

CRYSTALLOGRAPHIC COMMUNICATIONS

issn: 2056-9890 journals.iucr.org/e

Methyl 3-[(1-benzyl-4-phenyl-1*H*-1,2,3-triazol-5yl)formamido]propanoate: crystal structure, Hirshfeld surface analysis and computational chemistry

Ignez Caracelli, Julio Zukerman-Schpector, Huey Chong Kwong and Edward R. T. Tiekink

Acta Cryst. (2020). E76, 1051–1056

IUCr Journals CRYSTALLOGRAPHY JOURNALS ONLINE

This open-access article is distributed under the terms of the Creative Commons Attribution Licence https://creativecommons.org/licenses/by/4.0/legalcode, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

research communications

Methyl 3-[(1-benzyl-4-phenyl-1H-1,2,3-triazol-5yl)formamido]propanoate: crystal structure, Hirshfeld surface analysis and computational chemistry

Ignez Caracelli,^a* Julio Zukerman-Schpector,^b Huey Chong Kwong^c and Edward R. T. Tiekink^c‡

^aDepartmento de Física Universidade Federal de São Carlos, 13565-905 São Carlos, SP, Brazil, ^bLaboratório de Cristalografia, Esterodinâmica e Modelagem Molecular, Departamento de Química, Universidade Federal de São Carlos, 13565-905 São Carlos, SP, Brazil, and ^cResearch Centre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia. *Correspondence e-mail: ignez@df.ufscar.br

The title compound, C₂₀H₂₀N₄O₃, is constructed about a tri-substituted 1,2,3triazole ring, with the substituent at one C atom flanked by the C and N atoms being a substituted amide group, and with the adjacent C and N atoms bearing phenyl and benzyl groups, respectively; the dihedral angle between the pendant phenyl rings is 81.17 (12)°, indicative of an almost orthogonal disposition. In the crystal, pairwise amide-N-H···O(carbonyl) hydrogen bonds lead to a centrosymmetric dimer incorporating methylene-C-H··· π (benzene) interactions. The dimers are linked into a supramolecular layer in the *ab* plane *via* methylene-C-H···N(azo) and benzene-C-H···O(amide) interactions; the layers stack along the *c*-axis direction without directional interactions between them. The above-mentioned intermolecular contacts are apparent in the analysis of the calculated Hirshfeld surface, which also provides evidence for short interlayer $H \cdots C$ contacts with a significant dispersion energy contribution.

1. Chemical context

The title 1,2,3-triazole-5-carboxamide derivative, (I), was recently prepared and characterized from a palladium-catalysed aminocarbonylation reaction with the use of dimethyl carbonate as a sustainable solvent (de Albuquerque et al., 2019). The motivation for preparing such molecules rests with the known pharmacological activity of these and related 1,2,3triazole derivatives (Bonandi et al., 2017). Unambiguous structure determination of (I) is reported herein, via X-ray crystallography, as is a detailed analysis of the supramolecular association by Hirshfeld surface analysis and computational chemistry.

CRYSTALLOGRAPHIC

COMMUNICATIONS

ISSN 2056-9890

Received 28 May 2020 Accepted 3 June 2020

Aberdeen, Scotland

chemistry

edwardt@sunway.edu.my.

CCDC reference: 2007664

Edited by W T A Harrison University of

Additional correspondence author, e-mail:

Keywords: crystal structure: 1.2.3-triazole:

Hirshfeld surface analysis; computational

Supporting information: this article has

supporting information at journals.iucr.org/e

Acta Cryst. (2020). E76, 1051-1056

2. Structural commentary

The molecular structure of (I), Fig. 1, features a tri-substituted 1,2,3-triazole ring. The five-membered ring is strictly planar

research communications

Table 1		
Hydrogen-bond	geometry (Å,	°).

Cg1 is the centroid of the (C10-C15) ring.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
N4-H4 N ···O2 ⁱ	0.86 (3)	2.04 (3)	2.884 (4)	167 (3)
$C3-H3B\cdots N2^{ii}$	0.97	2.55	3.495 (5)	165
$C15-H15\cdots O1^{iii}$	0.93	2.51	3.335 (5)	148
$C17 - H17B \cdots Cg1^{i}$	0.97	2.71	3.640 (4)	161
	0.97	2.71	5.040 (4)	101

Symmetry codes: (i) -x + 1, -y, -z + 1; (ii) -x, -y + 1, -z + 1; (iii) -x + 1, -y + 1, -z + 1.

with the r.m.s. deviation of the fitted atoms being 0.0021 Å. Within the ring, the lengthening of the formal azo-N2-N3 [1.306 (4) Å] and C1–C2 [1.388 (4) Å] double bonds coupled with the shortening of the N1-N2 [1.341 (4) Å], C1-N3 $[1.368 (4) \text{ \AA}]$ and C2-N1 $[1.347 (4) \text{ \AA}]$ bonds from their standard double/single bond values, are indicative of significant delocalization of π -electron density over the ring atoms. While the N1-bound C3-atom lies 0.131 (6) Å out of the plane of the ring, the C1- and C2-bound C10 [0.012 (6) Å] and C16 [0.008 (6) Å] atoms are effectively co-planar with the ring. The terminal residues are twisted out of the plane of the central ring as seen in the (C1,C2,N1-N3)/(C4-C9) [74.46 (13)°]. (C1,C2,N1-N3)/(C10-C15) [28.10 (17)°] and (C1,C2,N1-N3)/ (C16,N4,O1) $[47.1 (2)^{\circ}]$ dihedral angles. The dihedral angle between the terminal phenyl rings is $81.17 (12)^{\circ}$ indicating a close to orthogonal disposition. There is a twist in the amide residue as seen in the value of the N4-C17-C18-C19 torsion angle of 73.6 (4) $^{\circ}$, indicating a (+)syn-clinal relationship. This results in a dihedral angle close to orthogonal for the amide (C16,N4,O1) and carboxylate (C19,O2,O3) residues, i.e. 73.6 (4)°.

3. Supramolecular features

The molecular packing in (I) features several identifiable points of contact, Table 1. The most evident of these are

Figure 1

The molecular structure of (I), showing the atom-labelling scheme and displacement ellipsoids at the 35% probability level.

amide-N4-H···O2(carbonyl) hydrogen bonds occurring between centrosymmetrically related molecules to give the dimer shown in Fig. 2(*a*). The molecules in the dimer are linked *via* a 12-membered {···OC₃NH}₂ synthon and additional stability to the assembly is provided by methylene-C17-H··· π (benzene) interactions. The dimeric aggregates are connected into a supramolecular layer propagating in the *ab* plane *via* methylene-C3-H···N2(azo) and benzene-C15-H···O1(amide) interactions, Fig. 2(*b*). The layers stack in an ...*ABAB*... pattern along the *c* axis and inter-digitate to potentially form π - π interactions. However, these are not apparent, Fig. 2(*c*). A more detailed analysis of the interactions occurring in the inter-layer region is provided by an analysis of the calculated Hirshfeld surfaces.

Molecular packing in (I): (a) supramolecular dimer sustained by amide-N4–H···O2(carbonyl) hydrogen bonds (H atoms omitted for clarity), (b) layer where the dimers of (a) are connected by methylene-C3– H···N(azo) and benzene-C15–H···O1(amide) interactions [the methylene-C17–H··· π (benzene) interactions occur within the dimers] and (c) a view of the unit-cell contents shown in projection down the *a* axis. The N–H···O, C–H···O and C–H··· π interactions are shown as blue, orange and purple dashed lines, respectively.

Table 2Summary of short interatomic contacts (Å) in $(I)^a$.

Contact	Distance	Symmetry operation
$H4N \cdots O2^{b}$	1.90	-r + 1 - v - z + 1
$H3B \cdot \cdot \cdot N2^{b}$	2.44	-x + 1, -y + 1, -z + 1
$H15 \cdots O1^{b}$	2.38	-x, -y + 1, -z + 1
$H7 \cdot \cdot \cdot C5$	2.63	$-x, y - \frac{1}{2}, -z + \frac{1}{2}$
H17A···C12	2.72	$x, -y + \frac{1}{2}, z - \frac{1}{2}$
H12···C15	2.73	$-x+1, y-\frac{1}{2}, -z+\frac{3}{2}$

Notes: (a) The interatomic distances are calculated in *Crystal Explorer 17* (Turner *et al.*, 2017) whereby the X-H bond lengths are adjusted to their neutron values. (b) These interactions correspond to those reported in Table 1.

4. Hirshfeld surface analysis

In order to probe the interaction between molecules of (I) in the crystal, Hirshfeld surfaces mapped with the normalized contact distance d_{norm} (McKinnon *et al.*, 2004), electrostatic potential (Spackman *et al.*, 2008) and two-dimensional fingerprint plots were calculated using *Crystal Explorer 17* (Turner *et al.*, 2017) by established procedures (Tan *et al.*, 2019). The electrostatic potentials were calculated using the wavefunction at the HF/STO-3 G level of theory. The bright-

Figure 3

Views of the Hirshfeld surface for (I) mapped over (a) d_{norm} in the range -0.249 to +1.397 arbitrary units and (b) the electrostatic potential map in the range -0.097 to 0.134 atomic units, highlighting N-H···O hydrogen bonding.

Figure 4

Views of the Hirshfeld surface mapped over d_{norm} for (I) in the range -0.249 to +1.397 arbitrary units, highlighting (a) weak C-H···N and C-H···O interactions and (b) short H···C contacts, highlighted within red circles.

red spots on the Hirshfeld surface mapped over d_{norm} in Fig. 3(*a*), *i.e.* near the amide-H4N and carbonyl-O2 atoms, correspond to the amide-N-H4N···O2(carbonyl) hydrogen bond (Table 1). This hydrogen bond is also reflected in Hirshfeld surface mapped over the electrostatic potential Fig. 3(*b*), where the blue (positive electrostatic potential) and red (negative electrostatic potential) regions are apparent around the amide-H4N and carbonyl-O2 atoms, respectively.

The methylene-C3–H···N2(azo) and benzene-C15– H15···O1(amide) interactions are observed as faint-red spots on the d_{norm} -mapped Hirshfeld surface in Fig. 4(*a*), with a distance of ~0.3 Å shorter than the sum of their van der Waals radii, Table 2. The other faint red spots near the benzyl (C5, C12, C15, H7 and H12) and methylene (H17A) atoms in

Figure 5

A view of the Hirshfeld surface for (I) mapped with the shape-index property, highlighting the intermolecular $C-H\cdots\pi$ interaction.

Table 3
Percentage contributions of interatomic contacts to the Hirshfeld surface
for (I).

Contact	Percentage contribution
$H \cdots H$	46.7
$H \cdots C/C \cdots H$	24.9
$H \cdots O / O \cdots H$	14.4
$H \cdots N/N \cdots H$	12.6
$O \cdots C/C \cdots O$	1.0
0···0	0.4

Fig. 4(*b*) correspond to the inter-layer H7···C5, H17A···C12 and H12···C15 short contacts listed in Table 2. Even though the C-H··· π interaction, Table 1, was not manifested on the d_{norm} -mapped Hirshfeld surface, this interaction shows up as a distinctive orange 'pothole' on the shape-index-mapped Hirshfeld surface, Fig. 5.

The overall two-dimensional fingerprint plot for the Hirshfeld surface of (I) is shown with characteristic pseudo-symmetric wings in the upper left and lower right sides of the d_e and d_i diagonal axes, respectively, in Fig. 6(*a*). The delin-

Figure 6

(a) The full two-dimensional fingerprint plot for (II) and (b)-(e) those delineated into H···H, H···C/C···H, H···O/O···H and H···N/N···H contacts, respectively.

Table 4
Summary of interaction energies (kJ mol^{-1}) calculated for (I).

Contact	<i>R</i> (Å)	$E_{\rm ele}$	$E_{\rm pol}$	$E_{\rm dis}$	$E_{\rm rep}$	$E_{\rm tot}$
Intra-later						
$N4 - H4N \cdot \cdot \cdot O2^{i}$	5.21	-73.7	-14.9	-84.6	94.6	-104.2
$C15-H15\cdots O1^{iii}$	5.57	-21.8	-5.7	-56.7	34.0	-55.0
$C3-H3B\cdots N2^{ii}$	9.97	-21.4	-6.2	-20.5	25.1	-29.6
$H20B \cdot \cdot \cdot N3^{iv} +$						
$H9 \cdot \cdot \cdot O3^{v} +$						
$H8 \cdot \cdot H18A^{v}$	11.43	-5.1	-1.6	-14.8	6.9	-15.2
$H8 \cdot \cdot \cdot H14^{vi}$	12.81	-1.4	-0.5	-9.8	2.2	-9.0
H8· · ·H11 ^{vii}	9.77	-1.2	-0.4	-8.6	1.6	-8.0
H20C···H20C ^{viii}	14.84	1.3	-0.2	-3.1	0.6	-1.1
Inter-layer						
$H17A \cdots C12^{ix}$	9.37	-11.3	-3.4	-22.7	14.8	-25.1
$H12 \cdot \cdot \cdot C15^{x}$	10.15	-5.1	-1.2	-16.3	10.0	-14.3
$H7 \cdot \cdot \cdot C5^{xi}$	12.03	-3.2	-0.4	-14.0	11.5	-8.7

Notes: Symmetry operations: (i) -x + 1, -y, -z + 1; (ii) -x + 1, -y + 1, -z + 1; (iii) -x, -y + 1, -z + 1; (iv) x + 1, y, z; (v) x - 1, y, z; (vi) $x - 1, -y + \frac{1}{2}, z - \frac{1}{2}$; (vii) -x, -y, -z + 1; (viii) -x + 2, -y, -z + 1; (ix) $x, -y + \frac{1}{2}, -z - \frac{1}{2}$; (x) $-x + 1, y - \frac{1}{2}, -z + \frac{3}{2}$; (xi) $-x, y - \frac{1}{2}, -z + \frac{1}{2}$.

eated $H \cdots H$, $H \cdots C/C \cdots H$, $H \cdots O/O \cdots H$ and $H \cdots N/N \cdots H$ contacts from the overall two-dimensional fingerprint plot are illustrated in Fig. 6(b)-(e), respectively. The percentage contributions from different interatomic contacts to the Hirshfeld surface of (I) are summarized in Table 3. The greatest contribution to the overall Hirshfeld surface are due to $H \cdots H$ contacts, which contribute 46.7%. However, the $H \cdots H$ contacts appear as a square-like distribution with a small beak at $d_e = d_i \sim 2.6$ Å in Fig. 6(b), corresponding to H8···H11 \simeq 2.67 Å (symmetry operation: -x, -y, -z + 1) indicating that all H...H contacts have long-range characteristics. The $H \cdot \cdot \cdot C/C \cdot \cdot \cdot H$ contacts on the Hirshfeld surface, which contribute 24.9% to the overall surface, Fig. 6(c), reflect the $C-H\cdots\pi$ interaction and $C\cdots H$ short contacts as discussed above. Consistent with the C-H···O and C- $H \cdots N$ interactions occurring in the crystal, $H \cdots O/O \cdots H$ and H···N/N···H contacts contribute 14.4 and 12.6%, respectively, to the overall Hirshfeld surface. These appear as two sharp symmetric spikes in the fingerprint plots at $d_e + d_i \simeq 1.9$ and 2.4 Å in Fig. 6(d) and (e), respectively. The contribution from the other interatomic contacts summarized in Table 2 has a negligible influence on the calculated Hirshfeld surface of (I).

5. Energy frameworks

The pairwise interaction energies between the molecules in the crystal of (I) were calculated using the 6-31G(d,p) basis set at the B3LYP level of theory. The total energy comprises four terms, *i.e.* the electrostatic ($E_{\rm ele}$), polarization ($E_{\rm pol}$), dispersion ($E_{\rm dis}$) and exchange-repulsion ($E_{\rm rep}$) energy terms and were calculated with Crystal Explorer 17 (Turner et al., 2017). The benchmarked energies were scaled according to Mackenzie et al. (2017) while $E_{\rm ele}$, $E_{\rm pol}$, $E_{\rm dis}$, and $E_{\rm rep}$ were scaled as 1.057, 0.740, 0.871 and 0.618, respectively (Edwards et al., 2017). The energies for the identified intermolecular interactions are tabulated in Table 4. As anticipated, the greatest stabilization energy, with approximately equal contributions from E_{ele} and E_{dis} , arises from the conventional amide-N-H4N···O2(carbonyl) hydrogen bond. The next most significant energies of stabilization arise from the methylene-C3-H···N2(azo) (dominated by E_{dis}) and benzene-C15-H15···O1(amide) (approximately equal contributions from E_{ele} and E_{dis}) interactions. In terms of energy, the next most significant contributions comes from an interaction in the inter-layer region, namely the H17A···C12 contact, Table 4. As for the other identified inter-layer contacts, E_{dis} is the dominant contributor. Views of the energy framework diagrams down *a* axis are shown in Fig. 7 and confirm the crystal to be mainly stabilized by electrostatic and dispersive forces with a clear dominance from the latter. The total E_{ele} of all pairwise interactions sum to -142.9 kJ mol⁻¹, while the total E_{dis} computes to -251.1 kJ mol⁻¹.

Figure 7

Perspective views of the energy frameworks calculated for (I) showing (*a*) electrostatic potential force, (*b*) dispersion force and (*c*) total energy, each plotted down the *a* axis. The radii of the cylinders are proportional to the relative magnitudes of the corresponding energies and were adjusted to the same scale factor of 50 with a cut-off value of 5 kJ mol⁻¹ within $1 \times 1 \times 1$ unit cells.

6. Database survey

There is a sole literature precedent for (I), namely the analogue with ethyl carboxylate and *N*-phenylamide substituents at the C1- and C2-atoms, respectively (WAGROM; Katritzky *et al.*, 2003), hereafter (II). An overlay diagram of (I) and (II) is given in Fig. 8. As anticipated, the five-membered rings and the α -atoms of the three substituents exhibit close concordance but, beyond this, the molecular conformations of the terminal residues differ significantly.

7. Synthesis and crystallization

Compound (I) was prepared as described in the literature (de Albuquerque *et al.*, 2019). The crystals were obtained by the slow evaporation from an ethanol solution of (I).

8. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 5. The carbon-bound H atoms were placed in calculated positions (C-H = 0.93–0.97 Å) and were included in the refinement in the riding-model approximation, with $U_{\rm iso}({\rm H})$ set to 1.2–1.5 $U_{\rm eq}({\rm C})$. The nitrogen-bound H atom was located in a difference Fourier map and refined with N-H = 0.86±0.01 Å, and with $U_{\rm iso}({\rm H})$ set to 1.2 $U_{\rm eq}({\rm N})$.

Acknowledgements

Regina H. A. Santos from IQSC-USP is thanked for the X-ray data collection. Ricardo S. Schwab from DQ-UFSCar is thanked for the generous gift of the sample.

Figure 8

Overlay diagram for (I), red image, and (II), blue image. The molecules have been overlapped so the five-membered rings are superimposed.

Funding information

The Brazilian agencies Coordination for the Improvement of Higher Education Personnel, CAPES, Finance Code 001 and the National Council for Scientific and Technological Development (CNPq) are acknowledged for grants 312210/2019–1, 433957/2018–2 and 406273/2015–4 to IC, for a fellowship 303207/2017–5 to JZS. Sunway University Sdn Bhd is also thanked for funding (grant No. STR-RCTR-RCCM-001–2019).

References

- Albuquerque, D. Y. de, de Moraes, J. R. & Schwab, R. S. (2019). *Eur. J. Org. Chem.* pp. 6673–6681.
- Bonandi, E., Christodoulou, M. S., Fumagalli, G., Perdicchia, D., Rastelli, G. & Passarella, D. (2017). *Drug Discovery Today*, 22, 1572–1581.
- Brandenburg, K. (2006). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA
- Burla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Cuocci, C., Giacovazzo, C., Mallamo, M., Mazzone, A. & Polidori, G. (2015). J. Appl. Cryst. 48, 306–309.
- ChemAxon (2010). Marvinsketch. http://www.chemaxon.com.
- Edwards, A. J., Mackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). *Faraday Discuss.* **203**, 93–112.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Katritzky, A. R., Zhang, Y., Singh, S. K. & Steel, P. J. (2003). Arkivoc, pp. 47–64.
- Mackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). *IUCrJ*, **4**, 575–587.
- McKinnon, J. J., Spackman, M. A. & Mitchell, A. S. (2004). Acta Cryst. B60, 627–668.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388.
- Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308–318.

Experimental details.	
Crystal data	
Chemical formula	$C_{20}H_{20}N_4O_3$
$M_{ m r}$	364.40
Crystal system, space group	Monoclinic, $P2_1/c$
Temperature (K)	293
a, b, c (Å)	11.4312 (14), 9.3013 (10), 18.737 (3)
β (°)	104.695 (4)
$V(Å^3)$	1927.1 (4)
Z	4
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	0.09
Crystal size (mm)	$0.46 \times 0.31 \times 0.24$
Data collection	
Diffractometer	Bruker APEXII CCD
Absorption correction	Multi-scan (<i>SADABS</i> ; Bruker 2009)
T_{\min}, T_{\max}	0.544, 0.745
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	24191, 3975, 2965
R _{int}	0.066
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.628
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.077, 0.204, 1.08
No. of reflections	3975
No. of parameters	249
No. of restraints	1
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.23, -0.20

Table 5

Computer programs: *APEX2* and *SAINT* (Bruker, 2009), *SIR2014* (Burla *et al.*, 2015), *SHELXL2018/3* (Sheldrick, 2015), *ORTEP-3 for Windows* (Farrugia, 2012), *DIAMOND* (Brandenburg, 2006), *MarvinSketch* (ChemAxon, 2010) and *publCIF* (Westrip, 2010).

Turner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). *Crystal Explorer 17*. The University of Western Australia. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

supporting information

Acta Cryst. (2020). E76, 1051-1056 [https://doi.org/10.1107/S2056989020007380]

Methyl 3-[(1-benzyl-4-phenyl-1*H*-1,2,3-triazol-5-yl)formamido]propanoate: crystal structure, Hirshfeld surface analysis and computational chemistry

Ignez Caracelli, Julio Zukerman-Schpector, Huey Chong Kwong and Edward R. T. Tiekink

Computing details

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT* (Bruker, 2009); program(s) used to solve structure: *SIR2014* (Burla *et al.*, 2015); program(s) used to refine structure: *SHELXL2018/3* (Sheldrick, 2015); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012), *DIAMOND* (Brandenburg, 2006); software used to prepare material for publication: *MarvinSketch* (ChemAxon, 2010) and *publCIF* (Westrip, 2010).

Methyl 3-[(1-benzyl-4-phenyl-1H-1,2,3-triazol-5-yl)formamido]propanoate

Crystal data	
$C_{20}H_{20}N_4O_3$ $M_r = 364.40$ Monoclinic, $P2_1/c$ $a = 11.4312 (14) Å$ $b = 9.3013 (10) Å$ $c = 18.737 (3) Å$ $\beta = 104.695 (4)^\circ$ $V = 1927.1 (4) Å^3$ $Z = 4$	F(000) = 768 $D_x = 1.256 \text{ Mg m}^{-3}$ Mo K\alpha radiation, \lambda = 0.71073 \mathbf{A} Cell parameters from 6479 reflections $\theta = 2.5-23.9^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 293 K Irregular, colourless $0.46 \times 0.31 \times 0.24 \text{ mm}$
Data collection	
Bruker APEXII CCD diffractometer φ and ω scans Absorption correction: multi-scan (SADABS; Bruker 2009) $T_{\min} = 0.544, T_{\max} = 0.745$ 24191 measured reflections	3975 independent reflections 2965 reflections with $I > 2\sigma(I)$ $R_{int} = 0.066$ $\theta_{max} = 26.5^\circ$, $\theta_{min} = 1.8^\circ$ $h = -14 \rightarrow 14$ $k = -11 \rightarrow 11$ $l = -23 \rightarrow 23$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.077$ $wR(F^2) = 0.204$ S = 1.08 3975 reflections 249 parameters 1 restraint Primary atom site location: structure-invariant direct methods	Secondary atom site location: difference Fourier map Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0396P)^2 + 3.4742P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.23$ e Å ⁻³ $\Delta\rho_{min} = -0.20$ e Å ⁻³

Extinction correction: SHELXL-2018/3 (Sheldrick 2015), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$ Extinction coefficient: 0.0267 (19)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

 $U_{\rm iso}$ */ $U_{\rm eq}$ х \overline{z} v 01 0.3969(2)0.4513(3)0.43041 (14) 0.0558(7)02 0.6787(3)0.0379(3)0.5049(2)0.0836(10) 03 0.8198(3)0.2035(3)0.5160(2)0.0829(10)N1 0.1976(2)0.4009(3)0.49963 (14) 0.0450(7)N2 0.0635(9)0.1426(3)0.3888(4)0.55460 (17) N3 0.2173(3)0.3227(4)0.60901 (16) 0.0598(9)N4 0.0409(6)0.4356(2)0.2164(3)0.45617 (14) H4N 0.409 (3) 0.049* 0.143 (2) 0.4749 (18) C1 0.3218(3)0.2907(3)0.58938 (16) 0.0399(7)C20.3086(3)0.3412(3)0.51805 (16) 0.0370(7)0.4596 (4) C3 0.1285(3)0.42786 (19) 0.0527(9)H3A 0.180906 0.520492 0.407502 0.063* H₃B 0.062468 0.518335 0.435328 0.063* C4 0.0785(3)0.3410(4)0.37406 (18) 0.0482(8)C5 0.1396 (4) 0.2962 (5) 0.3228(2)0.0691 (12) H5 0.083* 0.212880 0.338684 0.321872 C6 0.0986 (19) 0.0922 (6) 0.1895(7)0.2736(2)H6 0.133334 0.158992 0.239445 0.118* -0.0168(7)0.1276 (7) C7 0.2749(3)0.111(2)H7 -0.0490670.054764 0.241663 0.133* C8 -0.0772 (6) 0.1071 (19) 0.1728 (6) 0.3245 (3) H8 -0.1511970.131428 0.324646 0.128* C9 -0.0299(4)0.2792(5)0.3747(2)0.0707 (12) H9 -0.0714640.308948 0.408779 0.085* C10 0.2167 (3) 0.64097 (16) 0.0410(7)0.4213(3)C11 0.3958(4)0.1262(4)0.69416 (19) 0.0598 (10) 0.072* 0.316046 0.112350 0.695971 H11 C12 0.4876 (6) 0.0571 (5) 0.7442(2)0.0812 (15) H12 0.469542 -0.0031110.779513 0.097* C13 0.6056(5)0.0765(5)0.7421(2)0.0787 (15) H13 0.667277 0.028938 0.775749 0.094* C14 0.6325 (4) 0.1658 (5) 0.6906(2)0.0679 (12) H14 0.712690 0.179290 0.689602 0.081* C15 0.5411(3)0.2367(4)0.63968 (18) 0.0489(8)0.059* H15 0.560139 0.297321 0.604805

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

Acta Cryst. (2020). E76, 1051-1056

C16	0.3854 (3)	0.3416 (3)	0.46468 (16)	0.0357 (7)	
C17	0.5073 (3)	0.1985 (4)	0.40222 (19)	0.0560 (10)	
H17A	0.469697	0.251931	0.357879	0.067*	
H17B	0.508059	0.097734	0.389017	0.067*	
C18	0.6360 (3)	0.2500 (4)	0.4315 (2)	0.0601 (10)	
H18A	0.673282	0.260002	0.390743	0.072*	
H18B	0.634970	0.344092	0.453692	0.072*	
C19	0.7104 (3)	0.1507 (4)	0.4873 (2)	0.0525 (9)	
C20	0.9011 (5)	0.1147 (7)	0.5700 (4)	0.116 (2)	
H20A	0.864583	0.092823	0.609558	0.173*	
H20B	0.975609	0.165410	0.589204	0.173*	
H20C	0.917047	0.027061	0.547137	0.173*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	<i>U</i> ¹³	U^{23}
01	0.0565 (15)	0.0461 (14)	0.0659 (16)	-0.0003 (11)	0.0177 (12)	0.0213 (12)
O2	0.079 (2)	0.0530 (17)	0.114 (3)	-0.0147 (15)	0.0151 (18)	0.0224 (17)
O3	0.0569 (17)	0.071 (2)	0.116 (3)	-0.0102 (15)	0.0128 (17)	0.0251 (18)
N1	0.0430 (15)	0.0491 (16)	0.0420 (14)	0.0096 (13)	0.0092 (12)	-0.0051 (12)
N2	0.0502 (18)	0.092 (3)	0.0525 (18)	0.0146 (18)	0.0204 (15)	-0.0114 (18)
N3	0.0558 (18)	0.082 (2)	0.0465 (17)	0.0083 (17)	0.0218 (14)	-0.0051 (16)
N4	0.0478 (15)	0.0374 (14)	0.0422 (14)	-0.0016 (12)	0.0203 (12)	0.0002 (12)
C1	0.0442 (17)	0.0411 (17)	0.0365 (15)	0.0006 (14)	0.0140 (13)	-0.0057 (13)
C2	0.0396 (16)	0.0311 (15)	0.0399 (16)	0.0042 (13)	0.0094 (12)	-0.0019 (13)
C3	0.050 (2)	0.048 (2)	0.055 (2)	0.0155 (16)	0.0042 (16)	0.0014 (16)
C4	0.0507 (19)	0.0495 (19)	0.0407 (17)	0.0144 (16)	0.0048 (14)	0.0016 (15)
C5	0.076 (3)	0.084 (3)	0.049 (2)	0.021 (2)	0.018 (2)	0.001 (2)
C6	0.128 (5)	0.113 (5)	0.048 (2)	0.037 (4)	0.009 (3)	-0.024 (3)
C7	0.133 (5)	0.096 (4)	0.079 (4)	0.006 (4)	-0.019 (4)	-0.041 (3)
C8	0.108 (4)	0.094 (4)	0.104 (4)	-0.032 (3)	-0.001 (4)	-0.024 (4)
C9	0.062 (3)	0.082 (3)	0.064 (2)	-0.007(2)	0.009 (2)	-0.014 (2)
C10	0.059 (2)	0.0350 (16)	0.0297 (14)	0.0017 (14)	0.0129 (13)	-0.0044 (12)
C11	0.093 (3)	0.052 (2)	0.0417 (19)	0.000 (2)	0.0307 (19)	0.0006 (16)
C12	0.148 (5)	0.060 (3)	0.042 (2)	0.021 (3)	0.035 (3)	0.0155 (19)
C13	0.119 (4)	0.070 (3)	0.038 (2)	0.037 (3)	0.002 (2)	0.0025 (19)
C14	0.064 (2)	0.078 (3)	0.052 (2)	0.019 (2)	-0.0025 (18)	-0.005 (2)
C15	0.057 (2)	0.048 (2)	0.0388 (17)	0.0015 (16)	0.0058 (15)	0.0003 (15)
C16	0.0341 (15)	0.0349 (16)	0.0360 (15)	-0.0021 (13)	0.0053 (12)	0.0029 (13)
C17	0.059 (2)	0.069 (2)	0.0475 (19)	0.0052 (19)	0.0267 (17)	-0.0019 (17)
C18	0.058 (2)	0.059 (2)	0.072 (2)	0.0023 (19)	0.034 (2)	0.015 (2)
C19	0.055 (2)	0.044 (2)	0.066 (2)	-0.0056 (17)	0.0293 (18)	0.0014 (17)
C20	0.068 (3)	0.119 (5)	0.145 (5)	0.011 (3)	0.000 (3)	0.036 (4)

Geometric parameters (Å, °)

01-C16	1.231 (4)	С7—Н7	0.9300
O2—C19	1.184 (4)	С8—С9	1.378 (7)

Acta Cryst. (2020). E76, 1051-1056

supporting information

O3-C19	1 324 (5)	С8—Н8	0.9300
$O_3 - C_2 O_1$	1 446 (6)	C9—H9	0.9300
N1_N2	1.110(0) 1 341(4)	C10-C15	1.388(5)
N1—C2	1.347(4)	C10-C11	1.300 (5)
N1_C3	1.347(4) 1 480(4)	C_{11}	1.376 (6)
N2 N3	1.400(4)	C11 H11	0.0300
N2 C1	1.300(4)	C_{12} C_{12}	1.271(7)
NA C16	1.306(4) 1.326(4)	$C_{12} = C_{13}$	1.371(7)
N4-C10	1.320(4)	C12—F112	1.2(((()
	1.404(4)	C13 - C14	1.300 (0)
N4—H4N	0.860 (10)	С13—Н13	0.9300
CI = C2	1.388 (4)		1.389 (5)
	1.464 (4)	C14—H14	0.9300
C2—C16	1.489 (4)	С15—Н15	0.9300
C3—C4	1.506 (5)	C17—C18	1.511 (5)
С3—НЗА	0.9700	C17—H17A	0.9700
С3—Н3В	0.9700	C17—H17B	0.9700
C4—C9	1.368 (5)	C18—C19	1.489 (5)
C4—C5	1.387 (5)	C18—H18A	0.9700
C5—C6	1.370 (7)	C18—H18B	0.9700
С5—Н5	0.9300	C20—H20A	0.9600
C6—C7	1.378 (8)	C20—H20B	0.9600
С6—Н6	0.9300	C20—H20C	0.9600
C7—C8	1.358 (8)		
C19—O3—C20	116.5 (4)	C11—C10—C1	119.2 (3)
N2—N1—C2	111.3 (3)	C12—C11—C10	120.5 (4)
N2—N1—C3	118.9 (3)	C12—C11—H11	119.7
C2—N1—C3	129.5 (3)	C10—C11—H11	119.7
N3—N2—N1	107.3 (3)	C13—C12—C11	120.3 (4)
N2—N3—C1	109.6 (3)	C13—C12—H12	119.8
C16—N4—C17	121.3 (3)	C11—C12—H12	119.8
C16—N4—H4N	116 (2)	C14—C13—C12	120.0 (4)
C17—N4—H4N	121 (2)	С14—С13—Н13	120.0
N3—C1—C2	107.2 (3)	С12—С13—Н13	120.0
N3-C1-C10	120.6(3)	C13 - C14 - C15	120.6(4)
C_{2} C_{1} C_{10}	132.1(3)	C13—C14—H14	1197
N1-C2-C1	102.1(3) 104.6(3)	C15—C14—H14	119.7
N1 - C2 - C16	1203(3)	C10-C15-C14	119.7
C1 - C2 - C16	120.5(3) 1352(3)	C10-C15-H15	120.1
N1 - C3 - C4	1113(3)	C_{14} C_{15} H_{15}	120.1
N1 = C3 = C4 N1 = C3 = H3A	100 /	O1 C16 N4	120.1 123.0(3)
$\Lambda I = C_3 = H_3 \Lambda$	109.4	01 - 016 - 02	123.9(3) 120.8(3)
N1 C2 H2P	109.4	$N_{1} = C_{10} = C_{2}$	120.0(3) 115.2(3)
CA = C2 = H2P	102.4	N4 C17 C18	113.2(3) 112.1(3)
C_{+} C_{2} C_{2	102.4	104 - 017 - 010	112.1(3)
$\Pi S A = C S = \Pi S D$	100.0	$\Pi + - \Box I / - \Pi I / A$	109.2
$C_{2} = C_{4} = C_{2}$	119.7 (4)	$U_{10} - U_{1} / - H_{1} / A$	109.2
	119.5 (5)	$H_{} H_{} $	109.2
03-04-03	120.7 (4)	U18-U1/-H1/B	109.2

	100.0(5)		1050
C6—C5—C4	120.0 (5)	H17A—C17—H17B	107.9
C6—C5—H5	120.0	C19—C18—C17	112.9 (3)
C4—C5—H5	120.0	C19—C18—H18A	109.0
C5—C6—C7	119.8 (5)	C17—C18—H18A	109.0
С5—С6—Н6	120.1	C19—C18—H18B	109.0
С7—С6—Н6	120.1	C17—C18—H18B	109.0
C8—C7—C6	120.0 (5)	H18A—C18—H18B	107.8
С8—С7—Н7	120.0	O2—C19—O3	122.7 (4)
С6—С7—Н7	120.0	O2—C19—C18	125.7 (4)
C7—C8—C9	120.7 (6)	O3—C19—C18	111.6 (3)
С7—С8—Н8	119.7	O3—C20—H20A	109.5
С9—С8—Н8	119.7	O3—C20—H20B	109.5
C4—C9—C8	119.7 (5)	H20A—C20—H20B	109.5
С4—С9—Н9	120.1	O3—C20—H20C	109.5
С8—С9—Н9	120.1	H20A—C20—H20C	109.5
C15—C10—C11	118.7 (3)	H20B—C20—H20C	109.5
C15—C10—C1	122.0 (3)		
C2—N1—N2—N3	0.5 (4)	N3-C1-C10-C15	-150.9(3)
C3—N1—N2—N3	174.1 (3)	C2-C1-C10-C15	28.8 (5)
N1-N2-N3-C1	-0.3(4)	N3-C1-C10-C11	27.5 (5)
$N_2 - N_3 - C_1 - C_2$	-0.1(4)	C_{2} C_{1} C_{10} C_{11}	-152.8(4)
$N_{2} N_{3} C_{1} C_{1}$	179.6 (3)	C_{15} C_{10} C_{11} C_{12}	-0.5(5)
$N_2 - N_1 - C_2 - C_1$	-0.6(4)	C1 - C10 - C11 - C12	-178.9(3)
$C_3 = N_1 = C_2 = C_1$	-1733(3)	C_{10} C_{11} C_{12} C_{13}	0.0 (6)
$N_{2} = N_{1} = C_{2} = C_{16}$	179.6 (3)	C_{11} C_{12} C_{13} C_{14}	0.5(0)
$C_3 = N_1 = C_2 = C_{16}$	68(5)	C12 - C13 - C14 - C15	-0.5(6)
N_{3} C_{1} C_{2} N_{1}	0.0(3)	C_{11} C_{10} C_{15} C_{14}	0.5(0)
C10-C1-C2-N1	-1793(3)	C1 - C10 - C15 - C14	1789(3)
N_{3} C_{1} C_{2} C_{16}	-1798(3)	C_{13} C_{14} C_{15} C_{10}	0.0 (6)
C10-C1-C2-C16	0.6.(6)	$C_{17} - N_{4} - C_{16} - O_{1}$	-2.0(5)
$N_{-N_{-C_{-C_{-C_{-C_{-C_{-C_{-C_{-C_{-C_{-C$	-974(4)	$C_{17} - N_{4} - C_{16} - C_{2}$	1762(3)
C_{2} N1 C_{3} C_{4}	74.8 (5)	N1-C2-C16-O1	46.0 (4)
N1 - C3 - C4 - C9	85 4 (4)	C1 - C2 - C16 - O1	-1339(4)
N1-C3-C4-C5	-962(4)	N1-C2-C16-N4	-132.3(3)
C9-C4-C5-C6	-0.7(6)	C1-C2-C16-N4	47.9 (5)
$C_{3}-C_{4}-C_{5}-C_{6}$	-1791(4)	$C_{16} N_{4} C_{17} C_{18}$	82.3 (4)
C4-C5-C6-C7	0.4(8)	N4-C17-C18-C19	73 6 (4)
$C_{5} - C_{6} - C_{7} - C_{8}$	0.3(9)	$C_{20} - O_{3} - C_{19} - O_{2}$	0.8(7)
C6-C7-C8-C9	-0.8(10)	$C_{20} = 03 = C_{19} = 02$	-1789(4)
C_{5} C_{4} C_{9} C_{8}	0.2(7)	C_{17} C_{18} C_{19} C_{10}	50(6)
$C_{3} = C_{4} = C_{9} = C_{8}$	178.6(A)	$C_{17} = C_{10} = C_{19} = O_2$	-175 4 (3)
C_{3}	1/0.0(4)	017-010-017-05	175.4 (5)
し/	0.0 (9)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H···A
N4—H4 N ···O2 ⁱ	0.86 (3)	2.04 (3)	2.884 (4)	167 (3)
C3—H3 <i>B</i> ···N2 ⁱⁱ	0.97	2.55	3.495 (5)	165
C15—H15…O1 ⁱⁱⁱ	0.93	2.51	3.335 (5)	148
C17—H17 B ···· $Cg1^{i}$	0.97	2.71	3.640 (4)	161

Symmetry codes: (i) -*x*+1, -*y*, -*z*+1; (ii) -*x*, -*y*+1, -*z*+1; (iii) -*x*+1, -*y*+1, -*z*+1.