the lipid bilayer (Bouvier and Palese, 2011). 

 The M2 protein spans the lipid bilayer membrane and functions as an ion channel, 

essential for many processes of the influenza replication cycle (Bouvier and Palese, 2011). The 

M2 protein is a small 97-aa protein found as a tetramer composed of a short periplasmic domain, 

a transmembrane domain, and a cytoplasmic tail (Acheson, 2011; Cady et al., 2009). The M2 

protein is found at a lower abundance compared to HA (1:10 - 100), and its primary function is 

to allow protons to travel through the viral envelope so that the desired pH can be maintained for 

viral entry, replication, and maturation. For example, when the endosome activates its low pH, 

this triggers the M2 channel to open and allow protons to enter the virion, resulting in 

acidification. This acidification has been hypothesized to dwindle the interaction between M1 

and RNP so that when fusion occurs, the RNPs can be released into the cytosol (Bouvier and 
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Palese, 2011). The M2 protein is also the main target for the anti-influenza drugs amantadine and 

rimantadine. These drugs block the proton channels from functioning and thus block the release 

of nucleocapsids and the continuation of infection. Interestingly, the M2 protein possesses a 

conserved region essential for its functionality that is composed of a His-XXX-Trp motif (with X 

being any aa). This motif functions as a proton gate, controlling the flow of protons across the 

channel to maintain the desired pH. This conserved region has not only been found in IAV but 

also in IBV as well as some genotypes of hepatitis C virus (HCV) (Acheson, 2011; Cady et al., 

2009). An additional protein that is encoded by RNA segment 7 is the M42 protein, which is 

generated by leaky ribosomal scanning (Wise et al., 2009). This protein is capable of acting in 

place of the M2 protein when it is functionally absent (Vasin et al., 2014).  

 RNA segment 8 encodes at least two non-structural proteins by alternative splicing, NS1 

and NEP (Vasin et al., 2014). The NS1 protein is known as an antagonist of IFN, while the NEP 

is known for its involvement in the exportation of vRNP from the nucleus (Bouvier and Palese, 

2011). The NS1 protein is collinearly expressed and consists of 230-aa, while the NEP protein is 

formed by alternative splicing and contains 121-aa. The N-terminal RNA-binding domain (RBD, 

aa 1 - 73) and the C-terminal effector domain (aa 74 - 237) are the two domains of the NS1 

protein whose functionalities are essential for the replication of IAV (Lin et al., 2007). The N-

terminal domain of the NS1 protein functions in binding to double-stranded RNA (dsRNA) to 

suppress the antiviral state induced by dsRNA-dependent protein kinase R (PKR) and 2’, 5’-

oligoadenylate synthetase. The C-terminal domain is composed of three functional domains: 

eIF4GI, the 30 kDa subunit of the host cell proteins cleavage and polyadenylation specificity 

factor (CPSF30), and the poly (A)-binding protein II (PABII) domain. These domains function 

by interacting with host cellular proteins such as CPSF or PABII to result in cellular mRNAs 

unable to cleave the 3’-end and perform polyadenylation. The NS1 protein has also been 

implicated in suppressing the innate cellular antiviral response by inhibiting the cytoplasmic and 

nucleic sensor, retinoic acid-inducible gene-I (RIG-I), which blocks the IFN response factor-3 

(IRF3) from inducing IFNs and thus the antiviral response (Acheson, 2011; Lin et al., 2007; Liu 

et al., 2018). 

 A third protein recently found to be encoded by RNA segment 8, NS3, is a protein 

expressed in only some IAV strains (Vasin et al., 2014). This protein arises due to a D125G 

mutation that creates a third novel donor splice site in NS1 that allows NS3 to be expressed 
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(Selman et al., 2012). The NS3 protein is very similar to the NS1 protein, with the only 

difference being that the NS3 has a deletion from codons 126 - 128 in NS1 that causes a three 

antiparallel beta-strand motif to be deleted (Selman et al., 2012). Interestingly, this particular 

mutation has been shown to have a replicative gain-of-function, with viruses that have recently 

jumped to a new species acquiring this protein. Specifically, this protein was discovered in 33 

IAV strains that recently jumped from avian to mammalian hosts, such as human, swine, and 

canine. These findings, therefore, allude to the potential role NS3 plays in both host adaptation 

and spilling over into new species (Selman et al., 2012).   

 

1.1.4 Elastase 

Elastase, a serine protease, was first discovered in the 1950s and was found to be capable 

of hydrolyzing elastin fibres found within the aorta. In mammals it is known to primarily reside 

within the pancreas and pancreatic juice, although it has also been found in human serum (Appel, 

1974; Kuhn and Senior, 1978). The lung neutrophils and alveolar macrophages are the two main 

sources from which endogenous elastase originates in the human serum. The neutrophil elastase 

is found intracellularly within granule cells, and is primarily involved in immune responses 

against bacteria (Gramegna et al., 2017; Kuhn and Senior, 1978). The biological function of 

elastase is to digest a major protein, elastin, that functions in maintaining tissue elasticity 

(Tamada et al., 2009). This digestion occurs through elastase cleaving elastin at its peptide bond, 

allowing the digestion of various foods, such as meat (Berg et al., 2007). Elastin also enables the 

skin to become flexible yet maintain its rigidity during various activities, such as the contracting 

of a muscle. Elastin, together with collagen, another important structural protein found within 

connective tissue, muscle, and skin, both aid in the mechanical functions of the various tissues 

(Tamada et al., 2009). Maintaining the proper enzymatic activity of elastase is, therefore, vital 

for the health of the host, as an overactive elastase can result in detrimental effects. These 

detrimental effects are rooted in the mass breakdown of elastin throughout the body, which can 

lead to conditions such as pulmonary emphysema or vessel wall aneurysms, which are 

characterized by lower tissue stiffness (Black et al., 2008). Equally, the use of elastase within 

science has immensely proven its usefulness towards the development of influenza virus 

vaccines. Researchers have created elastase-sensitive HA cleavage sites within the influenza 

viruses, and these viruses have proven their immunogenicity and protective efficacy in both mice 
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and pigs (Babiuk et al., 2011; Gabriel et al., 2008; Masic et al., 2008; Masic et al., 2009; Masic 

et al., 2010; Stech et al., 2011; Stech et al., 2005). Moreover, studies have shown immunizations 

derived from elastase to have enhanced antibody responses compared to immunizations derived 

from other proteases, such as trypsin (Darani and Doenhoff, 2009; Sokol et al., 2000). 

 

1.1.5 Replication cycle 

IAV initiates infection in the respiratory tract by entering through aerosols or fomites 

(Racaniello, 2009). After entry into the respiratory tract, the HA homotrimer spikes on the 

surface of IAVs lipid membrane attach to the sialic acid receptors (also known as N-

acetylneuraminic acid) on the host epithelial cells to initiate entry into the cell (Figure 1.5) 

(Skehel and Wiley, 2000). Sialic acid can be bound to carbohydrates in two forms: α-2,3 or α-

2,6-galactose linkages, which can influence which influenza strains can bind and enter the host 

cell. IAVs of human origin prefer the α-2,6- galactose linkage present in the bronchiolar 

epithelial cells of the human upper respiratory tract (URT), while IAVs of avian origin identify 

with the α-2,3-galactose linkage present on the epithelial cells of both bird intestines and the 

human lower respiratory tract (LRT) (Bouvier and Palese, 2011; Lee et al., 2018; Samji, 2009; 

Shao et al., 2017). On the other hand, pigs and a number of avian species (pheasants, turkeys, 

and quails) are considered “mixing vessels,” because they have both the α-2,3 and α-2,6-

galactose linkage receptors, and thus pose risks towards the generation of reassortant viruses that 

may be of pandemic potential (Scholtissek, 1995; Shao et al., 2017). Interestingly, humans have 

also been proposed as a potential mixing vessel for the reassortment of influenza virus. In 2013, 

a patient from China had tested positive for both H7N9 and H3N2 influenza viruses, which was 

previously unheard of (Zhu et al., 2013). This individual, therefore, underlies the theory of 

humans acting as a mixing vessel and aiding human-to-human transmission.  

After influenza has bound to the sialic acid residues, the next step is receptor-mediated 

endocytosis. The most common method is clathrin-mediated endocytosis, although other 

clathrin/caveolin-independent mechanisms, as well as macropinocytosis, have been demonstrated 

(Edigner et al., 2014; Grove and Marsh, 2011; Sieczkarski and Whittaker, 2002; Vries et al., 

2011). Macropinocytosis is a process where large endocytic vesicles called macropinosomes 

form to absorb the incoming virus through an actin-dependent formation (Edigner et al., 2014). 



 16 

Interestingly, the mode of entry may vary depending on the cell-type, thus warranting further 

research to answer these findings (De et al., 2011). 

 After internalization of IAV into the host cell through receptor-mediated endocytosis, the 

low pH inside the endosome (pH 5.0 – 6.0) induces a conformational change on the HA protein, 

altering its precursor form, HA0. This conformational change results in HA1 and HA2 shifting 

such that HA2 is visible at the N-terminus, enabling the insertion of the fusion peptide to the 

endosomal membrane, and thus fusion between the virus and the endosome (Hamilton et al., 

2012; Stegmann, 2000). When the low pH within the endosome occurs, not only does fusion 

result between the virus and endosome, but it also aids the release of vRNP to the cytoplasm 

through the opening of the M2 ion channel (Samji, 2009). This activation of the M2 ion channel 

occurs in the early endosome environment, consisting of a pH 6.0 - 6.5, as well as in high sodium 

and low potassium concentrations (Manzoor et al., 2017). When the M2 ion channel is activated, 

there is an influx of protons from the endosome to the virion, which enables the dissociation of 

the M1 protein from the vRNP and the viral envelope, and allows vRNP to be released into the 

cytoplasm to complete the uncoating process (Pinto et al., 1992). 

 Once the vRNP have entered the cytoplasm, they are transported to the nucleus of the 

host cell where transcription and replication occur (Herz et al., 1981). IAV is unique in its 

transcription and replication process such that it takes place entirely in the host cell nucleus, 

unlike other RNA viruses where these processes occur in the cytoplasm (Shao et al., 2017). The 

vRNP are transported to the nucleus by both the nuclear localization sequence 1 (NLS1) and 

nuclear localization sequence 2 (NLS2) found on NP (Wu et al., 2007). In the nucleus, the RdRp 

initiates transcription by binding to the 5’-caps of host pre-mRNA, a process called ‘cap 

snatching,’ to transcribe negative sense vRNA into viral mRNA (Neumann et al., 2000; Reich et 

al., 2014). The viral mRNA is then transported to the cytoplasm through the NXF1 pathway, 

where it is used as a template for the translation of the viral proteins (Hay et al., 1977; York and 

Fodor, 2013).  

As the viral proteins are being translated, PB2, PB1, PA, and NP are transported back to 

the nucleus where they are used in the formation of progeny vRNP (Li et al., 2015). 

Simultaneously, as the viral proteins are translated the negative sense vRNA is replicated into 

intermediate cRNA. The cRNA is encapsulated within PB2, PB1, PA, and NP and used to 
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replicate the influenza genome and create progeny vRNP (York and Fodor, 2013). The progeny 

vRNP then form a complex with NEP and M1 to aid in the exportation of the vRNP from the 

nucleus to the cytoplasm by the CRM1 pathway (Paterson and Fodor, 2012; Watanabe et al., 

2014). Concurrently, as HA, NA, and M2 proteins are translated at the endoplasmic reticulum 

(ER), they are transported to the plasma membrane through the TGN (Ohkura et al., 2014). Once 

the vRNP reach the plasma membrane, they are packaged into progeny virions and released from 

the cell by budding and cleavage of the sialic acid residues by NA, allowing the virions to infect 

the neighbouring cells (Matrosovich et al., 2004; York and Fodor, 2013). 

 

Reprint with permission from [RightsLink®]: [Springer Nature] [Nature Reviews Disease 

Primers] [Influenza, Florian Karmmer, Gavin J. D. Smith, Ron A. M. Fouchier, Malik Peiris, 

Katherine Kedzierska, Peter C. Doherty, Peter Palese, Megan L. Shaw, John Treanor, Robert G. 

Webster & Adolfo García-Sastre], [License Number 4690830306430] [2018]. Figure 

description modified from the original article. 

 

Figure 1.5. Influenza virus life cycle. 

The entry of the influenza virus occurs through endocytosis, which is followed by transport of 

the vRNP to the nucleus. These vRNP then undergo transcription into mRNA or replication 

through a cRNP intermediate. The mRNA is translated into the various viral proteins in the 

cytoplasm, where these proteins are assembled at the plasma membrane with the newly 

synthesized vRNP to create progeny virions.  

https://www.nature.com/articles/s41572-018-0002-y#auth-11
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1.1.6 Evolution and Genetics 

IAV is a challenging virus for public health control measures because of its complex 

evolutionary characteristics, both internal and external. The mechanisms by which IAV 

internally evolves includes antigenic drift, antigenic shift, and less often, recombination. 

Antigenic drift is a subtle evolutionary mechanism where mutations gradually accumulate on its 

segmented genome, while antigenic shift is a dramatic mechanism where different strains of IAV 

reassort to produce an entirely new strain (Bouvier and Palese, 2011; Shao et al., 2017). These 

evolutionary changes are the primary reason for the annual epidemics and less frequent 

pandemics that affect public health. Besides these complex internal evolutionary characteristics, 

IAV is also capable of evolution through external factors, such as the environment and the 

susceptibility of its host. One of the environmental features includes China’s live-poultry 

markets (LPMs), while one of the host features include the classification of IAV as a zoonotic 

virus (Su et al., 2017). IAV uses its wide range of permissive species to evolve through 

spillovers from an animal restricted pathogen to humans or to generate novel variants through the 

mixing of different influenza subtypes (Shao et al., 2017; Webster et al., 1992b). Therefore, IAV 

poses a serious threat to public health, where the complex internal and external evolutionary 

characteristics hinder the progress towards controlling the spread and developing effective 

annual and universal vaccines (Shao et al., 2017). 

One of the internal evolutionary mechanisms, antigenic drift, enables IAV to escape the 

immune system, alter the binding preference, and enhance its overall fitness. This mechanism 

occurs through the accumulation of point mutations in HA and NA from the error-prone RdRp. 

These point mutations accumulate at a rate of 10-3 - 10-4, which eventually results in the hosts 

neutralizing antibodies becoming ineffective against that particular strain. These neutralizing 

antibodies become ineffective because of the point mutations changing the antigenic sites on the 

virus, allowing IAV to escape the immune system (Acheson, 2011; Bouvier and Palese, 2011; 

Shao et al., 2017). 

Antigenic drift has also been implicated in altering the binding preference of HA to α-2,3 

or α-2,6 sialic acid residues on the host cell by introducing aa substitutions (Shao et al., 2017). 

For example, one study found that the aa substitutions G186V and Q226L enabled the avian 

influenza H7N9 virus that preferentially binds to α-2,3 sialic acid receptors, to bind to human-
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like α-2,6 sialic acid receptors (Dortmans et al., 2013). These substitutions among aa can also 

occur in viral proteins other than HA if it is advantageous for the overall fitness and evolution of 

IAV. For example, the E627K mutation in PB2 has been associated with enhancing the 

polymerase activity and replication ability in human cells and is one of the main factors that 

determines the host range of avian IAV (Shao et al., 2017). More detrimentally, some aa 

mutations can result in a low pathogenic avian influenza (LPAI) virus becoming a highly 

pathogenic avian influenza (HPAI) virus. In general, LPAI viruses are only capable of causing 

mild disease in avian species, whereas HPAI viruses are capable of causing severe disease in 

avian species. HPAI viruses also more frequently cause epidemics, with the most common HPAI 

viruses in nature being the H5 or H7 HA subtypes (Spickler, 2016). The classification of IAV 

into LPAI or HPAI is determined by both the severity of the virus and specific genetic features 

found on the HA cleavage site. Classification based on the severity of the virus is determined by 

the lethality in young chickens that are intravenously inoculated in a laboratory (Spickler, 2016). 

Classification based on specific genetic features is determined by the composition of aa found on 

the HA cleavage site. LPAI viruses are composed of one basic aa at the HA cleavage site (ex. 

PEKQTR/GLF) restricting HA cleavage to a limited number of cellular proteases (Offlu, 2019). 

These cellular proteases are often trypsin-like proteases, such as TMPRSS2 (transmembrane 

protease serine S1 membrane 2) and HAT (human air-way trypsin-like protease) which have 

restricted tissue tropism to the respiratory and intestinal systems, limiting the spread of IAV 

throughout the body (Böttcher-Friebertshäuser et al., 2013). Conversely, HPAI viruses are 

composed of a multiple basic aa HA cleavage site (ex. PQRESRRKK/GLF), enabling HA 

cleavage by multiple cellular proteases (Offlu, 2019). These cellular proteases capable of 

cleaving the multiple basic aa are ubiquitously found throughout the body (ex. furin), which 

increases the capability of IAV to systemically spread throughout the body (Böttcher-

Friebertshäuser et al., 2013). Interestingly, Qi et al. discovered that the LPAI H7N9 virus 

evolved to an HPAI H7N9 virus through the insertion of four basic aa on the HA cleavage site, 

which is characteristic of HPAI viruses. They also found several other mutations, including 

S31N of M2 and E627K, A588V, and K526R of PB2, all of which enhanced the overall fitness 

of H7N9 IAV (Qi et al., 2018).  

The second internal mechanism IAV possesses, antigenic shift, is another major 

contributor to the evolution of IAV. Antigenic shift enables the generation of entirely new strains 
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and/or subtypes through the reassortment of the segmented genomes of genetically diverse IAVs. 

This mechanism is a rapid change, most often occurring through IAV obtaining either the HA, 

NA, or both segments from an entirely different subtype. Less often, antigenic shift can involve 

subtypes from both human and animal viruses. Unfortunately, if mixing of two or more IAV 

strains from different species occurs, it can cause pandemics because of the lack of pre-existing 

immunity (Acheson, 2011; Bouvier and Palese, 2011). Antigenic shift is most often the primary 

reason for the generation of pandemic viruses, such as the 2009 H1N1 virus (Shao et al., 2017). 

This IAV pandemic virus was generated through the reassortment of the European H1N1 and 

North American H1N2 swine influenza virus (SIV), the North American avian IAV, and the 

H3N2 IAV (Dawood et al., 2009).  

The third internal evolutionary mechanism of IAV, genetic recombination, is a rarer 

occurrence compared to antigenic drift and antigenic shift. Genetic recombination in IAV occurs 

by two mechanisms: non-homologous recombination and controversial homologous 

recombination. Out of the two mechanisms, non-homologous recombination is the more frequent 

occurrence (Shao et al., 2017). Interestingly, although a rare event, it has been hypothesized that 

the H7N9 IAV pandemic in China may have arisen due to recombination. Phylogenetic analysis 

found a 291-nucleotide fragment from the HPAI H5N1 virus that had recombined inside the PB1 

segment of H7N9 (Chen et al., 2016). Similarly, evidence has alluded to recombination being 

essential for the evolution of various H5N1 viruses (Shao et al., 2017). Therefore, although a rare 

event, recombination may play a bigger role in the evolution of IAV than previously thought.  

Even though IAV possesses many internal evolutionary mechanisms, such as antigenic 

drift, antigenic shift, and recombination, the evolution of IAV is also facilitated through external 

factors, such as the environment and the susceptibility of the host. Research has shown China’s 

environment to be favourable for the generation of novel influenza subtypes as well as spillovers 

into new species. China’s favourable environment is partly attributed to its LPMs, where poultry 

are housed in small quarters with poor hygiene. These LPMs facilitate the transportation and 

mixing of IAV strains to generate novel variations through either the long-distance transportation 

of poultry to their destination or the close contact between poultry and other species (Su et al., 

2017). Another external factor that can contribute to the evolution of IAV is the diversity of 

China’s ecosystem. The ecosystem of China is unique because it is home to a variety of species 
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that often come in close contact to humans and poultry, such as birds, dogs, cats, pigs, and ferrets 

(Guan and Smith, 2013). Some species, such as pigs, can serve as ‘mixing vessels,’ to aid in the 

generation of novel influenza subtypes, and thus, contribute to the evolution of IAV (Ma et al., 

2009). This combinatorial effect of the close contact among poultry, humans, and other species 

in the LPMs enables the potential for novel influenza variants to arise and potentially infect 

humans, posing a substantial public health threat. One example that illustrates this threat is the 

H7N9 influenza virus because most human infections have resulted from close contact with 

poultry (Su et al., 2017). Therefore, the complex evolutionary mechanisms of IAV, both internal 

and external, have challenged the progress towards the development of both the annual seasonal 

vaccines and a universal vaccine candidate. 

 

1.1.7 Immunology of IAV 

IAV initiates infection by entering the respiratory tract of various animals through either 

aerosols or fomites (Racaniello, 2009). After IAV enters the respiratory tract, the airway mucosa 

epithelial cells are infected through the interaction between the sialic acid receptors found on the 

host epithelial cells and IAVs HA (Skehel and Wiley, 2000). IAV infection further advances to 

the lung macrophages and dendritic cells (DCs) found in the alveoli or lung epithelium where the 

inflammatory immune response is triggered. Throughout this process, various pattern recognition 

receptors (PRRs) can sense IAV and initiate an immune response. These PRRs include toll-like 

receptors (TLR), RIG-I, and the nucleotide-binding domain and leucine-rich repeat-containing 

proteins (NLRs) that consists of the NLR family pyrin domain-containing protein 3 (NLRP3). 

The TLR group encompasses four distinct types that function within the cytoplasmic endosomes: 

TLR3, TLR7, TLR8, and TRL9 (found in humans). TLR3 recognizes foreign dsRNA, which 

activates a cascade of events that ultimately leads to the activation of the nuclear factor kappa-

light-chain-enhancer of activated B cells (NF-κB) and IRF3. TLR7 and TLR8 recognize foreign 

ssRNA, which initiates the activation of NF-κB and IFN response factor-7 (IRF7). The cascade 

of events initiated by these TLR eventually leads to the production of various proinflammatory 

cytokines, type I IFNs, and IFN-stimulated genes (ISGs) (Iwasaki and Pillai, 2014; Kreijtz et al., 

2011). Unlike TLR3, TLR7, and TLR8, which function inside the cytoplasmic endosomes, RIG-I 

possesses a dual capability to function within the cytosol and the nucleus of the cell (Liu et al., 
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2018). RIG-I functions by recognizing 5’-triphosphate viral dsRNA produced after viral 

replication, which activates MAVS and leads to the activation of IRF3 and IRF7, as well as the 

production of various proinflammatory cytokines and type I IFNs (Chen et al., 2018; Iwasaki and 

Pillai, 2014). NLRP3 is expressed in many cell types including macrophages, DCs, and 

neutrophils. NLRP3 is activated upon IAV infection and requires two signals to result in the 

production of interleukin-1 beta (IL-1β) and interleukin-18 (IL-18) by the inflammasome (Chen 

et al., 2018; Iwasaki and Pillai, 2014). Interestingly, it has been found that when the NLRP3 

inflammasome is activated, a cascade of events including adapter protein apoptosis associated 

speck-like protein containing a CARD (ASC) speck formation and caspase-1 activation is 

induced, ultimately resulting in the production of IL-1β (Park et al., 2018). 

 As previously mentioned, the epithelial cells of the respiratory tract are the first cells 

infected with IAV. Upon infection, the alveolar macrophages are activated, which enables not 

only phagocytosis of the IAV infected cells, but also initiation of the antiviral response to result 

in the production of various proinflammatory cytokines such as tumour necrosis factor alpha 

(TNFα), IL-6, and interleukin-1 beta (IL-1β) (Chen et al., 2018; Park et al., 2018). These 

cytokines are paramount for the elimination of IAV and the control of inflammation because they 

aid in the recruitment of various innate immune effector cells such as macrophages, natural killer 

(NK) cells, DCs, monocytes, and neutrophils to the site of infection by increasing the adhesion of 

leukocytes to the endothelium. DCs constantly survey the area for pathogen-associated molecular 

patterns (PAMPS), and upon encounter, they phagocytize the virus, functioning as an antigen-

presenting cell (APC). These APCs then migrate from the lungs to the lymph nodes where they 

present their viral antigens in the form of peptides (epitopes) to naïve T lymphocytes, thereby 

activating the T cells and the adaptive immune response. Therefore, DCs are essential for linking 

the innate and adaptive immune responses (Chen et al., 2018).  

The epitopes found on the APCs can be presented to naïve T lymphocytes through either 

the major histocompatibility complex (MHC) class I or II molecules. MHC class I molecules 

present endogenous antigens that originate in the cell’s cytoplasm, whereas MHC class II 

molecules present exogenous antigens that originate extracellularly. Specifically, MHC class I 

molecules present peptides from IAV that were degraded in the proteasome, whereas MHC class 

II molecules present IAV peptides that were degraded in either the endosomes or lysosomes. The 

type of MHC molecule that is presented to a naïve T lymphocyte will dictate whether CD4+ T-
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helper (Th) cells or CD8+ cytotoxic T cells (CTL) are generated. In general, MHC class II 

molecules are presented to CD4+ Th cells and MHC class I molecules are presented to CD8+ 

CTLs (Kreijtz et al., 2011). The CD4+ Th cells can be divided into two different groups based on 

the predominant cytokines generated: T-helper cell type 1 (Th1) and T-helper cell type 2 (Th2). 

Th1 cells predominately generate antiviral cytokines such as IFN-gamma (IFN-γ), interleukin-2 

(IL-2), and tumour necrosis factor beta (TNFβ), which function in the cellular immune response 

against IAV. Conversely, Th2 cells produce interleukin-4 (IL-4), interleukin-5 (IL-5), 

interleukin-6 (IL-6), interleukin-9 (IL-9), interleukin-10 (IL-10), and interleukin-13 (IL-13) 

which function to induce antibody responses and activate B cells involved in the humoral 

immune response against IAV. T-helper cell type 17 (Th17) and regulatory T cells (Treg) have 

also been implicated in regulating the cellular immune response against IAV (Kreijtz et al., 2011; 

Romangnani, 2000). Upon activation of the CD8+ T cells, they differentiate into CTLs. Once 

differentiated they travel to the site of infection and function to contain viral replication and kill 

virus-infected cells through either the induction of apoptosis or Fas/FasL interactions. Apoptosis 

occurs through the release of perforin and granzymes from CTLs; perforin punches holes into in 

the virus-infected cells, allowing granzyme to enter and induce apoptosis (Chen et al., 2018; 

Kreijtz et al., 2011; Romangnani, 2000).  

After clearance of the IAV infection, memory CD4+ and CD8+ T cells act as a 

surveillance system for IAV epitopes they have previously mounted an immune response 

against. This surveillance system aids the rapid response against reinfections, potentially 

protecting against IAV infection. When a memory T cell recognizes an epitope, it activates naïve 

B cells to produce antibodies and block infection, a mechanism known as humoral immunity. 

Conversely, memory CTLs continue to circulate in the blood, lymphoid organs, and the site of 

initial infection, a phenomenon known as cellular immunity (Cheng et al., 2017; Kreijtz et al., 

2011). Interestingly, research has shown that memory CTLs may aid in the reduction of IAV 

disease and death in the absence of humoral immunity if the N subtype is the same between the 

two different subtypes. One study emphasized this concept, such that pigs vaccinated against 

H1N1 and subsequently challenged with H5N1 were completely protected, providing evidence 

of the dual properties these memory CTLs can possess (Van Reeth et al., 2009).  

Humoral immunity is initiated through a primary infection or a memory T cell activating 

a naïve B cell. When a naïve B cell becomes a mature B cell, this leads to the generation of 
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antibodies against HA and NA, with the production of these antibodies often associated with 

protection. Since HA is involved in the virus’s attachment to the cell, HA-specific antibodies 

block viral entry. Furthermore, since the primary function of NA is to release newly budded 

virions by cleaving sialic acid residues, NA-specific antibodies block the further spread of IAV 

infection. Both HA and NA antibodies also initiate Antibody-Dependent Cellular Cytotoxicity 

(ADCC), which further helps to remove the virus-infected cells (Kreijtz et al., 2011; Wong and 

Webby, 2013).   

Humoral immunity induced by IAV leads to the production of immunoglobulin A (IgA), 

immunoglobulin M (IgM), and immunoglobulin G (IgG) isotypes. IgA, also known as mucosal 

or secretory IgA (sIgA) is the main antibody detected at mucosal surfaces and is the first line of 

defence against infection because of its capability to eliminate IAV before it enters the 

respiratory tract. Interestingly, the non-inflammatory properties of IgA may play an important 

role in the control of HPAI strains because these strains characteristically present unrestrained 

proinflammatory responses (Kreijtz et al., 2011; van Riet et al., 2012). In comparison, IgG is the 

predominant antibody responsible for preventing the systemic dissemination of IAV, whereas 

IgM can indicate an active influenza infection. IgG and IgM can activate the inflammatory 

complement pathway, leading to the initiation of various inflammatory responses (Muramatsu et 

al., 2014; Skountzou et al., 2014; van Riet et al., 2012). Thus, induction of the various 

immunoglobulins is essential for the control of IAV infection. 

 

1.2 H7N9 INFLUENZA VIRUS 

1.2.1 Etiology and epidemiology 

The LPAI H7N9 virus potentially originated in the Yangtze River Delta Region of China 

in 2013, with the first identifications occurring in Zhejiang, Jiangsu, and Shanghai. The Yangtze 

River Delta Region has had the largest amount of H7N9 cases, while the Pearl River Delta 

Region, specifically in Guangdong, has had the second-largest amount of cases. Since its initial 

identification in 2013, there have been six epidemic waves in China (occurring each year from 

2013 to 2017). The WHO has defined each epidemic wave to begin on October 1 and end 

September 30 of the following year. Several studies have analyzed H7N9 to decipher its origin, 

concluding that H7N9 contains incredible genetic diversity. Some studies have concluded that 
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H7N9 originated from the reassortment of the H7 and N9 surface genes from wild birds, and the 

internal genes from poultry H9N2 viruses (Su et al., 2017). However, one study discovered that 

H7N9 potentially originated from the reassortment of H5N6 and H6N6 (Jin et al., 2017). These 

findings, along with others, have contributed to the conclusion that H7N9 is more diverse than 

previously thought. 

During the first four epidemic waves, there was a total of 798 cases and 328 deaths with a 

case fatality rate (CFR) of 40.6%. However, during the fifth wave, there was 766 cases and 288 

deaths, almost as many cases as the first four waves combined. The fifth wave also contained the 

emergence of the HPAI H7N9, resulting in quicker hospitalization rates and fewer days to onset 

of illness than the first four waves (Su et al., 2017; Yang et al., 2019). In the fifth wave, H7N9 

underwent a geographic expansion to China’s Western provinces, such as Chongqing city, 

Gansu, Sichuan, and Tibet. This geographic expansion highlights the threat that H7N9 poses, and 

the importance of vaccination programs to control the spread. The threat H7N9 poses is also 

highlighted in the high morbidity and mortality rates; as of April 9, 2017, 35% of patients who 

contracted H7N9 died, with CFR’s ranging from 33% to 45% for the LPAI H7N9 and HPAI 

H7N9, respectively (Su et al., 2017). As of March 4, 2020, H7N9 had resulted in 1,568 human 

cases and 616 deaths (FAO, 2020). 

Concerning the epidemiology of H7N9, most infections in the first four waves were in 

males (69%) over the age of 40 years. Interestingly, that prevalence shifted in the fifth wave, 

during which primarily male and female elderly to middle-aged adults were infected. Of note, 

most patients that died from infection had previous underlying medical conditions; ~53% of 

patients in waves one through four, and 63% of patients infected with the HPAI H7N9. Most 

patients who contracted H7N9 had previous exposure to live poultry (85 - 100% of infections), 

indicating the risk LPMs play in the spread and generation of new reassortment influenza viruses 

(Su et al., 2017).  

 Although most H7N9 infections have been mainly due to the exposure to the influenza 

virus through LPMs in China, other regions of the world are also at risk for contracting this 

disease. In January 2015, two individuals from Canada that had recently travelled to China 

contracted H7N9 (Skowronski et al., 2016). Luckily, these patients recovered; however, their 

infections highlight the risk of influenza spreading throughout the world due to increased travel, 

which stresses the importance of vaccination programs to help control the disease. 
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Throughout the six epidemic waves, most infections were attributed to the LPAI H7N9 

virus. However, the fifth epidemic wave in 2017 resulted in the emergence of the HPAI H7N9, 

which began infecting humans. The HPAI H7N9 virus possesses the insertion of four basic aa at 

the HA cleavage site (“KRTA,” “KRIA,” or “KRAA”). This insertion of a multibasic aa HA 

cleavage site is a characteristic feature for high virulence in HPAI viruses, such as H5N1 (Qi et 

al., 2018; Yang et al., 2019). Although there have only been a few human cases of the HPAI 

H7N9, there is a great potential of H7N9 gaining sustained transmission through antigenic shift 

and antigenic drift, which could cause a devastating pandemic. Apart from the HPAI H7N9 

possessing a multiple basic aa HA cleavage site, unique aa mutations exist that are distinct from 

the LPAI H7N9 virus. These mutations include Q226L, R292K, E627K, A588V, and K526R, 

which all seem to favor mammalian binding and enhance replication efficiency. The Q226L 

mutation is found in HA, where the occurrence of Q or L can dictate the receptor binding 

preference. Specifically, the 226Q mutation favours mammalian receptor binding and is 

prevalent in the HPAI H7N9 human infections, whereas the 226L mutation favours avian 

receptor binding. The R292K mutation in NA has been found in up to at least 75% of HPAI 

H7N9 cases (Qi et al., 2018). This mutation has been linked to the resistance towards various NA 

inhibitors, such as oseltamivir, which can decrease the effectiveness of these antiviral agents (Su 

et al., 2017). Other mutations such as E627K, A588V, and K526R found in the PB2 segment 

support increased replication ability in mammalian hosts, and have been found in up to 75% of 

the HPAI H7N9 human infections (Qi et al., 2018). For the A/British Columbia/01/2015 [BC15 

(H7N9)] strain isolate, the virus of study for my thesis, out of the aa mutations mentioned above, 

the only one present is E627K. This mutation on PB2, E627K, is known to be a key adaptation 

and virulence marker for influenza viruses. Research has shown that avian IAVs retain a 

glutamic acid (E) at this position, and mammalian IAVs retain a lysine (K). In order for an avian 

IAV to become infective in mammals, the 627E needs to be mutated to a 627K (Hatta et al., 

2001a). These mutations are important determinants for the viral replication efficiency in various 

hosts, with the 627K mutation allowing IAV to be more active in mammalian cells due to its 

strong interaction with the mammalian importin-α isoforms. These importin-α isoforms are 

important for the nuclear import of vRNP so that transcription and replication can occur, with the 

strong interactions with 627K enhancing these abilities (Gamblin and Skehel, 2010; Lee et al., 

2017b). Moreover, it has been found that the PB2 627 domain is not only vital for transcription 
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and replication of IAV, but also for the collection of the cRNA intermediates required for 

replication (Nilsson et al., 2017). Therefore, this E627K mutation on PB2 may aid in the 

pathogenesis of BC15 (H7N9), and may explain its ability to proficiently replicate in the human 

respiratory tract. 

Therefore, the generation of these aa substitutions through antigenic drift and antigenic 

shift highlight the importance of the development of a vaccine protective against the H7N9 IAV. 

Development of this vaccine could ultimately result in protection against the LPAI H7N9, and 

prevent the HPAI H7N9 from gaining sustained human-to-human transmission, which could 

result in a devastating pandemic. 

 

1.2.2 Clinical signs, pathogenesis, and diagnosis of H7N9 

Like most influenza viruses, H7N9 infection begins through the entry into the respiratory 

tract where it binds to sialic acid receptors on the host epithelial cells, enters the host, and then 

continues its replication cycle inside the host (Racaniello, 2009; Skehel and Wiley, 2000). Once 

H7N9 has initiated infection, progression between the onset of illness to admission to a hospital, 

laboratory confirmation, and death has been found to vary between the different epidemic waves 

and whether the infection is from the LPAI H7N9 or HPAI H7N9. The time between the onset of 

illness and hospitalization was 5 days, 4 days, 3 days, and 2 days for waves 1-3, wave 4, wave 5, 

and the HPAI H7N9, respectively. The time between the onset of illness and laboratory 

validation was 8 days and 6 days for waves 1-3, and the HPAI H7N9, respectively. Lastly, the 

time between the onset of illness and death was 21 days, 19 days, 16 days, 15 days, 14 days, and 

6 days for wave 1, wave 2, wave 3, wave 4, wave 5, and the HPAI H7N9, respectively (Su et al., 

2017). 

The main clinical symptoms of H7N9 infection are fever, cough, weakness, muscle 

soreness, shortness of breath, chest distress, nausea, chills, and pneumonia (Su et al., 2017). 

Other more severe symptoms and outcomes associated with H7N9 infection can include high 

hospitalization rates (99%), pneumonia or respiratory failure (90%), acute respiratory distress 

syndrome (ARDS) (34%), severe pulmonary disease, and the requirement to be admitted to an 

intensive care unit (63%) (Zeng et al., 2015). 

Although the LPAI H7N9 and HPAI H7N9 viruses both induce severe symptoms, they 

seem to differ in their transmissibility, tropism, pathology, and induction of the inflammatory 
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response. The transmission of the LPAI H7N9 has been found to mainly occur through direct 

contact, whereas the HPAI H7N9 can transmit through both direct contact and aerosols. 

Concerning the tropism, studies have shown the replication of both the LPAI H7N9 and HPAI 

H7N9 viruses to be mostly restricted to the human respiratory tract, unlike other subtypes (ex. 

H5N1) capable of systemic infection (Belser et al., 2013; Lu et al., 2019; Zeng et al., 2015). The 

LPAI H7N9 and HPAI H7N9 viruses both undergo very prominent replication. The LPAI H7N9 

is characterized by high viral loads in the lungs and hydrothorax (Yang et al., 2019), while the 

HPAI H7N9 possesses higher virulence and tropism for the brain tissue (Lu et al., 2019). The 

HPAI H7N9 has also been detected in the intestinal and ocular tissues, sparking concern that the 

HPAI H7N9 may become systemic (Sun et al., 2018). The different tropisms of the LPAI H7N9 

and HPAI H7N9 viruses also correlate to the different pathologies induced. The LPAI H7N9 is a 

potent inducer of pathology in the lungs of mice, causing strong inflammatory responses such as 

the infiltration of inflammatory cells to the walls of the arterioles, alveoli, and bronchiolar 

epithelium. This infiltration results in damage through methods such as degeneration and 

necrosis (Lu et al., 2019). Conversely, the HPAI H7N9 is a potent inducer of pathology to the 

brain. Ferret models have shown the HPAI H7N9 infection to cause meningoencephalitis with 

the severity directly correlated to the duration of infection. This pathology can entail 

neuronophagia, neuronal necrosis, glial nodules, extensive haemorrhage, and substantial 

inflammatory infiltration in the meninges, perivascular areas, and parenchyma (Sun et al., 2018). 

When diagnosing influenza virus in human patients, although there are several tests 

available throughout Canada, the most recommended test is the nucleic acid amplification test 

(NAAT). This test is recommended over other tests because of its performance, automation, and 

scalability. Other tests such as the direct immune-fluorescence assays (DFA), indirect immune-

fluorescence assays (IFA), and rapid influenza detection tests (RIDT) are available but are less 

sensitive than NAAT and are incapable of subtyping (PHAC, 2018).  

 

1.3 INFLUENZA VIRUS VACCINES 

1.3.1 Vaccination 

Since the primary method for protection against influenza viruses is through vaccination, 

the WHO has developed annual meetings in February whereby they meet and discuss the 

recommended influenza subtypes to be included for the next flu season (PHAC, 2019). Before 
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these annual meetings occur, the Global Influenza Surveillance and Response System (GISRS) 

network performs a cumbersome screening over 500,000 virological samples followed by 

genetic and antigenic analysis of 8,000 samples. The results generated from this analysis are then 

sent to the WHO for review at these annual meetings (Wong and Webby, 2013). Once the WHO 

releases their recommendations for the next flu season, in Canada, Canada’s Influenza Working 

Group (IWG) considers the recommendations, develops the annual vaccine, and then sends this 

vaccine for review to the National Advisory Committee on Immunization (NACI). Once the 

annual vaccine is approved, it is offered to health care providers to distribute in vaccination 

programs in the fall. The exact timing of these vaccination programs can vary based on several 

factors, such as the recent activity of influenza, predicted severity of the upcoming flu season, 

the best timing of vaccination for communities, and logistical factors such as staffing, equipment, 

and the availability of infrastructures. Interestingly, because of other factors such as money, 

shelf-life, and implementation strategies, different jurisdictions might not distribute the same 

vaccines (PHAC, 2019).  

In Canada, there are two types of vaccines available: inactivated influenza vaccines (IIV) 

and live attenuated influenza vaccines (LAIV). These vaccines are recommended for everyone 

above and including the age of 6 months, with the type of vaccine available for use determined 

by both the age of the individual as well as the individual’s overall health conditions (PHAC, 

2019).  

 

1.3.2 Inactivated influenza vaccines (IIV) in Canada 

IIVs have been widely available for use since the 1940s, and have since improved through 

the addition of adjuvants and advancements to the production technologies (Sridhar et al., 2015). 

The production of an IIV can include either the whole influenza virus or portions of it produced 

in large volumes, followed by inactivation of the virus (PHAC, 2017b). The generation of IIVs 

begins with co-transfection of the eight viral segments into cells to recover the vaccine seed 

strain. Once this vaccine seed strain is generated, it is amplified in embryonated chicken eggs to 

obtain high titers of the virus. The HA and NA viral segments are chosen based on the WHO 

recommendations, whereas the remaining six segments are from a virus capable of replicating to 

high titers, such as the A/Puerto Rico/8 H1N1 [PR8 (H1N1)]. This combination results in a 6:2 



 30 

reassortment virus, which is then concentrated, purified, and inactivated with either β-

propiolactone or formaldehyde (Blanco-Lobo et al., 2019). The IIVs approved for Canada are a 

combination of both split virus and subunit vaccines (PHAC, 2019). Split viruses are made the 

same way as whole IIVs, with the difference being the addition of a detergent to disrupt the viral 

envelope to expose its internal components, such as its viral proteins. In comparison, subunit 

vaccines contain portions of the influenza virus, most commonly the surface proteins HA, NA, or 

both. In these vaccines, the surface proteins undergo further purification steps to remove all other 

components except the desired proteins (PHAC, 2019; Wong and Webby, 2013).  

An IIV is then further classified into whether it is a trivalent inactivated vaccine (TIV) or 

a quadrivalent inactivated vaccine (QIV). These two vaccine types are currently used in Canada, 

where the TIV contains two human subtypes of IAV (H1N1 and H3N2) and one lineage of IBV 

(B/Yamagata/16/88-like or B/Victoria/2/87-like), while the QIV contains both IBV lineages. The 

TIVs authorized for Canada are an adjuvanted TIV, unadjuvanted TIV, and a high-dose TIV. 

There are two types of adjuvanted TIV, Fluad® and Fluad Pediatric®, both containing the 

adjuvant MF59 (an oil-in-water emulsion) and recommended for children aged 6-23 months and 

adults over the age of 65. The unadjuvanted TIV is recommended for all ages. The high-dose 

TIV called Fluzone® High-Dose is approved for adults over the age of 65. The only authorized 

QIV in Canada is a QIV without an adjuvant which is recommended for all ages (Moore, 2018; 

PHAC, 2019). 

In Canada, the current standard dosage for IIVs is 15 µg of HA per strain, delivered 

intramuscularly. However, some IIVs have higher dosages to accommodate their target 

population. For example, the Fluzone® High-Dose comprises 60 µg of HA per strain, four times 

more the standard dosage. Since this IIV targets adults over the age of 65, this high-dose is 

required to stimulate a robust immune response. This robust immune response is essential 

because adults in this age range often have a waning immune system, and are at a higher risk for 

complications, morbidity, and mortality (PHAC, 2019; Wong and Webby, 2013). However, a 

downside of using this high-dose IIV is that more resources are required for a single dose, so that 

in the event of a pandemic, vaccine shortages may occur. These vaccine shortages can result in 

not being able to meet demand, making this vaccine impractical for a large-scale vaccination 

program (Wong and Webby, 2013).  
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When an individual is vaccinated with an IIV, this leads to the induction of both the local 

and systemic immune responses. The antibodies produced by an IIV are predominately IgG, 

composed mainly of IgG1, followed by IgM and IgA. Within 2 - 6 days post-vaccination, the 

serum antibody responses increase, and within 2 weeks after vaccination, these responses peak in 

primed individuals. However, after approximately 6 months, this response decreases around 2-

fold, which is why boosters are recommended. Unfortunately, the duration of the antibody 

response induced by an IIV is still unknown, and the traditional responses generated from both 

CD4+ and CD8+ T cells are still up for debate (Sridhar et al., 2015).  

In Canada, IIVs are advantageous and thus more widely available than LAIVs because of 

their precise standardization methods and the induction of antibodies specific to the vaccine seed 

strains. This induction of antibodies is measured as a correlate of protection through the 

hemagglutinin inhibition (HAI) assay (Krammer et al., 2018; Sridhar et al., 2015). IIVs are also 

advantageous compared to LAIVs because they have an exceptional safety profile, can be used 

in children from 6 months of age, and can be used in the elderly, asthmatics, and high-risk 

individuals (ex. pregnant women and healthcare workers). However, a disadvantage of IIVs is 

that the vaccine seed strain must often closely match the current circulating strain to be 

efficacious (ex. homologous vaccine) and that this efficacy is often lower compared to LAIVs 

(Sridhar et al., 2015). IIVs also often require the use of adjuvants to boost their immunogenicity, 

because these vaccines frequently stimulate lower immune responses to the viruses present in 

nature (PHAC, 2017b). Only a few adjuvants are licensed for commercial use in Canada, 

because of the rigorous safety and efficacy trials required to be used in humans (Isakova-Sivak 

and Rudenko, 2017). The efficacy rates of IIVs are anywhere from 40% - 60% in adults aged 18 

- 65 years, and around 60% in children. Conversely, LAIVs have efficacy rates of approximately 

83% in 6 months to 7-year-old children (Osterholm et al., 2012; Sridhar et al., 2015).  

 

1.3.3 Live attenuated influenza vaccines (LAIV) in Canada 

LAIVs are a newer type of vaccine that have been used in Russia for over 50 years and 

more recently licensed for use in North America and Europe around 2003. LAIVs are modified 

live viruses such that their virulence is reduced because they have restricted replication within 

the vaccinated host. The LAIVs currently licensed for use are attenuated, temperature-sensitive, 

and cold adapted such that they can rapidly replicate at 33°C, but cannot replicate at higher 
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temperatures. This temperature sensitivity permits the replication of the LAIV in the colder 

URT, where temperatures are around 25°C - 33°C, but inhibits replication in the warmer LRT, 

where temperatures are around 37°C - 39°C. This phenotype inhibits the virus from undergoing 

its complete replication cycle to result in the influenza disease (Sridhar et al., 2015).  

To produce a LAIV, two main techniques may be used: (i) sequential passage of the virus 

at colder temperatures, an older technique, and; (ii) reverse genetics, a more recently developed 

technique. Both techniques use a backbone Master Donor Virus (MDV), either A/Ann 

Arbor/6/60-H2N2 for IAV, or the B/Ann Arbor/1/66 for IBV. In order to generate a LAIV by 

sequential passages, the viruses were sequentially passaged at a low temperature of 25°C, with 

the added selection pressure of neutralizing antibodies against the MDV surface glycoproteins. 

These MDV underwent sequencing analysis, which led to the discovery of five genetic 

alterations that explained their attenuated, temperature-sensitive, and cold-adapted phenotype: 

one found on the PB2 protein (N265S), three on the PB1 protein (K391E, D581G, and A661T) 

and one on the NP protein (D34G). In order to generate a LAIV by reverse genetics, the six 

internal genes (PB2, PB1, PA, NP, M, and NS) from one of the MDVs and the HA and NA from 

the currently circulating strains undergo co-transfection to rescue the viable virus. This viable 

virus is then propagated with the appropriate environmental conditions (Blanco-Lobo et al., 

2019; Cox et al., 1998; Maassab and Bryant, 1999). 

Unfortunately, for Canada, as of 2019, there is no commercially available LAIV. In 

previous years, the FluMist®Quadrivalent (AstraZeneca) was available, but there was a vaccine 

shortage for the 2019-2020 season (PHAC, 2019). This vaccine is normally composed of four 

reassortment viruses in a 6:2 arrangement, with two IAV strains and two IBV strains. For the two 

IAV strains, the six corresponds to the six internal segments from A/Ann Arbor/6/60-H2N2 and 

the HA and NA from influenza A/H1N1 and influenza A/H3N2 strains, respectively. For the two 

IBV strains, the six corresponds to the six internal segments from B/Ann Arbor/1/66 and the HA 

and NA from the Victoria-like lineage (B/Victoria/2/1987) and the Yamagata-like lineage 

(B/Yamagata/16/1988), respectively (Blanco-Lobo et al., 2019; Jin et al., 2003).  

LAIVs are administered intranasally using a nasal spray at a vaccine dose of 

approximately 107 fifty-percent tissue culture infective dose (TCID50). This dosage is generally 

used for all age groups, and similar to the IIV, the influenza strains vary each year depending on 
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the recommendations by the WHO (Belshe et al., 2004; PHAC, 2019). When a LAIV is 

administered the virus replicates in the URT, but not the LRT. This replication leads to an 

immune response similar to that to a natural infection. Therefore, similar to a natural infection, 

the immune response generated to a LAIV is multifaceted, stimulating both the humoral and cell-

mediated immune responses. This multifaceted response is composed of influenza-specific IgA 

nasal antibodies, serum antibodies, T cells, and IFNs (Belshe et al., 2004). LAIVs also induce 

higher amounts of memory B cells, CD4+ T cells, and CD8+ T cells compared to IIVs, with the T 

cell responses being more diverse in children. This T cell diversity, therefore, could aid in the 

high cross protection efficacy that LAIVs are known to possess. In addition, the production of 

the nasal IgA antibody is thought to be an essential correlate of protection against the influenza 

virus. This antibody can be found in nasal secretions for up to 6 - 12 months post-vaccination 

and works by blocking future infections from entering the mucosal sites (Mohn et al., 2018). 

Therefore, unlike the immune response that is produced after administration of an IIV, the 

immune response induced by LAIVs encompass a multitude of components that aid in the 

protection of the host from the influenza disease. 

LAIVs have a long list of advantages compared to IIVs, with some of these including 

their needle-free properties, ease of administration, patient approval, general lack of opposition 

from children, acceptability in clinical trials, and preference over the intramuscular route which 

aids in compliance rates (Belshe et al., 2004). LAIVs are also cheaper to manufacture and may 

only require a single dose (Isakova-Sivak and Rudenko, 2017). Interestingly, although LAIVs 

are not yet approved for use in high-risk individuals in Canada, some studies have demonstrated 

the safety and tolerability of LAIVs in these high-risk populations (Belshe et al., 2004; PHAC, 

2019). LAIVs have also demonstrated to be safe and genetically stable for use in the general 

population, in both immunocompetent children and adults (Blanco-Lobo et al., 2019; Cha et al., 

2000; Sridhar et al., 2015).  

Not only do LAIVs possess many administrative advantages over IIVs, but they also 

possess many immunological advantages. The ability of LAIVs to induce the cell-mediated 

immune response leads to the production of virus-specific cytotoxic CD8+ T lymphocytes, which 

may be a contributing factor in the protection against heterosubtypic influenza strains (Isakova-

Sivak and Rudenko, 2017). In addition, because LAIVs are capable of stimulating the mucosal 

immune system, this aids in the vaccine mimicking a natural infection, which helps to limit viral 



 34 

replication and spread through the induction of nasal IgA, local and systemic antibodies, and T 

cell responses (Isakova-Sivak and Rudenko, 2017; Lorenzo and Fenton, 2013; Sridhar et al., 

2015). Lastly, LAIVs are adept in inducing ‘herd’ immunity, that is, vaccinated individuals aid in 

the protection of unvaccinated individuals by blocking the spread of influenza among 

populations (Isakova-Sivak and Rudenko, 2017). 

 Albeit the abundance of advantages LAIVs possess over IIVs, there are still 

disadvantages that need to be overcome before LAIVs can become as frequently administered as 

IIVs. Some of these disadvantages include the lack of a correlate of protection, restricted use to 

select populations, and safety concerns. Although the immune response generated after LAIV 

vaccination is multifaceted, to date, there are no definite correlates of protection that can be 

accurately measured for their efficacy. This lack of measurement is one of the major drawbacks 

for LAIV vaccination programs, resulting in IIV vaccination programs predominating the field 

because of their definite correlates of protection through the HAI assay (Sridhar et al., 2015). 

Researchers have attempted to use the HAI assay to define correlates of protection for LAIVs, 

however, the results generated varied between children and adults. King et al. found a direct 

correlation between the dosage of a LAIV and serum HAI titers in children, while Treanor et al. 

found no correlation among adults (King et al., 1998; Treanor et al., 1999). However, Belshe et 

al. found that although a high serum HAI antibody response correlated with a high protection 

efficacy, a low response did not always reflect a lack of protection (Belshe et al., 2004). 

Therefore, using solely an HAI assay to measure protection efficacy paints an incomplete 

picture, because the immune response generated from a LAIV is so complex. Thus, much more 

research is required to establish a correlate of protection so that LAIVs can be more widely 

licensed throughout the world (Mohn et al., 2018; Sridhar et al., 2015).  

Another disadvantage of using LAIVs in vaccination programs is that there is not enough 

research associated with the health and safety risks to support the administration in all population 

types. For example, because LAIVs are produced in the allantoic fluid of embryonated hen’s 

eggs, individuals with egg allergies are not recommended to use this vaccine. Moreover, 

pregnant women and children with chronic health conditions, children under the age of two, 

immunocompromised individuals, and health care workers surrounded by severe influenza 

disease are also not permitted to use this vaccine, due to the lack of safety research (Belshe et al., 

2004; PHAC, 2019; Sridhar et al., 2015). Other disadvantages of the use of LAIVs include minor 



 35 

side effects such as a runny nose, nasal congestion, low-grade fever, and a scratchy throat 

(Belshe et al., 2004). Lastly, for LAIVs to become widespread in vaccination programs, they 

must overcome the safety concerns associated with reversion or reassortment with the current 

circulating IAV strains (Mamerow et al., 2019). 

 More importantly, throughout three seasonal epidemics, although previous studies had 

countlessly demonstrated LAIVs to possess high efficacy rates, the quadrivalent LAIV, 

FluMist®Quadrivalent, did not fit this criterion. Despite the high efficacy rates in previous years, 

children vaccinated with FluMist®Quadrivalent possessed low efficacy rates in the 2013-2014 

(18%), 2014-2015 (28%), and 2015-2016 (48%) seasons. There are several proposed factors that 

may have contributed to these low rates: (i) pre-existing immunity could have existed in adults; 

(ii) viral infection could have been reduced due to the HA from IAV H1N1 not being fully 

adapted to humans; (iii) the pH stability could have been altered from the introduction of 

mutations in the M segment of the MDV A/Ann Arbor/6/60 H2N2; (iv) increased susceptibility 

of the IAV H1N1 strain to heat degradation; and, (v) high volumes of defective-interfering (DI) 

viral particles in the vaccine leading to lower immune responses (Blanco-Lobo et al., 2019). 

Therefore, before LAIVs become the predominant vaccine strategy throughout vaccination 

programs, they must overcome these limitations so that they can adequately protect all types of 

individuals.  

 

1.3.4 Experimental live attenuated vaccines in development 

Although there is currently no commercially available LAIV for use in Canada for the 

2019-2020 season, several other experimental LAIV vaccines are in development. These 

experimental vaccines were developed through reverse genetic strategies to allow manipulation 

of portions of the influenza genome to generate recombinant influenza viruses that can be used 

as LAIVs. Some experimental LAIV vaccines that have been generated include NS1 truncated 

viruses, suboptimal codon usage viruses, and single-cycle infectious IAVs (sciIAV). 

 The NS1 protein is expressed in the early stages of IAV infection, where its primary role 

is to antagonize IFN. This role results in suppressing the antiviral response and type I IFN 

production, which enables the replication of IAV. Therefore, viruses that lack NS1 or have 

truncated NS1 proteins can serve as LAIVs in IFN-competent hosts due to their inability to block 

the antiviral response against infection, resulting in the attenuation of the virus (Blanco-Lobo et 
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al., 2019). These NS1 truncated viruses hold strong promise as LAIV candidates because several 

studies have proven their attenuation, cross protection ability, safety, and immunogenicity. For 

example, one study demonstrated that not only was an NS1 truncated SIV completely attenuated 

in pigs, this attenuation was directly correlated to the level of IFN-α and IFN-β in the pig cells 

(Solorzano et al., 2005). Another study performed in healthy humans demonstrated the safety of 

an NS1 truncated IAV H1N1 virus. This truncated virus was well tolerated and induced both 

strain-specific and cross-neutralizing antibodies against heterologous variants of IAV (Wacheck 

et al., 2010). Therefore, NS1 truncated viruses hold strong promise as safe, immunogenic, and 

protective LAIVs to administer to IFN-competent hosts. 

Another experimental LAIV approach researchers have developed was manipulation of 

the codon usage found among all species. The genetic code is redundant such that most aa are 

encoded by more than one codon, termed synonymous codons. Researchers have discovered that 

not all synonymous codons are expressed equally, a phenomenon termed codon usage bias 

(Blanco-Lobo et al., 2019). For example, the codon pair CAG-GGC might be expected to occur 

3000 times in an ORF but is only observed 200 times. This codon usage bias results in each 

species possessing different preferential codons (Mueller et al., 2011). These preferential codons 

have been demonstrated to alter many functions, such as gene expression, translation, and protein 

folding. For IAV, the codon usage bias is often parallel to the codon usage bias of the permissive 

host, for translation to occur most efficiently. Specifically, an avian IAV will possess a similar 

codon usage bias to a permissive avian species, but will not possess this same bias in a 

permissive mammalian species. Researchers have exploited this finding to create LAIVs through 

the manipulation of these codons in either specific viral proteins or the entire viral genome 

(Blanco-Lobo et al., 2019). LAIVs in which a specific viral protein is targeted is deoptimized for 

a specific codon found on a specific viral segment of the influenza virus, such as the NS protein. 

For example, if the NS protein possesses a codon usage bias of AAA to code for lysine, one 

could mutate the codons to AAG so it still codes for lysine, but these codons are not the 

preferential codons for that particular position (Nogales et al., 2014). Conversely, LAIVs that use 

codon deoptimization to target the entire viral genome entails a more cumbersome approach, 

such as using a technique called Synthetic Attenuated Virus Engineering (SAVE). This 

technique calculates the frequency of the various codons throughout the genome and then 

changes the high-frequency codons to ones that are least frequently observed in nature. This 
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genome alteration can cause attenuation of the virus, with the hypothesis being that the alteration 

of the nucleotides changes the translation of the virus (Mueller et al., 2011). Manipulation of the 

entire genome can also be performed without the SAVE technique. For example, the genome of 

a human seasonal A/Brisbane/59/2007 H1N1 IAV was manipulated by mutating over 300 

nucleotides such that it could replicate in eggs but was attenuated in human cells. This approach 

allowed the virus to be propagated, and still administered as a LAIV in humans (Fan et al., 

2015). Overall, these suboptimal codon usage LAIVs are capable of quick production, are highly 

attenuated, and are safe regarding reversion because of the high number of mutations introduced 

into the genome (Blanco-Lobo et al., 2019). 

 The third experimental LAIV approach researchers are developing are IAVs defective in 

some part of the replication cycle, namely, single-cycle infectious IAVs (sciIAVs). These 

sciIAVs can be defective in features such as viral genome synthesis, assembly, or release of the 

virion to infect the neighbouring cells. Scientists have created these sciIAVS through molecular 

biology techniques by modifying specific viral proteins such that they are: (i) substituted with 

another viral component, whether it is from the same or a different pathogen; (ii) partially or 

entirely deleted; or (iii) mutated in some manner. However, when developing these sciIAVs, 

researchers must retain the packaging signals and NCRs to preserve the optimal fitness of the 

virus. Although these viruses do not possess all the necessary components to undergo more than 

a single cycle of replication, this can be overcome in vitro or in vivo by providing the necessary 

component (Blanco-Lobo et al., 2019). 

 One sciIAV developed through the substitution technique was generated through 

substitution of the coding region of the PB2 protein on the PR8 (H1N1) virus with the green 

fluorescent protein (GFP), creating a PR8 sciIAV ∆PB2 virus. When administered to mice 

intranasally, this LAIV did not cause disease, was protective against lethal challenges of IAV, 

and induced antibodies against both PR8 and GFP, illustrating the potential of this vaccine to be 

used against different pathogens (Victor et al., 2012). The generation and efficiency of protective 

sciIAVs through the substitution technique was also demonstrated in other species. Specifically, 

Masic et al. developed a sciIAV for pigs through the fusion of the H3 HA ectodomain of 

A/Swine/Texas/4199-2/98 H3N2 to the NA segment of A/Swine/Saskatchewan/18789/02 H1N1. 

When this sciIAV was administered intratracheally, it was not only found to be completely 
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attenuated but also generated antibodies against both the H1 and H3 antigens, illustrating the 

potential of this sciIAV to act as a bivalent vaccine (Masic et al., 2013). 

  When generating a sciIAV through the mutagenesis technique, the purpose is to alter 

specific viral proteins to generate either a non-functional virus, a non-expressible virus, or a virus 

that cannot be efficiently processed. This method is, therefore, less invasive than deleting or 

substituting an entire viral protein, because only a few mutations are performed. For example, 

the HA protein is initially found in its precursor form, HA0, and must be cleaved into HA1 and 

HA2 by specific host proteases to become active and continue its replication cycle. A sciIAV can 

be generated by introducing mutations to the HA cleavage site such that the host proteases can 

no longer recognize and cleave HA. This results in IAV unable to continue its replication cycle 

to cause the influenza disease (Blanco-Lobo et al., 2019). This concept was tested by mutating 

the HA cleavage site from arginine to glutamine at aa position 329. This single mutation resulted 

in a lack of cleavage by the host protease trypsin, and thus rendered the virus unable to continue 

its replication cycle (Chen et al., 1998). The HA cleavage site can also be mutated such that 

although it can no longer be cleaved by a specific host protease, cleavage can still occur through 

the supplementation of an exogenous protease. For example, the HA cleavage site found on an 

SIV strain A/Swine/Saskatchewan/18789/02 (H1N1) was mutated from a trypsin-sensitive motif 

to an elastase-sensitive motif by mutating arginine to valine at aa position 345. This SIV mutant 

strain was protective, immunogenic, and genetically stable when administered intranasally in 

pigs. This virus could be amplified in vitro when provided the protease elastase (Masic et al., 

2008). Therefore, the mutagenesis of a single aa can generate stable, safe sciIAVs that possess 

strong potential to serve as LAIV candidates against various IAV strains and subtypes. 

 These molecular biology techniques to generate sciIAVs can be used in combination to 

generate potential LAIV candidates. For example, Mamerow et al. demonstrated that a double-

mutant virus composed of the elastase-sensitive HA cleavage site and an NS1 truncated protein 

was attenuated and protective against homologous challenge in both pigs and mice. The goal for 

this double-mutant LAIV is to improve the safety concerns associated with reversion and 

reassortment with the standard cold-adapted LAIVs, such as the FluMist® vaccine (Mamerow et 

al., 2019).  

 Conversely, replication-defective viruses are a newer type of vaccine independent of IIVs 

and LAIVs such that they are composed of viruses that lack one or more essential functions 
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required for replication, synthesis, or viral assembly. These replication-defective viruses can be 

propagated in vitro through the supplementation of the missing gene product by complementing 

cell lines, however, they cannot properly replicate in vivo (Dudek and Knipe, 2006). This feature 

allows the replication-defective virus to produce viral antigens within the infected cells. Unlike 

IIVs and LAIVs, which both contain disadvantages towards their use replication-defective 

viruses seem to combine the advantages of both IIVs and LAIVs. More specifically, like IIVs, 

replication-defective viruses have been shown to be extremely safe due to their very limited 

replication within the host (Dudek and Knipe, 2006). This is in contrast to LAIVs, where 

virulence reversion is a major safety concern towards their widespread use (Watanabe et al., 

2001). Replication-defective viruses have also been shown to induce the same immune responses 

LAIVs induce, namely, CD4+ T cells, CD8+ T cells, and humoral immune responses (Dudek and 

Knipe, 2006). This induction is explained through the ability of the replication-defective viruses 

to enter the cells, followed by the presentation of the viral antigens through both the MHC class I 

and II pathways (Dudek and Knipe, 2006). 

 The advantages of using replication-defective viruses as vaccines have also been assessed 

through in vivo protection efficacy experiments. Watanabe et al. demonstrated mice vaccinated 

with replication-defective influenza virus-like particle (VLP) composed of a NEP-knockout to 

have a 94% protection efficacy against an antigenically homologous H1N1 influenza challenge 

(Watanabe et al., 2001). More recently, Katsura et al. demonstrated a replication-incompetent 

virus containing an uncleavable HA to completely protect mice against a homologous influenza 

virus challenge. This HA contained a mutation at the HA cleavage site, where arginine was 

mutated to threonine, thereby blocking fusion among the membranes of the virus and host within 

the endosome (Katsura et al., 2012).  

Therefore, replication-defective virus vaccines show strong promise as vaccine 

candidates against influenza viruses due to their ability to combine the advantages of both IIVs 

and LAIVs. Replication-defective virus vaccines also hold strong promise as vaccine candidates 

against influenza viruses that continue to pose burdens on public health. One such influenza 

virus that has recently plagued public health is the new IAV strain, H7N9. This IAV strain has 

resulted in high morbidity and mortality rates, with 1,568 human cases and 616 deaths as of 

March 4, 2020 (FAO, 2020). More importantly, the candidate vaccine viruses available are 

majorly IIVs and are limited to only a few variants of H7N9: A/Shanghai/2/13, A/Anhui/1/13, 
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A/Guangdong/17SF003/2016, A/Hong Kong/125/2017, and A/Human/02650/2016 (WHO, 

2019). Because of IAVs complex evolutionary mechanism of antigenic drift and antigenic shift, 

and the disadvantages IIVs and LAIVs possess, my research aims to fill a gap in the H7N9 

vaccine development. Specifically, my research aims to develop a replication-defective virus 

vaccine against a new Canadian isolate, the A/British Columbia/01/2015 (H7N9) [BC15 

(H7N9)] that was isolated from two patients in Canada that had recently travelled to China and 

contracted the disease (Skowronski et al., 2016). The goal is that this replication-defective virus 

vaccine will provide sufficient protection against H7N9, avoiding the disadvantages of both IIVs 

and LAIVs. 
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CHAPTER 2 HYPOTHESIS AND OBJECTIVES 

2.1 OVERALL GOALS AND RATIONALE 

Influenza A virus (IAV) is a segmented ribonucleic acid (RNA) virus of the 

Orthomyxoviridae family capable of infecting many mammalian species, ranging from birds to 

sea mammals (Bouvier and Palese, 2011; CDC, 2015). IAV also poses a heavy burden to public 

health through spillovers, such as avian H7N9 and H5N1 IAV crossing the species barrier from 

birds to humans (Claas et al., 1998; Gao et al., 2013). Currently, vaccination is the leading 

method for the prevention and control of influenza viruses. In Canada, the two main 

commercially available vaccines are the inactivated influenza vaccines (IIV) and the live 

attenuated influenza vaccines (LAIV). IIVs are most often administered intramuscularly, with 

correlates of protection directly related to the induction of antibodies against the hemagglutinin 

(HA) and neuraminidase (NA) viral surface proteins of the vaccine seed strain. Unfortunately, 

albeit their predominant use in the field settings compared to other vaccine types, they have 

many limitations. One such limitation is that for an IIV to provide adequate protection, it must 

closely match the influenza strain that is currently circulating (PHAC, 2017a; Sridhar et al., 

2015). However, due to influenza’s capability to escape the immune system through mutagenic 

properties such as antigenic shift and antigenic drift, this often results in IIVs possessing low 

efficacy (Acheson, 2011). More importantly, because of these high mutation rates, vaccines need 

to be frequently updated which can be time-consuming and costly. Conversely, LAIVs are 

administered intranasally and possess many advantages over IIVs. Some of these advantages 

include their enhanced protection rates against vaccine mismatches, longer-lasting immunity 

from both the humoral and cell-mediated responses, as well as the ability to imitate a natural 

infection, eliciting immune responses comparable to those induced in nature (Isakova-Sivak and 

Rudenko, 2017; Lorenzo and Fenton, 2013; PHAC, 2017a). LAIVs are also advantageous to 

IIVs because they do not necessarily depend on the egg-based production system, which can be a 

limiting factor when large production volumes are required, egg-shortages occur, or if an 

individual has an egg allergy (Sridhar et al., 2015). However, LAIVs do possess the possibility 

of virulence reversion, making widespread vaccination programs with LAIVs difficult to 

implement. Replication-defective virus vaccines are an ideal alternative towards both IIVs and 

LAIVs because they have been characterized by a high safety profile and the ability to induce 

strong immune responses (Dudek and Knipe, 2006). Currently, there are no commercial vaccines 
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available for use against H7N9 influenza infection (PHAC, 2017a). Therefore, with the severe 

threat influenza viruses pose through the spillovers into humans, and the inadequate protection 

IIVs often provide as well as the possibility of reversion for LAIVs, there is an urgent need to 

develop a replication-defective virus vaccine that is stable, cross protective, and safe to 

administer to the public against H7N9 influenza infection. 

The development of reverse genetic technology has empowered the generation of any 

influenza strain desired in minimal time. This technology allows the manipulation of cloned 

cDNA so that any portion of any viral gene can be altered to suit a research purpose (Hoffmann 

et al., 2001). Some of these alterations can include the development of replication-defective virus 

vaccines or LAIVs. This technology not only avoids the use of the egg-based system but also 

produces efficacious influenza vaccines quickly, making this technology more appealing than the 

traditional IIV production process (PHAC, 2017a; Sridhar et al., 2015). 

IAV possesses a unique feature such that although it can enter cells through the interaction 

of its viral surface protein, HA, the activation of IAV does not occur until it is cleaved by a host 

protease. When influenza virus initiates viral infection, HA is present in its precursor form, HA0, 

which remains non-infectious until HA0 is cleaved into HA1 and HA2. After HA0 is cleaved, 

the influenza virus becomes activated and continues its replication cycle, which results in the 

influenza disease (Masic et al., 2008).  

Therefore, our overall goal is to create a replication-defective H7N9 virus vaccine that 

has been altered to contain a mutation at the HA cleavage site that renders it inactive during 

natural infection, but active when provided the appropriate protease in vitro. The rationale of 

this project is that the replication-defective H7N9 virus is replication-defective in vivo, due to the 

lack of the appropriate protease in the host cells capable of cleaving the mutated HA cleavage 

site, but can prominently grow in vitro when provided this appropriate protease. This replication-

defective H7N9 virus could serve as a replication-defective virus vaccine, due to the minimal 

risk of reassortment, as well as the potential to induce immune responses similar to that of a 

natural infection. 
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2.2 HYPOTHESIS 

A mutant virus containing a modified HA cleavage site is inactive during natural 

infection due to the lack of an appropriate protease, allowing this mutant virus to serve as a 

replication-defective virus vaccine in the protection against H7N9 viruses.  

 

2.3 OBJECTIVES 

The main objective of my thesis is to generate a replication-defective H7N9 virus that can 

be used as a replication-defective virus vaccine. The generation of this replication-defective virus 

vaccine would aid in preventing the spread of the H7N9 virus and its pandemic potential, by 

inducing strong cell-mediated and humoral immunity.  

To achieve my objective three aims need to be fulfilled: 

 

 Aim 1 – The establishment of a mouse model of A/British Columbia/01/2015 [BC15 

(H7N9)] virus 

To develop a mouse model to characterize the susceptibility of mice, the replication and 

pathology induced in the lungs, as well as the immune response mounted against H7N9 as a 

platform for the development of a vaccine.  

 

 Aim 2 – The generation and characterization of the mutant H7N9 virus with its 

modified HA segment in vitro and in vivo 

To generate a mutant H7N9 virus in which the HA gene is mutated from a trypsin-

sensitive cleavage site (arginine-glycine; Arg-Gly) to an elastase-sensitive cleavage site 

(valine-glycine; Val-Gly). This mutant virus will also be characterized for its growth 

properties, genetic stability, and virulence in mice. 

 

 Aim 3 – The evaluation of the immunogenicity and protective efficacy of the 

replication-defective virus vaccine after intranasal administration against A/British 

Columbia/01/2015 [BC15 (H7N9)] virus 

To test the potential of the mutant H7N9 virus to be used as a replication-defective virus 

vaccine. 
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CHAPTER 3 ESTABLISHMENT OF A MOUSE MODEL OF A/BRITISH 

COLUMBIA/01/2015 [BC15 (H7N9)] VIRUS 
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3.1 ABSTRACT 

Highly pathogenic avian influenza (HPAI) H5N1 and low pathogenic avian influenza 

(LPAI) H7N9 viruses pose a severe threat to public health through zoonotic infection, causing 

severe respiratory disease in humans. While HPAI H5N1 human infections have typically been 

reported in Asian countries, avian H7N9 human infections have been reported mainly in China. 

However, Canada reported a case of fatal human infection by the HPAI H5N1 virus in 2014, and 

two cases of human illness associated with avian H7N9 virus infection in 2015. While the 

genomes of the causative viruses A/Alberta/01/2014 (H5N1) (AB14 (H5N1)) and A/British 

Columbia/01/2015 (H7N9) (BC15 (H7N9)) are reported, the isolates had not been evaluated for 

their pathogenicity in animal models. In this study, we characterized the pathogenicity of AB14 

(H5N1) and BC15 (H7N9) and found that both strain isolates are highly lethal in mice. AB14 

(H5N1) caused systemic viral infection and erratic proinflammatory cytokine gene expression in 

different organs. In contrast, BC15 (H7N9) replicated efficiently only in the respiratory tract, and 

was a potent inducer for proinflammatory cytokine genes in the lungs. Our study provides 

experimental evidence to complement the specific human case reports and animal models for 

evaluating vaccine and antiviral candidates against potential influenza pandemics. 
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3.2 INTRODUCTION 

Influenza A virus (IAV) is a segmented ribonucleic acid (RNA) virus that infects a wide 

variety of species including human, avian, swine, equine, and sea mammals. The segmented 

genome and wide host range enable IAV to undergo antigenic variations through gene 

reassortment, a mechanism called antigenic shift, which is responsible for the emergence of 

pandemic influenza viruses. The lack of proofreading by the viral RNA-dependent RNA 

polymerase frequently results in point mutations throughout the viral genome (especially in HA 

and NA genes), which can lead to antigenic drift, a causative mechanism of annual influenza 

epidemics (Krammer et al., 2018; Webster et al., 1992b). Additionally, IAV also poses a severe 

threat to public health through zoonotic infection, because avian IAVs can directly cross the 

species barrier and infect humans, with avian H5N1 and H7N9 viruses being such examples. The 

first report of human infection by the highly pathogenic avian influenza (HPAI) H5N1 virus was 

in 1997 in Hong Kong; after a short period of disappearance, the virus re-emerged in 2003 in 

China (Claas et al., 1998). Since then, sporadic human H5N1 viral infections have been reported 

in several countries, causing over 400 fatalities (WHO). The low pathogenic avian influenza 

(LPAI) H7N9 virus circulated exclusively among poultry in China until 2013 when the first 

human infection was reported (Gao et al., 2013). Similar to the HPAI H5N1 virus, human 

infection by the H7N9 virus is also associated with a severe and fatal respiratory disease. To 

date, the H7N9 virus has caused a total of six epidemic waves, having infected over 1600 

humans with 623 fatalities (WHO, 2017).  

In comparison to the human seasonal H1N1 and H3N2 viruses, the HPAI H5N1 virus 

induces more proinflammatory cytokines in the human alveolar and bronchial epithelial cells 

(Chan et al., 2005). H5N1 viral infection also results in the early and excessive infiltration of 

macrophages and neutrophils in the lungs of infected mice (Perrone et al., 2008b). Animal and 

human studies have shown that the combinatorial effect of the unrestrained high-level virus 

infection together with hypercytokinemia is attributable to the increased pathogenesis of H5N1 

disease (Abdel-Nasser; et al., 2008; De Jong et al., 2006). Although both H5N1 and H7N9 viral 

infections lead to fatality, the underlying mechanisms might be different (Meliopoulos et al., 

2014). An ex vivo study showed that the human H7N9 virus replicated efficiently in human 

bronchial epithelial cells, alveolar epithelial cells, and alveolar macrophages, with high titers 

similar to that of the H5N1 virus (Chan et al., 2013a). However, in animal studies, it has been 
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reported that the H7N9 virus possesses a greater tropism for the respiratory epithelium than that 

of the H5N1 virus, and is not capable of inducing hypercytokinemia, which is characteristic of 

H5N1 viral infection (Meliopoulos et al., 2014). Recently, a risk assessment of the fifth wave of 

H7N9 viral infection revealed that both the LPAI H7N9 and HPAI H7N9 viruses were isolated 

from humans. Compared to the LPAI H7N9, the HPAI H7N9 virus was found to possess 

enhanced virulence, tropism for the brain tissue, as well as the capability to transmit by air 

droplets, concluding that the HPAI H7N9 virus has gained the ability to cause an H7N9 

pandemic (Sun et al., 2018). Thus, both H5N1 and H7N9 viruses are of significant pandemic 

concerns. 

Both HPAI H5N1 and LPAI H7N9 human infections in North America were reported in 

Canada, in 2014 and 2015 respectively, shortly after the patients returned from China (Maurer-

Stroh et al., 2014; Skowronski et al., 2016). The A/Alberta/01/2014 (H5N1) (AB14 (H5N1)) 

strain isolate caused a fatal infection, whereas the A/British Columbia/01/2015 (H7N9) (BC15 

(H7N9)) strain isolate caused an influenza illness from which the patients recovered. 

Phylogenetic analysis revealed mutations on the receptor binding site of the HA gene in AB14 

(H5N1), which facilitated the direct jump from avian to humans (Pabbaraju et al., 2014a). 

However, for BC15 (H7N9), the analysis showed the genome to be similar to those of previous 

human H7N9 isolates, carrying clinically relevant markers on HA, PB2, and NA genes 

(Skowronski et al., 2016). Although H5N1 and H7N9 viruses have been intensively studied, the 

virulence of these avian-origin influenza strains isolated from these Canadian travelers has been 

overlooked. The purpose of this study was to experimentally investigate the pathogenicity as 

well as the cytokine and chemokine gene transcription profile of the AB14 (H5N1) and BC15 

(H7N9) strain isolates. We report that both AB14 (H5N1) and BC15 (H7N9) strains are highly 

lethal in mice. AB14 (H5N1) caused a systemic viral infection as well as an erratic 

proinflammatory cytokine and chemokine gene response in different organs. In contrast, the 

BC15 (H7N9) strain replicated efficiently only in the respiratory tract, and was a potent inducer 

for proinflammatory cytokines in the lungs. Overall, our study not only provides experimental 

evidence to complement the human case report, but also offers valuable animal models for 

evaluating vaccine and antiviral candidates against the potential H5 and H7 influenza pandemic 

viruses. 
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3.3 MATERIALS AND METHODS 

3.3.1 Cells and viruses 

Madin-Darby canine kidney (MDCK) (ATCC, #CRL-2936) cells were maintained in 

minimal essential medium (MEM) (Sigma-Aldrich, St. Louis, MO, USA) supplemented with 

10% fetal bovine serum (FBS) (Sigma-Aldrich) and gentamycin (50 µg/mL, Bio Basic, 

Markham, ON, Canada). MDCK cells were maintained at 37°C in a humidified 5% CO2 

incubator. Influenza A/Alberta/01/2014 (H5N1) (AB14 (H5N1)) and A/British 

Columbia/01/2015 (H7N9) (BC15 (H7N9)) were kind gifts from Dr. Yan Li at the National 

Microbiology Laboratory, Public Health Agency of Canada. The viruses were propagated in 

MDCK cells and titrated by plaque assay. Propagated viruses were sequenced, and no mutations 

were found according to the reference sequences. All infectious experiments were conducted in 

Biosafety Containment Level 3 at the International Vaccine Centre at the University of 

Saskatchewan, Canada, under the guidelines of the Public Health Agency of Canada (PHAC) 

and the Canadian Food Inspection Agency (CFIA). 

 

3.3.2 Ethics statement 

All animal procedures were approved by the University Animal Care Committee (UACC) 

and Animal Research Ethics Board (AREB) of the University of Saskatchewan on 31 August 

2017 (Animal Use Protocol #20170087) in accordance with the standards stipulated by the 

Canadian Council on Animal Care. 

 

3.3.3 Mouse experiments 

For this study, 84 six-week-old female BALB/c mice (Charles River Laboratories, Saint-

Constant, QC, Canada) were randomly divided into seven groups with 12 mice in each group. 

These groups were housed in separate cages in Biosafety Containment Level 3 seven days prior 

to infection. At seven weeks of age, each mouse was intranasally infected with 50 µL of 103 

PFU, 104 PFU, and 105 PFU of either the AB14 (H5N1) or BC15 (H7N9) strain isolates. A group 

of mice was mock infected with PBS. The mice were monitored daily for body weight, and on 

days 2 and 5 post-infection (d.p.i), three mice from each group were euthanized, after which the 

lung and spleen tissues were collected for viral titration as well as cytokine and chemokine 
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profiling. Brain tissues were collected from euthanized mice on either 6 or 7 d.p.i. The rest of the 

mice were humanely euthanized when they dropped below 20% of their initial body weight. 

 

3.3.4 Virus isolation and titration 

Infectious lung, spleen, and brain tissues were processed immediately after collection as 

previously described (Pyo and Zhou, 2014). Briefly, the tissues were homogenized in MEM 

supplemented with Penicillin-Streptomycin (Gibco, Thermo Fisher, ON, Canada) in the 

TissueLyser II (Qiagen, Hilden, Germany) at 25 Hz for 5 min, followed by centrifugation at 

5,000 g for 10 min at 4°C. The supernatant was collected in screw-cap tubes and stored at -80°C 

for further titration. 

For virus titration by TCID50 assay, MDCK cells were plated in 96-well plates, and the 

supernatants of homogenized tissues were serially diluted in MEM and incubated with cells for 1 

h. The inoculum was removed and supplemented with MEM containing 0.2% BSA and 1 µg/mL 

TPCK-trypsin (Sigma-Aldrich). The development of cytopathic effects (CPE) was observed and 

recorded every 24 h until 96 h post-infection. The TCID50 titer of each infectious sample was 

calculated by the Spearman–Kärber algorithm (Kärber, 1931; Spearman, 1908). 

 

3.3.5 RNA extraction and quantitative RT-PCR (qRT-PCR) 

Tissue samples of mice collected on 2 or 5 d.p.i. or upon necropsy were submerged into 

RNA later (Qiagen) and stored overnight at 4°C. The following day, the tissue samples were 

transferred to screw-cap tubes containing one 5 mm stainless steel bead (Qiagen) and 1 mL of 

TRIzol Reagent (Invitrogen, Carlsbad, CA, USA). The samples were homogenized using the 

TissueLyser II (Qiagen) at 25 Hz for 5 min, followed by centrifugation at 5,000 g for 10 min at 

4°C. The supernatant was then transferred to new tubes for RNA extraction by the TRIzol 

method (Invitrogen).  

To determine mRNA levels of various cytokines and chemokines induced by AB14 

(H5N1) and BC15 (H7N9) viral infection, qRT-PCR was performed on total RNA of the 

samples collected from mice infected with 103 PFU of the respective virus, as previously 

described (Liu et al., 2018) with the following modifications. Briefly, a 500 µg portion of RNA 

was reverse transcribed with oligo(dt) and SuperScript III Transcriptase (Invitrogen) to obtain 

total mRNA. qPCR was performed on a StepOnePlusTM Real-Time PCR system (Applied 
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Biosystems, CA, USA) with the Power SYBR Green PCR Master Mix (Applied Biosystems). 

Cytokine mRNA levels were normalized to that of the housekeeping gene hypoxanthine 

phosphoribosyltransferase (HPRT) and expressed using the ∆∆CT method relative to the PBS 

group. All sequences of qPCR primers are listed in Table 3.1. 

 

Name Sequence (5’ – 3’) 

IFN-γ-F TCAAGTGGCATAGATGTGGAAGAA 

IFN-γ-R TGGCTCTGCAGGATTTTCATG 

IFN-α-F CCTGTGTGATGCAACAGGTC 

IFN-α-R TCACTCCTCCTTGCTCAATC 

IFN-β-F ATCATGAACAACAGGTGGATCCTCC 

IFN-β-R TTCAAGTGGAGAGCAGTTGAG 

IP-10-F ATGACGGGCCAGTGAGAATG 

IP-10-R GAGGCTCTCTGCTGTCCATC 

TNFα-F AGGCACTCCCCCAAAAGATG 

TNFα-R CTGCCACAAGCAGGAATGAG 

IL-1β-F GTGTGGATCCCAAGCAATAC 

IL-1β-R GTCCTGACCACTGTTGTTTC 

IL-18-F TGGTTCCATGCTTTCTGGACTCCT 

IL-18-R TTCCTGGGCCAAGAGGAAGTGATT 

IL-6-F GTGGCTAAGGACCAAGACCA 

IL-6-R TAACGCACTAGGTTTGCCGA 

IL-10-F GCTGCCTGCTCTTACTGACT 

IL-10-R CTGGGAAGTGGGTGCAGTTA 

RIG-I-F CCTCCCATCTCCTTCATGACA 

RIG-I-R CCACCTACATCCTCAGCTACATGA 

HPRT-F GATTAGCGATGATGAACCAGGTT 

HPRT-R CCTCCCATCTCCTTCATGACA 

Table 3.1. List of primers used in qRT-PCR studies in mice. 

All primers have been validated to have greater than 95% of amplification efficiency. The 

expression levels of cytokine mRNA were normalized to the expression of the housekeeping 

gene HPRT. F: forward primer; R: reverse primer. 
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3.3.6 Histopathology 

The left side of the lung was fixed with 10% natural buffered formalin, processed for 

hematoxylin and eosin (H&E) staining, and assessed in a blind manner by a board-certified 

veterinary pathologist as previously described (Pyo et al., 2015). 
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3.4 RESULTS 

3.4.1 Survival rate and body weight loss of mice infected with the HPAI H5N1 and 

LPAI H7N9 strain isolates 

To determine the pathogenicity of the AB14 (H5N1) and BC15 (H7N9), BALB/c mice 

were intranasally inoculated with PBS or either AB14 (H5N1) or BC15 (H7N9) at three different 

doses (103 PFU, 104 PFU, and 105 PFU). Survival and body weight loss were monitored for 10 

days (Figure 3.1). Mice infected with PBS survived the duration of the trial and gained weight as 

the days progressed. In contrast, mice infected with the different doses of either AB14 (H5N1) or 

BC15 (H7N9) showed rapid body weight loss and severe mortality rates. Mice infected with 104 

PFU or 105 PFU of AB14 (H5N1) exhibited rapid weight loss greater than 20% of their initial 

body weight within four days post-infection (d.p.i.). Furthermore, over 60% of mice infected 

with 105 PFU of AB14 (H5N1) had succumbed by 4 d.p.i. (Figure 3.1A,B). By 5 d.p.i., 100% of 

mice infected with 104 PFU and 105 PFU were humanely euthanized due to severe body weight 

loss. Albeit mice infected with 103 PFU displayed the slowest rate of body weight loss, they all 

reached a humane endpoint by 6 d.p.i. With regard to BC15 (H7N9), mice infected with 103 PFU 

displayed the slowest decline of body weight, losing over 20% of their initial body weight by 8 

d.p.i. Furthermore, 50% of mice infected with 103 PFU reached a humane endpoint by 7 d.p.i., 

while the other 50% reached this endpoint by 8 d.p.i. (Figure 3.1C,D). In contrast, mice infected 

with 104 PFU and 105 PFU had steeper body weight losses and higher mortality rates. In the 104 

PFU group, 100% of mice reached a humane endpoint by 6 d.p.i., while in the 105 PFU group, 

50% of the mice by 4 d.p.i. and the other 50% by 5 d.p.i. reached this endpoint. These results 

demonstrate that both the AB14 (H5N1) and BC15 (H7N9) strain isolates are highly virulent in 

mice without the need of prior adaptation even at the lowest dose. 
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Figure 3.1. Survival rate and body weight loss for the AB14 (H5N1) and BC15 (H7N9) 

strain isolates. 

The survival rates for (A) AB14 (H5N1) and (C) BC15 (H7N9) as well as body weight changes 

for (B) AB14 (H5N1) and (D) BC15 (H7N9) were determined in BALB/c mice (n = 6 per group) 

infected with 103 PFU, 104 PFU, and 105 PFU of the two different strain isolates. 

 

3.4.2 Histopathology of the mouse lung 

To examine the levels of pulmonary pathology from AB14 (H5N1) and BC15 (H7N9) 

infection, we performed a histopathology study on the lungs of mice infected with 103 PFU that 

reached a humane endpoint on 6 or 7 d.p.i. Mice infected with both AB14 (H5N1) and BC15 

(H7N9) strain isolates showed bronchointerstitial pneumonia, with vasculitis (Figure 3.2). 

Specifically, the walls of the arterioles in infected mice were found to be infiltrated with 

inflammatory cells, and contained some necrotic debris (Figure 3.2, Panels D and G). In addition, 

viral infection also led to moderate damage to the mice alveoli and bronchioles. In the alveoli of 

infected mice, we found moderate thickening of the alveolar walls due to congestion as well as 

some inflammatory infiltrate (Figure 3.2, Panels E and H). The alveolar space was filled with 
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edema, and contained small to moderate numbers of mixed neutrophils and macrophages. 

Occasionally, hyaline membranes lining the alveoli were observed (Figure 3.2, Panel E). 

Multifocally, the bronchiolar epithelium was necrotic, and the lumen was filled with some necrotic 

debris and inflammatory cells as seen in the alveolar space (Figure 3.2, Panels F and I). 

 

Figure 3.2. Lung histopathology of mice after infection with AB14 (H5N1) and BC15 

(H7N9) strain isolates. 

Lung samples were fixed, sectioned, and stained with hematoxylin and eosin. (A–C) Tissues 

from mock-infected lungs. (D–F) Tissues from mice infected with AB14 (H5N1) showing 

infiltration of inflammatory cells into the (D) wall of the arteriole, (E) alveolar walls, and (F) 

bronchiolar epithelium affected by necrosis. (G–I) Tissues from mice infected with BC15 

(H7N9) showing necrotic debris and inflammatory cells in the (G) wall of the arteriole, (H) 

collapsed alveoli, as well as degeneration and necrosis of the (I) bronchiolar epithelium. Scale 

bar represents 100 µm. Black arrows denote the various histopathology features described above. 
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3.4.3 Replication efficiency of the HPAI H5N1 and LPAI H7N9 strain isolates in 

different organs of mice 

To investigate the replication efficiency and tissue tropism of both strain isolates, mouse 

lung, spleen, and brain tissues were collected at predetermined days, as well as when the mice 

reached a critical endpoint (Figure 3.3). In all groups of mice infected with AB14 (H5N1), the 

peak lung viral titers were reached by 2 d.p.i., which remained at high levels throughout the 

duration of the trial. The mean titers on 5 d.p.i. were 107.2, 106.4, and 106.7 TCID50/g for 103 PFU, 

104 PFU, and 105 PFU, respectively (Figure 3.3A). Brain samples taken from the lowest dose 

group (103 PFU) had very high viral titers on 6 d.p.i., with a mean virus titer of 107 TCID50/g 

(Figure 3.3C). Note that the brain samples were only harvested at the endpoint. Spleen viral titers 

remained at an approximate level of 102.5 TCID50/g from 2 d.p.i. until 5 d.p.i. (day 2: 102.64 

TCID50/g, day 5: 102.46 TCID50/g) in the mice infected with 105 PFU of the AB14 (H5N1) strain 

isolate (Figure 3.3D). Interestingly, spleen viral titers were not detected for the two lower dose 

groups (103 PFU and 104 PFU). 
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Figure 3.3. Viral titration of the mouse lung, spleen, and brain for the AB14 (H5N1) and 

BC15 (H7N9) strain isolates. 

Mice were intranasally infected with 103 PFU, 104 PFU, or 105 PFU of AB14 (H5N1) or BC15 

(H7N9). The lung, spleen, and brain tissues were collected and homogenized for virus titration 

by TCID50 assay. Lung viral titration from (A) AB14 (H5N1) and (B) BC15 (H7N9) infection 

for all doses. For AB14 (H5N1), three mice per group were humanely euthanized on 2 d.p.i., four 

mice infected with 105 PFU were euthanized on 4 d.p.i., and two mice on 5 d.p.i. On 5 d.p.i., 

three mice in the 103 and 104 PFU group were humanely euthanized. The remaining six mice in 

the 103 PFU group were euthanized on 6 d.p.i. For BC15 (H7N9) three mice per group were 

humanely euthanized on 2 d.p.i., three mice infected with 105 PFU were euthanized on 4 d.p.i., 

and three mice per group were euthanized on 5 d.p.i. On 6 d.p.i., the remaining six mice in the 

104 PFU group were humanely euthanized, and for the 103 PFU group three mice each on 7 and 

8 d.p.i. were humanely euthanized. Brain viral titration from (C) AB14 infection (H5N1). Only 

six mice from the 103 PFU group were harvested for analysis. Spleen viral titration from (D) 

AB14 (H5N1) infection. All mice in all groups were harvested for analysis. Please note that 

BC15 (H7N9) was not detected in the spleen of mice infected by all three doses and brain of 

mice infected by the 103 PFU dose. 

 

 In BC15 (H7N9) viral infected lung, the 103 PFU group reached a titer of approximately 

106.5 TCID50/g by 2 d.p.i., and remained at this titer throughout the duration of the trial. The 104 

PFU group displayed a similar trend, with high titers present at 2 d.p.i. (108 TCID50/g), which 

decreased by 5 and 6 d.p.i. (106.5 TCID50/g). The 105 PFU group had the highest titer at 2 d.p.i. 

(108 TCID50/g), which remained at this level throughout the duration of the trial (Figure 3.3B). The 

BC15 (H7N9) strain isolate was not detected in the spleen and brain of mice infected by all three 

doses by TCID50 assay. 

 

3.4.4 Cytokine and chemokine profiling in the mouse lung 

To understand the pathogenesis and immune response to AB14 (H5N1) and BC15 (H7N9) 

viral infection, we assessed the innate immune receptor RIG-I, as well as the cytokine and 

chemokine gene expression in the lungs and brains of mice infected with the lowest dose (103 

PFU) of both strain isolates by qRT-PCR. To start, we investigated a group of genes that encode 

interferons as well as the innate immune sensor RIG-I, a major pattern recognition receptor that 

recognizes influenza viral infection and activates the interferon response (Loo and Gale, 2011; 

Opitz et al., 2007). IFN-α and IFN-β are both type I interferons which play important roles in 

antiviral defense (Taniguchi and Takaoka, 2002). IFN-γ is a type II interferon that is the first 

cytokine produced in response to foreign invaders, and is an important activator of macrophages 

and natural killer (NK) cells. IFN-γ also has antiviral activity, and inhibits the proliferation of Th2 
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cytokines (IL-4, IL-5, and IL-6) (Tau and Rothman, 1999). In the AB14 (H5N1) infected lungs 

(Figure 3.4A), gene expression of RIG-I peaked on 2 d.p.i., which remained at these levels 

compared to the negative control. IFN-α gene expression was elevated on 2 d.p.i. IFN-β mRNA 

levels increased over 60-fold on 2 d.p.i., which remained at high levels on 5 and 7 d.p.i. The type 

I IFN gene transcription levels showed similar patterns in concordance with that of RIG-I. IFN-γ 

had the highest induction by 2 d.p.i., which remained at moderately elevated levels compared to 

the mock. The transcription of the gene encoding interferon-gamma-inducing protein 10 (IP-10), 

a cytokine produced in response to IFN-γ, was higher (over 2000-fold) on 2 d.p.i., and then 

remained at equivalent levels, consistent with the IFN-γ mRNA upregulation pattern. Next, we 

profiled the gene transcription of proinflammatory (TNFα, IL-6, IL-1β, and IL-18) and anti-

inflammatory (IL-10) cytokines. TNFα is a proinflammatory cytokine produced in response to 

foreign invasion, and is often the main cytokine produced by macrophages following infection 

(Idriss and Naismith, 2000). IL-6 and IL-1β are the main contributors to severe lung inflammation 

in both humans and poultry infected by influenza virus (Saito et al., 2018). Both TNFα and IL-6 

mRNA were markedly enhanced upon AB14 (H5N1) infection and remained at these levels. IL-

1β mRNA was upregulated 7-fold on 2 d.p.i. IL-18 mRNA remained at mock levels upon infection. 

On the contrary, the mRNA level of the anti-inflammatory cytokine IL-10 was enhanced after 

infection. 



 58 

 

Figure 3.4. Innate immune receptor RIG-I, as well as cytokine and chemokine gene 

transcription levels in the lungs of mice infected with the AB14 (H5N1) and BC15 (H7N9) 

strain isolates. 

Innate immune receptor as well as cytokine and chemokine mRNA levels of RIG-I, IFN-α, IFN-

β, IFN-γ, IP-10, TNFα, IL-6, IL-1β, IL-18, and IL-10 from virus-infected lungs with (A) AB14 

(H5N1) and (B) BC15 (H7N9) (n = 3 mice per virus group) were measured by qRT-PCR. 

Samples were harvested on the indicated d.p.i.; each sample was tested in triplicate. 
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In the lungs of BC15 (H7N9) infected mice, elevated mRNA levels of interferon genes 

(IFN-α, IFN-β, and IFN-γ), interferon responsive cytokine gene (IP-10), and proinflammatory 

cytokine genes (TNFα and IL-6) were obtained on 2 d.p.i. compared to the uninfected control 

(Figure 3.4B). IFN-α and IFN-β mRNA levels were similar to the negative control by 7 d.p.i., 

whereas mRNA levels of RIG-I, IFN-γ, and TNFα remained relatively unchanged throughout the 

duration of the trial. Similar to what we observed for AB14 (H5N1), the IL-18 gene transcript was 

not upregulated in response to viral infection, whereas the gene transcription of the anti-

inflammatory cytokine IL-10 was highest on 7 d.p.i. 

Besides cytokine and chemokine gene transcription analysis in the lungs of viral infected 

mice, we also analyzed select cytokine transcription levels in the brains of mice harvested at the 

endpoint. In the brains of mice infected with AB14 (H5N1), the transcription of IFN genes (IFN-

α and IFN-γ) as well as proinflammatory cytokine genes (TNFα, IL-6, and IL-1β) was higher 

compared to the uninfected control (Figure 3.5A). Among all genes activated in the brain tissue 

upon infection, IFN-γ and TNFα were the most transcribed cytokines associated with HPAI AB14 

(H5N1) infection. Similar to the cytokine regulation observed in the mouse lung, IL-18 transcripts 

did not change upon AB14 (H5N1) infection when compared to the uninfected control (Figure 

3.5A). In contrast, the brains of mice infected with BC15 (H7N9) had slightly higher levels of 

IFN-α, IFN-γ, and IL-6 gene transcription, which was marginal compared to the degree of 

elevation observed in the AB14 (H5N1) viral infected brain. The transcripts of the other 

inflammatory cytokine genes, TNFα, IL-1β, and IL-18, were similar to the uninfected control 

(Figure 3.5B). 
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Figure 3.5. Cytokine gene transcription profile in the brains of mice infected with the AB14 

(H5N1) and BC15 (H7N9) strain isolates. 

Cytokine transcription levels of IFN-α, IFN-γ, TNFα, IL-6, IL-1β, and IL-18 from virus-infected 

brains with (A) AB14 (H5N1) and (B) BC15 (H7N9) (n = 3 mice per virus group). Samples were 

harvested on the indicated d.p.i; each sample was tested in triplicate. 

 

3.5 DISCUSSION AND CONCLUSIONS 

Following the reporting of the human HPAI (H5N1) and LPAI (H7N9) infection in Canada, 

the characterization of the causative strain isolates associated with these human infection cases, 

AB14 (H5N1) and BC15 (H7N9), was reported. Pabbaraju et al. analyzed the full genome of 

AB14 (H5N1) and assessed its molecular markers of pandemic risk (Pabbaraju et al., 2014b). 

Skowronski et al. conducted the serological and phylogenetic analysis of BC15 (H7N9), reporting 

that this virus belongs to the clade W2-C, which clusters with both the 2014–2015 H7N9 human 

isolates from the Jiangsu, Zhejiang, and Fujian Provinces of China as well as the 2014 chicken 

isolate from Jiangsu Province (Skowronski et al., 2016). Despite the analysis of these two 

Canadian isolates, the infectious and immunological properties as well as the histopathological 

correlation to disease remained elusive. In this study, we aimed to fill this knowledge gap, and to 
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provide insightful information on the pathogenesis of the AB14 (H5N1) and BC15 (H7N9) strain 

isolates in mice. 

To ensure that the AB14 (H5N1) and BC15 (H7N9) strain isolates would induce disease in 

mice, we chose to infect them with three different doses (103 PFU, 104 PFU, and 105 PFU). We 

found that even at the lowest dose (103 PFU), both isolates were lethal to mice. AB14 (H5N1) 

caused all mice to reach a humane endpoint by 6 d.p.i., whereas BC15 (H7N9) infected mice 

survived one to two days longer than the mice infected with AB14 (H5N1). This observation is in 

contrast to the various seasonal or the 2009 pandemic influenza viruses (Groves et al., 2018; Rowe 

et al., 2010). Groves et al. reported that mice infected with 5 X 103 PFU of influenza 

A/England/195/2009 (H1N1) showed mild weight loss over 7 days, whereas mice infected with 

103 PFU of influenza A/England/691/2010 (H3N2) did not show any signs of disease (Groves et 

al., 2018). In the study reported by Rowe et al., infection of BALB/c mice with 104 EID50 of the 

2009 pandemic virus did not cause any death when using 20% total body weight loss as an endpoint 

(Rowe et al., 2010). Furthermore, we could detect the AB14 (H5N1) strain in multiple organs, 

including the lung, spleen, and brain, with consistently high titers in the lung and brain tissues. 

However, we could only detect the BC15 (H7N9) strain in the mouse lung, with no detectable 

virus in the spleen and brain by TCID50 assay. These results are in agreement with the previous 

reports that while H5N1 virus has the ability to replicate systemically and spread efficiently to 

non-respiratory tissues, H7N9 virus replicates well in the upper respiratory tract (URT), covering 

the nasal passages, nasopharynx-associated lymphoid tissues (Meliopoulos et al., 2014), human 

bronchus, and the lungs (Chan et al., 2013b). Research has shown that avian IAV strains need to 

acquire adaptation mutations in order to be infectious in mammals, with one such adaptation being 

in the polymerase, PB2. This adaptation resides at the amino acid at position 627 of PB2, and 

determines the viral replication efficiency in different hosts. It is well characterized that avian 

strains carry a glutamic acid (E) at this position referred to as 627E, whereas mammalian strains 

carry a lysine (K), namely, 627K (Hatta et al., 2001a). The BC15 (H7N9) strain isolate consists of 

PB2 encoding 627K, which may explain its ability to replicate well in the human respiratory tract. 

In contrast, the AB14 (H5N1) strain isolate consists of PB2 possessing the avian signature, namely, 

627E. However, our data have shown that while AB14 (H5N1) replicates efficiently without any 

adaptation in mice, it replicates less efficiently in tissue culture (Lu and Zhou unpublished data). 

In addition to the PB2 protein, HA protein is also a key viral factor that determines whether an 
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avian virus can replicate well in mammals. It is reported that AB14 (H5N1) HA contains two novel 

mutations, R189K and G221R, which are located in the immediate receptor-binding pocket 

(Pabbaraju et al., 2014b). It was speculated that these mutations arose in an avian H5N1-infected 

patient, which was also associated with severe illness and spread of the virus to the brain. We 

observed that the AB14 (H5N1) strain isolate replicated efficiently in the mouse brain, which will 

provide a model for further investigation of the functional role of G221R in avian influenza HA 

contributing to viral pathogenesis in mammals. 

Research has shown that the dysregulation of the innate immune responses that results in 

an unusual proinflammatory cytokine production often contributes to the pathogenicity of both the 

HPAI H5N1 virus and the 1918 Spanish Flu pandemic virus (Cilloniz et al., 2009; Perrone et al., 

2008a). Our data show that although at different magnitudes, infection by both AB14 (H5N1) and 

BC15 (H7N9) induced higher levels of interferon gene and proinflammatory cytokine gene 

expression in the lungs. Subsequently, both strain isolates, AB14 (H5N1) and BC15 (H7N9) 

induced increased gene expression of the anti-inflammatory cytokine IL-10. There has been 

evidence showing IL-10 to inhibit several proinflammatory cytokines and chemokines (Couper et 

al., 2008), and that it may therefore actually hinder clearance of the virus (Frensing et al., 2016). 

When comparing the transcription levels of various cytokines, it was found that most cytokine 

genes had levels in the tens- to hundreds-fold. Interestingly, the two inflammatory cytokines IL-

1β and IL-18, whose maturation is regulated by inflammasome activity (Kaplanski, 2018), were 

not enhanced at the mRNA level; IL-1β mRNA was only moderately enhanced, whereas IL-18 

mRNA was not enhanced at all. This finding thus warrants further investigation into the mature 

IL-1β and IL-18 protein levels, in order to understand their roles in mediating avian IAV-induced 

pathogenesis. Interestingly, it has been reported that in comparison to other H5N1 strain isolates 

that are associated with severe human respiratory disease, H7N9 strains isolated from human 

infections from 2013 to 2015 are poor proinflammatory cytokine and chemokines inducers in 

mammalian models (Belser et al., 2016). However, our results showed that BC15 (H7N9) is a 

potent inducer of proinflammatory cytokines in the mouse lung. This finding is consistent with the 

study of human patients infected with H7N9 virus, where elevated cytokine and chemokine 

production was observed (Chi et al., 2013). With regard to the cytokine gene expression in the 

mouse brain, we found that AB14 (H5N1) dramatically enhanced IFN-α, IFN-γ, TNFα, and IL-6 

transcription in the brains of mice that reached a humane endpoint. This finding possibly indicates 
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cytokine hyperinduction in the brains of mice infected with AB14 (H5N1), which may contribute 

to the pathogenesis. In contrast, only moderate enhancement of both IFN-γ and IL-6 transcripts 

was observed in the brains of mice infected with BC15 (H7N9). This finding reflects the viral titers 

found in the infected brains of the mice, such that while mice infected with AB14 (H5N1) had 

high titers, mice infected with BC15 (H7N9) had no detectable virus in the brain.  

Taken together, we showed that the AB14 (H5N1) strain isolate replicates efficiently 

without prior adaptation not only in the mouse lung, but also in other non-respiratory tissues such 

as the spleen and brain. The high viral load and hypercytokinemia in multiple organs contributed 

to the severity of the disease associated with AB14 (H5N1) infection. Similarly, the BC15 (H7N9) 

strain is also highly pathogenic in mice, but its replication seemed to be more constrained to the 

respiratory tract. The severity of both AB14 (H5N1) and BC15 (H7N9) disease as well as the 

significant lung pathology observed may be a result of the unusual enhancement of 

proinflammatory cytokines including TNFα, IP-10, and IL-6. Our findings not only contribute to 

a better understanding of the pathogenesis of the strain isolates associated with Canadian human 

cases of avian H5N1 and H7N9 virus infection, but also provide animal models for testing vaccine 

and antiviral candidates for viruses that are of significant public health concerns. 
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TRANSITION BETWEEN CHAPTER 3 AND CHAPTER 4 

 

In the previous chapter we described the successful development of a mouse animal 

model of A/British Columbia/01/2015 (H7N9) [BC15 (H7N9)], by evaluating the susceptibility, 

replication abilities, pathology, and immune responses mounted against viral infection. In this 

next chapter, a recombinant mutant H7N9 virus, BC15-HA/QTV/NA (PR8) was developed and 

characterized for its growth properties, stability, and virulence in mice as a potential replication-

defective virus vaccine candidate. 
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CHAPTER 4 REVERSE-GENETICS GENERATED ELASTASE-DEPENDENT BC15 

(H7N9) INFLUENZA VIRUS IS REPLICATION-DEFECTIVE IN MICE 

 

 

 

 

 

The data presented in this chapter and chapter 5 will be submitted to Vaccines 
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4.1 ABSTRACT 

Avian influenza H7N9 viruses continue to pose a great threat to public health, evident by 

their high morbidity and mortality rates. Although H7N9 was first isolated in humans in China in 

2013, to date there is no commercial vaccine available against this particular strain. Previous 

studies have demonstrated that when the hemagglutinin (HA) cleavage site was mutated from a 

trypsin-sensitive to elastase-sensitive motif, influenza virus became replication-defective in vivo, 

however, this concept has only been presented in mouse-adapted influenza A viruses (IAV) and 

swine influenza viruses (SIV) (Masic et al., 2008; Stech et al., 2005). In this study, we report the 

development of a recombinant mutant H7N9 virus, BC15-HA/QTV/NA (PR8) derived from the 

human isolate A/British Columbia/01/2015 (H7N9) [BC15 (H7N9)] through reverse genetics. 

The HA cleavage site underwent site-directed mutagenesis to generate a mutant HA plasmid, 

pHW-BC15/HA-QTV, that possesses three mutations: lysine to glutamine at amino acid (aa) 337 

(Lys-Gln), glycine to threonine at aa 338 (Gly-Thr), and arginine to valine at aa 339 (Arg-Val). 

This mutant HA plasmid was then incorporated into the generation of the recombinant mutant 

BC15-HA/QTV/NA (PR8) virus. Our results show this virus to rely completely on elastase for 

its replication, to possess similar growth properties compared to the wild-type virus, and to be 

genetic stable in vitro and replication-defective in mice. Therefore, these results prove the strong 

potential of this recombinant mutant BC15-HA/QTV/NA (PR8) virus to act as a replication-

defective virus vaccine candidate against H7N9 viruses. 
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4.2 INTRODUCTION 

Avian influenza H7N9 viruses are members of the Orthomyxoviridae family (Bouvier 

and Palese, 2011), capable of causing severe respiratory disease in humans, with some of the 

main symptoms including fever, cough, weakness, muscle soreness, shortness of breath, chest 

distress, nausea, chills, and pneumonia (Su et al., 2017). Unfortunately, more serious symptoms 

can occur such as high hospitalization rates or respiratory failure (Zeng et al., 2015). These 

serious symptoms have led the H7N9 virus to have high morbidity and mortality rates, with 

1,568 human cases and 616 deaths as of March 4, 2020 (FAO, 2020). Although cases of H7N9 

have been mainly constrained to China, there have been reports in other countries such as 

Canada (Gao et al., 2013; Skowronski et al., 2016; Zhang et al., 2017). These findings, along 

with the mutagenic properties influenza retains to escape the immune system through antigenic 

shift and antigenic drift, highlight the risk H7N9 poses to public health (Bouvier and Palese, 

2011).  

Influenza A viruses (IAV) are composed of segmented, negative-sense, single-stranded 

ribonucleic acid (RNA) genomes (Bouvier and Palese, 2011). One of the main determinants for 

whether IAV can establish infection and replicate within the host is the binding of the virus to 

the host cell through the interaction of hemagglutinin (HA) and sialic acid receptors, followed by 

receptor-mediated endocytosis and fusion of the virus to the endosome. The HA of IAV has three 

important roles: it enables IAV to bind to the host cell, induces fusion between the viral envelope 

and endosomal membranes by allowing IAV to infiltrate into the cytoplasm, and is the primary 

antigen the immune system produces neutralizing antibodies against (Masic et al., 2008). The 

HA of IAV is initially present in its precursor form, HA0, which must be cleaved into HA1 and 

HA2 by a host protease. This cleavage is necessary for IAV to become infectious, and can play a 

role in the pathogenicity and tissue tropism of the influenza virus (Böttcher et al., 2006; Masic et 

al., 2008; Skehel and Wiley, 2000).  

Despite strong efforts to develop a vaccine protective against H7N9, to date, there is no 

commercial vaccine available for use. Out of the two main types of vaccines available in Canada, 

inactivated influenza vaccines (IIV) and live attenuated influenza vaccines (LAIV), research has 

shown LAIVs to have many advantages over IIVs (PHAC, 2017a). Some of these advantages 

include enhanced protection rates, longer-lasting immune responses, and the ability to mimic a 

natural infection by stimulating the mucosal immune system. LAIVs do not necessarily depend 
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on the egg-based system, are easier to administer due to their needle-free properties, are cheaper 

to manufacture, may only need a single dose, and show a good safety profile (Isakova-Sivak and 

Rudenko, 2017; Lorenzo and Fenton, 2013; Sridhar et al., 2015). Moreover, one study showed 

that a single dose of a Len17-H7N9 LAIV stimulated an immune response sufficient to protect 

against infection and could, therefore, be stockpiled in the event of a pandemic (Isakova-Sivak 

and Rudenko, 2017). However, albeit the surplus advantages LAIV possess, one disadvantage 

towards their use is the possibility of virulence reversion, limiting their widespread use 

(Watanabe et al., 2001). Replication-defective virus vaccines are vaccines composed of viruses 

that lack one or more vital components to either its replication, synthesis, or assembly of the 

virion. These viruses, therefore, cannot replicate in vivo but can be propagated in vitro when 

provided the appropriate component. These vaccines possess the same advantages both IIVs and 

LAIVs possess, making them strong IAV vaccine candidates. These advantages include the high 

safety and efficacy rates, as well as the ability to induce CD4+ T cells, CD8+ T cells, and the 

humoral immune responses (Dudek and Knipe, 2006). To date, although experimental vaccines 

are being tested for the H7N9 virus, there is a gap in vaccines against a new Canadian strain 

isolate from 2015: A/British Columbia/01/2015 (H7N9) [BC15 (H7N9)]. 

Previous studies have demonstrated the lack of replication of influenza virus in vivo when 

the HA cleavage site was mutated from a trypsin-sensitive motif to an elastase-sensitive motif 

(Masic et al., 2008; Stech et al., 2005). Unfortunately, there is a gap in knowledge about whether 

this concept is applicable for human LPAI H7N9 viruses because this concept has only been 

tested in mouse-adapted IAV or swine influenza viruses (SIV) (Masic et al., 2008; Stech et al., 

2005). Therefore, in this chapter, we report the generation of a recombinant mutant H7N9 virus, 

BC15-HA/QTV/NA (PR8) derived from BC15 (H7N9). This recombinant mutant BC15-

HA/QTV/NA (PR8) virus contains mutations at the HA cleavage site to change a trypsin-

sensitive motif to an elastase-sensitive motif, specifically, the amino acids (aa) lysine-glycine-

arginine (Lys-Gly-Arg) at positions 337, 338, and 339, respectively, were mutated to glutamine-

threonine-valine (Gln-Thr-Val). Introduction of these mutations resulted in the recombinant 

mutant BC15-HA/QTV/NA (PR8) virus being strictly dependent on elastase for its replication, 

possessed viral kinetics equal to its wild-type counterpart, was genetically stable in vitro and was 

non-virulent and replication-defective in mice. Therefore, these results suggest that this 
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recombinant mutant BC15-HA/QTV/NA (PR8) virus has high potential to act as a replication-

defective virus vaccine candidate against H7N9 virus. 
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4.3 MATERIALS AND METHODS 

4.3.1 Cells and viruses 

Madin-Darby canine kidney (MDCK) (ATCC, #CRL-2936) cells and human embryonic 

kidney (HEK-293T) cells were provided with Minimal Essential Medium (MEM) (Sigma-

Aldrich, M4655; St. Louis, MO, USA) and Dulbecco’s Modified Eagle Medium (DMEM) 

(Sigma-Aldrich, D5796; St. Louis, Mo, USA), respectively, supplemented with 10% fetal bovine 

serum (FBS) (Thermo Fisher; 16000-044) in a humidified 5% CO2 incubator at 37°C. The 

A/British Columbia/01/2015 (H7N9) [BC15 (H7N9)] strain isolate was collected from Dr. Yan 

Li who works at the National Microbiology Laboratory, Public Health Agency of Canada 

(PHAC). This strain isolate was preserved in Biosafety Containment Level 3 at the Vaccine 

International Disease Organization, International Vaccine Centre (VIDO-InterVac) at the 

University of Saskatchewan, Canada. This strain isolate was maintained by following the 

guidelines implemented from both the Public Health Agency of Canada (PHAC) and the 

Canadian Food Inspection Agency (CFIA). 

 

4.3.2 Plasmids and primers 

Before the mutant HA plasmid could be designed, the wild-type plasmids pHW-BC15-HA 

and pHW-BC15-NA were developed. To this end, viral RNA from BC15 (H7N9) was isolated 

from the culture medium of the virus-infected cells using the TRIzol method (Invitrogen). This 

viral RNA underwent reverse transcription to generate cDNA through the use of the universal 

Uni12 primer (5’ – AGC AAA AGC AGG – 3’) (Hoffmann et al., 2001) and the Superscript II 

Transcriptase (Invitrogen). Once the cDNA was amplified, both HA and NA were cloned into 

pHW2000 as previously described (Hoffmann et al., 2000), to result in the plasmids pHW-BC15-

HA and pHW-BC15-NA, respectively. 

For the development of the mutant plasmid, pHW-BC15-HA underwent site-directed 

mutagenesis to generate an elastase-sensitive motif at the HA cleavage site. Site-directed 

mutagenesis entailed using PCR to create the mutant plasmid pHW-BC15/HA-QTV, containing 

three mutations. For this mutant plasmid, lysine, glycine, and arginine (Lys-Gly-Arg) were 

mutated to glutamine, threonine, and valine (Gln-Thr-Val) at aa positions 337, 338, and 339, 

respectively. The primers used were 5’ – ACA GAC TGT TGG ACT ATT TGG TGC TAT 

AGC GGG TTT C – 3’ and 5’ – TCC AAC AGT CTG TGG AAT CTC AGG AAC ATT CTT 
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CAT C – 3’. The mutant plasmid pHW-BC15/HA-QTV was confirmed by sequencing to ensure 

only the desired mutations were introduced by PCR. 

 

4.3.3 Generation of viruses by reverse genetics 

The recombinant influenza viruses used in this study were generated through the use of the 

eight-plasmid reverse genetics system, as previously described (Hoffmann et al., 2000). The 

recombinant H7N9 influenza virus rg-(6+2)-BC15-HA/NA [BC15-HA/NA (PR8)] contains the 

HA and NA of A/British Columbia/01/2015 [BC15 (H7N9)] and the six internal genes of 

A/Puerto Rico/8 (H1N1) [PR8 (H1N1)]. The recombinant mutant H7N9 influenza virus rg-

(6+2)-BC15/HA-QTV/NA [BC15-HA/QTV/NA (PR8)] contains the mutant HA, HA/QTV, the 

NA of BC15 (H7N9) and the six internal proteins from PR8 (H1N1). All segments were first 

cloned into the vector pHW2000 as previously described (Hoffmann et al., 2000). These 

segments were then used to recover the recombinant BC15-HA/NA (PR8) and recombinant 

mutant BC15-HA/QTV/NA (PR8) viruses.  

Briefly, MDCK cells (2.2 X 105 cells) and 293T cells (3.0 X 105 cells) were cultured 

together in a humidified 5% CO2 incubator at 37°C in 35-mm dishes with DMEM and 10% FBS. 

24 hours later and one hour before transfection, the DMEM was removed and replaced with fresh 

Opti-MEM (Invitrogen). Transfection was performed using the TransIT-LT1 Transfection 

Reagent (Mirus, MIR 2306; Madison, WI, USA). Six hours post-infection, the transfection 

mixture was replaced with fresh Opti-MEM. Twenty-four hours after transfection, an additional 

1 ml of Opti-MEM containing 0.2% bovine serum albumin (BSA) (Sigma-Aldrich; A7030) and 

either 2 μg/ml L-[(toluene-4-sulphonamido)-2-phenyl] ethyl chloromethyl ketone (TPCK)-

trypsin (recombinant virus) or 1 μg/ml human neutrophil elastase (recombinant mutant virus) 

(Sigma-Aldrich; E8140) was added. Supernatants were collected 72 h post-transfection (h.p.i.) 

when cytopathic effects (CPE) were prominent, followed by a passage in MDCK cells to obtain 

higher titers of the viruses. For this passage, MDCK cells were seeded (4.4 X 105 cells) in 35-

mm dishes. The next day, the cells were washed with MEM and the harvested supernatant was 

used to infect MDCK cells (300 μl). After 1 h viral adsorption, the cells were washed with 

MEM, and then 2 ml of MEM containing 0.2% BSA and either 2 μg/ml TPCK-trypsin 

(recombinant virus) or 0.5 μg/ml human neutrophil elastase (recombinant mutant virus) was 
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added. The supernatants were harvested when CPE was present, at either 48 or 72 h.p.i with the 

titers determined by plaque assay. 

 

4.3.4 Western blot analysis 

Cell lysates were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis 

(SDS-PAGE) and transferred to nitrocellulose membranes (Bio-Rad, 0.45 µm). These 

membranes were blocked for 1 h with 5% skim milk dissolved in TBST (0.1 M Tris, 0.17 M 

NaCl, 1% Tween 20) and incubated at 4°C overnight with either rabbit anti-NP or rabbit anti-M1 

antibodies raised in our lab. The next day, the membranes were incubated with donkey anti-

rabbit IgG (IR Dye 680RD, Li-Cor, Lincoln, NE, USA) at room temperature for 1 h, and scanned 

on an Odyssey infrared imager (Li-Cor Biosciences). 

 

4.3.5 Plaque assay 

To determine the viral titers, MDCK cells (5 X 105 cells) were plated on a 6-well plate in 

MEM and 10% FBS. Twenty-four hours later, the cells were infected with the virus at dilutions 

ranging from 10-1 to 10-8. After 1 h of viral adsorption, the cells were washed with MEM, after 

which an agar overlay was added containing 0.9% agarose, 2X MEM, 0.2% BSA, and either 1 

μg/ml TPCK-trypsin (recombinant virus) or 0.5 μg/ml human neutrophil elastase (recombinant 

mutant virus). The cells were then incubated at 37°C, 5% CO2 for 48 h. At 48 h, the agar overlay 

was removed and cells stained with Coomassie Blue Stain. Plaques were counted and the titer 

was determined as plaque-forming unit (PFU) per ml. 

 

4.3.6 Growth curve 

To determine the growth curve, MDCK cells (5 X 105 cells) were seeded in 2 ml of MEM 

containing 10% FBS in a 6-well plate. The next day, the cells were washed with MEM and 

infected with the virus at an m.o.i. of 0.001. After 1 h viral adsorption, the cells were washed 

with MEM, and then 2.5 ml of growth medium was added to each well containing MEM, 0.2% 

BSA, and either 1 µg/ml TPCK-trypsin (recombinant virus) or 0.5 µg/ml human neutrophil 

elastase (recombinant mutant virus). Aliquots were harvested at 12, 24, 36, 48, 60, and 72 h.p.i. 

and subjected to plaque assay to determine the viral titer.  
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4.3.7 Genetic stability of the elastase mutations 

To analyze the genetic stability of the elastase mutations, the recombinant mutant BC15-

HA/QTV/NA (PR8) virus was passaged five times on MDCK cells at an m.o.i. of 0.001 in the 

presence of either 1 µg/ml TPCK-trypsin or 0.5 µg/ml human neutrophil elastase. The 

supernatant of the fifth passage was subjected to plaque assay in either the presence of elastase or 

TPCK-trypsin. Sequencing of the elastase mutations found on the recombinant mutant BC15-

HA/QTV/NA (PR8) virus was also performed to ensure no undesired mutations were introduced.  

 

4.3.8 Virus purification 

To generate purified viral stocks of recombinant BC15-HA/NA (PR8) and recombinant 

mutant BC15-HA/QTV/NA (PR8) viruses, MDCK cells (2.5 X 106 cells) were seeded in 10-cm 

dishes containing MEM and 10% FBS. The following day, the cells were infected with the 

respective viruses at an m.o.i. of 0.001. After 1 h of viral adsorption, the cells were washed with 

MEM and growth medium was then added containing MEM, 0.2% BSA and either 1 µg/ml 

TPCK-trypsin (recombinant virus) or 0.5 µg/ml human neutrophil elastase (recombinant mutant 

virus). The cells were incubated at 37°C, 5% CO2 for 48 h or until CPE was observed. The 

supernatant was harvested and clarified by centrifugation at 1,621 g for 15 min at 4°C and stored 

at -80°C until further purification. 

The harvested supernatant was subjected to virus purification on a sucrose gradient to 

remove all residual proteases. First, the supernatant was centrifuged at 132 g for 10 min at 4°C to 

remove any cellular debris. This clarified supernatant underwent ultracentrifugation to pellet the 

virus at 82,705 g for 2.5 h at 4°C. The pellet was resuspended in TSE buffer (20 mM Tris pH 

7.8, 150 mM NaCl pH 7.8, 2mM EDTA pH 7.8) and left overnight at 4°C to soften the pellet. 

The next day, pellets were resuspended and layered on a sucrose overlay containing the 

following layers from bottom to top: 60% sucrose in TSE, 30% sucrose in TSE, and the pooled 

pellets. The overlay underwent ultracentrifugation at 77,175 g for 2.5 h at 4°C. The virus was 

harvested from the opalescent band between the 60% and 30% sucrose, put into a new tube, and 

TSE buffer was added to dilute the sucrose. This underwent ultracentrifugation at 77,175 g for 2 

h at 4°C. The pellet was resuspended in 1 ml TSE buffer, left overnight at 4°C, and then 

aliquoted into 1.5 ml microcentrifuge tubes and stored at -80°C. Viral titers were determined by 

plaque assay. 
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4.3.9 Ethics statement 

Before proceeding with the animal procedures, approval was required from the University 

Animal Care Committee (UACC) and Animal Research Ethics Board (AREB) of the University 

of Saskatchewan. This approval was given on 12 April 2019 (Animal Use Protocol #20190041), 

under the guidelines given by the Canadian Council on Animal Care (CCAC). 

 

4.3.10 Mouse experiments 

For this trial, 36 six-week-old male and female BALB/c mice (18 males and 18 females) 

(Charles River Laboratories, Saint-Constant, QC, Canada) were randomly divided into three 

groups with 12 mice in each group (six males and six females). These groups were housed in 

separate cages and allowed to acclimatize for seven days in Biosafety Containment Level 2. At 

seven weeks of age, the mice were intranasally inoculated with 50 μl of either MEM or the 

following recombinant viruses at 1 X 103 PFU: BC15-HA/NA (PR8) or BC15-HA/QTV/NA 

(PR8) (Table 4.1). The mice were monitored daily for body weight and survival rate. On day 3 

post-infection (d.p.i.), four mice from each group (two males and two females) were humanely 

euthanized and their lungs collected for viral titration. The rest of the mice were humanely 

euthanized when they dropped below 20% of their initial body weight. All animal experiments 

took place at VIDO-InterVac, University of Saskatchewan following the regulations stipulated 

by the University of Saskatchewan and the CCAC. 

 

4.3.11 Virus isolation and titration 

Upon harvest of the lung tissue, it was immediately placed into 1 ml of MEM 

supplemented with 1X Penicillin-Streptomycin (100X) (Gibco, Thermo Fisher, ON, Canada). 

Lung tissue was homogenized using the TissueLyser II (Qiagen, Hilden, Germany) at 25 Hz for 

5 min, followed by centrifugation at 5,000 g for 10 min at 4°C. The supernatant containing the 

homogenized tissue was collected and placed in labelled 1.5 ml screw-cap tubes and stored at      

-80°C until the plaque assay was performed. 
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4.4 RESULTS  

4.4.1 The production of the mutant plasmid and recombinant mutant BC15-

HA/QTV/NA (PR8) virus as a vaccine candidate against BC15 (H7N9) 

To generate the recombinant mutant H7N9 virus, BC15-HA/QTV/NA (PR8) which 

contains the mutations QTV in the HA gene, we exchanged several nucleotides in the HA 

cleavage site corresponding to positions 1075 to 1086 from AAG GGA AGA GGC to CAG ACT 

GTT GGA (Figure 4.1), respectively. This exchange resulted in the replacement of amino acid 

(aa) Lys (L) with Gln (Q) at position 337, Gly (G) with Thr (T) at position 338, and Arg (R) with 

Val (V) at position 339.  

The rationale for mutating these three aa stems from a previous finding where the 

introduction of a valine into the HA cleavage site resulted in cleavage by leukocyte elastase, and 

sometimes by porcine pancreatic elastase, rather than by the normal protease trypsin (Masic et 

al., 2008). According to a previous study in swine, mutagenesis of one aa, Arg (R) to Val (V) at 

the HA cleavage site should be sufficient to rescue the influenza virus (Masic et al., 2008). 

However, when only one aa mutation was introduced in the HA of BC15 (H7N9) [Arg (R) to Val 

(V) at position 339], the recombinant mutant H7N9 virus could not be successfully rescued in the 

presence of either human neutrophil elastase or porcine pancreatic elastase (data not shown). 

However, since we were also working on several swine mutant viruses in our laboratory that 

contained successful elastase mutations (A/swine/Alberta/SD0191/2016 [SD191 (H1N2)]) and 

(A/swine/Saskatchewan/SD0069/2015 [SD69 (H3N2)]) (Landreth et al. unpublished data), this 

led us to compare the sequences surrounding the HA cleavage site of the SD191 (H1N2) and 

SD69 (H3N2) to that of BC15 (H7N9). After comparison, we hypothesized that if we extended 

our mutagenesis upstream of the HA cleavage site in BC15 (H7N9) to match that of the SD191 

(H1N2) and SD69 (H3N2) elastase mutant viruses, we could potentially rescue the recombinant 

mutant virus (Figure 4.2). This extended mutagenesis led to the successful rescue of both the 

recombinant mutant virus BC15-HA/QTV/NA (PR8) and recombinant mutant virus BC15-

HA/QSV/NA (PR8) (Figure 4.3). The recombinant mutant virus BC15-HA/QSV/NA (PR8) was 

generated in the same manner as the recombinant mutant virus BC15-HA/QTV/NA (PR8), with 

the only difference being the aa serine (S) at position 338 instead of threonine (T) (Figure 4.2). 

Both recombinant mutant H7N9 viruses were successfully rescued in the presence of human 

neutrophil elastase 72 h after transfection, and could not be rescued in the presence of porcine 
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pancreatic elastase or trypsin. However, the recombinant mutant virus BC15-HA/QSV/NA (PR8) 

did not grow to as high a titer (5.57 X 106 PFU/ml) as the recombinant mutant virus BC15-

HA/QTV/NA (PR8) (1.03 X 107 PFU/ml). Thus, the recombinant mutant virus BC15-

HA/QTV/NA (PR8) was chosen for future studies. A recombinant wild-type virus, identified as 

BC15-HA/NA (PR8) was also successfully generated by co-transfection (Figure 4.4) 48 h post-

transfection, and could only be rescued in the presence of trypsin. The genotype of the 

recombinant mutant virus BC15-HA/QTV/NA (PR8) was characterized as well as confirmed by 

DNA sequencing of the HA gene through RNA extraction followed by RT-PCR (data not 

shown). 

 

Figure 4.1. Schematic outline of the mutations introduced into the HA cleavage site of 

BC15 (H7N9).  

(A) Nucleotide sequences from HA positions 1075 to 1086 and (B) Amino acid sequences from 

HA positions 337 to 340 of BC15-HA (wild-type) and BC15-HA/QTV (mutant). Nucleotide 

sequences (A) and amino acids (B) in red correspond to the mutations that were introduced. n-

Elastase corresponds to the human neutrophil elastase protease. 

 

 
Figure 4.2. Schematic outline displaying the rationale for the mutations introduced into the 

HA cleavage site of BC15 (H7N9). 

(A) Nucleotide sequences from HA positions 1075 to 1086 (BC15-HA), 1104 to 1115 (SD69-

HA/QTV), 1075 to 1086 (BC15-HA/QTV), 1095 to 1106 (SD191-HA/QSV), and 1075 to 1086 

(BC15-HA/QSV). (B) Amino acids from HA positions 337 to 340 (BC15-HA), 343 to 346 
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(SD69-HA/QTV), 337 to 340 (BC15-HA/QTV), 340 to 343 (SD191/HA-QSV), and 337 to 340 

(BC15-HA/QSV). Nucleotide sequences (A) and amino acids (B) in red correspond to the 

mutations that were introduced. n-Elastase corresponds to the human neutrophil elastase 

protease. 

 

 
Figure 4.3. Plaque assay illustrating the successful rescue of recombinant BC15-HA/NA 

(PR8) and recombinant mutant BC15-HA/QTV/NA (PR8) and BC15-HA/QSV/NA (PR8) 

viruses. 

 

4.4.2 The recombinant mutant BC15-HA/QTV/NA (PR8) virus is strictly dependent 

on elastase for its replication in vitro 

To determine the elastase dependency of the recombinant mutant virus BC15-

HA/QTV/NA (PR8) in vitro, we performed plaque assay and Western blotting. The recombinant 
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mutant virus, BC15-HA/QTV/NA (PR8), as well as the recombinant virus BC15-HA/NA (PR8) 

were assayed in the presence of trypsin, human neutrophil elastase, or no protease (Figure 4.4). 

The recombinant virus BC15-HA/NA (PR8) resulted in the formation of plaques in the presence 

of trypsin comparable to the plaques formed by the recombinant mutant virus BC15-

HA/QTV/NA (PR8) in the presence of elastase (Figure 4.4A). These plaques were clear and 

large. The recombinant mutant virus BC15-HA/QTV/NA (PR8) was unable to form plaques in 

the presence of trypsin, or without protease added, highlighting its dependence on elastase. 

Western blotting also emphasized the same results (Figure 4.4B), in that the viral proteins NP 

and M1 were only detected when the recombinant mutant virus BC15-HA/QTV/NA (PR8) was 

provided with elastase. This strict dependence on elastase is essential for this recombinant 

mutant BC15-HA/QTV/NA (PR8) virus to be considered as a replication-defective virus vaccine 

because past research has shown elastase-dependent influenza viruses to be completely 

replication-defective in vivo (Masic et al., 2008; Stech et al., 2005).  
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Figure 4.4. The replication dependency of recombinant BC15-HA/NA (PR8) and 

recombinant mutant BC15-HA/QTV/NA (PR8) viruses. 

MDCK cells were infected at an m.o.i. of 0.001 in the presence of trypsin, neutrophil elastase, or 

in the absence of exogenous protease and subjected to plaque assay (A) or Western blotting (B). 

For Western blotting, 48 h.p.i. the cells were lysed to detect the presence of nucleoprotein (NP) 

and matrix (M1) protein. NP and M1 were detected using rabbit anti-NP or rabbit anti-M1 

antibodies raised in our lab, followed by the addition of donkey anti-rabbit IgG for detection on 

an Odyssey infrared imager. 

 

4.4.3 The recombinant mutant BC15-HA/QTV/NA (PR8) virus possesses equal 

growth kinetics to its wild-type counterpart in vitro 

To determine whether the introduction of the mutations in the HA cleavage site could 

result in altering the replication abilities of the recombinant mutant BC15-HA/QTV/NA (PR8) 

virus; a multiple cycle growth curve was generated. High replication abilities are one of the 

requirements for a virus to be considered as a good vaccine candidate; therefore, we did not want 

the mutations to result in lower replication abilities compared to the wild-type virus. To this end, 

MDCK cells were infected with the recombinant virus BC15-HA/NA (PR8) or recombinant 

mutant virus BC15-HA/QTV/NA (PR8) at an m.o.i. of 0.001, with trypsin or elastase added to 

the medium. The supernatants were harvested at the indicated time points until 72 h.p.i., and the 

viral titers were determined by plaque assay on MDCK cells (Figure 4.5). The recombinant 

mutant virus BC15-HA/QTV/NA (PR8) possessed viral kinetics similar to its wild-type 

counterpart, recombinant virus BC15-HA/NA (PR8), with rapid replication between 12 h and 24 

h, which plateaued after 24 h. When trypsin was added to the recombinant mutant virus BC15-
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HA/QTV/NA (PR8), no viral replication was detected. Therefore, these results are conclusive in 

that the introduction of the elastase-sensitive motif to the HA cleavage site of BC15 (H7N9) does 

not result in the alteration of the viral growth properties in MDCK cells. 
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Figure 4.5. Multiple-cycle growth curves of recombinant BC15-HA/NA (PR8) and 

recombinant mutant BC15-HA/QTV/NA (PR8) viruses. 

MDCK cells were infected with the respective viruses at an m.o.i. of 0.001 with either 1 µg/ml 

trypsin (T) or 0.5 µg/ml human neutrophil elastase (E). The recombinant mutant BC15-

HA/QTV/NA (PR8) virus was also tested in the presence of trypsin. The supernatants were 

collected at specified time points until 72 h.p.i. and then titered by plaque assay on MDCK cells. 

 

4.4.4 The recombinant mutant BC15-HA/QTV/NA (PR8) virus is genetically stable 

in vitro 

To determine whether the mutations introduced in the HA cleavage site were stable in 

vitro, the recombinant mutant virus BC15-HA/QTV/NA (PR8) was passaged five times on 

MDCK cells at an m.o.i. of 0.001 in the presence of trypsin and human neutrophil elastase. The 

supernatants of the fifth passage were subjected to plaque assay in the presence of trypsin or 

human neutrophil elastase (Figure 4.6). The recombinant mutant virus BC15-HA/QTV/NA 

(PR8) was unable to form plaques in the presence of trypsin, highlighting that the mutations 

introduced were genetically stable after five passages on MDCK cells. Sequencing analysis of 

the HA cleavage site supported this finding, in that the QTV mutations introduced were retained 

throughout the five passages (Figure 4.7). Specifically, the nucleotides found from HA positions 
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1075 to 1086 (CAG ACT GTT) were the same as the nucleotides originally introduced (Figure 

4.1). These results show the high level of genetic stability that the recombinant mutant virus 

BC15-HA/QTV/NA (PR8) possesses in cell culture after five passages. However, further 

experiments would need to be conducted to confirm this finding, such as using small amounts of 

elastase and trypsin to select against these genetic mutations. Since replication-defective viruses 

have demonstrated their safety of preventing virulence reversion through very limited replication 

within the host, this virus holds an advantage over the traditional LAIVs, whose limited 

replication poses a higher risk for virulence reversion (Dudek and Knipe, 2006; Watanabe et al., 

2001). Therefore, the genetic stability of this recombinant mutant virus BC15-HA/QTV/NA 

(PR8) demonstrates the strong potential this virus holds as a vaccine candidate against H7N9 

viruses. 

 

Figure 4.6. The genetic stability of the recombinant mutant BC15-HA/QTV/NA (PR8) 

virus. 
The virus was passaged five times on MDCK cells at an m.o.i. of 0.001 in the presence of either 

trypsin or human neutrophil elastase. The supernatant of the fifth passage was subjected to 

plaque assay in the presence of either trypsin or human neutrophil elastase. 
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Figure 4.7. Histogram of the sequencing analysis performed on the HA cleavage site of the 

recombinant mutant BC15-HA/QTV/NA (PR8) virus.  

Highlighted in yellow are the nucleotides (CAG ACT GTT) corresponding to the HA nucleotides 

from positions 1075 to 1086. These nucleotides code for the three amino acid mutations, QTV 

from HA positions 337 to 340. 

 

4.4.5 The recombinant mutant BC15-HA/QTV/NA (PR8) virus is replication-

defective in mice 

To assess the virulence of this recombinant mutant BC15-HA/QTV/NA (PR8) virus, 36 

six-week-old male and female BALB/c mice (equal males and females) were randomly divided 

into three groups with 12 mice in each group (six males and six females). Each mouse was 

intranasally inoculated with 50 µl of either MEM, recombinant virus BC15-HA/NA (PR8) (1 X 

103 PFU), or recombinant mutant virus BC15-HA/QTV/NA (PR8) (1 X 103 PFU) (Table 4.1). 

The mice were monitored daily for body weight and survival rate (Figure 4.8). The mice that 

were infected with MEM and the recombinant mutant virus BC15-HA/QTV/NA (PR8) survived 

the duration of the trial and maintained their initial body weights. The mice that were infected 

with the recombinant virus BC15-HA/NA (PR8) began to lose weight from 4 d.p.i., with the 

most weight loss on 7 d.p.i. On 7 d.p.i., the mice exhibited approximately 11% loss of their 

initial body weight, after which the mice that survived gained weight to mock levels from 7 to 14 

d.p.i. In this group, two mice (one female and one male) succumbed to the infection on 7 and 8 
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d.p.i., respectively. In contrast, mice infected with the recombinant mutant virus BC15-

HA/QTV/NA (PR8) did not show any body weight loss for the duration of the trial. On 3 d.p.i., 

four mice from each group (two males and two females) were humanely euthanized and the lung 

samples were taken for viral load determination. Lung samples were also taken when the mice 

succumbed to infection, as well as on 14 d.p.i. On 3 d.p.i., high viral replication was detected in 

the recombinant BC15-HA/NA (PR8) group (1 X 106 PFU/ml/gr), which decreased on 7 and 8 

d.p.i., with titers of 1 X 104 PFU/ml/gr and 1 X 103 PFU/ml/gr, respectively (Figure 4.9). On 14 

d.p.i., no virus was detected in all lung samples from the recombinant BC15-HA/NA (PR8) 

group, illustrating that the mice cleared the influenza infection. In the recombinant mutant BC15-

HA/QTV/NA (PR8) group, no viral replication was detected in any of the days sampled. 

Therefore, since no body weight loss or viral replication in the lungs was observed for the 

recombinant mutant BC15-HA/QTV/NA (PR8) virus, it was concluded that this virus is 

replication-defective in mice. Since being replication-defective is one of the requirements for this 

recombinant mutant BC15-HA/QTV/NA (PR8) virus to be considered as a replication-defective 

virus vaccine (Masic et al., 2008; Stech et al., 2005), we were able to move on to test this 

recombinant mutant BC15-HA/QTV/NA (PR8) virus in an immunoprotection study, which is 

explained in detail in chapter 5 of my thesis. 

 

Groups 

(n = 12) 

 

Inoculum Concentration  Dose volume Route 

1 

 

MEM - 50 µl / 25 µl 

nostril 

Intranasal 

2 

 

BC15-HA/NA (PR8) 1 X 103 PFU 50 µl / 25 µl 

nostril 

Intranasal 

3 

 

BC15-HA/QTV/NA (PR8) 1 X 103 PFU 50 µl / 25 µl 

nostril 

Intranasal 

 

Table 4.1. Outline of mouse trial to evaluate the virulence of the recombinant mutant 

BC15-HA/QTV/NA (PR8) virus.  
n = number of mice 
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Figure 4.8. The survival rate and body weight loss of mice infected with the recombinant 

BC15-HA/NA (PR8) and the recombinant mutant BC15-HA/QTV/NA (PR8) viruses. 

The survival rates (A) and body weight loss (B) of the mice infected with MEM (control) or 1 X 

103 PFU of recombinant BC15-HA/NA (PR8) or the recombinant mutant BC15-HA/QTV/NA 

(PR8) viruses (n = 12 per group). 

 

 



 86 

3 7 8 14

1×10 0

1×10 1

1×10 2

1×10 3

1×10 4

1×10 5

1×10 6

1×10 7

Lung viral titer
V

ir
u

s
 t

it
e

r 
(l

o
g

1
0
 p

.f
.u

. 
m

l-1
g

r-1
)

BC15-HA/NA (PR8)

MEM

BC15-HA/QTV/NA (PR8)

Days post-infection
 

Figure 4.9. Viral titration of lungs from mice infected with the recombinant BC15-HA/NA 

(PR8) and the recombinant mutant BC15-HA/QTV/NA (PR8) viruses. 

Mice were intranasally infected with MEM (control) or the BC15-HA/NA (PR8) or the BC15-

HA/QTV/NA (PR8) viruses at a dose of 1 X 103 PFU. The lung samples were collected, 

homogenized, and titrated by plaque assay; the samples were analyzed in duplicate. Viral titers 

are expressed as PFU per milliliter per gram (PFU/ml/gr). 

  

4.5 DISCUSSION AND CONCLUSIONS 

Currently, H7N9 IAV continues to pose a great threat to society, apparent by the high 

morbidity and mortality rates it induces. Although much research has been focused on the 

development of a vaccine, at present, there is no commercial vaccine available. Out of the two 

main types of vaccines against influenza virus, IIV and LAIV, LAIVs have demonstrated much 

promise due to their superiority over IIVs. However, due to LAIVs possibility of virulence 

reversion, they have not yet become widespread throughout the world (Jang and Seong, 2012; 

Watanabe et al., 2001). Replication-defective virus vaccines are characteristically known to be 

defective in one or more essential functions of the virus replication, protein synthesis, or 

assembly (Dudek and Knipe, 2006). These vaccines possess the combined advantages of IIVs 

and LAIVs, with regards to their high safety and efficacy rates, low possibility of reversion, and 

ability to stimulate a balanced immune response (Dudek and Knipe, 2006; Watanabe et al., 

2001). In addition, previous studies have demonstrated their high protection and efficacy rates 

against homologous challenges. In one study, mice vaccinated with replication-incompetent 

influenza virus-like particle (VLP) composed of cDNA from all influenza segments except the 
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NS2 gene were 94% protected against a homologous influenza challenge (Watanabe et al., 

2001). Therefore, these replication-defective virus vaccines hold potential as influenza vaccine 

candidates.    

In previous studies, a LAIV was generated through the introduction of specific mutations 

at the HA cleavage site; which is different from the commonly known temperature-sensitive 

LAIV (Masic et al., 2008; Sridhar et al., 2015; Stech et al., 2005). More specifically, these 

mutations at the HA cleavage site resulted in cleavage that was strictly dependent on the protease 

elastase. In this study, a mouse-adapted HA mutant virus was generated, which was dependent 

on elastase, grew similarly to the wild-type strain, and was completely replication-defective in 

mice at a dosage of 1 X 106 PFU (Stech et al., 2005). Similarly, Masic et al. came to the same 

conclusions in that a pig HA mutant virus was dependent on elastase, grew similarly to the wild-

type strain, and completely replication-defective in pigs at a dose of 4 X 106 PFU, a natural host 

for influenza virus (Masic et al., 2009). These findings impelled us to determine whether this 

concept could be applied to an H7N9 virus capable of infecting humans. 

In this chapter, we generated a recombinant mutant BC15-HA/QTV/NA (PR8) virus 

completely dependent on elastase in vitro. To generate this virus, we first generated a mutant 

plasmid, pHW-BC15/HA-QTV, which contained three mutations on the HA gene with the HA 

cleavage site to result in an elastase-sensitive motif. We then used reverse genetics to rescue the 

recombinant mutant virus rg-(6+2)-BC15/HA-QTV/NA [BC15-HA/QTV/NA (PR8)], composed 

of six segments from A/Puerto Rico/8 [PR8 (H1N1)], and two segments (HA, NA) from 

A/British Columbia/01/2015 [BC15 (H7N9)]. This recombinant mutant BC15-HA/QTV/NA 

(PR8) virus could only be rescued in the presence of human neutrophil elastase and grew to titers 

similar to its wild-type counterpart.  

After generating this recombinant mutant BC15-HA/QTV/NA (PR8) virus, we proceeded 

to characterize the virus in vitro. Our results showed this recombinant mutant BC15-

HA/QTV/NA (PR8) virus to be completely dependent on human neutrophil elastase for its 

activation, have identical growth kinetics to its wild-type counterpart and be genetically stable 

after five passages in MDCK cells (Figures 4.4-4.7). These results suggest that this recombinant 

mutant BC15-HA/QTV/NA (PR8) virus holds strong promise as a replication-defective virus 

vaccine candidate, as the mutations introduced did not result in alteration of the replication 

abilities of the virus, and the mutations did not revert to wild-type form, one common 
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disadvantage of the use of LAIVs. This recombinant mutant BC15-HA/QTV/NA (PR8) virus is 

characterized as a replication-defective virus vaccine, and not a LAIV because the mutations 

introduced resulted in halting the virus replication cycle. This halt leads to the restriction of 

influenza virus to a single-cycle of replication, unable to infect neighbouring cells. 

Since our in vitro characterization demonstrated the potential of this recombinant mutant 

BC15-HA/QTV/NA (PR8) virus as a replication-defective virus vaccine candidate, we 

proceeded to investigate whether these replication-defective properties would hold in vivo. 

Specifically, we infected BALB/c mice with the recombinant virus rg-(6+2)-BC15-HA/NA 

[BC15-HA/NA (PR8)] and the recombinant mutant virus BC15-HA/QTV/NA (PR8) and 

monitored the mice daily for 14 days. Data collected from the daily body weights and viral load 

determination in their lungs demonstrated complete replication-defective properties of the 

recombinant mutant BC15-HA/QTV/NA (PR8) virus in mice. Their body weights remained 

equal to those of the uninfected group (Figure 4.8B), and no viral replication was detected by 

plaque assay (Figure 4.9). Thus, this recombinant mutant BC15-HA/QTV/NA (PR8) virus was 

completely replication-defective in mice.  

Taken together, our results support the findings reported in Masic et al. and Stech et al., 

and demonstrate the potential of using this recombinant mutant BC15-HA/QTV/NA (PR8) virus 

for protection against H7N9 viruses capable of infecting humans (Masic et al., 2009; Stech et al., 

2005). Since this recombinant mutant BC15-HA/QTV/NA (PR8) virus displays strong promise 

as a replication-defective virus vaccine candidate, the next step was to test whether this 

recombinant mutant BC15-HA/QTV/NA (PR8) virus could provide protection against A/British 

Columbia/01/2015 [BC15 (H7N9)] in mice. 
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TRANSITION BETWEEN CHAPTER 4 AND CHAPTER 5 

 

In the previous chapter, a recombinant mutant BC15-HA/QTV/NA (PR8) virus was 

successfully generated and characterized with respect to its growth properties, stability, and 

virulence in mice. Since this recombinant mutant BC15-HA/QTV/NA (PR8) virus showed 

promise as a vaccine due to its non-virulence and non-replication nature in vivo and comparable 

virological characteristics to its wild-type counterpart in vitro, in this next chapter, the potential 

of this recombinant mutant BC15-HA/QTV/NA (PR8) virus as a replication-defective virus 

vaccine candidate was evaluated.  
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CHAPTER 5 THE REPLICATION-DEFECTIVE H7N9 VIRUS ELICITED COMPLETE 

PROTECTION AGAINST BC15 (H7N9) VIRAL CHALLENGE IN MICE  

 

 

 

 

 

 

 

 

 

 

The data presented in this chapter and chapter 4 will be submitted to Vaccines 
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5.1 ABSTRACT 

Avian influenza H7N9 virus infections in humans are common and pose substantial 

burdens to public health through their high morbidity and mortality rates. In the previous chapter, 

we demonstrated a recombinant mutant BC15-HA/QTV/NA (PR8) virus to be dependent on 

elastase for its replication and be genetically stable, possess comparable growth kinetics to its 

wild-type counterpart in vitro, as well as possess complete replication-defective properties in 

mice. Because vaccination is still the primary means for protecting the public against influenza 

viruses, in this chapter the immunogenicity and protective efficacy of the recombinant mutant 

BC15-HA/QTV/NA (PR8) virus against a lethal dose of A/British Columbia/01/2015 (H7N9) 

[BC15 (H7N9)] was evaluated in mice. We report that this recombinant mutant BC15-

HA/QTV/NA (PR8) virus completely protects mice against a lethal challenge of BC15 (H7N9). 

This protection was demonstrated through the lack of body weight loss, 100% survival rate, and 

the induction of significantly elevated levels of antigen-specific IFN-γ and IL-5 secreting cells in 

the splenocytes, which is evidence of a strong cell-mediated response. In addition, this protection 

was demonstrated by the increased the levels of neutralizing antibodies in the mouse serum, 

tested by both the hemagglutinin inhibition (HAI) and serum virus neutralization (SVN) assays, 

as well as heightened the levels of antigen-specific IgG, IgG1, and IgG2a in the mouse serum. 

This protection was also confirmed through the inhibition of BC15 (H7N9) virus replication, and 

the reduction of various proinflammatory cytokine levels induced in the mouse lung that are 

associated with the influenza disease. Therefore, these results provide strong evidence for the use 

of this recombinant mutant BC15-HA/QTV/NA (PR8) virus as a replication-defective virus 

vaccine candidate against BC15 (H7N9). 
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5.2 INTRODUCTION 

Influenza A viruses (IAV) are part of the Orthomyxoviridae family and consist of 

ribonucleic acid (RNA) genomes that are segmented, negative-sense, and single-stranded 

(Bouvier and Palese, 2011). IAVs initiates infection by entering the host respiratory tract through 

either aerosol inoculation or by fomites (Racaniello, 2009). Once IAV is inside the respiratory 

tract, it enters the host cell through the attachment of its hemagglutinin (HA) protein to the sialic 

acid receptors found on the host epithelial cells (Skehel and Wiley, 2000). The incubation period 

of IAV can last anywhere from 1 – 5 days and is usually asymptomatic. During this time, IAV 

initiates its replication and can be excreted and transmitted to other hosts through respiratory 

routes, such as coughing or sneezing. Once IAV enters the host, the host cells use their pattern 

recognition receptors (PRR) to sense pathogen-associated molecular patterns (PAMPS) found on 

the pathogen. Sensing of a foreign pathogen results in the innate immune signalling pathway 

activation, triggering the production of antiviral cytokines and interferons (IFNs). Meanwhile, 

dendritic cells (DCs) travel to the lymph node, where they present the foreign antigens to T cells, 

which leads to the activation of an antigen-specific or adaptive immune response. This immune 

response is characterized by the production of T cells and B cells, with the T cells aiding in 

infection elimination and the B cells producing antibodies that aid in immunological memory. 

Upon clearance of the IAV infection, the host is then protected against the particular strain it was 

infected with through the secretion of antibodies that can bind to and neutralize the virus 

(Murray et al., 2013). However, due to the complex evolutionary mechanisms IAV possesses, 

such as antigenic drift and antigenic shift, the same host can be repeatedly infected with different 

variants of the same IAV subtype (Bouvier and Palese, 2011). These complex evolutionary 

mechanisms can also facilitate IAV jumping from one species into another, adding to the 

intricacy of this disease (Su et al., 2017). Therefore, IAV poses a great challenge for researchers 

to develop a vaccine because the continuous evolution and ability to escape the immune system 

results in vaccines not always being protective against the particular strain it was intended for.  

Avian influenza H7N9 viruses pose a significant threat to public health due to their 

recently acquired ability to infect humans and cause extraordinary morbidity and mortality rates. 

As of March 4, 2020, H7N9 had infected 1,568 humans and resulted in 616 deaths (FAO, 2020). 

Prior to 2013, avian influenza H7N9 virus circulated solely within the poultry population. 

Unfortunately, 2013 was the year when the low pathogenic avian influenza (LPAI) H7N9 virus 
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jumped species from birds into humans (Gao et al., 2013). Luckily, human LPAI H7N9 

infections have not yet spread worldwide, being restricted to China due to its diverse and 

connected environment. China is known for its live-poultry markets here poultry are kept in 

close-quarters and contact with humans. This close contact between poultry and humans has 

been the primary reason for human infections with LPAI H7N9 for six epidemic waves from 

2013 to 2017 (Su et al., 2017). Due to influenza’s complex evolutionary mechanisms, the fifth 

epidemic wave brought about the evolution of the highly pathogenic avian influenza (HPAI) 

H7N9 virus. Since the emergence of the HPAI H7N9 virus, it has resulted in a total of 33 

laboratory-confirmed human infections and has been detected in both poultry and ducks (Tang et 

al., 2019). This HPAI H7N9 virus has had such high morbidity and mortality rates among 

humans that it has resulted in more infections and deaths than the first four epidemic waves 

combined (Su et al., 2017; Yang et al., 2019). Throughout these epidemic waves, case fatality 

rates (CFR’s) ranged from 33% to 45% for LPAI H7N9 and HPAI H7N9, respectively (Su et al., 

2017). Although avian influenza H7N9 virus has not yet acquired the ability of sustained human-

to-human transmission, the high morbidity and mortality rates as well as the evolution of the 

HPAI H7N9 virus highlights the importance of an effective vaccine against this avian influenza 

virus (Zheng et al., 2019).   

 Before IAV can become infectious, cleavage of the HA precursor form, HA0, must occur 

by various host proteases, most often by the protease trypsin. This cleavage results in the 

generation of HA1 and HA2, allowing IAV to become infectious and continue its replication 

cycle (Masic et al., 2008). Several studies have demonstrated the replication-defective properties 

IAV can possess through the mutation of the trypsin-sensitive HA cleavage site to an elastase-

sensitive HA cleavage site. These studies have been demonstrated in the swine influenza virus 

(SIV) H1N1, in a human-derived H7N7 HPAI, in a mouse-adapted human-derived H1N1 virus, 

as well as in influenza B virus (IBV) (Babiuk et al., 2011; Gabriel et al., 2008; Mamerow et al., 

2019; Masic et al., 2009; Masic et al., 2010; Masic et al., 2013; Stech et al., 2011; Stech et al., 

2005). These replication-defective properties have been known to be a result of the respiratory 

tract lacking the protease elastase, thus, blocking the cleavage of HA and the continuation of the 

replication cycle in vivo (Mamerow et al., 2019). Therefore, these replication-defective viruses 

can be readily propagated in vitro when provided the protease elastase, but are unable to replicate 

in vivo where there is no elastase available (Stech et al., 2005). However, although in these 
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studies the various elastase mutant viruses were proven to confer high protective efficacy and 

immunogenicity against several homologous and heterologous viruses, this concept has not been 

tested for the H7N9 virus. Moreover, the few candidate virus vaccines available for H7N9, 

including A/Shanghai/2/13, A/Anhui/1/13, A/Guangdong/17SF003/2016, A/Hong 

Kong/125/2017, and A/Human/02650/2016, do not cover all variants of H7N9 influenza virus 

and are mainly inactivated influenza vaccines (IIV), which have disadvantages limiting their use 

(WHO, 2019). In the previous chapter of my thesis a recombinant mutant BC15-HA/QTV/NA 

(PR8) virus derived from a new Canadian isolate, A/British Columbia/01/2015 (H7N9) [BC15 

(H7N9)] was developed, that was isolated from two patients that had recently visited China 

(Skowronski et al., 2016). This recombinant mutant BC15-HA/QTV/NA (PR8) virus was 

dependent on elastase and genetically stable in vitro, and entirely replication-defective in mice. 

Therefore, in this chapter, the immunogenicity and protective efficacy of this recombinant 

mutant BC15-HA/QTV/NA (PR8) virus against BC15 (H7N9) was evaluated. We found this 

recombinant mutant BC15-HA/QTV/NA (PR8) virus to completely protect mice from a lethal 

challenge of BC15 (H7N9), and possesses evidence of a strong cell-mediated and humoral 

immune response that may contribute to the high protection efficacy. This recombinant mutant 

BC15-HA/QTV/NA (PR8) virus was found to eliminate BC15 (H7N9) viral replication and 

significantly reduce the induction of proinflammatory cytokines associated with the influenza 

disease in the mouse lung. Therefore, as an approach to control the spread of the H7N9 virus, 

this recombinant mutant BC15-HA/QTV/NA (PR8) virus holds strong promise as a replication-

defective virus vaccine candidate not only against BC15 (H7N9) but also against other subtypes 

of H7N9 influenza virus.  
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5.3 MATERIALS AND METHODS 

5.3.1 Cells and viruses 

Madin-Darby canine kidney (MDCK) (ATCC, #CRL-2936) cells were cultured in Minimal 

Essential Medium (MEM) (Sigma-Aldrich; M4655, St. Louis, MO, USA) supplemented with 

10% fetal bovine serum (FBS) (Thermo Fisher; 16000-044) in a humidified 5% CO2 incubator at 

37°C. The recombinant mutant H7N9 virus rg-(6+2)-BC15/HA-QTV/NA [BC15-HA/QTV/NA 

(PR8)], as well as recombinant H7N9 virus rg-(6+2)-BC15-HA/NA [BC15-HA/NA (PR8)], used 

in this study were generated as described in chapter 4. The recombinant mutant H7N9 virus, 

BC15-HA/QTV/NA (PR8) was grown in MDCK cells supplemented with 0.2% bovine serum 

albumin (BSA) (Sigma-Aldrich; A7030) and 0.5 µg/ml human neutrophil elastase (Sigma-

Aldrich; E8140). The recombinant H7N9 virus BC15-HA/NA (PR8) was grown in the presence 

of 0.2% BSA and 1 µg/ml L-[(toluene-4-sulphonamido)-2-phenyl] ethyl chloromethyl ketone 

(TPCK)-trypsin and purified by sucrose gradient purification. After sucrose gradient purification, 

the titers of the recombinant mutant BC15-HA/QTV/NA (PR8) virus and the recombinant BC15-

HA/NA (PR8) virus was 2.08 X 107 PFU/ml and 3.19 X 107 PFU/ml, respectively. The A/British 

Columbia/01/2015 (H7N9) [BC15 (H7N9)] strain isolate was obtained from Dr. Yan Li, 

National Microbiology Laboratory, Public Health Agency of Canada. This strain isolate was 

maintained in Biosafety Containment Level 3 at the Vaccine International Disease Organization, 

International Vaccine Centre (VIDO-InterVac) at the University of Saskatchewan. All infectious 

experiments were conducted in Biosafety Containment Level 3 at the International Vaccine 

Centre at the University of Saskatchewan, Canada, under the guidelines of the Public Health 

Agency of Canada (PHAC) and the Canadian Food Inspection Agency (CFIA). All titers in this 

chapter were determined by either TCID50 assay or plaque assay as described in chapter 3 and 4, 

respectively. 

 

5.3.2 Ethics statement 

Before commencing the animal experiments, we obtained approval from both the 

University Animal Care Committee (UACC) and Animal Research Ethics Board (AREB) of the 

University of Saskatchewan. This approval was given on 18 June 2019 (Animal Use Protocol 
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#20190079), guided by the stipulations implemented by the Canadian Council on Animal Care 

(CCAC). 

 

5.3.3 Mouse experiments and sampling 

For this trial, 38 six-week-old male and female BALB/c mice (19 males and 19 females) 

(Charles River Laboratories, Saint-Constant, QC, Canada) were randomly divided into three 

groups with either 12 or 14 mice in each group (six or seven males and females, respectively). 

These groups were housed in separate cages and allowed to acclimatize for seven days in 

Biosafety Containment Level 2. The males and females were housed in separate cages within the 

groups. At seven weeks of age, the mice were intranasally vaccinated with 50 µl of either MEM 

or BC15-HA/QTV/NA (PR8) at a dose of 1 X 103 PFU. At 10 weeks of age (21 days later), the 

mice received a second vaccination in the same manner as the first vaccination. On day 30, four 

mice from each group were euthanized (two males and two females) and their spleens collected 

for isolation to detect IFN-γ and IL-5 secreting cells by the enzyme-linked immunospot 

(ELISPOT) assay. The remaining eight or ten mice per group (four or five males and females, 

respectively) were transferred to Biosafety Containment Level 3. The following day (day 31), 

these transferred mice were challenged with a lethal dose 100 (LD100) of A/British 

Columbia/01/2015 [BC15 (H7N9)] (1 X 103 PFU). After the challenge, the mice were monitored 

daily for 14 days for both body weight loss and clinical scores. On day 3 post-challenge, four 

mice per group (two males and two females) were humanely euthanized and their lungs and 

serum were collected. Any mouse that lost over 20% of its total initial body weight throughout 

the trial was humanely euthanized. In addition, the serum of all mice was collected on days 0, 21, 

30, as well as on 3 and 14 days post-challenge and when a mouse was humanely euthanized. 

 

5.3.4 Isolation of splenocytes from mouse spleen 

To isolate the splenocytes, after harvesting the spleens they were immediately placed into 

40 µM BD falcon cell strainers (Corning; 352340) in a 6-well plate containing wash medium 

composed of MEM (Sigma-Aldrich) supplemented with Penicillin-Streptomycin (10,000 U/mL) 

(Gibco, ThermoFisher), 50 µg/ml gentamycin (Bio Basic, Canada), and HEPES (1M) (Gibco, 

ThermoFisher). After the excess fat was removed, the spleens were cut into 6-8 small pieces, and 

then gently pushed through the 40 µM cell strainer using the plunger of a 5 ml plastic syringe. 
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The wash medium now filled with cells was then pipetted through the cell strainer three times to 

break up the cells, and then added to a 15 ml tube and topped up with wash medium. The tubes 

underwent centrifugation at 200 g for 10 min at 4°C, after which 1 ml of Red Blood Cell Lysing 

Buffer Hybri-MaxTM (Sigma-Aldrich) was added to the cell pellet and gently mixed to lyse the 

cells. Exactly 30 seconds later wash medium was added to stop the lysis and the tubes underwent 

centrifugation at 200 g for 10 min at 4°C. The supernatant was discarded, and this step was 

repeated. After the second centrifugation, the supernatant was discarded and the cells were 

resuspended in culture medium composed of AIM-VTM Medium (ThermoFisher; 12055091) 

supplemented with Non-Essential Amino Acids (NEAA) Solution (1X) (Gibco, ThermoFisher), 

Sodium Pyruvate (1X) (Gibco, ThermoFisher), HEPES buffer (1X), and 50 mM 2-

mercaptoethanol (Sigma-Aldrich). The cell density was determined with a coulter counter and 

adjusted to 5 X 106 cells/ml for the ELISPOT assay. 

 

5.3.5 Detection of IFN-γ and IL-5 secreting cells by enzyme-linked immunospot 

(ELISPOT) assay 

For the enzyme-linked immunospot (ELISPOT) assay, multiscreen-HA plates, 0.45 µM, 

sterile (Millipore; MAHAS4510) were coated with either purified rat anti-mouse IFN-γ (BD; 

551216) or purified rat anti-mouse IL-5 (BD; 554393) at a concentration of 2 µg/ml diluted in 

sterile coating buffer and incubated overnight at 4°C. The next day the plates were washed with 

sterile PBS four times, and then blocked overnight at 4°C with 1% BSA diluted in PBS. The 

following day, the plates were rinsed with 200 µl/well of culture medium and the splenocytes 

seeded at 5 X 105 cells/well in a final volume of 200 µl/well. The cells were stimulated for 20 h 

at 37°C with 50 µg/ml of the purified β-propiolactone-inactivated recombinant virus [BC15-

HA/NA (PR8)], 5 µg/ml concanavalin A (Sigma-Aldrich), or medium only in triplicate. The 

purified virus [BC15-HA/NA (PR8)] was inactivated with β-propiolactone (Sigma-Aldrich) at a 

1:2000 dilution for 24 h with rocking incubation at 4°C. This inactivation was confirmed through 

the absence of plaques by a plaque assay. After stimulation, the plates were washed once with 

PBST (PBS + 0.1% Tween 20) and twice with ddH2O to lyse the cells. During the second wash 

with ddH2O, the cells were incubated for 5 min. The plates were washed three times with PBST 

and two times with ddH2O, after which either biotinylated rat anti-mouse IFN-ɣ (BD; 554410) or 

biotinylated rat anti-mouse IL-5 (BD; 554397) at a concentration of 2 µg/ml in PBS containing 
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1% BSA (1% PBS/BSA) was added. Subsequently, the plates were incubated at room 

temperature for 2 h. After the wells were washed four times with PBST and twice with ddH2O, 

alkaline phosphatase (AP)-conjugated streptavidin (Jackson ImmunoResearch; 016-050-084) 

diluted 1/2000 in 1% PBS/BSA was added to each well, and the plates were incubated at room 

temperature for 1.5 h. The plates were then washed four times with PBST and twice with ddH2O, 

after which BCIP/NBT substrate (Sigma-Aldrich; B5655) was added. The plates were incubated 

for 5 min, after which they were washed eight times with ddH2O and left to dry overnight. The 

spots were counted with the ELISPOT reader (AID, Strassberg, Germany). The data reported are 

presented as the number of IFN-γ and IL-5-secreting cells per 5 X 105 cells with the number of 

spots in the medium only wells subtracted as background. 

 

5.3.6 Hemagglutination inhibition (HAI) and serum virus neutralization (SVN) 

assay 

To measure the HAI titers, the HAI assay was performed. Mouse serum was pretreated 

with receptor destroying enzyme (RDE) (Cholera filtrate; C8772) (Sigma-Aldrich) at a 1:4 ratio 

in calcium saline pH 7.2 (0.1% calcium chloride, dihydrate; 0.9% sodium chloride, anhydrous; 

0.12% boric acid, anhydrous; 0.0052% sodium borate, decahydrate) overnight at 37°C. After 

incubation, the RDE was inactivated through the addition of 1.5% sodium citrate solution, pH 

7.2 at a 1:10 ratio followed by a 30 min incubation at 56°C to inactivate any remaining RDE. 

The treated serum samples were then serially diluted in duplicate two-fold in PBS in V-bottom 

96-well plates (Corning), to which four hemagglutination units of BC15 (H7N9) were added and 

incubated at room temperature for 1 h. After this incubation, 0.5% chicken red blood cells (RBC) 

were added to all wells, and the plates incubated for 30 min. At this time, the HAI titers of the 

serum were determined as the reciprocal of the highest dilution that completely inhibits 

hemagglutination.  

 To measure the serum virus neutralization (SVN) titers, MDCK cells (2 X 104 cells/well) 

were seeded in flat-bottom 96-well cell culture plates (Corning) and incubated overnight at 37°C 

in 5% CO2. Serum collected from mice on days 0, 21, and 30 were heat-inactivated for 30 min at 

56°C. This inactivated serum was then tested in quadruplicate, with 12 µl per replicate subjected 

to two-fold serial dilutions in MEM containing 1 µg/ml of TPCK-trypsin within sterile U-bottom 

96-well plates (Corning). A negative control composed of only MEM and TPCK-trypsin was 
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included among the replicates. After the serum was serially diluted, 100 TCID50/50 µl BC15 

(H7N9) influenza virus diluted in MEM containing 1 µg/ml TPCK-trypsin was added to each 

well, minus the negative control wells which only received MEM and TPCK-trypsin, and the 

plates incubated at 37°C in 5% CO2 for 1 h. These serially diluted plates are referred to as the 

serum-virus mixture plates. After the MDCK cells were washed with MEM, 100 µl of the serum-

virus mixture was added to each well and allowed to incubate for 1 h at 37°C in 5% CO2. After 

incubation, the serum-virus mixture was removed, MDCK cells were washed with MEM, and 

200 µl of MEM containing 1 µg/ml TPCK-trypsin and 50 µg/ml gentamicin was added to each 

well. The plates were incubated at 37°C in 5% CO2 for 72 h, after which the presence or absence 

of cytopathic effects (CPE) was observed and recorded. The SVN titer was determined as the 

highest dilution of serum that completely protected the cells from CPE in 50% of the wells.  

 

5.3.7 Enzyme-linked immunosorbent assay (ELISA) to detect antigen-specific IgG, 

IgG1, and IgG2 

To measure the influenza-specific IgG levels induced by vaccination, an enzyme-linked 

immunosorbent assay (ELISA) was performed using mouse serum samples taken before 

vaccination, after the first vaccination, and after the second vaccination. Purified β-

propiolactone-inactivated recombinant virus BC15-HA/NA (PR8) (2.5 µg/ml) was coated onto 

96-well Immulon-2 plates (Dynex Technology Inc., Chantilly, VA) and incubated overnight at 

4°C. This purified virus was confirmed to be inactivated by the absence of plaques in a plaque 

assay. After incubation, the plates were blocked for 1 h at room temperature with 100 µl of 1% 

skim milk in TBST (0.1 M Tris, 0.17 M NaCl, and 0.1% Tween 20) and washed four times with 

TBST (TBS + 0.1% Tween 20). Serially diluted mouse sera were added and left to incubate at 

room temperature for 1.5 h, and then washed four times with TBST. Goat anti-mouse IgG (H+L) 

(Invitrogen; B2763), goat anti-mouse IgG1 (Southern Biotech; 1070-08), or goat anti-mouse 

IgG2a (Southern Biotech; 1080-08) was added for 1 h at room temperature to detect IgG, IgG1, 

or IgG2a, respectively, and then washed four times with TBST. Color development was initiated 

by the addition of AP-conjugated streptavidin (Jackson ImmunoResearch) and p-nitrophenyl 

phosphate (PNPP) substrate [10 mg/ml p-nitrophenyl phosphate di(tris) salt crystalline (Sigma-

Aldrich), 1% diethanolamine (Sigma-Aldrich), 0.5 mg/ml MgCl2, pH 9.8]. Detection of the 

optical density (OD) occurred at 405 nm (using a reference filter of 490 nm) on a microplate 
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reader (Molecular Devices SpectraMax Plus 384). The titers of each sample were determined as 

the highest dilution at which the OD of the sample was larger than the defined cut-off. The cut-

off was defined as the mean OD of a known negative sample plus twice the standard deviation. 

 

5.3.8 Virus isolation and titration 

Upon harvest of the mouse lung, the tissues were submerged in 1 mL MEM supplemented 

with (1X) Penicillin-Streptomycin (100X) (Gibco, Thermo Fisher, ON, Canada) in a 2 mL pre-

labelled and pre-weighed tube. Upon submersion, the tissues were placed on ice and transferred 

from the animal containment room to the laboratory containment room. Subsequently, the tubes 

were weighed and the tissues homogenized in the TissueLyser II (Qiagen, Hilden, Germany) at 

25 Hz for 5 min, followed by centrifugation at 5,000 g for 10 min at 4°C. The homogenized 

supernatant was transferred to new pre-labelled 1.5 ml screw-cap tubes and stored at -80°C until 

analysis. 

 For analysis, a TCID50 assay was performed for which MDCK cells (2 X 104 cells) were 

seeded in Biosafety Containment Level 2 in flat-bottom 96-well cell culture plates (Corning). 

The plates were transferred to Biosafety Containment Level 3, where the cells were washed with 

basal MEM without FBS, and then serial dilutions of the homogenized supernatants were added 

to the cells and left to incubate at 37°C for 1 h. After this incubation, growth medium composed 

of MEM supplemented with 0.2% BSA and 1 µg/ml TPCK-trypsin was added to the cells. The 

cells were observed daily for 96 hours post-infection (h.p.i.) for the presence or absence of 

cytopathic effects (CPE). The TCID50 titer was calculated by the Spearman-Kärber algorithm 

(Kärber, 1931; Spearman, 1908). 

 

5.3.9 RNA extraction and quantitative RT-PCR (qRT-PCR) 

The lung tissue harvested on 3 days post-challenge was immediately placed into RNAlater 

(Qiagen) and stored overnight at 4°C. The next day, the lung tissues were transferred into 1.5 ml 

screw-cap tubes and stored at -80°C until further processing was performed. For processing, 

RNA was extracted using the TRIzol method with minor modifications. Briefly, the tissues were 

thawed on ice, and 1 mL of TRIzol Reagent (Invitrogen, Carlsbad, CA, USA) was added along 

with one 5-mm stainless steel bead (Qiagen). The tissues underwent homogenization using the 

TissueLyser II (Qiagen, Hilden, Germany) at 25 Hz for 5 min, followed by centrifugation at 
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5,000 g for 10 min at 4°C. After centrifugation, the homogenized supernatants were transferred 

to 1.5 ml tubes, which were kept upright on ice while they were transferred from Biosafety 

Containment Level 3 to Biosafety Containment Level 2. 

 In Biosafety Containment Level 2, the tubes were inverted and left to incubate at room 

temperature for 2 min. After this incubation, 200 µl of chloroform (Sigma-Aldrich, St. Louis, 

MO, USA) per 1 mL TRIzol was added, shaken vigorously for 15 seconds, and then incubated at 

room temperature for 3 min. The tubes then underwent centrifugation at 12,000 g for 15 min at 

4°C. Centrifugation resulted in the liquid separating into three distinct layers; the aqueous phase 

was harvested and put into a new tube containing 500 µl isopropanol. These tubes were inverted, 

left to incubate for 10 min at room temperature, and then centrifuged at 12,000 g for 10 min at 

4°C. Supernatants were discarded and replaced with 75% ethanol, the tubes were briefly 

vortexed and then centrifuged at 7,500 g for 5 min at 4°C. The supernatants were discarded, and 

the pellets left to air-dry for 12 min, after which they were resuspended in RNase-free DEPC 

H2O. This mixture incubated at 55°C for 12 min, and the concentration of RNA was determined 

using the Thermo Scientific Nanodrop 2000 Spectrophotometer (ND-200).  

 To use the RNA for quantitative PCR (qPCR), we first used 1 μg of RNA as a template to 

generate complementary DNA (cDNA) by RT-PCR. For this, the RNA was treated with 100 U 

of DNase I (Invitrogen; 18068-015) and left to incubate at room temperature for 15 min. After 

the incubation, the DNase I was inactivated through the addition of 25 mM 

ethylenediaminetetraacetic acid (EDTA) (Invitrogen; Y02353) and incubation at 65°C for 10 

min. Next, 10 mM dNTP (Invitrogen; 18427-088) and 50 uM oligo(dt) primers were added and 

incubated for 5 min at 65°C. Subsequently, the tubes were put on ice for 2 min, and then the final 

reverse transcription step was performed through the addition of 5X First-Strand buffer 

(Invitrogen; Y02321), 0.1 M dithiothreitol (DTT) (Invitrogen; Y00147), RNase-out (Invitrogen; 

10777-019), and the superscript III reverse transcriptase enzyme (Invitrogen; 18080-044). This 

final step occurred at 50°C for 1 h followed by 15 min at 70°C. 

 The qPCR procedure began with the dilution of the cDNA either 10-fold or 50-fold in 

H2O. In addition, a master-mix for each cytokine tested was generated through the addition of a 

forward (10 µM) and reverse (10 µM) primer, 2X SYBR green master-mix (Thermo Scientific) 

and H2O. This master-mix was added to the diluted cDNA inside a MicroAmp Fast 96-well 

Reaction Plate (0.1 ml) (Applied Biosystems). An adhesive film was added to cover the plates, 



 102 

which underwent centrifugation at 1,000 g for 3 min at room temperature. The plates underwent 

qPCR in the StepOnePlusTM Real-Time PCR system (Applied Biosystems, CA, USA) with the 

Power SYBR Green PCR Master Mix (Applied Biosystems). The hypoxanthine 

phosphoribosyltransferase (HPRT) housekeeping gene was used to standardize the cytokine 

mRNA levels. All results are reported according to the ∆∆CT method (Rao et al., 2013) using the 

MEM group as a reference. All qPCR primer sequences are listed in Table 3.1. 

 

5.3.10 Statistical analysis 

The statistical analysis was executed using GraphPad Prism 8. For this analysis, a one-way 

ANOVA was performed followed by the Tukey posthoc test to determine the P-value. For the 

ELISPOT, ELISA, and qPCR the samples were analyzed in triplicate. For the SVN assay, the 

samples were performed in quadruplicate. For the HAI assay, the samples were tested in 

duplicate. Significant differences among groups are signified by * (p < 0.05), ** (p < 0.01), *** 

(p < 0.001) or **** (p < 0.0001). ns = not significant.  
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5.4 RESULTS 

5.4.1 Vaccination with the replication-defective BC15-HA/QTV/NA (PR8) virus 

provides evidence of a strong cell-mediated response 

To determine portions of the cell-mediated immune response induced after intranasal 

vaccination with MEM (control) or BC15-HA/QTV/NA (PR8), male and female BALB/c mice 

were intranasally immunized on days 0 and 21 with MEM (control, ‘mock-vaccinated’) or 1 X 

103 PFU of BC15-HA/QTV/NA (PR8) (‘vaccinated’). The mouse spleens were harvested on day 

30 from both the mock-vaccinated and vaccinated mice (two males and two females per group) 

(Figure 5.1 and Table 5.1). The splenocytes were isolated and the antigen-specific responses 

were measured by both IFN-γ and IL-5 ELISPOT assay. As shown in Figure 5.2A, intranasal 

vaccination with BC15-HA/QTV/NA (PR8) induced significantly higher numbers of antigen-

specific IFN-γ secreting cells compared to the mock-vaccinated MEM control group (p = < 

0.0001). Concomitantly, the number of antigen-specific IL-5 secreting cells induced by BC15-

HA/QTV/NA (PR8) vaccination, although not as high as IFN-γ, was still significantly higher 

compared to the mock-vaccinated MEM control group (p = < 0.0001) (Figure 5.2B).  

 

Figure 5.1. Outline of the mouse trial to evaluate the immunoprotection induced by the 

replication-defective recombinant mutant BC15-HA/QTV/NA (PR8) virus. 

BALB/c mice (n = 12 or 14; equal males and females) were intranasally vaccinated on days 0 

and 21 with 50 µl of MEM (control) or BC15-HA/QTV/NA (PR8) (1 X 103 PFU). On day 30, 

four mice per group (two males and two females) were euthanized for isolation. On day 31, the 

remaining mice were intranasally challenged with MEM (control) or a lethal dose of BC15 

(H7N9) (1 X 103 PFU). On day 34 (3 days post-challenge), four mice per group (two males and 

two females), were euthanized for sampling. The trial concluded on day 45 (14 days post-

challenge), where the remaining mice were euthanized and sampled. Sampling included serum 

and lung tissue. Refer to table 5.1 for the grouping of the mice. 

 

 



 104 

 

 

Groups 

 

Vaccination Challenge 

(Day 31) 1st (Day 0) 2nd (Day 21) 

1  

(n = 12) 

MEM MEM MEM 

2 

(n = 12) 

MEM MEM BC15 (H7N9)    

(1 X 103 PFU) 

3 

(n = 14) 

BC15-HA/QTV/NA 

(PR8) (1 X 103 PFU) 

BC15-HA/QTV/NA 

(PR8) (1 X 103 PFU) 

BC15 (H7N9)    

(1 X 103 PFU) 

 

Table 5.1. Grouping within the mouse trial to evaluate the immunoprotection of the 

replication-defective recombinant mutant BC15-HA/QTV/NA (PR8) virus. 

BALB/c mice (n = 12 or 14; equal males and females) were intranasally vaccinated on days 0 

and 21 with 50 µl of MEM (control) or BC15-HA/QTV/NA (PR8) (1 X 103 PFU). On day 31, 

the remaining mice (eight or 10 mice; equal males and females) were intranasally challenged 

with MEM (control) or a lethal dose of BC15 (H7N9) (1 X 103 PFU). 
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Figure 5.2. Antigen-specific IFN-γ and IL-5 secreting cells induced by BC15-HA/QTV/NA 

(PR8) vaccination in mice. 
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BALB/c mice were vaccinated with two doses of MEM (control) or BC15-HA/QTV/NA (PR8) 

(1 X 103 PFU). Nine days after the second vaccination (day 30) BALB/c mice (four mice per 

group; two males and two females) were euthanized and their splenocytes isolated. The numbers 

of IFN-γ (A) and IL-5 (B) secreting T cells per 5 X 105 splenocytes were determined by 

ELISPOT; each sample was tested in triplicate. The antigen-induced counts were determined by 

subtracting the number of IFN-γ or IL-5 secreting cells with the medium-treated control cells. 

The bars represent the mean value obtained from all mice in the respective groups, and the error 

bar represents the standard deviation. Significant differences among groups are signified by * (p 

< 0.05), ** (p < 0.01), *** (p < 0.001) or **** (p < 0.0001). ns = not significant. 

 

5.4.2 The replication-defective BC15-HA/QTV/NA (PR8) virus induces a robust 

humoral response 

To determine the humoral immune response induced by BC15-HA/QTV/NA (PR8) 

vaccination, mouse serum was collected before vaccination (day 0), after the first vaccination (day 

21), and after the second vaccination (day 30) (Figure 5.1). This serum was screened for BC15 

(H7N9) specific antibodies by the hemagglutinin inhibition (HAI) assay as well as the serum virus 

neutralization (SVN) assay. Concerning the HAI assay, all mice were negative on day 0 for BC15 

(H7N9) antibodies (HAI ≤ 1:16), and the mice that were mock-vaccinated with MEM remained 

negative on days 21 and 30 for BC15 (H7N9) antibodies (HAI ≤ 1:16) (Figure 5.3A). After the 

first intranasal vaccination (day 21) with the BC15-HA/QTV/NA (PR8), all the mice 

seroconverted to the BC15 (H7N9) antigen with an average HAI level of 115. This level of 

seroconversion was much higher than the gold standard HAI cut-off of 40 that is associated with 

a 50% reduction in the risk of contracting influenza. Following the second vaccination (day 30), 

the level of seroconversion in the BC15-HA/QTV/NA (PR8) vaccinated mice increased 

significantly reaching an average HAI titer of 309. With regards to the SVN assay, all mice in the 

mock-vaccinated MEM control group and the BC15-HA/QTV/NA (PR8) vaccinated group 

possessed low SVN titers on day 0 (SVN ≤ 1:16) (Figure 5.3B). After the mice received their first 

intranasal vaccination (day 21), SVN titers increased dramatically in the BC15-HA/QTV/NA 

(PR8) vaccinated group, reaching an average SVN titer of 369. Moreover, after these mice received 

their second vaccination (day 30), the SVN titers further increased reaching an average SVN titer 

of 1547. Therefore, these high SVN and HAI titers reflect the protection that was conferred against 

BC15 (H7N9) challenge. 

 Influenza-specific IgG, IgG1, and IgG2a in the mouse serum were determined for days 0, 

21, and 30 by ELISA using purified β-propiolactone-inactivated recombinant virus BC15-HA/NA 
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(PR8) as the capture antigen. As seen in Figure 5.4A, moderate upregulation of IgG was observed 

after the first BC15-HA/QTV/NA (PR8) vaccination (day 21 titer = 98,101), and significant 

upregulation was observed after the second vaccination (day 30 titer = 1,502,010). Similarly, the 

level of IgG1 after the first BC15-HA/QTV/NA (PR8) vaccination was only moderately 

upregulated (p = 0.0464) in comparison to the day 0 levels (day 0 titer = 225; day 21 titer = 65,428) 

(Figure 5.4B). However, after the second BC15-HA/QTV/NA (PR8) vaccination, the level of IgG1 

was significantly elevated (day 30 titer = 335,175) in comparison to day 21 (p = < 0.0001) and day 

0 (p = < 0.0001). In comparison, the level of IgG2a after the first BC15-HA/QTV/NA (PR8) 

vaccination was significantly elevated (p = < 0.0001) when compared to the day 0 levels (day 0 

titer = 290; day 21 titer = 677,648) (Figure 5.4 C). Moreover, the level of IgG2a was significantly 

elevated (day 30 titer = 3,601,440) in comparison to day 21. 
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Figure 5.3. Humoral immune responses mounted after BC15-HA/QTV/NA (PR8) 

vaccination. 

BALB/c mice were vaccinated on days 0 and 21 with MEM (control) or BC15-HA/QTV/NA 

(PR8) (1 X 103 PFU). Serum was collected on days 0, 21, and 30 to be titered using the HAI 

assay and the SVN assay against the BC15 (H7N9) virus. (A) Serum HAI titers were determined 

using 0.5% RBCs against the BC15 (H7N9) virus; samples were analyzed in duplicate. The 

dotted line corresponds to the negative cut-off of 40, which is associated with a 50% reduction in 

the chance of contracting influenza virus. (B) SVN titers were determined using 100 TCID50/50 

µl of BC15 (H7N9) influenza virus; samples were analyzed in quadruplicate. The bars represent 

the mean value obtained from all mice in the respective groups, and the error bar represents the 

standard deviation. Significant differences among groups are signified by * (p < 0.05), ** (p < 

0.01), *** (p < 0.001) or **** (p < 0.0001). ns = not significant. 
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Figure 5.4. Antibody responses induced by BC15-HA/QTV/NA (PR8) vaccination. 

BALB/c mice were vaccinated on days 0 and 21 with MEM (control) or BC15-HA/QTV/NA 

(PR8) (1 X 103 PFU). Serum was collected on days 0, 21, and 30 to be titered using an ELISA to 

detect influenza-specific IgG, IgG1, and IgG2a; samples were analyzed in triplicate. (A) IgG. (B) 

IgG1. (C) IgG2a. The bars represent the mean value obtained from all mice in the respective 

groups, and the error bar represents the standard deviation. Significant differences among groups 

are signified by * (p < 0.05), ** (p < 0.01), *** (p < 0.001) or **** (p < 0.0001). ns = not 

significant. 

 

5.4.3 The replication-defective BC15-HA/QTV/NA (PR8) virus completely protects 

mice from a lethal challenge of BC15 (H7N9) 

To evaluate the protective efficacy of the recombinant mutant BC15-HA/QTV/NA (PR8) 

virus against BC15 (H7N9), male and female BALB/c mice were intranasally immunized on 

days 0 and 21 with MEM (control, ‘mock-vaccinated’) or 1 X 103 PFU of BC15-HA/QTV/NA 

(PR8) (vaccinated). On day 31 (10 days after the second vaccination), the mice were challenged 

with either MEM (control, ‘mock-challenged’) or a lethal dose of BC15 (H7N9) (1 X 103 PFU) 

(vaccinated) (Lu et al., 2019). These mice were monitored for 14 days post-challenge for body 

weight loss and survival rates (Figure 5.1 and Table 5.1). Mice that were mock-vaccinated and 

mock-challenged with MEM survived the duration of the trial, slightly gaining weight as the 

days progressed. Likewise, the mice that were vaccinated with BC15-HA/QTV/NA (PR8) and 

challenged with BC15 (H7N9) survived the duration of the trial, also gaining weight as the days 

progressed. Conversely, the mice that were mock-vaccinated with MEM and challenged with 

BC15 (H7N9) demonstrated rapid weight loss, reaching a humane endpoint of weight loss 

greater than 20% of their initial body weight within 6 and 7 days post-challenge (Figure 5.5A-B). 

Therefore, these results demonstrated that the recombinant mutant BC15-HA/QTV/NA (PR8) 

virus completely protected the mice against a lethal homologous challenge of BC15 (H7N9) 

virus, evident by a lack of body weight loss and a 100% survival rate. 
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Figure 5.5. The survival rate and body weight loss of vaccinated mice after homologous 

viral challenge with BC15 (H7N9). 

BALB/c mice (n = 8 or 10 per group; equal males and females) were vaccinated with two doses 

of MEM (control) or BC15-HA/QTV/NA (PR8) (1 X 103 PFU) followed by an intranasal 

challenge of a lethal dose of BC15 (H7N9) (1 X 103 PFU). (A) The survival rates. (B) The body 

weight loss. 
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5.4.4 Vaccination with BC15-HA/QTV/NA (PR8) eliminated virus replication in the 

mouse lung 

To further investigate the protective efficacy of the recombinant mutant BC15-

HA/QTV/NA (PR8) virus, lung tissue was collected from mice that received two intranasal 

vaccinations of either MEM (control, ‘mock-vaccinated’) or BC15-HA/QTV/NA (PR8) virus (1 

X 103 PFU) (vaccinated) followed by a challenge with either MEM (control, ‘mock-challenged’) 

or a lethal dose of BC15 (H7N9) (1 X 103 PFU), homogenized, and titrated by the TCID50 assay 

(Figure 5.6). The mice mock-vaccinated and mock-challenged with MEM displayed no viral 

replication.  In contrast, the mice mock-vaccinated with MEM and challenged with BC15 

(H7N9) displayed high lung mean viral loads on 3 days post-challenge (107.65 TCID50/gr), 6 days 

post-challenge (106.65 TCID50/gr), and 7 days post-challenge (106.36 TCID50/gr), with all the mice 

succumbing to infection by 7 days post-challenge (Figure 5.5). In the BC15-HA/QTV/NA (PR8) 

vaccinated group, no viral replication in the mouse lung was detected by TCID50 assay at 3 and 

14 days post-challenge These findings are consistent with the lack of body weight loss and 100% 

survival rate in this BC15-HA/QTV/NA (PR8) vaccinated group (Figure 5.5).  
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Figure 5.6. Viral titration of the mouse lung from BC15-HA/QTV/NA (PR8) vaccinated 

mice after homologous viral challenge with BC15 (H7N9). 

BALB/c mice were intranasally vaccinated with two doses of MEM (control) or BC15-

HA/QTV/NA (PR8) (1 X 103 PFU). These mice were then intranasally challenged with BC15 

(H7N9) at a lethal dose of 1 X 103 PFU. [n = eight per group; four males and four females for 

MEM and MEM / BC15 (H7N9)]; [n = 10 per group; five males and five females for BC15-
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HA/QTV/NA (PR8) / BC15 (H7N9)]. Viral titration of the homogenized lung tissue was 

conducted by the TCID50 assay; samples were analyzed in quadruplicate. Four mice per group 

were humanely euthanized on 3 days post-challenge, while the remaining mice were euthanized 

on 14 days post-challenge Dots correspond to the individual murine lung titers; the four dots on 3 

days post-challenge corresponding to four mice that were humanely euthanized; the one dot on 6 

days post-challenge corresponding to one mouse that succumbed to infection; three dots on 7 

days post-challenge correspond to three mice that succumbed to infection. 

 

5.4.5 Vaccination with BC15-HA/QTV/NA (PR8) reduced the production of 

proinflammatory cytokines in the mouse lung associated with the influenza 

infection 

To confirm that vaccination with the replication-defective virus vaccine provided complete 

protection against the viral challenge, the gene expression of various cytokines and chemokines 

after BC15 (H7N9) virus challenge was evaluated by qPCR. Retinoic acid-inducible gene-I 

(RIG-I) is an important pattern recognition receptor (PRR) that recognizes foreign RNA from 

IAV. This recognition leads to the initiation of the antiviral state which helps to restrict IAV 

replication through the production of various type I IFNs and IFN-stimulated genes (ISGs) (Liu 

et al., 2018). As shown in Figure 5.7, while the mRNA levels of RIG-I were significantly 

upregulated in the mice mock-vaccinated with MEM and challenged with BC15 (H7N9) (over 

15-fold), mRNA levels in the mice vaccinated with BC15-HA/QTV/NA (PR8) and challenged 

with BC15 (H7N9) were comparable to the mice mock-vaccinated and mock-challenged with 

MEM. IFN-α, IFN-β, and IFN-γ are essential IFNs for the activation of the innate immune 

response due to their antiviral properties. These IFNs have also been shown to possess 

immunomodulatory effects, enhance the expression of major histocompatibility complex (MHC) 

class I and II molecules, as well as be an important activator of natural killer (NK) cells (Price et 

al., 2000). These IFNs were significantly upregulated in the mice mock-vaccinated with MEM 

and challenged with BC15 (H7N9) (IFN-α around 1000-fold, IFN-β around 6000-fold, and IFN-

γ around 200-fold), but remained unchanged in the mice vaccinated with BC15-HA/QTV/NA 

(PR8) and challenged with BC15 (H7N9) when compared to the mice mock-vaccinated and 

mock-challenged with MEM. The mRNA levels of IFN-γ-inducing protein 10 (IP-10), a cytokine 

produced as a by-product of IFN-γ production also displayed significant upregulation in the mice 

mock-vaccinated with MEM and challenged with BC15 (H7N9) (over 300-fold). However, there 

was no significant change in the BC15-HA/QTV/NA (PR8) vaccinated and mock-vaccinated and 
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mock-challenged MEM control groups (Dufour et al., 2002). Conversely, the mRNA levels of 

proinflammatory cytokines TNFα, IL-6, and IL-1β, as well as anti-inflammatory cytokine IL-10, 

displayed similar trends, in that significant upregulation was observed in the mice mock-

vaccinated with MEM and challenged with BC15 (H7N9) (TNFα around 80-fold, IL-6 around 

150-fold, IL-1β around 10-fold and IL-10 around 30-fold). However, there was no significant 

change in the mice vaccinated with BC15-HA/QTV/NA (PR8) and challenged with BC15 

(H7N9) when compared to the mock-vaccinated and mock-challenged MEM control group. 

There was no significant change for IL-18 for all groups tested.  
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Figure 5.7. Cytokine production after homologous viral challenge with BC15 (H7N9). 

The mRNA levels of RIG-I, IFN-α, IFN-β, IFN-γ, IP-10, TNFα, IL-6, IL-1β, IL-18, and IL-10 

were determined from the mouse lung on 3 days post-challenge (n = four mice per group; two 

males and two females). These levels were assessed by qPCR, where each sample was tested in 

triplicate. The bars represent the mean value obtained from all mice in the respective group, and 

the error bar represents the standard deviation. Significant differences among groups are 

signified by * (p < 0.05), ** (p < 0.01), *** (p < 0.001) or **** (p < 0.0001). ns = not 

significant. 
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5.5 DISCUSSION AND CONCLUSIONS 

In previous studies, the efficacy of an elastase-dependent mutant virus vaccine candidate 

defective through the introduction of an elastase-sensitive motif to the HA cleavage site was 

demonstrated. This virus was generated through the mutation of the original trypsin-sensitive 

motif (Arg-Gly) to Val-Gly or Ala-Gly. These studies have shown that these mutant viruses are 

inactive during infection due to the inability of host proteases to cleave the elastase-sensitive HA 

cleavage site, which results in HA remaining in its precursor form. Remaining in this precursor 

form inhibits the exposure of the fusion peptide within HA2, which prevents fusion of the virus 

to the endosomal membrane and the continuation of the replication cycle (Masic et al., 2008). In 

the previous chapter, we generated a recombinant mutant H7N9 virus, BC15-HA/QTV/NA 

(PR8) and demonstrated this virus to be strictly elastase-dependent and genetically stable in 

vitro, as well as be replication-defective in male and female BALB/c mice. This is similar to a 

study performed by Masic et al., in that two reverse-genetics generated swine mutant viruses, 

SIV/SK-R345V and SIV/SK-R345A were elastase-dependent, genetically stable, and replication-

defective in pigs at doses of 1 X 105 PFU/ml and 1 X 106 PFU/ml, respectively (Masic et al., 

2008). In this chapter, we found two intranasal vaccinations with BC15-HA/QTV/NA (PR8) to 

be sufficient in providing 100% protection against a homologous lethal challenge of BC15 

(H7N9) in mice. These vaccinated and challenged mice experienced no body weight loss 

throughout the duration of the trial, with levels comparable to the mock-vaccinated and mock-

challenged with MEM (Figure 5.5). These BC15-HA/QTV/NA (PR8) vaccinated and BC15 

(H7N9) challenged mice also possessed a 100% survival rate. In comparison, the mice mock-

vaccinated with MEM and challenged with BC15 (H7N9) displayed rapid body weight loss, with 

all mice in this group succumbing to infection by 7 days post-challenge. The BC15 (H7N9) virus 

was undetected in the lungs of mice vaccinated with BC15-HA/QTV/NA (PR8) and challenged 

with BC15 (H7N9), whereas high viral loads were detected in the mock-vaccinated and mock-

challenged MEM control group (Figure 5.6). Similarly, a study performed by Masic et al. for his 

prior research demonstrated that the SIV/SK-R345V mutant virus administered intratracheally at 

a 4 X 106 PFU dose completely protected pigs against a homologous challenge (Masic et al., 

2009). These results aid in the conclusion that the BC15-HA/QTV/NA (PR8) virus can 

sufficiently protect mice from a lethal dose of BC15 (H7N9).  
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 It has long been believed that both the cell-mediated immunity and humoral immunity 

play essential, yet distinct roles in the control of influenza viruses. Humoral immunity has been 

known to entirely block and prevent influenza infection through the production of antibodies 

against various influenza antigens (Bahadoran et al., 2016; Thomas et al., 2006). More 

specifically, it has been shown that the most important antibody for the neutralization of 

influenza is the HA-specific antibody, one that is induced after influenza vaccination. This 

antibody functions by mainly binding to the trimeric globular head of HA on the influenza virus 

to block attachment and entry of the virus into the host cell. Antibodies are also generated 

against the HA stem of influenza virus, although to a lesser extent (Bahadoran et al., 2016). On 

the contrary, cell-mediated immunity does not prevent viral entry but instead promotes the viral 

clearance through the activation of T cells, specifically CD4+ and CD8+ T cells. CD8+ T cells are 

known to differentiate into cytotoxic T lymphocytes (CTLs), with their primary function being to 

aid in the host defence by killing virus-infected cells. The production of IFN-γ has been shown to 

aid in the differentiation of CD8+ T cells into CTLs. Conversely, CD4+ T cells possess a more 

complex role, differentiating into Th1 or Th2 cells upon influenza infection, to activate B cells, 

stimulate antibody production, as well as express antiviral cytokines such as IFN-γ. CD4+ T cells 

are also known to produce cytokines such as IL-5 and IL-4, known to promote antibody 

responses (Chen et al., 2018). The production of IFN-γ, therefore, is essential for the control of 

influenza virus within the host cell. IFN-γ is also known to possess antiviral activity and is one of 

the first cytokines produced in response to pathogen invasion which leads to the activation of 

macrophages and NK cells to aid in controlling infection (Tau and Rothman, 1999). Moreover, 

the induction of cell-mediated immunity has been correlated with the protection against the 

highly pathogenic avian influenza (HPAI) viruses, such as the H5N1 influenza virus. Several 

studies have demonstrated that the protection against the HPAI viruses can be entirely mediated 

by cellular immunity, even in the complete absence of humoral immunity (Thomas et al., 2006). 

In our study, two intranasal vaccinations with BC15-HA/QTV/NA (PR8) was adequate to induce 

significant levels of IFN-γ secreting-cells in the mouse spleen (Figure 5.2A). In a previous study, 

significant elevation of IFN-γ secreting-cells was also induced following two intranasal 

vaccinations of the swine mutant virus SIV/SK-R345V in pigs, which conferred protection 

against homologous challenge (Masic et al., 2010). Simultaneously, two intranasal vaccinations 

of BC15-HA/QTV/NA (PR8) was also sufficient to induce significant levels of IL-5 secreting-
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cells, although to a lower extent compared to IFN-γ (Figure 5.2B). These results, therefore, 

demonstrate that this recombinant mutant BC15-HA/QTV/NA (PR8) virus is capable of inducing 

T cell activation.  

 Antibody responses to the BC15-HA/QTV/NA (PR8) virus were determined in the 

mouse serum after the first and second immunization. Analysis by the HAI assay demonstrated 

the production of neutralization antibodies above the gold standard HAI cut-off of 40 after both 

the first (HAI titer of 115) and second immunizations (HAI titer of 309). Analysis by the SVN 

assay also demonstrated the high production of neutralization antibodies that could correlate with 

protection after the first (SVN titer of 369) and second immunizations (SVN titer of 1547) 

(Figure 5.3). In addition, the levels of antigen-specific IgG, IgG1, and IgG2a were significantly 

elevated after both the first and second immunizations (Figure 5.4). IgG2a and IgG1 are known 

to be immunoglobulin indicators for Th1 and Th2 responses, respectively (Mountford et al., 

1994). A Th1 response is known to produce cytokines such as IFN-γ and IL-2, aiding in the 

production of the cell-mediated response. Conversely, a Th2 response aids in the production of 

IL-4, IL-5, and IL-10 and antibody production. Since IgG1 and IgG2a were both elevated after 

the first and second immunizations, this could potentially point to both Th1 and Th2 responses 

being important for the protection against BC15 (H7N9) virus. This dual induction could also be 

due to the genetic background of the mice we used (BALB/c), which are Th2 prone, and could 

possess a large effect on the immune responses we observed (Geeraedts et al., 2008). This theory 

could be tested by performing the same study in Th1 prone mice, such as C57BL/6 mice, and 

comparing the results. Therefore, these findings could potentially indicate that one vaccination 

could be sufficient to induce protection in the mice against BC15 (H7N9), although further 

research would be required to test this theory.  

 Influenza viruses, such as H7N9, are known to be potent inducers of proinflammatory 

cytokines, which can lead to inflammation and damage of the lung epithelial cells (Lu et al., 

2019). One of the host’s first line of defence against influenza virus is inflammation, a process 

responsible for the activation of both the innate and adaptive immune responses in an effort to 

control the disease. If not regulated properly, the inflammatory response can induce a cytokine 

storm, which can often result in substantial pathology and occasional death of the host. This 

cytokine storm can be characterized by the production of proinflammatory cytokines such as 

TNFα, IL-6, and IL-1 (D'Elia et al., 2013). In chapter 3 of my thesis, during the establishment of 
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a mouse model of British Columbia/2015 (H7N9) virus, BC15 (H7N9) was found to be a potent 

inducer of proinflammatory cytokines and chemokines in the mouse lung (Lu et al., 2019). 

Several studies have demonstrated that the success of a vaccine is correlated to the levels of 

proinflammatory cytokines induced; the reduction of proinflammatory cytokines such as IFN-α, 

TNFα or IL-6 can reduce the pathogenesis of the influenza disease (Van Reeth et al., 2002). In 

this study, the levels of proinflammatory cytokines and chemokines IFN-α, IFN-β, IFN-γ, IP-10, 

TNFα, IL-6, IL-1β, and IL-10 were all significantly reduced when compared to the mice mock-

vaccinated with MEM and challenged with BC15 (H7N9) (Figure 5.7). Similarly, a previous 

study also demonstrated the reduction of proinflammatory cytokine induction through 

vaccination with an elastase mutant virus in pigs (Masic et al., 2009). The levels of RIG-I, one of 

the major receptors that recognize the influenza virus and activates type I IFN production was 

also significantly reduced (Loo and Gale, 2011). In addition, the level of the anti-inflammatory 

cytokine, IL-10, was significantly lower than that in the mice mock-vaccinated with MEM and 

challenged with BC15 (H7N9). Therefore, this significant reduction of proinflammatory and 

anti-inflammatory cytokines and chemokines clearly show that the administration of two 

intranasal vaccinations of BC15-HA/QTV/NA (PR8) virus elicits complete protection against a 

homologous lethal challenge of BC15 (H7N9). 

 The two main types of vaccines against influenza virus are the inactivated influenza 

vaccines (IIV) and the live attenuated influenza vaccines (LAIV). IIVs have been broadly 

obtainable since the 1940s, and are most commonly propagated in an egg-based system, although 

they can also be propagated in a cell-culture based system (Blanco-Lobo et al., 2019). In Canada, 

the only approved influenza vaccines are those that are inactivated and produced in eggs (PHAC, 

2019). Unfortunately, IIVs have been known to possess a variety of disadvantages, some of 

which include their poor efficacy against homologous and heterologous variants (Sridhar et al., 

2015). Conversely, LAIVs are a newer type of vaccine that can be completely generated and 

propagated in a cell-culture based system, avoiding the egg-based system. This avoidance of the 

egg-based system can be advantageous when egg-storages occur, large volumes are required, or 

for the use in individuals with an egg allergy (Sridhar et al., 2015). To date, there is only one 

LAIV authorized for commercial use, FluMist®; however, its use in Canada has been not 

permitted for the 2019-2020 season (PHAC, 2019). Albeit the strong potential LAIVs have as a 

vaccine candidate to influenza viruses, one common disadvantage towards their use is the risk of 
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reversion by secondary mutations or reassortment between the current circulating field strains 

and the vaccine virus (Jang and Seong, 2012; Mamerow et al., 2019). Replication-defective virus 

vaccines are composed of viruses defective in either their replication, synthesis, or viral 

assembly. These viruses by default possess extremely limited replication within their host, 

making them safer and more advantageous than LAIVs due to their lower likelihood of virulence 

reversion (Dudek and Knipe, 2006). The recombinant mutant BC15-HA/QTV/NA (PR8) virus 

contains a mutation at the HA cleavage site such that the host proteases can no longer cleave HA 

in vivo to create an infectious virus. This lack of HA cleavage, therefore, only permits a single-

cycle of replication to occur inside the host cell, and thus, decreases the risk of reversion or 

reassortment of the recombinant mutant BC15-HA/QTV/NA (PR8) virus with a natural influenza 

virus found in the wild (Masic et al., 2008). The work in this chapter demonstrated that two 

intranasal vaccinations of BC15-HA/QTV/NA (PR8) were sufficient to generate protection 

against a homologous challenge of BC15 (H7N9). The immune response generated after 

vaccination induced both arms of the immune system, the humoral and evidence of the cell-

mediated immunity. This dual stimulation ability is advantageous in comparison to IIVs, which 

mainly stimulate the humoral immunity (Sridhar et al., 2015). More importantly, intranasal 

vaccination with BC15-HA/QTV/NA (PR8) completely prevented influenza replication in the 

mouse lung, as influenza is known to be a potent agent of proinflammatory cytokine induction 

and pathology in the host cells (D'Elia et al., 2013). This recombinant mutant BC15-

HA/QTV/NA (PR8) virus, therefore, could have a significant impact on preventing the spread of 

BC15 (H7N9) virus in the human populations. Further research of this BC15-HA/QTV (PR8) 

virus vaccine should be conducted in other animal models, such as the ferret model, to establish 

the safety, immunogenicity, and protective efficacy. Further research should also be conducted to 

evaluate whether one vaccination is sufficient to induce protection, as well as whether this 

BC15-HA/QTV/NA (PR8) virus vaccine is protective against viral infection with other H7N9 

strains given its evidence to stimulate the cell-mediated immunity.  
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CHAPTER 6 GENERAL DISCUSSION 

Replication-defective virus vaccines are generated through the use of viruses that are 

defective in replication, synthesis, or viral assembly, resulting in extremely limited viral 

replication in the host cell (Dudek and Knipe, 2006). Replication-defective virus vaccines are 

advantageous compared to both IIVs and LAIVs because they possess the combined advantages 

of both types of vaccines, without possessing the disadvantages. More specifically, replication-

defective vaccines, like IIVs, are extremely safe due to their limited replication within the host 

(Dudek and Knipe, 2006). This limited replication avoids the possibility of virulence reversion, a 

common concern of LAIVs (Watanabe et al., 2001). Replication-defective virus vaccines are 

also capable of inducing the same immune responses LAIVs induce, specifically, CD4+ T cells, 

CD8+ T cells, and the humoral immune response, which is in contrast to IIVs, which induce a 

limited primarily humoral immune response (Dudek and Knipe, 2006). Therefore, the goal of 

this study was to develop a replication-defective virus vaccine that could confer protection 

against the H7N9 influenza virus. In order to achieve this goal, my Master’s project included 

three aims; (1) the establishment of a mouse animal model of A/British Columbia/01/2015 

(H7N9) [BC15 (H7N9)]; (2) The generation and characterization of a replication-defective 

H7N9 virus vaccine; and (3) The evaluation of the immunogenicity and protective efficacy of 

this replication-defective virus vaccine in mice.  

 

6.1.1 The establishment of a mouse model of A/British Columbia/01/2015 [BC15 

(H7N9)] virus 

When studying IAV, animal models are important for elucidating mechanisms, the roles 

various viral and host factors play in the severity of the disease, as well as aiding in the 

development of interventions to either prevent or reduce the severity of the disease. Depending 

on the research conducted, different animal models are available; some of them being mice, 

cotton rats, Syrian hamsters, dogs, domestic swine, cynomolgus macaques, marmosets, ferret, 

and guinea pigs (Thangavel and Bouvier, 2014). Mice are considered the most common 

influenza animal model due to their moderately low cost, availability, small size and thus ease of 

handling and availability of reagents. In addition, several different inbred strains and outbred 

stocks of mice, as well as transgenic, knockout, and knock-in strains are available (Rodriguez et 

al., 2017; Thangavel and Bouvier, 2014). Albeit these advantages of the use of the mouse model 
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for influenza virus, their response to influenza infection is not identical to that of humans. For 

one, mice display different clinical signs of infection compared to humans, including anorexia, 

lethargy, hunching and a rough coat (Bouvier and Lowen, 2010). Influenza infection in mice is 

also clinically characterized as primary viral pneumonia, which can be marked with heavy 

breathing and severe pulmonary histopathology upon euthanization (Fukushi et al., 2011; Tripp 

and Tompkins, 2009). Secondly, many subtypes of influenza virus directly isolated from humans 

are not directly infectious or pathogenic in inbred mouse strains such as BALB/c and C57BL/6 

(Bouvier and Lowen, 2010). For these isolates to become infectious, they characteristically need 

to be serially passaged in mice (Tripp and Tompkins, 2009). However, some influenza viruses 

isolated from humans can directly infect and cause disease in mice, some of these strains include 

the 1918 H1N1 pandemic strain, most of the HPAI H5N1 strains, and some of the H7 strains, 

including the H7N9 virus that arose in 2013 in China (Bouvier and Lowen, 2010; Hai et al., 

2013).  For my first aim, we developed a mouse model of British Columbia/01/2015 (H7N9) 

[BC15 (H7N9)] virus. This model development entailed intranasally infecting BALB/c mice 

with three different doses of BC15 (H7N9) (103 PFU, 104 PFU, and 105 PFU) and then 

monitoring the mice for clinical signs and body weight changes. This model development also 

entailed analyzing viral load, various cytokines and chemokines, and pathology in the mouse 

lung. Our study demonstrated that this human isolate could directly infect mice to result in the 

influenza disease, similar to other studies (Hai et al., 2013). This disease was prevalent among all 

three doses tested, with high viral replication detected in the respiratory tract, as well as 

substantial production of various proinflammatory cytokines and chemokines in the mouse lung. 

Moreover, since all doses tested were lethal in mice, we chose the lowest dose (103 PFU) to be 

the optimal dose for future studies.  

 

6.1.2 The generation and characterization of the mutant H7N9 virus with its 

modified HA segment in vitro and in vivo 

During the IAV replication cycle, the HA precursor form, HA0, undergoes cleavage into 

HA1 and HA2 by trypsin-proteases found within the host. This cleavage is essential for IAVs 

infectivity, pathogenicity, and the ability to spread to different hosts (Stech et al., 2005). Several 

studies have demonstrated that the alteration of the HA cleavage site from a trypsin-sensitive 

motif to an elastase-sensitive motif generates a replication-defective IAV in vivo (Masic et al., 
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2008; Stech et al., 2005). These viruses have been shown to be replication-defective due to the 

lack of the appropriate protease at the infection site inhibiting cleavage of HA which 

concomitantly prevents fusion of the virus to the host endosome, and thus, blocks further 

replication of the virus (Masic et al., 2008). Correspondingly, we tested this replication-defective 

concept for the development of a replication-defective virus vaccine candidate for BC15 (H7N9) 

in mice.  

 To test this strategy we generated a recombinant mutant BC15-HA/QTV/NA (PR8) virus 

using the reverse genetics system, composed of the six internal genes of A/Puerto Rico/8 (H1N1) 

[PR8 (H1N1)], the mutated HA, as well as the wild-type NA from BC15 (H7N9). This HA was 

mutated such that it was strictly susceptible to cleavage by the protease elastase. Characterization 

of this recombinant mutant BC15-HA/QTV/NA (PR8) virus resulted in the discovery that this 

virus to not only grows similar to its wild-type counterpart, BC15-HA/NA (PR8) but also is 

genetically stable after five passages in MDCK cells in vitro. More importantly, this recombinant 

mutant BC15-HA/QTV/NA (PR8) virus was found to be non-virulent in mice, with no detectable 

clinical signs and viral replication in the lungs of infected mice. These findings suggested that 

the BC15-HA/QTV/NA (PR8) virus was replication-defective in mice and could potentially 

serve as a replication-defective virus vaccine candidate in mice.  

 

6.1.3 The evaluation of the immunogenicity and protective efficacy after intranasal 

administration of the replication-defective virus vaccine against A/British 

Columbia/01/2015 [BC15 (H7N9)] virus  

Since the goal of this study was to develop a replication-defective virus vaccine for H7N9 

IAV, the next aim of this study was to test the immunogenic and protective efficacy of this 

recombinant mutant BC15-HA/QTV/NA (PR8) virus in mice. To evaluate portions of the cell-

mediated response, we performed the ELISPOT assay to detect IFN-γ and IL-5 secreting cells. 

IFN-γ, a type II IFN, and part of the type 1 immune response is produced when NK cells detect 

foreign invaders and become activated (Lee et al., 2017a). This production of IFN-γ has been 

shown to play an essential role in antiviral immunity by linking the innate immune response to 

the stimulation of the adaptive immune response (Vivier et al., 2008). On the other hand, IL-5, a 

cytokine part of the type 2 immune response, is one of the vital cytokines responsible for 

eosinophil persistence in humans and B cell growth in mice (Takatsu, 2011). Although the 
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majority of viral infections are characterized by production of the typical type 1 immune 

responses, the production of type 2 immune responses is often accompanied by a pre-existing 

allergy disease (Bendelja et al., 2000). However, there is increasing evidence to support the idea 

that the production of a type 2 immune response may actually be involved in protecting the 

infected tissue from damage inflicted from infection (Allen and Wynn, 2011). As shown in 

section five (Figure 5.2), BC15-HA/QTV/NA (PR8) is capable of inducing significantly elevated 

numbers of both IFN-γ and IL-5 secreting cells after the second vaccination, although the IFN-γ 

levels were substantially higher compared to IL-5. These levels could suggest that although IFN-

γ secreting cells play a predominant role, the production of IL-5 could also aid in the protection 

against BC15 (H7N9).  

 To assess the humoral response, we performed the HAI assay, SVN assay, and ELISA on 

the mouse serum taken before the first vaccination, after the first vaccination, and after the 

second vaccination. The results from these assays were all somewhat similar as shown in section 

five (Figure 5.3-5.4), in that elevated levels of HAI titers, SVN titers, IgG and IgG1 titers were 

prominent after the first vaccination. The IgG2a levels were significantly elevated after the first 

vaccination. However, after the second vaccination, the HAI assay, SVN assay, and ELISA had 

significantly elevated titers compared to before and after the first vaccination. These significantly 

elevated titers point to the requirement of two vaccinations of this BC15-HA/QTV/NA (PR8) 

virus in mice to elicit sufficient protection against BC15 (H7N9), although the protection 

efficacy was not measured after a single vaccination. However, these results demonstrated that 

the BC15-HA/QTV/NA (PR8) virus is capable of inducing a strong humoral immune response 

after two intranasal vaccinations in mice.  

 In order to evaluate the protective efficacy of the recombinant mutant BC15-

HA/QTV/NA (PR8) virus in mice, after two intranasal vaccinations, we challenged the mice 

with a lethal dose of BC15 (H7N9). As demonstrated in section five, two vaccinations were 

sufficient to completely protect mice against a homologous challenge. This conferred protection 

was evident by the lack of clinical signs and body weight loss observed in the BC15-

HA/QTV/NA (PR8) vaccinated group (Figure 5.5). These vaccinated mice also showed no 

evidence of viral load by the TCID50 assay, as well as no proinflammatory cytokine induction 

when compared to the mice mock-vaccinated with MEM and challenged with BC15 (H7N9) 



 123 

(Figure 5.6-5.7). These results demonstrated that this recombinant mutant BC15-HA/QTV/NA 

(PR8) virus completely protected the mice from a viral infection with BC15 (H7N9).  

Altogether, our data demonstrated that two intranasal administrations of BC15-

HA/QTV/NA (PR8) induced significantly elevated immune responses that could explain the 

protection observed after homologous challenge with BC15 (H7N9). In addition, the possibility 

of the BC15-HA/QTV/NA (PR8) virus causing disease in mice was substantially reduced due to 

its replication-defective phenotype, generating a desirable vaccine candidate for the H7N9 IAV. 

Due to the lack of a commercially available vaccine for H7N9 infection in humans, this 

recombinant mutant BC15-HA/QTV/NA (PR8) virus possesses strong potential as a preventive 

measure for a potential H7N9 pandemic.  

 

6.1.4 Future directions 

Although this recombinant mutant BC15-HA/QTV/NA (PR8) virus can be considered a 

desirable vaccine candidate against H7N9 infection, much more research should be performed to 

ensure its candidacy. For one, although this recombinant mutant BC15-HA/QTV/NA (PR8) virus 

has been proven stable in vitro after a small number of passages, one should perform a similar 

experiment in vivo to ensure this stability accurately represents what could occur in nature. In 

addition, one should measure the protective efficacy after a single vaccination, as well as 

optimize the dosage of the vaccine. These factors play a major role in the vaccination industry 

concerning compliance rates, cost, manufacturing time, required volume, etc. Other important 

research that could be conducted would be to measure the protective and cross-protective 

efficacy against other H7 subtypes, and other subtypes in general, such as HPAI H5N1. 

Influenza vaccines are known for their low cross-protective efficacy, so this should be 

determined for the recombinant mutant BC15-HA/QTV/NA (PR8) virus for its vaccine 

candidacy. If this recombinant mutant BC15-HA/QTV/NA (PR8) virus demonstrated acceptable 

results concerning the above research, then I believe it could be considered as a strong vaccine 

candidate for the world in which we live in.  
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