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Each of the title dis-symmetric di-Schiff base compounds, C15H12Cl2N2O2 (I)

and C14H9BrCl2N2O (II), features a central azo-N—N bond connecting two

imine groups, each with an E-configuration. One imine bond in each molecule

connects to a 2,6-dichlorobenzene substituent while the other links a 2-hydroxyl-

3-methoxy-substituted benzene ring in (I) or a 2-hydroxyl-4-bromo benzene ring

in (II). Each molecule features an intramolecular hydroxyl-O—H� � �N(imine)

hydrogen bond. The C—N—N—C torsion angles of �151.0 (3)� for (I) and

177.8 (6)� (II) indicates a significant twist in the former. The common feature of

the molecular packing is the formation of supramolecular chains. In (I), the

linear chains are aligned along the a-axis direction and the molecules are linked

by methoxy-C—H� � �O(methoxy) and chlorobenzene-C—Cl� � ��(chlorobenz-

ene) interactions. The chain in (II) is also aligned along the a axis but, has a

zigzag topology and is sustained by Br� � �O [3.132 (4) Å] secondary bonding

interactions. In each crystal, the chains pack without directional interactions

between them. The non-covalent interactions are delineated in the study of the

calculated Hirshfeld surfaces. Dispersion forces make the most significant

contributions to the identified intermolecular interactions in each of (I) and (II).

1. Chemical context

Schiff base molecules, known for their ease of formation, can

be deprotonated to form a prominent class of multidentate

ligands for a full range of metal ions leading to a rich coor-

dination chemistry (Vigato & Tamburini, 2004; Clarke &

Storr, 2014). The broad range of biological activities exhibited

by Schiff base molecules such as anti-bacterial, anti-viral, anti-

fungal, anti-malarial, anti-inflammatory, etc. (Naeimi et al.,

2013; Mukherjee et al., 2013) is a key motivation for studies in

this area. Indeed, this is the motivation for the preparation of

dis-symmetric di-Schiff base molecules (Liu et al., 2018)

related to the title compounds and their transition-metal

complexes (Manawar et al., 2019a), complemented by crys-

tallographic studies (Manawar et al., 2019b, 2020). In a

continuation of these structural studies, the crystal and mol-

ecular structures of methoxy- (I) and bromine-substituted (II)

analogues of an earlier published dis-symmetric di-Schiff base
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(Manawar et al., 2019b) are described herein, together with the

detailed analysis of the molecular packing by Hirshfeld

surface analysis and computation of energy frameworks.

2. Structural commentary

The molecular structures of (I) and (II) are shown in Fig. 1.

The common feature of each molecule is the presence of two

imine bonds connected by a azo-N—N bond, Table 1. At one

end of each molecule is a 2,6-dichlorobenzene substituent. In

(I), the molecule is terminated by a 2-hydroxyl-3-methoxy-

substituted benzene ring and in (II), the terminal group is a

2-hydroxyl-4-bromo benzene ring. The configuration about

each of the imine bonds is E. Each molecule features an

intramolecular hydroxyl-O—H� � �N(imine) hydrogen bond

with geometric details listed in Tables 2 and 3, respectively. As

might be expected and judged from the data in Table 1, there

is a close similarity in comparable geometric parameters

characterizing molecules (I) and (II) with salient bond lengths

being equal within experimental error. The most significant

difference in bond angles is seen in the ca 3� wider C9—C8—

N2 angle in (II) cf. (I). There is an apparent difference in

conformation in the central region of the molecules as seen in

the ca 25� difference in the C7—N1—N2—C8 torsion angles

indicating a discernible kink in (I). The central C2N2 chro-

mophore in (I) exhibits distortions from co-planarity as the

r.m.s. deviation of the fitted atoms is 0.1459 Å with maximum

deviations to either side of the plane being 0.155 (17) Å for

the N2 atom and 0.149 (14) Å for C8. By contrast, the r.m.s.

deviation for the central atoms in (II) is 0.0112 Å. Further

differences are noted in dihedral angles between the central

plane and pendant benzene rings, and between the benzene

rings, Table 1, with the maximum difference occurring for the

(C7,N1,N2,C8)/(C9–C14) dihedral angles of 23.1 (4) and

1.5 (6)� for (I) and (II), respectively.
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Table 1
Selected geometric parameters (Å, �) in (I) and (II).

Parameter (I) (II)

N1—N2 1.409 (3) 1.417 (7)
C7—N1 1.283 (3) 1.276 (7)
C8—N2 1.256 (4) 1.234 (7)
N2—N1—C7 112.4 (2) 110.9 (5)
N1—N2—C8 114.2 (2) 114.9 (5)
C1—C7—N1 122.6 (3) 123.1 (6)
C9—C8—N2 121.1 (3) 124.5 (6)
C7—N1—N2—C8 �151.0 (3) 177.8 (6)
C1—C7—N1—N2 �178.8 (2) �178.9 (5)
C9—C8—N2—N1 179.9 (2) �179.2 (6)
(C7,N1,N2,C8)/(C1–C6) 20.9 (4) 15.6 (5)
(C7,N1,N2,C8)/(C9–C14) 23.1 (4) 1.5 (6)
(C1–C6)/(C9–C14) 2.41 (17) 15.5 (3)

Figure 1
The molecular structures of (a) (I) and (b) (II), showing the atom-
labelling schemes and displacement ellipsoids at the 35% probability
level.

Table 3
Hydrogen-bond geometry (Å, �) for (II).

D—H� � �A D—H H� � �A D� � �A D—H� � �A

O1—H1O� � �N1 0.83 (6) 1.96 (6) 2.655 (8) 141 (7)

Table 2
Hydrogen-bond geometry (Å, �) for (I).

Cg1 is the centroid of the (C9–14) ring.

D—H� � �A D—H H� � �A D� � �A D—H� � �A

O1—H1O� � �N1 0.83 (3) 1.91 (3) 2.657 (3) 149 (3)
C15—H15B� � �O2i 0.96 2.58 3.439 (4) 149
C14—Cl2� � �Cg1ii 1.74 (1) 3.70 (1) 3.765 (3) 79 (1)

Symmetry codes: (i) x � 1
2;�yþ 5

2;�z; (ii) x� 1; y; z.



3. Supramolecular features

The two prominent directional interactions in the molecular

packing of (I) are of the type C—H� � �O and C—Cl� � ��,

Table 2. Thus, methoxy-C—H� � �O(methoxy) and chloro-

benzene-C—Cl� � ��(chlorobenzene) contacts serve to link

molecules into supramolecular chain aligned along the a-axis

direction, Fig. 2(a). The linear chains thus formed assemble in

the crystal without directional contacts between them,

Fig. 2(b).

Supramolecular chains along the a axis are also noted in the

packing of (II), Fig. 3(a). In this instance, the contacts between

molecules are of the type Br� � �O, i.e. the Br1� � �O1 separation

is 3.132 (4) Å for symmetry operation 1
2 + x, 3 � y, z. With the

first such interaction in a crystal being reported in 1954, i.e. in

the crystal of Br2�O(CH2CH2)2O (Hassel & Hvoslef, 1954),

these well-described secondary bonding interactions (Alcock,

1972), are termed halogen-bonding interactions in the current

parlance (Tiekink, 2017). In (II), the Br� � �O interactions

assemble molecules into zigzag chains as these are propagated

by glide symmetry. Globally, the supramolecular chains stack

along the b axis to form layers and the layers stack along the c

axis in an . . . ABAB . . . fashion, Fig. 3(b), but there are no

directional interactions between the chains.

4. Hirshfeld surface analysis

The Hirshfeld surfaces for (I) and (II) were calculated

employing the Crystal Explorer 17 program (Turner et al.,

2017) following recently published protocols (Tan et al., 2019).

The results describe the influence of non-bonded interactions

upon the molecular packing in the crystals of (I) and (II),

especially in the absence of directional interactions between

the chains.

On the Hirshfeld surfaces mapped over dnorm, the presence

of the bright-red spots near the methoxy-O2 and H15B atoms

for (I) in Fig. 4(a),(b) and those near the Br1 and hydroxyl-O1

atoms in Fig. 5(a) for (II), are indicative of dominant inter-

molecular C—H� � �O and Br� � �O contacts in their respective

crystal structures. The faint-red spots viewed near the imine-

N2 and H8 atoms for (I), and near the Cl2 and H7 atoms for

(II) in Fig. 4(a),(b) and 5(b), respectively, indicate the influ-

ence of short interatomic contacts (Table 4) on their molecular

packing. The Hirshfeld surfaces mapped over the calculated
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Figure 3
Molecular packing in the crystal of (II): (a) supramolecular, zigzag chain
sustained by Br� � �O secondary bonding interactions shown as black
dashed lines and (b) a view of the unit-cell contents in projection down
the b axis.

Figure 2
Molecular packing in the crystal of (I): (a) supramolecular chain
sustained by methoxy-C—H� � �O(methoxy) and chlorobenzene-C—
Cl� � ��(chlorobenzene) interactions shown as orange and purple dashed
lines, respectively and (b) a view of the unit-cell contents in projection
down the a axis with one chain highlighted in space-filling mode.



electrostatic potential for (I) and (II) showing contributions

from different intermolecular interactions are illustrated

through blue and red regions corresponding to positive and

negative electrostatic potential in Fig. 6. For (I), the presence

of a short C—Cl2� � ��(C9–C14) contact, Table 2, is illustrated

through a blue bump and a orange concave region in the

Hirshfeld surface mapped with the shape-index property in

Fig. 4(c).

The overall two-dimensional fingerprint plots for (I),

Fig. 7(a), and (II), Fig.7(f), and those delineated into H� � �H,

O� � �H/H� � �O, C� � �H/H� � �C and C� � �C contacts for (I) are

illustrated in Fig. 7(b)–(e), respectively, and the equivalent

plots for (II) are found in Fig. 7(g)–(j). The percentage

contributions from the different interatomic contacts to the

Hirshfeld surfaces of (I) and (II) are quantitatively summar-

ized in Table 5. For (I), the short interatomic H� � �H contact

between the methoxy-H15A and dichlorobenzene-H13 atoms,

Table 4, is evident as a pair of almost fused peaks at de + di

�2.3 Å in Fig.7(b). In (II), comparable interactions are at

interatomic distances farther than the sum of their van der

Waals radii. The decrease in the percentage contribution from

H� � �H contacts to the Hirshfeld surface of (II) compared to

(I), Table 5, can be related, in the main, to the presence of the

bromine substituent in the hydroxylbenzene ring, in contrast
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Figure 4
Views of the Hirshfeld surface for (I) mapped: (a) and (b) over dnorm in
the range �0.097 to + 1.103 arbitrary units and (c) with the shape-index
property showing intermolecular C—Cl� � ��/�� � �Cl—C contacts.

Figure 5
Views of the Hirshfeld surface for (II) mapped over dnorm in the range
�0.016 to 1.528 arbitrary units.

Table 4
Summary of short interatomic contacts (Å) for (I) and (II)a.

Contact Distance Symmetry operation

(I)
H12� � �O1 2.59 �x, 1

2 + y, 1
2 � z

H8� � �N2 2.58 �1 + x, y, z
H13� � �H15A 2.30 1

2 + x, 2 � y, 1
2 + z

(II)
Br1� � �O1 3.132 (4) 1

2 + x, 3 � y, z
Cl2� � �H7 2.69 �1

2 + x, 1 � y, z

Notes: (a) The interatomic distances are calculated in Crystal Explorer (Turner et al.,
2017) whereby the X—H bond lengths are adjusted to their neutron values.



to the methoxy group in (I), and its participation in a number

of surface contacts, most notably Br� � �H/H� � �Br contacts

(13.7%).
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Table 5
Percentage contributions of interatomic contacts to the Hirshfeld surface
for (I) and (II).

Contact Percentage contribution

(I) (II)
H� � �H 31.1 21.1
O� � �H/H� � �O 9.1 4.3
C� � �H/H� � �C 16.4 13.8
Cl� � �H/H� � �Cl 17.3 23.1
N� � �H/H� � �N 8.0 0.4
C� � �Cl/Cl� � �C 6.2 1.0
C� � �C 4.6 7.2
C� � �O/O� � �C 3.7 0.1
C� � �N/N� � �C 0.0 7.1
Cl� � �Cl 3.5 2.7
Cl� � �N/N� � �Cl 0.0 0.6
N� � �O/O� � �N 0.0 0.1
Br� � �H/H� � �Br – 13.7
Br� � �O/O� � �Br – 2.6
Br� � �C/C� � �Br – 1.8
Br� � �Cl/Cl� � �Br – 0.2
Br� � �Br – 0.2

Figure 6
A view of the Hirshfeld surface mapped over the electrostatic potential
(the red and blue regions represent negative and positive electrostatic
potentials, respectively): (a) for (I) in the range �0.071 to +0.038 atomic
units and (b) for (II) in the range �0.063 to +0.040 atomic units.

Figure 7
(a) A comparison of the full two-dimensional fingerprint plot for (I) and those delineated into (b) H� � �H, (c) O� � �H/H� � �O, (d) C� � �H/H� � �C and (e)
C� � �C contacts, (f)–(j) equivalent fingerprint plots for (II), (g) N� � �H/H� � �N for (I), (h) C� � �Cl/C� � �Cl for (I), (i) Cl� � �H/H� � �Cl for (II) and (j) Br� � �O/
O� � �Br for (II).



The presence of C—H� � �O contacts in the crystal of (I) is

characterized as the pair of forceps-like tips at de + di �2.5 Å

in the fingerprint plot delineated into O� � �H/H� � �O contacts,

Fig. 7(c), with the points related to other short interatomic

O� � �H contacts merged within. The comparatively small

contribution from these contacts in (II), Table 5, show the

points to be at distances greater than sum of their van der

Waals radii in Fig. 7(h). In the fingerprint plot delineated into

C� � �H/H� � �C contacts for both (I) and (II), Fig. 7(d) and (i),

the characteristic wings are observed but with different shapes.

Their relatively long interatomic distances are consistent with

the absence of intermolecular C—H� � �� or short C� � �H

contacts in the crystals. The absence of aromatic �–� stacking

is also evident from the fingerprint plots delineated into C� � �C

contacts, Figs. 7(e) and (j), although significant percentage

contributions from these contacts are noted, Table 5. In

addition to the above, some specific contacts occur in the

crystals of (I) and (II).

The pair of forceps-like tips at de + di �2.5 Å in the

fingerprint plot delineated into N� � �H/H� � �N contacts for (I)

in Fig. 7(k) indicate the short interatomic N� � �H contact

involving the imine-N2 and H12 atoms, Table 4, formed within

the supramolecular chain along a axis Fig. 2(a). Also, in the

fingerprint plot delineated into C� � �Cl/Cl� � �C contacts for (I),

Fig. 7(l), the C—Cl� � �� contacts are highlighted as the pattern

of blue points at separations as close as de = di = 1.85 Å. In the

case of (II), in the fingerprint plot delineated into Cl� � �H/

H� � �Cl contacts, Fig. 7(m), the short interatomic contact

involving the Cl2 and imine-H7 atoms is apparent as the pair

of spikes with their tips at de + di�2.7 Å. Finally, the presence

of interatomic Br� � �O interactions along the a axis in the

crystal is reflected in the pair of thin spikes at de + di�3.2 Å in

Fig. 7(n). The comparatively greater percentage contribution

from interatomic contacts such as C� � �O/O� � �C and Cl� � �Cl to

the surface of (I) and Br� � �H/H� � �Br and C� � �N/N� � �C to that

of (II) as well as smaller contributions from other contacts as

summarized in Table 5, show negligible effect on the respec-

tive molecular packing due to the interatomic separations

being equal to or exceeding the respective sums of the van der

Waals radii.

5. Energy frameworks

The pairwise interaction energies between the molecules in

the crystals of (I) and (II) were calculated by summing up four

energy components, these being the electrostatic (Eele),

polarization (Epol), dispersion (Edis) and exchange-repulsion

(Erep) terms (Turner et al., 2017). The energies were obtained

using the wavefunctions calculated at the B3LYP/6–31 G(d,p)

and HF/STO-3 G levels theory for (I) and (II), respectively.

The individual energy components as well as the total inter-

action energy were calculated relative to a reference molecule.

The nature and strength of the energies for the key identified

intermolecular interactions are summarized in Table 6.

It is apparent from the interaction energies calculated for

(I) that the dispersion component, Edis, makes the major

contribution to the C—Cl� � �� and N� � �H contacts and these

are dominant in the molecular packing. By contrast, the C—

H� � �O interaction has nearly equal contributions from the

electrostatic component, Eele, and Edis. The small value of the

interaction energy corresponding to the short H� � �H contact

arises primarily from Edis. The intermolecular Br� � �O and

Cl� � �H contacts instrumental in the crystal of (II) have small

interaction energy values dominated by Edis.

Fig. 8 represents graphically the magnitudes of inter-

molecular energies in the form of energy frameworks, which

provide a view of the supramolecular architecture of crystals
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Table 6
Summary of interaction energies (kJ mol�1) calculated for (I) and (II).

Contact R (Å) Eele Epol Edis Erep Etot

(I)a

C15—H15B� � �O2i 12.93 �12.5 �2.7 �13.1 9.1 �21.1
C14—Cl2 � � ��(C9–C14)ii + 4.36 �4.7 �3.5 �66.8 36.9 �43.0
N2 � � �H8iii

H13� � �H15A0 iv 13.64 �0.6 �0.6 �9.7 5.5 �6.1
(II)b

Br1� � �O1i 10.21 �4.6 �0.9 �7.2 5.4 �7.5
Cl2� � �H7ii 8.69 �3.9 �0.7 �4.2 0.7 �3.1

Notes: (a) Symmetry operations for (I): (i)�1 + x, y, z; (ii)�1
2 + x, 5

2� y,� z; (iii) 1 + x, y,
z. (b) Symmetry operations for (II): (i) 1

2 + x, 3 � y, z; (ii) �1
2 + x, 1 � y, z.

Figure 8
The energy frameworks calculated for (I) showing the (a) electrostatic potential force, (b) dispersion force and (c) total energy. The energy frameworks
were adjusted to the same scale factor of 50 with a cut-off value of 3 kJ mol�1 within 4 � 4 � 4 unit cells. (d)–(f) Equivalent frameworks for (II).



through cylinders joining centroids of molecular pairs by using

red, green and blue colour codes for the components Eele, Edisp

and Etot, respectively. The radius of the cylinder is propor-

tional to the magnitude of the interaction energies which are

adjusted to same scale factor of 50 with a cut-off value of

3 kJ mol�1 within 4 � 4 � 4 unit cells. The appearance of the

energy frameworks clearly reflect the foregoing discussion,

namely the clear dominance of the Edis terms, especially for

(II).

6. Database survey

In a recent contribution describing the structure of the

analogue of (I) where the methoxy substituent is absent

(Manawar et al., 2019b), i.e. (III), it was noted that crystal

structure determinations of molecules with the 2-OH-C6-

C(H)N—NC(H)-C6 fragment number fewer than ten, and that

there is some conformational flexibility in these molecules.

This observation is borne out in the present study where there

is a disparity of over 25� in the central C7—N1—N2—C8

torsion angle, i.e. �151.0 (3) and 177.8 (6)� for (I) and (II),

respectively. These values compare with the equivalent angle

of �172.7 (2)� in (III). An overlay diagram for (I)–(III) is

shown in Fig. 9: here, the different conformations for (I), cf.

(II) and (III), are clearly evident.

7. Synthesis and crystallization

The title compounds were synthesized and characterized as

per the procedures reported in the literature (Manawar et al.,

2019a). The crystals of (I) and (II) in the form of yellow blocks

suitable for the structural study reported here were grown by

slow evaporation of their chloroform solutions.
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Figure 9
Two overlay diagrams of (I)–(III), represented by red, green and blue
images, respectively. The molecules have been overlapped so the O1, N1
and C1 atoms are coincident.

Table 7
Experimental details.

(I) (II)

Crystal data
Chemical formula C15H12Cl2N2O2 C14H9BrCl2N2O
Mr 323.17 372.04
Crystal system, space group Orthorhombic, P212121 Orthorhombic, Pca21

Temperature (K) 296 296
a, b, c (Å) 4.3556 (2), 12.8548 (4), 25.9904 (9) 16.4510 (12), 4.4314 (3), 20.0523 (15)
V (Å3) 1455.21 (10) 1461.83 (18)
Z 4 4
Radiation type Mo K� Mo K�
� (mm�1) 0.45 3.17
Crystal size (mm) 0.30 � 0.25 � 0.25 0.30 � 0.20 � 0.20

Data collection
Diffractometer Bruker Kappa APEXII CCD Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2004) Multi-scan (SADABS; Bruker, 2004)
Tmin, Tmax 0.557, 0.746 0.398, 0.746
No. of measured, independent and

observed [I > 2�(I)] reflections
48935, 3751, 2909 39831, 3569, 2150

Rint 0.070 0.108
(sin �/�)max (Å�1) 0.678 0.666

Refinement
R[F 2 > 2�(F 2)], wR(F 2), S 0.039, 0.099, 1.02 0.038, 0.082, 1.00
No. of reflections 3751 3569
No. of parameters 194 184
No. of restraints 1 2
H-atom treatment H atoms treated by a mixture of independent

and constrained refinement
H atoms treated by a mixture of independent

and constrained refinement
��max, ��min (e Å�3) 0.16, �0.25 0.30, �0.59
Absolute structure Flack x determined using 1004 quotients

[(I+)�(I�)]/[(I+)+(I�)] (Parsons et al., 2013).
Flack x determined using 829 quotients

[(I+)�(I�)]/[(I+)+(I�)] (Parsons et al., 2013).
Absolute structure parameter 0.12 (3) 0.003 (7)

Computer programs: APEX2 and SAINT (Bruker, 2004), SIR92 (Altomare et al., 1994), SHELXL2014/7 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012), DIAMOND
(Brandenburg, 2006) and publCIF (Westrip, 2010).



8. Refinement

Crystal data, data collection and structure refinement details

are summarized in Table 7. Carbon-bound H atoms were

placed in calculated positions (C—H = 0.93–0.96 Å) and were

included in the refinement in the riding-model approximation,

with Uiso(H) set to 1.2–1.5Ueq(C). The positions of the O-

bound H atoms were refined with O—H = 0.82�0.01 Å, and

with Uiso(H) set to 1.5Ueq(O).
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Crystal structures of two dis-symmetric di-Schiff base compounds: 

2-({(E)-2-[(E)-2,6-dichlorobenzylidene]hydrazin-1-ylidene}methyl)-6-methoxy-

phenol and 4-bromo-2-({(E)-2-[(E)-2,6-dichlorobenzylidene]hydrazin-1-yl-

idene}methyl)phenol

Rohit B. Manawar, Chandankumar T. Pashavan, Manish K. Shah, Mukesh M. Jotani and Edward 

R. T. Tiekink

Computing details 

For both structures, data collection: APEX2 (Bruker, 2004); cell refinement: APEX2/SAINT (Bruker, 2004); data 

reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to 

refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), 

DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

2-({(E)-2-[(E)-2,6-Dichlorobenzylidene]hydrazin-1-ylidene}methyl)-6-methoxyphenol (I) 

Crystal data 

C15H12Cl2N2O2

Mr = 323.17
Orthorhombic, P212121

a = 4.3556 (2) Å
b = 12.8548 (4) Å
c = 25.9904 (9) Å
V = 1455.21 (10) Å3

Z = 4
F(000) = 664

Dx = 1.475 Mg m−3

Mo Kα radiation, λ = 0.71073 Å
Cell parameters from 7669 reflections
θ = 2.8–20.9°
µ = 0.45 mm−1

T = 296 K
Block, yellow
0.30 × 0.25 × 0.25 mm

Data collection 

Bruker Kappa APEXII CCD 
diffractometer

Radiation source: X-ray tube
ω and φ scan
Absorption correction: multi-scan 

(SADABS; Bruker, 2004)
Tmin = 0.557, Tmax = 0.746
48935 measured reflections

3751 independent reflections
2909 reflections with I > 2σ(I)
Rint = 0.070
θmax = 28.8°, θmin = 1.6°
h = −5→5
k = −17→17
l = −34→35

Refinement 

Refinement on F2

Least-squares matrix: full
R[F2 > 2σ(F2)] = 0.039
wR(F2) = 0.099
S = 1.02

3751 reflections
194 parameters
1 restraint
Primary atom site location: structure-invariant 

direct methods
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Secondary atom site location: difference Fourier 
map

Hydrogen site location: mixed
H atoms treated by a mixture of independent 

and constrained refinement
w = 1/[σ2(Fo

2) + (0.0465P)2 + 0.2295P] 
where P = (Fo

2 + 2Fc
2)/3

(Δ/σ)max < 0.001
Δρmax = 0.16 e Å−3

Δρmin = −0.25 e Å−3

Absolute structure: Flack x determined using 
1004 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et 
al., 2013).

Absolute structure parameter: 0.12 (3)

Special details 

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance 
matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; 
correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate 
(isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) 

x y z Uiso*/Ueq

Cl1 0.5635 (2) 0.58257 (6) 0.17813 (3) 0.0639 (2)
Cl2 −0.1091 (2) 0.85695 (7) 0.29187 (3) 0.0635 (2)
O1 0.0486 (6) 1.03357 (16) 0.07165 (7) 0.0526 (5)
H1O 0.076 (10) 0.990 (2) 0.0947 (10) 0.079*
O2 −0.0282 (6) 1.13830 (16) −0.01337 (7) 0.0580 (6)
N1 0.2888 (6) 0.86954 (18) 0.11908 (9) 0.0462 (6)
N2 0.3817 (6) 0.80405 (19) 0.15969 (9) 0.0511 (6)
C1 0.3847 (6) 0.9094 (2) 0.03056 (9) 0.0407 (6)
C2 0.1975 (6) 0.9977 (2) 0.02967 (9) 0.0406 (6)
C3 0.1588 (7) 1.0536 (2) −0.01676 (10) 0.0436 (6)
C4 0.3053 (7) 1.0193 (2) −0.06085 (10) 0.0529 (8)
H4 0.280990 1.055923 −0.091441 0.063*
C5 0.4876 (8) 0.9312 (3) −0.05996 (11) 0.0577 (8)
H5 0.581625 0.908278 −0.090022 0.069*
C6 0.5300 (8) 0.8777 (2) −0.01501 (11) 0.0531 (7)
H6 0.656910 0.819478 −0.014652 0.064*
C7 0.4354 (7) 0.8510 (2) 0.07726 (10) 0.0454 (6)
H7 0.580111 0.797798 0.077020 0.054*
C8 0.1755 (7) 0.7862 (2) 0.19229 (10) 0.0433 (6)
H8 −0.017552 0.815862 0.188063 0.052*
C9 0.2348 (6) 0.7189 (2) 0.23722 (10) 0.0384 (6)
C10 0.4098 (7) 0.6277 (2) 0.23543 (10) 0.0442 (6)
C11 0.4597 (8) 0.5674 (2) 0.27870 (12) 0.0559 (8)
H11 0.578168 0.507359 0.276454 0.067*
C12 0.3337 (8) 0.5965 (3) 0.32511 (12) 0.0597 (8)
H12 0.370349 0.556547 0.354312 0.072*
C13 0.1540 (8) 0.6841 (3) 0.32858 (11) 0.0543 (8)
H13 0.064794 0.702856 0.359734 0.065*
C14 0.1081 (7) 0.7439 (2) 0.28499 (10) 0.0439 (6)
C15 −0.0503 (10) 1.2040 (3) −0.05738 (12) 0.0743 (11)
H15A 0.146096 1.235029 −0.064168 0.111*
H15B −0.198696 1.257741 −0.051006 0.111*
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H15C −0.113212 1.163644 −0.086601 0.111*

Atomic displacement parameters (Å2) 

U11 U22 U33 U12 U13 U23

Cl1 0.0822 (6) 0.0538 (4) 0.0555 (4) 0.0136 (4) 0.0063 (4) −0.0055 (4)
Cl2 0.0727 (5) 0.0550 (4) 0.0628 (5) 0.0050 (4) 0.0086 (4) −0.0072 (4)
O1 0.0699 (14) 0.0525 (12) 0.0353 (10) 0.0110 (11) 0.0077 (10) 0.0009 (8)
O2 0.0781 (15) 0.0535 (12) 0.0425 (11) 0.0107 (12) 0.0016 (10) 0.0082 (9)
N1 0.0520 (14) 0.0456 (13) 0.0412 (13) −0.0021 (11) −0.0001 (11) 0.0106 (10)
N2 0.0489 (13) 0.0557 (14) 0.0486 (13) 0.0001 (12) −0.0027 (12) 0.0156 (11)
C1 0.0438 (14) 0.0426 (14) 0.0356 (13) −0.0066 (12) 0.0008 (11) −0.0029 (11)
C2 0.0476 (15) 0.0438 (14) 0.0303 (12) −0.0066 (12) 0.0019 (11) −0.0054 (11)
C3 0.0493 (15) 0.0448 (15) 0.0366 (13) −0.0063 (13) −0.0020 (12) −0.0002 (11)
C4 0.0604 (19) 0.066 (2) 0.0325 (14) −0.0094 (16) 0.0021 (13) 0.0015 (14)
C5 0.064 (2) 0.0714 (19) 0.0377 (15) −0.0019 (18) 0.0109 (14) −0.0091 (14)
C6 0.0553 (17) 0.0555 (17) 0.0484 (16) −0.0004 (15) 0.0075 (14) −0.0117 (13)
C7 0.0469 (16) 0.0408 (14) 0.0485 (15) −0.0024 (13) −0.0020 (13) 0.0001 (12)
C8 0.0494 (16) 0.0414 (14) 0.0390 (14) −0.0027 (13) −0.0062 (12) 0.0021 (11)
C9 0.0406 (13) 0.0377 (13) 0.0370 (13) −0.0076 (11) −0.0051 (11) 0.0022 (10)
C10 0.0472 (15) 0.0433 (14) 0.0420 (14) −0.0030 (13) −0.0037 (13) 0.0007 (12)
C11 0.0602 (18) 0.0476 (16) 0.0600 (18) 0.0029 (15) −0.0070 (15) 0.0143 (14)
C12 0.066 (2) 0.065 (2) 0.0481 (17) −0.0039 (17) −0.0051 (16) 0.0233 (15)
C13 0.0587 (18) 0.069 (2) 0.0355 (14) −0.0093 (16) −0.0006 (13) 0.0059 (14)
C14 0.0456 (15) 0.0442 (14) 0.0419 (14) −0.0082 (12) −0.0026 (13) −0.0016 (12)
C15 0.098 (3) 0.072 (2) 0.0529 (19) 0.014 (2) −0.001 (2) 0.0195 (17)

Geometric parameters (Å, º) 

Cl1—C10 1.733 (3) C5—H5 0.9300
Cl2—C14 1.743 (3) C6—H6 0.9300
O1—C2 1.350 (3) C7—H7 0.9300
O1—H1O 0.828 (13) C8—C9 1.476 (4)
O2—C3 1.362 (4) C8—H8 0.9300
O2—C15 1.425 (3) C9—C10 1.399 (4)
N1—C7 1.283 (3) C9—C14 1.396 (4)
N1—N2 1.409 (3) C10—C11 1.383 (4)
N2—C8 1.256 (4) C11—C12 1.377 (4)
C1—C2 1.398 (4) C11—H11 0.9300
C1—C6 1.403 (4) C12—C13 1.374 (5)
C1—C7 1.444 (4) C12—H12 0.9300
C2—C3 1.415 (4) C13—C14 1.384 (4)
C3—C4 1.384 (4) C13—H13 0.9300
C4—C5 1.383 (4) C15—H15A 0.9600
C4—H4 0.9300 C15—H15B 0.9600
C5—C6 1.369 (4) C15—H15C 0.9600

C2—O1—H1O 107 (3) N2—C8—H8 119.5
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C3—O2—C15 117.5 (3) C9—C8—H8 119.5
C7—N1—N2 112.4 (2) C10—C9—C14 116.0 (2)
C8—N2—N1 114.2 (2) C10—C9—C8 124.1 (2)
C2—C1—C6 119.0 (3) C14—C9—C8 120.0 (3)
C2—C1—C7 121.7 (2) C11—C10—C9 121.9 (3)
C6—C1—C7 119.3 (3) C11—C10—Cl1 116.8 (2)
O1—C2—C1 123.0 (2) C9—C10—Cl1 121.3 (2)
O1—C2—C3 117.3 (3) C10—C11—C12 119.8 (3)
C1—C2—C3 119.8 (2) C10—C11—H11 120.1
O2—C3—C4 125.7 (3) C12—C11—H11 120.1
O2—C3—C2 115.0 (2) C13—C12—C11 120.5 (3)
C4—C3—C2 119.3 (3) C13—C12—H12 119.8
C3—C4—C5 120.8 (3) C11—C12—H12 119.8
C3—C4—H4 119.6 C12—C13—C14 118.9 (3)
C5—C4—H4 119.6 C12—C13—H13 120.5
C6—C5—C4 120.2 (3) C14—C13—H13 120.5
C6—C5—H5 119.9 C13—C14—C9 122.9 (3)
C4—C5—H5 119.9 C13—C14—Cl2 117.3 (2)
C5—C6—C1 120.9 (3) C9—C14—Cl2 119.8 (2)
C5—C6—H6 119.5 O2—C15—H15A 109.5
C1—C6—H6 119.5 O2—C15—H15B 109.5
N1—C7—C1 122.6 (3) H15A—C15—H15B 109.5
N1—C7—H7 118.7 O2—C15—H15C 109.5
C1—C7—H7 118.7 H15A—C15—H15C 109.5
N2—C8—C9 121.1 (3) H15B—C15—H15C 109.5

C7—N1—N2—C8 −151.0 (3) C6—C1—C7—N1 −173.4 (3)
C6—C1—C2—O1 179.9 (3) N1—N2—C8—C9 179.9 (2)
C7—C1—C2—O1 −1.0 (4) N2—C8—C9—C10 −39.5 (4)
C6—C1—C2—C3 −0.3 (4) N2—C8—C9—C14 141.8 (3)
C7—C1—C2—C3 178.8 (3) C14—C9—C10—C11 −1.4 (4)
C15—O2—C3—C4 −7.2 (5) C8—C9—C10—C11 179.7 (3)
C15—O2—C3—C2 173.5 (3) C14—C9—C10—Cl1 176.3 (2)
O1—C2—C3—O2 −0.2 (4) C8—C9—C10—Cl1 −2.5 (4)
C1—C2—C3—O2 180.0 (2) C9—C10—C11—C12 0.4 (5)
O1—C2—C3—C4 −179.6 (3) Cl1—C10—C11—C12 −177.4 (2)
C1—C2—C3—C4 0.6 (4) C10—C11—C12—C13 1.1 (5)
O2—C3—C4—C5 −179.2 (3) C11—C12—C13—C14 −1.5 (5)
C2—C3—C4—C5 0.1 (4) C12—C13—C14—C9 0.5 (4)
C3—C4—C5—C6 −1.2 (5) C12—C13—C14—Cl2 −177.6 (3)
C4—C5—C6—C1 1.5 (5) C10—C9—C14—C13 1.0 (4)
C2—C1—C6—C5 −0.8 (4) C8—C9—C14—C13 179.9 (3)
C7—C1—C6—C5 −179.9 (3) C10—C9—C14—Cl2 179.0 (2)
N2—N1—C7—C1 −178.8 (2) C8—C9—C14—Cl2 −2.1 (4)
C2—C1—C7—N1 7.5 (4)
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Hydrogen-bond geometry (Å, º) 

Cg1 is the centroid of the (C9–14) ring.

D—H···A D—H H···A D···A D—H···A

O1—H1O···N1 0.83 (3) 1.91 (3) 2.657 (3) 149 (3)
C15—H15B···O2i 0.96 2.58 3.439 (4) 149
C14—Cl2···Cg1ii 1.74 (1) 3.70 (1) 3.765 (3) 79 (1)

Symmetry codes: (i) x−1/2, −y+5/2, −z; (ii) x−1, y, z.

4-Bromo-2-({(E)-2-[(E)-2,6-dichlorobenzylidene]hydrazin-1-ylidene}methyl)phenol (II) 

Crystal data 

C14H9BrCl2N2O
Mr = 372.04
Orthorhombic, Pca21

a = 16.4510 (12) Å
b = 4.4314 (3) Å
c = 20.0523 (15) Å
V = 1461.83 (18) Å3

Z = 4
F(000) = 736

Dx = 1.690 Mg m−3

Mo Kα radiation, λ = 0.71073 Å
Cell parameters from 4698 reflections
θ = 2.5–18.6°
µ = 3.17 mm−1

T = 296 K
Block, yellow
0.30 × 0.20 × 0.20 mm

Data collection 

Bruker Kappa APEXII CCD 
diffractometer

Radiation source: X-ray tube
ω and φ scan
Absorption correction: multi-scan 

(SADABS; Bruker, 2004)
Tmin = 0.398, Tmax = 0.746
39831 measured reflections

3569 independent reflections
2150 reflections with I > 2σ(I)
Rint = 0.108
θmax = 28.3°, θmin = 2.5°
h = −21→21
k = −5→5
l = −26→26

Refinement 

Refinement on F2

Least-squares matrix: full
R[F2 > 2σ(F2)] = 0.038
wR(F2) = 0.082
S = 1.00
3569 reflections
184 parameters
2 restraints
Primary atom site location: structure-invariant 

direct methods
Secondary atom site location: difference Fourier 

map

Hydrogen site location: mixed
H atoms treated by a mixture of independent 

and constrained refinement
w = 1/[σ2(Fo

2) + (0.024P)2 + 0.3263P] 
where P = (Fo

2 + 2Fc
2)/3

(Δ/σ)max < 0.001
Δρmax = 0.30 e Å−3

Δρmin = −0.59 e Å−3

Absolute structure: Flack x determined using 
829 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 
2013).

Absolute structure parameter: 0.003 (7)

Special details 

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance 
matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; 
correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate 
(isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
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Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) 

x y z Uiso*/Ueq

Br1 1.17606 (4) 1.58575 (14) 0.09985 (4) 0.0617 (2)
Cl1 0.95249 (10) 0.2117 (4) 0.37299 (9) 0.0682 (5)
Cl2 0.63270 (11) 0.3504 (5) 0.30362 (11) 0.0830 (6)
O1 0.8392 (2) 1.0502 (9) 0.1011 (4) 0.0618 (10)
H1O 0.830 (5) 0.931 (14) 0.132 (3) 0.093*
N1 0.8804 (3) 0.7671 (11) 0.2128 (2) 0.0459 (12)
N2 0.8764 (3) 0.5871 (12) 0.2711 (3) 0.0583 (14)
C1 0.9706 (3) 1.0963 (12) 0.1535 (3) 0.0395 (13)
C2 0.9148 (3) 1.1674 (11) 0.1024 (4) 0.0461 (13)
C3 0.9379 (4) 1.3636 (14) 0.0523 (3) 0.0568 (18)
H3 0.901334 1.412779 0.018641 0.068*
C4 1.0152 (4) 1.4872 (14) 0.0519 (3) 0.0557 (17)
H4 1.029972 1.620146 0.018149 0.067*
C5 1.0700 (3) 1.4155 (11) 0.1008 (5) 0.0454 (12)
C6 1.0480 (4) 1.2229 (13) 0.1514 (3) 0.0450 (15)
H6 1.085312 1.176591 0.184695 0.054*
C7 0.9496 (4) 0.8944 (13) 0.2077 (3) 0.0458 (14)
H7 0.988542 0.855756 0.240209 0.055*
C8 0.8102 (4) 0.4636 (14) 0.2809 (3) 0.0490 (15)
H8 0.769260 0.494996 0.249745 0.059*
C9 0.7918 (4) 0.2707 (15) 0.3384 (3) 0.0441 (15)
C10 0.8495 (4) 0.1490 (13) 0.3823 (3) 0.0471 (15)
C11 0.8267 (4) −0.0303 (14) 0.4358 (3) 0.0602 (17)
H11 0.866252 −0.109704 0.463911 0.072*
C12 0.7460 (5) −0.0916 (16) 0.4478 (4) 0.073 (2)
H12 0.731322 −0.211614 0.483867 0.087*
C13 0.6868 (4) 0.0252 (16) 0.4062 (4) 0.066 (2)
H13 0.632125 −0.015359 0.413876 0.079*
C14 0.7104 (4) 0.2044 (17) 0.3525 (3) 0.0525 (18)

Atomic displacement parameters (Å2) 

U11 U22 U33 U12 U13 U23

Br1 0.0534 (4) 0.0635 (3) 0.0682 (4) −0.0060 (3) 0.0127 (4) −0.0003 (5)
Cl1 0.0462 (9) 0.0986 (13) 0.0599 (10) 0.0036 (9) −0.0082 (8) 0.0084 (10)
Cl2 0.0440 (10) 0.1108 (15) 0.0943 (14) −0.0090 (11) −0.0136 (10) 0.0087 (13)
O1 0.048 (2) 0.068 (3) 0.069 (3) −0.003 (2) −0.015 (3) 0.010 (3)
N1 0.047 (3) 0.044 (3) 0.047 (3) 0.000 (3) −0.004 (2) −0.001 (2)
N2 0.048 (4) 0.067 (4) 0.060 (4) −0.011 (3) −0.011 (3) 0.019 (3)
C1 0.043 (3) 0.036 (3) 0.039 (3) 0.003 (3) 0.001 (3) −0.004 (3)
C2 0.046 (3) 0.044 (3) 0.048 (3) 0.005 (2) −0.005 (4) −0.001 (4)
C3 0.063 (5) 0.054 (4) 0.053 (4) 0.009 (3) −0.013 (3) 0.005 (3)
C4 0.068 (5) 0.049 (4) 0.050 (4) 0.001 (3) 0.004 (4) 0.009 (3)
C5 0.053 (3) 0.038 (3) 0.045 (3) 0.003 (3) 0.006 (4) −0.003 (4)
C6 0.043 (4) 0.046 (3) 0.046 (4) 0.004 (3) −0.001 (3) −0.002 (3)
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C7 0.042 (4) 0.049 (3) 0.047 (3) 0.004 (3) −0.005 (3) 0.002 (3)
C8 0.041 (4) 0.059 (4) 0.047 (4) 0.002 (3) −0.007 (3) 0.000 (3)
C9 0.044 (4) 0.046 (4) 0.042 (4) −0.008 (3) −0.001 (3) −0.006 (3)
C10 0.048 (4) 0.050 (4) 0.044 (3) −0.004 (3) 0.001 (3) −0.008 (3)
C11 0.072 (5) 0.063 (4) 0.046 (4) −0.004 (4) −0.005 (4) −0.002 (3)
C12 0.081 (6) 0.078 (5) 0.058 (4) −0.021 (5) 0.014 (5) −0.003 (4)
C13 0.054 (4) 0.080 (5) 0.063 (4) −0.023 (4) 0.012 (4) −0.010 (4)
C14 0.046 (4) 0.065 (4) 0.047 (4) −0.011 (4) 0.005 (3) −0.007 (3)

Geometric parameters (Å, º) 

Br1—C5 1.901 (5) C4—H4 0.9300
Cl1—C10 1.727 (6) C5—C6 1.375 (10)
Cl2—C14 1.736 (8) C6—H6 0.9300
O1—C2 1.349 (7) C7—H7 0.9300
O1—H1O 0.827 (14) C8—C9 1.466 (9)
N1—C7 1.276 (7) C8—H8 0.9300
N1—N2 1.417 (7) C9—C10 1.402 (9)
N2—C8 1.234 (7) C9—C14 1.400 (8)
C1—C6 1.393 (8) C10—C11 1.388 (9)
C1—C2 1.411 (9) C11—C12 1.375 (10)
C1—C7 1.448 (8) C11—H11 0.9300
C2—C3 1.382 (9) C12—C13 1.384 (11)
C3—C4 1.384 (9) C12—H12 0.9300
C3—H3 0.9300 C13—C14 1.392 (10)
C4—C5 1.369 (10) C13—H13 0.9300

C2—O1—H1O 114 (6) C1—C7—H7 118.5
C7—N1—N2 110.9 (5) N2—C8—C9 124.5 (6)
C8—N2—N1 114.9 (5) N2—C8—H8 117.8
C6—C1—C2 118.8 (5) C9—C8—H8 117.8
C6—C1—C7 119.3 (5) C10—C9—C14 116.1 (6)
C2—C1—C7 121.9 (5) C10—C9—C8 125.3 (6)
O1—C2—C3 118.8 (6) C14—C9—C8 118.6 (6)
O1—C2—C1 121.9 (6) C11—C10—C9 121.5 (6)
C3—C2—C1 119.3 (5) C11—C10—Cl1 116.2 (5)
C2—C3—C4 120.4 (6) C9—C10—Cl1 122.3 (5)
C2—C3—H3 119.8 C12—C11—C10 120.6 (7)
C4—C3—H3 119.8 C12—C11—H11 119.7
C5—C4—C3 120.6 (6) C10—C11—H11 119.7
C5—C4—H4 119.7 C11—C12—C13 120.0 (7)
C3—C4—H4 119.7 C11—C12—H12 120.0
C4—C5—C6 119.9 (5) C13—C12—H12 120.0
C4—C5—Br1 120.4 (6) C12—C13—C14 118.9 (7)
C6—C5—Br1 119.7 (6) C12—C13—H13 120.6
C5—C6—C1 120.9 (6) C14—C13—H13 120.6
C5—C6—H6 119.5 C13—C14—C9 122.9 (6)
C1—C6—H6 119.5 C13—C14—Cl2 116.3 (6)
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N1—C7—C1 123.1 (6) C9—C14—Cl2 120.8 (5)
N1—C7—H7 118.5

C7—N1—N2—C8 177.8 (6) N1—N2—C8—C9 −179.2 (6)
C6—C1—C2—O1 179.3 (6) N2—C8—C9—C10 −13.9 (10)
C7—C1—C2—O1 −0.2 (9) N2—C8—C9—C14 164.6 (7)
C6—C1—C2—C3 −1.0 (8) C14—C9—C10—C11 1.0 (9)
C7—C1—C2—C3 179.4 (5) C8—C9—C10—C11 179.5 (6)
O1—C2—C3—C4 −179.7 (6) C14—C9—C10—Cl1 −179.2 (5)
C1—C2—C3—C4 0.6 (9) C8—C9—C10—Cl1 −0.6 (9)
C2—C3—C4—C5 0.5 (10) C9—C10—C11—C12 −0.6 (10)
C3—C4—C5—C6 −1.1 (10) Cl1—C10—C11—C12 179.5 (5)
C3—C4—C5—Br1 179.9 (5) C10—C11—C12—C13 0.1 (10)
C4—C5—C6—C1 0.6 (9) C11—C12—C13—C14 −0.1 (11)
Br1—C5—C6—C1 179.6 (4) C12—C13—C14—C9 0.5 (11)
C2—C1—C6—C5 0.4 (8) C12—C13—C14—Cl2 −178.5 (6)
C7—C1—C6—C5 180.0 (5) C10—C9—C14—C13 −0.9 (10)
N2—N1—C7—C1 −178.9 (5) C8—C9—C14—C13 −179.6 (6)
C6—C1—C7—N1 −179.3 (6) C10—C9—C14—Cl2 178.0 (5)
C2—C1—C7—N1 0.3 (9) C8—C9—C14—Cl2 −0.6 (9)

Hydrogen-bond geometry (Å, º) 

D—H···A D—H H···A D···A D—H···A

O1—H1O···N1 0.83 (6) 1.96 (6) 2.655 (8) 141 (7)


