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ABSTRACT 
 

Nitrogen (N) is often the most limiting nutrient in prairie crop production and is applied in 

the greatest quantity. Including pulse crops in rotations has become a popular option due to their 

ability to form symbiotic relationships with dinitrogen-fixing bacteria. This relationship means 

pulse crops can acquire a large proportion of their N needs from biological N fixation (BNF). In 

previous studies, mixed results of rotation effects on a pulse crop’s ability to fix N were reported 

at Scott, SK, Swift Current SK, and from a greenhouse experiment using soils from Central Butte, 

SK. These results led to questioning if BNF is affected by a previous crop in a rotation. To address 

this question, research was conducted at multiple locations across Saskatchewan. The natural 

abundance 15N isotope dilution method was used to estimate BNF in pulse crops grown on oilseed 

and cereal stubble in the Brown, Dark Brown, and Black soil zones. Soil samples were collected 

from each rotation to characterize sites and identify soil physical, chemical, and microbiological 

properties that may have affected BNF in pulse crops. Additionally, a controlled environment 

experiment was performed to determine if stubble quality (i.e., wheat and canola) affected N-

mineralization potential before and after a pulse crop was grown. In the field study, an interaction 

between site and stubble affected BNF, where pulse crops grown on cereal stubble generally had 

higher BNF except at Biggar in 2017, and at Davidson and Theodore in 2018; BNF in these pulse 

crops was higher when grown on oilseed stubble. Inorganic N and available P contents may have 

affected BNF at some locations. A persistent pattern was observed in microbial biomass carbon 

(C) and phospholipid fatty acid (PLFA) biomarker results, where levels of each were higher in soil 

from pulse crops grown on oilseed stubble at Davidson, Theodore, and Springside. Climatic 

conditions also may have affected BNF at each location, especially in 2018, as conditions were 

hotter and drier compared to historical averages. In the controlled environment study, BNF was 
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not affected by soil or stubble; however, soil affected N acquisition and yields. A similar pattern 

to field results for PLFA biomarkers was observed, where total biomarkers were higher in oilseed 

stubbles and in the Black soil. Gross mineralization and nitrification rates were not affected by 

stubble before or after field pea was grown. Based on the variable results from the field and 

controlled environment studies, seeding pulse crops on oilseed stubble in the Brown, Dark Brown, 

or Black soil zones is not recommended.  
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1 GENERAL INTRODUCTION 

1.1 Introduction 

Nitrogen (N) is often the most limiting factor for crop production on the prairies and 

continuous cropping of non-legume annual crops has become dependent on the use of synthetic N 

fertilizers. Rotations that include one or more pulse crop offer an alternative to traditional cereal-

oilseed rotations that normally rely on synthetic N fertilizers. Pulse crops reduce the need for 

synthetic N fertilizer in the year they are grown because of their ability to form symbiotic 

relationships with N2-fixing rhizobia bacteria. Pulse crops also supply N-rich residues to 

subsequent crops, thereby further reducing fertilizer inputs for the next crop and reducing the 

carbon footprint (Gan et al., 2011a). 

Previous pulse crop research has primarily examined the benefit of N2-fixation to a 

succeeding crop, not how a previous crop affects biological nitrogen fixation (BNF). Studies at 

Swift Current, SK and Scott, SK provide inconclusive evidence that BNF in pulse crops varies 

between rotations with oilseeds and cereals. At Swift Current, BNF of field pea and chickpea 

decreased after mustard  (Knight, 2015), while at Scott, BNF in field pea increased when included 

in rotations with canola (Knight, 2012). In a study using soil from Central Butte, pulse crops grown 

on wheat stubble fixed more N from BNF than when grown on canola stubble (Chen, 2016). These 

results led to questioning the potential impact of a previous crop on BNF efficiency of pulse crops.  

The overall goal of this research was to examine the effect of rotation on BNF. The specific 

objectives of this study were to: 1) determine if BNF of pulse crops is affected by the previous 

crop in rotation in three different soil zones in Saskatchewan; and 2) identify potential soil 

properties that might contribute to a preceding crop’s effect on BNF. To address these objectives, 

field studies were completed in 2017 and 2018. Various pulse crops were grown on oilseed and 
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cereal stubble in field-scale situations. To address the effect of environmental conditions and soil 

type, eight site locations in three different soil-climatic zones across Saskatchewan were used. 

Additionally, a growth chamber experiment was conducted to 1) confirm field research findings 

under controlled environment conditions and 2) examine the capacity for microbes to provide 

ammonium and nitrate from preceding crop residue and potentially affect BNF in the pulse crop. 

 

1.2 Organization of the thesis 

This thesis has been prepared using a manuscript-style format. Following the General 

Introduction (Chapter 1) is a review of the literature (Chapter 2) focusing on BNF in pulse crops, 

the factors that affect BNF, and quantification techniques for estimating BNF and N mineralization 

rates. Chapter 3 reviews the findings from field estimates of BNF in pulse crops grown on oilseed 

and cereal stubble in multiple soil zones. Chapter 4 summarizes a controlled environment study 

that investigated the effect of two treatments, stubble type (canola and wheat) and soil type (soil 

from the Brown and Black soil zones) on BNF of field pea. The study also investigated the effect 

of the same treatments on N mineralization rates before and after field pea was grown. Chapter 5 

summarizes the overall findings, discusses implications of results, and suggests future research. A 

compilation of the literature cited in this thesis is presented in Chapter 6 and the appendices are 

presented last.  
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2 LITERATURE REVIEW 

 

2.1 Nitrogen use and pulse crops 

Bioavailable nitrogen (N) is often the most limiting factor for crop production as it is an 

essential component for photosynthesis and plant growth and development (Smith, 2002; 

Sulieman, 2011). Synthetic N fertilizers became the major source of N for agricultural crops 

following World War I, establishing a new market for the ammonia produced for TNT and other 

explosives mass produced due to the industrialization of the Haber-Bosch process pre-World War 

I in 1910. The Haber-Bosch process combines N from the air with hydrogen, derived mainly from 

natural gas, to produce ammonia. To break the strong triple bond between N atoms and reduce an 

efficient amount of N into ammonia, the process requires high pressure, high temperature, the 

presence of a suitable catalyst and a concomitant input of energy (Gordon et al., 2001). Industrial 

N2-fixation is a costly process, requiring 1% of the world’s annual energy supply to produce the 

hydrogen gas and necessary pressure and temperatures (Smith, 2002). Production, transportation 

and application of synthetic N fertilizers contributes to CO2 and N2O emissions (Gan et al., 2011a) 

and due to increasing demand, the price of synthetic N fertilizer has increased dramatically over 

the past decades (Knight, 2012).  

Through a symbiotic relationship with Rhizobium bacteria, pulse crops can acquire a high 

proportion, approximately 60% of their total N from BNF (Walley et al., 2007), thereby reducing 

overall synthetic N fertilizer inputs in the pulse crop phase of a rotation (Lupwayi et al., 2006; 

Lemke et al., 2007; Walley et al., 2007). Fertilizer N requirements are frequently reduced for a 

subsequent crop (Lemke et al., 2007) because pulse crops increase available soil N to the 

succeeding crop by adding N-rich residues to the soil (Stevenson and van Kessel, 1996a). 
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Rotations where lentil and field pea were included reduced effects on greenhouse gas emissions 

and non-renewable energy use and mineral extraction by 17 to 22% and 21 to 25%, respectively, 

compared to an oilseed-cereal rotation (MacWilliam et al., 2014). Additionally, pulse crops in 

rotation can break disease, insect and weed cycles (Krupinsky et al., 2002; Jensen et al., 2012; 

MacWilliam et al., 2014). 

Leguminous crops grown for their dry seed are referred to as pulse crops and in western 

Canada include field pea (Pisum sativum), lentil (Lens culinaris), chickpea (Cicer arietinum), faba 

bean (Vicia faba), and dry bean (Phaseolus vulgaris). Globally, pulse crops are grown for their 

protein-rich seeds destined for human consumption,  in animals feeds, or in industrial products 

(Siddique et al., 2012). Studying and understanding the effects of previous crops on BNF of a pulse 

crop can indicate the most efficient position in a rotation of a pulse crop and improve traditional 

monoculture cropping systems, reduce greenhouse gas emissions, and diminish the environmental 

impact of agriculture (Gan et al., 2011c). 

 

2.2  Biological nitrogen fixation 

Biological nitrogen fixation (BNF) is a process where a number of species of bacteria use 

the enzyme nitrogenase to catalyze the conversion of atmospheric N2 into ammonia (NH3) 

(Unkovich et al., 2008). The process can be completed by free-living N2-fixing bacteria such as 

Cyanobacteria, or by plant-associated bacteria symbiosis with a range of angiosperms, as is the 

case with Frankia or Rhizobium, where there is a significant transfer of photosynthetically fixed 

C from the plant to the bacteria, in exchange for biologically fixed N to the host plant. Symbiotic 

BNF with rhizobia in pulse crops occurs within specialized root structures of legumes called 

nodules (Unkovich et al., 2008).   
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Nodule initiation and formation by pulse crop roots in symbiosis with Rhizobium bacteria 

is a complex process.  First, pulse crop roots release flavonoids and the bacterial activator protein 

nodD, signaling to rhizobia in the rhizosphere to infect root hairs of the plant (Broughton et al., 

2003). Rhizobia react to this signal molecule by inducing the genes responsible for nodulation 

(Gage, 2009) and in turn emit host-specific Nod factors that induce root-hair deformation in the 

plant (Broughton et al., 2003; Lupwayi et al., 2006). Plant host and bacteria signal recognition 

contributes to the specificity of these interactions (Gage, 2009). The Nod factors secreted are 

lipochitooligosaccharides that contain species-specific end substitutions responsible for 

subsequent steps in the signal transduction of BNF (D’Haeze and Holsters, 2002; Geurts et al., 

2005). Close contact between rhizobia and the root hair must be established  in order for attachment 

to occur (Lie, 1981). Root hairs grow around the bacteria, trapping it between root hair cell walls 

(Gage and Margolin, 2000; Hirsch et al., 2001; Broughton et al., 2003). Encased bacteria continue 

to grow, forming a micro-colony, and continue secreting Nod factor, which causes the cell walls 

to reorient inwards, forming a tunnel or infection thread, instead of growing outwards like a normal 

root hair (Gage, 2009). Cortical cell division of the root starts at the same time as infection thread 

formation, giving rise to nodule primordium and meristem development (Lupwayi et al., 2006). 

Rhizobia bacteria then infect the nodule through the infection thread and enter the cytoplasm of 

the nodule cells (Oke and Long, 1999). Rhizobia are protected within the nodule cell cytoplasm 

by a peri bacteroid membrane that provides physical protection against host cell defense reactions 

and controls nutrient exchange between the symbiotic partners (Lupwayi et al., 2006).  

Rhizobia in colonized nodules differentiate into a distinct cell-type called a bacteroid, that 

is capable of fixing N2 (Oke and Long, 1999). Using the enzyme nitrogenase and energy from 

photosynthesis, rhizobia transform adenosine tri-phosphate (ATP) into adenosine di-phosphate to 
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break the strong triple bond in dinitrogen (N2) (Havlin et al., 2005; Strodtman and Emerich, 2009) 

thus, catalyzing the conversion of N2 into ammonia. Nitrogenase has a short half-life in the 

presence of oxygen, yet bacteroids require oxygen to complete the N2-fixation process. 

Leghemoglobin carries oxygen from outside the nodule through the nodule cell cytoplasm to the 

bacteroids (Strodtman and Emerich, 2009). Leghemoglobin controls the concentration of oxygen 

in the nodule and balances the protection of nitrogenase against oxygen with respiration functions 

(Nap and Bisseling, 1990). The presence of leghemoglobin indicates an active nodule and is pink 

or red in colour (Sylvia et al., 1998) due to the oxidation of ferrous leghemoglobin to ferric 

leghemoglobin (Becana and Klucas, 1990). The result of the nitrogen fixation process is useable 

ammonium ions for the production of proteins by the plant (Havlin et al., 2005). Most ammonium 

is used by the host plant, but some may be excreted from the nodule, used by other plants, or 

released when nodules die and decompose (Havlin et al., 2005).  

 

2.3 Factors that affect biological nitrogen fixation 

2.3.1 Crop rotation 

The current recommendation for including a pulse crop in rotation is every three to five 

years (Hnatowich, 2000; Malhi et al., 2011). Depending on a pulse crop’s position within a 

rotation, yield or BNF may be affected. A study at Swift Current, SK found that pulse crops grown 

immediately after canola produced less biomass and BNF was lower compared to pulse crops 

grown after wheat (Chen, 2016). A study conducted at Scott, SK reported cumulative seed yield 

of pea was usually lower in monoculture pea compared to when pea was included every two or 

more years, i.e. pea-wheat, pea-canola-wheat or canola-wheat-pea-wheat (Malhi et al., 2011). In 

another study using the same experimental plots at Scott, SK, Knight (2012) reported that N uptake 
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and productivity parameters for field pea were affected by rotation. The percentage of N derived 

from atmosphere obtained from BNF in continuous pea in 2008 was 18% and in 2009, 14% but 

was not due to a lack of precipitation, nutrient supply, or disease in any year. In contrast, pea grown 

in pea-wheat-canola-wheat and pea-canola-wheat rotations derived 50 to 59% of their N from BNF 

(Knight, 2012). Differences in BNF from this study were not due to concentrations of inorganic N 

in the continuous pea rotation inhibiting BNF or due to disease.  

2.3.2 Soil microbial community 

Agroecosystem management interventions such as tillage, crop species composition and 

soil amendments act in concert with the background soil environment to alter indigenous soil biota 

and to influence rhizosphere community composition (Buckley and Schmidt, 2003; Drinkwater 

and Snapp, 2007a). The influence of crop species composition is most significant for plant-

associated habitats such as the rhizosphere and rhizoplane  (Salles et al., 2004). Plant roots play an 

important role in shaping microbial communities in soil by releasing a wide range of compounds 

(Salles et al., 2004) known as root exudates. Some substances released into the rhizosphere such 

as root exudates, sloughed root cells and mucilages can serve as C or N sources for bacteria and 

fungi (Buyer et al., 2002) and support the metabolic activities of diverse groups of microorganisms 

(Bais et al., 2006). The amount and kind of root exudates differ between plant species, and these 

differences can stimulate species-specific shifts in the soil microbial community (Lupwayi et al., 

1998; Welbaum et al., 2004). Legume exudates differ in amount and composition from those of 

other crops species, and therefore may impact the rhizosphere community (Ibekwe and Kennedy, 

1998).  

In addition to crop root exudates, previous crop residue can affect soil microbial 

composition as the rate of decay and the amount of nutrient released to soil may depend on crop 
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species (Gan et al., 2011b). Chemical changes in soil mediated by crop rotations are caused 

predominantly by the build-up of root exudates and residues from preceding crops (Garbeva et al., 

2004). Chemical properties of crop residues such as C:N ratio, N concentration, lignin, and/or 

polyphenol concentration can affect residue decomposition rate (Vigil and Kissel, 1991; Wang et 

al., 2004). The decomposition rate of field pea, canola, and wheat straw was directly related to 

residue N concentration and/or C:N ratio (Janzen and Kucey, 1988) and lignin content played only 

a secondary role, if any (Soon and Arshad, 2002). Functional groups within a soil microbial 

community may favour, or are effective at, degrading different parts of organic matter (OM). 

Actinobacteria are effective at degrading complex organic materials including cellulose and lignin 

(de Boer et al., 2005). Similarly, fungi are important in the degradation of lignocellulosic materials 

contained in crop residues (McMahon et al., 2005; Schneider et al., 2012). Gram positive bacteria 

are presumed to be adapted to more complex and partially decomposed litter, due to their relatively 

slow growth habit (Rubino et al., 2010).  

By including field pea with canola and wheat in various rotational combinations, microbial 

biodiversity may be increased, making the microbial community more flexible and able to respond 

to environmental or biotic fluctuations that affect BNF (Knight, 2012). At Indian Head, SK, 

microbial communities were smaller under a continuous pea rotation compared to a pea-wheat 

rotation; crop productivity, soil OM level and microbial community structure and function were 

negatively affected in the continuous pea rotation (Nayyar et al., 2009).  

 

2.3.3 Inoculation 
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2.3.3.1 Indigenous rhizobia versus commercial inoculant 

The rhizobia-host plant relationship is species-specific and therefore crop variety and 

rhizobial strain can both affect BNF (Yang et al., 2017). For field pea, lentil and faba bean, 

Rhizobium leguminosarum is the specific species required. For chickpea, the necessary species is 

Rhizobium cicer and for soybean, Bradyrhizobium japonicum (Somasegaran and Hoben, 1994). A 

study using topsoil with optimized nutrient contents found that nodule numbers on crown and 

lateral roots of field pea differed two-fold when inoculated with two different R. leguminosarum 

bv viciae strains (Yang et al., 2017). The amount of fixed N in shoot and root tissues differed by 

1.5 to 2-fold, confirming that BNF capabilities of legume plants differ when inoculated with 

different rhizobia strains (Yang et al., 2017). 

Competition among strains of rhizobia for pulse crop nodulation is a major practical 

problem that frequently results in highly effective N2-fixing strains becoming ineffective in the 

field because they are out-competed by better-adapted, but usually less effective, indigenous 

strains (Lupwayi et al., 2006). Due to the cost of strain evaluation for commercial inoculants, 

effectiveness is the main criterion (Lupwayi et al., 2006). Commercial inoculant application 

increased total dry matter, total N and BNF in lentil, field pea and faba bean under dryland 

conditions (Bremer et al., 1988).  By applying a commercial inoculant at seeding, the appropriate 

strain of rhizobia is supplied in a sufficient quantity to support BNF (Hardarson and Atkins, 2003).   

Commercial inoculants can be formulated from a single Rhizobium strain or multiple 

strains, depending on the pulse crop to be inoculated. Two R. leguminosarum strains are often 

combined into one inoculant for application on field pea or lentil (Hnatowich, 2000) increasing 

the versatility of the inoculant. 
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2.3.3.2 Inoculant application  

Commercial inoculants are applied directly to seed or soil in a carrier, such as powdered 

peat, granular clay, or liquid. The application of commercial inoculants can affect the location of 

nodules on roots.  While the most efficient method of applying inoculants is by coating the seed, 

either with a peat carrier or liquid formulation, application on or with the seed often results in 

predominantly root crown or tap root nodules forming (Rice et al., 2000; Hardarson and Atkins, 

2003). Alternatively, soil-applied granular inoculant induces formation of nodules throughout the 

root system including around root crowns and on lateral roots (Rice et al., 2000; Hynes et al., 

2001). A study at Fort Vermillion, AB and Beaverlodge, AB found that soil-applied inoculant on 

field pea increased nodule number and biomass N accumulation at flat-pod by 28-90%, total N 

accumulation by 21 to 55% and BNF by 130 to 305% compared with field pea with seed-applied 

inoculant (Clayton et al., 2004). Nodules formed on lateral roots provide the majority of fixed N 

during the later stages of plant growth (Hardarson et al., 1989). Furthermore, while crown nodules 

form earlier than lateral nodules, they also senesce earlier, indicating that the younger lateral 

nodules may be more useful to plants during later nutrient demanding reproductive stages (van 

Kessel, 1994; Rice et al., 2000). 

 

2.3.4 Nutrient management 

2.3.4.1 Inorganic N  

In addition to using superior Rhizobium strains, any practice that increases the N demand 

of the host plant should increase BNF in pulse crops (van Kessel and Hartley, 2000). However, 

when soil N is in sufficient supply to meet the demand of the crop, even the most effective rhizobia-

host plant relationship will result in little BNF (van Kessel and Hartley, 2000). Excess nitrate 
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availability reduces nitrogenase activity because of an increase in competition between nitrate 

reduction processes and BNF reactions within the plant, therefore reducing BNF (Havlin et al., 

2005). Furthermore, the decomposition of OM in soil, and the accompanying mineralization of 

organic N into ammonium and nitrate which may contribute to competition within the host plant, 

may vary depending on the quantity of mineralizable N and environmental conditions, soil 

moisture and temperature, that control the rates of the process (Watkins and Barraclough, 1996; 

Curtin and Campbell, 2002).  

2.3.4.2 Phosphorus, potassium, and sulfur  

Pulse crops that acquire N through BNF generally have a higher requirement for 

phosphorus (P), potassium (K), and sulfur (S) than those that rely on soil N alone (Israel, 1987; 

Sulieman et al., 2013). Proper P, K, and S supply support aspects of BNF in legumes such as 

nodule activity, nodule growth and function, and nitrogenase activity. An alleviation in P 

deficiency in soybeans dependent on BNF alone caused increases in nodule mass per plant, nodule 

number per plant, and average mass per nodule (Israel, 1987). High rates of potassium-chloride 

and potassium-sulfate fertilizer applied to alfalfa increased nodule number and nitrogenase 

activity, compared to control plants in soil from a K-deficient region of the mid-west U.S. (Duke 

et al., 1980). There is a close relationship between S supply and nitrogenase and leghaemoglobin 

content in nodules (Scherer et al., 2008; Varin et al., 2010). Under S starvation, BNF is reduced as 

a consequence of reduced leghemoglobin concentration as well as reduced ATP supply (Scherer 

et al., 2008).  

2.3.4.3 Other nutrients  

Micronutrients are generally required for plant growth and development processes, but a 

few micronutrients play particularly important roles during BNF (Bonilla and Bolaños, 2009). Iron 
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(Fe) and molybdenum (Mo) are essential micronutrients because they are part of two essential 

metalloproteins that are the principal components of nitrogenase: the Fe protein and the MoFe 

protein (Smith, 2002). Within a nodule, Fe is also important for heme-containing proteins such as 

leghemoglobin and Fe-S proteins such as ferredoxin (Bonilla and Bolaños, 2009). 

Nodulation and BNF in legume-Rhizobium symbioses are dependent on Boron (B) and 

Calcium (Ca2+). Under normal plant growth or abnormal stress conditions, a relationship between 

B and Ca2+ exists. Boron is essential for nod gene induction, root hair curling, and adsorption of 

bacteria to the root surface, while Ca2+ enhances cell and tissue invasion by Rhizobium, which are 

highly impaired by B deficiency (Bonilla and Bolaños, 2009). Independently, B is essential for  

synthesis and stability of cell walls and when deficient, affects infection thread formation (Bolaños 

et al., 1994). Infection threads in B-deficient legumes are extremely enlarged and abort prior to 

bacterial release (Bolaños et al., 1996). Development of infection threads was diminished by about 

30% in B-deficient plants (Redondo-Nieto et al., 2001). Three- and four-week-old B-deprived 

nodules showed degeneration of cell walls and membranes and appeared white, showing no signs 

of nitrogenase activity, confirming the essential role of B in nodule development (Bolaños et al., 

1994, 1996). Calcium is responsible for cell wall integrity of free-living Rhizobium (O’Hara et al., 

1988) and for optimal root hair colonization (Lodeiro et al., 1995). Attachment of rhizobia is 

mediated by plant and bacterial components able to use Ca2+ to reinforce adhesion between 

rhizobia and roots (Bonilla and Bolaños, 2009).  

 

2.3.5 Soil pH 

Soil pH affects the survival, growth and BNF of rhizobia, while nutritional disorders affect 

the symbiotic relationship between host plant and rhizobia (Lie, 1981; Tang and Thomson, 1996). 
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Rhizobia implement strategies to maintain intracellular pH such as decreasing membrane 

permeability, internal buffering, amelioration of external pH, proton extrusion/uptake and 

prevention of metal ion toxicity (Dilworth and Glenn, 1999). Following a pH change, species-

dependent genes are triggered to facilitate cell function adaptations in order for the bacteria to 

survive and grow (Hirsch, 2010). Fewer genes have been found that are induced under alkaline 

conditions partly due to fewer studies examining alkaline tolerance (Hirsch, 2010). 

Optimal soil pH for pulse crop growth is neutral or slightly acidic (Bordeleau and Prevost, 

1994). The effects of pH on growth and nodulation of 14 grain legume species, including field pea, 

lentil, chickpea, and faba bean, grown in nutrient solution, supplied with N or solely reliant on 

BNF, showed tolerance to a range of pH, but intolerance to extremes of pH as indicated by shoot 

growth, nodule numbers and nodule mass (Tang and Thomson, 1996). Lentil was the most 

sensitive to acidic conditions while field pea, chickpea and faba bean were intolerant to high or 

low pH (Tang and Thomson, 1996). 

In a study using acidic soils from Peace River, AB, soil pH affected biomass, pink nodule 

formation and active nodule weight in field pea  (Rice et al., 2000). Active nodule number and 

weight increased linearly as soil pH increased from 4.4 to 6.6.  Biomass increased as pH increased 

from 4.4 to 5.4 but decreased as pH further increased from 5.4 to 6.6 (Rice et al., 2000). This study 

also reported that granular inoculant was effective for establishing nodules at soil pH 4.4, granular 

and powdered peat were effective at pH 4.4 and 5.4, and granular, powdered peat, and liquid 

inoculants were effective at pH 6.6. Using the same soils, a local isolate of R. leguminosarum bv 

viciae was used to inoculate field pea and established nodules at pH 6.6, but like the commercial 

liquid formulation, failed to establish effective nodules at pH 4.4 and 5.4 (Rice et al., 2000). 
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Growth inhibition and reduced survivability of rhizobia in acidic soils is caused by 

increased hydrogen ion concentration, and increased solubility of the toxic metal ions aluminum 

(Al3+), copper (Cu2+) and manganese (Mn2+) that both affect intercellular pH stability (Graham et 

al., 1994). Soil acidity disrupts the signal exchange between the host plant and rhizobia starting 

with reduced flavonoid secretion by the plant (Hungria and Stacey, 1997). The reduction in 

flavonoid secretion decreases rhizobia Nod gene induction and restricts Nod factor and Nod 

metabolite excretion (McKay and Djordjevic, 1993), which in turn affects the chain of events 

leading to root hair deformation and curling (Miransari et al., 2006). Root growth of the host plant 

is hindered in acidic conditions. In acidic soils, Al3+ accumulates at root apices causing physical 

damage and build-up to toxic levels inhibits root cell division and elongation (Ryan et al., 1993), 

decreasing macronutrient availability (Ferguson et al., 2013). 

 

2.3.6 Environmental conditions 

2.3.6.1 Temperature  

Temperature can affect rhizobia survival in soil and can limit both nodulation and BNF 

(Graham, 1992; Chalk et al., 2010). Temperature is a primary determinant affecting host plant 

metabolic processes such as rates of respiration, photosynthesis, transport and transpiration 

(Bordeleau and Prevost, 1994). For most rhizobia the optimum temperature for growth in culture 

is from 28 to 31°C, with many unable to grow below 10 or above 37°C (Graham, 1992). The 

optimum temperature range for photosynthesis of legumes is between 15 and 25°C (Lie, 1981) and 

at higher temperatures, photosynthesis is drastically reduced (Bordeleau and Prevost, 1994). A 

delay in onset of nodulation and decrease in nodule number, size and growth rate occurred in bean, 
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field pea and lentil grown in water baths, when temperature was outside the optimal range (Lira 

Junior et al., 2005). 

The root system depends on the shoot for the supply of carbohydrates from photosynthesis 

(Lie, 1981). Root respiration may use up to 50% of photosynthates produced in one day (Bordeleau 

and Prevost, 1994). If temperature affects photosynthesis and respiration, and in turn plant growth 

and productivity, it will also affect BNF because both of these processes determine carbohydrate 

availability for BNF (Whittington et al., 2012). When four different native perennial legume 

species were grown at 25°C and 28°C, relying on BNF alone, 100% of Lupinus seedlings had 

nodules at 25°C, while only 40% of seedlings had nodules at 28°C (Whittington et al., 2012).  

2.3.6.2 Topography and water use 

Biological nitrogen fixation is strongly influenced by topography, which controls the 

distribution of water and pedalogic processes (Stevenson and van Kessel, 1996b; van Kessel and 

Hartley, 2000). Legumes grown in depressions can either exhibit increased or decreased BNF 

compared to plants grown in non-depression positions (Stevenson et al., 1995). Even though soil 

water is essential for optimal BNF, an excess of water will reduce nitrogenase activity because of 

a lack of oxygen (Sprent, 1972). Biological nitrogen fixation declined concurrently with a decline 

in water use by lentil, pea and faba bean showing that plant water use and BNF are connected 

(Bremer et al., 1988). If topography strongly influences the distribution of water, pulse crops are 

ideally grown on level to gently undulating fields.  

Pulse crops are well-adapted to a range of water regimes. The shallow roots of pulse crops 

in comparison to wheat or canola root structures allows them to use less water while still 

maintaining adequate yields (Angadi et al., 2008). Under irrigated, rainfed and imposed drought 

conditions, field pea used the least amount of water and had the highest grain yield, and desi 
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chickpea used water as availability increased and had intermediate yield (Angadi et al., 2008).  

Under irrigated conditions, lentil had the lowest water use efficiency and yield (Angadi et al., 

2008) suggesting its suitability for drier conditions. A study in south-western Australia with 

comparable rainfall conditions to south-western Saskatchewan, (i.e., < 350 mm yr-1 compared to 

an average 351 mm yr-1, respectively) showed faba bean yield and growth to be variable 

(Mwanamwenge et al., 1998) suggesting it is more suited to climatic zones with higher average 

precipitation.  

 

2.4 Quantification of biological nitrogen fixation 

2.4.1 Nodulation assessment 

Nodule number and weight are often positively correlated with BNF and can be useful 

measurements to help interpret data collected from other measurements (Hardarson and Danso, 

1993). A nodulation health assessment takes into account plant growth and vigour, colour and 

abundance of nodules, and nodule positions on a root system (Cardoso et al., 2009). Additionally, 

a visual appraisal of red pigmentation from leghemoglobin content provides a relative measure of 

a nodule’s effectiveness (Hardarson and Atkins, 2003).  

 

2.4.2 Isotope dilution techniques 

To maximize the benefits of the pulse crop-rhizobia symbiosis, it is useful to estimate the 

amount of N fixed under field conditions (Hardarson and Danso, 1993). One of the most common 

methods to estimate BNF is the isotope dilution method. The 15N-isotope dilution method 

measures uptake of 15N in an N2-fixing crop comparing it to a reference crop or plant that does not 

fix N2 (van Kessel and Hartley, 2000). There are two ways to measure BNF using this method, 
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either through enrichment with 15N-labeled fertilizer or by taking advantage of differences in 

natural 15N abundance levels. Erroneous estimates of BNF can occur because of differences in 

seasonal N accumulation patterns of legume and the reference crop under field conditions, the 

concurrent decline in atom% 15N of the available soil N pool or differences in root distribution 

(van Kessel and Hartley, 2000). Use of different non-N2-fixing reference crops can also lead to 

widely variable estimates in BNF (Witty, 1983; Danso, et al., 1993). 

2.4.2.1 Enriched isotope dilution method  

In the enriched isotope dilution method both N2-fixing and non-N2-fixing crops are grown 

in soil where the same amount of 15N-labeled fertilizer has been applied (Hardarson and Danso, 

1993). In the absence of N-supply other than soil and 15N-labeled fertilizer, both plants will contain 

the same ratio of 15N to14N, since they are taking up N of similar 15N to 14N composition, but not 

necessarily the same total quantity of N (Hardarson and Danso, 1993). With BNF, the N2-fixing 

plant will contain a lower ratio of 15N to 14N due to incorporation of atmospheric N2 which has a 

lower 15N to 14N ratio than soil and the applied fertilizer (Hardarson and Danso, 1993). Harvested 

plant materials are analyzed for 15N content and the dilution of 15N-labeled fertilizer by 14N derived 

from atmospheric N2 compared to the same contents in the reference plant and the proportion of 

N fixed from atmosphere are calculated (Unkovich and Pate, 2000).  

2.4.2.2 Natural abundance method  

As a result of isotope discrimination effects that occur during soil formation, most soils have 

a slightly higher 15N abundance than the atmosphere (Hardarson and Danso, 1993). Similar to the 

EN technique, the natural abundance method relies on a significant difference in the ratio of 15N 

to 14N between atmospheric N2 and the pools of soil N that the N2-fixing and non-N2-fixing plants 

are utilizing in a field situation (Unkovich et al., 1994). Nitrogen fixing plants may have a lower 
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15N enrichment than non-fixing ones and therefore, the NA technique is another useful method to 

measure BNF (Amarger et al., 1979; Kohl et al., 1980; Hardarson and Danso, 1993). An advantage 

of the natural abundance technique is that there is no requirement to add 15N-labeled fertilizer, 

making it suitable for field-scale studies (Chalk, 1985). However, the precision of the natural 

abundance technique becomes questionable when the difference in 15N abundance between the soil 

and atmosphere is small (Unkovich et al., 1994) or when there is large spatial variability in natural 

15N abundance (Holdensen et al., 2007).  

 

2.5 Determining N mineralization rates using isotope pool dilution  

Microorganisms in soil are responsible for N and C cycling and usually draw available N 

in proportion to that of available C (Bengtsson et al., 2003) making C:N ratios of a crop an 

important factor for nutrient cycling by microorganisms. At any time, microbes are decomposing 

organic matter (OM) with narrow or wide C:N ratios resulting in mineralized organic N or 

immobilized N, depending on the C:N ratio (Powlson and Barraclough, 1993).  

Isotope pool dilution allows the determination of gross rates of mineralization and 

nitrification in the presence of decomposing crop residues, unconfounded by processes consuming 

ammonium (NH4+) (Watkins and Barraclough, 1996). Briefly, the isotope pool dilution technique 

is as follows. When the soil NH4+ pool is at time equals zero (t = 0), a quantity of labeled NH4+ is 

added. The tracer is diluted as a consequence of mineralization of unlabeled organic N to NH4+ 

(Braun et al., 2018). Over time the amount of unlabeled NH4+ will increase, and the proportion of 

labeled NH4+ will decrease. Gross N mineralization is then calculated from the change in size of 

the total NH4+ pool (15N + 14N) and from the decline in the 15N enrichment above natural abundance 

(Kirkham and Bartholomew, 1954; Hart et al., 1994; Murphy et al., 2003). Processes that consume 
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NH4+ will remove labeled or unlabeled NH4+ from the pool in proportion to the amounts present 

under two conditions: if the added label mixes with the indigenous soil NH4+; and if no preferential 

utilization of either labeled or unlabeled NH4+ occurs (Powlson and Barraclough, 1993). If these 

two assumptions are met, the processes that consume NH4+ will not in themselves alter the 15N 

abundance in the pool. The principles and assumptions of the process are the same for nitrate (NO3-

) production through nitrification. Methodological considerations that must be determined prior to 

the start of the experiment include uniformity of tracer distribution in the soil, changes in soil 

conditions as a result of labelling, eliminating the potential for 15N tracer losses either through 

leaching or volatilization, and the optimum duration of the experiment (Di et al., 2000).    
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3 EFFECT OF ROTATION ON BIOLOGICAL NITROGEN FIXATION OF PULSE CROPS 

 

3.1 Preface 

This chapter examines the effect of rotation sequence on biological nitrogen fixation of 

pulse crops after oilseed or cereals at sites in the Brown, Dark Brown and Black soil zones. This 

chapter focuses on BNF and N acquisition as well as soil physical, chemical, and microbiological 

properties that may affect BNF. The results obtained provide information on whether a certain 

rotation should be avoided. The results also assist in optimizing BNF efficiency in rotation with 

the potential to assist producers in minimizing synthetic fertilizer use in prairie agriculture systems.  

 

3.2 Abstract 

Pulse crops are an attractive option for producers to include in rotation because of their 

ability to biological fix N2 (BNF) in symbiosis with rhizobia bacteria. Prior research has focused 

on subsequent N benefit of pulse crops, not on the effects of a preceding crop on BNF. Research 

was conducted at multiple locations across Saskatchewan in 2017 and 2018. The natural 

abundance 15N isotope dilution technique was used to estimate BNF in pulse crops grown on 

oilseed and cereal stubble in the Brown, Dark, Brown and Black soil zones. Soil samples were 

collected from each rotation to characterize sites and identify potential soil properties that may 

have affected BNF. In both years, BNF was affected by an interaction between site and stubble, 

where pulse crops grown on cereal stubble had higher BNF except at Biggar in 2017, and Davidson 

and Theodore in 2018, where BNF was higher on oilseed stubble. Levels of inorganic N and P 

may have affected BNF at some locations. A persistent pattern was observed in microbial biomass 



 21 

C and PLFA biomarker results, where levels of each were higher in soil from pulse crops grown 

on oilseed stubble at Davidson and Theodore. Weather conditions also may have affected BNF at 

each location, especially in 2018, when conditions were hotter and drier compared to historical 

averages.  

 

3.3 Introduction 

Continuous cropping of non-legume crops such as cereals and oilseeds has become 

dependent on the use of synthetic N fertilizers. An alternative to the traditional cereal-oilseed 

rotations is to include a pulse crop in a rotation. Pulse crops may reduce the reliance on synthetic 

N fertilizers because of their ability to fix N in symbiosis with N2-fixing bacteria. Pulse crops may 

also further decrease the need for synthetic N fertilizer through their addition of N-rich residues 

that become available to the succeeding crop (Gan et al., 2010). 

 Pulse crop research in the past has primarily examined the contribution of N to succeeding 

crops, not how a previous crop may affect BNF. Inconclusive evidence found that BNF in pulse 

crops varied between rotations with oilseeds and cereals at different locations in Saskatchewan. At 

Swift Current, BNF of field pea and chickpea decreased after mustard (Knight, 2015), at Scott, 

BNF in field pea increased in rotations that included canola (Knight, 2012), and at Central Butte, 

pulse crops grown on wheat stubble fixed more N from BNF than those grown on canola stubble 

(Chen, 2016). Based on these results it was hypothesized that BNF of pulse crops would be affected 

when in rotation with cereals or oilseeds. 

 The first objective of the field experiment was to estimate BNF in pulse crops grown after 

cereals and oilseeds and determine if cropping sequence does in fact affect BNF. The second 

objective was to characterize each site and relate soil physical, chemical, and microbiological 
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properties that might contribute to a preceding crop’s effect on BNF. In addition to estimates of 

BNF measured by percent N derived from atmosphere (%Ndfa), measurements of aboveground N 

(ABG-N), fixed N, N derived from soil (Ndfs), and nitrogen harvest index (NHI) were calculated. 

These measurements may assist in estimating the contribution of N by pulse crops to a succeeding 

crop as affected by rotation (Knight, 2012; Xie et al., 2017).  

 

3.4 Materials and Methods 

3.4.1 Site descriptions and experimental design 

Field studies were conducted in the 2017 and 2018 growing seasons at a total of eight sites 

in Saskatchewan. The locations chosen were representative of typical pulse crop growing regions 

in the Brown, Dark Brown and Black soil zones and are defined by the town or city, closest to 

where the research was conducted. Sites are specified as the exact location where the research was 

conducted. In 2017, sites were located near Biggar (BG) and Wilkie (WL) and the experimental 

treatments included site and stubble type (Table 3.1). In 2018, sites were located near Biggar, 

Central Butte (CB), Davidson (DV), Theodore (TH), and Springside (SP). At each location a 

minimum of two fields were selected: one with a pulse crop (chickpea, field pea or lentil) growing 

on a cereal (wheat, oat or barley) stubble; one with the same pulse crop species growing on a 

brassica (either canola or mustard) stubble. Non-N2-fixing weeds from each field were sampled 

for calculating %N derived from atmosphere (%Ndfa). Research plots with the same crop 

sequences at Agriculture and Agri-Food Canada (AAFC) at Indian Head (IH) and Swift Current 

(SC) were also sampled in 2018. Experimental treatments included site and stubble type (Table 

3.1). In 2018, at Swift Current and Biggar, an additional species of pulse crop grown on oilseed 

and cereal stubbles was sampled (Table 3.1).  One corner of the plot area at Indian Head had known 
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salinity issues so this area was avoided for this study’s experimental set-up. The plots were also 

quite weedy which may have affected plant growth through competition for moisture and nutrients. 

Fields and plots were seeded and managed by producers and AAFC staff, respectively. All pulse 

crops were inoculated with a commercial Rhizobium inoculant. Close proximity, ideally less than 

2 km between pulse crop and non-N2-fixing reference crop fields, ensured soil properties and 

growing conditions were similar.  

 

Table 3.1. Locations and crop sequences for the 2017 and 2018 field experiments. 

Location Soil Zone Sequences    
  Oilseed 1 Cereal 1 Oilseed 2 Cereal 2 
----------------------------------------------------2017-------------------------------------------------------- 
Biggar Dark Brown Cn†-FP B-FP - - 
Wilkie Dark Brown Cn-FP W-FP - - 
----------------------------------------------------2018-------------------------------------------------------- 
Central Butte Brown Cn-FP W-FP - - 
Swift Current Brown M-CP W-CP M-L W-L 
Biggar Dark Brown Cn-FP W-FP Cn-L W-L 
Davidson Dark Brown Cn-L W-L - - 
Indian Head Black Cn-FP W-FP - - 
Springside Black Cn-FP O-FP - - 
Theodore Black Cn-FP O-FP - - 

† CP = chickpea, FP = field pea, L = lentil, Cn = canola, M = mustard, B = barley, O = oat, and W 
= wheat  
 

3.4.2 Weather data 

Weather data was collected from Environment Canada weather stations nearest to the eight 

sites (Environment Canada, 2011). Mean daily maximum temperatures and cumulative monthly 

precipitations for the growing season (May, June, July and August) of each year were compared 

to the historical data (1981-2010). 

3.4.3 Soil sampling and analyses 
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Soil sampling was conducted in 2017 and 2018 at each site in late April or early May before 

seeding.  Soil cores were taken from each field from depths of 0 to 15 cm and 15 to 30 cm using a 

Dutch auger (3 cm dia.). Samples were taken randomly across the plot area, avoiding seed rows, 

saline areas, or field approaches where compaction could have occurred.  From producer’s fields 

10 samples were collected from each depth and combined into one composite sample for each 

depth per field. At the AAFC sites at Indian Head and Swift Current, two cores were taken from 

the middle of each plot, approximately 3 m apart. Cores were combined into one sample for each 

depth and two samples per plot. After mixing to homogenize the composite sample, a subsample 

of moist field soil was taken and stored at 4 °C for inorganic N analysis. The remainder of the 

composite sample was air dried and ground to pass a 2-mm sieve, using a particle size soil grinder 

(Humboldt Manufacturing, Elgin, IL, USA).  

3.4.4 Soil pH, electrical conductivity, and texture 

For each sample, 40 g air-dried soil:80 mL deionized water was used to measure pH and 

EC  (Hendershot et al., 2007; Miller and Curtin, 2007) on a calibrated pH and EC meter (PC700, 

Oakton, ON, Canada). Particle size analysis was determined using the Bouyoucos hydrometer 

method (Thien and Graveel, 2008), adjusting the second reading time from 2 h to 6 h to remove 

bias in % clay associated with a 2 h reading (Ashworth et al., 2001).  

3.4.5 Total nitrogen and organic carbon 

Soil samples were air dried then ball ground until they were able to pass a 0.075 mm sieve. 

Total N content was analyzed on a LECO TruMac CNS Analyzer (LECO Corporation, St. Joseph, 

MI, USA). For organic C analysis, carbonates were removed from 1 g subsamples by first weighing  

soil into nickel-lined ceramic combustion boats and placing on a 70 °C hot plate (Skjemstad and 

Baldock, 2007). Samples were moistened with distilled water then acidified with 6% (w/v) 
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sulfurous acid to remove inorganic carbonates.  When samples stopped reacting (forming CO2), 

an additional 1 mL of sulfurous acid was added, then samples were allowed to dry (Skjemstad and 

Baldock, 2007). Organic C was measured using a LECO C632 (LECO Corporation, St. Joseph, 

MI, USA).  

3.4.6 Inorganic nitrogen, available phosphorus, potassium, and sulfur 

Inorganic N was extracted from field-moist soil subsamples using 2M KCl (Maynard et 

al., 2008). Briefly, 5 g of field-moist soil was weighed into disposable vials and 50 mL of 2M KCl 

solution added. Subsamples were shaken at 142 rpm for 1 h, then filtered through Whatman No. 

42 filter paper (Whatman, Maidstone, UK) into clean vials. Samples were frozen until analysis on 

a Technicon Autoanalyzer (SEAL Analytical, Mequon, WI).  

Available phosphorus (P) and potassium (K+) were extracted using the Modified Kelowna 

extraction method (Qian et al., 1994). Modified Kelowna solution was prepared with 1.4 % (w/w) 

acetic acid, 1.9 % (w/w) ammonium acetate, and 0.056 % (w/w) ammonium fluoride in distilled 

water. Into disposable vials, 3 g of air-dried soil and 30 mL of Kelowna solution were added, then 

capped and shaken on a rotary shaker at 142 rpm for 5 min. Soil suspension was filtered through 

Whatman No. 42 filter paper into clean vials. Phosphorus extracts were analyzed on a Technicon 

Autoanalyzer (SEAL Analytical, Mequon, WI) and K+ extracts were analyzed on an Agilent 

Atomic Absorption Flame Emission Spectrometer for 2017 samples and an Agilent Microwave 

Induced Plasma Spectrometer for 2018 samples (Agilent Technologies, Santa Clara, CA, USA).  

Sulfate was extracted with 0.01M CaCl2 (Houba et al., 2000). Calcium chloride solution 

was prepared by dissolving 1.11 g CaCl2 into 1 L of distilled water. Twenty g of air-dried soil was 

weighed into extraction bottles and 40 mL of extraction solution was added. Samples were capped 

and shaken on a rotary shaker for 30 min at 142 rpm. Samples were filtered through Whatman No. 
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42 filter paper and frozen until analysis on an Agilent Microwave Induced Plasma Spectrometer 

(Agilent Technologies, Santa Clara, CA, USA).  

3.4.7 Soil sampling and analysis for microbial community composition 

When field pea, lentil, and chickpea were at approximately 50 to 60 % flowering in the 

2018 growing season, additional soil samples were collected for microbial biomass carbon (MB-

C) and nitrogen (MB-N) and phospholipid fatty acid analysis (PLFA). Soil for MB-C and MB-N 

was collected from 0- to 15-cm depth adjacent to the four sampling areas using a Dutch auger. Soil 

for PLFA analysis was collected at the same time that the nodulation assessment was conducted 

(section 3.6.1). Plants were carefully excavated and gently shaken to free roots of soil, then a 

combination of bulk soil adjacent to nodulation assessment plants and root soil was collected for 

a total of four samples.  

Moist samples for MB-C and MB-N were sieved to 2 mm and stored at 4 °C until 

chloroform fumigation extraction (Voroney et al., 2007) was performed approximately one month 

after sampling. Soils were covered and incubated at 21 °C for 7 days at approximately 50% water 

holding capacity. Three 25 g subsamples of incubated soil were placed in an airtight desiccator 

and fumigated with ethanol-free chloroform for 24 h. Three unfumigated 25 g subsamples were 

extracted with 80 mL of 0.5 M K2SO4 and filtered into vials. After the 24 h incubation was 

complete, the fumigated subsamples were also extracted with 80 mL of 0.5M K2SO4 and filtered 

into vials. Extracts were frozen until analysis on a Shimadzu TOC-V CPN analyzer (Shimadzu 

Corp., Kyoto, Japan).  

Samples for PLFA analysis were sieved to 2 mm and stored at -80 °C. Soils were freeze-

dried and ground using a mortar and pestle. All glassware for the extraction was soaked in 4 % 

(v/v) Extran 300 (MilliporeSigma, Burlington, MA) soap bath for 2 h, then scrubbed and rinsed 
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thoroughly with distilled water. The clean glassware was then soaked in 10% hydrochloric acid to 

remove any remaining lipid debris, then triple-rinsed with distilled water and air-dried. Glassware 

was baked at 400 °C for 4 h in a muffle furnace. Ultra-high purity N2 (Praxair Canada Inc., 

Mississauga, ON) was used for sample evaporation. Standard protocol for PLFA included lipid 

extraction with a single-phase chloroform mixture, isolation of phospholipids with lipid 

fractionation using solid phase extraction columns, and methylation of phospholipids to produce 

fatty acid methyl esters, then analysis using a capillary gas chromatograph (Quideau et al., 2016).   

Phospholipid fatty acid extraction was performed according to the modified protocol of 

White (1979), which was adapted from the original method of Bligh and Dyer (1959) as described 

in Helgason et al. (2009). Fatty acids were extracted from 4 g of soil using 19 mL of Bligh and 

Dyer extractant (5 mL chloroform, 10 mL methanol, 4 mL of phosphate buffer consisting of 2.18 

g dipotassium phosphate in 250 mL of ultra-pure water). The mixture was centrifuged for 15 min 

at 1500 rpm. Supernatant was transferred to 50 mL glass vials then 5 mL phosphate buffer and 5 

mL chloroform added. The new mixture was vortexed for 30 s. Samples were left overnight at 

room temperature in the dark. The denser organic phase was transferred into a 15 mL vial and was 

evaporated under pressure with N2 at 25 °C. Dried samples were stored at -20 °C until the second 

step.  

Solid phase extraction columns with spigots were conditioned with 5 mL acetone followed 

by two additions of 5 mL chloroform. Samples were re-dissolved with 1 mL of chloroform after 

reaching room temperature and transferred into labeled solid phase extraction columns for lipid 

separation. Neutral and glycolipids were eluted from samples sequentially, with 5 mL chloroform 

and 5 mL acetone. Phospholipids were eluted with the addition of 5 mL methanol. Eluent was 

collected into new 15 mL vials. Samples were dried under N2 and stored at -20 °C. 
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Lipid methylation was completed by adding 0.5 mL of chloroform and 0.5 mL of methanol 

to each room temperature sample. After the addition of 1 mL 0.2 M methanolic potassium 

hydroxide, samples were sealed and placed in a 37 °C water bath for 30 min. Then, 2 mL of hexane, 

0.2 mL 5.75% (v/v) acetic acid, and 2 mL of Millipore water (MilliporeSigma, Burlington, MA) 

were added. Samples were vortexed, then centrifuged at 1500 rpm for 2 min. Ten µL of 0.1 µg µL-

1 methylated internal standard was added to labeled 4 mL amber vials. The top phase from the 

centrifuged samples was transferred into the vials. After adding 2 mL of hexane to the lower phase 

of the sample, it was centrifuged again at 1500 rpm for 2 min. The top phase was transferred again 

into the amber vials. Samples were evaporated under N2 and stored at -20 °C.  

Fatty acid methyl ester extracts were analyzed using a Bruker Scion 436 gas chromatograph 

(Scion Instruments, Livingston, UK). Peaks were identified using fatty acid standard and Compass 

CDS software (Scion Instruments, Livingston, UK). Total microbial biomass was quantified by 

summing all identified PLFA peaks. Biomarkers based on the PLFA chain length were used to 

determine the relative abundance of microbial functional groups (Table 3.2). 
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Table 3.2. Biomarkers used to determine abundance of specific microbial functional groups. 

Functional groups Biomarker(s) References 
Bacteria i14:0, i15:0, a15:0, i16:0, 

16:1ɷ7c, 10Me16:0, i17:0, 
a17:0, cy17:0, 10Me17:0, 
18:1ɷ7, 10Me18:0, cy19:0 

(Helgason et al., 2010a) 
(Bååth and Anderson, 2003) 

   
Gram positive i14:0, i15:0, a15:0, i16:0, 

i17:0, a17:0 
(Helgason et al., 2010b) 
(Hedrick et al., 2005) 

   
Gram negative 16:1ɷ7t, 16:1ɷ9c, 16:1ɷ7c, 

18:1ɷ7c, 18:1ɷ9c, cy17:0, 
cy19:0 

(Helgason et al., 2010b) 
(Macdonald et al., 2004) 

   
Fungi 18:2ɷ6,9 (Bååth and Anderson, 2003) 

   
Arbuscular mycorrhizal fungi 16:1ɷ5c (Olsson, 1999) 

 
 

3.4.8 Plant sampling for nodulation assessments and 15N analysis 

A nodulation assessment  (Appendix A.1.) was completed when field pea, lentil and 

chickpea  were between 50 and 60% flowering. Simultaneously, plant health and disease 

assessments were completed in the field using the plant health scale included in the nodulation 

assessment criteria (see Appendix, Table A.1). If plants were green and vigorous, they scored a 

rating of five, and if plants were very chlorotic, they scored a rating of one. A score of zero meant 

that nodules present were white or green, or no nodules were present on the root system. Disease 

was determined by visual assessment and gathering field history from the producer. Five to eight 

plants were randomly selected near each microplot and were carefully excavated to a depth of 30 

cm, retaining as much root mass as possible. A total of 20 to 32 plants were collected from each 

field and were refrigerated at 4 °C until nodulation assessments were completed.  In the laboratory, 

roots of five randomly selected plants were washed and nodules were removed. Nodule colour and 
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abundance and position on the plant were assessed and final nodulation scores were calculated and 

reported.  

Crops were hand-harvested near physiological maturity. At producer field sites and AAFC 

Swift Current, 1m2 microplots were hand-harvested and at AAFC Indian Head, a linear metre strip 

of mature plants was hand-harvested. Samples of non-N2 fixing weeds were collected, within a 

few metres to microplots, as an additional reference source to use in calculating percent N derived 

from atmosphere (%Ndfa). Using weeds as a reference may provide a more accurate estimate of 

δ15N because they utilize the same N pool as the pulse crop and are closer than the reference crop, 

reducing spatial variability of δ15N. Plant parts were used for natural abundance (NA) 15N 

measurement, to calculate %Ndfa, yield, nitrogen harvest index (NHI), the total amount of N2 

fixed in seed and straw, and the total amount of N derived from soil (Ndfs). 

Plants were air-dried, weighed for dry biomass, and threshed to separate the seeds and 

straw of field pea, lentil, and chickpea. Plant parts were ground with a Wiley Mill (Thomas 

Scientific, Swedesboro, NJ, USA), then further ground using a ball mill grinder to a fine talc 

consistency. Reference weeds were ground whole to the same consistency. All samples were 

encapsulated and analyzed for total N concentration and atom%15N content using a Costech 

Elemental Combustion system coupled to a Delta V Advantage Mass Spectrometer (Thermo 

Fisher Scientific Inc, Waltham, MA).  

 

3.4.9 Calculations 

Natural 15N abundance of seed and straw samples were calculated using: 

!"#$%&' = !"#$%!"&#$%&'(
'(()!"#$%!"&#$%&'(

  (Eq. 3.1) 
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!")#*+#,+ = (.+,,+-
'(()(.+,,+-   (Eq. 3.2) 

-'..	(‰) = 34 /0!$123
/0"!45!655 − 18 9	1000   (Eq. 3.3) 

where the standard is atmospheric N2 (0.36637 atom% 15N) (Unkovich et al., 2008). Percent Ndfa 

was calculated using: 

%.+<# = 	 7
!"&	)(*()(+,(	&'$+.	)7!"&	'(/0%(

7!"&)(*()(+,(	&'$+.)9
	9	100   (Eq. 3.4) 

where reference plant refers to the non-N2-fixing plant and the factor B refers to the -'.. value 

of an effectively nodulated legume grown in media free of N (Unkovich et al., 1994). For this 

study, the B values of field pea, lentil, and chickpea were averages from multiple experiments 

where the values were -0.66, -0.56, and -1.75, respectively (Unkovich et al., 2008). 

Amount of N fixed was calculated for seed and straw separately (Hardarson and Danso, 

1993) as: 

.<=9'+ = %&5:!	;	"#"!2&*121+/
'((    (Eq. 3.5) 

Nitrogen harvest index was calculated by dividing the amount of N in seed by the total 

amount of N in seed and straw. Total Ndfs was calculated by subtracting N acquired through BNF 

from total N in the plant (Knight, 2012). 

3.4.10 Statistical analysis 

Data were analyzed using SAS software (SAS Institute, Inc., version 9.4, Cary, NC). 

Outliers were identified using box plots and were excluded if any observation was more than two 

standard deviations from the mean. Data were analyzed as a completely randomized design and 

were subjected to a two-way analysis of variance (ANOVA) using the PROC GLIMMIX 

procedure with a significance level of 0.10. The GLIMMIX procedure accounts for normality and 
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variances in the data sets. The two factors in the ANOVA were site and stubble and were 

considered fixed. There were two sites in 2017 and seven sites in 2018. Stubble type had two 

levels, oilseed stubble and cereal stubble. The ANOVA also analyzed the site x stubble interaction. 

The RANDOM statement with a RESIDUAL effect using site as the error term was used to model 

residual heterogeneity. Site and stubble were considered the fixed effects. When an effect was 

significant, the LSMEANS statement was used to facilitate means comparisons. Nodulation 

assessment data were not statistically analyzed because true field replicates were not collected. 

Due to the amount of labour required and the high cost per sample, PLFA field replicate samples 

were combined and only one sample per field was analyzed, therefore no statistical analyses were 

performed on this data. 

 

3.5 Results 

3.5.1 Weather data 

Weather data were collected from Environment Canada weather stations nearest the eight 

locations for the 2017 (Table 3.3) and 2018 (Table 3.4) growing seasons from May to August 

(Environment Canada, 2011). Total precipitation in 2017 was 18% lower than average at Biggar 

and Wilkie as compared to the 30-year (1981-2010) historical averages (Table 3.3). Mean daily 

maximum temperatures in 2017 were similar to historical averages (Table 3.3).  
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Table 3.3. Weather data for the 2017 field sites during the growing season (May to August) as 
compared to historical (1981-2010) mean data. 

Site Month Precipitation HM† Temperature HM 
  -----------------mm--------------- ----------------°C---------------- 

BG‡ May 69.0 44.0 18.7 18.0 
 June 34.3 58.6 21.5 22.2 
 July 22.4 67.1 25.6 25.1 
 August 53.0 48.7 23.7 24.8 
 Sum/Mean§ 178.7 218.4 22.4 22.5 

WL May 69.0 36.3 18.7 17.7 
 June 34.3 61.8 21.5 21.7 
 July 22.4 72.1 25.6 23.7 
 August 53.0 45.7 23.7 23.6 
 Sum/Mean 178.7 215.9 22.4 21.7 

† HM = historical mean data (1981-2010) was collected from Environment Canada Meteorological 
Stations at Biggar and Scott, and current weather data for both locations was collected from the 
nearest station at Scott, SK (Environment Canada, 2011). 
‡ BG = Biggar, WL = Wilkie  
§ Precipitation data is cumulative from May to August; temperature is the mean monthly maximum 
temperature for the same months. 
 
 

In 2018, at locations across the province, weather data showed hotter and drier conditions. 

Generally, the average temperature for May through August was 2.3 °C higher than historical 

averages across locations except at Biggar, which was only 0.8 °C higher and Davidson which was 

2.7 °C higher. The most extreme precipitation differences from the historical averages was at Swift 

Current, where precipitation was 120 mm less than the 30-year historical average (Table 3.4) 

Precipitation was evenly distributed throughout the growing season at all locations except at Indian 

Head, where only 3.9 mm of precipitation accumulated in August (Table 3.4). 
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Table 3.4. Weather data for the 2018 field sites during the growing season (May to August) and historical (1981-2010) mean data at all 
field locations. 

Soil zone Site Nearest station Month Precipitation HM† Temperature HM 
    -----------------mm---------------- ----------------°C-------------- 
Brown CB‡ Elbow May 29.6 51.2 22.9 17.5 

   June 33.6 78.9 24.8 21.8 
   July 33.9 53.4 26.2 25.6 
   August 32.5 45.2 26.0 25.2 
   Sum/Mean 129.6 228.7 25.0 22.5 

Brown SC Swift Current May 14.9 48.5 21.7 17.5 
   June 20.2 72.8 24.0 21.6 
   July 32.0 52.6 26.6 25.3 
   August 28.0 41.5 26.4 25.2 
   Sum/Mean 95.1 215.4 24.7 22.4 

Dark Brown BG Scott May 29.6 44.0 21.5 18.0 
   June 29.6 58.6 23.2 22.2 
   July 48.2 67.1 24.6 25.1 
   August 23.3 48.7 23.8 24.8 
   Sum/Mean§ 130.7 218.4 23.3 22.5 
Dark Brown DV Elbow May 29.6 48.3 22.9 17.5 

   June 33.6 72.0 24.8 21.8 
   July 33.9 64.1 26.2 25.2 
   August 32.5 50.4 26.0 24.9 
   Sum/Mean 129.6 234.8 25.0 22.3 
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Table 3.4. continued Weather data for the 2018 field sites during the growing season (May to August) and historical (1981-2010) mean 
data at all field locations. 

Soil zone Site Nearest station Month Precipitation HM† Temperature HM 
    -----------mm--------- ----------°C--------- 
Black IH Indian Head May 23.7 51.7 23.0 17.9 

   June 90.0 77.4 24.0 22.2 
   July 30.4 63.8 25.4 25 
   August 3.9 51.2 27.0 24.7 
   Sum/Mean 148.0 244.1 24.0 21.8 

Black SP Yorkton May 14.0 51.3 22.8 17.3 
   June 117.3 80.1 23.6 21.7 
   July 58.3 78.2 25.0 24.3 
   August 31.5 62.2 24.7 23.9 
   Sum/Mean 221.1 271.8 24.0 21.8 

Black TH Yorkton May 14.0 51.3 22.8 17.3 
   June 117.3 80.1 23.6 21.7 
   July 58.3 78.2 25.0 24.3 
   August 31.5 62.2 24.7 23.9 
   Sum/Mean 221.1 271.8 24.0 21.8 

† HM = historical mean data (1981-2010) and 2018 data from Environment Canada Meteorological Stations located nearest the sites 
(Environment Canada, 2011). 
‡ CB = Central Butte, SC = Swift Current, BG = Biggar, DV = Davidson, IH = Indian Head, SP = Springside, and TH = Theodore  
§ Precipitation data is cumulative from May to August; temperature is the mean monthly maximum temperature for the same month. 
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3.5.2 Soil physical and chemical properties 

Soil pH and EC values from the 0- to 15-cm and 15- to 30-cm depths indicated that none 

of the sites were highly acidic or saline in either year (Table 3.5 and Table 3.6). In 2017, organic 

C and total N contents were higher at Wilkie than at Biggar (Table 3.5). Levels of nutrient content 

in each soil were classified as deficient, marginal, optimal, or excessive according to generalized 

critical limits for cereals and oilseeds (Table A.2.). There were no differences between stubble 

types at either site for ammonium or nitrate and levels were deficient through optimal. Soil test P 

was deficient in both stubbles and locations and ranged from 10 to 31 kg ha
-1

 in the 0- to 15-cm 

depth (Table 3.5). No patterns were observed in either stubble for potassium at Biggar or Wilkie 

and levels were optimal (Table 3.5). Sulfur was marginal in cereal stubble at Biggar (13 kg ha
-1

 in 

0- to 30-cm depth) and was optimal in oilseed stubble (35 kg ha
-1

 in 0- to 30-cm depth). At Wilkie, 

sulfur was excessive in both oilseed and cereal stubbles with levels of 86 and 1375 kg ha
-1

 in the 

0- to 30-cm depth, respectively (Table 3.5). The high sulfur value in the cereal stubble at Wilkie 

is consistent with high EC values. 

In 2018, organic C (OC) and total N (TN) were similar between oilseed and cereal stubbles 

at the Brown soil zone locations (Table 3.6). At Central Butte, OC contents were 1.32% in the 

oilseed stubble and 1.35%
 
 in the cereal stubble while TN content was 0.14% in both stubbles. At 

Swift Current, the OC content in oilseed stubbles averaged 1.66% and was 1.68% in the cereal 

stubbles in the 0- to 15-cm depths (Table 3.6). Total N at Swift Current in all stubbles was 0.17%  

in the 0- to 15-cm depths. In the Dark Brown soil zone, OC content was higher in both wheat 

stubbles than in the canola stubbles at Biggar and Davidson (Table 3.6). At Biggar in the 0- to 15-

cm depths the wheat 1 stubble had higher OC content than the canola 1 stubble, and the wheat 2 

stubble had a higher OC content than the canola 2 stubble (Table 3.6). Total N content in the same 
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depth in wheat 1 stubble was higher than canola 1, and wheat 2 higher than the canola 2 stubble at 

Biggar (Table 3.6). At Davidson, OC and TN contents were higher in the wheat stubble than the 

canola stubble (Table 3.6). No patterns in OC or TN were observed at Indian Head, Springside, or 

Theodore in the Black soil zone (Table 3.6).  

In 2018, there were no obvious differences between stubbles for inorganic N contents 

across all sites except at Springside, where ammonium content was 0.15 kg ha
-1

 and 0.18 kg ha
-1

 

higher and nitrate content was 25 kg ha
-1

 and 54 kg ha
-1

 higher in oat stubble than canola stubble  

in the 0- to 15- and 15- to 30-cm depths, respectively (Table 3.6). Soil test P content was 

approximately five times higher in the 0- to 15-cm depth and almost nine times higher in the 15- 

to 30-cm depth at Swift Current than at Central Butte, averaged across stubbles. At Biggar, no 

patterns were observed for phosphorus content in either stubble, while at Davidson, phosphorus 

content in wheat stubble was approximately 18 kg ha
-1

 higher in the 0- to 15-cm depth and 13 kg 

ha
-1

 higher in the 15- to 30-cm depth than in canola stubble (Table 3.6). Available P content at all 

locations and stubbles in the Black soil zone indicated deficiency. For potassium content, no 

patterns or differences between stubbles were observed at 2018 sites (Table 3.6). Sulfur contents 

were generally marginal to optimal with the exception of the wheat stubble in the 0- to 15-cm 

depth at Central Butte, which was undetectable (Table 3.6).   
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Table 3.5. Soil physical and chemical characteristics and plant available macronutrient concentrations sampled from oilseed and cereal 
stubble prior to seeding field pea at two locations in the Dark Brown soil zone in 2017. 

Soil Zone Site Stubble Depth Texture pH EC OC† TN NH4+ NO3- P K S 
      mS cm-1 ------ % ----- -----------------kg ha-1--------------- 
Dark Brown BG Canola 0-15 Sandy loam 6.1 0.16 1.78 0.18 0.5 15 19 725 17 
   15-30  6.2 0.16 1.59 0.16 0.6 22 12 622 18 
  Barley 0-15 Sandy loam 6.2 0.11 1.46 0.14 0.3 11 31 518 7 
   15-30  6.6 0.14 1.10 0.11 0.4 11 11 353 6 
Dark Brown WL Canola 0-15 Loam 6.4 0.24 3.09 0.29 0.7 18 13 434 29 
   15-30  7.0 0.44 2.45 0.22 0.6 25 5 323 57 
  Wheat 0-15 Silt loam 6.3 0.93 3.77 0.35 0.7 29 10 690 553 
   15-30  6.7 1.26 2.76 0.27 0.8 29 15 499 822 

† OC = organic C, TN = total N, BG = Biggar, WL = Wilkie 
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Table 3.6. Soil physical and chemical characteristics and plant available macronutrient concentrations sampled from oilseed and cereal 
stubbles prior to seeding pulse crops at seven locations in three soil zones of Saskatchewan in 2018. 

Soil Zone Site Stubble Depth Texture pH EC OC† TN NH4+ NO3- P K S 
   cm   mS cm-1 ------ % ----- ------------------kg ha-1--------------- 
Brown  CB Canola 0-15 Sandy loam 7.4 0.54 1.32 0.14 0.42 24 16 932 198 
   15-30  7.7 0.88 0.94 0.11 0.56 21 6 537 376 
  Wheat 0-15 Sandy loam 7.3 0.19 1.35 0.14 0.39 21 12 642 0 
   15-30  8.0 0.26 1.02 0.10 0.43 17 3 428 15 
Brown SC Mustard 1 0-15 Silt loam 7.3 0.16 1.64 0.17 0.51 31 57 400 6 
   15-30  7.3 0.20 1.62 0.16 0.51 37 41 505 8 
  Wheat 1 0-15 Silt loam 6.0 0.10 1.76 0.17 0.49 31 70 418 5 
   15-30  6.1 0.12 1.56 0.16 0.48 37 34 374 5 
  Mustard 2 0-15 Silt loam 6.1 0.11 1.67 0.17 0.50 28 79 400 7 
   15-30  6.2 0.12 1.53 0.15 0.40 36 38 361 9 
  Wheat 2 0-15 Loam 6.3 0.11 1.59 0.16 0.49 29 69 459 7 
   15-30  6.4 0.14 1.34 0.14 0.51 32 41 397 4 
Dark Brown  BG Canola 1 0-15 Silt loam 7.7 0.28 0.97 0.13 0.46 24 10 421 15 
   15-30  8.0 0.22 1.47 0.09 0.33 19 4 286 9 
  Wheat 1 0-15 Silt loam 7.6 0.36 1.39 0.21 0.52 44 74 665 15 
   15-30  7.9 0.29 1.30 0.12 0.46 41 31 558 13 
  Canola 2  0-15 Sandy loam 7.6 0.48 2.59 0.24 0.53 48 28 700 27 
   15-30  7.9 0.37 1.61 0.16 0.51 35 9 562 378 
  Wheat 2 0-15 Silt loam 7.8 0.21 3.24 0.30 0.63 44 21 688 24 
   15-30  7.7 0.37 2.29 0.21 0.53 36 13 447 23 
Dark Brown DV Canola 0-15 Loam 7.5 0.31 1.67 0.18 0.63 52 10 499 23 
   15-30  7.6 0.30 1.54 0.14 0.71 65 5 459 17 
  Wheat 0-15 Silt loam 7.7 0.27 2.52 0.23 0.85 49 28 641 15 
   15-30  7.7 0.29 2.04 0.20 0.67 52 18 504 19 
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Table 3.6. continued Soil physical and chemical characteristics and plant available macronutrient concentrations sampled from oilseed 
and cereal stubbles prior to seeding pulse crops at seven locations in three soil zones of Saskatchewan in 2018. 
Soil Zone Site Stubble Depth Texture pH EC OC TN NH4+ NO3- P K S 
      mS cm-1 ------ % ----- ------------------kg ha-1--------------- 
Black IH Canola 0-15 Sandy loam 7.6 0.35 2.43 0.22 1.01 37 15 505 47 
   15-30  7.6 0.36 1.35 0.14 0.93 30 4 332 36 
  Wheat 0-15 Sandy loam 8.0 0.31 2.65 0.21 0.79 37 14 515 20 
   15-30  8.0 0.40 1.68 0.14 0.67 33 4 290 74 
Black SP Canola 0-15 Sand 8.2 0.25 1.40 0.09 0.30 22 2 132 17 
   15-30  8.2 0.23 1.07 0.10 0.23 14 3 118 13 
  Oat 0-15 Sandy loam 7.5 0.48 2.90 0.09 0.48 47 4 268 111 
   15-30  7.7 0.46 2.21 0.16 0.38 68 2 318 138 
Black TH Canola 0-15 Sandy loam 7.7 1.16 5.24 0.44 0.88 32 8 1504 123 
   15-30  7.6 1.50 3.77 0.30 0.62 23 3 345 253 
  Oat 0-15 Sandy loam 7.9 0.47 4.23 0.34 0.60 32 15 233 88 
   15-30  7.9 0.45 3.61 0.27 0.55 28 6 282 88 

† CB = Central Butte, SC = Swift Current, BG = Biggar, DV = Davidson, IH = Indian Head, SP = Springside, and TH = Theodore 
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3.5.3 Soil biological properties 

Total microbial abundance measured by PLFA analysis was highest in the Black soil zone 

with an average of 106.9 nmol g-1 soil, followed by the Dark Brown soil zone with an average of 

79.5 nmol g-1 soil, and was lowest in the Brown soil zone averaging 50.0 nmol g-1 soil (Table 3.7). 

No observable differences between microbial functional groups were found at Central Butte or 

Swift Current (Table 3.7). In the Dark Brown soil zone all levels of functional group biomarkers 

and total microbial abundance were highest in the wheat-field pea rotation sequence at Biggar, 

however at Davidson, all functional group biomarkers except AMF were higher in the canola-lentil 

rotation sequence than in the wheat-lentil rotation sequence (Table 3.7). In the Black soil zone, 

there were no observable differences in functional group biomarker levels or total microbial 

abundance at Indian Head (Table 3.7). At Springside, AMF content (6 nmol g-1 soil) was highest 

out of all locations (Table 3.7). At Theodore, gram positive, gram negative, and actinobacteria 

biomarkers were higher in the canola-field pea rotation sequence (165 nmol g-1 soil)  and out of all 

locations, had the highest total microbial abundance (Table 3.7). 

An interaction between site and stubble affected MB-C (p=0.0062) and MB-N (p=0.0452) 

(Table 3.8). No significant differences between stubbles at each location occurred except at 

Theodore, where MB-C in the oilseed stubble was 235 µg g-1 soil higher than in cereal stubble. No 

significant differences for MB-N occurred between any stubbles at any site location. Generally, 

MB-C and MB-N were greater in oilseed stubbles than in cereal stubbles except at Central Butte, 

where MB-C in cereal stubble was higher, and at Biggar, where MB-C and MB-N were both 

greater in cereal stubble than in oilseed stubble (Table 3.8).  
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Table 3.7. Phospholipid fatty acid analysis (PLFA) biomarker content (nmol g-1 soil) sampled 

from pulse crops grown on oilseed or cereal stubble. Bulk soil surrounding roots (0- to 15-cm 

depth) was sampled when plants were at approximately 50% flowering in 2018. 

Soil Zone Site Rotation  

Sequence 

G +† G - ACT AMF FUN Total PLFA F:B 

   -------------------------nmol g-1 soil-----------------------  

Brown CB Cn-FP 12 14 6 2 1 53 0.08 

  W-FP 10 13 6 2 1 48 0.07 

Brown SC M-CP 10 15 6 2 1 49 0.05 

  W-CP 14 17 6 1 1 60 0.05 

  M-L 11 12 5 1 1 46 0.05 

  W-L 11 13 6 1 1 47 0.04 

Dark Brown BG Cn-FP 13 21 7 3 3 68 0.16 

  W-FP 22 29 11 4 2 96 0.07 

  Cn-L 20 24 7 3 2 88 0.09 

  W-L 19 24 10 3 2 86 0.07 

Dark Brown DV Cn-L 17 26 10 3 4 87 0.14 

  W-L 11 16 5 3 1 52 0.09 

Black IH Cn-FP 16 20 7 3 2 70 0.07 

  W-FP 16 22 8 3 2 72 0.07 

Black SP Cn-FP 25 40 11 6 2 121 0.06 

  O-FP 27 35 11 5 3 121 0.08 

Black TH Cn-FP 36 52 18 1 3 165 0.05 

  O-FP 19 31 8 4 2 92 0.09 
† G+ = gram positive bacteria, G- = gram negative bacteria, ACT = actinobacteria, AMF = 

arbuscular mycorrhizal fungi, FUN = fungi, F:B = fungi to bacteria ratio, CB = Central Butte, SC 

= Swift Current, BG = Biggar, DV = Davidson, IH = Indian Head, SP = Springside, and TH = 

Theodore, FP = field pea, CP = chickpea, L = lentil, Cn = canola, M = mustard, O = oat, W = 

wheat 
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Table 3.8. Microbial biomass C (MB-C) and N (MB-N) in soil sampled from a pulse crop grown 

on oilseed (canola or mustard) or cereal (wheat or oat) stubbles measured by chloroform 

fumigation extraction. Soils were sampled in 2018 at mid- to late-flowering of the pulse crop. 

Soil zone Site Stubble MB-C MB-N 

 Main effects  mg C kg-1 soil mg N kg-1 soil 

Brown CB†  370bc‡ 25de 

Brown SC  154d 17e 

Dark Brown BG  432b 40bc 

Dark Brown DV  631a 68a 

Black SP  291c 35cd 

Black TH  425b 57ab 

  OIL 415a 47a 

  CER 352b 34b 

 Interactions    

Brown CB OIL 356bc 29c 

  CER 384bc 22c 

Brown SC OIL 180d 19c 

  CER 127d 15c 

Dark Brown BG OIL 394bc 37c 

  CER 470bc 42bc 

Dark Brown DV OIL 724a 88a 

  CER 539abc 48abc 

Black SP OIL 297cd 39bc 

  CER 285cd 32c 

Black TH OIL 542ab 67ab 

  CER 307bcd 46abc 

----------------------------------------------------Probability------------------------------------------------ 
 Site  <0.0001 <0.0001 

 Stubble   0.0080 0.0008 

 Site*Stubble  0.0062 0.0452 
†CB= Central Butte, SC = Swift Current, BG = Biggar, DV = Davidson, SP = Springside, and TH 

= Theodore  
‡Values are means (n=4). Means followed by the same letter are not significantly different (p≥0.05) 

 

3.5.4 Nodulation assessments 

Effective nodulation was observed in both rotation sequences at Biggar in 2017 as indicated 

by high total nodulation assessment scores (scores between 11 and 13); however, at Wilkie, 

nodulation was rated less effective (scores between 7 and 10) in the wheat-field pea rotation 

sequence and poor nodulation was observed in the canola-field pea rotation sequence (scores 

between 1 and 6) (Table 3.9). Upon entering the canola-field pea field at Wilkie, plants looked 
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stunted and yellowish-green. When plants were excavated, discoloured roots indicated a root rot 

disease was present, and an infestation of Aphanomyces euteiches was suspected. Soil was sent for 

testing and the outcome was positive for the disease. 

Less effective nodulation scores due to colour and abundance of nodules, and nodule 

position were observed at Swift Current in the mustard-chickpea and mustard-lentil sequences 

(Table 3.9). Effective nodulation scores were observed at Biggar and Davidson in all rotation 

sequences where the crop was healthy, had actively fixing nodules in good number, on either the 

root crown or on lateral roots of the plant (Table 3.9). Poor nodulation scores were assigned to the 

plants from the canola-field pea rotation sequence at Indian Head, where all scoring categories 

were low. Plants were green and relatively small and did not show any symptoms of disease. 

Nodules were few in number and were white or green in colour, and nodules were located on 

lateral roots only (Table 3.9). Less effective nodulation was also found at Indian Head in the wheat-

field pea sequence and at Springside in both rotation sequences (Table 3.9). These slightly lower 

scores were not due to poor plant growth or presence of disease. The colour (leghemoglobin 

activity) and abundance of nodules and nodule position scores were low.  
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Table 3.9. Nodulation assessment scores of nodules for field pea, lentil, or chickpea grown on 

oilseed or cereal stubbles, sampled at approximately 50% flowering at 2017 and 2018 field sites. 

Soil Zone Site Rotation Sequence Assessment criteria of nodules 

   PG† CA NP Total 

------------------------------------------------------2017------------------------------------------------------ 

Dark Brown BG Cn-FP‡ 5.00 5.00 2.50 12.50 

  B-FP 5.00 5.00 2.25 12.25 

Dark Brown WL Cn-FP 3.00¶ 0.25 0.75 4.00 

  W-FP 5.00 1.50 1.50 8.00 

-----------------------------------------------------2018------------------------------------------------------- 

Brown CB Cn-FP 5.00 5.00 3.00 13.00 

  W-FP 5.00 5.00 3.00 13.00 

Brown SC M-CP 5.00 3.00 2.25 10.25 

  W-CP 5.00 4.00 2.25 11.25 

  M-L 5.00 3.50 1.00 9.50 

  W-L 5.00 5.00 1.50 11.50 

Dark Brown BG Cn-FP 5.00 5.00 3.00 13.00 

  W-FP 5.00 5.00 3.00 13.00 

  Cn-L 5.00 3.00 3.00 11.00 

  W-L 5.00 5.00 3.00 13.00 

Dark Brown DV Cn-L 5.00 5.00 3.00 13.00 

  W-L 5.00 5.00 3.00 13.00 

Black IH Cn-FP 3.50 1.25 0.75 5.50 

  W-FP 5.00 1.50 1.00 7.50 

Black SP Cn-FP 5.00 1.00 1.00 7.00 

  O-FP 5.00 1.00 1.00 7.00 

Black TH Cn-FP 5.00 5.00 3.00 13.00 

  O-FP 5.00 5.00 1.00 11.00 
† PG = Plant growth and vigour, CA = Colour and abundance, NP = nodule position, CB= Central 

Butte, SC = Swift Current, BG = Biggar, DV = Davidson, WL = Wilkie, IH = Indian Head, SP = 

Springside, and TH = Theodore, FP = field pea, CP = chickpea, L = lentil, Cn = canola, M = 

mustard, B = barley, O = oat, W = wheat,  
‡Field pea on canola stubble at Wilkie in 2017 had a severe Aphanomyces euteiches infestation 

which affected root growth of the crop. 

 

3.5.5 Estimates of nitrogen derived from atmosphere and nitrogen acquisition 

In 2017, an interaction between site and stubble affected %Ndfa in seed (p=0.0323) (Table 

3.10). There were no significant differences between stubbles at Biggar and Wilkie, but between 

locations, %Ndfa in field pea seed grown on oilseed stubble was higher at Biggar than at Wilkie 

(Table 3.10). Percent Ndfa in straw was affected by site only (p<0.0001); %Ndfa was lower at 
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Wilkie (46%) than at Biggar (77%) (Table 3.10). Nitrogen harvest index was affected by an 

interaction between site and stubble (p=0.0122) where the cereal rotation sequence at Wilkie had 

the lowest NHI (0.77) (Table 3.10). Aboveground N was significantly higher at Wilkie in field pea 

grown on cereal stubble (p=0.0007) (Table 3.10). Nitrogen fixed was not different between field 

pea grown on oilseed or cereal stubbles at Biggar, but at Wilkie, was higher in cereal stubble (93 

kg ha-1) than in oilseed stubble (27 kg ha-1) (p<0.0001). Nitrogen derived from soil was affected 

by an interaction between site and stubble but no differences between stubbles were found 

(p=0.0407) (Table 3.10). Field pea grown on cereal stubble at Wilkie derived more N from soil, 

which corresponds to the high ABG-N, but not the high amount of fixed N (Table 3.10). Seed and 

straw yields were not affected by site, stubble or an interaction between the two factors; however, 

the higher seed and straw yields in field pea grown on cereal stubble at Wilkie could account for 

the higher ABG-N and partitioning of N (Table 3.10). 

 In 2018, an interaction between site and stubble affected %Ndfa in seed (p= 0.0006) and 

straw (p= 0.0175) (Table 3.11). Percent Ndfa in seed and straw was higher in cereal stubble at all 

locations, except Davidson and Theodore, where %Ndfa was higher in oilseed stubble (Table 

3.11). Between locations there was no difference between stubbles, except for %Ndfa in seed at 

Central Butte, which was higher than at Swift Current (Table 3.11). Nitrogen harvest index was 

affected by an interaction between site and stubble; however, the values were generally similar.  

Aboveground N was affected by site (p<0.0001) and by stubble (p=0.0396) independently 

(Table 3.11). Aboveground N was higher in cereal stubble (126 kg ha-1) than in oilseed stubble 

(115 kg ha-1) (Table 3.11). The amount of N fixed was affected by site (p<0.0001) (Table 3.11). 

Nitrogen derived from soil was affected by an interaction between site and stubble (p=0.0302) 
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(Table 3.11). Seed yield was affected by site independently (p<0.0001) and straw yield was 

affected by an interaction between site and stubble (p=0.0172) (Table 3.11).  

In the Brown soil zone, ABG-N was almost twice as high at Central Butte (127 kg ha-1) 

than at Swift Current (62 kg ha-1) and fixed N at Central Butte (102 kg ha-1)  was three-fold higher 

than the amount at Swift Current (30 kg ha-1). Nitrogen derived from soil was not different between 

stubbles or locations at Central Butte and Swift Current (Table 3.11). Seed yield was higher at 

Central Butte (3206 kg ha-1) than at Swift Current (1508 kg ha-1) (Table 3.11). Straw yields were 

higher in field pea grown on cereal stubble at Central Butte (3483 kg ha-1) and yields in both 

stubble at Swift Current (1383 kg ha-1 on oilseed stubble and 1496 kg ha-1 on cereal stubble) (Table 

3.11). In the Dark Brown soil zone, ABG-N was similar between Biggar and Davidson (Table 

3.11). Fixed N was higher at Biggar (106 kg ha-1) than at Davidson (79 kg ha-1), and Ndfs was 

higher in pulse crops grown on cereal stubble at Davidson (93 kg ha-1) than at Biggar (37 kg ha-1), 

which could account for the higher ABG-N occurring at Davidson (164 kg ha-1) than at Biggar 

(149 kg ha-1). No significant differences between seed yield and straw yield were found between 

stubbles at Biggar and Davidson. In the Black soil zone, ABG-N at Springside (160 kg ha-1) was 

higher than at Theodore (114 kg ha-1) and was twice the amount found at Indian Head (69 kg ha-

1) (Table 3.11). Fixed N at each location followed a similar trend to ABG-N where Springside had 

the highest amount (103 kg ha-1), followed by Theodore (67 kg ha-1) and the lowest at Indian Head 

(45 kg ha-1). Nitrogen derived from soil was not different between stubbles at Springside, 

Theodore, or Indian Head (Table 3.11). Seed yield at Springside was 4021 kg ha-1, at Theodore 

was 2565 kg ha-1 and at Indian Head was 1556 kg ha-1 which is consistent with the trend of ABG-

N and fixed N. Straw yields were similar between stubbles at Springside and Theodore but were 

different between Springside and Indian Head (Table 3.11). 
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Table 3.10. Nitrogen acquisition and yields of field pea grown on oilseed (canola) or cereal (wheat or barley) stubbles at two sites in 
the Dark Brown soil zone in 2017. 

Site Stubble %Ndfa† seed %Ndfa straw NHI ABG-N Fixed N Ndfs Seed yield Straw yield 
Main effects  -----------------%-----------------  --------------------------------kg ha-1------------------------------- 
BG  59a‡ 77a 0.80a 105b 66a 38b 2200a 2869a 
WL  38b 46b 0.79a 147a 60a 86a 3297a 3529a 
 OIL 47a 57a 0.80a 99b 49b 50b 2197a 2629a 
 CER 50a 65a 0.78b 152a 77a 75a 3300a 3768a 
Interactions          
BG OIL 62a 77a 0.80a 108b 71b 38b 2254a 2968a 
 CER 56ab 76a 0.79a 101b 62b 39b 2147a 2769a 
WL OIL 32c§ 37b 0.81a 90b 27c 63ab 2140a 2290a 
 CER 44bc 55b 0.77b 203a 93a 110a 4455a 4768a 
-------------------------------------------------------------------------Probability------------------------------------------------------------------------ 
Site  <0.0001 <0.0001 0.1092 0.0078 0.2368 0.0006 0.1592 0.2755 
Stubble  0.4251 0.1297 0.0004 0.0019 <0.0001 0.0322 0.1583 0.1666 
Site*Stubble  0.0323 0.0765 0.0122 0.0007 <0.0001 0.0407 0.1447 0.1426 

†%Ndfa = percent nitrogen derived from atmosphere, NHI = nitrogen harvest index, ABG-N = aboveground nitrogen, Ndfs = N derived 
from soil, BG = Biggar, WL = Wilkie, OIL = oilseed stubble, CER = cereal stubble 
‡Values are means (n=4). Means followed by the same letter are not significantly different (P>0.05). 
§A severe Aphanomyces euteiches infestation was reported at Wilkie and affected root growth and nodulation of the crop, therefore 
affecting %Ndfa in seed and straw and subsequent calculations of NHI, Total N, Fixed N, and Ndfs. 
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Table 3.11. Nitrogen acquisition and yields of pulse crops (field pea, lentil or chickpea) grown on oilseed (canola or mustard) or cereal 
(wheat or oat) stubbles at seven sites in three soil zones in 2018. 

Soil zone Site Stubble %Ndfa  
seed 

%Ndfa 
straw 

NHI ABG-N Fixed N Ndfs Seed  
yield  

Straw 
yield 

 Main effects ----------------%--------------  -----------------------------kg ha-1------------------------- 
Brown CB  79a‡ 90a 0.84a 127b 102a 25c 3206b 3134bc 
Brown SC  47b 60b 0.83a 62c 30c 32c 1508c 1439d 
Dark Brown BG  66ab 86a 0.83a 149ab 106a 45bc 3250b 3565ab 
Dark Brown DV  46b 59b 0.79b 164a 79ab 85a 3388ab 3261abc 
Black IH  66ab 71ab 0.81ab 69c 45bc 24c 1556c 1847cd 
Black SP  61b 90a 0.83a 160a 103a 57ab 4021a 3692a 
Black TH  52b 82a 0.81ab 114b 67ab 47bc 2565b 2864bc 
  OIL 60a 74a 0.82a 115b 72a 43a 2713a 2709a 
  CER 60a 80a 0.82a 126a 80a 46a 2856a 2948a 
 Interactions         
Brown CB OIL 78a 89a 0.83a 115ab 91ab 24b 2983abc 2785bc 
  CER 80a 92a 0.84a 138a 113ab 25b 3430ab 3483ab 
Brown SC OIL 44b 48c 0.83a 61b 26d 35b 1518d 1383c 
  CER 50b 72abc 0.82a 63b 35cd 28b 1498d 1496c 
Dark Brown BG OIL 59ab 83ab 0.83a 138a 89ab 53ab 3146abc 3151abc 
  CER 74ab 88a 0.83a 160a 123a 37b 3354abc 3979a 
Dark Brown DV OIL 51ab 67abc 0.81ab 164a 88abc 76ab 3405abc 3290abc 
  CER 40b 51bc 0.78b 164a 70abcd 93a 3370abc 3233abc 

 

 

 

 

 



 50 

Table 3.11. continued Nitrogen acquisition and yields of pulse crops (field pea, lentil or chickpea) grown on oilseed (canola or mustard) 
or cereal (wheat or oat) stubbles at seven sites in three soil zones in 2018. 

Soil zone Site Stubble %Ndfa  
seed 

%Ndfa 
straw 

NHI ABG-N Fixed N Ndfs Seed  
yield  

Straw 
yield 

   ----------------%--------------  -----------------------------kg ha-1------------------------- 
Black IH OIL 57ab 66abc 0.79ab 60b 34cd 26b 1332d 1675c 
  CER 75ab 76abc 0.82ab 78b 57bcd 21b 1780cd 2019c 
Black SP OIL 56ab 82ab 0.83a 162a 98ab 64ab 3970ab 3935a 
  CER 65ab 99a 0.83a 158a 108ab 49b 4073a 3450ab 
Black TH OIL 71ab 85a 0.82ab 104ab 78abcd 26b 2640abcd 2745bc 
  CER 34b 79ab 0.79ab 124ab 56bcd 68ab 2490bcd 2983abc 
--------------------------------------------------------------------------------Probability-------------------------------------------------------------------- 
Site   <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 
Stubble    0.9555 0.1151 0.4443 0.0396 0.1325 0.5526 0.3479 0.1555 
Site*Stubble   0.0006 0.0175 0.0434 0.5386 0.2496 0.0302 0.6304 0.0172 
†%Ndfa = percent nitrogen derived from atmosphere, NHI = nitrogen harvest index, ABG-N = aboveground nitrogen, Ndfs = N derived 
from soil, CB = Central Butte, SC = Swift Current, BG = Biggar, DV = Davidson, IH = Indian Head, SP = Springside, and TH = 
Theodore, OIL = oilseed stubble, CER = cereal stubble 
‡Values are means (n=4). Means followed by the same letter are not significantly different (p >0.05).  
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3.6 Discussion 

3.6.1 Factors affecting biological nitrogen fixation 

Multiple factors that affect crop growth and in turn, BNF exist and by characterizing each site 

location, such factors can be identified. Soil properties that are important for crop growth, rhizobial 

growth and survival, nodulation, and BNF were addressed. True field replicates were not collected 

for certain soil properties, and if replicates were created in the lab, pseudo-replication would have 

been introduced. Although statistical analyses were not performed, the soil properties 

characterized can be subjectively analyzed in relation to BNF.  

Growing season conditions were near normal in 2017 but in 2018 were hotter and drier than 

historical averages. Precipitation during May, June and July is particularly important for crop yield 

(Campbell et al., 1988) and the warmer than average temperatures and below average precipitation 

may have created drought conditions, which could contribute to lower yields. There is a strong 

linear relationship that exists between water use and crop yield for chickpea, field pea, and lentil 

(Miller et al., 2002; Angadi et al., 2008). Pulse crop growth may be greatly depressed both by 

intermittent drought, which could occur at any time during the growing season if rainfall is 

inadequate, or by terminal drought, which occurs when soil moisture is depleted enough to cause 

crop senescence (Saxena et al., 1993; Wery et al., 1994). Any factor which slows or disrupts 

phloem flow within the plant can potentially have a large influence on nodule physiology. The rate 

of phloem flow to nodules may be decreased early on during development of a water deficit, 

therefore decreasing carbon input and water flow to a nodule (Serraj et al., 1999). At Indian Head, 

only 3.9 mm of precipitation occurred in August compared to the historical mean of 51.2 mm. 

Nodulation number and BNF rates generally peak during early-to mid-flowering stage (Voisin et 

al., 2003) and BNF slows with the onset of pod filling (Salon et al., 2001). Yields at Indian Head 
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reflect the low August precipitation, but it is likely that BNF was not affected as %Ndfa at Indian 

Head is comparable to other locations. By August, the crop at Indian Head had finished flowering, 

which is when peak nodulation would occur, and was entering pod-filling. At Swift Current, 

precipitation throughout the growing season was lower than the historical average and yields and 

BNF were among the lowest reported values. In another study at Swift Current, BNF and yields 

were higher in a wetter year than in a drier year (Hossain et al., 2016), similar to the low yields 

and BNF observed at Swift Current in the current study.  

Pre-seeding soil fertility across locations was variable. Pulse crops may respond to small 

amounts of starter fertilizer N applied at the time of seeding, which may alleviate early N 

deficiencies experienced by the plant after seed N has been fully utilized but before BNF occurs 

(Sprent and Minchin, 1983). In the current study all soils, with the exception of the barley stubble 

at Biggar in 2017, had over 37 kg N ha-1 in the 0- to 30-cm depths rendering a starter N application 

unnecessary. In a study involving fertilizer application to field pea, rates less than 40 kg N ha-1 had 

no significant effects on nodulation or BNF and higher rates of applied N replaced fixed N which 

lead to the conclusion that starter N was not necessary (Clayton et al., 2004). Optimal and even 

excessive levels of inorganic N across locations according to the generalized critical limits (Table 

A.2.) may have either contributed more to yield or may have hindered BNF.  

It is important to note that the generalized critical limits of macronutrients used for broad 

comparison are for cereal and oilseed crops, not pulse crops. In two out of three study years, 

Hossain et al. (2016) found a significant negative correlation between BNF of chickpea, lentil, and 

pea, soil N uptake, and soil mineral N. In the same study, soil N in spring measured 42 kg ha-1 in 

one year and 9 kg ha-1 in the next, with additional starter fertilizer N applied at a rate of 9.5 kg N 

ha-1 (Hossain et al., 2016). It is possible that reduced BNF occurred at locations in the current study 
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because of optimal to excessive levels of inorganic N.  Furthermore, inorganic N measurements 

taken before seeding do not account for N released through mineralization of OM throughout the 

growing season (Knight et al., 2010). In 2018, phosphorus content across locations was deficient 

except at Swift Current in all stubbles, and the wheat 1 stubble at Biggar, both had optimal levels. 

There were no observable differences between stubbles at each site location that had deficient 

levels. In a laboratory study using P-deficient soil from the Brown soil zone, yellow pea emergence 

was not hindered by seed-row placed P when rates were below 20 kg P2O5 ha-1. The P was added 

in the form of  monoammonium phosphate (Qian and Schoenau, 2010).  

Although seed-row placed or side-banded P fertilizer have been recommended for small 

grains production on the prairies (Qian and Schoenau, 2010), chickpea and lentil yields were 

enhanced  but BNF was not affected (Bremer et al., 1988; Walley et al., 2005). It is important to 

note that all field management and nutrient input decisions at sites were under producers’ or AAFC 

control. Potassium levels were optimal at all locations except Springside, where levels were 

deficient in oilseed stubble and marginal in cereal stubble and at Theodore, where levels were 

excessive in oilseed stubble and marginal in cereal stubble.  

Sulfur levels across locations were variable and ranged from severely deficient to marginal 

to adequate. Pulse crop growth may be affected by S through its effect on BNF by Rhizobium 

bacteria (Scherer and Lange, 1996). Under S deficiency, BNF may be affected for several reasons: 

root nodule number and size is reduced, nitrogenase activity is lower, ATP and glucose supply to 

nodules may be reduced, and ferredoxin supply to nodules is hindered (Scherer, 2008). In a study 

using sites across Germany, S fertilization did not appear necessary when pea crops yielded up to 

4100 kg ha-1 as crops appeared to use existing soil S (Pötzsch et al., 2019); however, S fertilization 

for legumes should be recommended if S delivery from soil OM is not sufficient to cover S demand  
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(Scherer, 2008). In a study examining the effects of S fertilization on both yield and BNF, seed 

yield of pea was increased markedly by the addition of S up to an optimal level of 25 mg S kg soil-

1 (Zhao et al., 1999). In the same study, nodules were visibly fewer and smaller in S-deficient 

plants and the concentration of S in roots of S-sufficient pea plants was 2.6 to 4.4-fold higher than 

in shoots, suggesting the high requirement of S for the functions of nodules (Zhao et al., 1999).  

Microbial biomass is defined as the part of the OM in soil that constitutes living 

microorganisms (Joergensen, 1995) and when measured can be used to estimate the size of a pool 

for the delivery of nutrients (Smith and Paul, 1990). Microbial biomass can also provide an indirect 

indication of how the size of a microbial community is affected by agronomic practices, i.e. 

rotation sequence. Microbial biomass C and N rates appeared to be affected more by site than by 

stubble even though there was an interaction between site and stubble. Microbial biomass C was 

higher in soil from pulse crops grown on canola stubble than cereal stubble by 235 mg C kg-1 soil 

at Theodore, 185 mg C kg-1 soil at Davidson, and 14 mg C kg-1 soil at Springside. The quantity 

and quality of the labile C pool is a key driver of soil microbial community activity and community 

structure (Breulmann et al., 2012). The higher organic C content at Theodore, Davidson, and 

Springside may partially explain MB-C levels. At all other sites MB-C was higher in soil from 

pulse crops grown on cereal stubble.  

Microbial biomass N was only slightly higher levels in soil from pulse crops grown on oilseed 

stubbles than cereal stubbles at all locations except Biggar. A similar trend was seen in total PLFA 

biomarker levels at Theodore and Davidson, where biomarkers in soil from pulse crops grown on 

oilseed stubble were 73 nmol g-1 soil and 35 nmol g-1 soil higher than soil from pulse crops grown 

on cereal stubble at each location, respectively. Total PLFA biomarkers did not follow the same 

pattern at Springside and there was no difference in total PLFA biomarkers in either stubble. The 
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availability of C and water strongly governs the activities of specific microbial populations and 

functions (Bossio and Scow, 1995). However, since organic C levels in oilseed stubble were higher 

at Theodore, but not at Springside or Davidson, and precipitation was greater at Springside and 

Theodore, these circumstances may only partially explain the conditions for MB-C to be higher in 

oilseed stubble at these locations.  Previous crop residue will affect soil microbial composition as 

the rate of decay and the amount of nutrient released to soil depends on crop species (Gan et al., 

2011b); in this study’s case, the amount of nutrient released by oilseed or cereal stubble. 

Rhizodeposition by pulse crop roots also may be partially responsible for differences in soil 

microbial community as soil microbes utilize rhizo-deposits as a C source (Bais et al., 2006). 

There was also a large difference between MB-C at Central Butte and Swift Current where 

overall MB-C was two-fold higher at Central Butte than at Swift Current. This may be due to 

differences in applications of fungicides where only one application was made at Central Butte (J. 

Schoenau, personal communication, 2018) and four applications were made at Swift Current (L. 

Poppy, personal communication, 2020). Soils with lower clay and organic C content such as at 

Central Butte and Swift Current have a lower adsorption capacity for pesticides and a higher 

potential for bioavailability to soil microbes (Ahtiainen et al., 2003). Furthermore, high disease 

pressure  such as ascochyta blight, can lead to abundant fungicide use (Gan et al., 2006). Pesticide 

use may adversely affect agriculturally important microorganisms such as N2-fixing bacteria, and 

reduce the performance of agroecosystems overall (Gaind et al., 2007). A study at Swift Current 

on the effects of foliar fungicide on non-target organisms found that disease control treatments 

negatively impacted chickpea nodule size but not function, whether or not the host plant was 

affected by ascochyta blight (Yang et al., 2012).  

3.6.2 Biological nitrogen fixation and nitrogen acquisition 
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In 2017, %Ndfa of field pea grown on oilseed stubble was higher than cereal stubble at 

Biggar but not at Wilkie. Aboveground N and the amount of N fixed were also higher in pulse 

crops grown on oilseed stubble at Biggar. Aboveground N, amount of N fixed, and Ndfs were 

higher at Wilkie in field pea grown on cereal stubble. These higher amounts reflect almost double 

the seed and straw yields more so than BNF and Wilkie appears to be more reliant on soil N in 

cereal stubble. It is important to note that due to an Aphanomyces euteiches infestation, the field 

pea grown on oilseed stubble at Wilkie was chlorotic aboveground and belowground, lacked a 

healthy root structure that affected plant growth. Aphanomyces euteiches is a water mould that was 

first detected in Saskatchewan in 2012 and causes chlorosis of the plant and poor root development 

in field pea and other pulse crops (Banniza et al., 2013). Aphanomyces euteiches can cause severe 

root damage to the host crop at any time during its growth (Wu et al., 2018). The difference 

between BNF of field pea grown on oilseed and cereal stubbles may have been less had the crop 

at Wilkie not been infected by this disease.  

Biological nitrogen fixation (%Ndfa) of pulse crops was lower when grown on oilseed 

stubble compared to cereal stubble at all locations except Davidson and Theodore in 2018. 

Differences in microbial populations may be responsible for the differences in %Ndfa at these two 

locations (Knight, 2012). The patterns that persist in MB-C and total PLFA biomarkers may 

explain the differences in BNF at Davidson and Theodore. Differences in BNF in seed and straw 

were most pronounced between Central Butte and Swift Current, where %Ndfa of pulse crop seed 

and straw was higher in both stubbles at Central Butte. The pesticide applications discussed 

previously may have impeded nodulation and therefore affected BNF at Swift Current. The results 

from the current study are congruent with a controlled environment study using soil from Swift 

Current where canola grown immediately before chickpea, lentil, or field pea resulted in lower 
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amounts of N fixed compared to wheat (Knight, 2015). In a companion field experiment, lentil 

and chickpea in rotation with mustard had lower BNF, less biologically fixed N contributing to 

seed N, and were among the lowest producing rotations (Knight, 2015).  

Global average %Ndfa values for pea, chickpea, and lentil are 65 %, 58 %, and 65 %, 

respectively (Peoples et al., 2009). In a meta-analysis of studies conducted in the Northern Great 

Plains, means values for %Ndfa of pea was 55 %, for lentil was 60 %, and for desi and kabuli 

chickpea was 55 % (Walley et al., 2007). Similarly, %Ndfa for pea, chickpea and lentil was 56, 

50, and 60, respectively, in a study conducted in semi-arid Australia (Jensen et al., 2010). The 

values reported in the current study for seed are comparable to the literature, but for straw are 

above the average and may have been overestimated. Differences in seasonal N accumulation 

patterns of pulse crops and reference crop under field conditions and differences in root 

distribution can lead to erroneous estimates of BNF (van Kessel and Hartley, 2000).  The majority 

of the fields in the 2018 study were carefully managed to suppress weeds, which meant some 

weeds collected as the reference in the %Ndfa calculation were not a comparable age to the pulse 

crop and may not have accumulated the same amount of N. 

Aboveground N was affected by site and stubble independently. Between sites ABG-N was 

highest at Davidson, followed by Springside, then Biggar, Central Butte, Theodore, and lastly 

Indian Head and Swift Current. Aboveground N averaged across sites was higher in pulse crops 

grown on cereal stubble than on oilseed stubble. The underlying trend where measurements of 

ABG-N were higher in pulse crops grown on oilseed stubble follows that of MB-C and total PLFA 

biomarkers for Davidson and Springside, but not for Theodore. For all other sites, the trend in 

ABG-N more closely follows the pattern in seed and straw yield than it does BNF; as yield 

decreases, so does ABG-N. Aboveground N may be underestimated in the current study as some 
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plant material may have been lost to threshing processes or to unrecovered leaves that dropped 

throughout the growing season (Liu et al., 2019). Typical values of N fixed from BNF of pulse 

crops range from 10 to 40 kg N ha-1 for chickpea (Kyei-Boahen et al., 2002; Walley et al., 2005), 

50 to 75 kg N ha-1 for lentil (Bremer et al., 1988; Cowell et al., 1989; Matus et al., 1997) and 40 

to 86 kg N ha-1 for field pea (Beckie and Brandt, 1997; Matus et al., 1997; Soon and Arshad, 2004).  

Estimates of fixed N for Swift Current, Davidson, Indian Head, and Theodore are 

comparable to literature averages; however, the estimates for Central Butte, Biggar, and Springside 

are higher than average. All three of these sites are situated in different soil zones, therefore 

disproving the notion that BNF and N acquisition parameters may be predicted by soil zone. Fixed 

N was higher in pulse crops grown on cereal stubbles at all locations except Davidson and 

Theodore, which were higher in pulse crops grown on oilseed stubble. Nitrogen derived from soil 

was affected by an interaction between site and stubble but was variable between sites and stubbles. 

The amount of N derived from soil was higher in oilseed stubble at Swift Current, Biggar, Indian 

Head, and Springside. In the case of Swift Current, the amount of N derived from soil was more 

than the amount of N fixed, suggesting the crops at Swift Current relied more on N from soil than 

%Ndfa. When inorganic N levels are sufficient or exceed crop N requirements, little BNF occurs, 

irrespective of other factors (van Kessel and Hartley, 2000). Swift Current did have high nitrate-

N content (~60 kg N ha-1) in the 0- to 30-cm depth in the cereal stubble; higher than that at Central 

Butte. 

3.6.3 Conclusion 

In summary, BNF of pulse crops was lower when grown on oilseed stubble than cereal 

stubble except at Biggar in 2017 and Davidson and Theodore in 2018. Soil properties that may 

have affected BNF were identified and include: varying levels of inorganic N content and P-
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deficiency at all sites except Swift Current and in one cereal stubble field at Biggar. A persistent 

pattern was observed in MB-C and PLFA results where levels of MB-C and total PLFA biomarkers 

were higher in soil from pulse crops grown on oilseed stubbles at Davidson and Theodore. Hot, 

dry conditions in 2018 may have affected plant growth and BNF. Unforeseen disease pressures 

such as Aphanomyces euteiches at Wilkie in 2017 and ascochyta blight pressure at Swift Current 

may also have affected BNF. 
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4 ESTIMATING BIOLOGICAL NITROGEN FIXATION AND N-MINERALIZATION 

POTENTIAL UNDER CONTROLLED ENVIRONMENT CONDITIONS 

 

4.1 Preface 

This chapter has two purposes, the first is to confirm field research findings from the 

previous chapter, by conducting a controlled environment study with yellow pea grown on oilseed 

and cereal stubbles in soils from the Brown and Black soil zones, measuring the same parameters 

of BNF. The second purpose is to examine the capacity for the same soils to provide ammonium 

and nitrate at pre-seeding and at the time of peak BNF of yellow pea. The results from this chapter 

should provide more insight into the effects of site and stubble on BNF and if ammonium and 

nitrate potentially provided from each stubble may affect BNF. 

 

4.2 Abstract 

Intensive cropping systems have relied on synthetic N fertilizer in the past to satisfy N 

requirements of cereal and oilseed crops. Including one or more pulse crops in rotation has become 

a popular option because of their unique ability to biologically fix N in symbiosis with rhizobia 

bacteria.  Mixed results of rotation effects on a pulse crops’ ability to fix N were reported from 

studies at Scott, SK, Swift Current SK, and from a greenhouse experiment using soils from Central 

Butte, SK. Inorganic N may affect pulse crop BNF and some inorganic N may be supplied through 

microbial decomposition of previous crop residues. A controlled environment experiment was 

conducted using soils from the Brown and Black soil zones and two different stubbles, canola and 

wheat. The experiment had multiple objectives: the first was to estimate BNF of field pea in the 
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controlled environment, the second was to determine if soil microbial communities differed under 

each stubble and soil type, and the third, was to examine the N-mineralization and nitrification 

potential of each stubble in each soil before and after field pea was grown over 48 h. It was 

hypothesized that BNF and the microbial community would be negatively affected by oilseed 

stubble and that stubbles would release different rates of ammonium and nitrate into soil. Soil and 

stubble did not affect BNF, however soil affected N acquisition parameters and yield, with higher 

levels in pulse crops grown in Black soil. Soil and stubble affected microbial functional group 

biomarkers independently, which were higher in soil from pulse crops grown on oilseed stubble. 

In general, gross mineralization rates increased between 3.5 h and 24 h, then decreased between 

24 h and 48 h in the pre-field pea assay and increased between 24 h and 48 h in the post-field pea 

assay. Gross nitrification rates remained negative in both assays but showed an upward trend in 

both assays over the 48 h. Stubble did not affect gross mineralization or nitrification rates in either 

assay. The effects on BNF, microbial functional group biomarkers, and N-mineralization potential 

appear to be driven more by soil than by stubble.  

 

4.3 Introduction 

Pulse crops may improve N availability to subsequent crops through the decomposition of 

N-rich crop residues or due to an N-sparing effect where soil N is conserved for the next crop 

(Herridge et al., 1995). Increasing the N input from pulse crops to subsequent crops depends on 

whether the plant is obtaining most of its N from BNF or from soil N (van Kessel and Hartley, 

2000). The amount of BNF of a legume is not only determined by legume genotype and rhizobia, 

but also depends on the interaction between plant-available soil N and legume growth (Unkovich 
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and Pate, 2000). Previous pulse crop research has primarily examined the benefit of BNF to a 

succeeding crop, not how a previous crop affects BNF.  

There is potential for a previous crop’s residue to contribute inorganic N to a pulse crop. 

Determining if  BNF is hindered due to inhibitory effects of inorganic N from mineralization of 

previous crop residue was an objective identified by Knight (2012). Studies have demonstrated a 

negative correlation between BNF in pulse crops and available soil N (Salvagiotti et al., 2008; 

Schipanski et al., 2010). Alternatively, very low concentrations of inorganic N can increase BNF 

(Gan et al., 2004). Thus, soil mineral N and BNF may be complementary in meeting the N 

requirements of a legume crop (Hossain et al., 2016). Previous crop residue will affect soil 

microbial composition as the rate of decay and the amount of nutrient released to soil may depend 

on crop species (Gan et al., 2011b). Gross rate mineralization and subsequent nitrification 

measurements provide estimates of the total release of mineral N from a given pool (Bedard-

Haughn et al., 2013). Determining whether or not the inhibition of BNF is due to the inhibitory 

effects of inorganic N from mineralization of a previous year’s residue requires further 

investigation (Knight, 2012).  

The overall objective of this study was to examine the effect of rotation on BNF. The 

objectives of this study were to confirm field study estimates of BNF under controlled conditions, 

to examine how microbial communities may differ under oilseed and cereal stubbles, and to 

examine the capacity for each microbial community to provide ammonium and nitrate from 

preceding crop residues to a pulse crop. To address these objectives, a controlled environment 

experiment, and two isotope pool dilution assays were performed.  
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4.4 Materials and Methods  

4.4.1 Soil collection, preparation and stubble growth 

In summer of 2018, approximately 100 kg of soil was collected at a depth of 15 cm from 

cereal stubble at Central Butte, SK (Brown soil zone) and Theodore, SK (Black soil zone). 

Subsamples were used to determine gravimetric moisture content and water holding capacity. Soils 

were air-dried and coarsely sieved to remove any rocks and to homogenize soil in preparation for 

planting. Two kg of soil was placed into 4 L plastic pots with 24 pots containing soil from the 

Brown soil zone, and 24 containing soil from the Black soil zone. Pots were watered to 80% field 

capacity based on weight for one week and were left to stabilize before planting. For each soil, 

canola was grown in 12 of the pots with a target plant density of two plants per pot, and wheat was 

grown in the other 12 pots, with a target plant density of five plants per pot. Prior to planting, 

fertilizer was applied at rates of 195.2 mg kg-1 soil of urea and 20 mg kg-1 soil of monoammonium 

phosphate for wheat and canola, with 20 mg kg-1 soil of potassium sulfate applied to canola only. 

Plants were watered to approximately 70% field capacity, every one to two days.  

Canola and wheat residues were collected when plants were near physiological maturity. 

Cut off stubble was coarsely cut, divided evenly, and spread on top of their respective pots. Pots 

were then covered and stored outside in cold temperatures (-10 °C) for approximately 5 weeks, 

then frozen at -20 °C for 2 weeks to simulate a winter freezing period. To regulate temperature 

and microbial activity, pots were thawed and placed in a growth chamber 2 weeks prior to 

beginning the experiments. Pots were watered to 50% field capacity for one week after thawing, 

and field pea was planted the following week.  
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4.4.2 Estimating biological nitrogen fixation under controlled conditions 

4.4.2.1 Experimental setup 

A growth chamber experiment was completed to determine the quantity of BNF of CDC 

‘Meadow’ yellow peas using the 15N enriched isotope dilution technique (Hardarson and Danso, 

1993). A two-way factorial on a completely randomized design was used. For each soil, 12 field 

pea seeds (cv. CDC ‘Meadow’) per pot were planted into canola and wheat stubble in replicate (n 

= 4). A total of 16 pots were used, four each of canola stubble and wheat stubble from each soil. 

Prior to seeding the field pea, peat-based inoculant containing Rhizobium leguminosarum bv. 

viceae (Nodulator XL Peat, BASF, Mississauga, ON) was applied by first wetting seed with 

deionized water, then coating the seed, according to manufacturer’s recommendation with an 

equivalent of 1 x109 rhizobia per gram. Twelve wheat seeds (unknown cultivar) per pot were 

seeded at the same time as field pea in duplicate to serve as the non-N2-fixing reference plants. A 

total of eight pots of wheat were used. Plants were thinned to 6 plants per pot after germination. 

All plants were enriched 30 days after planting with 10.1 atom % excess 15N-labeled urea dissolved 

in deionized water. Fertilizer solution was applied at a rate of 5.6 kg ha-1. Soil was held at ~70% 

field capacity by weight and corresponding plants were grown for 10 weeks in a growth chamber 

with a day/night temperature of 24 °C / 21 °C and day/night length of 16 h / 8 h. 

4.4.2.2  Plant and soil sampling and analysis  

Plants were harvested 70 days after planting, when field pea was beginning podding stage 

and heads were emerging from the boot in wheat. Plants were air-dried, weighed for above-ground 

biomass, and ground whole. Above-ground plant samples were analyzed for atom%15N content 

using a Costech Elemental Combustion system coupled to a Delta V Advantage Mass 

Spectrometer (Isomass Scientific Inc., Calgary, AB).  
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After completion of plant growth, and at the same time as plants were harvested, pots were 

dismantled and soil was sampled from around field pea roots, using sterile technique, for PLFA 

analysis. Collected soils were sieved to 2 mm and stored in a -80°C freezer until PLFA extraction. 

Phospholipid fatty acid analysis procedure followed that of section 3.4.7 in Chapter 3.   

4.4.2.3 Calculations and statistical analysis  

Yield was calculated from total aboveground biomass per pot area. Nitrogen yield was 

calculated by multiplying % N by total yield. Percent Ndfa was calculated as follows: 

%"#$% = '1 − !"#$%!"&'()'**#$%$&'
!"#$%!"&'()'**&(&)#$%$&'

* +	100    (Eq. 4.1) 

where atom % 15N excess refers to the 15N content of the sample minus the background of 0.36637 

found in N2 (Hardarson and Danso, 1993). Amount of N fixed was calculated for the whole plant 

(Hardarson and Danso, 1993) as: 

"$.+/# = %&+,!	(	"#"!.&#$%$&'
/00       (Eq. 4.2) 

Total N acquired from the soil was calculated by subtracting N acquired through BNF from total 

N in the plant (Knight, 2012). 

Statistical analysis was completed using SAS 9.4 (SAS Institute, Cary, NC, USA). Prior to 

analysis, outliers were identified using box plots and were excluded from the data sets if an 

observation was more than two standard deviations from the mean. Data were analyzed as a 

completely randomized design (CRD) using a two-way ANOVA using the PROC GLIMMIX 

procedure with a significance level of 0.05. The GLIMMIX procedure accounts for normality and 

variances in the data. The two factors in the ANOVA were soil type and stubble and were 

considered fixed. There were two soil types, from the Brown soil zone and Black soil zone, and 

two stubbles, canola and wheat. The RANDOM statement with a RESIDUAL effect was used to 
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model residual heterogeneity using soil type as the error term. When an effect was significant, the 

LSMEANS statement was used to facilitate means comparisons.  

4.4.3 Determining gross mineralization and nitrification rates using isotope pool dilution 

4.4.3.1 Experimental setup 

To determine N mineralization and nitrification rates in canola and wheat stubble under 

Brown and Black soils, the isotope pool dilution (IPD) technique was used. Both soils were 

assayed for N mineralization and nitrification twice; after canola and wheat were grown (PRE-

NOD) and after field pea was grown on the canola and wheat residue soils (POST-NOD). Three 

pots from each soil and stubble, without field pea were used in the first assay (PRE-NOD). 

Triplicate pots of each soil and stubble were assayed PRE-NOD and POST-NOD. After harvesting 

the canola and wheat and simulating winter freezing conditions, the field pea was seeded into pots 

containing the different residues. Field pea was grown to the podding stage and was harvested. 

This soil was used in the POST-NOD IPD assay. Over the course of 48 h, assays were stopped at 

0 h, 0.25 h, 3.5 h, 24 h, and 48 h. The following method was used for both assays.  

4.4.3.2 Isotope pool dilution assay method (Braun et al., 2018) 

Soils were adjusted to 50% water holding capacity. Pots were dismantled prior to assays, 

soil was homogenized by hand and for POST-NOD pots, field pea roots were removed. A 

subsample of soil was used to determine initial ammonium and nitrate levels using a KCl extraction 

(Carter and Gregorich, 2008), analyzed on a Technicon Autoanalyzer (SEAL Analytical, Mequon, 

WI). The IPD protocol involves extracting and measuring ammonium and nitrate five times over 

48 h. For each sample time, triplicate 10 g samples of soil were placed into 60 dram vials then 

covered with perforated parafilm. A total of 60 vials were prepared for each assay: time period 

(five), soil zone treatment (two), and stubble treatment (two), replicates (three).  
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Ninety-eight atom % 15N-labeled urea dissolved in deionized water was applied to soil in 

multiple drops at a rate of 2 µg 15N g-1 soil (Di et al., 2000). The rate of 2 µg 15N g-1 soil ensured 

the product pool was increased as little as possible, so that disruption of existing soil N dynamics 

were avoided but also ensuring sufficient enrichment of the ammonium pool for measurement 

(Davidson et al., 1991, Di et al., 2000). Samples were shaken by hand to ensure a homogenous 

mixture. Soils were incubated at 20 °C in the dark for the given time points. At each time point 

triplicate samples from each soil/stubble treatment were extracted with 100 mL 2 M KCl solution 

(Carter and Gregorich, 2008). Approximately half of the KCl extract was analyzed on a Technicon 

Autoanalyzer (SEAL Analytical, Mequon, WI) to determine ammonium and nitrate 

concentrations. The remainder of the KCl soil extract was diffused onto acidified diffusion disks 

using a method adapted from Stark and Hart (1996) in a two-step process that first diffuses NH4+, 

then diffuses NO3-. Forty mL of the KCl extract was quantitatively transferred into a 60 mL 

Nalgene bottle and 0.4 g magnesium oxide (MgO) was added. A polytetrafluoroethylene (PTFE) 

encased acidified diffusion disk was added and the bottle was immediately capped and shaken. 

Disks were made by placing a 7 mm hole-punched piece of Whatman 1 filter paper (Sigma-

Aldrich, St. Louis, MO), pre-rinsed with 2 M KCl solution, then rinsed with deionized water, then 

dried, onto a strip of PTFE tape. The disk was acidified with 10 µL 2.5 M potassium bisulfate 

(KHSO4). Another strip of PTFE tape was placed over top and the disk was enclosed by sealing 

the tape together, forming a circle. Bottles were checked daily to ensure the diffusion disk was not 

sticking to the side of the bottle and were shaken by hand daily for 8 d. On the eighth day, diffusion 

disks were taken apart, rinsed in 0.5 M HCl, then in deionized water. Diffusion disks were dried 

at 60 °C for approximately 10 min. After removing diffusion disks for NH4+ diffusion, bottles were 

left uncapped for 4 d, swirling each day, to eliminate any residual NH4+. With the same KCl 
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extracted sample, the process was repeated with new disks and with 0.4 g of Devarda’s alloy in 

place of MgO over a period of 6 d. Standards for NH4+ and NO3- were prepared separately for each 

diffusion step at concentrations of 0.5 ppm, 1 ppm, 2 ppm, 3 ppm, 5 ppm, 7.5 ppm and 10 ppm, 

respectively. Dried diffusion disks were encapsulated and analyzed using an Isotope Ratio Mass 

Spectrometry to quantify 15N-labeled ammonium and nitrate contents.  

4.4.3.3 Calculations and statistical analysis 

Gross rates of mineralization and nitrification were calculated according to Hart et al., 

(1994) as follows: 

0 = 1&2*+3,41&2*
+3-

" ∗ .#5(789,/789-)
.#5<1&2*+3,/1&2*

+3-=
     (Eq. 4.3) 

27 = 0 − 1&2*+3-41&2*
+3,

"        (Eq. 4.4) 

where m is the gross mineralization rate, cA is the NH4+ consumption rate, t is time, APE0 is the 

atom % excess of NH4+ pool at time 0 and APEt is the atom % excess of NH4+ pool at time-t (where 

t = 0.25 h, 3.5 h, 24, h, and 48 h), [NH4+]0 is the total NH4+ concentration at time 0, and [NH4+]t is 

the total NH4+ concentration at time-t. Background enrichments are assumed to be 0.3663 atom % 

15N. To calculate the gross nitrification and consumption rates the same equations were used, 

substituting NO3- concentrations and atom % 15N enrichments, and where “m” becomes “n”, and 

cA becomes cN. 

Data were statistically analyzed using SAS software (SAS Institute, Inc., version 9.4, Cary, 

NC). Before analysis, outliers were identified using boxplots and were eliminated from the data 

set if an observation was more than two standard deviations from the mean. One replicate was 

identified as an outlier but was not removed because all three replicates are required for ANOVA. 

Data were analyzed as a completely randomized design and were subjected to a three-way 
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ANOVA using the PROC GLIMMIX procedure with a significance level of 0.05. The GLIMMIX 

procedure accounts for normality and variances. Soil type, stubble, and time were considered fixed 

effects. Measurements for each time point were grouped together. The RANDOM statement with 

a RESIDUAL effect was used to model residual heterogeneity using soil as the error term. When 

an effect was significant, the LSMEANS statement was used to facilitate means comparisons.  

 

4.5 Results 

4.5.1 Estimating biological nitrogen fixation under controlled conditions 

Soil, stubble, or an interaction between the two factors did not affect %Ndfa in the growth 

chamber experiment (Table 4.1). Aboveground N, fixed N, and Ndfs were affected by soil (p<0.05) 

(Table 4.1). Aboveground N of field pea was higher in Black soil (33 g pot-1) than in Brown soil 

(19 g pot-1) (p=0.0033) (Table 4.1). The amount of N fixed was higher in Black soil (28 g pot-1) 

than in Brown soil (16 g pot-1) (Table 4.1). Nitrogen derived from soil was also higher in the Black 

soil (6 g pot-1) than in Brown soil (4 g pot-1). Biomass of each pot was affected by soil (p=0.0001) 

and stubble (p=0.0200) (Table 4.1). Biomass in Black soil was 17 g pot-1 and in Brown soil was 

12 g pot-1. Biomass of field pea grown on cereal stubble was 16 g pot-1 and on oilseed stubble was 

14 g pot-1 (Table 4.1).  
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Table 4.0.1. Nitrogen acquisition of CDC ‘Meadow’ yellow field pea grown on oilseed or cereal 
stubbles in soil from the Brown and Black soil zones under controlled environment conditions. 

Soil Zone Stubble %Ndfa ABG-N† Fixed N Ndfs Biomass 
Main effects  % ----------------------------g pot-1---------------------------- 
Brown  81a‡ 19b 16b 4b 12b 
Black  83a 33a 28a 6a 17a 
 OIL 81a 27a 22a 5a 14b 
 CER 83a 26a 22a 4a 16a 
Interactions       
Brown OIL 80a 20a 16a 4a 11c 
Brown CER 82a 19a 16a 3a 14bc 
Black OIL 82a 34a 28a 6a 16ab 
Black CER 85a 32a 27a 5a 18a 
-------------------------------------------------------Probability--------------------------------------------- 
Soil   0.0617 0.0033 0.0026 0.0187 0.0001 
Stubble   0.0973 0.6979 0.8606 0.1752 0.0200 
Soil*Stubble  0.8241 0.8860 0.9093 0.7798 0.8928 

† ABG-N = aboveground nitrogen, Ndfs = nitrogen derived from soil, %Ndfa = percentage of N 
derived from atmosphere, OIL = oilseed stubble, CER = cereal stubble 
‡ Values are means (n = 4). Means followed by the same letter are not significantly different. 
Bolded values indicate significance at p = 0.05. 
 

4.5.2 Soil microbial community 

Soil affected gram positive, gram negative, actinobacteria, and AMF functional group 

abundance and the total amount of biomarkers present (p<0.0001); all levels of PLFAs were higher 

in the Black soil (Table 4.2). The ratio of fungi to bacteria was also affected by soil (p=0.0002) 

but was higher in the Brown soil (Table 4.2).  The largest difference was observed in total PLFA 

biomarkers where the Black soil had 48 nmol g-1 soil more than the Brown soil.  

Stubble type affected gram positive, gram negative, actinobacteria, and other fungal 

biomarker abundance (p<0.05) as well as the total amount of biomarkers (p=0.0077) (Table 4.2). 

Oilseed stubble had slightly higher abundance of PLFAs in each affected functional group (Table 

4.2). The largest difference between the two stubbles was in total PLFA biomarkers with oilseed 

stubble having 13 nmol g-1 soil more than cereal stubble.  
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Table 4.0.2. PLFA functional group biomarker content from bulk soil of CDC ‘Meadow’ yellow 
field pea roots, grown in soil from the Brown and Black soil zones in controlled environment 
conditions, sampled at podding stage. 

Soil Stubble G+† G- ACT AMF FUN Total  F:B 
Main effects -------------------------------nmol g-1 soil------------------------------  
Brown‡  14b‡ 22b 8b 3b 3a 74b 0.11a 
Black  24a 39a 13a 5a 2a 122a 0.07b 
 OIL 20a 33a 11a 4a 3a 104a 0.10a 
 CER 18b 29b 10b 4a 2b 91b 0.09a 
Interactions        
Brown OIL 15b 24b 8b 3b 3a 79b 0.12a 
Brown CER 13c 20b 7c 3b 2b 69b 0.11ab 
Black OIL 26a 41a 14a 5a 3ab 130a 0.08bc 
Black CER 22a 37a 13a 5a 2b 114a 0.06c 
--------------------------------------------------Probability-------------------------------------------------- 
Soil  <0.0001 <0.0001 <0.0001 <0.0001 0.2718 <0.0001 0.0002 
Stubble  0.0088 0.0142 0.0069 0.4783 0.0041 0.0077 0.1957 
Soil*Stubble 0.6960 0.7470 0.5363 0.3287 0.3789 0.4979 0.4626 

† G+ = gram positive bacteria, G- = gram negative bacteria, ACT = actinobacteria, AMF = 
arbuscular mycorrhizal fungi, ACT = actinobacteria, FUN = fungi, F:B = fungi to bacteria ratio 
(unitless), OIL = oilseed stubble, CER = cereal stubble 
‡ Values are means (n = 4). Means with the same letters in a column are not significantly different. 
Bolded values indicate significance at p = 0.05. 
 

4.5.3 Gross mineralization and nitrification rates  

In the PRE-NOD assay, time affected gross mineralization and nitrification rates 

(p<0.0001) (Table 4.3).  Ammonium was immobilized at the 0.25 h and 3.5 h time points and was 

mineralized at a rate of 0.12 mg NH4+ kg-1 soil h-1 at the 24 h time point and a rate of 0.06 mg 

NH4+ kg-1 soil h-1 at the 48 h time point, suggesting that the gross mineralization rate peaked at the 

24 h time point (Fig 4.1). In the gross nitrification rates, immobilization or denitrification occurred 

at all time points, as indicated by negative mean values, but increased significantly from 3.5 h to 

24 and 48 h (Fig 4.1). 

In the POST-NOD assay an interaction between soil and time affected both gross 

mineralization and nitrification rates (p<0.0001) (Table 4.3). At 0.25 h, less ammonium was 

produced in the Brown (0.09 mg NH4+ kg-1 soil h-1) soil than in the Black (0.14 mg NH4+ kg-1 soil 
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h-1) (Fig. 4.2). Mineralization rates went up by half in the Brown soil (0.18 mg NH4+ kg-1 soil h-1) 

and by one third in the Black soil (0.21 mg NH4+ kg-1 soil h-1) at 48 h. Similar to the PRE-NOD 

assay’s gross nitrification rates, negative values indicate immobilization or denitrification of 

nitrate occurred more in soil from the Black soil zone than the Brown (Fig. 4.2) at 0.25 h but was 

not different at the 3.5 or 24 h and 48 h times. Both assays were not affected by stubble. 

 

Table 4.3. Results of ANOVA for isotope pool dilution assay gross mineralization and nitrification 
rates in oilseed and cereal stubble soils, where no field pea was grown (PRE-NOD) and after 
nodulation of CDC ‘Meadow’ yellow field pea occurred (POST-NOD), measured at times 0.25 h, 
3.5 h, 24 h, and 48 h. 

Effect df† Gross Mineralization df Gross Nitrification 
-------------------------------------------Probability (PRE-NOD Assay)---------------------------------- 
Soil (SOIL)  1 0.0814 1 0.4969 
Stubble (STU) 1 0.7581 1 0.5639 
Time (T) 3 <0.0001‡ 3 <0.0001 
SOIL*STU 1 0.3505 1 0.5639 
SOIL*T 3 0.3501 3 0.8745 
STU*T 3 0.7606 3 0.8716 
SOIL*STU*T 3 0.3758 3 0.8507 
-------------------------------------------Probability (POST-NOD Assay)-------------------------------- 
Soil (SOIL) 1 <0.0001 1 <0.0001 
Stubble (STU) 1 0.1814 1 0.8884 
Time (T) 3 <0.0001 3 <0.0001 
SOIL*STU 1 0.2270 1 0.0552 
SOIL*T 3 <0.0001 3 <0.0001 
STU*T 3 0.2480 3 1.0000 
SOIL*STU*T 3 0.3518 3 0.0437 

†df = numerator degrees of freedom 
‡Bolded values denote significant difference (p = 0.05) 
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Fig. 4.1 Effect of soil type (Brown or Black) and time (0.25 h, 3.5 h, 24 h, and 48 h) on gross mineralization (top) and nitrification 
(bottom) rates before field pea (A and C) and after field pea (B and D) was grown. Treatment bars with the same letters above or below 
are not significantly different (p<0.05). 
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4.6 Discussion 

4.6.1 Biological nitrogen fixation in controlled conditions 

The purpose of estimating BNF in a controlled environment was to gain more insight into 

the potential effect of oilseed or cereal stubble on BNF. Variability in %Ndfa is expected under 

field conditions and it is well recognized that BNF is sensitive to numerous environmental and 

edaphic factors (Walley et al., 2007). By providing the same growing condition for the field pea 

in Black and Brown soil, the environmental effect on BNF may be reduced. In the current study, 

no effect of soil, stubble, or an interaction between the two on BNF was found. Estimates of %Ndfa 

of field pea in grain were between 55 and 66% (Walley et al., 2007). The current study’s estimates 

of %Ndfa are for the whole plant, excluding roots, harvested at the beginning of podding, which 

may be partially responsible for values that are higher than estimates in the literature. The ample 

light and water provided, and favourable temperature in the controlled environment is likely to be 

the cause of higher %Ndfa estimates. Soil type affected ABG-N, N fixed, and Ndfs independently. 

Even though BNF was not directly affected by soil or stubble, it appears that N acquisition may 

be affected more by soil than by stubble. Field pea biomass was affected by soil and stubble 

independently and was higher in the Black soil and in field pea grown on cereal stubble. The 

current study’s results are not congruent with results from a greenhouse study that used soil from 

Central Butte, where pulse crops following wheat had higher amounts of total N, amount of N 

fixed, and Ndfs than following canola (Chen, 2016). The soil cores used in the controlled 

environment of the previous study were intact, and therefore management history of the soil was 

retained; however, soil in each core was inherently heterogeneous; inorganic N may have varied 

between cores due to previous crops, and biomass between plants in the same cores varied (Chen, 

2016). Soils from the current study were collected from the 0- to 15-cm depth and were 
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homogenized to reduce variability in preparation for planting canola and wheat for stubbles before 

growing field pea. The soil cores from the previous study and volume of soil from the current study 

were approximately the same size; N uptake patterns should theoretically be the same because 

plants are exploiting the same volume of soil in each study (Unkovich et al., 2008).  

4.6.2 Soil microbiological effects 

Phospholipid fatty acid analysis is a method commonly used to study microbial community 

structure and abundance and was used to characterize microbial communities in this study. This 

method is robust due to its relative ease of extraction, cost effectiveness and sensitive and 

reproducible results (Frostegård et al., 2011). Microbial biodiversity of a rotation sequence may 

make a soil more flexible in responding to environmental and/or biotic fluctuations and differences 

in BNF may be related to differences in microbial populations among the different rotations 

(Knight, 2012). Soil and stubble each affected soil microbial functional group biomarkers 

independently. Field pea grown on oilseed stubbles in both soils and in black soil had higher levels 

of functional group biomarkers. Gram positive, gram negative, actinobacteria, and fungi 

biomarkers were higher in field pea grown on oilseed stubble than in cereal stubble. These 

functional group biomarkers may not have an impeding effect on BNF of field pea, as the 

difference in BNF between the two stubbles was very little. Enzyme activities and microbial 

biomass, as indicated by PLFA biomarkers were positively related to field pea biomass production, 

with the exception of gram negative biomarkers, which had a positive relationship with plant 

micronutrient content and was inversely related to root abundance (Nayyar et al., 2009). Gram 

negative biomarkers were highest in both stubbles and soils.  

4.6.3 Gross mineralization and nitrification rates 
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Gross processes of mineralization, nitrification, and immobilization may occur 

simultaneously in the soil and their relative magnitudes will determine if there is a net release of 

N into the soil (Recous et al., 1999; Murphy et al., 2003). Estimates of gross N fluxes may help in 

predicting N availability in the soil, in particular when these measures of inorganic N production 

are repeated throughout the growing season, providing a better idea of when maximum 

mineralization occurs (Bedard-Haughn et al., 2013). It is useful to measure gross mineralization 

and nitrification at the PRE-NOD and POST-NOD stages to understand if stubble has an effect on 

the supply of inorganic N to pulse crops pre-seeding, and at the approximate time of peak 

nodulation. A higher soil C:N ratio from greater inputs of crop residues with higher C:N ratios 

causes greater immobilization of N (Powlson and Barraclough, 1993).  

Stubble type did not affect gross mineralization or nitrification rates in either the PRE-

NOD or POST-NOD assays. Time affected the PRE-NOD assay gross mineralization and 

nitrification rates and an interaction between soil and time affected the POST-NOD assay. Gross 

mineralization rates in both soils and both stubbles peaked at the 24 h mark in the PRE-NOD assay. 

In the POST-NOD assay, gross mineralization increased from 3.5 h to 24 h, with an upward trend 

into the 48 h mark. Mineralization rates in the post-field pea assay between 24 h and 48 h doubled 

in the Brown soil and increased by one third in the Black soil. Gross nitrification rates remained 

negative throughout the assays, but there appears to be a positive upward trend in the Black soil in 

the POST-NOD assay. Gross processes of mineralization, nitrification and immobilization occur 

simultaneously in soil and their relative magnitudes will determine whether there is a net release 

of N into the soil (Recous et al., 1999; Murphy et al., 2003). In both assays, a release of ammonium 

occurred; however, in the POST-NOD assay, more ammonium was released at 24 h and 48 h than 

in the PRE-NOD assay at 24 h. The POST-NOD assay may have started with more inorganic N in 
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soil due to labile root-derived organic N compounds that were mineralized (Janzen, 1990) or 

inorganic N that was released directly from roots (Brophy and Hiechel, 1989). Inorganic N 

comprised 4.1 %, 12.2 % and 13 % of total N rhizodeposition in soil cropped with canola, N-

fertilized pea and non-fertilized pea, respectively (Arcand et al., 2013). Furthermore, soil microbial 

community may be influenced by rhizodeposition of pulse crop roots because soil microbes utilize 

rhizo-deposits as a C source (Bais et al., 2006). 

The assumptions that must be met during an isotope pool dilution study are: 

microorganisms do not discriminate between 15N and 14N, rates of processes measured remain 

constant over the incubation period, and 15N assimilated during the incubation period is not re-

mineralized (Kirkham and Bartholomew, 1954). Negative nitrification values from a previous 

isotope pool dilution study concluded that they most likely represented a violation of one or more 

assumptions of the isotope pool dilution method: the violation of immobilization and re-

mineralization assumption, where the added 15N is re-mineralized within the 24 h period (Bedard-

Haughn et al., 2013). Regardless of violations of experimental assumptions, the isotope pool 

dilution method remains the most accessible means for determining gross mineralization and 

nitrification rates (Booth et al., 2005). 

4.6.4 Conclusion 

This study provided estimates of BNF under controlled environment conditions. Biological 

nitrogen fixation was not affected by soil or stubble type. Soil type affected N acquisition 

parameters and yield; ABG- N, fixed N, Ndfs, and biomass were higher in Black soil than Brown 

soil. Biomass was also affected by stubble and was higher when grown on cereal stubble than on 

oilseed stubble. Soil and stubble affected microbial functional group biomarkers independently. 

Higher levels of functional group biomarkers were found in soil from field pea grown on oilseed 
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stubble as well as from that grown in both stubbles in black soil. Stubble did not affect gross 

mineralization or nitrification rates in either the PRE-NOD assay or the POST-NOD assay. Soil 

and timing of the assay (PRE or POST) affected gross mineralization and nitrification rates and 

patterns. In the POST-NOD assay ammonium production between 24 h and 48 h doubled in the 

Brown soil and increased by one third in the Black soil.  
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5 SYNTHESIS AND CONCLUSIONS 

5.1 Overview 

As N is the most limiting factor for crop production on the prairies, synthetic N fertilizer 

production and use has risen, and continuous cropping of non-legume annual crops has become 

dependent on it. However, rotations that include pulse crops offer an alternative to synthetic N use 

in traditional cereal and oilseed-based rotations because of their unique ability to symbiotically fix 

N2 with the aid of rhizobia bacteria. Pulse crops may also supply N-rich residues to subsequent 

crops depending on their BNF capability, potentially reducing fertilizer inputs (Gan et al., 2011a) 

and decreasing the carbon footprint of the agricultural system (Lemke et al., 2007; Gan et al., 

2011c). 

Prior research has primarily focused on the N benefit a pulse crop can confer to a 

succeeding crop, not how a preceding crop may affect BNF of a pulse crop. Previous studies 

presented conflicting results on the effect of oilseed and cereal stubble on BNF: pulse crop BNF 

decreased when grown on mustard stubble at Swift Current (Knight, 2015) and also when grown 

on canola stubble in soils from Central Butte, SK  (Chen, 2016), but increased when field pea was 

grown in rotations with canola at Scott, SK (Knight, 2012).  

The research in this MSc thesis examines the effect of oilseed or cereal stubble on BNF of 

pulse crops and related soil properties in multiple soil zones in Saskatchewan. The results provide 

field and controlled environment estimates of pulse crop BNF when grown after oilseed and cereal 

stubbles. Soil properties that may have affected BNF were characterized and were subjectively or 

statistically related to BNF estimates.  
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5.2 Summary of findings 

Biological nitrogen fixation was negatively affected when grown after an oilseed at all 

locations except at Biggar, in 2017 and at Davidson and Theodore in 2018. However, BNF was 

not affected by soil or stubble under controlled environment conditions. Growing season 

conditions were hotter and drier in 2018 and results from a previous study examining BNF by 

pulse crops at Swift Current highlight the importance of environmental factors on BNF and yield, 

particularly the negative effect of low rainfall (Hossain et al., 2016). The experiment from Chapter 

4 with controlled environment factors may provide further evidence of the influence of weather on 

BNF across the Brown, Dark Brown and Black soil zones of Saskatchewan.  

A suggestion was made that the rotation sequence effect on BNF may be related to OM 

levels in the different soil zones and that OM may buffer  the microbial populations in soil, making 

them more resilient to abiotic changes (Knight, 2012). Chen (2016) speculated that higher OM 

may buffer adverse effects of canola residue’s volatile fatty acids and phenolic compounds, that 

may inhibit seedling growth of a subsequent crop (Wanniarachchi and Voroney, 1997). The canola 

microbiome is significantly different from other crop microbiomes (Lay et al., 2018) and different 

plant species often select for different root-associated microorganisms (Hallmann et al., 1997). 

Canola may also reduce microorganism populations such as rhizobia or AMF because these 

microorganisms do not colonize canola roots, and populations may therefore decrease (Lay et al., 

2018). However, higher BNF in pulse crops grown on oilseed stubble occurred in two different 

soil zones. In addition, effects of stubble on pulse crop BNF was not consistent across the three 

soil zones included in the field study. Biological nitrogen fixation in pulse crops grown on oilseed 

stubble was lower than on wheat stubble in the Brown soil zone at both sites, and it could be 
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recommended that producers in this area of the province should avoid growing pulse crops on 

oilseed stubble; however, more site years in this soil zone are necessary to make a firm conclusion.  

The higher MB-C in soil from pulse crops grown on oilseed stubble at Theodore, Davidson, 

and Springside was surprising but was mirrored in the controlled environment experiment where 

higher amounts of PLFA biomarkers were found in soil from the Black soil zone and in soil from 

pulse crops grown on oilseed stubble. Long-term management factors may partially explain the 

MB-C and total functional group biomarkers in the two studies. In continuously cropped, diverse 

rotation systems, microbial communities are bolstered by a rich spectrum of resources (Drinkwater 

and Snapp, 2007b).  Continuous cropping may serve as an equalizer for long-term development of 

microbial community structure (Drijber et al., 2000). Furthermore, increased amounts of total 

microbial biomass were observed in surface soils in no-till soils at four sites across the prairies 

(Helgason et al., 2009). A comparison of the decomposition and N and P mineralization of canola, 

pea, and wheat residues showed that wheat straw had the highest C:N ratio, followed by canola 

straw, then pea straw (Soon and Arshad, 2002). Also, pea and canola straws were found to 

decompose more rapidly than wheat straws over a period of 10 to 11 months, while the opposite 

was true for root residues (Soon and Arshad, 2002). High C:N ratios of residues have been 

associated with increased soil MB-C (Lupwayi et al., 2004). However, in the isotope pool dilution 

experiment from Chapter 4, stubble did not affect gross mineralization or nitrification rates before 

or after BNF of the pulse crop. Furthermore, there is conflicting evidence that crop rotations have 

an effect on soil organic matter and crop management decisions alone are likely to influence 

microbial and SOM dynamics via their effects on the number of crop rotations, their planting 

patterns and residue biochemistry (McDaniel et al., 2014).  
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The MB-C measurements from the 2018 field study were taken after pulse crops had finished 

flowering when peak BNF occurs. It is possible that functional group biomarker measurements in 

pulse crops on cereal and oilseed stubbles fluctuate with edaphic properties throughout the growing 

season (Bainard et al., 2016). Soil moisture content is a strong factor related to temporal shifts in 

microbial community composition, particularly bacterial community composition. Measurements 

of MB-C made in spring months when there was more precipitation were very different compared 

to later sampling periods when soil moisture was low (Bainard et al., 2016). A temporal pattern in 

microbial community due to precipitation may explain the field study results, but not the controlled 

environment results. Perhaps, with the breakdown of cereal and oilseed residues, microbial 

communities fluctuate throughout the growing season and total biomarkers in pulse crops grown 

on cereal stubbles peaked before the time of sampling.  

 

5.3 Future research 

The effect of residue on microbial community could be measured over time while 

simultaneously growing field pea, lentil, or chickpea, in soil from the Dark Brown and Black soil 

zones under controlled environment conditions. By measuring microbial community temporally, 

the effect of residue decomposition and its effect on BNF may be measured throughout the growth 

of a pulse crop. Coupled with soil microbial activity, oilseed and cereal residue quality regulates 

the rate and pattern of N mineralization from crop residues (Lupwayi and Kennedy, 2007).   

The gross mineralization and nitrification rates from Chapter 4 provide “snapshots” from 

pre-seeding and at the time when peak nodulation would occur. Determining mineralization and 

nitrification rates from oilseed and cereal stubble residues, throughout the growth of field pea or 

other pulse crops will provide a more accurate assessment of ammonium and nitrate release into 
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soil. This could be done using the isotope pool dilution method, or by an incubation method that 

does not require the isotope pool dilution technique as the assumptions of the technique are 

difficult to maintain.  
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APPENDICES 
 

Table A.1. Nodulation assessment criteria and scoring adapted from Risula, (n.d.), Saskatchewan 

Pulse Growers Association. 

Assessment Criteria Assessment Score 
Plant Growth and Vigour  

Plants green and vigorous 5 

Plants green and relatively small 3 

Plants slightly chlorotic 2 

Plants very chlorotic 1 

Colour and Abundance  

>5 clusters of pink pigmented nodules 5 

3 to 5 cluster groups of mostly pink nodules 3 

<3 clusters of nodules OR white or green nodules 1 

No nodules OR white or green nodules 0 

Nodule Position  

Both crown and lateral nodulation 3 

Mostly crown nodulation only 2 

Mostly lateral nodulation only 1 

Total Score  

Effective nodulation 11 to 13 

Nodulation less effective 7 to 10 

Poor nodulation 1 to 6 

 

 

Table A.2. Generalized critical limits for N, P, K, and S in soils for cereal and oilseed crops from 

Norwest Laboratory, Edmonton, AB.  

 N† P K S 

 -----------------------------------------kg ha-1----------------------------------------- 

Deficient <67 <34 <179 <9 

Marginal 67-112 34-56 179-280 9-36 

Optimal 112-168 56-134 280-1120 36-90 

Excessive >245 >134 >1120 >90 
†N (NO3-) and S supply to 0- to 60-cm depth, P and K supply to 0- to 15-cm depth 


