Farah Natasha Haezam, Normah Awang, Nurul Farahana Kamaludin and Edward R.T. Tiekink*

Crystal structure of dimethylbis (diisopropyldithiocarbamato- $\kappa^{2} S, S^{\prime}$)tin(IV), $\mathrm{C}_{16} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{~S}_{4} \mathrm{Sn}$

https://doi.org/10.1515/ncrs-2019-0894
Received December 6, 2019; accepted January 9, 2020; available online February 12, 2020

Abstract

$\mathrm{C}_{16} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{~S}_{4} \mathrm{Sn}$, monoclinic, $P 2_{1} / n$ (no. 14), $a=10.6234(1) \AA$, $b=16.0898(1) \AA, \quad c=13.2405(1) \AA, \quad \beta=92.853(1)^{\circ}$, $V=2260.37(3) \AA^{3}, Z=4, R_{\mathrm{gt}}(F)=0.0197, w R_{\mathrm{ref}}\left(F^{2}\right)=0.0513$, $T=100(2) \mathrm{K}$.

CCDC no.: 1976369

The molecular structure of the title complex is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Source of material

Diisopropylamine (Sigma-Aldrich; $1.41 \mathrm{~mL}, 10 \mathrm{mmol}$) dissolved in ethanol (30 mL) was stirred under ice-bath conditions at 277 K for $20 \mathrm{mins} .25 \%$ Ammonia solution (1 to 2 mL) was added to provide basic conditions. Then, a cold ethanolic solution of carbon disulfide ($0.60 \mathrm{~mL}, 10 \mathrm{mmol}$) was added dropwise into the solution followed by stirring for about 2 h .

[^0]Table 1: Data collection and handling.

Crystal:	Colourless prism
Size:	$0.08 \times 0.06 \times 0.05 \mathrm{~mm}$
Wavelength:	Cu $K \alpha$ radiation $(1.54184 \AA$ A)
$\mu:$	$12.4 \mathrm{~mm}^{-1}$
Diffractometer, scan mode:	XtaLAB Synergy, omega scans
$\theta_{\text {max }}$, completeness:	$67.1^{\circ},>99 \%$
$N(h k)_{\text {measured }}, N(h k)_{\text {unique }}, R_{\text {int }}:$	$27623,4029,0.032$
Criterion for $I_{\text {obs }}, N\left(h k l_{\text {gt }}:\right.$	$I_{\text {obs }}>2 \sigma\left(I_{\text {obs }}\right), 3894$
$N(\text { param })_{\text {refined }}:$	218
Programs:	CrysAlis
	WinGX/ORTEP [1], SHELX [2, 3],

Table 2: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2}).

Atom	\boldsymbol{x}	y	z	$\boldsymbol{U}_{\text {iso }}{ }^{*} / \boldsymbol{U}_{\text {eq }}$
Sn	0.50287(2)	0.62722(2)	0.84311(2)	0.01258(6)
S1	$0.51424(6)$	0.74660(3)	$0.72015(4)$	0.01577(12)
S2	$0.50813(6)$	$0.79508(4)$	$0.93499(4)$	0.01930(13)
S3	$0.49526(6)$	0.53913(3)	$0.68433(4)$	0.01630(12)
S4	0.49068(6)	0.45101(3)	0.87891(4)	0.01690(12)
N1	0.51494(19)	0.90498(12)	0.78342(14)	$0.0154(4)$
N2	0.48543(19)	$0.37369(12)$	0.69808(15)	0.0162(4)
C1	0.5128(2)	0.82518(15)	0.81205(18)	0.0160(5)
C2	0.5285(2)	$0.93465(15)$	0.67749(18)	0.0191(5)
H2	0.533234	0.996607	0.682296	0.023*
C3	0.4124(3)	$0.91647(17)$	0.60777(19)	0.0234(5)
H3A	0.405870	0.856470	0.595912	0.035*
H3B	0.420499	0.945198	0.543150	0.035*
H3C	0.336582	0.936108	0.639622	0.035*
C4	0.6514(3)	$0.90782(17)$	0.6329(2)	0.0252(6)
H4A	0.721797	0.919507	0.681479	0.038*
H4B	0.663121	0.938572	0.570227	0.038*
H4C	0.648295	0.848108	0.618448	0.038*
C5	0.5101(2)	$0.97241(15)$	0.86025(18)	0.0180(5)
H5	0.496181	0.945145	0.926646	0.022*
C6	0.3992(3)	1.03040(17)	0.8380(2)	$0.0253(6)$
H6A	0.412952	1.061924	0.776192	0.038*
H6B	0.391548	1.068952	0.894676	0.038*
H6C	0.321651	0.997711	0.828822	0.038*
C7	0.6358(3)	$1.01753(17)$	0.8713(2)	0.0269(6)
H7A	0.702545	0.977675	0.890393	0.040*
H7B	0.631656	1.060250	0.923791	0.040*

〇 Open Access. © 2020 Farah Natasha Haezam et al., published by De Gruyter. 4.0 Public License.

Table 2 (continued)

Atom	\boldsymbol{x}	\boldsymbol{y}	\boldsymbol{z}	$\boldsymbol{U}_{\text {iso }}{ }^{*} / \boldsymbol{U}_{\text {eq }}$
H7C	0.654105	1.043735	0.806864	0.040^{*}
C8	$0.4898(2)$	$0.44446(14)$	$0.75033(18)$	$0.0148(5)$
C9	$0.4896(2)$	$0.37275(15)$	$0.58505(17)$	$0.0177(5)$
H9	0.504156	0.431311	0.563170	0.021^{*}
C10	$0.3639(3)$	$0.34570(19)$	$0.53632(19)$	$0.0265(6)$
H10A	0.348915	0.287134	0.552164	0.040^{*}
H10B	0.365175	0.352691	0.462855	0.040^{*}
H10C	0.296341	0.379797	0.562483	0.040^{*}
C11	$0.6002(3)$	$0.32151(18)$	$0.55112(19)$	$0.0260(6)$
H11A	0.677215	0.338464	0.589458	0.039^{*}
H11B	0.610504	0.330587	0.478816	0.039^{*}
H11C	0.584061	0.262461	0.563235	0.039^{*}
C12	$0.4702(2)$	$0.28983(15)$	$0.74482(18)$	$0.0180(5)$
H12	0.462363	0.249980	0.686887	0.022^{*}
C13	$0.5866(3)$	$0.26226(16)$	$0.8078(2)$	$0.0238(6)$
H13A	0.661127	0.267494	0.767612	0.036^{*}
H13B	0.576611	0.204189	0.828298	0.036^{*}
H13C	0.596839	0.297359	0.868183	0.036^{*}
C14	$0.3481(2)$	$0.28128(16)$	$0.79964(19)$	$0.0224(5)$
H14A	0.354796	0.312831	0.862990	0.034^{*}
H14B	0.333096	0.222536	0.814516	0.034^{*}
H14C	0.277781	0.302956	0.756686	0.034^{*}
C15	$0.6918(2)$	$0.61925(16)$	$0.90212(19)$	$0.0198(5)$
H15A	0.731758	0.674013	0.898833	0.030^{*}
H15B	0.738243	0.579404	0.862161	0.030^{*}
H15C	0.692668	0.600646	0.972629	0.030^{*}
C16	$0.3151(2)$	$0.62850(16)$	$0.89108(19)$	$0.0199(5)$
H16A	0.316147	0.624579	0.964976	0.030^{*}
H16B	0.268623	0.581157	0.861225	0.030^{*}
H16C	0.273732	0.680358	0.869161	0.030^{*}

After that, dimethyltin(IV) chloride (Merck; $2.20 \mathrm{~g}, 10 \mathrm{mmol}$) dissolved in ethanol ($20-30 \mathrm{~mL}$) was added dropwise into the aforementioned solution which was further stirred for about 2 h . Next, the white precipitate that formed was filtered, washed with cold ethanol a few times to remove the impurities. Finally, the precipitate was dried in a dessicator. The recrystallisation process was carried out by dissolving the compound in a chloroform and ethanol mixture ($1: 1 \mathrm{v} / \mathrm{v}$). This solution was allowed to slowly evaporate at room temperature yielding colourless crystals of the title compound. Yield: 62\%. M.pt (Electrothermal digital melting point apparatus): 354.5-368.0 K. Elem. Anal. (Perkin-Elmer 2400 CHN Analyser): Calc. for $\mathrm{C}_{16} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{~S}_{4} \mathrm{Sn}$: C 38.35; H 6.78; N 5.59; S 25.59\%. Found: C 37.74; H 6.00; N 4.08; S 23.675. IR (Thermo Nicolet 6700 IR Spectrophotometer; $\mathrm{ATr} \mathrm{cm}^{-1}$): $2972 \mathrm{v}(\mathrm{C}-$ H), $1474 v(\mathrm{C}-\mathrm{N}), 1193 v(\mathrm{~N}-\mathrm{C}), 1037 \mathrm{v}(\mathrm{C}-\mathrm{S}), 582 v(\mathrm{Sn}-\mathrm{C})$. ${ }^{1} \mathrm{H}$ NMR (Bruker Ascend NMR 400 MHz Spectrophotometer; $\mathrm{CDCl}_{3} ; \mathrm{ppm}$ relative to $\left.\mathrm{Me}_{4} \mathrm{Si}\right): \delta 1.33\left(6 \mathrm{H}, \mathrm{Sn}-\mathrm{CH}_{3}\right) ; 1.46(24 \mathrm{H}$, $\left.\mathrm{NC}(\mathrm{H})-\mathrm{CH}_{3}\right) ; 5.46(4 \mathrm{H}, \mathrm{N}-\mathrm{CH}) .{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR (as for ${ }^{1} \mathrm{H}$ NMR):
$\delta 198.11\left(\mathrm{NCS}_{2}\right) ; 15.60\left(\mathrm{Sn}-\mathrm{CH}_{3}\right) ; 58.04(\mathrm{NCH}) ; 19.94\left(-\mathrm{CH}_{3}\right)$. ${ }^{119} \mathbf{S n}\left\{{ }^{1} \mathbf{H}\right\}$ NMR (as for ${ }^{1} \mathrm{H}$ NMR with ppm relative to $\mathrm{Me}_{4} \mathrm{Sn}$): -327.09.

Experimental details

The C-bound H atoms were geometrically placed (C-$\mathrm{H}=0.98-1.00 \AA$) and refined as riding with $U_{\text {iso }}(\mathrm{H})=1.2-$ $1.5 U_{\text {eq }}(C)$. Owing to poor agreement, two reflections, i.e. (-2 4 13) and (0 4 13), were omitted from the final cycles of refinement.

Comment

Recently [5], it was reported that approximately 10% of diorganotin bis(dithiocarbamate) compounds, i.e. molecules with the general formula $\mathrm{R}_{2} \mathrm{Sn}\left(\mathrm{S}_{2} \mathrm{CNR}^{\prime} \mathrm{R}^{\prime \prime}\right)_{2}$, feature $\mathrm{Sn} \cdots \mathrm{S}$ secondary bonding interactions [6, 7] in their crystals, a well-documented phenomenon in the structural chemistry of organotin dithiocarbamates [8]. As part of continuing structural studies in this area [5, 9-11], the title compound, $\mathrm{Me}_{2} \mathrm{Sn}\left[\mathrm{S}_{2} \mathrm{CN}(\mathrm{iPr})_{2}\right]_{2}$, was characterised spectroscopically, crystallographically as well as by an analysis of the calculated Hirshfeld surfaces.

The molecular structure of the title compound is shown in the figure (70% displacement ellipsoids). The tin atom is coordinated in an asymmetric mode by two dithiocarbamate ligands [$\mathrm{Sn}-\mathrm{S} 1, \mathrm{~S} 2=2.5247(6)$ and $2.9616(7) \AA \AA ; \mathrm{Sn}-$ S3, S4 $=2.5334(6), 2.8786(6) \AA$ A $]$. The asymmetric coordination mode is reflected in the values of $\Delta(\mathrm{Sn}-\mathrm{S})=(\mathrm{Sn}-$ $\left.\mathrm{S}_{\text {long }}\right)-\left(\mathrm{Sn}-\mathrm{S}_{\text {short }}\right)=0.44$ and $0.35 \AA$ for the S1- and S3dithiocarbamate ligands, respectively, and results is significant disparity in the associated $\mathrm{C}-\mathrm{S}$ bond lengths [$\mathrm{C} 1-$ $\mathrm{S} 1, \mathrm{~S} 2=1.755(2)$ and $1.701(2) \AA$; $\mathrm{C} 8-\mathrm{S} 3, \mathrm{~S} 4=1.758$ (2) and $1.705(2) \AA$] with the longer $\mathrm{C}-\mathrm{S}$ bonds being associated with the shorter $\mathrm{Sn}-\mathrm{S}$ bonds. The two tin-bound methyl substituents are orientated to lie over the weaker $\mathrm{Sn}-\mathrm{S}$ bonds; the C15-Sn-C16 angle is $140.9(1)^{\circ}$. Overall, the coordination geometry is based on a skew-trapezoidal bipyramidal geometry, as is usually, but not always, found for $\mathrm{R}_{2} \mathrm{Sn}\left(\mathrm{S}_{2} \mathrm{CNR}^{\prime} \mathrm{R}^{\prime \prime}\right)_{2}$ molecules [8].

The crystal of the title compound is largely devoid of directional interactions [12]. Centrosymmetrically related molecules are connected by a weak $\mathrm{Sn} \cdots \mathrm{S}$ secondary bond with $\mathrm{Sn} \cdots \mathrm{S} 4^{\mathrm{i}}=3.8873(6) \AA$, a distance which is marginally less than the sum of the respective van der Waals radii of $3.97 \AA$ [12]; symmetry operation (i): $1-x, 1-y, 2-z$. This brings into close proximity two S 4 atoms, being separated by $3.5698(7) \AA$, compared with the sum of the van der Waals radii of 3.60 Å.

In order to evaluate the molecular packing in more detail, the Hirshfeld surfaces were calculated along with the full and delineated two-dimensional fingerprint plots [13, 14].

Contacts involving hydrogen atoms contribute 99.6% of all surface contacts, with $\mathrm{H} \cdots \mathrm{H}$ contacts being by far the most dominant at 80.1%. The only other significant contacts to the surface are provided by $\mathrm{S} \cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{S}$ contacts at 17.2%; $\mathrm{C} \cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{C}$ contacts amount to 2.3%. While $\mathrm{S} \cdots \mathrm{S}$ contacts contribute 0.4% to the calculated Hirshfeld surface, no surface contacts are ascribed to $\mathrm{Sn} \cdots \mathrm{S} / \mathrm{S} \cdots \mathrm{Sn}$ interactions although the appearance of red colouration about the tin and sulphur atoms, indicative of contacts less than the sum of the van der Waals radii, were the only features evident on the Hirshfeld surface mapped over $d_{\text {norm }}$.

Acknowledgements: The authors gratefully acknowledge the Faculty of Health Sciences and Faculty of Science and Technology of Universiti Kebangsaan Malaysia for providing essential laboratory facilities and for the technical support of the laboratory assistants. The Universiti Malaysia Terengganu is thanked for the elemental analysis. This work was supported by the Fundamental Research Grant Scheme (FRGS/ 1/2018/STG01/UKM/02/20) awarded by the Ministry of Education (MOE) and by Sunway University Sdn Bhd (STR-RCTR-RCCM-001-2019).

References

1. Rigaku Oxford Diffraction: CrysAlis ${ }^{\text {PRO }}$. Rigaku Corporation, Oxford, UK (2018).
2. Sheldrick, G. M.: A short history of SHELX. Acta Crystallogr. A64 (2008) 112-122.
3. Sheldrick, G. M.: Crystal structure refinement with SHELXL. Acta Crystallogr. C71 (2015) 3-8.
4. Farrugia, L. J.: WinGX and ORTEP for Windows: an update. J. Appl. Crystallogr. 45 (2012) 849-854.
5. Zaldi, N. B.; Hussen, R. S. D.; Lee, S. M.; Halcovitch, N. R.; Jotani, M. M.; Tiekink, E. R. T.: Secondary bonding in dimethylbis(morpholine-4-carbodithioato- $\mathrm{K}^{2} S, S^{\prime}$)tin(IV): crystal structure and Hirshfeld surface analysis. Acta Crystallogr. E73 (2017) 842-848.
6. Alcock, N. W.: Secondary bonding to nonmetallic elements. Adv. Inorg. Chem. Radiochem. 15 (1972) 1-58.
7. Tiekink, E. R. T.: Supramolecular assembly based on "emerging" intermolecular interactions of particular interest to coordination chemists. Coord. Chem. Rev. 345 (2017) 209-228.
8. Tiekink, E. R. T.: Tin dithiocarbamates: applications and structures. Appl. Organomet. Chem. 22 (2008) 533-550.
9. Mohamad, R.; Awang, N.; Kamaludin, N. F.; Jotani, M. M.; Tiekink, E. R. T.: Di-n-butyl-bis[N-(2-methoxyethyl)- N methyldithiocarbamato $\left.-\kappa^{2} S, S^{\prime}\right]$ tin(IV): crystal structure and Hirshfeld surface analysis. Acta Crystallogr. E73 (2017) 260-265.
10. Mohamad, R.; Awang, N.; Kamaludin, N. F.; Jotani, M. M.; Tiekink, E. R. T.: Crystal structures and Hirshfeld surface analyses of bis[N, N-bis(2-methoxyethyl)dithiocarbamato$\mathrm{K}^{2} S, S^{\prime}$]di-n-butyltin(IV) and [N-(2-methoxyethyl)- N -methyldithiocarbamato- $\kappa^{2} S, S^{\prime}$]triphenyltin(IV). Acta Crystallogr. E74 (2018) 302-308.
11. Lo, K. M.; Lee, S. M.; Tiekink, E. R. T.: Crystal structure of chlorido-dimethyl-(phenylpiperazine-1-carbodithioato- ${ }^{2} S$, S^{\prime})tin(IV), $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{ClN}_{2} \mathrm{~S}_{2} \mathrm{Sn}$. Z. Kristallogr. NCS 234 (2019) 1309-1311.
12. Spek, A. L.: Structure validation in chemical crystallography. Acta Crystallogr. D65 (2009) 148-155.
13. Turner, M. J.; Mckinnon, J. J.; Wolff, S. K.; Grimwood, D. J.; Spackman, P. R.; Jayatilaka, D.; Spackman, M. A.: Crystal Explorer v17. The University of Western Australia, Australia (2017).
14. Tan, S. L.; Jotani, M. M.; Tiekink, E. R. T.: Utilizing Hirshfeld surface calculations, non-covalent interaction (NCI) plots and the calculation of interaction energies in the analysis of molecular packing. Acta Crystallogr. E75 (2019) 308-318.

[^0]: *Corresponding author: Edward R.T. Tiekink, Research Centre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia, e-mail: edwardt@sunway.edu.my. https://orcid.org/0000-0003-1401-1520
 Farah Natasha Haezam, Normah Awang and Nurul Farahana
 Kamaludin: Environmental Health and Industrial Safety Programme, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia

