
 
 

 

 

Characterization and genome-scale metabolic modeling of catechol-degrading 

Pseudomonas fluorescens isolated from a petroleum hydrocarbon-impacted 

site 

 

A Thesis Submitted to the College of Graduate and Postdoctoral Studies  

In Partial Fulfillment of the Requirements for the Degree of  

Master of Science 

 

Department of Chemical and Biological Engineering  

University of Saskatchewan  

 

By 

Xiaoyan Huang 

 

©Copyright Xiaoyan Huang, March 2020. All rights reserved

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Saskatchewan's Research Archive

https://core.ac.uk/display/326252135?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


i 

 

Permission to use 

In presenting this thesis in partial fulfillment of the requirements for a Postgraduate degree 

from the University of Saskatchewan, I agree that the Libraries of this University may make it 

freely available for inspection. I further agree that permission for copying of this thesis in any 

manner, in whole or in part, for scholarly purposes may be granted by the professor or professors 

who supervised my thesis work or, in their absence, by the Head of the Department or the Dean of 

the College in which my thesis work was done. It is understood that any copying or publication or 

use of this thesis or parts thereof for financial gain shall not be allowed without my written 

permission. It is also understood that due recognition shall be given to me and to the University of 

Saskatchewan in any scholarly use which may be made of any material in my thesis. 

Requests for permission to copy or to make other uses of materials in this thesis/dissertation 

in whole or part should be addressed to: 

Head of the Department of Chemical and Biological Engineering 

University of Saskatchewan 

 57 Campus Drive, Saskatoon, SK, S7N 5A9, Canada 

or 

Dean 

College of Graduate and Postdoctoral Studies  

University of Saskatchewan  

116 Thorvaldson Building, 110 Science Place Saskatoon, SK, S7N 5C9, Canada  



ii 

 

Abstract 

Pseudomonas fluorescens is a candidate for efficient petroleum hydrocarbons (PHC) 

biodegradation. In this work, a P. fluorescens strain was isolated from a local PHC-impacted site. 

To investigate its PHC biodegradation performance, catechol, an important metabolic intermediate 

during monoaromatic hydrocarbon biodegradation, was chosen as the sole carbon source. 

A set of experiments based on a 23 factorial design was undertaken to investigate how 

nitrate, sulfate, and phosphate ions affect catechol biodegradation by the isolated P. fluorescens 

strain. The experimental results were subjected to ANOVA. Maximum specific catechol 

degradation rates (the response) were estimated by a three-parameter logistic model to evaluate 

bioremediation performance. ANOVA results suggest introducing nitrate ions alone may lead to 

poorer bioremediation performance, introducing sulfate ions alone does not affect bioremediation 

performance, but supplementing with nitrate and sulfate ions together can enhance bioremediation 

performance. P. fluorescens was also shown to survive under sulfur-limited conditions. Injecting 

phosphate ions also led to better bioremediation performance.  

To gain extensive and systematic knowledge of P. fluorescens, the first genome-scale 

metabolic model (GSMM) for P. fluorescens was reconstructed, termed lCW1057. The model was 

validated by in vitro growth data. The periplasmic compartment was constructed to better represent 

the proton gradient profile. The reconstructed proton transport chain has a P/O ratio of 11/8. Flux 

balance analysis (FBA) was performed to simulate the whole-cell metabolic flow. The simulation 

results suggested the β-ketoadipate pathway is involved in catechol metabolism by P. fluorescens 

while the uptake of oxygen is mandatory for cleavage of catechol’s aromatic ring. The Entner-

Doudoroff (ED) pathway was involved in glycolysis for P. fluorescens. Moreover, nitrates can be 

used as the terminal electron acceptor to support P. fluorescens growth under anaerobic condition.  



iii 

 

Acknowledgment 

 First of all, I thank my parents for their love and support during my graduate studies. My 

sincere appreciation goes to my supervisor, Dr. Yen-Han Lin. His patient guidance helped me 

throughout my graduate studies. He also helped me to construct the basis for further research works. 

I thank my committee members, Dr Hui Wang, Dr. Jian Peng, and Dr. Wenhui Xiong, for their 

inspirational suggestions. I am grateful to my group members, Siyang Shen and Yishuang Zhang, 

for their contributions to the projects.  

 

  



iv 

 

Table of contents 

Permission to use ............................................................................................................................ i 

Abstract .......................................................................................................................................... ii 

Acknowledgment .......................................................................................................................... iii 

Table of contents .......................................................................................................................... iv 

List of tables.................................................................................................................................. vi 

List of figures ............................................................................................................................... vii 

Nomenclature ............................................................................................................................. viii 

Glossary ........................................................................................................................................ ix 

Chapter 1 Introduction and literature review............................................................................ 1 

1.1 Literature review ................................................................................................................... 1 

1.1.1 Sources of petroleum hydrocarbon contamination ......................................................... 1 

1.1.2 Characteristics of petroleum monoaromatic hydrocarbon .............................................. 1 

1.1.3 Bioremediation strategies ............................................................................................... 4 

1.1.4 Factors affecting the bioremediation process ................................................................. 4 

1.1.5 Recent bioremediation strategies .................................................................................... 8 

1.1.6 Genome-scale metabolic model ...................................................................................... 8 

1.2 Knowledge gap ...................................................................................................................... 8 

1.3 Objectives .............................................................................................................................. 9 

1.4 Thesis organization ............................................................................................................... 9 

Chapter 2 Biodegradation of catechol by Pseudomonas fluorescens isolated from petroleum 

hydrocarbon-impacted soil ........................................................................................................ 10 

2.1 Abstract ............................................................................................................................... 10 

2.2 Introduction ......................................................................................................................... 11 

2.3 Materials and methods ........................................................................................................ 13 

2.3.1 Microbial isolation ........................................................................................................ 13 

2.3.2 Measurement of catechol concentration ....................................................................... 13 

2.3.3 Biomass concentration estimation ................................................................................ 13 

2.3.4 Data smoothing ............................................................................................................. 13 

2.3.5 Experiments .................................................................................................................. 14 

2.4 Results and discussion ......................................................................................................... 16 

2.4.1 Identification of isolated P. fluorescens ....................................................................... 16 



v 

 

2.4.2 Establishment of logistic growth model for data smoothing ........................................ 16 

2.4.3 Maximum specific catechol degradation rate ............................................................... 16 

2.5 Conclusions ......................................................................................................................... 21 

Chapter 3 Reconstruction and analysis of a three-compartment genome-scale metabolic 

model for Pseudomonas fluorescens .......................................................................................... 22 

3.1 Abstract ............................................................................................................................... 22 

3.2 Introduction ......................................................................................................................... 23 

3.3 Methods ............................................................................................................................... 24 

3.3.1 Model reconstruction .................................................................................................... 24 

3.3.2 Overview of biomass constituting equation ................................................................. 26 

3.3.3 In vitro and in silico growth ......................................................................................... 26 

3.4 Results and discussion ......................................................................................................... 27 

3.4.1 Characteristics of model lCW1057............................................................................... 27 

3.4.2 Central metabolism ....................................................................................................... 28 

3.4.3 β-ketoadipate pathway .................................................................................................. 31 

3.4.4 Phenotype analysis ....................................................................................................... 33 

3.4.5 Model validation ........................................................................................................... 34 

3.5 Conclusions ......................................................................................................................... 35 

4 Concluding remarks ................................................................................................................ 36 

5 Recommendations and future works ..................................................................................... 37 

5.1 Recommendation for Chapter 2 .......................................................................................... 37 

5.2 Recommendation for Chapter 3 .......................................................................................... 37 

References .................................................................................................................................... 38 

Appendix ...................................................................................................................................... 48 

Appendix A Biomass information............................................................................................. 48 

Appendix B P fluorescens glucose metabolism ........................................................................ 54 

Appendix C P fluorescens catechol metabolism ....................................................................... 85 

 

  



vi 

 

List of tables 

Table 2.1 23 factorial design ..................................................................................................... 155 

Table 3.1 Compartmentation of electron transport chain in P. fluorescens ......................... 28 

Table 3.2 Glucose metabolism under aerobic and anaerobic growth conditions ................. 30 

Table 3.3 In silico catechol metabolism with the objective to maximize biomass growth rate

 ................................................................................................................................. 31 

Table A.1 Macromolecule composition for P. fluorescens SBW 25 biomass ......................... 48 

Table A.2 Composition for protein in P. fluorescens SBW 25 biomass ................................. 49 

Table A.3 Composition for DNA in P. fluorescens SBW 25 biomass ..................................... 50 

Table A.4 Composition for RNA in P. fluorescens SBW 25 biomass ..................................... 51 

Table A.5 Composition for phospholipid in P. fluorescens SBW 25 biomass ....................... 52 

Table A.6 Composition for peptidoglycan in P. fluorescens SBW 25 biomass ...................... 53 

Table B.1 P. fluorescens in silico glucose metabolism ............................................................. 54 

Table C.1 P. fluorescens in silico catechol metabolism ............................................................ 85 

 

  



vii 

 

List of figures 

Figure 1.1 BTEX biodegradation pathway  .............................................................................. 33 

Figure 1.2 Microbial oxidation-reduction reaction.................................................................. 66 

Figure 2.1 Application of three-parameter logistic model to the experimental data ............ 17 

Figure 3.1 Bottom up GSMM reconstruction strategy............................................................ 25 

Figure 3.2 ED pathway in glycolysis for P. fluorescens ........................................................... 30 

Figure 3.3 Catechol biodegradation pathway for P. fluorescens ............................................ 32 

Figure 3.4 Phenotype analysis for oxygen and nitrate uptake rates in specific biomass 

growth rate for P. fluorescens ................................................................................. 34 

Figure 3.5 Growth profile by using catechol as sole carbon source for P. fluorescens ......... 35 

 

  



viii 

 

Nomenclature 

c0, cytosolic compartment 

e0, extracellular compartment 

ED, Entner-Doudoroff 

EMP, Embden-Meyerhof-Parnas 

DW, biomass dry weight, g 

ETC, electron transport chain 

FBA, flux balance analysis 

GSMM, genome-scale metabolic model 

KDPG, 2-keto-3-deoxy-6-phosphogluconate 

p0, periplasmic compartment 

rs, maximum specific catechol degradation rate, h-1 

S(t), catechol concentration at t hour, mg/L 
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Glossary 

A 

ATP A molecule carries energy.  

C 

Cytosolic compartment A compartment inside the living cell. 

E 

Extracellular compartment A compartment outside the living cell. 

F 

Flux balance analysis A mathematical method by which the flow of metabolites through the 

metabolic network can be estimated. 

I 

in silico An experiment performed by computer software. 

in vitro An experiment performed outside of living cells. 

P 

Periplasmic compartment A compartment between the outside membrane and cytosolic membrane 

of the cell. 

Phenotype analysis A method by which the composite of the organism’s characteristics can be 

estimated. 

P/O ratio A number that indicates the amount of ATP molecules produced by oxidative 

phosphorylation for each pair of electrons. 
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Chapter 1 Introduction and literature review 

1.1 Literature review  

1.1.1 Sources of petroleum hydrocarbon contamination 

Petroleum hydrocarbons (PHC) are a predominant energy source around the world. 

PHC can become an important organic contaminant in many ways. One of the most 

widespread origins is leakage from underground storage tanks (e.g., at gas stations) and 

PHC transportation pipelines [1]. Accidents during the transport of PHC and improper 

disposal can also lead to pollution. Accidental spills at oil exploration sites can lead to 

serious contamination of local environments. For instance, PHC discharge from an oil spill 

in April 2010 from Deepwater Horizon, an oil prospect site of BP in the Gulf of Mexico, 

was estimated at 780,000 m3 by the U.S. Federal Government [2]. The Deepwater Horizon 

spill caused serious environmental, economic, and societal impacts [3].  

1.1.2 Characteristics of petroleum monoaromatic hydrocarbon 

Petroleum aromatic hydrocarbons are recalcitrant to natural degradation due to the 

high resonance energy of the carbon bonds in the aromatic rings. Low molecular weight 

petroleum aromatic hydrocarbons are of concern due to their relatively high mobility [4]. 

When trapped in the soil, they can further leach into the groundwater and become a cause 

for human health concerns. For example, benzene, toluene, ethylbenzene, and xylene 

(collectively called BTEX) can result in such consequences. They are not only constituents 

of fossil fuels but also widely used as organic solvents in industrial processes [5]. In 

comparison to other petroleum aromatics, they have a higher solubility in water [6]. They 

are also highly toxic; according to the U.S. Agency for toxic substances and disease registry, 

benzene is ranked sixth in a list of toxic organic substances [7]. Benzene is associated with 

a risk of cancer [8]. Furthermore, it may cause childhood leukemia if fetal exposure occurs 

in utero in pregnant women [9].  

 Catechol is another important toxic aromatic hydrocarbon. Figure 1.1 shows 

catechol (1,2-dihydrooxybenzene) is a crucial metabolic intermediate during the 

biodegradation of benzene, toluene, and ethylbenzene [10]. It has been widely used as an 

antioxidant in the rubber, chemical, dye, photographic, pharmaceutical, cosmetics, and oil 
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industries [11]. However, it can lead to statistically significant changes in the function of 

erythrocytes, thereby  [12]. Even though BTEX has a relatively higher solubility than other 

PHC, it is hard to evaluate BTEX biodegradation kinetics due to their high volatility. 

Catechol solution is more stable than BTEX solution, and therefore studying the 

metabolism behavior and kinetics of catechol degradation can provide insights to 

investigate BTEX biodegradation.   
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Figure 1.1 BTEX biodegradation pathway [13] 
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1.1.3 Bioremediation strategies  

Various physico-chemical methods can be used to clean up PHC-impacted sites, 

including soil washing, oxidation of contaminants, and incineration [14]. However, these 

methods are often economically inefficient and have the potential to cause secondary 

contamination [14]. On the other hand, bio-based treatments, known as bioremediation, are 

more cost effective and can protect soil quality during the cleanup of PHC contamination 

[15].  

In PHC-impacted sites, some indigenous living organisms that are adapted to the 

polluted environment may use PHC as a carbon and energy source to support biomass 

growth [16]. However, this is time-consuming under natural conditions and, therefore, 

bioremediation strategies have been developed to accelerate the process. Biostimulation, 

bioaugmentation, and phytoremediation are conventional bioremediation strategies. In the 

biostimulation process, the environment of the contaminated site is modified to stimulate 

the bioremediation ability of microorganisms [17]. In the bioaugmentation process, the 

impacted site is supplemented with microorganisms that are capable of degrading target 

contaminants. Pseudomonas sp. has been reported as the candidate in PHC bioremediation 

projects [18]. Phytoremediation is a technology that uses plants to clean up various 

pollutants, including petroleum hydrocarbons, pesticides, dyes, and heavy metals [14].   

1.1.4 Factors affecting the bioremediation process 

Many factors can affect the performance of bioremediation targeting PHC. The 

availability of nutrients, electron acceptors and the local temperature are crucial parameters 

that affect the bioremediation of PHC-impacted groundwater and soil [18]. Soil conditions 

and composition can also affect soil bioremediation [19].  

1.1.4.1 Temperature 

Temperature affects the bioremediation performance by influencing the bioavailability, 

enzyme activity, and solubility of hydrocarbon substances [20]. A higher temperature in 

the bioremediation environment can lead to better bioremediation performance because 

higher temperatures can result in higher enzyme activity. A lower viscosity of PHC in soil 

can enhance the availability of PHC to microorganisms, which can further result in better 

PHC bioremediation performance [4]. 
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1.1.4.2 Nutrient availability 

 Oxidation-reduction reactions, as illustrated in Figure 1.2, play a crucial role as the 

energy source during microbial metabolism [18]. Therefore, the oxidized electron acceptor 

is important for PHC bioremediation. Due to the low solubility of oxygen, it is limited for 

impacted underground soil and water yet pumping in air or oxygen is not economically 

viable. Increasing the availability of electron acceptors has been employed as a popular 

bioremediation strategy [21]. Nitrate, sulfate, and ferric are alternative electronic acceptors 

for supporting the growth of some microorganisms [16]. Enhancing PHC biodegradation 

performance by adding nitrate and sulfate ions has been explored in many in situ projects 

[22]. Cunningham et al. report that introducing nitrates can enhance the performance of 

BTEX removal, while sulfates are observed to only stimulate the degradation of benzene, 

xylene, and toluene [16]. These authors suggest that, in comparison to sulfate ions, nitrate 

ions are preferentially utilized by microorganisms and more rapidly oxidize the 

hydrocarbons [16]. Using persulfate as the electron acceptor for BTEX biodegradation has 

been reported in both aqueous and soil slurry systems at ambient temperature (e.g., 20 °C) 

[23]. Furthermore, nitrate and sulfate salts can provide nitrogen and sulfur, which are 

essential elements for the production of biomass. Phosphorus is another essential element 

for the biomass growth. Dosing with phosphate to enhance PHC bioremediation 

performance has been reported [22]. However, introducing inorganic phosphate may lead 

to the precipitation of phosphate with cations and cause low phosphorus availability.  
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Figure 1.2 Microbial oxidation-reduction reaction [18]   
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1.1.4.3 Soil conditions  

The surface area of soil particles and the soil’s cation exchange capacity (CEC) are 

two important parameters affecting bioremediation performance in soils. Soil particles can 

break down into clay, silt, and sand according to their size (clay, 0-2 µm; silt, 2-50 µm; 

and sand, 0.05-2 mm) [24]. Smaller particle size provides a larger surface area. Soil 

particles mainly carry a negative charge, and represents the soil’s CEC [25]. A larger 

surface area and higher CEC will lead to a larger adsorption capacity by the soil, and in 

turn lead to a low mass transfer rate for contaminants to microorganisms. Therefore, 

releasing contaminants from the soil is an important step for soil bioremediation [17]. 

Surfactants have the ability to increase the availability of contaminants to microorganisms 

by reducing the surface tension of soil particles. Therefore, they can be applied to enhance 

the contaminant mass transfer rate. In comparison to biosurfactants, chemical surfactants 

have a common disadvantage in that they may cause colloid mobilization and clog soil 

pores of microorganisms during the removal of aromatic hydrocarbons [26]. 

1.1.4.4 Soil composition 

 Some chemicals found in PHC-impacted soil can affect bioremediation 

performance in different ways. For example, due to the high toxicity of BTEX, the growth 

of microorganisms is inhibited in soils with a high initial BTEX concentration. 

Microorganisms that are grown using catechol or o-cresol as carbon sources may suffer a 

relatively lower inhibitory effect by BTEX [27].  

 The pH of the environment is also important for the bioremediation process. 

Alexander reports that hydrocarbon mineralization is optimized in a neutral pH 

environment [28]. However, microorganisms have better stress resistance in acidic 

environments because acidic environments can accelerate proton transfer and further lead 

to more efficient microbial ATP synthesis [29]. 

The water content of soil also influences biodegradation performance by affecting 

microorganism growth. The optimum water content for microorganism growth in soil is 

50-75% [26]. 
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1.1.5 Recent bioremediation strategies 

Immobilizing microorganisms with polymeric materials can enhance bioremediation 

performance under various conditions, e.g., immobilization within chitosan beads. 

Chitosan can be obtained from chitin, which is one of the most abundant biopolymers. It 

can be extracted from the shells of lobster and crabs [30]. Chitosan has the advantages of 

lack of toxicity, availability in nature, and physiological inertness [30]. Furthermore, 

chitosan can be produced in many shapes, including beads, films, and membranes [31]. 

Chitosan powers can be dissolved in acidic conditions to form a chitosan gel, to which 

microbial biomass can be added. Immobilizing microorganisms with chitosan beads can 

stimulate the bioremediation process [32].  

1.1.6 Genome-scale metabolic model  

 Traditional experimental technology, such as fermentation experiment, can provide 

useful information, for example raw material uptake and production excretion rates, to 

quantify the fermentation performance. However, experimental results can only provide 

limited knowledge about intercellular metabolism, like whole-cell flux distribution. A 

genome-scale metabolic model (GSMM) can be applied to estimate the microbial growth 

rate, predict gene essentiality, and explore the optimal metabolic pathway from specific 

substrates to given products [33]. Flux balance analysis (FBA) is a widely used method to 

calculate the flow of metabolites through the metabolic network [34]. The stoichiometry 

of reactions in the metabolic network imposes constraints on the flow of metabolites, which 

plays a fundamental role in FBA.  

1.2 Knowledge gap 

P. fluorescens is a candidate for PHC biodegradation. However, the effects of 

nutrients on PHC bioremediation performance, for example the availability of terminal 

electron acceptors, is unclear. Moreover, the information about intracellular metabolism 

behaviors of P. fluorescens is limited. Two summarized knowledge gaps are list below: 

1. Few studies have considered the effects of nutrient availability on catechol 

biodegradation by P. fluorescens.  

2. The GSMM for P. fluorescens has not been reconstructed.  
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1.3 Objectives 

Based on the knowledge gap described in Section 1.2, the objectives of this work were to:  

1. Isolate a PHC-degrading strain from a local PHC-impacted site in Saskatchewan. 

2. Characterize the effect of various combinations of nutrients (nitrate, sulfate, and 

phosphate ions) on catechol bioremediation performance by the isolated strain. 

3. Reconstruct a genome-scale metabolic model for P. fluorescens.  

1.4 Thesis organization 

 This thesis is organized in manuscript format. The content of Chapter 2 is prepared 

according to the submission requirement by Canadian Journal of Chemical Engineering. 

In Chapter 3, the content is formatted according to the submission requirement by 

Biotechnology and Applied Biochemistry. The finding reported in Chapter 2 and 3 are 

summarized in Chapter 4 as concluding remarks. In Chapter 5, the recommendations for 

future works are presented.  

 In Chapter 2, a catechol-degrading P. fluorescens was isolated from petroleum 

hydrocarbon impacted site in Saskatchewan. Its fermentation knowledge about catechol 

biodegradation by P. fluorescens was introduced. To further explore its metabolic flux of 

catechol biodegradation, a three-compartment genome-scale metabolic model was 

reconstructed for P. fluorescens  and debrided in Chapter 3. Hence a comprehensive 

knowledge regrading with catechol biodegradation by P. fluorescens was provided from 

both in vitro and in silico aspects.  
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Chapter 2 Biodegradation of catechol by Pseudomonas 

fluorescens isolated from petroleum hydrocarbon-impacted 

soil 

The content in this chapter has been accepted by the Canadian Journal of Chemical Engineering. 

Manuscript number: CJCE-19-0761 

2.1 Abstract 

 Bioremediation strategies have been applied to clean up petroleum hydrocarbon 

(PHC)-impacted sites. Introducing PHC-degrading microorganisms (bioaugmentation) and 

enhancing the in situ nutrient availability (biostimulation) are widely used strategies. In 

this work, a wild-type Pseudomonas fluorescens strain was isolated from a PHC-impacted 

site in Saskatchewan. Through a 23 factorial design plan, the effect of various combinations 

of nitrate, sulfate, and phosphate ions on bioremediation performance by the isolated strain 

was investigated. Catechol, an essential metabolic intermediate of BTEX degradation, was 

used as the sole carbon source. The maximum specific catechol degradation rate was 

chosen as the response to evaluate catechol bioremediation performance. ANOVA results 

suggest the presence of nitrate ions alone lowers the maximum specific catechol 

degradation rate, which may be explained by the accumulation of nitrites and ammonia 

during the denitrification process by P. fluorescens. Dosing with sulfate ions alone did not 

affect the bioremediation performance. This observation indicates P. fluorescens can grow 

in a sulfur-limited environment. Moreover, the presence of sulfate and nitrate ions together 

can lead to a higher maximum specific catechol degradation rate. This may be due to the 

presence of sulfate suppressing the production of nitrites. The importance of phosphate 

ions on catechol bioremediation was also investigated. The absence of phosphate leads to 

incomplete bioremediation but the introduction of phosphate ions can accelerate catechol 

degradation, which may be explained by the secretion of organic acids.   
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2.2 Introduction 

Many petroleum hydrocarbons (PHC) enter soil and groundwater bodies through 

spills, disposal, and leakage [20]. They are toxic to both fauna and flora [35]. 

Microorganisms, once adapted to the impacted site, can utilize petroleum hydrocarbons as 

a carbon and energy source to grow, thereby minimizing the impact of PHC on the 

environment [21]. Bioremediation strategies have been used to accelerate this process [36]. 

Monoaromatic hydrocarbons are an important part of PHC contamination due to 

their relatively high solubility, mobility, and toxicity [4]. Catechol is a crucial metabolic 

intermediate in the β-ketoadipate pathway, which is involved in the metabolism of 

monoaromatic hydrocarbons (e.g., BTEX and phenol) for Pseudomonas species [37, 38]. 

Furthermore, even though catechol may inhibit microorganism growth, those pre-grown 

on catechol have a higher survivability in the environment in the presence of BTEX [11, 

27]. Our preliminary results suggested that catechol loss without biodegradation involved 

is neglectable. Therefore, elucidating the factors affecting catechol bioremediation can help 

to design biostimulation and bioaugmentation strategies, especially for treating 

monoaromatic hydrocarbon pollution.  

Enhancing nutrient availability, for example the availability of electron acceptors, 

is one bioremediation strategy termed biostimulation [18]. Oxygen is the common electron 

acceptor in oxidation-reduction reactions and plays a crucial role as the energy source 

during microbial metabolism. However, oxygen is limited in impacted underground soil 

and water, and pumping in air or oxygen is not economically efficient [39]. Therefore, 

dosing with alternative electron acceptors, such as nitrates and sulfates, can be employed 

as a biostimulation strategy [40]. 

Introducing PHC-degrading microorganisms to impacted sites is another 

bioremediation strategy termed bioaugmentation. Pseudomonas species have drawn 

attention as candidates for bioaugmentation due to their versatile metabolic subsystems and 

high tolerance for environmental stress under various bioremediation conditions [41, 42]. 

P. fluorescens, P. aeruginosa, and P. putida are effective bioaugmentation agents to clean 

up PHC contamination [43, 44, 45]. 

Biostimulation and bioaugmentation strategies can be combined to enhance 

bioremediation performance [46]. Even though Pseudomonas species have been widely 
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involved in bioaugmentation projects, nutrients affecting PHC bioremediation 

performance by Pseudomonas sp. have received little attention. Hence, investigating 

nutrients affecting the bioremediation performance by P. fluorescens may provide 

opportunity to combine biostimulation strategy and bioaugmentation with P. fluorescens. 

The purpose of this work was to elucidate the effects of three commonly used 

nutrients (i.e., nitrate, sulfate, and phosphate ions) to stimulate PHC bioremediation by 

Pseudomonas species. A wild-type strain of P. fluorescens was isolated from a local PHC-

impacted site, then a 23 factorial design applied to predict the effects of various 

combinations of nitrate, sulfate, and phosphate ions on catechol degradation by the isolated 

P. fluorescens strain.   
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2.3 Materials and methods 

2.3.1 Microbial isolation  

PHC-impacted soil was collected from a local polluted site in Saskatchewan, 

Canada. The sample was stored at 4 °C before using. First, the microbial population in the 

soil was enriched in a growth medium consisting of 10 g/L yeast extract, 5 g/L urea, and 

200 mg/L catechol. One kg of PHC-impacted soil was placed into a 10-L fermenter with 5 

L of growth medium and then cultured for 72 h. Next, 100 mL of culture was transferred 

into a 2-L batch fermenter with 1-L M9 minimal medium consisting of 6 g/L Na2HPO4, 3 

g/L KH2PO4, 1.4 g/L (NH4)2SO4, 0.5 g/L NaCl, 0.2 g/L MgSO4·7H2O, and 200 mg/L 

catechol as the carbon source. After the optical density reached 0.8 at a wavelength of 600 

nm (described in Section 2.3.3), the bacterial population was isolated by serial dilution on 

minimal salt-catechol agar plates until the dominated strain appeared.  

2.3.2 Measurement of catechol concentration  

Samples collected during the bacterial culture period were centrifuged at 4 °C and 

5000 rpm for 25 min. The supernatant was collected and filtered through a 0.2-µm nylon 

membrane. High performance liquid chromatography (HPLC) equipped with a UV 

detector was used to analyze these samples at a wavelength of 254 nm. The HPLC used a 

C18 column (Agilent Eclipse XD8-C18 4.6×150 mm) at 35 °C. The chromatography was 

isocratic with a mobile phase consisting of water/acetonitrile (50%/50%, v/v). The flow 

rate was set at 1.2 mL/min.  

2.3.3 Biomass concentration estimation 

The accumulation of biomass is proportional to the optical density (OD) of a sample. 

UV-VIS spectrophotometry (UVmini-1240, SHIMADZU) was used for OD measurement. 

To determine the biomass dry weight, the samples were centrifuged at 8000 rpm for 15 

min and dried in an oven at 80 oC for 12 h. The correlation between biomass dry weight 

and OD was established. 

2.3.4 Data smoothing  

A logistic growth model can be used to simulate the population dynamics that 

correlate with seasonal variations [19]. A three-parameter logistic growth model was 

chosen to predict the substrate uptake pattern. The detailed data fitting process has been 
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previously reported [14]. Briefly, the experimental data collected were fitted using 

Equation (2.1). The Matlab optimization toolbox was used to estimate the maximum 

specific biomass growth rate and maximum specific substrate degradation rate. A simple 

r2 criterion was used to evaluate the goodness of fit (Equation 2.2).  

 S(t) =
Ŝ

1+exp⁡[−rs(t−ts)]
  (2.1) 

 r2 = 1 −
∑(S(t)−Ŝ)2

∑(S(t)−S̅)2
  (2.2) 

2.3.5 Experiments  

 To investigate the individual and interactive effects of nitrate, sulfate, and 

phosphate ions, a 23 factorial design was employed (Table 2.1). The microorganism was 

firstly incubated in the seed medium consisting M9 minimal salts medium and 200 mg/L 

catechol. After OD in the seed medium reached 0.8, the seed medium was transferred into 

growth medium with incubation rate at 10%. In addition to nitrate, sulfate, and phosphate 

ions, the growth medium contained 170 mg/L catechol as the sole carbon source, 500 mg/L 

sodium chloride, and 200 mg/L magnesium chloride heptahydrate. A lower catechol 

concentration in growth medium was chosen to minimize the inhibition effect of catechol 

to P. fluorescens. Cunningham et al. suggest nitrate concentrations above 100 mg/L may 

lead to in situ N2 gas bubbles and exceed EPA regulatory limits for NO3
-
 [20]. Therefore, 

in this study, the maximum nitrate ions concentration was set at 100 mg/L (1.61 mmol/L). 

Furthermore, according to Norris, degrading the same amount of toluene using nitrate and 

sulfate ions as terminal electron acceptors results in a mole ratio of nitrate to sulfate ions 

of 1.6:1 [21]. Therefore, in this work, a sulfate concentration of 1.01 mmol/L (96 mg/L) 

was chosen. The mole ratio of phosphate to nitrate ions was set at 1:1. Ammonium nitrate, 

ammonium sulfate, and ammonium phosphate dibasic were used as the nitrate, sulfate, and 

phosphate sources, respectively. 
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Table 2.1 23 factorial design* 

Run** Factors (mM) 
Responses (h-1) 

Set 1 

Responses (h-1) 

Set 2 

 Nitrate Sulfate Phosphate rs rs 

1 + + - 0.114 0.134 

2 + - + 0.148 0.123 

3 + + + 0.145 0.145 

4 + - - 0.091 0.092 

5 - + - 0.137 0.108 

6 - - + 0.198 0.186 

7 - + + 0.191 0.174 

8 - - - 0.170 0.140 

*Nitrate: +, 1.61 mM and -, 0 mM; Sulfate: +, 1.01 mM and -, 0 mM; Phosphate: +, 1.61 mM and -, 0 

mM 

**For example: Run 1 (Nitrate +; Sulfate +; Phosphate -) contains 1.61 mM nitrate, 1.01 mM sulfate, 

and 0 mM phosphate 

***The experiment was duplicated to predict the p-value.  
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2.4 Results and discussion 

2.4.1 Identification of isolated P. fluorescens  

The isolated microorganism strain was identified as P. fluorescens using a 

BIOLOG kit (Biolog Inc., Hayward, CA, USA), which is based on the sequencing of its 

DNA [47]. This identification was contracted to Bio-Chem Consulting Services Ltd., 

Calgary, AB, Canada. 

2.4.2 Establishment of logistic growth model for data smoothing 

Figure 2.1 illustrates the application of the modified three-parameter logistic model 

to simulate the catechol degradation profiles in the media described in Table 2.1. The r2, 

which was calculated as described in Equation 2.2, was used to evaluate the goodness of 

fit for the model. The results show r2 values for all 16 runs are greater than 0.99, indicating 

the modified model can be applied to predict the catechol degradation profile by P. 

fluorescens with high accuracy. However, it should be noted that the catechol degradation 

ceased at around 28th hour and before the depletion of catechol for runs without the 

presence of phosphate ions (Runs 1, 4, 5, and 8). Hence, experimental data points after 

hour 28 for these runs were not used in the simulation. 

2.4.3 Maximum specific catechol degradation rate 

According to the model predicted by the logistic model described in Section 2.4.2, 

the maximum specific catechol degradation rate was estimated to evaluate the catechol 

bioremediation performance. These data were regarded as ‘responses’ to carry out the 

ANOVA. The effect of nitrate ions, the effect of phosphate ions, and the interactive effect 

of nitrate and sulfate ions are significant with respect to maximum specific catechol 

degradation rate (p-value < 0.05). An estimated correlation between the combined effect 

of the nutrients (nitrate, sulfate, and phosphate ions) and the response is as follows: 

rs = - 0.02 × Nitrate + 0.02 × Phosphate + 0.011 × Nitrate × Sulfate + 0.144  (2.3) 
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Figure 2.1 Application of three-parameter logistic model to the experimental data  
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2.4.3.1 Effect of nitrate ions 

Equation 2.3 indicates that dosing with nitrate ions alone lowers the maximum 

specific catechol degradation rate. Note, however, that even though Figure 2.1 shows 

complete catechol degradation was obtained for runs without nitrate ions added (Runs 6 

and 7), this does not imply a nitrogen source is not crucial during catechol biodegradation 

as a nitrogen source (ammonia phosphate dibasic) was present for Runs 6 and 7. 

Better PHC bioremediation performance following the introduction of nitrates has 

been reported in many in situ studies [22, 48, 49]. However, the effect of injecting nitrate 

to enhance PHC bioremediation is not guaranteed. Chaillan et al. report that urea has a 

detrimental effect on hydrocarbon-degrading fungi due to the production of toxic ammonia 

[19]. Dosing with nitrate alone also did not noticeably improve underground benzene 

removal in Mississippi, USA [50]. 

Pseudomonas sp. can utilize nitrate as a terminal electron acceptor through 

respiratory denitrification, as illustrated in Equation 2.4, with nitrite being one of the 

intermediate products during denitrification [51]. Due to a higher conversion rate of nitrate 

over nitrite, nitrite is accumulated during nitrate reduction [52, 53]. Nitrite is toxic and 

imposes an inhibitory effect on the growth of P. fluorescens [54]. Although ammonia gas 

is not an intermediate during respiratory denitrification, nitrate metabolism in 

Pseudomonas sp. can still produce ammonia via the nirB gene [10, 55, 56]. The 

accumulation of ammonia gas is toxic to microorganisms, resulting in increasing pH of the 

environment and subsequent reductions in PHC bioremediation performance [19]. 

NO3
-
 → NO2 

-
→ N2O → N2 (2.4) 

2.4.3.2 Effect of sulfate ions 

The ANOVA results suggest sulfate ions alone do not have a significant effect on 

the maximum specific catechol degradation rate. Figure 2.1 shows that catechol was still 

fully degraded in the runs without sulfate ions dosed but with phosphate ions present (Runs 

2 and 6).  

Sulfur is primarily used as a component of cysteine and methionine as well as 

cellular cofactors for biomass constitution (e.g., biotin and coenzyme A) [57]. The use of 

sulfate as the electron acceptor for PHC biodegradation has been reported [58, 59]. 
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Scott et al. suggest Pseudomonas sp. can grow under sulfur-limited conditions by 

an approximate five-fold reduction in the total soluble thiol content of the cell [57]. The 

isolated P. fluorescens are speculated to be able to survive under sulfur-limited conditions. 

Furthermore, sulfate ions do not affect phenol degradation by Pseudomonas putida [60]. 

No experimental evidence to date indicates P. fluorescens can use sulfate as the terminal 

electron acceptor. It has been reported that no gene in P. fluorescens SBW 25 is involved 

in sulfate reduction [61]. 

2.4.3.3 Effect of phosphate ions 

Dosing with phosphate ions led to a higher specific catechol degradation rate and 

the absence of phosphate ions in the medium resulted in incomplete catechol 

bioremediation. For the runs without phosphate ions present, only 40 to 60% of the initial 

catechol was degraded.  

Phosphorus is a key element in the biomass of microorganisms [62]. The source of 

phosphorus for microorganisms is limited, which results in the availability of phosphorus 

for microorganisms usually controlling the progress of PHC biodegradation [22]. 

Therefore, phosphate salts can be dosed into the PHC-impacted site to enhance the 

phosphorus availability for microorganisms to build up biomass. Moreover, dosing with 

phosphate salts can also lead to better bioremediation performance. Ponsin et al. highlight 

the importance of phosphate in petroleum hydrocarbon degradation [63].   

The enhancement of PHC bioremediation performance may be explained by the 

secretion of organic acid by P. fluorescens when phosphate is involved [64]. An acidic 

environment can accelerate proton transfer and provide a better environment for ATP 

synthesis [29]. However, introducing phosphate salts to enhance bioremediation is not 

always feasible. Supplementing with inorganic phosphate salts may lead to precipitation or 

immobilization of phosphorus with calcium, aluminum, and ferric ions, resulting in a low 

phosphorus availability for microorganisms [65]. Xiong et al. suggest organic phosphate 

salts (e.g., triethyl phosphate) must be mineralized before they can be utilized by 

microorganisms [22]. However, P. fluorescens strains appear to have the ability to 

solubilize insoluble phosphate salts [66]. Therefore, it is postulated that supplementing 

with inorganic phosphate salts may be suitable for applications of P. fluorescence to treat 

PHC-contaminated soil. 
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2.4.3.4 Interactive effect of nitrate and sulfate ions 

As shown in Equation 2.3, there was an interactive effect between sulfate and 

nitrate ions that is positively correlated with the maximum specific catechol degradation 

rate. The coexistence of nitrate and sulfate ions in the medium results in an increase in the 

maximum specific catechol degradation rate. This observation may be explained by the 

presence of sulfate ions that inhibit the nitrate reductase [67]. The presence of sulfate ions 

is postulated to slow down the conversion of nitrate to nitrite. As mentioned in Section 

2.4.3.1, the accumulation of nitrite is due to the imbalance of a higher rate of conversion 

of nitrate to nitrite than rate of nitrite consumption (i.e., the conversion of nitrite to nitrous 

oxide). Therefore, the presence of sulfate ions can reduce the amount of accumulating 

nitrite as the presence of sulfate ions would reduce the nitrite production rate.  
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2.5 Conclusions  

A catechol-degrading P. fluoresence strain was isolated from a local PHC-impacted 

site. A 23 factorial design was used to investigate the effect of various combinations of 

nitrate, sulfate, and phopshate ions on catechol bioremediation performance by the isolated 

strain. ANOVA results suggest dosing with nitrate ions alone leads to poorer catechol 

bioremediation performance. However, catechol bioremediation performance is enhanced 

when both nitrate and sulfate ions are introduced. Dosing with phosphate ions also 

enhances catechol bioremediation performance.  
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Chapter 3 Reconstruction and analysis of a three-compartment 

genome-scale metabolic model for Pseudomonas fluorescens 

X. Huang and Y. Lin, "Reconstruction and analysis of a three-compartment genome-scale metabolic model 

for Pseudomonas fluorescens," Biotechnology and applied biochemistry, doi 10.1002/bab.1852, 2020.  

3.1 Abstract 

With the versatile metabolic diversity, Pseudomonas fluorescens is a potential 

candidate in petroleum aromatic hydrocarbon (PAH) bioremediation. Genome-scale 

metabolic model (GSMM) can provide systematic information to guide the development 

of metabolic engineering strategy to improve microbial activity.  

In this study, the first GSMM for P. fluorescens SBW25 was reconstructed, termed 

lCW1057. The reconstruction was based on automatic reannotation and manual curation. 

The periplasmic compartment was constructed to better represent the proton gradient 

profile. The reconstructed proton transport chain has a P/O ratio at 11/8. Flux balance 

analysis (FBA) was performed to explore the whole-cell metabolic flow. The model 

suggested that instead of EMP pathway, ED pathway was used in glycolytic metabolism of 

P. fluorescens, indicating that the growth of P. fluorescens is more energy dependent. 

Furthermore, P. fluorescens can use nitrate as the terminal electron acceptor for the glucose 

metabolism. The β-ketoadipate pathway was involved in catechol metabolism. The uptake 

of oxygen is mandatory for the aromatic ring cleavage. The in silico and in vitro maximum 

specific growth rate was compared, resulting in 10% difference when catechol was used as 

the sole carbon source.   
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3.2 Introduction 

Pseudomonas fluorescens can be found throughout terrestrial habitats, and it is 

abundant on the surfaces of plant roots and leaves [68]. It is a gram-negative, motile rods 

bacterium, and prefer to grow in aerobic and acidic condition [69]. With the versatile 

metabolic diversity and high environmental stress resistance, P. fluorescens is a candidate 

in petroleum aromatic hydrocarbon (PAH) bioremediation [70]. Bioremediation 

performance can be stimulated by enhancing the local nutrients condition [21]. However, 

overdosing nutrient would also cause environmental problems [71]. An extensive and 

systematic knowledge of P. fluorescens PAH metabolism is important as it can help to 

optimize the nutrients usage and provide background information for further genetic 

engineering of microorganisms [72]. 

Genome-scale metabolic model (GSMM) is such an example that the genomic and 

metabolic information are integrated in order to explore whole-cell metabolic flow. The 

GSMM was reconstructed based on stoichiometric relationship between reactants and 

products of a biochemical reaction catalyzed by a dominant enzyme [73]. The GSMM can 

be used to predict growth phenotype, analyze network properties, and interpret 

experimental data [72]. It also provides background information for metabolic engineering 

strategies and metabolic environment modification [74]. 

There have been no reports to date of GSMM for P. fluorescens. As the whole 

genome sequence of P. fluorescens SBW25 has been published, it is feasible to reconstruct 

its GSMM [68]. Such model can elucidate intracellular flux within P. fluorescens global 

metabolism. It would also be used to guide the design of metabolic regulation strategies, 

in vitro or in vivo [72]. 

 Here, we describe the reconstruction of first GSMM of P. fluorescens SBW25, 

named lCW1057. It was fundamentally based on its gene annotation in conjunction with 

available physiological data. Its application on aromatic hydrocarbon biodegradation was 

highlighted. The metabolic pathway for catechol, an important metabolite during BTEX 

degradation, was elucidated.  

  



24 

 

3.3 Methods 

3.3.1 Model reconstruction  

Figure 3.1 illustrates the bottom-up reconstruction strategy for P. fluorescens. The 

genome of this strain was downloaded from pseudomonas database (psedumonas.com). It 

was blasted by using Rapid Annotation using Subsystem Technology (RAST) tool. The 

reaction list was converted into SBML by ModelSeed, and Optflux was used to carry out 

FBA. 

During the reconstruction of GSMM, there are some metabolites can only be 

produced or consumed under steady-state condition owing to mis-annotation and/or un-

annotation. These “gaps” block the network of reactions, leading to a failed simulation. To 

overcome these situations, gapfilling algorism was used to detect and modify these deadend 

nodes. In this study, a bottom-up gapfilling strategy was implemented [75]. Firstly, the 

model structure was checked by using FBA to simulate biomass formation. When all the 

biomass precursors’ transferring equations were activated, the formation of biomass 

indicated a functional model structure. Then, the transferring equation was deactivated one 

at a time. A failed biomass growth after deactivation of the biomass precursor transferring 

equation indicated that there were gaps which block the generation of the biomass 

precursor. These gaps were manually examined based on physiological evidence and 

comparative study with P. putida Kt2440. This process was repeated until biomass can 

grow in silico. Moreover, there were only two compartments, that is extracellular (e0) and 

cytosolic (c0) compartments that were built in RAST tool. To better represent the electron 

transport chain (ETC), a periplasmic compartment (p0) was incorporated to create a 3-

compartment GSMM for P. fluorescens. By doing so, a proton gradient profile between c0 

an e0 compartments could be created and used to drive ATP synthase.   

During the course of model reconstruction, GSMM for P. putida Kt2440 was chosen 

as the basis as both P. putida Kt2440 and P. fluorescens use ED pathway for glycolysis 

[74, 76]. When catechol was selected as the substrate, both strains take β-ketoadipate route 

for catechol degradation [77]. 
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Figure 3.1 Bottom up GSMM reconstruction strategy 
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3.3.2 Overview of biomass constituting equation  

The biomass equation was constituted based on major macromolecules present in 

microorganisms. They may include DNA, RNA, protein, lipid, and peptidoglycan. DNA 

composition can be estimated based on the nucleotide content and additional plasmids, 

while RNA composition is based on ORFs including tRNA sequence [75]. As there is no 

experimental information available for protein and lipids, it was estimated by using 

published P. putida Kt2440 information. Peptidoglycan’s composition is estimated by 

using peptidoglycan subunit of Escherichia coli.  

3.3.3 In vitro and in silico growth 

 Catechol, a crucial metabolic intermediate in BTEX biodegradation, was used as 

sole carbon source to investigate P. fluorescens’ PAHs bioremediation performance. The 

data from batch fermentation was used to validate this model. A constrain based linear 

programming approach was applied to perform in silico growth simulation.  

The samples collected during cultivation were centrifuged at 4 oC and 5000 rpm for 

25 minutes. The supernatant was collected and filtered through 0.2 µm nylon membrane. 

High performance liquid chromatography (HPLC) equipped with UV detector with 254 

nm wavelength was used to analyze these samples. The HPLC column used was C18 

column (Agilent Eclipse XD8-C18 4.6x150 mm) at 35 oC. Chromatography was isocratic 

in a mobile phase consisting of water/acetonitrile (50%/50% v/v). The flow rate was set at 

1.2 mL/min. To determine the biomass dry weight, samples was centrifuged at 8000 rpm 

for 15 mins and dried in oven for 12 hours.  
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3.4 Results and discussion  

3.4.1 Characteristics of model lCW1057 

 The GSMM was reconstructed by automatic annotation and manual curation. This 

reconstructed model, termed lCW1057, was the first GSMM for P. fluorescens. It consists 

of 1734 metabolites (including 1450 intracellular metabolites) involved in 1721 reactions 

(including 288 membrane transport reactions). There are 1057 enzyme-coded genes (17% 

of total 6162 total sequenced genes) assigned into 25 subsystems or specific pathways. 

Within these enzyme-coded genes, 291 genes are associated with carbohydrates 

metabolism, 114 are responsible for stress response, 103 genes are corresponding to the 

metabolism of aromatic compounds, and 50 genes are involved in phosphorus metabolism. 

The reconstructed biomass equation can be represented as C31.28H147.89O19.41N8.18S0.22P1.44 

(mmol/gDW). The complete biomass equation is available in Appendix 1. 

 P/O ratio, a fundamental parameter for understanding ATP synthesis, indicates the 

number of ATP molecules synthesized by oxidative phosphorylation for each pair of 

electrons [78]. The compartmentation of electron transport chain (ETC) is listed in Table 

3.1, and the overall ETC equation can be obtained by eliminating the common 

intermediates (see Equation 3.1 below). It suggests that a P/O ratio of 11/8 for this model 

(i.e., to generate 11 moles of ATP, it requires the consumption of 8 moles of oxygen atoms). 

This ratio is lower than the average P/O ratio, indicating relatively more electron acceptors 

are required during ATP generation [79]. Consequently, it impairs the growth of P. 

fluorescens under anaerobic conditions.  

The overall ETC can be shown as follows: 

11 ADP + 11 Phosphate + 8 NADH + 19⁡H+ + 4 O2 <=> 19 H2O + 11 ATP + 8⁡NAD
+

(3.

1) 
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Table 3.1 Compartmentation of electron transport chain in P. fluorescens 

e0, extracellular compartment; p0, periplasmic compartment; c0, cytosolic compartment. 

3.4.2 Central metabolism  

Central metabolic pathway of P. fluorescens has been analyzed in silico with 

glucose as the sole carbon source under both aerobic and anaerobic conditions. A complete 

list of reactions involved can be found in Appendix 2. Briefly, there are 231 enzyme-coded 

genes involved in glucose metabolism distributed into 10 subsystems, including amino 

acids and derivatives (34.72%), fatty acid metabolism (18.06%), and nucleosides 

metabolism (14.81%). The simulation result suggested that, under aerobic condition, when 

glucose uptake rates at 10 
𝑚𝑚𝑜𝑙

𝑔𝐷𝑊∙ℎ
, the biomass growth rate was 0.744 

𝑚𝑚𝑜𝑙

𝑔𝐷𝑊∙ℎ
. The biomass 

yield coefficient was 0.413 ⁡
𝑔⁡𝐵𝑖𝑜𝑚𝑎𝑠𝑠

𝑔⁡𝐺𝑙𝑢𝑐𝑜𝑠𝑒
. The glycolytic pathway for P. fluorescens is 

illustrated in Figure 3.2. Because of lack of the 6-phosphofructo-1-kinase, P. fluorescens 

SBW25 does not have the Embden-Meyerhof-Parnas (EMP) pathway while it has an 

additional Entner-Doudoroff (ED) pathway in glycolysis. There is only one ATP produced 

in ED pathway, which is half as much as the EMP pathway [80]. In ED pathway, KDPG 

is the only phosphorylated product from glucose and further cleavage into glyceraldehyde 

3-phosphate (G3P) and pyruvate. As pyruvate did not support the formation of ATP, ATP 

can only be produced from G3P. In contrast to ED pathway, there are two triose-phosphates, 

G3P and dihydroxyacetone phosphate, can produce ATP in EMP pathway [81]. This 

indicates that P. fluorescens SBW25 is relatively more energy dependent [80]. Moreover, 

the gluconeogenesis pathway was found. β-D-glucose 6-phosphate was formed in 

glycolysis from 6-phospho-D-glucono-1,5-lactone with 12.58% efflux. This kind of carbon 

cycle may enhance P. fluorescens to counteract environmental stress [82].  

Complex Reaction 

Complex I 2 NADH[c0] + 9 H+
[c0] + 2 Ubiquinone-8[c0] <=> 2 NAD+

[c0] + 7 H+
[p0] + 2 Ubiquinol-8[c0] 

Complex III Ubiquinol-8[c0] + 2 Cytochrome c3+
[c0] <=> 2 H+

[p0] + 2 Cytochrome c2+
[c0] + Ubiquinone-8[c0] 

Complex IV O2[c0] + 4 H+
[c0] + 4 Cytochrome c2+

[c0] <=> 2 H2O[c0] + 4 Cytochrome c3+
[c0] 

Complex V ADP[c0] + Phosphate[c0] + 4 H+
[p0] <=> H2O[c0] + ATP[c0] + 3 H+

[c0] 
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The anaerobic growth of P. fluorescens by using the nitrate as the terminal electron 

acceptor has been studied [83]. It was validated by the presence of nitrate reductase in the 

model. Either glucose or fructose can be used as the sole carbon source for P. fluorescens 

growth. In silico anaerobic growth with glucose as the sole carbon source was performed. 

As can be seen in Table 3.2, the biomass growth rate under anaerobic condition was 0.590 

𝑚𝑚𝑜𝑙

𝑔𝐷𝑊∙ℎ
 which was 79.3% of the biomass growth rate under aerobic condition when glucose 

uptake rate kept at 10 
𝑚𝑚𝑜𝑙

𝑔𝐷𝑊∙ℎ
. The phosphate, hydrogen and sulfate uptake rates under 

anaerobic growth condition were also 79.3% of the ones under aerobic growth condition. 

However, the nitrate uptake rate increased from 4.780 
𝑚𝑚𝑜𝑙

𝑔𝐷𝑊∙ℎ
 under aerobic growth 

condition to 64.121 
𝑚𝑚𝑜𝑙

𝑔𝐷𝑊∙ℎ
 under anaerobic condition while nitrite was produced with 

60.330 
𝑚𝑚𝑜𝑙

𝑔𝐷𝑊∙ℎ
 as the reduced product. This significant increase of the nitrate uptake rate 

under the anaerobic growth conditions was owing to that the nitrate was used as the electron 

acceptor instead of oxygen. The reduction of 1 mole of nitrate to nitrite can only utilize 1 

mole of electron while 1 mole of oxygen can consume 4 moles of electrons. The H2O and 

CO2 production rates are all increased under anaerobic condition than those under aerobic 

condition. It can be explained by, according to the simulation result, under the anaerobic 

growth conditions more carbon flux went to TCA cycle (10.419 
𝑚𝑚𝑜𝑙

𝑔𝐷𝑊∙ℎ
) in comparison to 

the one under the aerobic growth condition (8.105 
𝑚𝑚𝑜𝑙

𝑔𝐷𝑊∙ℎ
) while CO2 was one of the 

metabolites from TCA cycle. As the glucose was the sole carbon source, with limited 

glucose, a higher CO2 production rate would lead to a lower biomass growth rate and higher 

H2O production rate.  
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Table 3.2 Glucose metabolism under aerobic growth and anaerobic growth conditions 

 

 

Figure 3.2 ED pathway in glycolysis for P. fluorescens  

 Reactant (
𝐦𝐦𝐨𝐥

𝐠𝐃𝐖∙𝐡
) Product (

𝐦𝐦𝐨𝐥

𝐠𝐃𝐖∙𝐡
) 

Objective 

functions 

Glucose O2 Phosphate H+ Nitrate Sulfate H2O CO2 Biomass Nitrite 

Aerobic 10 22.538 0.762 5.094 4.780 0.157 39.811 35.684 0.744 - 

Anaerobic 10 - 0.604 4.041 64.121 0.124 43.749 40.711 0.590 60.330 
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3.4.3 β-ketoadipate pathway 

The carbon bonds on aromatic ring of PAH recalcitrant for bacteria [84]. Ring 

cleavage and ring fission are generally two step processes during aromatic biodegradation 

[85]. In ring cleavage, a dehydroxylate benzene ring is usually formed by mono-

deoxygenation step while the tricarboxylic acid cycle intermediate was produced in ring 

fission step [85]. The ketoadipate pathway is such a pathway within which the aromatic 

hydrocarbon rings are being cleaved. In this pathway, catechol plays a crucial role in the 

ring cleavage phase of the process.  

The metabolism of P. fluorescens using catechol as the sole carbon source was 

investigated under oxygen sufficient condition. The simulation condition and results are 

listed in Table 3.3. The detailed information can be seen in Appendix 3. There are 230 

reactions involved in catechol metabolism under aerobic growth condition includes amino 

acids and derivatives (36.7%), carbohydrates (15.9%), and protein metabolism (15.5%). 

Figure 3.3 illustrates the metabolic pathway of catechol by P. fluorescence. Aromatic ring 

in catechol was oxidized by catechol 1,2-dioxygenase to cis,cis-muconate. Even though 

catechol 1,2-dioxygenase contains 1.3 g atoms of iron per mole of protein, its activity is 

inhibited by FeSO4 and FeCl3 [86]. Acetyl-CoA and succinyl-CoA are formed in the ring 

fission step. Citrate and malonyl-CoA are two major derivatives from acetyl-CoA. 105% 

efflux entered TCA cycle through citrate while 32.7% efflux from malonyl-CoA which is 

the precursor for phospholipid. The biomass yield coefficient was 0.708 
𝑔⁡𝑏𝑖𝑜𝑚𝑎𝑠𝑠

𝑔⁡𝑐𝑎𝑡𝑒𝑐ℎ𝑜𝑙
.  

Table 3.3 In silico catechol metabolism with the objective to maximize biomass 

growth rate 

 Reactant (
𝐦𝐦𝐨𝐥

𝐠𝐃𝐖∙𝐡
) Product (

𝐦𝐦𝐨𝐥

𝐠𝐃𝐖∙𝐡
) 

Objective 

functions 
O2 Phosphate H+ Nitrate Sulfate Catechol H2O CO2 Biomass 

Maximization 

of biomass 

growth rate 

2.103 0.065 0.439 0.412 0.013 0.823 0.695 2.842 0.064 
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Figure 3.3 Catechol biodegradation pathway for P. fluorescens  
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3.4.4 Phenotype analysis 

During BTEX degradation, it has been reported that nitrate, sulfate and phosphate 

were important ingredients to accelerate the degradation process [22]. To correlate their 

relationship to the growth rate in terms of biomass of P. fluorescens during catechol 

degradation, phenotype analysis was performed. Some microorganisms may use nitrate and 

sulfate as the terminal electron acceptor [16]. However, during the anaerobic simulation, 

sulfate cannot be used as terminal electron acceptor for P. fluorescens. The biomass growth 

rate has a linear relationship with sulfate and phosphate uptakes rates with coefficient 0.218 

𝑚𝑚𝑜𝑙⁡𝑠𝑢𝑙𝑓𝑎𝑡𝑒

𝑔𝐷𝑊⁡𝑏𝑖𝑜𝑚𝑎𝑠𝑠
 and 1.068 

𝑚𝑚𝑜𝑙⁡𝑝ℎ𝑜𝑠𝑝ℎ𝑎𝑡𝑒

𝑔𝐷𝑊⁡𝑏𝑖𝑜𝑚𝑎𝑠𝑠⁡
, respectively. The effect of oxygen and nitrate 

uptake rates on specific biomass growth rate is illustrated in Figure 3.4. Under a specified 

biomass growth rate, an inverse correlation between oxygen uptake rate and nitrate uptake 

rate is observed. For example, to have a biomass growth rate of 0.23 h-1, the oxygen uptake 

rate should be greater than 3 
𝑚𝑚𝑜𝑙

𝑔𝐷𝑊∙ℎ
 while the nitrate uptake rate should keep at 5 

𝑚𝑚𝑜𝑙

𝑔𝐷𝑊∙ℎ
 or 

greater. Furthermore, there is no biomass synthesized without oxygen uptake. This 

indicates that oxygen is essential for biomass growth by using catechol as the sole carbon 

source. In the other word, catechol can not be used the sole carbon source for P. fluorescens 

under strict anaerobic condition.  
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Figure 3.4 Phenotype analysis for oxygen and nitrate uptake rates in specific 

biomass growth rate for P. fluorescens 

3.4.5 Model validation  

The biomass growth profile and catechol degradation profile are illustrated in 

Figure 3.5. Based on this figure, the maximum specific growth rate and the catechol uptake 

rate were estimated as 0.072 h-1 and 0.823 
𝑚𝑚𝑜𝑙

𝑔𝐷𝑊∙ℎ
 , respectively. The in silico growth of P. 

fluorescens was performed with the objective of maximizing biomass growth rate under a 

constant catechol uptake rate at 0.823 
𝑚𝑚𝑜𝑙

𝑔𝐷𝑊∙ℎ
. The reconstructed model predicts that the 

maximum specific growth rate is 0.064 h-1. The 90% consistency between the in vitro and 

in silico maximum specific growth rate indicates that the reported GSMM can be 

implemented to estimate the intracellular metabolic flux distribution within P. fluorescens 

when catechol is used as the sole carbon source. 
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Figure 3.5 Growth profile by using catechol as sole carbon source for P. fluorescens 

3.5 Conclusions 

The first GSMM for P. fluorescens SBW25 termed lCW1057 was reconstructed. 

This model elucidates that the ED pathway is the pathway used by P. fluorescens during 

glycolysis. The built-in β-ketoadipate pathway can portray catechol degradation. Catechol, 

being an essential metabolic intermediate during BTEX degradation, was used to 

experimentally demonstrate the validity of the model. There is 10% difference in term of 

maximum specific growth rate between in silico and in vitro data when catechol was used 

as the sole carbon source. This GSMM can be applied to guide future bacterial 

manipulation and medium optimization during PAH bioremediation by P. fluorescens.  
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4 Concluding remarks  

This thesis was prepared in manuscript-based format. The first manuscript reports 

the characterization of isolated P. fluorescens on the degradation of catechol. The second 

manuscript reports the reconstruction of a genome-scale metabolic model of the P. 

fluorescens.  

The objective of the first manuscript (Chapter 2) was to investigate effects of nitrate, 

sulfate and phosphate ions on catechol biodegradation by the isolated P. fluorescens strain. 

The experiment was planned based on a 23 factorial design. The experimental results 

suggest that dosing nitrate ions alone would impose catechol bioremediation performance 

by P. fluorescens. The interactive effects between nitrate and sulfate ions can enhance 

catechol bioremediation performance. Introducing phosphate ions can lead to a better 

catechol bioremediation performance. These observations may help to optimizing medium 

to accelerate catechol degradation by P. fluorescens.   

The reconstruction and analysis of the first GSMM for P. fluorescens was presented 

in the second manuscript (Chapter 3). The model was reconstructed by using bottom-up 

reconstruction strategy and validated by in vitro fermentation data. From the reconstructed 

model, glucose and catechol metabolism pathways were elucidated.  
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5 Recommendations and future works 

5.1 Recommendation for Chapter 2  

The effects of nutrients from seed medium on the bioremediation performance 

should be quantified and analyzed. It is speculated that the accumulation of byproducts 

during the denitrication process impaired the catechol bioremediation performance by P. 

fluorescens. Therefore, the concentrations of nitrate, nitrite, and ammonia need to be 

monitored during the course of biodegradation in order to identify the key inhibitory factors, 

lowering bioremediation performance. Furthermore, it is also postulated that organic acids 

were secreted when phosphate was involved. To validate this postulation, the pH value 

should be monitored during the catechol degradation process. To further understand 

bioremediation performance P. fluorescens, in situ or pilot plan size remediation 

investigation should be performed.  

5.2 Recommendation for Chapter 3 

 There is no experimental data available about the biomass constitution of P. 

fluorescens. Therefore, during the reconstruction of GSMM, the biomass was constructed 

based on the biomass information of P. putida. To reconstruct a more accurate GSMM of 

P. fluorescens, its biomass constitution is suggested to be determined experimentally.  
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Appendix  

Appendix A Biomass information 

The macromolecule composition of P. fluorescens was taken from reference or 

determined in this work. However, the sum of biomass composition is 1035 (mg/gDW). 

Therefore, the biomass composition was normalized with factor at 0.966.The biomass 

composition was simplified as equation shown below 

Biomass = 0.966 Protein + 0.966 DNA + 0.966 RNA + 0.966 Phospholipid + 0.966 

Peptidoglycan 

Table A.1 Macromolecule composition for P. fluorescens SBW 25 biomass 

*Q. Yuan, P. Li, T. Hao, F. Li, Z. Wang, X. Zhao, T. Chen and I. Goryanin, "Pathway-

Consensus Approach to Metabolic Network Reconstruction for Pseudomonas putida 

KT2440 by Systematic Comparison of Published Models," Plos One, 2017 

**S. Sohn, T. Kim, S. Lee and J. Park, "In silico genome-scale metabolic analysis of 

Pseudomonas putida KT2440 for polyhydroxyalkanoate synthesis, degradation of 

aromatics and anaerobic survival," Biotechnology Journal, vol. 5, pp. 739-750, 2010. 

The macromolecules information can be found in following tables.  

Table A.2 Composition for protein in P. fluorescens SBW 25 biomass 

Table A.3 Composition for DNA in P. fluorescens SBW 25 biomass 

Table A.4 Composition for RNA in P. fluorescens SBW 25 biomass 

Table A.5 Composition for phospholipid in P. fluorescens SBW 25 biomass 

Table A.6 Composition for peptidoglycan in P. fluorescens SBW 25 biomass 

  

Macromolecule 
Composition 

(mg/gDW) 
Comments 

Protein 696.68 Taken from Yuan et al. (2017)* 

DNA 36.05 Determined in this study 

RNA 206.10 Determined in this study 

Phospholipid 71.56 Taken from Sohn et al. (2010)** 

Peptidoglycan 24.60 Taken from Yuan et al. (2017)* 
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Table A.2 Composition for protein in P. fluorescens SBW 25 biomass * 

*Q. Yuan, P. Li, T. Hao, F. Li, Z. Wang, X. Zhao, T. Chen and I. Goryanin, "Pathway-

consensus approach to metabolic network reconstruction for Pseudomonas putida KT2440 

by systematic comparison of published models," Plos One, 2017. 

 

  

Coded name Component Composition 

(mmol/gDW) 

Molar mass 

(g/mol) 

Composition 

(mg/gDW) 

M_cpd00035_c0 Alanine 5.51×10-1 89.09 49.04 

M_cpd00051_c0 Arginine 2.34×10-1 246.20 57.56 

M_cpd00132_c0 Asparagine 2.24×10-1 132.12 29.57 

M_cpd00041_c0 Aspartate 2.24×10-1 133.11 29.79 

M_cpd00084_c0 Cysteine 0.81×10-1 121.16 9.80 

M_cpd00023_c0 Glutamate 2.58×10-1 147.13 37.93 

M_cpd00053_c0 Glutamine 2.58×10-1 146.14 37.67 

M_cpd00033_c0 Glycine 4.61×10-1 75.07 34.58 

M_cpd00119_c0 Histidine 0.09 155.15 13.95 

M_cpd00322_c0 Isoleucine 1.88×10-1 147.17 27.64 

M_cpd00107_c0 Leucine 4.35×10-1 131.17 56.99 

M_cpd00039_c0 Lysine 2.41×10-1 146.19 35.19 

M_cpd00060_c0 Methionine 1.37×10-1 149.21 20.41 

M_cpd00066_c0 Phenylalanine 1.83×10-1 165.19 30.20 

M_cpd00129_c0 Proline 2.18×10-1 115.13 25.07 

M_cpd00054_c0 Serine 2.36×10-1 105.09 24.78 

M_cpd00161_c0 Threonine 2.32×10-1 119.12 27.61 

M_cpd00065_c0 Tryptophan 0.51×10-1 204.23 10.40 

M_cpd00069_c0 Tyrosine 1.32×10-1 181.19 23.89 

M_cpd00156_c0 Valine 2.96×10-1 117.15 34.63 

M_cpd00002_c0 ATP 40 507.16 20280.40 

M_cpd00001_c0 H2O 40 18.02 720.80 

Product 

M_cpd00009_c0 phosphate 40 95.98 3839.20 

M_cpd00008_c0 ADP 40 427.18 17080.20 

M_Protein_c0 Protein 1000 
 

696.68 
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Table A.3 Composition for DNA in P. fluorescens SBW 25 biomass 

  

Coded name Component 
Composition 

(mmol/gDW) 

Molar mass 

(g/mol) 

Composition 

(mg/gDW) 

M_cpd00241_c0 dGTP 1.74×10-2 504.16 8.62 

M_cpd00356_c0 dCTP 1.74×10-2 467.13 7.94 

M_cpd00115_c0 dATP 1.13×10-2 491.16 5.40 

M_cpd00357_c0 dTTP 1.14×10-2 482.14 5.30 

M_cpd00002_co ATP 4.39 507.16 2225.73 

M_cpd00001_C0 H2O 4.39 18.02 79.02 

Product 

M_cpd00008_c0 ADP 4.39 427.18 1874.53 

M_cpd00009_c0 phosphate 4.39 95.98 421.44 

M_DNA_c0 DNA 1000  36.05 
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Table A.4 Composition for RNA in P. fluorescens SBW 25 biomass 

Coded name Component 
Composition  

(mmol/gDW) 

Molar mass 

(g/mol) 

Composition  

(mg/gDW) 

M_cpd00062_c0 UTP 8.13×10-2 484.12 39.41 

M_cpd00038_c0 GTP 1.24×10-1 522.16 64.98 

M_cpd00052_c0 CTP 1.00×10-1 482.13 48.51 

M_cpd00002_c0 ATP 1.35 507.16 684.45 

M_cpd00001_c0 H2O 1.25 18.02 22.53 

Product 

M_cpd00008_c0 ADP 1.25 427.18 533.75 

M_cpd00009_c0 phosphate 1.25 95.98 119.98 

M_RNA_c0 RNA 1000   206.10 
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Table A.5 Composition for phospholipid in P. fluorescens SBW 25 biomass ** 

Coded name Component 
Composition 

(mmol/gDW) 

Molar mass 

(g/mol) 

Composition 

(mg/gDW) 

M_Phosphatidylglycer

ol_c0 
Phosphatidylglycerol 4.76×10-3 3.91×103 18.60 

M_Phosphatidylethan

olamine_c0 

Phosphatidylethanola

mine 
1.21×10-3 3.47×104 41.87 

M_Cardiolipin_c0 Cardiolipin 1.87×10-4 5.95×104 11.10 

Product 

M_Lipid_c0 Lipid 1000   71.56 

**S. Sohn, T. Kim, S. Lee and J. Park, "In silico genome-scale metabolic analysis of 

Pseudomonas putida KT2440 for polyhydroxyalkanoate synthesis, degradation of 

aromatics and anaerobic survival," Biotechnology Journal, vol. 5, pp. 739-750, 2010. 
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Table A.6 Composition for peptidoglycan in P. fluorescens SBW 25 biomass* 

Coded name Component Composition (mmol/gDW) 

Molar 

mass 

(g/mol) 

Composition 

(mg/gDW) 

Ecoil_pep 

Peptidoglycan 

subunit of 

Escherichia 

coli 

2.48×10-2 990.97 24.60 

Product 

M_Peptidoglycan_c0 Peptidoglycan 1000.00  24.60 

* Q. Yuan, P. Li, T. Hao, F. Li, Z. Wang, X. Zhao, T. Chen and I. Goryanin, "Pathway-

consensus approach to metabolic network reconstruction for Pseudomonas putida KT2440 

by systematic comparison of published models," Plos One, 2017. 
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Appendix B P fluorescens glucose metabolism 

Table B.1 P. fluorescens in silico glucose metabolism Part 1 

Coded reaction id Reaction name 

Flux 

(mmol/gDW/h) 

Normalized flux 

(mmol/gDW/h) 

R_rxn10042_c0 F1_ATPase_c0 48.6931 486.9307 

R_rxn10113_c0 cytochrome_oxidase_bo3_ubiquinol_8__25_protons_c0 37.8481 378.4805 

R_rxn10122_c0 NADH_dehydrogenase_ubiquinone_8__35_protons_c0 22.0936 220.9357 

R_rxn08900_c0 FAD_dependent_malate_dehydrogenase_c0 15.7545 157.5448 

R_rxn00154_c0 pyruvate:NAD+ 2-oxidoreductase CoA-acetylating 12.3336 123.3362 

R_rxn08094_c0 2_Oxoglutarate_dehydrogenase_complex_c0 11.6032 116.0317 

R_rxn01476_c0 6_Phospho_D_glucono_1_5_lactone_lactonohydrolase_c0 11.2587 112.5875 

R_rxn03884_c0 

2_dehydro_3_deoxy_D_gluconate_6_phosphate_D_glycerald

ehyde_3_phosphate_lyase_c0 11.2149 112.1494 

R_rxn01477_c0 
6_Phospho_D_gluconate_hydro_lyase2_dehydro_3_deoxy_6_
phospho_D_gluconate_forming_c0 11.2149 112.1494 

R_rxn00216_c0 ATP_D_glucose_6_phosphotransferase_c0 10.0000 100.0000 

R_rxn00604_c0 D_glucose_6_phosphate_NADP_plus__1_oxidoreductase_c0 10.0000 100.0000 

R_rxn00001_c0 diphosphate_phosphohydrolase_c0 9.8026 98.0258 

R_rxn00257_c0 
acetyl_CoA_oxaloacetate_C_acetyltransferase_pro_S_carbox
ymethyl_forming__ADP_phosphorylating_c0 8.1054 81.0541 

R_rxn00974_c0 citrate_hydro_lyase_cis_aconitate_forming_c0 8.1054 81.0541 

R_rxn01388_c0 isocitrate_hydro_lyase_cis_aconitate_forming_c0 8.1054 81.0541 

R_rxn00198_c0 isocitrate_transfer 8.1054 81.0541 

R_rxn00182_c0 L_glutamate_NAD_plus__oxidoreductase_deaminating_c0 7.9061 79.0612 

R_rxn10806_c0 

cytochrome_oxidase_bd_menaquinol_8__2_protons_periplas

m_c0 6.6325 66.3249 

R_rxn00097_c0 ATP_AMP_phosphotransferase_c0 5.1771 51.7711 

R_rxn00187_c0 L_Glutamate_ammonia_ligase_ADP_forming_c0 4.9410 49.4105 
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R_rxn10121_c0 Nitrate_reductase_Menaquinol_8_periplasm_c0 4.7798 47.7983 

R_rxn05627_c0 nitrate_transport_in_via_proton_symport_c0 4.7798 47.7983 

R_rxn00770_c0 ATP_D_ribose_5_phosphate_diphosphotransferase_c0 4.5438 45.4377 

R_rxn03137_c0 

10_Formyltetrahydrofolate_5_phosphoribosyl_5_amino_4_im

idazolecarboxamide_formyltransferase_c0 4.2758 42.7577 

R_rxn02473_c0 

D_erythro_1_Imidazol_4_ylglycerol_3_phosphate_hydro_lyas

e_c0 4.2758 42.7577 

R_rxn03175_c0 
N_5_Phospho_D_ribosylformimino_5_amino_1__5_phospho
_D_ribosyl_4_imidazolecarboxamide_ketol_isomerase_c0 4.2758 42.7577 

R_rxn00859_c0 L_Histidinol_NAD_plus__oxidoreductase_c0 4.2758 42.7577 

R_rxn01211_c0 5_10_Methenyltetrahydrofolate_5_hydrolase_decyclizing_c0 4.2758 42.7577 

R_rxn02160_c0 L_Histidinol_phosphate_phosphohydrolase_c0 4.2758 42.7577 

R_rxn02835_c0 1_5_phospho_D_ribosyl_AMP_1_6_hydrolase_c0 4.2758 42.7577 

R_rxn02834_c0 Phosphoribosyl_ATP_pyrophosphohydrolase_c0 4.2758 42.7577 

R_rxn03135_c0 R04558_c0 4.2758 42.7577 

R_rxn00789_c0 

1_5_phospho_D_ribosyl_ATP_diphosphate_phospho_alpha_

D_ribosyl_transferase_c0 4.2758 42.7577 

R_rxn00237_c0 ATP_GDP_phosphotransferase_c0 4.2633 42.6327 

R_rxn01642_c0 4_imidazolone_5_propanoate_amidohydrolase_c0 4.2111 42.1109 

R_rxn01640_c0 N_Formimino_L_glutamate_iminohydrolase_c0 4.2111 42.1109 

R_rxn00867_c0 L_histidine_ammonia_lyase_urocanate_forming_c0 4.2111 42.1109 

R_rxn00800_c0 

N6_1_2_dicarboxyethylAMP_AMP_lyase_fumarate_forming

_c0 4.1740 41.7397 

R_rxn00838_c0 IMP_L_aspartate_ligase_GDP_forming_c0 4.1740 41.7397 

R_rxn05465_c0 Malonyl_CoA_acyl_carrier_protein_S_malonyltransferase_c0 2.7351 27.3513 

R_rxn00568_c0 NIRBD_RXNc_c0 2.6785 26.7846 

R_rxn00569_c0 Nitrite_reductase_NADPH_c0 2.1014 21.0138 

R_rxn00785_c0 

D_Fructose_6_phosphate_D_glyceraldehyde_3_phosphate_gl

ycolaldehyde_transferase_c0 1.6148 16.1475 

R_rxn01200_c0 

Sedoheptulose_7_phosphate_D_glyceraldehyde_3_phosphate

_glycolaldehyde_transferase_c0 1.3517 13.5171 

R_rxn01975_c0 

beta_D_Glucose_6_phosphate_NADP_plus__1_oxoreductase

_c0 1.2587 12.5875 

P_Acid_8 P_Acid8 0.7187 7.1870 

R_rxn01102_c0 ATP_R_glycerate_3_phosphotransferase_c0 0.7102 7.1022 

R_rxn00420_c0 O_phospho_L_serine_phosphohydrolase_c0 0.7102 7.1022 

R_rxn01101_c0 3_Phospho_D_glycerate_NAD_plus__2_oxidoreductase_c0 0.7102 7.1022 

R_rxn00781_c0 

D_glyceraldehyde_3_phosphate_NAD_plus__oxidoreductase

_phosphorylating_c0 0.7102 7.1022 

R_rxn00148_c0 ATP_pyruvate_2_O_phosphotransferase_c0 0.5437 5.4372 

Malate_buildin pyruvate_to_oxobuanoate 0.5254 5.2537 

R_rxn05329_c0 (3R)-3-Hydroxybutanoyl-[acyl-carrier-protein] hydro-lyase 0.4559 4.5586 

R_rxn05334_c0 (3R)-3-Hydroxybutanoyl-[acyl-carrier-protein] hydro-lyase 0.4559 4.5586 

R_rxn05330_c0 (3R)-3-Hydroxybutanoyl-[acyl-carrier-protein] hydro-lyase 0.4559 4.5586 
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R_rxn05322_c0 

Butyryl-[acyl-carrier protein]:malonyl-CoA C-

acyltransferase(decarboxylating  oxoacyl- and enoyl-reducing) 0.4559 4.5586 

R_rxn05326_c0 

Hexanoyl-[acyl-carrier protein]:malonyl-CoA C-

acyltransferase(decarboxylating  oxoacyl- and enoyl-reducing) 0.4559 4.5586 

R_rxn05325_c0 
Octanoyl-[acyl-carrier protein]:malonyl-CoA C-
acyltransferase(decarboxylating  oxoacyl- and enoyl-reducing)  0.4559 4.5586 

R_rxn05349_c0 acetyl_CoA_acyl_carrier_protein_S_acetyltransferase_c0 0.4559 4.5586 

R_rxn05346_c0 
butyryl_acyl_carrier_protein_malonyl_acyl_carrier_protein_C
_acyltransferase_decarboxylating_c0 0.4559 4.5586 

R_rxn05350_c0 

hexanoyl_acyl_carrier_protein_malonyl_acyl_carrier_protein_

C_acyltransferase_decarboxylating_c0 0.4559 4.5586 

R_rxn05347_c0 

Acyl_acyl_carrier_protein_malonyl_acyl_carrier_protein_C_a

cyltransferase_decarboxylating_c0 0.4559 4.5586 

R_rxn05343_c0 
Octanoyl_acyl_carrier_protein_malonyl_acyl_carrier_protein_
C_acyltransferase_decarboxylating_c0 0.4559 4.5586 

R_rxn00904_c0 L_Valine_pyruvate_aminotransferase_c0 0.4489 4.4890 

R_rxn05333_c0 (3R)-3-Hydroxybutanoyl-[acyl-carrier-protein] hydro-lyase 0.4148 4.1483 

R_rxn05327_c0 
Decanoyl-[acyl-carrier protein]:malonyl-CoA C-
acyltransferase(decarboxylating  oxoacyl- and enoyl-reducing) 0.4148 4.1483 

R_rxn05348_c0 

Decanoyl_acyl_carrier_protein_malonyl_acyl_carrier_protein

_C_acyltransferase_decarboxylating_c0 0.4148 4.1483 

R_rxn00747_c0 D_glyceraldehyde_3_phosphate_aldose_ketose_isomerase_c0 0.4057 4.0568 

R_rxn05324_c0 
Dodecanoyl-[acyl-carrier protein]:malonyl-CoA C-
acyltransferase(decarboxylating  oxoacyl- and enoyl-reducing) 0.3875 3.8748 

R_rxn03240_c0 S_3_Hydroxyhexadecanoyl_CoA_hydro_lyase_c0 0.3875 3.8748 

R_rxn05351_c0 

Tetradecanoyl-[acyl-carrier protein]:malonyl-CoA C-

acyltransferase(decarboxylating  oxoacyl- and enoyl-reducing 

and thioester-hydrolysing) 0.3875 3.8748 

R_rxn02804_c0 myristoyl_CoA_acetylCoA_C_myristoyltransferase_c0 0.3875 3.8748 

R_rxn05457_c0 Acyl_carrier_protein_acetyltransferase_c0 0.3875 3.8748 
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R_rxn05331_c0 (3R)-3-Hydroxybutanoyl-[acyl-carrier-protein] hydro-lyase 0.3875 3.8748 

R_rxn05345_c0 

dodecanoyl_acyl_carrier_protein_malonyl_acyl_carrier_protei

n_C_acyltransferase_decarboxylating_c0 0.3875 3.8748 

R_rxn05335_c0 (3R)-3-Hydroxypalmitoyl-[acyl-carrier-protein] hydro-lyase 0.3875 3.8748 

R_rxn05732_c0 acyl_CoA_dehydrogenase_hexadecanoyl_CoA_c0 0.3875 3.8748 

R_rxn00114_c0 ATP_carbamate_phosphotransferase_c0 0.3195 3.1953 

R_rxn01208_c0 R01652_c0 0.3126 3.1263 

R_rxn02789_c0 2_Isopropylmalate_hydro_lyase_c0 0.3126 3.1263 

R_rxn00902_c0 

acetyl_CoA_3_methyl_2_oxobutanoate_C_acetyltransferase_t

hioester_hydrolysing__carboxymethyl_forming_c0 0.3126 3.1263 

R_rxn03062_c0 3_Isopropylmalate_NAD_plus__oxidoreductase_c0 0.3126 3.1263 

R_rxn02213_c0 3_Dehydroquinate_hydro_lyase_c0 0.2630 2.6304 

R_rxn01255_c0 

5_O_1_Carboxyvinyl_3_phosphoshikimate_phosphate_lyase_

chorismate_forming_c0 0.2630 2.6304 

R_rxn01739_c0 ATP_shikimate_3_phosphotransferase_c0 0.2630 2.6304 

R_rxn02212_c0 

2_Dehydro_3_deoxy_D_arabino_heptonate_7_phosphate_pho

sphate_lyase_cyclyzing_c0 0.2630 2.6304 

R_rxn01332_c0 

Phosphoenolpyruvate_D_erythrose_4_phosphate_C_1_carbox

yvinyltransferase_phosphate_hydrolysing__2_carboxy_2_oxo

ethyl_forming_c0 0.2630 2.6304 

R_rxn02476_c0 

Phosphoenolpyruvate_3_phosphoshikimate_5_O_1_carboxyvi

nyl_transferase_c0 0.2630 2.6304 

R_rxn00364_c0 ATP_CMP_phosphotransferase_c0 0.2279 2.2793 

R_rxn01256_c0 Chorismate_pyruvatemutase_c0 0.2264 2.2639 

R_rxn00409_c0 ATP_CDP_phosphotransferase_c0 0.2154 2.1542 

R_rxn05289_c0 NADPH_oxidized_thioredoxin_oxidoreductase_c0 0.1980 1.9800 

lysine_formation lysine4 0.1908 1.9084 

R_rxn00790_c0 
5_phosphoribosylamine_diphosphate_phospho_alpha_D_ribos
yltransferase_glutamate_amidating_c0 0.1818 1.8179 

R_rxn00117_c0 ATP_UDP_phosphotransferase_c0 0.1784 1.7843 

R_rxn00119_c0 ATP_UMP_phosphotransferase_c0 0.1690 1.6899 

R_rxn01434_c0 L_Citrulline_L_aspartate_ligase_AMP_forming_c0 0.1682 1.6818 

R_rxn01917_c0 ATP_N_acetyl_L_glutamate_5_phosphotransferase_c0 0.1682 1.6818 

R_rxn00192_c0 acetyl_CoA_L_glutamate_N_acetyltransferase_c0 0.1682 1.6818 

R_rxn00469_c0 N2_Acetyl_L_ornithine_amidohydrolase_c0 0.1682 1.6818 

R_rxn00802_c0 

2_Nomega_L_argininosuccinate_arginine_lyase_fumarate_for

ming_c0 0.1682 1.6818 

R_rxn02465_c0 
N_acetyl_L_glutamate_5_semialdehyde_NADP_plus__5_oxi
doreductase_phosphrylating_c0 0.1682 1.6818 
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R_rxn01019_c0 Carbamoyl_phosphate_L_ornithine_carbamoyltransferase_c0 0.1682 1.6818 

R_rxn00416_c0 L_aspartate_L_glutamine_amido_ligase_AMP_forming_c0 0.1610 1.6099 

R_rxn05256_c0 

AMP_sulfite_thioredoxin_disulfide_oxidoreductaseadenosine

_5_phosphosulfate_forming_c0 0.1567 1.5668 

R_rxn00379_c0 ATP_sulfate_adenylyltransferase_c0 0.1567 1.5668 

R_rxn05651_c0 sulfate_transport_in_via_proton_symport_c0 0.1567 1.5668 

R_rxn01360_c0  (S)-dihydroorotate:fumarate oxidoreductase 0.1514 1.5135 

R_rxn00710_c0 orotidine_5_phosphate_carboxy_lyase_UMP_forming_c0 0.1514 1.5135 

R_rxn00205_c0 glutathione_hydrogen_peroxide_oxidoreductase_c0 0.1514 1.5135 

R_rxn01018_c0 carbamoyl_phosphate_L_aspartate_carbamoyltransferase_c0 0.1514 1.5135 

R_rxn01362_c0 

Orotidine_5_phosphate_diphosphate_phospho_alpha_D_ribos

yl_transferase_c0 0.1514 1.5135 

R_rxn12017_c0 R08161 0.1459 1.4587 

R_rxn08043_c0 

pyruvate:2-oxobutanoate acetaldehydetransferase 

(decarboxylating) 0.1351 1.3512 

R_rxn03436_c0 
(S)-2-Aceto-2-hydroxybutanoate:NADP+ oxidoreductase 
(isomerizing) 0.1351 1.3512 

R_rxn03435_c0 

(R)-2,3-Dihydroxy-3-methylpentanoate:NADP+ 

oxidoreductase (isomerizing) 0.1351 1.3512 

R_rxn03437_c0 R_2_3_Dihydroxy_3_methylpentanoate_hydro_lyase_c0 0.1351 1.3512 

R_rxn01575_c0 L_Isoleucine_2_oxoglutarate_aminotransferase_c0 0.1351 1.3512 

R_rxn00737_c0 L_threonine_ammonia_lyase_2_oxobutanoate_forming_c0 0.1351 1.3512 

R_rxn08016_c0 palmitate-[acyl-carrier-protein] ligase 0.1322 1.3220 

R_rxn10202_c0 glycerol_3_phosphate__acyl_coa_acyltransferase_16_0_c0 0.1322 1.3220 

R_rxn08799_c0 

Lysophospholipase_L1_2_acylglycerophosphotidate__n_C16

_0_periplasm_c0 0.1322 1.3220 

R_rxn01000_c0 
prephenate_hydro_lyase_decarboxylating_phenylpyruvate_for
ming_c0 0.1315 1.3152 

R_rxn07576_c0 3-oxoacyl-[acyl-carrier-protein] synthase 0.1094 1.0941 

R_rxn07577_c0 3-oxoacyl-[acyl-carrier-protein] reductase 0.1094 1.0941 

R_rxn07578_c0 R07764_c0 0.1094 1.0941 

R_rxn00239_c0 ATP_GMP_phosphotransferase_c0 0.1018 1.0180 

R_rxn00834_c0 IMP_NAD_plus__oxidoreductase_c0 0.1018 1.0180 

xanthosine_build XMP 0.1018 1.0180 

R_rxn01303_c0 Acetyl_CoA_L_homoserine_O_acetyltransferase_c0 0.0985 0.9846 

R_rxn00337_c0 ATP_L_aspartate_4_phosphotransferase_c0 0.0985 0.9846 

R_rxn00952_c0 

O_acetyl_L_homoserine_hydrogen_sulfide_S_3_amino_3_car

boxypropyltransferase_c0 0.0985 0.9846 

R_rxn00693_c0 

5_Methyltetrahydrofolate_L_homocysteine_S_methyltransfer

ase_c0 0.0985 0.9846 

R_rxn01643_c0 

L_Aspartate_4_semialdehyde_NADP_plus__oxidoreductase_

phosphorylating_c0 0.0985 0.9846 

R_rxn01269_c0 Prephenate_NADP_plus__oxidoreductasedecarboxylating_c0 0.0949 0.9487 

R_rxn00410_c0 UTP_ammonia_ligase_ADP_forming_c0 0.0847 0.8466 
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R_rxn00907_c0 

5_10_methylenetetrahydrofolate_NADP_plus__oxidoreductas

e_c0 0.0647 0.6468 

R_rxn01115_c0 

6_phospho_D_gluconate_NADP_plus__2_oxidoreductase_de

carboxylating_c0 0.0438 0.4381 

R_rxn02507_c0 
1_2_Carboxyphenylamino_1_deoxy_D_ribulose_5_phosphate
_carboxy_lyasecyclizing_c0 0.0367 0.3665 

R_rxn01964_c0 

L_serine_hydro_lyase_adding_1_C_indol_3_ylglycerol_3_ph

osphate_L_tryptophan_and_glyceraldehyde_3_phosphate_for
ming_c0 0.0367 0.3665 

R_rxn02508_c0 

N_5_Phospho_beta_D_ribosylanthranilate_ketol_isomerase_c

0 0.0367 0.3665 

R_rxn00726_c0 
chorismate_pyruvate_lyase_amino_accepting_anthranilate_for
ming_c0 0.0367 0.3665 

R_rxn00791_c0 

N_5_Phospho_D_ribosylanthranilate_pyrophosphate_phospho

ribosyl_transferase_c0 0.0367 0.3665 

R_rxn03638_c0 
Acetyl_CoA_D_glucosamine_1_phosphate_N_acetyltransfera
se_c0 0.0353 0.3527 

R_rxn00283_c0 alanine_racemase_c0 0.0353 0.3527 

R_rxn00555_c0 

L_glutamine_D_fructose_6_phosphate_isomerase_deaminatin

g_c0 0.0353 0.3527 

R_rxn00293_c0 

UTP_N_acetyl_alpha_D_glucosamine_1_phosphate_uridylylt

ransferase_c0 0.0353 0.3527 

R_rxn00423_c0 acetyl_CoA_L_serine_O_acetyltransferase_c0 0.0352 0.3522 

R_rxn00649_c0 
O3_acetyl_L_serine_hydrogen_sulfide_2_amino_2_carboxyet
hyltransferase_c0 0.0352 0.3522 

R_rxn05909_c0 

L_serine_hydro_lyase_adding_hydrogen_sulfide__L_cysteine

_forming_c0 0.0230 0.2300 

R_rxn00193_c0 glutamate_racemase_c0 0.0176 0.1763 

R_rxn00851_c0 D_alanine_D_alanine_ligase_ADP_forming_c0 0.0176 0.1763 

R_rxn02008_c0 
UDP_N_acetylmuramoyl_L_alanine_D_glutamate_ligaseADP
_forming_c0 0.0176 0.1763 

R_rxn02286_c0 UDP_N_acetylmuramate_L_alanine_ligase_ADP_forming_c0 0.0176 0.1763 

R_rxn02011_c0 

UDP_N_acetylmuramoyl_L_alanyl_D_glutamate_L_meso_2_

6_diaminoheptanedioate_gamma_ligase_ADP_forming_c0 0.0176 0.1763 

R_rxn03901_c0 undecaprenyl_diphosphate_phosphohydrolase_c0 0.0176 0.1763 

R_rxn00461_c0 

Phosphoenolpyruvate_UDP_N_acetyl_D_glucosamine_1_car

boxyvinyl_transferase_c0 0.0176 0.1763 

R_rxn03408_c0 

UDP_N_acetyl_D_glucosamine_undecaprenyl_diphospho_N_
acetylmuramoyl_L_alanyl_gamma_D_glutamyl_meso_2_6_di

aminopimeloyl_D_alanyl_D_alanine_4_beta_N_acetylglucosa

minlytransferase_c0 0.0176 0.1763 

R_rxn03164_c0 

UDP_N_acetylmuramoyl_L_alanyl_D_glutamyl_meso_2_6_d

iaminoheptanedioate_D_alanyl_D_alanine_ligaseADP_formin

g_c0 0.0176 0.1763 

R_rxn03904_c0 

UDP_N_acetylmuramoyl_L_alanyl_gamma_D_glutamyl_mes
o_2_6_diaminopimeloyl_D_alanyl_D_alanine_undecaprenyl_

phosphate_phospho_N_acetylmuramoyl_pentapeptide_transfe

rase_c0 0.0176 0.1763 

R_rxn01673_c0 ATP_dCDP_phosphotransferase_c0 0.0125 0.1251 

R_rxn01353_c0 ATP_dGDP_phosphotransferase_c0 0.0125 0.1251 

R_rxn05233_c0 

2_Deoxyguanosine_5_diphosphate_oxidized_thioredoxin_2_o

xidoreductase_c0 0.0125 0.1251 

R_rxn06076_c0 

2_Deoxycytidine_diphosphate_oxidized_thioredoxin_2_oxido

reductase_c0 0.0125 0.1251 

R_rxn01520_c0 
5_10_Methylenetetrahydrofolate_dUMP_C_methyltransferase
_c0 0.0082 0.0819 

R_rxn01512_c0 ATP_dTDP_phosphotransferase_c0 0.0082 0.0819 

R_rxn01513_c0 ATP_dTMP_phosphotransferase_c0 0.0082 0.0819 

R_rxn06075_c0 
2_Deoxyuridine_5_diphosphate_oxidized_thioredoxin_2_oxid
oreductase_c0 0.0082 0.0819 

R_rxn05231_c0 

2_Deoxyadenosine_5_diphosphate_oxidized_thioredoxin_2_o

xidoreductase_c0 0.0081 0.0812 
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R_rxn00839_c0 ATP_dADP_phosphotransferase_c0 0.0081 0.0812 

P_Acid_2 P_Acid2 0.0046 0.0456 

P_Acid_1 P_Acid 0.0046 0.0456 

P_Acid_3 P_Acid3 0.0036 0.0355 

P_Acid_4 P_Acid4 0.0036 0.0355 

P_Acid_5 P_Acid5 0.0009 0.0087 

P_Acid_6 P_Acid6 0.0009 0.0087 

P_Acid_7 P_Acid7 0.0001 0.0013 

R_rxn01517_c0 ATP_dUMP_phosphotransferase_c0 -0.0082 -0.0819 

R_rxn00686_c0 5_6_7_8_tetrahydrofolate_NADP_plus__oxidoreductase_c0 -0.0082 -0.0819 

R_rxn00313_c0 

meso_2_6_diaminoheptanedioate_carboxy_lyase_L_lysine_fo

rming_c0 -0.0176 -0.1763 

R_rxn02285_c0 UDP_N_acetylmuramate_NADP_plus__oxidoreductase_c0 -0.0176 -0.1763 

R_rxn01485_c0 D_Glucosamine_1_phosphate_1_6_phosphomutase_c0 -0.0353 -0.3527 

R_rxn00527_c0 L_tyrosine_2_oxoglutarate_aminotransferase_c0 -0.0949 -0.9487 

R_rxn04954_c0 5_methyltetrahydrofolate_NAD_plus__oxidoreductase_c0 -0.0985 -0.9846 

R_rxn01301_c0 L_Homoserine_NAD_plus__oxidoreductase_c0 -0.0985 -0.9846 

R_rxn00493_c0 L_Phenylalanine_2_oxoglutarate_aminotransferase_c0 -0.1315 -1.3152 

R_rxn05332_c0 (3R)-3-Hydroxypalmitoyl-[acyl-carrier-protein] hydro-lyase -0.1459 -1.4587 

R_rxn00086_c0 glutathione_NADP_plus__oxidoreductase_c0 -0.1514 -1.5135 

R_rxn01465_c0 S_dihydroorotate_amidohydrolase_c0 -0.1514 -1.5135 

R_rxn00503_c0 S_1_pyrroline_5_carboxylate_NAD_plus__oxidoreductase_c0 -0.1567 -1.5668 

R_rxn00623_c0 hydrogen_sulfide_NADP_plus__oxidoreductase_c0 -0.1567 -1.5668 

R_rxn00929_c0 L_Proline_NAD_plus__5_oxidoreductase_c0 -0.1567 -1.5668 

R_rxn01637_c0 N2_Acetyl_L_ornithine_2_oxoglutarate_aminotransferase_c0 -0.1682 -1.6818 

R_rxn15112_c0 Ribose-5-phosphate:ammonia ligase (ADP-forming) -0.1818 -1.8179 

R_rxn01973_c0 

N_Succinyl_LL_2_6_diaminoheptanedioate_amidohydrolase_

c0 -0.1908 -1.9084 

R_rxn00908_c0 glycine_synthase_c0 -0.2309 -2.3092 

R_rxn05458_c0 Acyl_carrier_protein_acetyltransferase_c0 -0.2553 -2.5528 

R_rxn01740_c0 Shikimate_NADP_plus__3_oxidoreductase_c0 -0.2630 -2.6304 

R_rxn00506_c0 Acetaldehyde_NAD_plus__oxidoreductase_c0 -0.3019 -3.0185 

R_rxn00541_c0 L_threonine_acetaldehyde_lyase_glycine_forming_c0 -0.3019 -3.0185 

R_rxn00806_c0 L_Leucine_2_oxoglutarate_aminotransferase_c0 -0.3126 -3.1263 

R_rxn02811_c0 3_Isopropylmalate_hydro_lyase_c0 -0.3126 -3.1263 

R_rxn03239_c0 

S_3_Hydroxyhexadecanoyl_CoA_NAD_plus__oxidoreductas

e_c0 -0.3875 -3.8748 

R_rxn05342_c0 

3R_3_Hydroxytetradecanoyl_acyl_carrier_protein_NADP_plu

s__oxidoreductase_c0 -0.3875 -3.8748 

R_rxn00692_c0 
5_10_Methylenetetrahydrofolate_glycine_hydroxymethyltrans
ferase_c0 -0.4023 -4.0225 

R_rxn00611_c0 sn_Glycerol_3_phosphate_NAD_plus__2_oxidoreductase_c0 -0.4057 -4.0568 

R_rxn05340_c0 

3R_3_Hydroxydodecanoyl_acyl_carrier_protein_NADP_plus

__oxidoreductase_c0 -0.4148 -4.1483 

R_rxn05339_c0 

3R_3_Hydroxybutanoyl_acyl_carrier_protein_NADP_plus__o

xidoreductase_c0 -0.4559 -4.5586 
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R_rxn05338_c0 

3R_3_Hydroxydecanoyl_acyl_carrier_protein_NADP_plus__

oxidoreductase_c0 -0.4559 -4.5586 

R_rxn05341_c0 
3R_3_Hydroxyoctanoyl_acyl_carrier_protein_NADP_plus__o
xidoreductase_c0 -0.4559 -4.5586 

R_rxn05337_c0 

3R_3_Hydroxyhexanoyl_acyl_carrier_protein_NADP_plus__

oxidoreductase_c0 -0.4559 -4.5586 

R_rxn00903_c0 L_Valine_2_oxoglutarate_aminotransferase_c0 -0.6616 -6.6163 

oxaloacetate_buildin 2pdg to 13bdg -0.7102 -7.1022 

R_rxn08647_c0 ATP_R_glycerate_2_phosphotransferase_c0 -0.7102 -7.1022 

R_rxn02914_c0 3_Phosphoserine_2_oxoglutarate_aminotransferase_c0 -0.7102 -7.1022 

R_rxn02380_c0 beta_D_Glucose_6_phosphate_ketol_isomerase_c0 -1.2587 -12.5875 

R_rxn01333_c0 

sedoheptulose_7_phosphate_D_glyceraldehyde_3_phosphate_

glyceronetransferase_c0 -1.3517 -13.5171 

R_rxn00258_c0 Malonyl_CoA_pyruvate_carboxytransferase_c0 -2.7351 -27.3513 

R_rxn01116_c0 D_Ribulose_5_phosphate_3_epimerase_c0 -2.9665 -29.6646 

R_rxn00777_c0 D_ribose_5_phosphate_aldose_ketose_isomerase_c0 -3.0103 -30.1027 

R_rxn02085_c0 4_5_Dihydro_4_oxo_5_imidazolepropanoate_hydro_lyase_c0 -4.2111 -42.1109 

R_rxn01652_c0 
S_Aminomethyldihydrolipoylprotein_6S_tetrahydrofolate_am
inomethyltransferase_ammonia_forming_c0 -4.2111 -42.1109 

R_rxn02283_c0 

5_Formyltetrahydrofolate_L_glutamate_N_formiminotransfer

ase_c0 -4.2111 -42.1109 

R_rxn04043_c0 ADP_D_fructose_6_phosphate_1_phosphotransferase_c0 -4.2605 -42.6047 

R_rxn00786_c0 

D_fructose_1_6_bisphosphate_D_glyceraldehyde_3_phosphat

e_lyase_glycerone_phosphate_forming_c0 -4.2605 -42.6047 

R_rxn02320_c0 

5_Amino_2_oxopentanoate_2_oxoglutarate_aminotransferase

_c0 -4.2758 -42.7577 

R_rxn00832_c0 IMP_1_2_hydrolase_decyclizing_c0 -4.2758 -42.7577 

R_rxn00260_c0 L_Aspartate_2_oxoglutarate_aminotransferase_c0 -4.9139 -49.1394 

R_rxn08527_c0 fumarate_reductase_c0 -11.4123 -114.1233 

R_rxn00285_c0 Succinate_CoA_ligase_ADP_forming_c0 -11.6032 -116.0317 

R_rxn00799_c0 S_malate_hydro_lyase_fumarate_forming_c0 -15.7545 -157.5448 
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Table B.1 P. fluorescens in silico glucose metabolism Part 2 

Coded 

reactio

n id Reaction 

R_rxn1
0042_c

0 ADP[c0] + Phosphate[c0] + (4) H+[e0] <=> H2O[c0] + ATP[c0] + (3) H+[c0]  

R_rxn1

0113_c
0 (0.5) O2[c0] + (2.5) H+[c0] + Ubiquinol-8[c0] => H2O[c0] + (2.5) H+[e0] + Ubiquinone-8[c0]  

R_rxn1

0122_c
0 NADH[c0] + (4.5) H+[c0] + Ubiquinone-8[c0] <=> NAD[c0] + (3.5) H+[e0] + Ubiquinol-8[c0]  

R_rxn0

8900_c
0 L-Malate[c0] + Ubiquinone-8[c0] => Oxaloacetate[c0] + Ubiquinol-8[c0]  

R_rxn0

0154_c

0 NAD + CoA + Pyruvate => NADH + CO2 + Acetyl-CoA  

R_rxn0

8094_c

0 NAD[c0] + CoA[c0] + 2-Oxoglutarate[c0] <=> NADH[c0] + CO2[c0] + Succinyl-CoA[c0] 

R_rxn0
1476_c

0 H2O[c0] + 6-phospho-D-glucono-1-5-lactone[c0] => H+[c0] + 6-Phospho-D-gluconate[c0] 

R_rxn0
3884_c

0 2-Keto-3-deoxy-6-phosphogluconate[c0] <=> Pyruvate[c0] + Glyceraldehyde3-phosphate[c0] 

R_rxn0

1477_c
0 6-Phospho-D-gluconate[c0] => H2O[c0] + 2-Keto-3-deoxy-6-phosphogluconate[c0] 

R_rxn0

0216_c
0 ATP[c0] + D-Glucose[c0] <=> ADP[c0] + H+[c0] + D-glucose-6-phosphate[c0] 

R_rxn0

0604_c

0 NADP[c0] + D-glucose-6-phosphate[c0] <=> NADPH[c0] + H+[c0] + 6-phospho-D-glucono-1-5-lactone[c0] 

R_rxn0

0001_c

0 H2O[c0] + PPi[c0] => (2) Phosphate[c0] + H+[c0] 

R_rxn0
0257_c

0 ATP[c0] + CoA[c0] + Citrate[c0] <=> ADP[c0] + Phosphate[c0] + Acetyl-CoA[c0] + Oxaloacetate[c0] 

R_rxn0
0974_c

0 Citrate[c0] <=> H2O[c0] + cis-Aconitate[c0] 

R_rxn0
1388_c

0 Isocitrate[c0] <=> H2O[c0] + cis-Aconitate[c0] 

R_rxn0

0198_c
0 NAD + Isocitrate => NADH + CO2 + 2-oxoglutarate 

R_rxn0

0182_c
0 NADH[c0] + NH3[c0] + 2-Oxoglutarate[c0] + H+[c0] <=>  H2O[c0] + NAD[c0] + L-Glutamate[c0] 

R_rxn1

0806_c

0 (0.5) O2[c0] + (2) H+[c0] + Menaquinol 8[c0] => H2O[c0] + (2) H+[e0] + Menaquinone 8[c0]  

R_rxn0

0097_c

0 ATP[c0] + AMP[c0] + H+[c0] <=> (2) ADP[c0] 

R_rxn0
0187_c

0 H2O[c0] + NADP[c0] + L-Glutamate[c0] <=> NADPH[c0] + NH3[c0] + 2-Oxoglutarate[c0] + H+[c0] 

R_rxn1
0121_c

0 (2) H+[c0] + Nitrate[c0] + Menaquinol 8[c0] <=> H2O[c0] + (2) H+[e0] + Nitrite[c0] + Menaquinone 8[c0]  
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R_rxn0

5627_c

0 H+[e0] + Nitrate[e0] <=> H+[c0] + Nitrate[c0] 

R_rxn0
0770_c

0 ATP[c0] + ribose-5-phosphate[c0] <=> AMP[c0] + H+[c0] + PRPP[c0] 

R_rxn0

3137_c
0 10-Formyltetrahydrofolate[c0] + AICAR[c0] <=> Tetrahydrofolate[c0] + FAICAR[c0] 

R_rxn0

2473_c
0 D-erythro-imidazol-glycerol-phosphate[c0] => H2O[c0] + imidazole acetol-phosphate[c0] 

R_rxn0

3175_c

0 H+[c0] + phosphoribosylformiminoaicar-phosphate[c0] <=> phosphoribulosylformimino-AICAR-phosphate[c0] 

R_rxn0

0859_c

0 H2O[c0] + (2) NAD[c0] + L-Histidinol[c0] <=> (2) NADH[c0] + (3) H+[c0] + L-Histidine[c0] 

R_rxn0

1211_c

0 H2O[c0] + 5-10-Methenyltetrahydrofolate[c0] <=> H+[c0] + 10-Formyltetrahydrofolate[c0 

R_rxn0
2160_c

0 H2O[c0] + L-histidinol-phosphate[c0] => Phosphate[c0] + L-Histidinol[c0] 

R_rxn0
2835_c

0 H2O[c0] + Phosphoribosyl-AMP[c0] <=> phosphoribosylformiminoaicar-phosphate[c0] 

R_rxn0

2834_c
0 H2O[c0] + Phosphoribosyl-ATP[c0] => PPi[c0] + (2) H+[c0] + Phosphoribosyl-AMP[c0] 

R_rxn0

3135_c
0 

L-Glutamate[c0] + (2) H+[c0] + D-erythro-imidazol-glycerol-phosphate[c0] + AICAR[c0] <= L-Glutamine[c0] + 
phosphoribulosylformimino-AICAR-phosphate[c0] 

R_rxn0

0789_c

0 PPi[c0] + H+[c0] + Phosphoribosyl-ATP[c0] <= ATP[c0] + PRPP[c0] 

R_rxn0

0237_c

0 ATP[c0] + GDP[c0] <=> ADP[c0] + GTP[c0] 

R_rxn0
1642_c

0 H2O[c0] + H+[c0] + 4-Imidazolone-5-propanoate[c0] => N-Formimino-L-glutamate[c0] 

R_rxn0
1640_c

0 H2O[c0] + N-Formimino-L-glutamate[c0] <=> NH3[c0] + N-Formyl-L-glutamate[c0] 

R_rxn0

0867_c
0 L-Histidine[c0] => NH3[c0] + Urocanate[c0] 

R_rxn0

0800_c
0 Adenylosuccinate[c0] <=> AMP[c0] + Fumarate[c0] 

R_rxn0

0838_c
0 GTP[c0] + L-Aspartate[c0] + IMP[c0] => Phosphate[c0] + GDP[c0] + (2) H+[c0] + Adenylosuccinate[c0] 

R_rxn0

5465_c

0 H+[c0] + Malonyl-CoA[c0] + ACP[c0] <=> CoA[c0] + Malonyl-acyl-carrierprotein-[c0] 

R_rxn0

0568_c

0 D-glucose-6-phosphate[c0] <=> D-fructose-6-phosphate[c0] 

R_rxn0
0569_c

0 (2) H2O[c0] + (3) NADP[c0] + NH3[c0] <= (3) NADPH[c0] + (5) H+[c0] + Nitrite[c0] 

R_rxn0
0785_c

0 

D-fructose-6-phosphate[c0] + Glyceraldehyde3-phosphate[c0] <=> D-Xylulose5-phosphate[c0] + D-Erythrose4-

phosphate[c0] 

R_rxn0

1200_c
0 

Glyceraldehyde3-phosphate[c0] + Sedoheptulose7-phosphate[c0] <=> ribose-5-phosphate[c0] + D-Xylulose5-
phosphate[c0] 
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R_rxn0

1975_c

0 NADP[c0] + beta-D-Glucose 6-phosphate[c0] <=> NADPH[c0] + H+[c0] + 6-phospho-D-glucono-1-5-lactone[c0]  

P_Acid
_8 Phosphatidylglycerol + Phosphatidylethanolamine + Cardiolipin -> Lipid 

R_rxn0

1102_c

0 ATP[c0] + Glycerate[c0] <=> ADP[c0] + H+[c0] + 3-Phosphoglycerate[c0] 

R_rxn0

0420_c

0 H2O[c0] + phosphoserine[c0] => Phosphate[c0] + L-Serine[c0] 

R_rxn0
1101_c

0 NAD[c0] + 3-Phosphoglycerate[c0] <=> NADH[c0] + H+[c0] + 3-Phosphonooxypyruvate[c0] 

R_rxn0
0781_c

0 

NAD[c0] + Phosphate[c0] + Glyceraldehyde3-phosphate[c0] <=> NADH[c0] + H+[c0] + 1,3-Bisphospho-D-

glycerate[c0] 

R_rxn0

0148_c

0 ATP[c0] + Pyruvate[c0] <=> ADP[c0] + Phosphoenolpyruvate[c0] + H+[c0] 

Malate_

buildin H+ + Pyruvate + NADPH -> NADP+ CO2 + H2O + 3-Methyl-2-oxobutanoate 

R_rxn0
5329_c

0 1 (R)-3-Hydroxybutanoyl-[acyl-carrier protein] [0] <-> 1 H2O [0] + 1 But-2-enoyl-[acyl-carrier protein] [0] 

R_rxn0
5334_c

0 1 (R)-3-Hydroxyoctanoyl-[acyl-carrier protein] [0] <-> 1 H2O [0] + 1 (2E)-Octenoyl-[acp] [0]  

R_rxn0
5330_c

0 1 D-3-Hydroxyhexanoyl-[acp] [0] <-> 1 H2O [0] + 1 (2E)-Hexenoyl-[acp] [0] 

R_rxn0

5322_c
0 1 NAD [0] + 1 Butyryl-ACP [0] -> 1 NADH [0] + 2 H+ [0] + 1 But-2-enoyl-[acyl-carrier protein] [0] 

R_rxn0

5326_c
0 1 NAD [0] + 1 Hexanoyl-ACP [0] <- 1 NADH [0] + 1 H+ [0] + 1 (2E)-Hexenoyl-[acp] [0 

R_rxn0

5325_c

0 1 NAD [0] + 1 Octanoyl-ACP [0]<-  1 NADH [0] + 1 H+ [0] + 1 (2E)-Octenoyl-[acp] [0]  

R_rxn0

5349_c

0 Acetyl-CoA[c0] + ACP[c0] <=> CoA[c0] + Acetyl-ACP[c0]  

R_rxn0
5346_c

0 Butyryl-ACP[c0] + Malonyl-acyl-carrierprotein-[c0] => CO2[c0] + 3-Oxohexanoyl-[acp][c0] + ACP[c0] 

R_rxn0
5350_c

0 H+[c0] + Hexanoyl-ACP[c0] + Malonyl-acyl-carrierprotein-[c0] => CO2[c0] + 3-oxooctanoyl-acp[c0] + ACP[c0] 

R_rxn0

5347_c
0 Malonyl-acyl-carrierprotein-[c0] + Acetyl-ACP[c0] => CO2[c0] + Acetoacetyl-ACP[c0] + ACP[c0] 

R_rxn0

5343_c
0 Octanoyl-ACP[c0] + Malonyl-acyl-carrierprotein-[c0] => CO2[c0] + 3-oxodecanoyl-acp[c0] + ACP[c0] 

R_rxn0

0904_c
0 Pyruvate[c0] + L-Valine[c0] <=> L-Alanine[c0] + 3-Methyl-2-oxobutanoate[c0] 

R_rxn0

5333_c

0  (R)-3-Hydroxydecanoyl-[acyl-carrier protein] [0] <-> 1 H2O [0] + 1 H+ [0] + 1 (2E)-Decenoyl-[acp] [0]  

R_rxn0

5327_c

0 1 NAD [0] + 1 Decanoyl-ACP [0] <- 1 NADH [0] + 2 H+ [0] + 1 (2E)-Decenoyl-[acp] [0] 

R_rxn0
5348_c

0 Decanoyl-ACP[c0] + Malonyl-acyl-carrierprotein-[c0] => CO2[c0] + 3-oxododecanoyl-acp[c0] + ACP[c0] 
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R_rxn0

0747_c

0 Glyceraldehyde3-phosphate[c0] <=> Glycerone-phosphate[c0] 

R_rxn0
5324_c

0  NAD [0] + 1 Dodecanoyl-ACP [0] <-  1 NADH [0] + 2 H+ [0] + 1 (2E)-Dodecenoyl-[acp] [0 

R_rxn0

3240_c
0 (S)-3-Hydroxyhexadecanoyl-CoA[c0] <=> H2O[c0] + (2E)-Hexadecenoyl-CoA[c0] 

R_rxn0

5351_c
0 1 NADP [0] + 1 Myristoyl-ACP [0] <- 1 NADPH [0] + 2 H+ [0] + 1 (2E)-Tetradecenoyl-[acp] [0]  

R_rxn0

2804_c

0 Acetyl-CoA[c0] + Myristoyl-CoA[c0] <=> CoA[c0] + 3-Oxopalmitoyl-CoA[c0] 

R_rxn0

5457_c

0 CoA[c0] + Myristoyl-ACP[c0] <=> Myristoyl-CoA[c0] + ACP[c0] 

R_rxn0

5331_c

0 D-3-Hydroxydodecanoyl-[acp] [0] <-> 1 H2O [0] + 1 (2E)-Dodecenoyl-[acp] [0]  

R_rxn0
5345_c

0 Dodecanoyl-ACP[c0] + Malonyl-acyl-carrierprotein-[c0] => CO2[c0] + 3-oxotetradecanoyl-acp[c0] + ACP[c0] 

R_rxn0
5335_c

0 HMA [0] <-> 1 H2O [0] + 1 (2E)-Tetradecenoyl-[acp] [0] 

R_rxn0

5732_c
0 NAD[c0] + Palmitoyl-CoA[c0] <= NADH[c0] + H+[c0] + (2E)-Hexadecenoyl-CoA[c0] 

R_rxn0

0114_c
0 ATP[c0] + CO2[c0] + NH3[c0] <=> ADP[c0] + (2) H+[c0] + Carbamoylphosphate[c0]  

R_rxn0

1208_c

0 CO2[c0] + 4MOP[c0] <= H+[c0] + 2-isopropyl-3-oxosuccinate[c0] 

R_rxn0

2789_c

0 2-Isopropylmalate[c0] <=> H2O[c0] + 2-Isopropylmaleate[c0] 

R_rxn0
0902_c

0 CoA[c0] + H+[c0] + 2-Isopropylmalate[c0] <= H2O[c0] + Acetyl-CoA[c0] + 3-Methyl-2-oxobutanoate[c0] 

R_rxn0
3062_c

0 NAD[c0] + 3-Isopropylmalate[c0] <=> NADH[c0] + H+[c0] + 2-isopropyl-3-oxosuccinate[c0] 

R_rxn0

2213_c
0 5-Dehydroquinate[c0] => H2O[c0] + 3-Dehydroshikimate[c0] 

R_rxn0

1255_c
0 5-O--1-Carboxyvinyl-3-phosphoshikimate[c0] => Phosphate[c0] + Chorismate[c0] 

R_rxn0

1739_c
0 ATP[c0] + Shikimate[c0] <=> ADP[c0] + H+[c0] + 3-phosphoshikimate[c0]  

R_rxn0

2212_c

0 DAHP[c0] => Phosphate[c0] + 5-Dehydroquinate[c0] 

R_rxn0

1332_c

0 H2O[c0] + Phosphoenolpyruvate[c0] + D-Erythrose4-phosphate[c0] => Phosphate[c0] + DAHP[c0] 

R_rxn0
2476_c

0 

Phosphoenolpyruvate[c0] + 3-phosphoshikimate[c0] => Phosphate[c0] + 5-O--1-Carboxyvinyl-3-

phosphoshikimate[c0] 

R_rxn0
0364_c

0 ATP[c0] + CMP[c0] + H+[c0] <=> ADP[c0] + CDP[c0] 

R_rxn0

1256_c
0 Chorismate[c0] => Prephenate[c0] 
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R_rxn0

0409_c

0 ATP[c0] + CDP[c0] <=> ADP[c0] + CTP[c0] 

R_rxn0
5289_c

0 NADPH[c0] + H+[c0] + trdox[c0] <=> NADP[c0] + trdrd[c0] 

lysine_f

ormatio
n N-Succinyl-L-2,6-diaminopimelate + H2O -> L-Lysine + LL-2,6-Diaminopimelate 

R_rxn0

0790_c
0 PPi[c0] + L-Glutamate[c0] + H+[c0] + 5-Phosphoribosylamine[c0] <= H2O[c0] + L-Glutamine[c0] + PRPP[c0] 

R_rxn0

0117_c

0 ATP[c0] + UDP[c0] <=> ADP[c0] + UTP[c0] 

R_rxn0

0119_c

0 ATP[c0] + H+[c0] + UMP[c0] <=> ADP[c0] + UDP[c0] 

R_rxn0

1434_c

0 ATP[c0] + L-Aspartate[c0] + Citrulline[c0] <=> PPi[c0] + AMP[c0] + (2) H+[c0] + L-Argininosuccinate[c0] 

R_rxn0
1917_c

0 ATP[c0] + N-Acetyl-L-glutamate[c0] <=> ADP[c0] + n-acetylglutamyl-phosphate[c0] 

R_rxn0
0192_c

0 ATP[c0] + NH3[c0] + L-Glutamate[c0] => ADP[c0] + Phosphate[c0] + L-Glutamine[c0] + H+[c0] 

R_rxn0

0469_c
0 H2O[c0] + N-Acetylornithine[c0] <=> Acetate[c0] + Ornithine[c0] 

R_rxn0

0802_c
0 L-Argininosuccinate[c0] <=> L-Arginine[c0] + Fumarate[c0] 

R_rxn0

2465_c

0 

NADP[c0] + Phosphate[c0] + 2-Acetamido-5-oxopentanoate[c0] <= NADPH[c0] + H+[c0] + n-acetylglutamyl-

phosphate[c0] 

R_rxn0

1019_c

0 Ornithine[c0] + Carbamoylphosphate[c0] => Phosphate[c0] + H+[c0] + Citrulline[c0] 

R_rxn0
0416_c

0 

H2O[c0] + ATP[c0] + L-Aspartate[c0] + L-Glutamine[c0] => PPi[c0] + AMP[c0] + L-Glutamate[c0] + (2) H+[c0] + 

L-Asparagine[c0] 

R_rxn0
5256_c

0 APS[c0] + trdrd[c0] => AMP[c0] + H+[c0] + Sulfite[c0] + trdox[c0] 

R_rxn0

0379_c
0 ATP[c0] + Sulfate[c0] <=> PPi[c0] + APS[c0] 

R_rxn0

5651_c
0 Sulfate[e0] + H+[e0] <=> Sulfate[c0] + H+[c0] 

R_rxn0

1360_c
0 1 O2 [0] + 1 S-Dihydroorotate [0] ->  1 H2O2 [0] + 1 Orotate [0]  

R_rxn0

0710_c

0 H+[c0] + Orotidylic acid[c0] => CO2[c0] + UMP[c0] 

R_rxn0

0205_c

0 H2O2[c0] + (2) GSH[c0] => (2) H2O[c0] + Oxidized glutathione[c0] 

R_rxn0
1018_c

0 L-Aspartate[c0] + Carbamoylphosphate[c0] => Phosphate[c0] + H+[c0] + N-Carbamoyl-L-aspartate[c0] 

R_rxn0
1362_c

0 PPi[c0] + H+[c0] + Orotidylic acid[c0] <= PRPP[c0] + Orotate[c0] 

R_rxn1

2017_c
0 O2 + hexadecanoyl-acp + AH2 => 2 H2O + A + hexadecenoyl-[acyl-carrier protein] 
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R_rxn0

8043_c

0  Pyruvate [0] + 1 H+ [0] + 1 2-Oxobutyrate [0]->  1 CO2 [0] + 1 2-Aceto-2-hydroxybutanoate [0]  

R_rxn0
3436_c

0 1 2-Aceto-2-hydroxybutanoate [0] <->  1 (R)-3-Hydroxy-3-methyl-2-oxopentanoate [0] 

R_rxn0

3435_c
0 

1 NADP [0] + 1 2,3-Dihydroxy-3-methylvalerate [0] <-> 1 NADPH [0] + 1 H+ [0] + 1 (R)-3-Hydroxy-3-methyl-2-
oxopentanoate [0] 

R_rxn0

3437_c
0 2,3-Dihydroxy-3-methylvalerate[c0] => H2O[c0] + 3MOP[c0] 

R_rxn0

1575_c

0 2-Oxoglutarate[c0] + L-Isoleucine[c0] <=> L-Glutamate[c0] + 3MOP[c0] 

R_rxn0

0737_c

0 L-Threonine[c0] => NH3[c0] + 2-Oxobutyrate[c0] 

R_rxn0

8016_c

0  ATP [0] + 1 Palmitate [0] + 1 ACP [0] <-> 1 PPi [0] + 1 AMP [0] + 2 H+ [0] + 1 Palmitoyl-ACP [0 

R_rxn1
0202_c

0 H+[c0] + Glycerol-3-phosphate[c0] + Palmitoyl-CoA[c0] => CoA[c0] + 1-hexadecanoyl-sn-glycerol 3-phosphate[c0] 

R_rxn0
8799_c

0 H2O[c0] + 1-hexadecanoyl-sn-glycerol 3-phosphate[c0] <=> (2) H+[c0] + Glycerol-3-phosphate[c0] + Palmitate[c0] 

R_rxn0

1000_c
0 H+[c0] + Prephenate[c0] => H2O[c0] + CO2[c0] + Phenylpyruvate[c0] 

R_rxn0

7576_c
0 

1 H+ [0] + 1 hexadecanoyl-acp [0] + 1 Malonyl-acyl-carrierprotein- [0] -> 1 CO2 [0] + 1 ACP [0] + 1 3-Oxostearoyl-
[acp] [0] 

R_rxn0

7577_c

0 1 NADPH [0] + 1 H+ [0] + 1 3-Oxostearoyl-[acp] [0]  1 NADP [0] + 1 3-Hydroxystearoyl-[acp] [0] 

R_rxn0

7578_c

0 3-Hydroxystearoyl-[acp][c0] <=> H2O[c0] + (2E)-Octadecenoyl-[acp][c0] 

R_rxn0
0239_c

0 ATP[c0] + H+[c0] + GMP[c0] <=> ADP[c0] + GDP[c0] 

R_rxn0
0834_c

0 H2O[c0] + NAD[c0] + IMP[c0] <=> NADH[c0] + H+[c0] + XMP[c0] 

xanthos

ine_buil
d ATP[c0] + H2O[c0] + XMP[c0] + L-Glutamine[c0] => H+[c0] + AMP[c0] + L-Glutamate[c0] + PRPP[c0] + GMP[c0] 

R_rxn0

1303_c
0 Acetyl-CoA[c0] + L-Homoserine[c0] => CoA[c0] + O-Acetyl-L-homoserine[c0] 

R_rxn0

0337_c
0 ATP[c0] + L-Aspartate[c0] <=> ADP[c0] + 4-Phospho-L-aspartate[c0] 

R_rxn0

0952_c

0 H2S[c0] + O-Acetyl-L-homoserine[c0] => Acetate[c0] + Homocysteine[c0] 

R_rxn0

0693_c

0 Homocysteine[c0] + 5-Methyltetrahydrofolate[c0] <=> L-Methionine[c0] + Tetrahydrofolate[c0] 

R_rxn0
1643_c

0 NADP[c0] + Phosphate[c0] + L-Aspartate4-semialdehyde[c0] <= NADPH[c0] + H+[c0] + 4-Phospho-L-aspartate[c0] 

R_rxn0
1269_c

0 NADP[c0] + Prephenate[c0] => NADPH[c0] + CO2[c0] + p-hydroxyphenylpyruvate[c0]  

R_rxn0

0410_c
0 ATP[c0] + NH3[c0] + UTP[c0] <=> ADP[c0] + Phosphate[c0] + CTP[c0] + (2) H+[c0] 
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R_rxn0

0907_c

0 NADP[c0] + 5-10-Methylenetetrahydrofolate[c0] <=> NADPH[c0] + 5-10-Methenyltetrahydrofolate[c0] 

R_rxn0
1115_c

0 NADP[c0] + 6-Phospho-D-gluconate[c0] => NADPH[c0] + CO2[c0] + D-Ribulose5-phosphate[c0]  

R_rxn0

2507_c
0 

H+[c0] + 1-(2-carboxyphenylamino)-1-deoxyribulose 5-phosphate[c0] => H2O[c0] + CO2[c0] + Indoleglycerol 
phosphate[c0] 

R_rxn0

1964_c
0 L-Serine[c0] + Indoleglycerol phosphate[c0] => H2O[c0] + L-Tryptophan[c0] + Glyceraldehyde3-phosphate[c0] 

R_rxn0

2508_c

0 N-5-phosphoribosyl-anthranilate[c0] <=> 1-(2-carboxyphenylamino)-1-deoxyribulose 5-phosphate[c0] 

R_rxn0

0726_c

0 NH3[c0] + Chorismate[c0] => H2O[c0] + Pyruvate[c0] + H+[c0] + Anthranilate[c0] 

R_rxn0

0791_c

0 PPi[c0] + H+[c0] + N-5-phosphoribosyl-anthranilate[c0] <= Anthranilate[c0] + PRPP[c0] 

R_rxn0
3638_c

0 Acetyl-CoA[c0] + D-Glucosamine1-phosphate[c0] => CoA[c0] + H+[c0] + N-Acetyl-D-glucosamine1-phosphate[c0] 

R_rxn0
0283_c

0 L-Alanine[c0] <=> D-Alanine[c0] 

R_rxn0

0555_c
0 L-Glutamine[c0] + D-fructose-6-phosphate[c0] <=> L-Glutamate[c0] + D-Glucosamine phosphate[c0] 

R_rxn0

0293_c
0 UTP[c0] + N-Acetyl-D-glucosamine1-phosphate[c0] <=> PPi[c0] + UDP-N-acetylglucosamine[c0] 

R_rxn0

0423_c

0 Acetyl-CoA[c0] + L-Serine[c0] => CoA[c0] + O-Acetyl-L-serine[c0] 

R_rxn0

0649_c

0 H2S[c0] + O-Acetyl-L-serine[c0] => Acetate[c0] + L-Cysteine[c0] 

R_rxn0
5909_c

0 L-Serine[c0] + H+[c0] + H2S[c0] <=> H2O[c0] + L-Cysteine[c0] 

R_rxn0
0193_c

0 Acetyl-CoA[c0] + L-Glutamate[c0] => CoA[c0] + H+[c0] + N-Acetyl-L-glutamate[c0] 

R_rxn0

0851_c
0 ATP[c0] + (2) D-Alanine[c0] => ADP[c0] + Ala-Ala[c0] + Phosphate[c0] + H+[c0] 

R_rxn0

2008_c
0 

ATP[c0] + D-Glutamate[c0] + UDP-N-acetylmuramoyl-L-alanine[c0] => ADP[c0] + Phosphate[c0] + H+[c0] + UDP-
N-acetylmuramoyl-L-alanyl-D-glutamate[c0] 

R_rxn0

2286_c
0 

ATP[c0] + L-Alanine[c0] + UDP-MurNAc[c0] => ADP[c0] + UDP-N-acetylmuramoyl-L-alanine[c0] + H+[c0] + 
Phosphate[c0] 

R_rxn0

2011_c

0 

ATP[c0] + meso-2,6-Diaminopimelate[c0] + UDP-N-acetylmuramoyl-L-alanyl-D-glutamate[c0] => ADP[c0] + 

Phosphate[c0] + H+[c0] + UDP-N-acetylmuramoyl-L-alanyl-D-gamma-glutamyl-meso-2-6-diaminopimelate[c0] 

R_rxn0

3901_c

0 H2O[c0] + Bactoprenyl diphosphate[c0] => Phosphate[c0] + (2) H+[c0] + Undecaprenylphosphate[c0] 

R_rxn0
0461_c

0 

UDP-N-acetylglucosamine[c0] + Phosphoenolpyruvate[c0] <=> Phosphate[c0] + UDP-N-acetylglucosamine 

enolpyruvate[c0] 

R_rxn0
3408_c

0 

UDP-N-acetylglucosamine[c0] + Undecaprenyl-diphospho-N-acetylmuramoyl-L-alanyl-D-glutamyl-meso-2-6-
diaminopimeloyl-D-alanyl-D-alanine[c0] <=> UDP[c0] + Undecaprenyl-diphospho-N-acetylmuramoyl--N-

acetylglucosamine-L-ala-D-glu-meso-2-6-diaminopimeloyl-D-ala-D-ala[c0] 

R_rxn0

3164_c
0 

UDP-N-acetylmuramoyl-L-alanyl-D-gamma-glutamyl-meso-2-6-diaminopimelate[c0] + Ala-Ala[c0] + ATP[c0] => 

H+[c0] + Phosphate[c0] + UDP-N-acetylmuramoyl-L-alanyl-D-glutamyl-6-carboxy-L-lysyl-D-alanyl- D-alanine[c0] + 
ADP[c0] 
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R_rxn0

3904_c

0 

Undecaprenylphosphate[c0] + UDP-N-acetylmuramoyl-L-alanyl-D-glutamyl-6-carboxy-L-lysyl-D-alanyl- D-

alanine[c0] <=> UMP[c0] + Undecaprenyl-diphospho-N-acetylmuramoyl-L-alanyl-D-glutamyl-meso-2-6-

diaminopimeloyl-D-alanyl-D-alanine[c0] 

R_rxn0
1673_c

0 ATP[c0] + dCDP[c0] <=> ADP[c0] + dCTP[c0] 

R_rxn0

1353_c
0 ATP[c0] + dGDP[c0] <=> ADP[c0] + dGTP[c0] 

R_rxn0

5233_c
0 GDP[c0] + trdrd[c0] => H2O[c0] + dGDP[c0] + trdox[c0] 

R_rxn0

6076_c

0 H2O[c0] + dCDP[c0] + trdox[c0] <= CDP[c0] + trdrd[c0] 

R_rxn0

1520_c

0 5-10-Methylenetetrahydrofolate[c0] + dUMP[c0] => dTMP[c0] + Dihydrofolate[c0] 

R_rxn0

1512_c

0 ATP[c0] + dTDP[c0] <=> ADP[c0] + TTP[c0] 

R_rxn0
1513_c

0 ATP[c0] + H+[c0] + dTMP[c0] <=> ADP[c0] + dTDP[c0]  

R_rxn0
6075_c

0 H2O[c0] + dUDP[c0] + trdox[c0] <= UDP[c0] + trdrd[c0] 

R_rxn0

5231_c
0 ADP[c0] + trdrd[c0] => H2O[c0] + dADP[c0] + trdox[c0] 

R_rxn0

0839_c
0 ATP[c0] + dADP[c0] <=> ADP[c0] + dATP[c0] 

P_Acid

_2 50 H+ +50 CTP + PhosphatidicAcid -> 50 ppi + CDPdiacylglycerol 

P_Acid

_1 

6 D-3-Hydroxydodecanoyl-[acp] + 50 Glycerol-3-phosphate + 9 (R)-3-Hydroxydecanoyl-[acyl-carrier protein] + 
24(2E)-Octadecenoyl-[acp] + 32R-3-hydroxypalmitoyl-acyl-carrierprotein- + 29Palmitoyl-ACP -> 100 ACP + 

PhosphatidicAcid 

P_Acid

_3 50 Glycerol-3-phosphate + CDPdiacylglycerol -> 50 H+ + 50 CMP + Phosphatidylglycerophosphate 

P_Acid

_4 50 H2O + Phosphatidylglycerophosphate -> 50 phosphate + Phosphatidylglycerol 

P_Acid

_5 50 L-serine + CDPdiacylglycerol -> 50H+ + 50CMP + Phosphatidylserine_ 

P_Acid

_6 Phosphatidylserine + 50 H+ -> 50 CO2 + Phosphatidylethanolamine 

P_Acid

_7 Phosphatidylglycerol + CDPdiacylglycerol -> 50H+ + 50CMP + Cardiolipin 

R_rxn0

1517_c

0 ATP[c0] + H+[c0] + dUMP[c0] <=> ADP[c0] + dUDP[c0]  

R_rxn0

0686_c

0 NADP[c0] + Tetrahydrofolate[c0] <=> NADPH[c0] + H+[c0] + Dihydrofolate[c0 

R_rxn0
0313_c

0 H+[c0] + meso-2,6-Diaminopimelate[c0] <=> CO2[c0] + L-Lysine[c0] 

R_rxn0
2285_c

0 NADP[c0] + UDP-MurNAc[c0] <=> NADPH[c0] + H+[c0] + UDP-N-acetylglucosamine enolpyruvate[c0] 

R_rxn0

1485_c
0 D-Glucosamine1-phosphate[c0] <=> D-Glucosamine phosphate[c0] 

R_rxn0

0527_c
0 ribose-5-phosphate[c0] <=> D-Ribulose5-phosphate[c0] 

R_rxn0

4954_c

0 NAD[c0] + 5-Methyltetrahydrofolate[c0] <=> NADH[c0] + H+[c0] + 5-10-Methylenetetrahydrofolate[c0]  
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R_rxn0

1301_c

0 NAD[c0] + L-Homoserine[c0] <=> NADH[c0] + H+[c0] + L-Aspartate4-semialdehyde[c0]  

R_rxn0
0493_c

0 2-Oxoglutarate[c0] + L-Phenylalanine[c0] <=> L-Glutamate[c0] + Phenylpyruvate[c0 

R_rxn0

5332_c
0 1 R-3-hydroxypalmitoyl-acyl-carrierprotein- [0] <-> 1 H2O [0] + 1 (2E)-Hexadecenoyl-[acp] [0] 

R_rxn0

0086_c
0 NADP[c0] + (2) GSH[c0] <=> NADPH[c0] + H+[c0] + Oxidized glutathione[c0] 

R_rxn0

1465_c

0 H2O[c0] + S-Dihydroorotate[c0] <=> H+[c0] + N-Carbamoyl-L-aspartate[c0] 

R_rxn0

0503_c

0 (2) H2O[c0] + NAD[c0] + 1-Pyrroline-5-carboxylate[c0] <=> NADH[c0] + L-Glutamate[c0] + H+[c0] 

R_rxn0

0623_c

0 (3) H2O[c0] + (3) NADP[c0] + H2S[c0] <=> (3) NADPH[c0] + (3) H+[c0] + Sulfite[c0] 

R_rxn0
0929_c

0 NAD[c0] + L-Proline[c0] <=> NADH[c0] + (2) H+[c0] + 1-Pyrroline-5-carboxylate[c0] 

R_rxn0
1637_c

0 2-Oxoglutarate[c0] + N-Acetylornithine[c0] <=> L-Glutamate[c0] + 2-Acetamido-5-oxopentanoate[c0] 

R_rxn1

5112_c
0 

1 ATP [0] + 1 NH3 [0] + 1 alpha-D-Ribose 5-phosphate [0] <-> 1 ADP [0] + 1 Phosphate [0] + 1 H+ [0] + 1 5-
Phosphoribosylamine [0] 

R_rxn0

1973_c
0 H2O[c0] + N-Succinyl-L-2,6-diaminopimelate[c0] <=> Succinate[c0] + LL-2,6-Diaminopimelate[c0] 

R_rxn0

0908_c

0 

NAD[c0] + Glycine[c0] + Tetrahydrofolate[c0] <=> NADH[c0] + CO2[c0] + NH3[c0] + 5-10-

Methylenetetrahydrofolate[c0 

R_rxn0

5458_c

0 CoA[c0] + H+[c0] + hexadecanoyl-acp[c0] <=> Palmitoyl-CoA[c0] + ACP[c0] 

R_rxn0
1740_c

0 NADP[c0] + Shikimate[c0] <=> NADPH[c0] + H+[c0] + 3-Dehydroshikimate[c0] 

R_rxn0
0506_c

0 H2O[c0] + NAD[c0] + Acetaldehyde[c0] => NADH[c0] + Acetate[c0] + (2) H+[c0] 

R_rxn0

0541_c
0 L-Threonine[c0] <=> Glycine[c0] + Acetaldehyde[c0] 

R_rxn0

0806_c
0 2-Oxoglutarate[c0] + L-Leucine[c0] <=> L-Glutamate[c0] + 4MOP[c0] 

R_rxn0

2811_c
0 3-Isopropylmalate[c0] <=> H2O[c0] + 2-Isopropylmaleate[c0] 

R_rxn0

3239_c

0 NAD[c0] + (S)-3-Hydroxyhexadecanoyl-CoA[c0] <=> NADH[c0] + H+[c0] + 3-Oxopalmitoyl-CoA[c0] 

R_rxn0

5342_c

0 NADP[c0] + HMA[c0] <=> NADPH[c0] + 3-oxotetradecanoyl-acp[c0] 

R_rxn0
0692_c

0 H2O[c0] + Glycine[c0] + 5-10-Methylenetetrahydrofolate[c0] <=> L-Serine[c0] + Tetrahydrofolate[c0] 

R_rxn0
0611_c

0 NAD[c0] + Glycerol-3-phosphate[c0] <=> NADH[c0] + H+[c0] + Glycerone-phosphate[c0]  

R_rxn0

5340_c
0 NADP[c0] + D-3-Hydroxydodecanoyl-[acp][c0] <=> NADPH[c0] + 3-oxododecanoyl-acp[c0] 
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R_rxn0

5339_c

0 NADP[c0] + (R)-3-Hydroxybutanoyl-[acyl-carrier protein][c0] <=> NADPH[c0] + Acetoacetyl-ACP[c0] 

R_rxn0
5338_c

0 NADP[c0] + (R)-3-Hydroxydecanoyl-[acyl-carrier protein][c0] <=> NADPH[c0] + H+[c0] + 3-oxodecanoyl-acp[c0] 

R_rxn0

5341_c
0 NADP[c0] + (R)-3-Hydroxyoctanoyl-[acyl-carrier protein][c0] <=> NADPH[c0] + H+[c0] + 3-oxooctanoyl-acp[c0] 

R_rxn0

5337_c
0 NADP[c0] + D-3-Hydroxyhexanoyl-[acp][c0] <=> NADPH[c0] + 3-Oxohexanoyl-[acp][c0] 

R_rxn0

0903_c

0 2-Oxoglutarate[c0] + L-Valine[c0] <=> L-Glutamate[c0] + 3-Methyl-2-oxobutanoate[c0] 

oxaloac

etate_b

uildin 2-Phospho-D-glycerate + ATP -> 1,3-Bisphospho-D-glycerate + ADP 

R_rxn0

8647_c

0 ATP[c0] + Glycerate[c0] <=> ADP[c0] + H+[c0] + 2-Phospho-D-glycerate[c0] 

R_rxn0
2914_c

0 2-Oxoglutarate[c0] + phosphoserine[c0] <=> L-Glutamate[c0] + 3-Phosphonooxypyruvate[c0] 

R_rxn0
2380_c

0 beta-D-Glucose 6-phosphate[c0] <=> D-fructose-6-phosphate[c0]  

R_rxn0

1333_c
0 

Glyceraldehyde3-phosphate[c0] + Sedoheptulose7-phosphate[c0] <=> D-fructose-6-phosphate[c0] + D-Erythrose4-
phosphate[c0] 

R_rxn0

0258_c
0 Pyruvate[c0] + Malonyl-CoA[c0] <=> Acetyl-CoA[c0] + Oxaloacetate[c0] 

R_rxn0

1116_c

0 D-Ribulose5-phosphate[c0] <=> D-Xylulose5-phosphate[c0] 

R_rxn0

0777_c

0 ribose-5-phosphate[c0] <=> D-Ribulose5-phosphate[c0] 

R_rxn0
2085_c

0 H+[c0] + 4-Imidazolone-5-propanoate[c0] <=> H2O[c0] + Urocanate[c0] 

R_rxn0
1652_c

0 H2O[c0] + 5-10-Methenyltetrahydrofolate[c0] <=> H+[c0] + 5-Formyltetrahydrofolate[c0] 

R_rxn0

2283_c
0 L-Glutamate[c0] + 5-Formyltetrahydrofolate[c0] <=> H+[c0] + Tetrahydrofolate[c0] + N-Formyl-L-glutamate[c0] 

R_rxn0

4043_c
0 ADP[c0] + D-fructose-6-phosphate[c0] <=> AMP[c0] + (2) H+[c0] + D-fructose-1,6-bisphosphate[c0] 

R_rxn0

0786_c
0 D-fructose-1,6-bisphosphate[c0] <=> Glycerone-phosphate[c0] + Glyceraldehyde3-phosphate[c0] 

R_rxn0

2320_c

0 2-Oxoglutarate[c0] + L-histidinol-phosphate[c0] <=> L-Glutamate[c0] + imidazole acetol-phosphate[c0] 

R_rxn0

0832_c

0 H2O[c0] + IMP[c0] <=> FAICAR[c0] 

R_rxn0
0260_c

0 2-Oxoglutarate[c0] + L-Aspartate[c0] <=> L-Glutamate[c0] + Oxaloacetate[c0] 

R_rxn0
8527_c

0 Fumarate[c0] + Menaquinol 8[c0] <=> Succinate[c0] + Menaquinone 8[c0] 

R_rxn0

0285_c
0 ATP[c0] + CoA[c0] + Succinate[c0] <=> ADP[c0] + Phosphate[c0] + Succinyl-CoA[c0] 
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R_rxn0

0799_c

0 L-Malate[c0] <=> H2O[c0] + Fumarate[c0] 
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Table B.1 P. fluorescens in silico glucose metabolism Part 3 

Coded reaction id Genes Subsystem 

R_rxn10042_c0 

fig|9606.20.peg.6146  

fig|9606.20.peg.6143  
fig|9606.20.peg.6144  

fig|9606.20.peg.6151  

fig|9606.20.peg.6147  
fig|9606.20.peg.6145 

 

R_rxn10113_c0 

fig|9606.20.peg.5156  

fig|9606.20.peg.5154  

fig|9606.20.peg.5153  
fig|9606.20.peg.5155  

fig|9606.20.peg.5368  

fig|9606.20.peg.1900  
fig|9606.20.peg.5367  

fig|9606.20.peg.1901  

fig|9606.20.peg.1816  
fig|9606.20.peg.843 

 

R_rxn10122_c0 

fig|9606.20.peg.3832  
fig|9606.20.peg.3826  

fig|9606.20.peg.3834  

fig|9606.20.peg.3825  
fig|9606.20.peg.3833  

fig|9606.20.peg.3824  

fig|9606.20.peg.3830  
fig|9606.20.peg.3835  

fig|9606.20.peg.3829  

fig|9606.20.peg.3831  
fig|9606.20.peg.3827  

fig|9606.20.peg.3823  

fig|9606.20.peg.3828 

 

R_rxn08900_c0 
fig|9606.20.peg.1609  

fig|9606.20.peg.906 
 

R_rxn00154_c0  Carbohydrates 

R_rxn08094_c0 

fig|9606.20.peg.1820  

fig|9606.20.peg.1822  
fig|9606.20.peg.1821  

fig|9606.20.peg.2655 

Carbohydrates 

R_rxn01476_c0 fig|9606.20.peg.4851 Carbohydrates 

R_rxn03884_c0 fig|9606.20.peg.4850 Carbohydrates 

R_rxn01477_c0 fig|9606.20.peg.4977 Carbohydrates 

R_rxn00216_c0 fig|9606.20.peg.4976 Carbohydrates 

R_rxn00604_c0 
fig|9606.20.peg.2695  

fig|9606.20.peg.4852 
Carbohydrates 

R_rxn00001_c0 fig|9606.20.peg.1902 Phosphorus Metabolism 

R_rxn00257_c0 fig|9606.20.peg.2297 Carbohydrates 

R_rxn00974_c0 
fig|9606.20.peg.3494  

fig|9606.20.peg.1537 
Carbohydrates 

R_rxn01388_c0 
fig|9606.20.peg.3494  

fig|9606.20.peg.1537 
Carbohydrates 
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R_rxn00198_c0 

fig|9606.20.peg.743 

fig|9606.20.peg.3562 

fig|9606.20.peg.5972 

Amino Acids and Derivatives 

R_rxn00182_c0 fig|9606.20.peg.3510 Amino Acids and Derivatives 

R_rxn10806_c0 

fig|9606.20.peg.5156  

fig|9606.20.peg.1900  
fig|9606.20.peg.5368  

fig|9606.20.peg.843  

fig|9606.20.peg.5154  
fig|9606.20.peg.1901  

fig|9606.20.peg.5367  

fig|9606.20.peg.1816  
fig|9606.20.peg.5153  

fig|9606.20.peg.5155 

 

R_rxn00097_c0 fig|9606.20.peg.2993 Stress Response 

R_rxn00187_c0 fig|9606.20.peg.5347 Amino Acids and Derivatives 

R_rxn10121_c0 fig|9606.20.peg.3430  

R_rxn05627_c0 
fig|9606.20.peg.4619  
fig|9606.20.peg.2309  

fig|9606.20.peg.2201 

Nitrogen Metabolism 

R_rxn00770_c0 fig|9606.20.peg.735 Nucleosides and Nucleotides 

R_rxn03137_c0 fig|9606.20.peg.614 Cofactors, Vitamins, Prosthetic Groups, Pigments 

R_rxn02473_c0 
fig|9606.20.peg.329  

fig|9606.20.peg.3410 
Amino Acids and Derivatives 

R_rxn03175_c0 fig|9606.20.peg.332 Amino Acids and Derivatives 

R_rxn00859_c0 fig|9606.20.peg.898 Amino Acids and Derivatives 

R_rxn01211_c0 

fig|9606.20.peg.3935  

fig|9606.20.peg.2322  

fig|9606.20.peg.2331 

Cofactors, Vitamins, Prosthetic Groups, Pigments 

R_rxn02160_c0 fig|9606.20.peg.9 Amino Acids and Derivatives 

R_rxn02835_c0 

fig|9606.20.peg.6118  

fig|9606.20.peg.390  

fig|9606.20.peg.389  
fig|9606.20.peg.3328 

Amino Acids and Derivatives 

R_rxn02834_c0 

fig|9606.20.peg.389  

fig|9606.20.peg.390  
fig|9606.20.peg.6118 

Amino Acids and Derivatives 

R_rxn03135_c0 fig|9606.20.peg.330 Amino Acids and Derivatives 

R_rxn00789_c0 fig|9606.20.peg.529 Amino Acids and Derivatives 

R_rxn00237_c0 fig|9606.20.peg.5074 Nucleosides and Nucleotides 

R_rxn01642_c0 

fig|9606.20.peg.373  

fig|9606.20.peg.3263  

fig|9606.20.peg.1122 

Amino Acids and Derivatives 

R_rxn01640_c0 fig|9606.20.peg.362 Amino Acids and Derivatives 

R_rxn00867_c0 
fig|9606.20.peg.370  
fig|9606.20.peg.371 

Amino Acids and Derivatives 

R_rxn00800_c0 fig|9606.20.peg.3818 Nucleosides and Nucleotides 

R_rxn00838_c0 fig|9606.20.peg.530 Nucleosides and Nucleotides 

R_rxn05465_c0 
fig|9606.20.peg.5764  

fig|9606.20.peg.4717 
Fatty Acids, Lipids, and Isoprenoids 
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R_rxn00568_c0 fig|9606.20.peg.5262 Carbohydrates 

R_rxn00569_c0 
fig|9606.20.peg.3430  

fig|9606.20.peg.3429 
Nitrogen Metabolism 

R_rxn00785_c0 

fig|9606.20.peg.3606  

fig|9606.20.peg.5732  
fig|9606.20.peg.3728  

fig|9606.20.peg.3729 

Carbohydrates 

R_rxn01200_c0 

fig|9606.20.peg.3606  

fig|9606.20.peg.5732  

fig|9606.20.peg.3728  
fig|9606.20.peg.3729 

Carbohydrates 

R_rxn01975_c0 
fig|9606.20.peg.4852  
fig|9606.20.peg.2695 

 

P_Acid_8  Cell Wall and Capsule 

R_rxn01102_c0 

fig|9606.20.peg.1800  

fig|9606.20.peg.3012  

fig|9606.20.peg.6106 

Fatty Acids, Lipids, and Isoprenoids 

R_rxn00420_c0 

fig|9606.20.peg.5846  

fig|9606.20.peg.4651  
fig|9606.20.peg.5826  

fig|9606.20.peg.2034  

fig|9606.20.peg.509 

Amino Acids and Derivatives 

R_rxn01101_c0 

fig|9606.20.peg.855  

fig|9606.20.peg.3367  
fig|9606.20.peg.3696  

fig|9606.20.peg.4304  

fig|9606.20.peg.2310  
fig|9606.20.peg.1513  

fig|9606.20.peg.4042  

fig|9606.20.peg.5855  

fig|9606.20.peg.4305  

fig|9606.20.peg.3498 

Cofactors, Vitamins, Prosthetic Groups, Pigments 

R_rxn00781_c0 fig|9606.20.peg.4978 Carbohydrates 

R_rxn00148_c0 fig|9606.20.peg.1238 Nucleosides and Nucleotides 

Malate_buildin  Carbohydrates 

R_rxn05329_c0  Fatty Acids, Lipids, and Isoprenoids 

R_rxn05334_c0  Fatty Acids, Lipids, and Isoprenoids 

R_rxn05330_c0  Fatty Acids, Lipids, and Isoprenoids 

R_rxn05322_c0  Cofactors, Vitamins, Prosthetic Groups, Pigments 

R_rxn05326_c0  Fatty Acids, Lipids, and Isoprenoids 

R_rxn05325_c0  Fatty Acids, Lipids, and Isoprenoids 

R_rxn05349_c0 

fig|9606.20.peg.3201  

fig|9606.20.peg.2479  

fig|9606.20.peg.4714  
fig|9606.20.peg.3116  

fig|9606.20.peg.1664  

fig|9606.20.peg.3203  
fig|9606.20.peg.1661  

fig|9606.20.peg.4462 
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R_rxn05346_c0 

fig|9606.20.peg.3201  
fig|9606.20.peg.2479  

fig|9606.20.peg.4714  

fig|9606.20.peg.3116  
fig|9606.20.peg.1664  

fig|9606.20.peg.3203  

fig|9606.20.peg.4462  
fig|9606.20.peg.1661  

fig|9606.20.peg.1836 

Fatty Acids, Lipids, and Isoprenoids 

R_rxn05350_c0 

fig|9606.20.peg.3201  

fig|9606.20.peg.4714  
fig|9606.20.peg.3116  

fig|9606.20.peg.2479  
fig|9606.20.peg.3203  

fig|9606.20.peg.1664  

fig|9606.20.peg.1661  

fig|9606.20.peg.4462  

fig|9606.20.peg.1836 

Fatty Acids, Lipids, and Isoprenoids 

R_rxn05347_c0 

fig|9606.20.peg.1661  

fig|9606.20.peg.4462  
fig|9606.20.peg.3203  

fig|9606.20.peg.1664  

fig|9606.20.peg.3201  
fig|9606.20.peg.2479  

fig|9606.20.peg.4714  

fig|9606.20.peg.3116  
fig|9606.20.peg.1836 

Fatty Acids, Lipids, and Isoprenoids 

R_rxn05343_c0 

fig|9606.20.peg.3203  

fig|9606.20.peg.1664  

fig|9606.20.peg.1661  
fig|9606.20.peg.4462  

fig|9606.20.peg.2479  
fig|9606.20.peg.3116  

fig|9606.20.peg.4714  

fig|9606.20.peg.3201  
fig|9606.20.peg.1836 

Fatty Acids, Lipids, and Isoprenoids 

R_rxn00904_c0 fig|9606.20.peg.5248 Amino Acids and Derivatives 

R_rxn05333_c0  Fatty Acids, Lipids, and Isoprenoids 

R_rxn05327_c0  Fatty Acids, Lipids, and Isoprenoids 

R_rxn05348_c0 

fig|9606.20.peg.3201  

fig|9606.20.peg.3116  
fig|9606.20.peg.4714  

fig|9606.20.peg.2479  
fig|9606.20.peg.4462  

fig|9606.20.peg.1661  

fig|9606.20.peg.1664  
fig|9606.20.peg.3203  

fig|9606.20.peg.1836 

Fatty Acids, Lipids, and Isoprenoids 

R_rxn00747_c0 fig|9606.20.peg.5275 Carbohydrates 

R_rxn05324_c0  Fatty Acids, Lipids, and Isoprenoids 

R_rxn03240_c0 

fig|9606.20.peg.2455  

fig|9606.20.peg.1548  
fig|9606.20.peg.4671  

fig|9606.20.peg.2203  

fig|9606.20.peg.4962 

Fatty Acids, Lipids, and Isoprenoids 
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R_rxn05351_c0  Fatty Acids, Lipids, and Isoprenoids 

R_rxn02804_c0 

fig|9606.20.peg.3038  
fig|9606.20.peg.1549  

fig|9606.20.peg.655  

fig|9606.20.peg.4328  
fig|9606.20.peg.4672  

fig|9606.20.peg.3532  

fig|9606.20.peg.3299 

Amino Acids and Derivatives 

R_rxn05457_c0 
fig|9606.20.peg.4717  
fig|9606.20.peg.5764 

Fatty Acids, Lipids, and Isoprenoids 

R_rxn05331_c0  Fatty Acids, Lipids, and Isoprenoids 

R_rxn05345_c0 

fig|9606.20.peg.3201  
fig|9606.20.peg.4714  

fig|9606.20.peg.3116  

fig|9606.20.peg.2479  

fig|9606.20.peg.4462  

fig|9606.20.peg.1661  

fig|9606.20.peg.1664  
fig|9606.20.peg.3203  

fig|9606.20.peg.1836 

Fatty Acids, Lipids, and Isoprenoids 

R_rxn05335_c0  Fatty Acids, Lipids, and Isoprenoids 

R_rxn05732_c0 fig|9606.20.peg.3039 Cofactors, Vitamins, Prosthetic Groups, Pigments 

R_rxn00114_c0 fig|9606.20.peg.1238 Nucleosides and Nucleotides 

R_rxn01208_c0 fig|9606.20.peg.4204 Amino Acids and Derivatives 

R_rxn02789_c0 

fig|9606.20.peg.2051  
fig|9606.20.peg.4206  

fig|9606.20.peg.4207  

fig|9606.20.peg.2050 

Amino Acids and Derivatives 

R_rxn00902_c0 fig|9606.20.peg.5063 Amino Acids and Derivatives 

R_rxn03062_c0 fig|9606.20.peg.4204 Amino Acids and Derivatives 

R_rxn02213_c0 

fig|9606.20.peg.621  

fig|9606.20.peg.4288  
fig|9606.20.peg.5386 

Amino Acids and Derivatives 

R_rxn01255_c0 fig|9606.20.peg.4349 Amino Acids and Derivatives 

R_rxn01739_c0 fig|9606.20.peg.416 Nucleosides and Nucleotides 

R_rxn02212_c0 fig|9606.20.peg.417 Amino Acids and Derivatives 

R_rxn01332_c0 

fig|9606.20.peg.1704  

fig|9606.20.peg.2184  
fig|9606.20.peg.1723 

Amino Acids and Derivatives 

R_rxn02476_c0  Carbohydrates 

R_rxn00364_c0 fig|9606.20.peg.1645 Nucleosides and Nucleotides 

R_rxn01256_c0 fig|9606.20.peg.349 Amino Acids and Derivatives 

R_rxn00409_c0 fig|9606.20.peg.5074 Nucleosides and Nucleotides 

R_rxn05289_c0 
fig|9606.20.peg.5178  

fig|9606.20.peg.3644 
Nucleosides and Nucleotides 

lysine_formation  Carbohydrates 

R_rxn00790_c0 
fig|9606.20.peg.4194  

fig|9606.20.peg.5583 
Nucleosides and Nucleotides 

R_rxn00117_c0 fig|9606.20.peg.4905 Amino Acids and Derivatives 
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R_rxn00119_c0 fig|9606.20.peg.5074 Nucleosides and Nucleotides 

R_rxn01434_c0 fig|9606.20.peg.1155 Amino Acids and Derivatives 

R_rxn01917_c0 fig|9606.20.peg.6013 Amino Acids and Derivatives 

R_rxn00192_c0 fig|9606.20.peg.351 Amino Acids and Derivatives 

R_rxn00469_c0 

fig|9606.20.peg.4279  
fig|9606.20.peg.5890  

fig|9606.20.peg.4045  

fig|9606.20.peg.3593 

Amino Acids and Derivatives 

R_rxn00802_c0 fig|9606.20.peg.5962 Amino Acids and Derivatives 

R_rxn02465_c0 fig|9606.20.peg.5572 Amino Acids and Derivatives 

R_rxn01019_c0 
fig|9606.20.peg.1146  

fig|9606.20.peg.4904 
Amino Acids and Derivatives 

R_rxn00416_c0 
fig|9606.20.peg.2453  

fig|9606.20.peg.4332 
Amino Acids and Derivatives 

R_rxn05256_c0 fig|9606.20.peg.4652 Sulfur Metabolism 

R_rxn00379_c0 
fig|9606.20.peg.762  

fig|9606.20.peg.763 
Amino Acids and Derivatives 

R_rxn05651_c0 
fig|9606.20.peg.25  

fig|9606.20.peg.5198 
Amino Acids and Derivatives 

R_rxn01360_c0  Nucleosides and Nucleotides 

R_rxn00710_c0 fig|9606.20.peg.1852 Nucleosides and Nucleotides 

R_rxn00205_c0 

fig|9606.20.peg.1734 

fig|9606.20.peg.4492 
fig|9606.20.peg.5182 

Stress Response 

R_rxn01018_c0 fig|9606.20.peg.5784 Nucleosides and Nucleotides 

R_rxn01362_c0 
fig|9606.20.peg.6014  

fig|9606.20.peg.4194 
Nucleosides and Nucleotides 

R_rxn12017_c0   

R_rxn08043_c0  Carbohydrates 

R_rxn03436_c0   

R_rxn03435_c0   

R_rxn03437_c0 fig|9606.20.peg.5822 Amino Acids and Derivatives 

R_rxn01575_c0 fig|9606.20.peg.3971 Amino Acids and Derivatives 

R_rxn00737_c0 
fig|9606.20.peg.2739  

fig|9606.20.peg.5848 
Amino Acids and Derivatives 

R_rxn08016_c0  Fatty Acids, Lipids, and Isoprenoids 

R_rxn10202_c0 fig|9606.20.peg.1252 Fatty Acids, Lipids, and Isoprenoids 

R_rxn08799_c0 
fig|9606.20.peg.4845  

fig|9606.20.peg.5862 
Fatty Acids, Lipids, and Isoprenoids 

R_rxn01000_c0 
fig|9606.20.peg.1642  

fig|9606.20.peg.1508 
Amino Acids and Derivatives 

R_rxn07576_c0  Fatty Acids, Lipids, and Isoprenoids 

R_rxn07577_c0  Fatty Acids, Lipids, and Isoprenoids 

R_rxn07578_c0 fig|9606.20.peg.3302 Fatty Acids, Lipids, and Isoprenoids 

R_rxn00239_c0 fig|9606.20.peg.6019 Nucleosides and Nucleotides 

R_rxn00834_c0 fig|9606.20.peg.5057 Nucleosides and Nucleotides 

xanthosine_build  Nucleosides and Nucleotides 
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R_rxn01303_c0 
fig|9606.20.peg.5792  

fig|9606.20.peg.4944 
Amino Acids and Derivatives 

R_rxn00337_c0 
fig|9606.20.peg.4756  
fig|9606.20.peg.6013 

Amino Acids and Derivatives 

R_rxn00952_c0 
fig|9606.20.peg.4193  
fig|9606.20.peg.460 

Amino Acids and Derivatives 

R_rxn00693_c0 fig|9606.20.peg.2664 Amino Acids and Derivatives 

R_rxn01643_c0 fig|9606.20.peg.4203 Amino Acids and Derivatives 

R_rxn01269_c0 fig|9606.20.peg.1644  

R_rxn00410_c0 
fig|9606.20.peg.1287  

fig|9606.20.peg.1155 
Nucleosides and Nucleotides 

R_rxn00907_c0 
fig|9606.20.peg.2331  
fig|9606.20.peg.3935  

fig|9606.20.peg.2322 

Cofactors, Vitamins, Prosthetic Groups, Pigments 

R_rxn01115_c0 fig|9606.20.peg.2694  

R_rxn02507_c0 fig|9606.20.peg.5582 Amino Acids and Derivatives 

R_rxn01964_c0 

fig|9606.20.peg.35  

fig|9606.20.peg.36  
fig|9606.20.peg.5939  

fig|9606.20.peg.2148 

Cofactors, Vitamins, Prosthetic Groups, Pigments 

R_rxn02508_c0 fig|9606.20.peg.4199 Amino Acids and Derivatives 

R_rxn00726_c0 

fig|9606.20.peg.5584  

fig|9606.20.peg.1383  

fig|9606.20.peg.1382  
fig|9606.20.peg.5585  

fig|9606.20.peg.4642 

Amino Acids and Derivatives 

R_rxn00791_c0 fig|9606.20.peg.5583 Amino Acids and Derivatives 

R_rxn03638_c0 fig|9606.20.peg.6142 Cell Wall and Capsule 

R_rxn00283_c0 
fig|9606.20.peg.5992  

fig|9606.20.peg.3019 
Amino Acids and Derivatives 

R_rxn00555_c0 fig|9606.20.peg.1731 Amino Acids and Derivatives 

R_rxn00293_c0 fig|9606.20.peg.6142 Cell Wall and Capsule 

R_rxn00423_c0 

fig|9606.20.peg.250  

fig|9606.20.peg.4636  
fig|9606.20.peg.5083 

Amino Acids and Derivatives 

R_rxn00649_c0 
fig|9606.20.peg.1535  
fig|9606.20.peg.4635  

fig|9606.20.peg.4521 

Amino Acids and Derivatives 

R_rxn05909_c0 fig|9606.20.peg.3410 Amino Acids and Derivatives 

R_rxn00193_c0 
fig|9606.20.peg.5889 

fig|9606.20.peg.4944 
Amino Acids and Derivatives 

R_rxn00851_c0  Carbohydrates 

R_rxn02008_c0 fig|9606.20.peg.945 Cofactors, Vitamins, Prosthetic Groups, Pigments 

R_rxn02286_c0   

R_rxn02011_c0 fig|9606.20.peg.942 Cofactors, Vitamins, Prosthetic Groups, Pigments 

R_rxn03901_c0 
fig|9606.20.peg.2397  

fig|9606.20.peg.2811 
Fatty Acids, Lipids, and Isoprenoids 

R_rxn00461_c0 fig|9606.20.peg.896 Cell Wall and Capsule 

R_rxn03408_c0 fig|9606.20.peg.947  
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R_rxn03164_c0   

R_rxn03904_c0 fig|9606.20.peg.944 Fatty Acids, Lipids, and Isoprenoids 

R_rxn01673_c0 fig|9606.20.peg.5074 Nucleosides and Nucleotides 

R_rxn01353_c0 fig|9606.20.peg.5074 Nucleosides and Nucleotides 

R_rxn05233_c0 

fig|9606.20.peg.4776  

fig|9606.20.peg.2786  
fig|9606.20.peg.4737 

Nucleosides and Nucleotides 

R_rxn06076_c0 
fig|9606.20.peg.2786  
fig|9606.20.peg.4776  

fig|9606.20.peg.4737 

Nucleosides and Nucleotides 

R_rxn01520_c0 fig|9606.20.peg.5840 Cofactors, Vitamins, Prosthetic Groups, Pigments 

R_rxn01512_c0 fig|9606.20.peg.5074 Nucleosides and Nucleotides 

R_rxn01513_c0 fig|9606.20.peg.4711 Nucleosides and Nucleotides 

R_rxn06075_c0 

fig|9606.20.peg.4776  

fig|9606.20.peg.2786  
fig|9606.20.peg.4737 

Nucleosides and Nucleotides 

R_rxn05231_c0 
fig|9606.20.peg.2786  
fig|9606.20.peg.4776  

fig|9606.20.peg.4737 

Nucleosides and Nucleotides 

R_rxn00839_c0 fig|9606.20.peg.5074 Nucleosides and Nucleotides 

P_Acid_2  Cell Wall and Capsule 

P_Acid_1  Cell Wall and Capsule 

P_Acid_3  Cell Wall and Capsule 

P_Acid_4  Cell Wall and Capsule 

P_Acid_5  Cell Wall and Capsule 

P_Acid_6  Cell Wall and Capsule 

P_Acid_7  Cell Wall and Capsule 

R_rxn01517_c0 fig|9606.20.peg.6019 Nucleosides and Nucleotides 

R_rxn00686_c0 
fig|9606.20.peg.5173  
fig|9606.20.peg.5828  

fig|9606.20.peg.3875 

Cofactors, Vitamins, Prosthetic Groups, Pigments 

R_rxn00313_c0 fig|9606.20.peg.5971 Amino Acids and Derivatives 

R_rxn02285_c0 fig|9606.20.peg.3772 Carbohydrates 

R_rxn01485_c0 fig|9606.20.peg.5276 Cell Wall and Capsule 

R_rxn00527_c0 

fig|9606.20.peg.3179  

fig|9606.20.peg.2127  

fig|9606.20.peg.6089  
fig|9606.20.peg.4473  

fig|9606.20.peg.4632  

fig|9606.20.peg.3502  
fig|9606.20.peg.4308  

fig|9606.20.peg.3658  

fig|9606.20.peg.2233  
fig|9606.20.peg.4031  

fig|9606.20.peg.3464  

fig|9606.20.peg.4219  
fig|9606.20.peg.1643  

fig|9606.20.peg.5151  

fig|9606.20.peg.899 

Amino Acids and Derivatives 
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R_rxn04954_c0 fig|9606.20.peg.5748  

R_rxn01301_c0 
fig|9606.20.peg.2013  

fig|9606.20.peg.5019 
 

R_rxn00493_c0 

fig|9606.20.peg.4219  
fig|9606.20.peg.1643  

fig|9606.20.peg.899  

fig|9606.20.peg.5151  
fig|9606.20.peg.4473 

Cofactors, Vitamins, Prosthetic Groups, Pigments 

R_rxn05332_c0  Fatty Acids, Lipids, and Isoprenoids 

R_rxn00086_c0 fig|9606.20.peg.5236 Amino Acids and Derivatives 

R_rxn01465_c0 

fig|9606.20.peg.5785  
fig|9606.20.peg.6120  

fig|9606.20.peg.1153  

fig|9606.20.peg.373 

Nucleosides and Nucleotides 

R_rxn00503_c0 fig|9606.20.peg.456 Amino Acids and Derivatives 

R_rxn00623_c0 fig|9606.20.peg.2659 Amino Acids and Derivatives 

R_rxn00929_c0 fig|9606.20.peg.5790 Amino Acids and Derivatives 

R_rxn01637_c0 
fig|9606.20.peg.5628  

fig|9606.20.peg.1621 
Amino Acids and Derivatives 

R_rxn15112_c0  Carbohydrates 

R_rxn01973_c0 fig|9606.20.peg.1256 Amino Acids and Derivatives 

R_rxn00908_c0 fig|9606.20.peg.4514 Cofactors, Vitamins, Prosthetic Groups, Pigments 

R_rxn05458_c0 
fig|9606.20.peg.4717  
fig|9606.20.peg.5764 

Fatty Acids, Lipids, and Isoprenoids 

R_rxn01740_c0 

fig|9606.20.peg.24  

fig|9606.20.peg.5387  

fig|9606.20.peg.2135 

Amino Acids and Derivatives 

R_rxn00506_c0 

fig|9606.20.peg.3098  
fig|9606.20.peg.2014  

fig|9606.20.peg.6002  

fig|9606.20.peg.2352  
fig|9606.20.peg.3105  

fig|9606.20.peg.5464  

fig|9606.20.peg.3094  
fig|9606.20.peg.5813 

Fatty Acids, Lipids, and Isoprenoids 

R_rxn00541_c0 
fig|9606.20.peg.5678  
fig|9606.20.peg.4758 

Amino Acids and Derivatives 

R_rxn00806_c0 fig|9606.20.peg.3971 Amino Acids and Derivatives 

R_rxn02811_c0 

fig|9606.20.peg.4206  

fig|9606.20.peg.2051  
fig|9606.20.peg.4207  

fig|9606.20.peg.2050 

Amino Acids and Derivatives 

R_rxn03239_c0 
fig|9606.20.peg.4671  

fig|9606.20.peg.1548 
Fatty Acids, Lipids, and Isoprenoids 
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R_rxn05342_c0 

fig|9606.20.peg.3734  
fig|9606.20.peg.1994  

fig|9606.20.peg.1075  

fig|9606.20.peg.2571  
fig|9606.20.peg.3093  

fig|9606.20.peg.300  

fig|9606.20.peg.1957  
fig|9606.20.peg.3196  

fig|9606.20.peg.4716  

fig|9606.20.peg.1953  
fig|9606.20.peg.2379 

Fatty Acids, Lipids, and Isoprenoids 

R_rxn00692_c0 

fig|9606.20.peg.5676  

fig|9606.20.peg.5351  
fig|9606.20.peg.3051 

Cofactors, Vitamins, Prosthetic Groups, Pigments 

R_rxn00611_c0 fig|9606.20.peg.1841  

R_rxn05340_c0 

fig|9606.20.peg.2571  

fig|9606.20.peg.3093  

fig|9606.20.peg.3734  
fig|9606.20.peg.1075  

fig|9606.20.peg.1994  

fig|9606.20.peg.1953  
fig|9606.20.peg.4716  

fig|9606.20.peg.2379  

fig|9606.20.peg.300  
fig|9606.20.peg.1957  

fig|9606.20.peg.3196 

Fatty Acids, Lipids, and Isoprenoids 

R_rxn05339_c0 

fig|9606.20.peg.3734  

fig|9606.20.peg.1994  
fig|9606.20.peg.1075  

fig|9606.20.peg.2571  

fig|9606.20.peg.3093  
fig|9606.20.peg.300  

fig|9606.20.peg.3196  

fig|9606.20.peg.1957  
fig|9606.20.peg.4716  

fig|9606.20.peg.1953  

fig|9606.20.peg.2379 

Fatty Acids, Lipids, and Isoprenoids 

R_rxn05338_c0 

fig|9606.20.peg.3093  
fig|9606.20.peg.2571  

fig|9606.20.peg.1075  

fig|9606.20.peg.1994  
fig|9606.20.peg.3734  

fig|9606.20.peg.2379  

fig|9606.20.peg.1953  
fig|9606.20.peg.4716  

fig|9606.20.peg.1957  

fig|9606.20.peg.3196  

fig|9606.20.peg.300 

Fatty Acids, Lipids, and Isoprenoids 
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R_rxn05341_c0 

fig|9606.20.peg.1953  
fig|9606.20.peg.4716  

fig|9606.20.peg.2379  

fig|9606.20.peg.300  
fig|9606.20.peg.1957  

fig|9606.20.peg.3196  

fig|9606.20.peg.2571  
fig|9606.20.peg.3093  

fig|9606.20.peg.3734  

fig|9606.20.peg.1075  
fig|9606.20.peg.1994 

Fatty Acids, Lipids, and Isoprenoids 

R_rxn05337_c0 

fig|9606.20.peg.300  

fig|9606.20.peg.3196  

fig|9606.20.peg.1957  
fig|9606.20.peg.1953  

fig|9606.20.peg.4716  

fig|9606.20.peg.2379  
fig|9606.20.peg.3734  

fig|9606.20.peg.1075  

fig|9606.20.peg.1994  
fig|9606.20.peg.2571  

fig|9606.20.peg.3093 

Fatty Acids, Lipids, and Isoprenoids 

R_rxn00903_c0 fig|9606.20.peg.3971 Amino Acids and Derivatives 

oxaloacetate_buildin  Carbohydrates 

R_rxn08647_c0 fig|9606.20.peg.6106 Cofactors, Vitamins, Prosthetic Groups, Pigments 

R_rxn02914_c0 fig|9606.20.peg.1641 Cofactors, Vitamins, Prosthetic Groups, Pigments 

R_rxn02380_c0 fig|9606.20.peg.5262  

R_rxn01333_c0 
fig|9606.20.peg.3736  

fig|9606.20.peg.1580 
Carbohydrates 

R_rxn00258_c0 fig|9606.20.peg.5784 Nucleosides and Nucleotides 

R_rxn01116_c0 
fig|9606.20.peg.5587  

fig|9606.20.peg.292 
Carbohydrates 

R_rxn00777_c0 fig|9606.20.peg.5849 Carbohydrates 

R_rxn02085_c0 fig|9606.20.peg.365 Amino Acids and Derivatives 

R_rxn01652_c0 fig|9606.20.peg.4514 Cofactors, Vitamins, Prosthetic Groups, Pigments 

R_rxn02283_c0 fig|9606.20.peg.17  

R_rxn04043_c0 fig|9606.20.peg.4167 Carbohydrates 

R_rxn00786_c0 fig|9606.20.peg.5727 Carbohydrates 

R_rxn02320_c0 
fig|9606.20.peg.899  

fig|9606.20.peg.5151  

fig|9606.20.peg.1643 

Amino Acids and Derivatives 

R_rxn00832_c0 fig|9606.20.peg.614 Cofactors, Vitamins, Prosthetic Groups, Pigments 
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R_rxn00260_c0 

fig|9606.20.peg.4031  
fig|9606.20.peg.3464  

fig|9606.20.peg.2233  

fig|9606.20.peg.4308  
fig|9606.20.peg.3658  

fig|9606.20.peg.3179  

fig|9606.20.peg.6089  
fig|9606.20.peg.2127  

fig|9606.20.peg.4632  

fig|9606.20.peg.4473  
fig|9606.20.peg.3502 

Amino Acids and Derivatives 

R_rxn08527_c0 

fig|9606.20.peg.1818  
fig|9606.20.peg.1816  

fig|9606.20.peg.1817  

fig|9606.20.peg.1819 

Carbohydrates 

R_rxn00285_c0 
fig|9606.20.peg.1824  

fig|9606.20.peg.1823 
Carbohydrates 

R_rxn00799_c0 

fig|9606.20.peg.4964  

fig|9606.20.peg.4326  

fig|9606.20.peg.876 

Carbohydrates 
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Appendix C P fluorescens catechol metabolism 
 

Table C.1 P. fluorescens in silico catechol metabolism Part 1 

Coded 

reaction 

id 

Reaction name 

Flux 

(mmol/g

DW/h) 

Norm

alized 

flux 

(mmol

/gDW/

h) 

R_rxn00
799_c0 

S_malate_hydro_lyase_fumarate_forming_c0 -1.6235  

-

197.26

63  

R_rxn08
527_c0 

fumarate_reductase_c0 -1.6090  

-

195.50

49  

R_rxn00

285_c0 
Succinate_CoA_ligase_ADP_forming_c0 -0.8025  

-
97.503

9  

R_rxn00

258_c0 
Malonyl_CoA_pyruvate_carboxytransferase_c0 -0.2689  

-
32.679

2  

R_rxn04

954_c0 
5_methyltetrahydrofolate_NAD_plus__oxidoreductase_c0 -0.2285  

-

27.762
4  

R_rxn00

781_c0 
D_glyceraldehyde_3_phosphate_NAD_plus__oxidoreductase_phosphorylating_c0 -0.0898  

-

10.911
2  

R_rxn00

260_c0 
L_Aspartate_2_oxoglutarate_aminotransferase_c0 -0.0638  

-

7.7503  

R_rxn02
914_c0 

3_Phosphoserine_2_oxoglutarate_aminotransferase_c0 -0.0612  
-

7.4387  

R_rxn08

647_c0 
ATP_R_glycerate_2_phosphotransferase_c0 -0.0612  

-

7.4387  

R_rxn00

903_c0 
L_Valine_2_oxoglutarate_aminotransferase_c0 -0.0570  

-

6.9298  

R_rxn05

339_c0 
3R_3_Hydroxybutanoyl_acyl_carrier_protein_NADP_plus__oxidoreductase_c0 -0.0393  

-

4.7745  

R_rxn05
338_c0 

3R_3_Hydroxydecanoyl_acyl_carrier_protein_NADP_plus__oxidoreductase_c0 -0.0393  
-

4.7745  

R_rxn05

341_c0 
3R_3_Hydroxyoctanoyl_acyl_carrier_protein_NADP_plus__oxidoreductase_c0 -0.0393  

-

4.7745  

R_rxn05
337_c0 

3R_3_Hydroxyhexanoyl_acyl_carrier_protein_NADP_plus__oxidoreductase_c0 -0.0393  
-

4.7745  

R_rxn05

340_c0 
3R_3_Hydroxydodecanoyl_acyl_carrier_protein_NADP_plus__oxidoreductase_c0 -0.0358  

-

4.3448  

R_rxn00
611_c0 

sn_Glycerol_3_phosphate_NAD_plus__2_oxidoreductase_c0 -0.0350  
-

4.2490  

R_rxn00

692_c0 
5_10_Methylenetetrahydrofolate_glycine_hydroxymethyltransferase_c0 -0.0347  

-

4.2131  

R_rxn05

342_c0 
3R_3_Hydroxytetradecanoyl_acyl_carrier_protein_NADP_plus__oxidoreductase_c0 -0.0334  

-

4.0584  

R_rxn05

336_c0 
3R_3_Hydroxypalmitoyl_acyl_carrier_protein_NADP_plus__oxidoreductase_c0 -0.0332  

-

4.0320  

R_rxn00

806_c0 
L_Leucine_2_oxoglutarate_aminotransferase_c0 -0.0269  

-

3.2745  

R_rxn02

811_c0 
3_Isopropylmalate_hydro_lyase_c0 -0.0269  

-

3.2745  

R_rxn00

506_c0 
Acetaldehyde_NAD_plus__oxidoreductase_c0 -0.0260  

-

3.1615  

R_rxn00

541_c0 
L_threonine_acetaldehyde_lyase_glycine_forming_c0 -0.0260  

-

3.1615  

R_rxn01

740_c0 
Shikimate_NADP_plus__3_oxidoreductase_c0 -0.0227  

-

2.7551  

R_rxn12

017_c0 
R08161 -0.0206  

-

2.5041  
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R_rxn00

908_c0 
glycine_synthase_c0 -0.0199  

-

2.4186  

R_rxn04

043_c0 
ADP_D_fructose_6_phosphate_1_phosphotransferase_c0 -0.0193  

-

2.3413  

R_rxn00
786_c0 

D_fructose_1_6_bisphosphate_D_glyceraldehyde_3_phosphate_lyase_glycerone_phosphate_
forming_c0 

-0.0193  
-

2.3413  

R_rxn01

973_c0 
N_Succinyl_LL_2_6_diaminoheptanedioate_amidohydrolase_c0 -0.0165  

-

1.9988  

R_rxn01
116_c0 

D_Ribulose_5_phosphate_3_epimerase_c0 -0.0162  
-

1.9719  

R_rxn00

777_c0 
D_ribose_5_phosphate_aldose_ketose_isomerase_c0 -0.0162  

-

1.9719  

R_rxn15
112_c0 

Ribose-5-phosphate:ammonia ligase (ADP-forming) -0.0157  
-

1.9041  

R_rxn01

637_c0 
N2_Acetyl_L_ornithine_2_oxoglutarate_aminotransferase_c0 -0.0145  

-

1.7614  

R_rxn00
503_c0 

S_1_pyrroline_5_carboxylate_NAD_plus__oxidoreductase_c0 -0.0135  
-

1.6410  

R_rxn00

623_c0 
hydrogen_sulfide_NADP_plus__oxidoreductase_c0 -0.0135  

-

1.6410  

R_rxn00
929_c0 

L_Proline_NAD_plus__5_oxidoreductase_c0 -0.0135  
-

1.6410  

R_rxn01

465_c0 
S_dihydroorotate_amidohydrolase_c0 -0.0130  

-

1.5853  

R_rxn00
086_c0 

glutathione_NADP_plus__oxidoreductase_c0 -0.0130  
-

1.5853  

R_rxn00

493_c0 
L_Phenylalanine_2_oxoglutarate_aminotransferase_c0 -0.0113  

-

1.3775  

R_rxn01

301_c0 
L_Homoserine_NAD_plus__oxidoreductase_c0 -0.0085  

-

1.0313  

R_rxn00

527_c0 
L_tyrosine_2_oxoglutarate_aminotransferase_c0 -0.0082  

-

0.9936  

R_rxn02

320_c0 
5_Amino_2_oxopentanoate_2_oxoglutarate_aminotransferase_c0 -0.0056  

-

0.6775  

R_rxn00

832_c0 
IMP_1_2_hydrolase_decyclizing_c0 -0.0056  

-

0.6775  

R_rxn01

200_c0 
Sedoheptulose_7_phosphate_D_glyceraldehyde_3_phosphate_glycolaldehyde_transferase_c0 -0.0032  

-

0.3916  

R_rxn00

134_c0 
ATP_adenosine_5_phosphotransferase_c0 -0.0032  

-

0.3888  

R_rxn01

485_c0 
D_Glucosamine_1_phosphate_1_6_phosphomutase_c0 -0.0030  

-

0.3694  

R_rxn00

313_c0 
meso_2_6_diaminoheptanedioate_carboxy_lyase_L_lysine_forming_c0 -0.0015  

-

0.1847  

R_rxn02

285_c0 
UDP_N_acetylmuramate_NADP_plus__oxidoreductase_c0 -0.0015  

-

0.1847  

R_rxn01

517_c0 
ATP_dUMP_phosphotransferase_c0 -0.0007  

-

0.0858  

R_rxn00

686_c0 
5_6_7_8_tetrahydrofolate_NADP_plus__oxidoreductase_c0 -0.0007  

-

0.0858  

R_rxn03
239_c0 

S_3_Hydroxyhexadecanoyl_CoA_NAD_plus__oxidoreductase_c0 -0.0002  
-

0.0264  

P_Acid_

7 
P_Acid7 0.0000  0.0014  

P_Acid_
5 

P_Acid5 0.0001  0.0091  

P_Acid_

6 
P_Acid6 0.0001  0.0091  

R_rxn02
804_c0 

myristoyl_CoA_acetylCoA_C_myristoyltransferase_c0 0.0002  0.0264  

R_rxn03

240_c0 
S_3_Hydroxyhexadecanoyl_CoA_hydro_lyase_c0 0.0002  0.0264  

R_rxn05
457_c0 

Acyl_carrier_protein_acetyltransferase_c0 0.0002  0.0264  

R_rxn05

732_c0 
acyl_CoA_dehydrogenase_hexadecanoyl_CoA_c0 0.0002  0.0264  

P_Acid_
3 

P_Acid3 0.0003  0.0372  
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P_Acid_

4 
P_Acid4 0.0003  0.0372  

P_Acid_

2 
P_Acid2 0.0004  0.0477  

P_Acid_
1 

P_Acid 0.0004  0.0477  

R_rxn05

231_c0 
2_Deoxyadenosine_5_diphosphate_oxidized_thioredoxin_2_oxidoreductase_c0 0.0007  0.0851  

R_rxn00
839_c0 

ATP_dADP_phosphotransferase_c0 0.0007  0.0851  

R_rxn01

520_c0 
5_10_Methylenetetrahydrofolate_dUMP_C_methyltransferase_c0 0.0007  0.0858  

R_rxn01
512_c0 

ATP_dTDP_phosphotransferase_c0 0.0007  0.0858  

R_rxn01

513_c0 
ATP_dTMP_phosphotransferase_c0 0.0007  0.0858  

R_rxn06
075_c0 

2_Deoxyuridine_5_diphosphate_oxidized_thioredoxin_2_oxidoreductase_c0 0.0007  0.0858  

R_rxn01

673_c0 
ATP_dCDP_phosphotransferase_c0 0.0011  0.1310  

R_rxn01
353_c0 

ATP_dGDP_phosphotransferase_c0 0.0011  0.1310  

R_rxn05

233_c0 
2_Deoxyguanosine_5_diphosphate_oxidized_thioredoxin_2_oxidoreductase_c0 0.0011  0.1310  

R_rxn06
076_c0 

2_Deoxycytidine_diphosphate_oxidized_thioredoxin_2_oxidoreductase_c0 0.0011  0.1310  

R_rxn00

851_c0 
D_alanine_D_alanine_ligase_ADP_forming_c0 0.0015  0.1847  

R_rxn02

008_c0 
UDP_N_acetylmuramoyl_L_alanine_D_glutamate_ligaseADP_forming_c0 0.0015  0.1847  

R_rxn02

286_c0 
UDP_N_acetylmuramate_L_alanine_ligase_ADP_forming_c0 0.0015  0.1847  

R_rxn02

011_c0 

UDP_N_acetylmuramoyl_L_alanyl_D_glutamate_L_meso_2_6_diaminoheptanedioate_gam

ma_ligase_ADP_forming_c0 
0.0015  0.1847  

R_rxn03

901_c0 
undecaprenyl_diphosphate_phosphohydrolase_c0 0.0015  0.1847  

R_rxn00

193_c0 
glutamate_racemase_c0 0.0015  0.1847  

R_rxn00

461_c0 
Phosphoenolpyruvate_UDP_N_acetyl_D_glucosamine_1_carboxyvinyl_transferase_c0 0.0015  0.1847  

R_rxn03
408_c0 

UDP_N_acetyl_D_glucosamine_undecaprenyl_diphospho_N_acetylmuramoyl_L_alanyl_ga

mma_D_glutamyl_meso_2_6_diaminopimeloyl_D_alanyl_D_alanine_4_beta_N_acetylglucos

aminlytransferase_c0 

0.0015  0.1847  

R_rxn03
164_c0 

UDP_N_acetylmuramoyl_L_alanyl_D_glutamyl_meso_2_6_diaminoheptanedioate_D_alanyl
_D_alanine_ligaseADP_forming_c0 

0.0015  0.1847  

R_rxn03

904_c0 

UDP_N_acetylmuramoyl_L_alanyl_gamma_D_glutamyl_meso_2_6_diaminopimeloyl_D_ala

nyl_D_alanine_undecaprenyl_phosphate_phospho_N_acetylmuramoyl_pentapeptide_transfer
ase_c0 

0.0015  0.1847  

R_rxn05

909_c0 
L_serine_hydro_lyase_adding_hydrogen_sulfide__L_cysteine_forming_c0 0.0020  0.2409  

R_rxn00
423_c0 

acetyl_CoA_L_serine_O_acetyltransferase_c0 0.0030  0.3688  

R_rxn00

649_c0 
O3_acetyl_L_serine_hydrogen_sulfide_2_amino_2_carboxyethyltransferase_c0 0.0030  0.3688  

R_rxn03
638_c0 

Acetyl_CoA_D_glucosamine_1_phosphate_N_acetyltransferase_c0 0.0030  0.3694  

R_rxn00

283_c0 
alanine_racemase_c0 0.0030  0.3694  

R_rxn00
555_c0 

L_glutamine_D_fructose_6_phosphate_isomerase_deaminating_c0 0.0030  0.3694  

R_rxn00

293_c0 
UTP_N_acetyl_alpha_D_glucosamine_1_phosphate_uridylyltransferase_c0 0.0030  0.3694  

R_rxn02
507_c0 

1_2_Carboxyphenylamino_1_deoxy_D_ribulose_5_phosphate_carboxy_lyasecyclizing_c0 0.0032  0.3839  

R_rxn01

964_c0 

L_serine_hydro_lyase_adding_1_C_indol_3_ylglycerol_3_phosphate_L_tryptophan_and_gly

ceraldehyde_3_phosphate_forming_c0 
0.0032  0.3839  

R_rxn02
508_c0 

N_5_Phospho_beta_D_ribosylanthranilate_ketol_isomerase_c0 0.0032  0.3839  
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R_rxn00

726_c0 
chorismate_pyruvate_lyase_amino_accepting_anthranilate_forming_c0 0.0032  0.3839  

R_rxn00

791_c0 
N_5_Phospho_D_ribosylanthranilate_pyrophosphate_phosphoribosyl_transferase_c0 0.0032  0.3839  

R_rxn00
772_c0 

ATP_D_ribose_5_phosphotransferase_c0 0.0032  0.3888  

R_rxn01

137_c0 
Adenosine_aminohydrolase_c0 0.0032  0.3888  

R_rxn01
299_c0 

Inosine_ribohydrolase_c0 0.0032  0.3888  

R_rxn00

836_c0 
IMP_diphosphate_phospho_D_ribosyltransferase_c0 0.0032  0.3888  

R_rxn01
333_c0 

sedoheptulose_7_phosphate_D_glyceraldehyde_3_phosphate_glyceronetransferase_c0 0.0032  0.3916  

R_rxn03

135_c0 
R04558_c0 0.0056  0.6775  

R_rxn03
137_c0 

10_Formyltetrahydrofolate_5_phosphoribosyl_5_amino_4_imidazolecarboxamide_formyltran
sferase_c0 

0.0056  0.6775  

R_rxn02

473_c0 
D_erythro_1_Imidazol_4_ylglycerol_3_phosphate_hydro_lyase_c0 0.0056  0.6775  

R_rxn03
175_c0 

N_5_Phospho_D_ribosylformimino_5_amino_1__5_phospho_D_ribosyl_4_imidazolecarbox
amide_ketol_isomerase_c0 

0.0056  0.6775  

R_rxn00

859_c0 
L_Histidinol_NAD_plus__oxidoreductase_c0 0.0056  0.6775  

R_rxn01
211_c0 

5_10_Methenyltetrahydrofolate_5_hydrolase_decyclizing_c0 0.0056  0.6775  

R_rxn02

160_c0 
L_Histidinol_phosphate_phosphohydrolase_c0 0.0056  0.6775  

R_rxn02

835_c0 
1_5_phospho_D_ribosyl_AMP_1_6_hydrolase_c0 0.0056  0.6775  

R_rxn00

907_c0 
5_10_methylenetetrahydrofolate_NADP_plus__oxidoreductase_c0 0.0056  0.6775  

R_rxn00

789_c0 
1_5_phospho_D_ribosyl_ATP_diphosphate_phospho_alpha_D_ribosyl_transferase_c0 0.0056  0.6775  

R_rxn02

834_c0 
Phosphoribosyl_ATP_pyrophosphohydrolase_c0 0.0056  0.6775  

R_rxn00

410_c0 
UTP_ammonia_ligase_ADP_forming_c0 0.0073  0.8867  

R_rxn00

237_c0 
ATP_GDP_phosphotransferase_c0 0.0077  0.9353  

R_rxn01

269_c0 
Prephenate_NADP_plus__oxidoreductasedecarboxylating_c0 0.0082  0.9936  

R_rxn01

303_c0 
Acetyl_CoA_L_homoserine_O_acetyltransferase_c0 0.0085  1.0313  

R_rxn00

337_c0 
ATP_L_aspartate_4_phosphotransferase_c0 0.0085  1.0313  

R_rxn00

952_c0 
O_acetyl_L_homoserine_hydrogen_sulfide_S_3_amino_3_carboxypropyltransferase_c0 0.0085  1.0313  

R_rxn00

693_c0 
5_Methyltetrahydrofolate_L_homocysteine_S_methyltransferase_c0 0.0085  1.0313  

R_rxn01
643_c0 

L_Aspartate_4_semialdehyde_NADP_plus__oxidoreductase_phosphorylating_c0 0.0085  1.0313  

R_rxn00

239_c0 
ATP_GMP_phosphotransferase_c0 0.0088  1.0663  

xanthosi
ne_build 

XMP 0.0088  1.0663  

R_rxn00

834_c0 
IMP_NAD_plus__oxidoreductase_c0 0.0088  1.0663  

R_rxn07
578_c0 

R07764_c0 0.0094  1.1459  

R_rxn07

576_c0 
3-oxoacyl-[acyl-carrier-protein] synthase 0.0094  1.1459  

R_rxn07
577_c0 

3-oxoacyl-[acyl-carrier-protein] reductase 0.0094  1.1459  

R_rxn05

458_c0 
Acyl_carrier_protein_acetyltransferase_c0 0.0112  1.3582  

R_rxn01
000_c0 

prephenate_hydro_lyase_decarboxylating_phenylpyruvate_forming_c0 0.0113  1.3775  
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R_rxn08

016_c0 
palmitate-[acyl-carrier-protein] ligase 0.0114  1.3846  

R_rxn10

202_c0 
glycerol_3_phosphate__acyl_coa_acyltransferase_16_0_c0 0.0114  1.3846  

R_rxn08
799_c0 

Lysophospholipase_L1_2_acylglycerophosphotidate__n_C16_0_periplasm_c0 0.0114  1.3846  

R_rxn03

437_c0 
R_2_3_Dihydroxy_3_methylpentanoate_hydro_lyase_c0 0.0116  1.4152  

R_rxn03
436_c0 

(S)-2-Aceto-2-hydroxybutanoate:NADP+ oxidoreductase (isomerizing) 0.0116  1.4152  

R_rxn01

575_c0 
L_Isoleucine_2_oxoglutarate_aminotransferase_c0 0.0116  1.4152  

R_rxn00
737_c0 

L_threonine_ammonia_lyase_2_oxobutanoate_forming_c0 0.0116  1.4152  

R_rxn03

435_c0 
(R)-2,3-Dihydroxy-3-methylpentanoate:NADP+ oxidoreductase (isomerizing) 0.0116  1.4152  

R_rxn08
043_c0 

pyruvate:2-oxobutanoate acetaldehydetransferase (decarboxylating) 0.0116  1.4152  

R_rxn00

710_c0 
orotidine_5_phosphate_carboxy_lyase_UMP_forming_c0 0.0130  1.5853  

R_rxn00
205_c0 

glutathione_hydrogen_peroxide_oxidoreductase_c0 0.0130  1.5853  

R_rxn01

018_c0 
carbamoyl_phosphate_L_aspartate_carbamoyltransferase_c0 0.0130  1.5853  

R_rxn01
360_c0 

 (S)-dihydroorotate:fumarate oxidoreductase 0.0130  1.5853  

R_rxn01

362_c0 
Orotidine_5_phosphate_diphosphate_phospho_alpha_D_ribosyl_transferase_c0 0.0130  1.5853  

R_rxn05

256_c0 
AMP_sulfite_thioredoxin_disulfide_oxidoreductaseadenosine_5_phosphosulfate_forming_c0 0.0135  1.6410  

R_rxn00

379_c0 
ATP_sulfate_adenylyltransferase_c0 0.0135  1.6410  

R_rxn05

651_c0 
sulfate_transport_in_via_proton_symport_c0 0.0135  1.6410  

R_rxn00

416_c0 
L_aspartate_L_glutamine_amido_ligase_AMP_forming_c0 0.0139  1.6862  

R_rxn00

192_c0 
acetyl_CoA_L_glutamate_N_acetyltransferase_c0 0.0145  1.7614  

R_rxn01

434_c0 
L_Citrulline_L_aspartate_ligase_AMP_forming_c0 0.0145  1.7614  

R_rxn01

917_c0 
ATP_N_acetyl_L_glutamate_5_phosphotransferase_c0 0.0145  1.7614  

R_rxn00

469_c0 
N2_Acetyl_L_ornithine_amidohydrolase_c0 0.0145  1.7614  

R_rxn00

802_c0 
2_Nomega_L_argininosuccinate_arginine_lyase_fumarate_forming_c0 0.0145  1.7614  

R_rxn02

465_c0 
N_acetyl_L_glutamate_5_semialdehyde_NADP_plus__5_oxidoreductase_phosphrylating_c0 0.0145  1.7614  

R_rxn01

019_c0 
Carbamoyl_phosphate_L_ornithine_carbamoyltransferase_c0 0.0145  1.7614  

R_rxn00
119_c0 

ATP_UMP_phosphotransferase_c0 0.0146  1.7699  

R_rxn00

148_c0 
ATP_pyruvate_2_O_phosphotransferase_c0 0.0151  1.8362  

R_rxn00
117_c0 

ATP_UDP_phosphotransferase_c0 0.0154  1.8688  

R_rxn00

790_c0 

5_phosphoribosylamine_diphosphate_phospho_alpha_D_ribosyltransferase_glutamate_amida

ting_c0 
0.0157  1.9041  

lysine_fo
rmation 

lysine4 0.0165  1.9988  

R_rxn05

289_c0 
NADPH_oxidized_thioredoxin_oxidoreductase_c0 0.0171  2.0738  

R_rxn00
409_c0 

ATP_CDP_phosphotransferase_c0 0.0186  2.2563  

R_rxn00

785_c0 
D_Fructose_6_phosphate_D_glyceraldehyde_3_phosphate_glycolaldehyde_transferase_c0 0.0195  2.3635  

R_rxn01
256_c0 

Chorismate_pyruvatemutase_c0 0.0195  2.3712  
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R_rxn00

364_c0 
ATP_CMP_phosphotransferase_c0 0.0196  2.3873  

R_rxn05

332_c0 
(3R)-3-Hydroxypalmitoyl-[acyl-carrier-protein] hydro-lyase 0.0206  2.5041  

R_rxn02
213_c0 

3_Dehydroquinate_hydro_lyase_c0 0.0227  2.7551  

R_rxn01

255_c0 
5_O_1_Carboxyvinyl_3_phosphoshikimate_phosphate_lyase_chorismate_forming_c0 0.0227  2.7551  

R_rxn01
739_c0 

ATP_shikimate_3_phosphotransferase_c0 0.0227  2.7551  

R_rxn02

212_c0 
2_Dehydro_3_deoxy_D_arabino_heptonate_7_phosphate_phosphate_lyase_cyclyzing_c0 0.0227  2.7551  

R_rxn01
332_c0 

Phosphoenolpyruvate_D_erythrose_4_phosphate_C_1_carboxyvinyltransferase_phosphate_h
ydrolysing__2_carboxy_2_oxoethyl_forming_c0 

0.0227  2.7551  

R_rxn02

476_c0 
Phosphoenolpyruvate_3_phosphoshikimate_5_O_1_carboxyvinyl_transferase_c0 0.0227  2.7551  

R_rxn02
789_c0 

2_Isopropylmalate_hydro_lyase_c0 0.0269  3.2745  

R_rxn01

208_c0 
R01652_c0 0.0269  3.2745  

R_rxn00
902_c0 

acetyl_CoA_3_methyl_2_oxobutanoate_C_acetyltransferase_thioester_hydrolysing__carboxy
methyl_forming_c0 

0.0269  3.2745  

R_rxn03

062_c0 
3_Isopropylmalate_NAD_plus__oxidoreductase_c0 0.0269  3.2745  

R_rxn00
114_c0 

ATP_carbamate_phosphotransferase_c0 0.0275  3.3467  

R_rxn00

770_c0 
ATP_D_ribose_5_phosphate_diphosphotransferase_c0 0.0319  3.8732  

R_rxn05

344_c0 

Tetradecanoyl_acyl_carrier_protein_malonyl_acyl_carrier_protein_C_acyltransferase_decarb

oxylating_c0 
0.0332  4.0320  

R_rxn05

331_c0 
(3R)-3-Hydroxybutanoyl-[acyl-carrier-protein] hydro-lyase 0.0334  4.0584  

R_rxn05

345_c0 

dodecanoyl_acyl_carrier_protein_malonyl_acyl_carrier_protein_C_acyltransferase_decarbox

ylating_c0 
0.0334  4.0584  

R_rxn05

335_c0 
(3R)-3-Hydroxypalmitoyl-[acyl-carrier-protein] hydro-lyase 0.0334  4.0584  

R_rxn05

324_c0 

Dodecanoyl-[acyl-carrier protein]:malonyl-CoA C-acyltransferase(decarboxylating oxoacyl- 

and enoyl-reducing) 
0.0334  4.0584  

R_rxn05

351_c0 

Tetradecanoyl-[acyl-carrier protein]:malonyl-CoA C-acyltransferase(decarboxylating  

oxoacyl- and enoyl-reducing and thioester-hydrolysing) 
0.0334  4.0584  

R_rxn00

747_c0 
D_glyceraldehyde_3_phosphate_aldose_ketose_isomerase_c0 0.0350  4.2490  

R_rxn05

333_c0 
(3R)-3-Hydroxybutanoyl-[acyl-carrier-protein] hydro-lyase 0.0358  4.3448  

R_rxn05

348_c0 

Decanoyl_acyl_carrier_protein_malonyl_acyl_carrier_protein_C_acyltransferase_decarboxyla

ting_c0 
0.0358  4.3448  

R_rxn05

327_c0 

Decanoyl-[acyl-carrier protein]:malonyl-CoA C-acyltransferase(decarboxylating oxoacyl- and 

enoyl-reducing) 
0.0358  4.3448  

R_rxn00

904_c0 
L_Valine_pyruvate_aminotransferase_c0 0.0387  4.7017  

R_rxn05
329_c0 

(3R)-3-Hydroxybutanoyl-[acyl-carrier-protein] hydro-lyase 0.0393  4.7745  

R_rxn05

334_c0 
(3R)-3-Hydroxybutanoyl-[acyl-carrier-protein] hydro-lyase 0.0393  4.7745  

R_rxn05
349_c0 

acetyl_CoA_acyl_carrier_protein_S_acetyltransferase_c0 0.0393  4.7745  

R_rxn05

346_c0 

butyryl_acyl_carrier_protein_malonyl_acyl_carrier_protein_C_acyltransferase_decarboxylati

ng_c0 
0.0393  4.7745  

R_rxn05
330_c0 

(3R)-3-Hydroxybutanoyl-[acyl-carrier-protein] hydro-lyase 0.0393  4.7745  

R_rxn05

350_c0 

hexanoyl_acyl_carrier_protein_malonyl_acyl_carrier_protein_C_acyltransferase_decarboxyla

ting_c0 
0.0393  4.7745  

R_rxn05
347_c0 

Acyl_acyl_carrier_protein_malonyl_acyl_carrier_protein_C_acyltransferase_decarboxylating
_c0 

0.0393  4.7745  

R_rxn05

325_c0 

Octanoyl-[acyl-carrier protein]:malonyl-CoA C-acyltransferase(decarboxylating oxoacyl- and 

enoyl-reducing)  
0.0393  4.7745  

R_rxn05
326_c0 

Hexanoyl-[acyl-carrier protein]:malonyl-CoA C-acyltransferase(decarboxylating oxoacyl- and 
enoyl-reducing) 

0.0393  4.7745  
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R_rxn05

322_c0 

Butyryl-[acyl-carrier protein]:malonyl-CoA C-acyltransferase(decarboxylating  oxoacyl- and 

enoyl-reducing) 
0.0393  4.7745  

R_rxn05

343_c0 

Octanoyl_acyl_carrier_protein_malonyl_acyl_carrier_protein_C_acyltransferase_decarboxyla

ting_c0 
0.0393  4.7745  

Malate_b
uildin 

pyruvate_to_oxobuanoate 0.0453  5.5026  

R_rxn01

102_c0 
ATP_R_glycerate_3_phosphotransferase_c0 0.0612  7.4387  

R_rxn00
420_c0 

O_phospho_L_serine_phosphohydrolase_c0 0.0612  7.4387  

R_rxn01

101_c0 
3_Phospho_D_glycerate_NAD_plus__2_oxidoreductase_c0 0.0612  7.4387  

P_Acid_
8 

P_Acid8 0.0620  7.5275  

R_rxn00

187_c0 
L_Glutamate_ammonia_ligase_ADP_forming_c0 0.0629  7.6454  

R_rxn00
097_c0 

ATP_AMP_phosphotransferase_c0 0.0715  8.6826  

oxaloace

tate_buil
din 

2pdg to 13bdg 0.0898  
10.911

2  

R_rxn00

001_c0 
diphosphate_phosphohydrolase_c0 0.1222  

14.846

8  

R_rxn00
459_c0 

2_phospho_D_glycerate_hydro_lyase_phosphoenolpyruvate_forming_c0 0.1510  
18.349

8  

R_rxn00

251_c0 
phosphate_oxaloacetate_carboxy_lyase_adding_phosphatephosphoenolpyruvate_forming_c0 0.1828  

22.208

4  

R_rxn00
910_c0 

5_methyltetrahydrofolate_NADP_plus__oxidoreductase_c0 0.2200  
26.731

2  

R_rxn00

161_c0 
S_Malate_NADP_plus__oxidoreductaseoxaloacetate_decarboxylating_c0 0.2440  

29.653

3  

R_rxn05
465_c0 

Malonyl_CoA_acyl_carrier_protein_S_malonyltransferase_c0 0.2689  
32.679

2  

R_rxn00

182_c0 
L_glutamate_NAD_plus__oxidoreductase_deaminating_c0 0.3217  

39.089

7  

R_rxn00
154_c0 

pyruvate:NAD+ 2-oxidoreductase CoA-acetylating 0.4054  
49.260

8  

R_rxn10

121_c0 
Nitrate_reductase_Menaquinol_8_periplasm_c0 0.4120  

50.063

0  

R_rxn00
568_c0 

NIRBD_RXNc_c0 0.4120  
50.063

0  

R_rxn05

627_c0 
nitrate_transport_in_via_proton_symport_c0 0.4120  

50.063

0  

R_rxn08
094_c0 

2_Oxoglutarate_dehydrogenase_complex_c0 0.8025  
97.503

9  

R_rxn00

598_c0 
Succinyl-CoA:acetyl-CoA C-acyltransferase [ADD] 0.8230  

99.999

8  

R_rxn02
144_c0 

4-carboxymethylbut-3-en-4-olide enol-lactonohydrolase [ADD] 0.8230  
99.999

8  

R_rxn02

971_c0 
5_oxo_2_5_dihydrofuran_2_acetate_delta3_delat2_isomerase_c0 0.8230  

99.999

8  

R_rxn02

782_c0 
2_5_Dihydro_5_oxofuran_2_acetate_lyase_decyclizing_c0 0.8230  

99.999

8  

R_rxn00

588_c0 
Catechol_oxygen_1_2_oxidoreductasedecyclizing_c0 0.8230  

99.999

8  

R_rxn02

143_c0 
Succinyl-CoA:3-oxoadipate CoA-transferase [ADD reverse] 0.8230  

99.999

8  

R_rxn00

257_c0 

acetyl_CoA_oxaloacetate_C_acetyltransferase_pro_S_carboxymethyl_forming__ADP_phosp

horylating_c0 
0.8639  

104.97

52  

R_rxn00

974_c0 
citrate_hydro_lyase_cis_aconitate_forming_c0 0.8639  

104.97

52  

R_rxn01

388_c0 
isocitrate_hydro_lyase_cis_aconitate_forming_c0 0.8639  

104.97

52  

R_rxn00

198_c0 
isocitrate_transfer 0.8639  

104.97

52  

R_rxn10

806_c0 
cytochrome_oxidase_bd_menaquinol_8__2_protons_periplasm_c0 1.1970  

145.44

19  
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R_rxn10

113_c0 
cytochrome_oxidase_bo3_ubiquinol_8__25_protons_c0 1.3795  

167.61

30  

R_rxn08

900_c0 
FAD_dependent_malate_dehydrogenase_c0 1.3795  

167.61

30  

R_rxn10
042_c0 

F1_ATPase_c0 1.6667  
202.51

06  

 

Table C.1 P. fluorescens in silico catechol metabolism Part 2 

Coded reaction 

id Reaction 

R_rxn00799_c0 L-Malate[c0] <=> H2O[c0] + Fumarate[c0]  

R_rxn08527_c0 Fumarate[c0] + Menaquinol 8[c0] <=> Succinate[c0] + Menaquinone 8[c0] 

R_rxn00285_c0 ATP[c0] + CoA[c0] + Succinate[c0] <=> ADP[c0] + Phosphate[c0] + Succinyl-CoA[c0] 

R_rxn00258_c0 Pyruvate[c0] + Malonyl-CoA[c0] <=> Acetyl-CoA[c0] + Oxaloacetate[c0]  

R_rxn04954_c0 NAD[c0] + 5-Methyltetrahydrofolate[c0] <=> NADH[c0] + H+[c0] + 5-10-Methylenetetrahydrofolate[c0]  

R_rxn00781_c0 

NAD[c0] + Phosphate[c0] + Glyceraldehyde3-phosphate[c0] <=> NADH[c0] + H+[c0] + 1,3-Bisphospho-D-

glycerate[c0] 

R_rxn00260_c0 2-Oxoglutarate[c0] + L-Aspartate[c0] <=> L-Glutamate[c0] + Oxaloacetate[c0] 

R_rxn02914_c0 2-Oxoglutarate[c0] + phosphoserine[c0] <=> L-Glutamate[c0] + 3-Phosphonooxypyruvate[c0] 

R_rxn08647_c0 ATP[c0] + Glycerate[c0] <=> ADP[c0] + H+[c0] + 2-Phospho-D-glycerate[c0] 

R_rxn00903_c0 2-Oxoglutarate[c0] + L-Valine[c0] <=> L-Glutamate[c0] + 3-Methyl-2-oxobutanoate[c0]  

R_rxn05339_c0 NADP[c0] + (R)-3-Hydroxybutanoyl-[acyl-carrier protein][c0] <=> NADPH[c0] + Acetoacetyl-ACP[c0]  

R_rxn05338_c0 

NADP[c0] + (R)-3-Hydroxydecanoyl-[acyl-carrier protein][c0] <=> NADPH[c0] + H+[c0] + 3-oxodecanoyl-

acp[c0]  

R_rxn05341_c0 

NADP[c0] + (R)-3-Hydroxyoctanoyl-[acyl-carrier protein][c0] <=> NADPH[c0] + H+[c0] + 3-oxooctanoyl-

acp[c0]  

R_rxn05337_c0 NADP[c0] + D-3-Hydroxyhexanoyl-[acp][c0] <=> NADPH[c0] + 3-Oxohexanoyl-[acp][c0]  

R_rxn05340_c0 NADP[c0] + D-3-Hydroxydodecanoyl-[acp][c0] <=> NADPH[c0] + 3-oxododecanoyl-acp[c0]  

R_rxn00611_c0 NAD[c0] + Glycerol-3-phosphate[c0] <=> NADH[c0] + H+[c0] + Glycerone-phosphate[c0]  

R_rxn00692_c0 H2O[c0] + Glycine[c0] + 5-10-Methylenetetrahydrofolate[c0] <=> L-Serine[c0] + Tetrahydrofolate[c0] 

R_rxn05342_c0 NADP[c0] + HMA[c0] <=> NADPH[c0] + 3-oxotetradecanoyl-acp[c0]  

R_rxn05336_c0 NADP[c0] + R-3-hydroxypalmitoyl-acyl-carrierprotein-[c0] <=> NADPH[c0] + 3-oxohexadecanoyl-acp[c0]  

R_rxn00806_c0 2-Oxoglutarate[c0] + L-Leucine[c0] <=> L-Glutamate[c0] + 4MOP[c0]  

R_rxn02811_c0 3-Isopropylmalate <=> H2O + 2-Isopropylmaleate 

R_rxn00506_c0 H2O[c0] + NAD[c0] + Acetaldehyde[c0] => NADH[c0] + Acetate[c0] + (2) H+[c0]  

R_rxn00541_c0 L-Threonine[c0] <=> Glycine[c0] + Acetaldehyde[c0]  

R_rxn01740_c0 NADP[c0] + Shikimate[c0] <=> NADPH[c0] + H+[c0] + 3-Dehydroshikimate[c0]  

R_rxn12017_c0 O2 + hexadecanoyl-acp + AH2 => 2 H2O + A + hexadecenoyl-[acyl-carrier protein] 

R_rxn00908_c0 

NAD[c0] + Glycine[c0] + Tetrahydrofolate[c0] <=> NADH[c0] + CO2[c0] + NH3[c0] + 5-10-

Methylenetetrahydrofolate[c0]  

R_rxn04043_c0 ADP[c0] + D-fructose-6-phosphate[c0] <=> AMP[c0] + (2) H+[c0] + D-fructose-1,6-bisphosphate[c0]  

R_rxn00786_c0 D-fructose-1,6-bisphosphate[c0] <=> Glycerone-phosphate[c0] + Glyceraldehyde3-phosphate[c0]  

R_rxn01973_c0 H2O[c0] + N-Succinyl-L-2,6-diaminopimelate[c0] <=> Succinate[c0] + LL-2,6-Diaminopimelate[c0]  

R_rxn01116_c0 D-Ribulose5-phosphate[c0] <=> D-Xylulose5-phosphate[c0]  

R_rxn00777_c0 ribose-5-phosphate[c0] <=> D-Ribulose5-phosphate[c0]  

R_rxn15112_c0 ATP + NH3 + alpha-D-Ribose 5-phosphate => ADP + Phosphate + H+ + 5-Phosphoribosylamine 

R_rxn01637_c0 2-Oxoglutarate[c0] + N-Acetylornithine[c0] <=> L-Glutamate[c0] + 2-Acetamido-5-oxopentanoate[c0]  
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R_rxn00503_c0 (2) H2O[c0] + NAD[c0] + 1-Pyrroline-5-carboxylate[c0] <=> NADH[c0] + L-Glutamate[c0] + H+[c0]  

R_rxn00623_c0 (3) H2O[c0] + (3) NADP[c0] + H2S[c0] <=> (3) NADPH[c0] + (3) H+[c0] + Sulfite[c0]  

R_rxn00929_c0 NAD[c0] + L-Proline[c0] <=> NADH[c0] + (2) H+[c0] + 1-Pyrroline-5-carboxylate[c0]  

R_rxn01465_c0 H2O[c0] + S-Dihydroorotate[c0] <=> H+[c0] + N-Carbamoyl-L-aspartate[c0]  

R_rxn00086_c0 NADP[c0] + (2) GSH[c0] <=> NADPH[c0] + H+[c0] + Oxidized glutathione[c0]  

R_rxn00493_c0 2-Oxoglutarate[c0] + L-Phenylalanine[c0] <=> L-Glutamate[c0] + Phenylpyruvate[c0]  

R_rxn01301_c0 NAD[c0] + L-Homoserine[c0] <=> NADH[c0] + H+[c0] + L-Aspartate4-semialdehyde[c0]  

R_rxn00527_c0 2-Oxoglutarate[c0] + L-Tyrosine[c0] <=> L-Glutamate[c0] + p-hydroxyphenylpyruvate[c0] 

R_rxn02320_c0 2-Oxoglutarate[c0] + L-histidinol-phosphate[c0] <=> L-Glutamate[c0] + imidazole acetol-phosphate[c0] 

R_rxn00832_c0 H2O[c0] + IMP[c0] <=> FAICAR[c0]  

R_rxn01200_c0 

Glyceraldehyde3-phosphate[c0] + Sedoheptulose7-phosphate[c0] <=> ribose-5-phosphate[c0] + D-

Xylulose5-phosphate[c0]  

R_rxn00134_c0 ATP[c0] + Adenosine[c0] <=> ADP[c0] + AMP[c0] + H+[c0] 

R_rxn01485_c0 D-Glucosamine1-phosphate[c0] <=> D-Glucosamine phosphate[c0] 

R_rxn00313_c0 H+[c0] + meso-2,6-Diaminopimelate[c0] <=> CO2[c0] + L-Lysine[c0] 

R_rxn02285_c0 NADP[c0] + UDP-MurNAc[c0] <=> NADPH[c0] + H+[c0] + UDP-N-acetylglucosamine enolpyruvate[c0] 

R_rxn01517_c0 ATP[c0] + H+[c0] + dUMP[c0] <=> ADP[c0] + dUDP[c0]  

R_rxn00686_c0 NADP[c0] + Tetrahydrofolate[c0] <=> NADPH[c0] + H+[c0] + Dihydrofolate[c0]  

R_rxn03239_c0 NAD + (S)-3-Hydroxyhexadecanoyl-CoA <=> NADH + H+ + 3-Oxopalmitoyl-CoA 

P_Acid_7 Phosphatidylglycerol [c0] + CDPdiacylglycerol[c0] => 50 H+[c0] + 50 CMP[c0] + Cardiolipin[c0] 

P_Acid_5 50 L-serine[c0] + CDPdiacylglycerol[c0] => 50 H+[c0] + 50 CMP[c0] + Phosphatidylserine[c0] 

P_Acid_6 Phosphatidylserine[c0] + 50 H+[c0] =>  50 CO2[c0] + Phosphatidylethanolamine[c0] 

R_rxn02804_c0 H2O[c0] + Phosphoribosyl-ATP[c0] => PPi[c0] + (2) H+[c0] + Phosphoribosyl-AMP[c0]  

R_rxn03240_c0 (S)-3-Hydroxyhexadecanoyl-CoA <=> H2O + (2E)-Hexadecenoyl-CoA 

R_rxn05457_c0 CoA + Myristoyl-ACP <=> Myristoyl-CoA + ACP  

R_rxn05732_c0 NADH + H+ + (2E)-Hexadecenoyl-CoA => NAD + Palmitoyl-CoA  

P_Acid_3 

50 Glycerol-3-phosphate [c0] + CDPdiacylglycerol [c0]=> 50 H+ [c0]+ 50 CMP [c0]+ 

Phosphatidylglycerophosphate[c0] 

P_Acid_4 50 H2O[c0] + Phosphatidylglycerophosphate[c0] => 50 Phosphate[c0] + Phosphatidylglycerol[c0] 

P_Acid_2 50 H+[c0] + 50 CTP[c0] + PhosphatidicAcid[c0] => 50 PPi[c0] + CDPdiacylglycerol[c0] 

P_Acid_1 

6 D-3-Hydroxydodecanoyl-[acp][c0] + 50 Glycerol-3-phosphate[c0] + 9 (R)-3-Hydroxydecanoyl-[acyl-

carrier protein] [c0]+ 24 (2E)-Octadecenoyl-[acp] [c0]+ 32 R-3-hydroxypalmitoyl-acyl-carrierprotein- [c0]+ 
29 Palmitoyl-ACP[c0] => 100 ACP[c0] + PhosphatidicAcid[c0] 

R_rxn05231_c0 ADP[c0] + trdrd[c0] => H2O[c0] + dADP[c0] + trdox[c0] 

R_rxn00839_c0 ATP[c0] + dADP[c0] <=> ADP[c0] + dATP[c0] 

R_rxn01520_c0 5-10-Methylenetetrahydrofolate[c0] + dUMP[c0] => dTMP[c0] + Dihydrofolate[c0] 

R_rxn01512_c0 ATP[c0] + dTDP[c0] <=> ADP[c0] + TTP[c0]  

R_rxn01513_c0 ATP[c0] + H+[c0] + dTMP[c0] <=> ADP[c0] + dTDP[c0] 

R_rxn06075_c0 H2O[c0] + dUDP[c0] + trdox[c0] <= UDP[c0] + trdrd[c0]  

R_rxn01673_c0 ATP[c0] + dCDP[c0] <=> ADP[c0] + dCTP[c0]  

R_rxn01353_c0 ATP[c0] + dGDP[c0] <=> ADP[c0] + dGTP[c0]  

R_rxn05233_c0 GDP[c0] + trdrd[c0] => H2O[c0] + dGDP[c0] + trdox[c0]  

R_rxn06076_c0 H2O[c0] + dCDP[c0] + trdox[c0] <= CDP[c0] + trdrd[c0]  

R_rxn00851_c0 ATP[c0] + (2) D-Alanine[c0] => ADP[c0] + Ala-Ala[c0] + Phosphate[c0] + H+[c0]  
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R_rxn02008_c0 

ATP[c0] + D-Glutamate[c0] + UDP-N-acetylmuramoyl-L-alanine[c0] => ADP[c0] + Phosphate[c0] + 

H+[c0] + UDP-N-acetylmuramoyl-L-alanyl-D-glutamate[c0]  

R_rxn02286_c0 

ATP[c0] + L-Alanine[c0] + UDP-MurNAc[c0] => ADP[c0] + UDP-N-acetylmuramoyl-L-alanine[c0] + 

H+[c0] + Phosphate[c0]  

R_rxn02011_c0 

ATP[c0] + meso-2,6-Diaminopimelate[c0] + UDP-N-acetylmuramoyl-L-alanyl-D-glutamate[c0] => 
ADP[c0] + Phosphate[c0] + H+[c0] + UDP-N-acetylmuramoyl-L-alanyl-D-gamma-glutamyl-meso-2-6-

diaminopimelate[c0] 

R_rxn03901_c0 H2O[c0] + Bactoprenyl diphosphate[c0] => Phosphate[c0] + (2) H+[c0] + Undecaprenylphosphate[c0] 

R_rxn00193_c0 L-Glutamate[c0] <=> D-Glutamate[c0]  

R_rxn00461_c0 

UDP-N-acetylglucosamine[c0] + Phosphoenolpyruvate[c0] <=> Phosphate[c0] + UDP-N-acetylglucosamine 

enolpyruvate[c0]  

R_rxn03408_c0 

UDP-N-acetylglucosamine[c0] + Undecaprenyl-diphospho-N-acetylmuramoyl-L-alanyl-D-glutamyl-meso-2-
6-diaminopimeloyl-D-alanyl-D-alanine[c0] <=> UDP[c0] + Undecaprenyl-diphospho-N-acetylmuramoyl--

N-acetylglucosamine-L-ala-D-glu-meso-2-6-diaminopimeloyl-D-ala-D-ala[c0]  

R_rxn03164_c0 

UDP-N-acetylmuramoyl-L-alanyl-D-gamma-glutamyl-meso-2-6-diaminopimelate[c0] + Ala-Ala[c0] + 
ATP[c0] => H+[c0] + Phosphate[c0] + UDP-N-acetylmuramoyl-L-alanyl-D-glutamyl-6-carboxy-L-lysyl-D-

alanyl- D-alanine[c0] + ADP[c0]  

R_rxn03904_c0 

Undecaprenylphosphate[c0] + UDP-N-acetylmuramoyl-L-alanyl-D-glutamyl-6-carboxy-L-lysyl-D-alanyl- 

D-alanine[c0] <=> UMP[c0] + Undecaprenyl-diphospho-N-acetylmuramoyl-L-alanyl-D-glutamyl-meso-2-6-
diaminopimeloyl-D-alanyl-D-alanine[c0]  

R_rxn05909_c0 L-Serine[c0] + H+[c0] + H2S[c0] <=> H2O[c0] + L-Cysteine[c0]  

R_rxn00423_c0 Acetyl-CoA[c0] + L-Serine[c0] => CoA[c0] + O-Acetyl-L-serine[c0]  

R_rxn00649_c0 H2S[c0] + O-Acetyl-L-serine[c0] => Acetate[c0] + L-Cysteine[c0]  

R_rxn03638_c0 
Acetyl-CoA[c0] + D-Glucosamine1-phosphate[c0] => CoA[c0] + H+[c0] + N-Acetyl-D-glucosamine1-
phosphate[c0]  

R_rxn00283_c0 L-Alanine[c0] <=> D-Alanine[c0]  

R_rxn00555_c0 L-Glutamine[c0] + D-fructose-6-phosphate[c0] <=> L-Glutamate[c0] + D-Glucosamine phosphate[c0]  

R_rxn00293_c0 UTP[c0] + N-Acetyl-D-glucosamine1-phosphate[c0] <=> PPi[c0] + UDP-N-acetylglucosamine[c0]  

R_rxn02507_c0 
H+[c0] + 1-(2-carboxyphenylamino)-1-deoxyribulose 5-phosphate[c0] => H2O[c0] + CO2[c0] + 
Indoleglycerol phosphate[c0]  

R_rxn01964_c0 

L-Serine[c0] + Indoleglycerol phosphate[c0] => H2O[c0] + L-Tryptophan[c0] + Glyceraldehyde3-

phosphate[c0]  

R_rxn02508_c0 N-5-phosphoribosyl-anthranilate[c0] <=> 1-(2-carboxyphenylamino)-1-deoxyribulose 5-phosphate[c0]  

R_rxn00726_c0 NH3[c0] + Chorismate[c0] => H2O[c0] + Pyruvate[c0] + H+[c0] + Anthranilate[c0]  

R_rxn00791_c0 PPi[c0] + H+[c0] + N-5-phosphoribosyl-anthranilate[c0] <= Anthranilate[c0] + PRPP[c0]  

R_rxn00772_c0 ATP[c0] + D-Ribose[c0] <=> ADP[c0] + H+[c0] + ribose-5-phosphate[c0]  

R_rxn01137_c0 H2O[c0] + H+[c0] + Adenosine[c0] => NH3[c0] + Inosine[c0]  

R_rxn01299_c0 H2O[c0] + Inosine[c0] <=> D-Ribose[c0] + HYXN[c0]  

R_rxn00836_c0 PPi[c0] + H+[c0] + IMP[c0] <= PRPP[c0] + HYXN[c0]  

R_rxn01333_c0 
Glyceraldehyde3-phosphate[c0] + Sedoheptulose7-phosphate[c0] <=> D-fructose-6-phosphate[c0] + D-
Erythrose4-phosphate[c0]  

R_rxn03135_c0 

L-Glutamate[c0] + (2) H+[c0] + D-erythro-imidazol-glycerol-phosphate[c0] + AICAR[c0] <= L-

Glutamine[c0] + phosphoribulosylformimino-AICAR-phosphate[c0] 

R_rxn03137_c0 10-Formyltetrahydrofolate[c0] + AICAR[c0] <=> Tetrahydrofolate[c0] + FAICAR[c0] 

R_rxn02473_c0 D-erythro-imidazol-glycerol-phosphate[c0] => H2O[c0] + imidazole acetol-phosphate[c0] 

R_rxn03175_c0 

H+[c0] + phosphoribosylformiminoaicar-phosphate[c0] <=> phosphoribulosylformimino-AICAR-

phosphate[c0] 

R_rxn00859_c0 H2O[c0] + (2) NAD[c0] + L-Histidinol[c0] <=> (2) NADH[c0] + (3) H+[c0] + L-Histidine[c0] 

R_rxn01211_c0 H2O[c0] + 5-10-Methenyltetrahydrofolate[c0] <=> H+[c0] + 10-Formyltetrahydrofolate[c0]  

R_rxn02160_c0 H2O[c0] + L-histidinol-phosphate[c0] => Phosphate[c0] + L-Histidinol[c0] 

R_rxn02835_c0 H2O[c0] + Phosphoribosyl-AMP[c0] <=> phosphoribosylformiminoaicar-phosphate[c0] 

R_rxn00907_c0 NADP[c0] + 5-10-Methylenetetrahydrofolate[c0] <=> NADPH[c0] + 5-10-Methenyltetrahydrofolate[c0]  

R_rxn00789_c0 PPi[c0] + H+[c0] + Phosphoribosyl-ATP[c0] <= ATP[c0] + PRPP[c0] 
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R_rxn02834_c0 H2O + Phosphoribosyl-ATP => PPi + 2 H+ + Phosphoribosyl-AMP 

R_rxn00410_c0 ATP[c0] + NH3[c0] + UTP[c0] <=> ADP[c0] + Phosphate[c0] + CTP[c0] + (2) H+[c0]  

R_rxn00237_c0 ATP[c0] + GDP[c0] <=> ADP[c0] + GTP[c0]  

R_rxn01269_c0 NADP[c0] + Prephenate[c0] => NADPH[c0] + CO2[c0] + p-hydroxyphenylpyruvate[c0]  

R_rxn01303_c0 Acetyl-CoA[c0] + L-Homoserine[c0] => CoA[c0] + O-Acetyl-L-homoserine[c0]  

R_rxn00337_c0 ATP[c0] + L-Aspartate[c0] <=> ADP[c0] + 4-Phospho-L-aspartate[c0]  

R_rxn00952_c0 H2S[c0] + O-Acetyl-L-homoserine[c0] => Acetate[c0] + Homocysteine[c0]  

R_rxn00693_c0 Homocysteine[c0] + 5-Methyltetrahydrofolate[c0] <=> L-Methionine[c0] + Tetrahydrofolate[c0]  

R_rxn01643_c0 

NADP[c0] + Phosphate[c0] + L-Aspartate4-semialdehyde[c0] <= NADPH[c0] + H+[c0] + 4-Phospho-L-

aspartate[c0]  

R_rxn00239_c0 ATP[c0] + H+[c0] + GMP[c0] <=> ADP[c0] + GDP[c0]  

xanthosine_build 
ATP[c0] + H2O[c0] + XMP[c0] + L-Glutamine[c0] => H+[c0] + AMP[c0] + L-Glutamate[c0] + PRPP[c0] + 
GMP[c0] 

R_rxn00834_c0 H2O[c0] + NAD[c0] + IMP[c0] <=> NADH[c0] + H+[c0] + XMP[c0]  

R_rxn07578_c0 3-Hydroxystearoyl-[acp] <=> H2O + (2E)-Octadecenoyl-[acp] 

R_rxn07576_c0 H+ + hexadecanoyl-acp + Malonyl-acyl-carrierprotein- => CO2 + ACP + 3-Oxostearoyl-[acp] 

R_rxn07577_c0 NADPH + H+ + 3-Oxostearoyl-[acp] => NADP + 3-Hydroxystearoyl-[acp] 

R_rxn05458_c0 CoA[c0] + H+[c0] + hexadecanoyl-acp[c0] <=> Palmitoyl-CoA[c0] + ACP[c0]  

R_rxn01000_c0 H+[c0] + Prephenate[c0] => H2O[c0] + CO2[c0] + Phenylpyruvate[c0]  

R_rxn08016_c0 ATP + Palmitate + ACP <=> PPi + AMP + 2 H+ + Palmitoyl-ACP 

R_rxn10202_c0 

H+[c0] + Glycerol-3-phosphate[c0] + Palmitoyl-CoA[c0] => CoA[c0] + 1-hexadecanoyl-sn-glycerol 3-

phosphate[c0]  

R_rxn08799_c0 
H2O[c0] + 1-hexadecanoyl-sn-glycerol 3-phosphate[c0] <=> (2) H+[c0] + Glycerol-3-phosphate[c0] + 
Palmitate[c0]  

R_rxn03437_c0 2,3-Dihydroxy-3-methylvalerate[c0] => H2O[c0] + 3MOP[c0]  

R_rxn03436_c0 2-Aceto-2-hydroxybutanoate <=> (R)-3-Hydroxy-3-methyl-2-oxopentanoate 

R_rxn01575_c0 2-Oxoglutarate[c0] + L-Isoleucine[c0] <=> L-Glutamate[c0] + 3MOP[c0]  

R_rxn00737_c0 L-Threonine[c0] => NH3[c0] + 2-Oxobutyrate[c0]  

R_rxn03435_c0 NADP + 2,3-Dihydroxy-3-methylvalerate <=> NADPH + H+ + (R)-3-Hydroxy-3-methyl-2-oxopentanoate 

R_rxn08043_c0 Pyruvate[c0] + H+[c0] + 2-Oxobutyrate[c0] ->CO2[c0] + 2-Aceto-2-hydroxybutanoate[c0] 

R_rxn00710_c0 H+[c0] + Orotidylic acid[c0] => CO2[c0] + UMP[c0]  

R_rxn00205_c0 H2O2[c0] + (2) GSH[c0] => (2) H2O[c0] + Oxidized glutathione[c0]  

R_rxn01018_c0 L-Aspartate[c0] + Carbamoylphosphate[c0] => Phosphate[c0] + H+[c0] + N-Carbamoyl-L-aspartate[c0]  

R_rxn01360_c0 O2[c0] + S-Dihydroorotate[c0] => H2O2 [c0]+ Orotate[c0] 

R_rxn01362_c0 PPi[c0] + H+[c0] + Orotidylic acid[c0] <= PRPP[c0] + Orotate[c0]  

R_rxn05256_c0 APS[c0] + trdrd[c0] => AMP[c0] + H+[c0] + Sulfite[c0] + trdox[c0]  

R_rxn00379_c0 ATP[c0] + Sulfate[c0] <=> PPi[c0] + APS[c0]  

R_rxn05651_c0 Sulfate[e0] + H+[e0] <=> Sulfate[c0] + H+[c0]  

R_rxn00416_c0 
H2O[c0] + ATP[c0] + L-Aspartate[c0] + L-Glutamine[c0] => PPi[c0] + AMP[c0] + L-Glutamate[c0] + (2) 
H+[c0] + L-Asparagine[c0]  

R_rxn00192_c0 Acetyl-CoA[c0] + L-Glutamate[c0] => CoA[c0] + H+[c0] + N-Acetyl-L-glutamate[c0]  

R_rxn01434_c0 ATP[c0] + L-Aspartate[c0] + Citrulline[c0] <=> PPi[c0] + AMP[c0] + (2) H+[c0] + L-Argininosuccinate[c0]  

R_rxn01917_c0 ATP[c0] + N-Acetyl-L-glutamate[c0] <=> ADP[c0] + n-acetylglutamyl-phosphate[c0]  

R_rxn00469_c0 H2O[c0] + N-Acetylornithine[c0] <=> Acetate[c0] + Ornithine[c0]  

R_rxn00802_c0 L-Argininosuccinate[c0] <=> L-Arginine[c0] + Fumarate[c0]  
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R_rxn02465_c0 

NADP[c0] + Phosphate[c0] + 2-Acetamido-5-oxopentanoate[c0] <= NADPH[c0] + H+[c0] + n-

acetylglutamyl-phosphate[c0]  

R_rxn01019_c0 Ornithine[c0] + Carbamoylphosphate[c0] => Phosphate[c0] + H+[c0] + Citrulline[c0]  

R_rxn00119_c0 ATP[c0] + H+[c0] + UMP[c0] <=> ADP[c0] + UDP[c0]  

R_rxn00148_c0 ATP[c0] + Pyruvate[c0] <=> ADP[c0] + Phosphoenolpyruvate[c0] + H+[c0]  

R_rxn00117_c0 ATP[c0] + UDP[c0] <=> ADP[c0] + UTP[c0]  

R_rxn00790_c0 
PPi[c0] + L-Glutamate[c0] + H+[c0] + 5-Phosphoribosylamine[c0] <= H2O[c0] + L-Glutamine[c0] + 
PRPP[c0]  

lysine_formation N-Succinyl-L-2,6-diaminopimelate[c0] + H2O[c0] <=> L-Lysine [c0]+ LL-2,6-Diaminopimelate[c0] 

R_rxn05289_c0 NADPH[c0] + H+[c0] + trdox[c0] <=> NADP[c0] + trdrd[c0] 

R_rxn00409_c0 ATP[c0] + CDP[c0] <=> ADP[c0] + CTP[c0]  

R_rxn00785_c0 
D-fructose-6-phosphate + Glyceraldehyde3-phosphate <=> D-Xylulose5-phosphate + D-Erythrose4-
phosphate 

R_rxn01256_c0 Chorismate[c0] => Prephenate[c0]  

R_rxn00364_c0 ATP[c0] + CMP[c0] + H+[c0] <=> ADP[c0] + CDP[c0]  

R_rxn05332_c0 R-3-hydroxypalmitoyl-acyl-carrierprotein[c0]- <=> H2O[c0] + (2E)-Hexadecenoyl-[acp][c0] 

R_rxn02213_c0 5-Dehydroquinate[c0] => H2O[c0] + 3-Dehydroshikimate[c0]  

R_rxn01255_c0 5-O--1-Carboxyvinyl-3-phosphoshikimate[c0] => Phosphate[c0] + Chorismate[c0]  

R_rxn01739_c0 ATP[c0] + Shikimate[c0] <=> ADP[c0] + H+[c0] + 3-phosphoshikimate[c0]  

R_rxn02212_c0 DAHP[c0] => Phosphate[c0] + 5-Dehydroquinate[c0]  

R_rxn01332_c0 H2O[c0] + Phosphoenolpyruvate[c0] + D-Erythrose4-phosphate[c0] => Phosphate[c0] + DAHP[c0]  

R_rxn02476_c0 
Phosphoenolpyruvate[c0] + 3-phosphoshikimate[c0] => Phosphate[c0] + 5-O--1-Carboxyvinyl-3-
phosphoshikimate[c0]  

R_rxn02789_c0 2-Isopropylmalate[c0] <=> H2O[c0] + 2-Isopropylmaleate[c0]  

R_rxn01208_c0 CO2[c0] + 4MOP[c0] <= H+[c0] + 2-isopropyl-3-oxosuccinate[c0]  

R_rxn00902_c0 CoA[c0] + H+[c0] + 2-Isopropylmalate[c0] <= H2O[c0] + Acetyl-CoA[c0] + 3-Methyl-2-oxobutanoate[c0]  

R_rxn03062_c0 NAD[c0] + 3-Isopropylmalate[c0] <=> NADH[c0] + H+[c0] + 2-isopropyl-3-oxosuccinate[c0]  

R_rxn00114_c0 ATP[c0] + CO2[c0] + NH3[c0] <=> ADP[c0] + (2) H+[c0] + Carbamoylphosphate[c0]  

R_rxn00770_c0 ATP[c0] + ribose-5-phosphate[c0] <=> AMP[c0] + H+[c0] + PRPP[c0]  

R_rxn05344_c0 

Myristoyl-ACP[c0] + Malonyl-acyl-carrierprotein-[c0] => CO2[c0] + 3-oxohexadecanoyl-acp[c0] + 

ACP[c0]  

R_rxn05331_c0 D-3-Hydroxydodecanoyl-[acp] <=> H2O + (2E)-Dodecenoyl-[acp] 

R_rxn05345_c0 
Dodecanoyl-ACP[c0] + Malonyl-acyl-carrierprotein-[c0] => CO2[c0] + 3-oxotetradecanoyl-acp[c0] + 
ACP[c0]  

R_rxn05335_c0 HMA[c0] <=> H2O[c0] + (2E)-Tetradecenoyl-[acp][c0] 

R_rxn05324_c0 NADH[c0] + 2 H+[c0] + (2E)-Dodecenoyl-[acp][c0] => NAD[c0] + Dodecanoyl-ACP[c0] 

R_rxn05351_c0 NADP + Myristoyl-ACP <=> NADPH + H+ + (2E)-Tetradecenoyl-[acp] 

R_rxn00747_c0 Glyceraldehyde3-phosphate[c0] <=> Glycerone-phosphate[c0]  

R_rxn05333_c0 (R)-3-Hydroxydecanoyl-[acyl-carrier protein] [c0]<=> H2O [c0]+ (2E)-Decenoyl-[acp][c0] 

R_rxn05348_c0 Decanoyl-ACP[c0] + Malonyl-acyl-carrierprotein-[c0] => CO2[c0] + 3-oxododecanoyl-acp[c0] + ACP[c0]  

R_rxn05327_c0 NADH[c0] + H+[c0] + (2E)-Decenoyl-[acp][c0] => NAD [c0]+ Decanoyl-ACP [c0] 

R_rxn00904_c0 Pyruvate[c0] + L-Valine[c0] <=> L-Alanine[c0] + 3-Methyl-2-oxobutanoate[c0]  

R_rxn05329_c0 (R)-3-Hydroxybutanoyl-[acyl-carrier protein][c0] <=> H2O [c0]+ But-2-enoyl-[acyl-carrier protein][c0] 

R_rxn05334_c0 (R)-3-Hydroxyoctanoyl-[acyl-carrier protein] [c0]<=> H2O[c0] + (2E)-Octenoyl-[acp][c0] 

R_rxn05349_c0 Acetyl-CoA[c0] + ACP[c0] <=> CoA[c0] + Acetyl-ACP[c0]  

R_rxn05346_c0 Butyryl-ACP[c0] + Malonyl-acyl-carrierprotein-[c0] => CO2[c0] + 3-Oxohexanoyl-[acp][c0] + ACP[c0]  
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R_rxn05330_c0 D-3-Hydroxyhexanoyl-[acp][c0] <=> H2O[c0] + (2E)-Hexenoyl-[acp][c0] 

R_rxn05350_c0 
H+[c0] + Hexanoyl-ACP[c0] + Malonyl-acyl-carrierprotein-[c0] => CO2[c0] + 3-oxooctanoyl-acp[c0] + 
ACP[c0]  

R_rxn05347_c0 Malonyl-acyl-carrierprotein-[c0] + Acetyl-ACP[c0] => CO2[c0] + Acetoacetyl-ACP[c0] + ACP[c0]  

R_rxn05325_c0 NADH[c0] + H+ [c0]+ (2E)-Octenoyl-[acp][c0] => NAD[c0] + Octanoyl-ACP [c0] 

R_rxn05326_c0 NADH[c0] + H+[c0] + (2E)-Hexenoyl-[acp][c0] => NAD[c0] + Hexanoyl-ACP[c0] 

R_rxn05322_c0 NADH[c0] + H+[c0] + But-2-enoyl-[acyl-carrier protein] [c0]=> NAD [c0]+ Butyryl-ACP[c0] 

R_rxn05343_c0 Octanoyl-ACP[c0] + Malonyl-acyl-carrierprotein-[c0] => CO2[c0] + 3-oxodecanoyl-acp[c0] + ACP[c0]  

Malate_buildin 2H+[c0] + Pyruvate[c0] + NADPH[c0] => NADP[c0] + CO2[c0] + H2O[c0] + 3-Methyl-2-oxobutanoate[c0] 

R_rxn01102_c0 ATP[c0] + Glycerate[c0] <=> ADP[c0] + H+[c0] + 3-Phosphoglycerate[c0]  

R_rxn00420_c0 H2O[c0] + phosphoserine[c0] => Phosphate[c0] + L-Serine[c0]  

R_rxn01101_c0 NAD[c0] + 3-Phosphoglycerate[c0] <=> NADH[c0] + H+[c0] + 3-Phosphonooxypyruvate[c0]  

P_Acid_8 

0.00476 Phosphatidylglycerol[c0] + 0.00121 Phosphatidylethanolamine[c0] + 0.0001864 Cardiolipin[c0] => 

Lipid[c0] 

R_rxn00187_c0 ATP[c0] + NH3[c0] + L-Glutamate[c0] => ADP[c0] + Phosphate[c0] + L-Glutamine[c0] + H+[c0]  

R_rxn00097_c0 ATP[c0] + AMP[c0] + H+[c0] <=> (2) ADP[c0]  

oxaloacetate_buil
din 2-Phospho-D-glycerate [c0] + ATP [c0] => 1,3-Bisphospho-D-glycerate[c0] +  ADP [c0] 

R_rxn00001_c0 H2O[c0] + PPi[c0] => (2) Phosphate[c0] + H+[c0]  

R_rxn00459_c0 2-Phospho-D-glycerate[c0] <=> H2O[c0] + Phosphoenolpyruvate[c0]  

R_rxn00251_c0 Phosphate + Oxaloacetate + H+ => H2O + CO2 + Phosphoenolpyruvate 

R_rxn00910_c0 NADP + 5-Methyltetrahydrofolate <=> NADPH + H+ + 5-10-Methylenetetrahydrofolate  

R_rxn00161_c0 NADP[c0] + L-Malate[c0] => NADPH[c0] + CO2[c0] + Pyruvate[c0]  

R_rxn05465_c0 H+[c0] + Malonyl-CoA[c0] + ACP[c0] <=> CoA[c0] + Malonyl-acyl-carrierprotein-[c0]  

R_rxn00182_c0 H2O[c0] + NAD[c0] + L-Glutamate[c0] <=> NADH[c0] + NH3[c0] + 2-Oxoglutarate[c0] + H+[c0]  

R_rxn00154_c0 NAD + CoA + Pyruvate => NADH + CO2 + Acetyl-CoA  

R_rxn10121_c0 (2) H+[c0] + Nitrate[c0] + Menaquinol 8[c0] <=> H2O[c0] + (2) H+[e0] + Nitrite[c0] + Menaquinone 8[c0]  

R_rxn00568_c0 (2) H2O[c0] + (3) NAD[c0] + NH3[c0] <= (3) NADH[c0] + (5) H+[c0] + Nitrite[c0]  

R_rxn05627_c0 H+[e0] + Nitrate[e0] <=> H+[c0] + Nitrate[c0]  

R_rxn08094_c0 NAD[c0] + CoA[c0] + 2-Oxoglutarate[c0] <=> NADH[c0] + CO2[c0] + Succinyl-CoA[c0]  

R_rxn00598_c0 CoA + 3-Oxoadipyl-CoA => Acetyl-CoA + Succinyl-CoA 

R_rxn02144_c0 H2O[c0] + 3-oxoadipate-enol-lactone[c0] => H+[c0] + 3-Oxoadipate[c0]  

R_rxn02971_c0 Muconolactone[c0] <=> 3-oxoadipate-enol-lactone[c0]  

R_rxn02782_c0 Muconolactone[c0] <=> H+[c0] + cis,cis-Muconate[c0]  

R_rxn00588_c0 O2[c0] + Catechol[c0] => (2) H+[c0] + cis,cis-Muconate[c0]  

R_rxn02143_c0 Succinyl-CoA + 3-Oxoadipate => Succinate + 3-Oxoadipyl-CoA 

R_rxn00257_c0 ATP[c0] + CoA[c0] + Citrate[c0] <=> ADP[c0] + Phosphate[c0] + Acetyl-CoA[c0] + Oxaloacetate[c0]  

R_rxn00974_c0 Citrate[c0] <=> H2O[c0] + cis-Aconitate[c0]  

R_rxn01388_c0 Isocitrate[c0] <=> H2O[c0] + cis-Aconitate[c0]  

R_rxn00198_c0 NAD + Isocitrate => NADH + CO2 + 2-oxoglutarate 

R_rxn10806_c0 (0.5) O2[c0] + (2) H+[c0] + Menaquinol 8[c0] => H2O[c0] + (2) H+[e0] + Menaquinone 8[c0]  

R_rxn10113_c0 (0.5) O2[c0] + (2.5) H+[c0] + Ubiquinol-8[c0] => H2O[c0] + (2.5) H+[e0] + Ubiquinone-8[c0]  

R_rxn08900_c0 L-Malate[c0] + Ubiquinone-8[c0] => Oxaloacetate[c0] + Ubiquinol-8[c0]  

R_rxn10042_c0 ADP[c0] + Phosphate[c0] + (4) H+[e0] <=> H2O[c0] + ATP[c0] + (3) H+[c0]  
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Table C.1 P. fluorescens in silico catechol metabolism Part 3 

Coded reaction id genes Subsystem 

R_rxn00799_c0 

fig|9606.20.peg.4964  
fig|9606.20.peg.4326  

fig|9606.20.peg.876  Protein Metabolism  

R_rxn08527_c0 

fig|9606.20.peg.1818  

fig|9606.20.peg.1816  

fig|9606.20.peg.1817 
fig|9606.20.peg.1819  Carbohydrates  

R_rxn00285_c0 
fig|9606.20.peg.1824  
fig|9606.20.peg.1823  Carbohydrates  

R_rxn00258_c0 fig|9606.20.peg.5784  Nucleosides and Nucleotides  

R_rxn04954_c0 fig|9606.20.peg.5748 Stress Response 

R_rxn00781_c0 fig|9606.20.peg.4978  Stress Response 

R_rxn00260_c0 

fig|9606.20.peg.4031  

fig|9606.20.peg.3464  

fig|9606.20.peg.2233  
fig|9606.20.peg.4308  

fig|9606.20.peg.3658  

fig|9606.20.peg.3179  
fig|9606.20.peg.6089  

fig|9606.20.peg.2127  

fig|9606.20.peg.4632  
fig|9606.20.peg.4473  

fig|9606.20.peg.3502  Amino Acids and Derivatives  

R_rxn02914_c0 fig|9606.20.peg.1641 Cofactors, Vitamins, Prosthetic Groups, Pigments  

R_rxn08647_c0 fig|9606.20.peg.6106  Cofactors, Vitamins, Prosthetic Groups, Pigments  

R_rxn00903_c0 fig|9606.20.peg.3971 Amino Acids and Derivatives 

R_rxn05339_c0 

fig|9606.20.peg.3734  

fig|9606.20.peg.1994  
fig|9606.20.peg.1075  

fig|9606.20.peg.2571  

fig|9606.20.peg.3093  
fig|9606.20.peg.300  

fig|9606.20.peg.3196  

fig|9606.20.peg.1957  
fig|9606.20.peg.4716  

fig|9606.20.peg.1953  

fig|9606.20.peg.2379  Fatty Acids, Lipids, and Isoprenoids  
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R_rxn05338_c0 

fig|9606.20.peg.3093  

fig|9606.20.peg.2571  

fig|9606.20.peg.1075  
fig|9606.20.peg.1994  

fig|9606.20.peg.3734  

fig|9606.20.peg.2379  
fig|9606.20.peg.1953  

fig|9606.20.peg.4716  

fig|9606.20.peg.1957  
fig|9606.20.peg.3196  

fig|9606.20.peg.300 Fatty Acids, Lipids, and Isoprenoids  

R_rxn05341_c0 

fig|9606.20.peg.1953  
fig|9606.20.peg.4716  

fig|9606.20.peg.2379  

fig|9606.20.peg.300  
fig|9606.20.peg.1957  

fig|9606.20.peg.3196  

fig|9606.20.peg.2571  
fig|9606.20.peg.3093  

fig|9606.20.peg.3734  

fig|9606.20.peg.1075  
fig|9606.20.peg.1994  Fatty Acids, Lipids, and Isoprenoids  

R_rxn05337_c0 

fig|9606.20.peg.300  
fig|9606.20.peg.3196  

fig|9606.20.peg.1957  

fig|9606.20.peg.1953  
fig|9606.20.peg.4716  

fig|9606.20.peg.2379  

fig|9606.20.peg.3734  
fig|9606.20.peg.1075  

fig|9606.20.peg.1994  

fig|9606.20.peg.2571  
fig|9606.20.peg.3093 Fatty Acids, Lipids, and Isoprenoids  
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R_rxn05340_c0 

fig|9606.20.peg.2571  

fig|9606.20.peg.3093  

fig|9606.20.peg.3734  
fig|9606.20.peg.1075  

fig|9606.20.peg.1994  

fig|9606.20.peg.1953  
fig|9606.20.peg.4716  

fig|9606.20.peg.2379  

fig|9606.20.peg.300  
fig|9606.20.peg.1957  

fig|9606.20.peg.3196  Fatty Acids, Lipids, and Isoprenoids  

R_rxn00611_c0 fig|9606.20.peg.1841  Cofactors, Vitamins, Prosthetic Groups, Pigments  

R_rxn00692_c0 

fig|9606.20.peg.5676  

fig|9606.20.peg.5351  
fig|9606.20.peg.3051 Cofactors, Vitamins, Prosthetic Groups, Pigments  

R_rxn05342_c0 

fig|9606.20.peg.3734  

fig|9606.20.peg.1994  
fig|9606.20.peg.1075  

fig|9606.20.peg.2571  

fig|9606.20.peg.3093  
fig|9606.20.peg.300  

fig|9606.20.peg.1957  

fig|9606.20.peg.3196  
fig|9606.20.peg.4716  

fig|9606.20.peg.1953  

fig|9606.20.peg.2379 Fatty Acids, Lipids, and Isoprenoids  

R_rxn05336_c0 

fig|9606.20.peg.3734  

fig|9606.20.peg.1075  
fig|9606.20.peg.1994  

fig|9606.20.peg.3093  

fig|9606.20.peg.2571  
fig|9606.20.peg.1957  

fig|9606.20.peg.3196  

fig|9606.20.peg.300  

fig|9606.20.peg.2379  

fig|9606.20.peg.1953  

fig|9606.20.peg.4716 Fatty Acids, Lipids, and Isoprenoids  

R_rxn00806_c0 fig|9606.20.peg.3971  Amino Acids and Derivatives 

R_rxn02811_c0   Amino Acids and Derivatives  
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R_rxn00506_c0 

fig|9606.20.peg.3098  

fig|9606.20.peg.2014  

fig|9606.20.peg.6002  
fig|9606.20.peg.2352  

fig|9606.20.peg.3105  

fig|9606.20.peg.5464  
fig|9606.20.peg.3094  

fig|9606.20.peg.5813  Fatty Acids, Lipids, and Isoprenoids  

R_rxn00541_c0 
fig|9606.20.peg.5678  
fig|9606.20.peg.4758  Amino Acids and Derivatives  

R_rxn01740_c0 

fig|9606.20.peg.24  

fig|9606.20.peg.5387  
fig|9606.20.peg.2135  Amino Acids and Derivatives  

R_rxn12017_c0     

R_rxn00908_c0 fig|9606.20.peg.4514  Fatty Acids, Lipids, and Isoprenoids  

R_rxn04043_c0 fig|9606.20.peg.4167  Carbohydrates 

R_rxn00786_c0 fig|9606.20.peg.5727  Amino Acids and Derivatives  

R_rxn01973_c0 fig|9606.20.peg.1256 Cofactors, Vitamins, Prosthetic Groups, Pigments  

R_rxn01116_c0 
fig|9606.20.peg.5587  
fig|9606.20.peg.292  Carbohydrates 

R_rxn00777_c0 fig|9606.20.peg.5849  Carbohydrates  

R_rxn15112_c0   Amino Acids and Derivatives  

R_rxn01637_c0 

fig|9606.20.peg.5628  

fig|9606.20.peg.1621 Amino Acids and Derivatives  

R_rxn00503_c0 fig|9606.20.peg.456  Amino Acids and Derivatives  

R_rxn00623_c0 fig|9606.20.peg.2659  Amino Acids and Derivatives  

R_rxn00929_c0 fig|9606.20.peg.5790  Amino Acids and Derivatives  

R_rxn01465_c0 

fig|9606.20.peg.5785  
fig|9606.20.peg.6120  

fig|9606.20.peg.1153  

fig|9606.20.peg.373  Nucleosides and Nucleotides  

R_rxn00086_c0 fig|9606.20.peg.2993  Amino Acids and Derivatives  

R_rxn00493_c0 

fig|9606.20.peg.4219  

fig|9606.20.peg.1643  

fig|9606.20.peg.899  
fig|9606.20.peg.5151  

fig|9606.20.peg.4473 Cofactors, Vitamins, Prosthetic Groups, Pigments  

R_rxn01301_c0 

fig|9606.20.peg.2013  

fig|9606.20.peg.5019  Amino Acids and Derivatives  
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R_rxn00527_c0 

fig|9606.20.peg.3179  
fig|9606.20.peg.2127  

fig|9606.20.peg.6089  

fig|9606.20.peg.4473  
fig|9606.20.peg.4632  

fig|9606.20.peg.3502  

fig|9606.20.peg.4308  
fig|9606.20.peg.3658  

fig|9606.20.peg.2233  

fig|9606.20.peg.4031  

fig|9606.20.peg.3464  

fig|9606.20.peg.4219  

fig|9606.20.peg.1643  
fig|9606.20.peg.5151  

fig|9606.20.peg.899  Amino Acids and Derivatives  

R_rxn02320_c0 

fig|9606.20.peg.899  

fig|9606.20.peg.5151  
fig|9606.20.peg.1643  Amino Acids and Derivatives  

R_rxn00832_c0 fig|9606.20.peg.614  Cofactors, Vitamins, Prosthetic Groups, Pigments  

R_rxn01200_c0 

fig|9606.20.peg.3606  
fig|9606.20.peg.5732  

fig|9606.20.peg.3728  

fig|9606.20.peg.3729 Carbohydrates  

R_rxn00134_c0 fig|9606.20.peg.793  Cofactors, Vitamins, Prosthetic Groups, Pigments  

R_rxn01485_c0 fig|9606.20.peg.5276  Cell Wall and Capsule  

R_rxn00313_c0 fig|9606.20.peg.5971  Amino Acids and Derivatives  

R_rxn02285_c0 fig|9606.20.peg.3772  Amino Acids and Derivatives  

R_rxn01517_c0 fig|9606.20.peg.6019  Nucleosides and Nucleotides  

R_rxn00686_c0 

fig|9606.20.peg.5173  

fig|9606.20.peg.5828  

fig|9606.20.peg.3875  Cofactors, Vitamins, Prosthetic Groups, Pigments  

R_rxn03239_c0   Fatty Acids, Lipids, and Isoprenoids  

P_Acid_7   Cell Wall and Capsule 

P_Acid_5   Cell Wall and Capsule 

P_Acid_6   Cell Wall and Capsule 

R_rxn02804_c0 

fig|9606.20.peg.389  

fig|9606.20.peg.390  
fig|9606.20.peg.6118  Amino Acids and Derivatives  

R_rxn03240_c0   Fatty Acids, Lipids, and Isoprenoids  

R_rxn05457_c0   Fatty Acids, Lipids, and Isoprenoids  

R_rxn05732_c0   Cofactors, Vitamins, Prosthetic Groups, Pigments  

P_Acid_3   Cell Wall and Capsule 
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P_Acid_4   Cell Wall and Capsule 

P_Acid_2   Cell Wall and Capsule 

P_Acid_1   Cell Wall and Capsule 

R_rxn05231_c0 

fig|9606.20.peg.2786  

fig|9606.20.peg.4776  

fig|9606.20.peg.4737 Nucleosides and Nucleotides  

R_rxn00839_c0 fig|9606.20.peg.5074 Nucleosides and Nucleotides  

R_rxn01520_c0 fig|9606.20.peg.5840 Nucleosides and Nucleotides  

R_rxn01512_c0 fig|9606.20.peg.5074 Nucleosides and Nucleotides 

R_rxn01513_c0 fig|9606.20.peg.4711  Nucleosides and Nucleotides 

R_rxn06075_c0 

fig|9606.20.peg.4776  

fig|9606.20.peg.2786  
fig|9606.20.peg.4737 Nucleosides and Nucleotides  

R_rxn01673_c0 fig|9606.20.peg.5074  Nucleosides and Nucleotides  

R_rxn01353_c0 fig|9606.20.peg.5074  Nucleosides and Nucleotides  

R_rxn05233_c0 

fig|9606.20.peg.4776  
fig|9606.20.peg.2786  

fig|9606.20.peg.4737  Nucleosides and Nucleotides  

R_rxn06076_c0 

fig|9606.20.peg.2786  
fig|9606.20.peg.4776  

fig|9606.20.peg.4737 Nucleosides and Nucleotides  

R_rxn00851_c0   Carbohydrates 

R_rxn02008_c0 fig|9606.20.peg.945  Amino Acids and Derivatives 

R_rxn02286_c0   Amino Acids and Derivatives  

R_rxn02011_c0 fig|9606.20.peg.942  Amino Acids and Derivatives 

R_rxn03901_c0 

fig|9606.20.peg.2397  

fig|9606.20.peg.2811 Fatty Acids, Lipids, and Isoprenoids  

R_rxn00193_c0 

fig|9606.20.peg.743  
fig|9606.20.peg.5972  

fig|9606.20.peg.3562 Amino Acids and Derivatives  

R_rxn00461_c0 fig|9606.20.peg.896  Cell Wall and Capsule  

R_rxn03408_c0 fig|9606.20.peg.947  Transferases 

R_rxn03164_c0     

R_rxn03904_c0 fig|9606.20.peg.944  Transferases 

R_rxn05909_c0 fig|9606.20.peg.3410  Amino Acids and Derivatives  

R_rxn00423_c0 

fig|9606.20.peg.250  
fig|9606.20.peg.4636  

fig|9606.20.peg.5083  Amino Acids and Derivatives  

R_rxn00649_c0 

fig|9606.20.peg.1535  

fig|9606.20.peg.4635  
fig|9606.20.peg.4521  Amino Acids and Derivatives  

R_rxn03638_c0 fig|9606.20.peg.6142  Cell Wall and Capsule  
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R_rxn00283_c0 

fig|9606.20.peg.5992  

fig|9606.20.peg.3019 Amino Acids and Derivatives  

R_rxn00555_c0 fig|9606.20.peg.1731  Carbohydrates 

R_rxn00293_c0 fig|9606.20.peg.6142  Cell Wall and Capsule  

R_rxn02507_c0 fig|9606.20.peg.5582 Amino Acids and Derivatives  

R_rxn01964_c0 

fig|9606.20.peg.35  
fig|9606.20.peg.36  

fig|9606.20.peg.5939  

fig|9606.20.peg.2148  Cofactors, Vitamins, Prosthetic Groups, Pigments  

R_rxn02508_c0 fig|9606.20.peg.4199  Amino Acids and Derivatives  

R_rxn00726_c0 

fig|9606.20.peg.5584  

fig|9606.20.peg.1383  

fig|9606.20.peg.1382  
fig|9606.20.peg.5585  

fig|9606.20.peg.4642  Amino Acids and Derivatives  

R_rxn00791_c0 fig|9606.20.peg.5583  Amino Acids and Derivatives  

R_rxn00772_c0 fig|9606.20.peg.4167  Carbohydrates 

R_rxn01137_c0 fig|9606.20.peg.667  Nucleosides and Nucleotides  

R_rxn01299_c0 fig|9606.20.peg.4165  Nucleosides and Nucleotides  

R_rxn00836_c0 fig|9606.20.peg.902  Nucleosides and Nucleotides  

R_rxn01333_c0 

fig|9606.20.peg.3736  

fig|9606.20.peg.1580  Carbohydrates 

R_rxn03135_c0 fig|9606.20.peg.330  Amino Acids and Derivatives  

R_rxn03137_c0 fig|9606.20.peg.614 Cofactors, Vitamins, Prosthetic Groups, Pigments  

R_rxn02473_c0 

fig|9606.20.peg.329  

fig|9606.20.peg.3410 Amino Acids and Derivatives  

R_rxn03175_c0 fig|9606.20.peg.332  Amino Acids and Derivatives  

R_rxn00859_c0 fig|9606.20.peg.898 Amino Acids and Derivatives  

R_rxn01211_c0 

fig|9606.20.peg.3935  
fig|9606.20.peg.2322  

fig|9606.20.peg.2331 Cofactors, Vitamins, Prosthetic Groups, Pigments  

R_rxn02160_c0 fig|9606.20.peg.9 Amino Acids and Derivatives  

R_rxn02835_c0 

fig|9606.20.peg.6118  

fig|9606.20.peg.390  

fig|9606.20.peg.389  
fig|9606.20.peg.3328  Amino Acids and Derivatives  

R_rxn00907_c0 

fig|9606.20.peg.2331  

fig|9606.20.peg.3935  

fig|9606.20.peg.2322 Cofactors, Vitamins, Prosthetic Groups, Pigments  

R_rxn00789_c0 fig|9606.20.peg.529  Amino Acids and Derivatives  

R_rxn02834_c0   Amino Acids and Derivatives  
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R_rxn00410_c0 

fig|9606.20.peg.1287  

fig|9606.20.peg.1155  Nucleosides and Nucleotides 

R_rxn00237_c0 fig|9606.20.peg.5074  Nucleosides and Nucleotides  

R_rxn01269_c0 fig|9606.20.peg.1644  Amino Acids and Derivatives 

R_rxn01303_c0 

fig|9606.20.peg.5792  

fig|9606.20.peg.4944  Amino Acids and Derivatives  

R_rxn00337_c0 

fig|9606.20.peg.4756  

fig|9606.20.peg.6013  Amino Acids and Derivatives  

R_rxn00952_c0 

fig|9606.20.peg.4193  

fig|9606.20.peg.460 Amino Acids and Derivatives  

R_rxn00693_c0 fig|9606.20.peg.2664  Amino Acids and Derivatives  

R_rxn01643_c0 fig|9606.20.peg.4203  Amino Acids and Derivatives  

R_rxn00239_c0 fig|9606.20.peg.6019  Nucleosides and Nucleotides  

xanthosine_build   Nucleosides and Nucleotides  

R_rxn00834_c0 fig|9606.20.peg.5057  Nucleosides and Nucleotides  

R_rxn07578_c0   Fatty Acids, Lipids, and Isoprenoids  

R_rxn07576_c0   Fatty Acids, Lipids, and Isoprenoids  

R_rxn07577_c0   Fatty Acids, Lipids, and Isoprenoids  

R_rxn05458_c0 
fig|9606.20.peg.4717  
fig|9606.20.peg.5764  Fatty Acids, Lipids, and Isoprenoids  

R_rxn01000_c0 

fig|9606.20.peg.1642  

fig|9606.20.peg.1508 Amino Acids and Derivatives 

R_rxn08016_c0   Fatty Acids, Lipids, and Isoprenoids  

R_rxn10202_c0 fig|9606.20.peg.1252  Fatty Acids, Lipids, and Isoprenoids 

R_rxn08799_c0 

fig|9606.20.peg.4845  

fig|9606.20.peg.5862 Fatty Acids, Lipids, and Isoprenoids  

R_rxn03437_c0 fig|9606.20.peg.5822  Amino Acids and Derivatives  

R_rxn03436_c0   Amino Acids and Derivatives  

R_rxn01575_c0 fig|9606.20.peg.3971  Amino Acids and Derivatives 

R_rxn00737_c0 

fig|9606.20.peg.2739  

fig|9606.20.peg.5848 Amino Acids and Derivatives 

R_rxn03435_c0   Amino Acids and Derivatives  

R_rxn08043_c0   Amino Acids and Derivatives  

R_rxn00710_c0 fig|9606.20.peg.1852  Nucleosides and Nucleotides 

R_rxn00205_c0 

fig|9606.20.peg.1734  

fig|9606.20.peg.4492  
fig|9606.20.peg.5182 Amino Acids and Derivatives  

R_rxn01018_c0 fig|9606.20.peg.5784  Nucleosides and Nucleotides  

R_rxn01360_c0   Nucleosides and Nucleotides  

R_rxn01362_c0 

fig|9606.20.peg.6014  

fig|9606.20.peg.4194  Nucleosides and Nucleotides  

R_rxn05256_c0 fig|9606.20.peg.4652  Sulfur Metabolism  
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R_rxn00379_c0 

fig|9606.20.peg.762  

fig|9606.20.peg.763  Sulfur Metabolism  

R_rxn05651_c0 
fig|9606.20.peg.25  
fig|9606.20.peg.5198 Sulfur Metabolism  

R_rxn00416_c0 
fig|9606.20.peg.2453  
fig|9606.20.peg.4332  Amino Acids and Derivatives  

R_rxn00192_c0 

fig|9606.20.peg.5889  

fig|9606.20.peg.4944  Amino Acids and Derivatives  

R_rxn01434_c0 fig|9606.20.peg.1155  Amino Acids and Derivatives  

R_rxn01917_c0 fig|9606.20.peg.6013  Amino Acids and Derivatives  

R_rxn00469_c0 

fig|9606.20.peg.4279  

fig|9606.20.peg.5890  
fig|9606.20.peg.4045  

fig|9606.20.peg.3593  Amino Acids and Derivatives  

R_rxn00802_c0 fig|9606.20.peg.5962  Amino Acids and Derivatives  

R_rxn02465_c0 fig|9606.20.peg.5572  Amino Acids and Derivatives  

R_rxn01019_c0 

fig|9606.20.peg.1146  

fig|9606.20.peg.4904  Amino Acids and Derivatives  

R_rxn00119_c0 

fig|9606.20.peg.1238  

fig|9606.20.peg.6019  Nucleosides and Nucleotides  

R_rxn00148_c0 

fig|9606.20.peg.4961  

fig|9606.20.peg.1799 Nucleosides and Nucleotides  

R_rxn00117_c0 fig|9606.20.peg.5074  Amino Acids and Derivatives  

R_rxn00790_c0 
fig|9606.20.peg.4194  
fig|9606.20.peg.5583 Amino Acids and Derivatives  

lysine_formation   Carbohydrates 

R_rxn05289_c0 

fig|9606.20.peg.5178  

fig|9606.20.peg.3644  Nucleosides and Nucleotides  

R_rxn00409_c0 fig|9606.20.peg.5074  Nucleosides and Nucleotides  

R_rxn00785_c0     

R_rxn01256_c0 fig|9606.20.peg.349  Amino Acids and Derivatives  

R_rxn00364_c0 fig|9606.20.peg.1645  Nucleosides and Nucleotides  

R_rxn05332_c0   Fatty Acids, Lipids, and Isoprenoids  

R_rxn02213_c0 

fig|9606.20.peg.621  

fig|9606.20.peg.4288  

fig|9606.20.peg.5386 Amino Acids and Derivatives  

R_rxn01255_c0 fig|9606.20.peg.4349  Amino Acids and Derivatives  

R_rxn01739_c0 fig|9606.20.peg.416  Amino Acids and Derivatives  

R_rxn02212_c0 fig|9606.20.peg.417  Amino Acids and Derivatives  

R_rxn01332_c0 

fig|9606.20.peg.1704  

fig|9606.20.peg.2184  
fig|9606.20.peg.1723 Metabolism of Aromatic Compounds 
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R_rxn02476_c0   Carbohydrates 

R_rxn02789_c0 

fig|9606.20.peg.2051  

fig|9606.20.peg.4206  

fig|9606.20.peg.4207  
fig|9606.20.peg.2050  Amino Acids and Derivatives  

R_rxn01208_c0 fig|9606.20.peg.4204  Amino Acids and Derivatives  

R_rxn00902_c0 fig|9606.20.peg.5063  Amino Acids and Derivatives  

R_rxn03062_c0 fig|9606.20.peg.4204  Amino Acids and Derivatives  

R_rxn00114_c0 fig|9606.20.peg.4905  Amino Acids and Derivatives  

R_rxn00770_c0 fig|9606.20.peg.735  Nucleosides and Nucleotides  

R_rxn05344_c0 

fig|9606.20.peg.1661  

fig|9606.20.peg.4462  
fig|9606.20.peg.1664  

fig|9606.20.peg.3203  

fig|9606.20.peg.3201  
fig|9606.20.peg.2479  

fig|9606.20.peg.3116  

fig|9606.20.peg.4714  
fig|9606.20.peg.1836 Fatty Acids, Lipids, and Isoprenoids  

R_rxn05331_c0   Fatty Acids, Lipids, and Isoprenoids  

R_rxn05345_c0 

fig|9606.20.peg.3201  

fig|9606.20.peg.4714  

fig|9606.20.peg.3116  
fig|9606.20.peg.2479  

fig|9606.20.peg.4462  

fig|9606.20.peg.1661  
fig|9606.20.peg.1664  

fig|9606.20.peg.3203  

fig|9606.20.peg.1836 Fatty Acids, Lipids, and Isoprenoids  

R_rxn05335_c0   Fatty Acids, Lipids, and Isoprenoids  

R_rxn05324_c0     

R_rxn05351_c0     

R_rxn00747_c0 fig|9606.20.peg.5275  Carbohydrates 

R_rxn05333_c0     
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R_rxn05348_c0 

fig|9606.20.peg.3201  
fig|9606.20.peg.3116  

fig|9606.20.peg.4714  

fig|9606.20.peg.2479  
fig|9606.20.peg.4462  

fig|9606.20.peg.1661  

fig|9606.20.peg.1664  
fig|9606.20.peg.3203  

fig|9606.20.peg.1836 Fatty Acids, Lipids, and Isoprenoids  

R_rxn05327_c0     

R_rxn00904_c0 fig|9606.20.peg.5248  Amino Acids and Derivatives  

R_rxn05329_c0     

R_rxn05334_c0     

R_rxn05349_c0 

fig|9606.20.peg.3201  

fig|9606.20.peg.2479  

fig|9606.20.peg.4714  
fig|9606.20.peg.3116  

fig|9606.20.peg.1664  

fig|9606.20.peg.3203  
fig|9606.20.peg.1661  

fig|9606.20.peg.4462  Fatty Acids, Lipids, and Isoprenoids  

R_rxn05346_c0 

fig|9606.20.peg.3201  
fig|9606.20.peg.2479  

fig|9606.20.peg.4714  

fig|9606.20.peg.3116  
fig|9606.20.peg.1664  

fig|9606.20.peg.3203  

fig|9606.20.peg.4462  
fig|9606.20.peg.1661  

fig|9606.20.peg.1836  Fatty Acids, Lipids, and Isoprenoids  

R_rxn05330_c0   Fatty Acids, Lipids, and Isoprenoids  

R_rxn05350_c0 

fig|9606.20.peg.3201  

fig|9606.20.peg.4714  
fig|9606.20.peg.3116  

fig|9606.20.peg.2479  

fig|9606.20.peg.3203  
fig|9606.20.peg.1664  

fig|9606.20.peg.1661  

fig|9606.20.peg.4462  
fig|9606.20.peg.1836  Fatty Acids, Lipids, and Isoprenoids  
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R_rxn05347_c0 

fig|9606.20.peg.1661  
fig|9606.20.peg.4462  

fig|9606.20.peg.3203  

fig|9606.20.peg.1664  
fig|9606.20.peg.3201  

fig|9606.20.peg.2479  

fig|9606.20.peg.4714  
fig|9606.20.peg.3116  

fig|9606.20.peg.1836 Fatty Acids, Lipids, and Isoprenoids  

R_rxn05325_c0     

R_rxn05326_c0     

R_rxn05322_c0     

R_rxn05343_c0 

fig|9606.20.peg.3203  

fig|9606.20.peg.1664  

fig|9606.20.peg.1661  
fig|9606.20.peg.4462  

fig|9606.20.peg.2479  

fig|9606.20.peg.3116  
fig|9606.20.peg.4714  

fig|9606.20.peg.3201  

fig|9606.20.peg.1836  Fatty Acids, Lipids, and Isoprenoids  

Malate_buildin   Carbohydrates 

R_rxn01102_c0 

fig|9606.20.peg.1800  
fig|9606.20.peg.3012  

fig|9606.20.peg.6106 Cofactors, Vitamins, Prosthetic Groups, Pigments  

R_rxn00420_c0 

fig|9606.20.peg.5846  
fig|9606.20.peg.4651  

fig|9606.20.peg.5826  

fig|9606.20.peg.2034  
fig|9606.20.peg.509  Amino Acids and Derivatives  

R_rxn01101_c0 

fig|9606.20.peg.855  

fig|9606.20.peg.3367  

fig|9606.20.peg.3696  
fig|9606.20.peg.4304  

fig|9606.20.peg.2310  

fig|9606.20.peg.1513  
fig|9606.20.peg.4042  

fig|9606.20.peg.5855  

fig|9606.20.peg.4305  
fig|9606.20.peg.3498 Cofactors, Vitamins, Prosthetic Groups, Pigments  

P_Acid_8   Cell Wall and Capsule 
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R_rxn00187_c0 

fig|9606.20.peg.351  

fig|9606.20.peg.2326  Carbohydrates  

R_rxn00097_c0 fig|9606.20.peg.1238  Nucleosides and Nucleotides 

oxaloacetate_buildin   Carbohydrates 

R_rxn00001_c0 

fig|9606.20.peg.1902  

fig|9606.20.peg.5471  Phosphorus Metabolism  

R_rxn00459_c0 

fig|9606.20.peg.1289  

fig|9606.20.peg.1903  Carbohydrates 

R_rxn00251_c0   Carbohydrates 

R_rxn00910_c0   Carbohydrates 

R_rxn00161_c0 fig|9606.20.peg.410  Carbohydrates 

R_rxn05465_c0 
fig|9606.20.peg.5764  
fig|9606.20.peg.4717 Fatty Acids, Lipids, and Isoprenoids  

R_rxn00182_c0 fig|9606.20.peg.3510  Amino Acids and Derivatives  

R_rxn00154_c0   Carbohydrates 

R_rxn10121_c0 fig|9606.20.peg.3430  Nitrogen Metabolism  

R_rxn00568_c0 

fig|9606.20.peg.3429  

fig|9606.20.peg.3430  Nitrogen Metabolism  

R_rxn05627_c0 

fig|9606.20.peg.4619  

fig|9606.20.peg.2309  
fig|9606.20.peg.2201 Nitrogen Metabolism  

R_rxn08094_c0 

fig|9606.20.peg.1820  

fig|9606.20.peg.1822  

fig|9606.20.peg.1821  
fig|9606.20.peg.2655 Carbohydrates  

R_rxn00598_c0   Carbohydrates  

R_rxn02144_c0 

fig|9606.20.peg.1368  

fig|9606.20.peg.1857 Carbohydrates  

R_rxn02971_c0 fig|9606.20.peg.5206  Metabolism of Aromatic Compounds  

R_rxn02782_c0 fig|9606.20.peg.5207  Metabolism of Aromatic Compounds  

R_rxn00588_c0 fig|9606.20.peg.5205  Metabolism of Aromatic Compounds  

R_rxn02143_c0   Carbohydrates  

R_rxn00257_c0 fig|9606.20.peg.2297  Carbohydrates 

R_rxn00974_c0 

fig|9606.20.peg.3494  

fig|9606.20.peg.1537  Carbohydrates  

R_rxn01388_c0 

fig|9606.20.peg.3494  

fig|9606.20.peg.1537  Carbohydrates  

R_rxn00198_c0   Carbohydrates  
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R_rxn10806_c0 

fig|9606.20.peg.5156  

fig|9606.20.peg.1900  
fig|9606.20.peg.5368  

fig|9606.20.peg.843  

fig|9606.20.peg.5154  
fig|9606.20.peg.1901  

fig|9606.20.peg.5367  

fig|9606.20.peg.1816  
fig|9606.20.peg.5153  

fig|9606.20.peg.5155    

R_rxn10113_c0 

fig|9606.20.peg.5156  

fig|9606.20.peg.5154  

fig|9606.20.peg.5153  
fig|9606.20.peg.5155  

fig|9606.20.peg.5368  

fig|9606.20.peg.1900  
fig|9606.20.peg.5367  

fig|9606.20.peg.1901  

fig|9606.20.peg.1816  
fig|9606.20.peg.843   

R_rxn08900_c0 
fig|9606.20.peg.1609  
fig|9606.20.peg.906    

R_rxn10042_c0 

fig|9606.20.peg.6146  

fig|9606.20.peg.6143  

fig|9606.20.peg.6144  
fig|9606.20.peg.6151  

fig|9606.20.peg.6147  

fig|9606.20.peg.6145   

 

 


