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1 Introduction

The observed accelerated expansion of the Universe is consistent with a de Sitter (dS) phase,

on the assumption of approximate homogeneity and isotropy. This fact is in tension with

string/M-theory because the low energy effective supergravity theories in 10/11 dimensions

do not admit time-independent compactifications to de Sitter space. In most cases this

follows from a simple no-go theorem (originally due to Gibbons [1, 2] and rediscovered in

a String/M-theory context by Maldacena and Nuñez [3]) that rules out this possibility for

a stress tensor satisfying the Strong Energy Condition (SEC).

Some types of singularity are innocuous in String Theory and it may be that allowance

for them also allows compactifications to de Sitter space (which we abbreviate to “dS

compactifications”). Proposals along these lines have been made, notably [4], but no

consensus on their validity has yet been reached, and there is some recent contrary evidence

that consigns dS compactifications to a cosmological “swampland” [5].

Another way that the Gibbons-Maldacena-Nuñez (GMN) no-go theorem might be

circumvented is to allow for time-dependence of the compact space metric. In this case

there is an ambiguity in the metric on the lower-dimensional spacetime, with different

choices related by a field redefinition involving time-dependent scalar fields. This ambiguity

is resolved by a choice of “conformal frame”, and the “Einstein frame” (which results in

the absence of any time-dependent function of scalar fields multiplying the Ricci scalar in

the lower-dimensional Einstein-Hilbert integrand) is the standard choice.

As we emphasised in a previous work [6], the Einstein-frame condition involves an

integration over the compact space but implementation of it has always (to our knowledge)

involved a restriction on the integrand that is sufficient but not necessary. If the Einstein-

frame condition is implemented in this “unaveraged” way then it is possible to prove that

the SEC rules out even time-dependent (non-singular) dS compactifications but this result

does not apply more generally, as we show here by means of an explicit 5D example with

a compact space that is topologically a circle. The Einstein-frame condition is satisfied in

this example, but not in its “unaveraged” form.
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This counter-example to the would-be theorem that non-singular dS compactifications

are forbidden by the higher-dimensional SEC is, however, non-physical: the 5D stress tensor

does not satisfy the Dominant Energy condition (DEC), which is required by causality. This

suggests that time-dependent non-singular dS compactifications may be ruled out by the

SEC and DEC combined. In fact, our main result is that the DEC alone is sufficient for

this purpose if the compact space metric is strictly time-dependent, because it then implies

a singularity of the higher-dimensional metric.

If this new no-go theorem is combined with the GMN no-go theorem then we almost

have a proof that non-singular dS compactifications are excluded by the SEC and DEC

combined. However, the general ansatz for a time-dependent dS compactification involves

not only a metric on the compact space but also a “warp factor”, and it may be that

this is time-dependent even if the compact space metric is not. In this case, which has

never previously been considered, we show that the DEC implies an evolution towards a

discontinuous warp factor. The corresponding singular D-metric might be reached only

asymptotically, but we still expect conditions required for the low-energy validity of Ein-

stein’s field equations to be violated at some finite time.

2 Warped cosmological compactifications

It is useful to consider the issues involved in the larger context of time-dependent compact-

ifications from D dimensions to a general homogeneous and isotropic (FLRW) spacetime

of dimension d < D, for which the standard form of the metric is

ds2FLRW ≡ gµνdxµdxν = −dt2 + S2(t) ḡijdx
idxj , (2.1)

where S(t) is the scale factor as a function of FLRW time, and ḡij is the metric in local

coordinates {xi; i = 1, · · · , d− 1} for a maximally-symmetric (d− 1)-space with constant

curvature k. There is a time-slicing of the dS universe for which the metric takes this

FLRW form for any value of k. For k = 0, for example, we have

S = eHt (k = 0) (2.2)

for constant H. The FLRW metric is a solution of the d-dimensional Einstein equations for

a perfect-fluid source, specified by an energy density and pressure. For a linear equation

of state, the pressure to energy density ratio is a constant w, and in this context the SEC

(in d dimensions) is equivalent to w ≤ −1 + 2/(d − 1) and the DEC (in d dimensions) is

equivalent to |w| ≤ 1. The w = −1 case corresponds to the dS universe. The w > −1

cases correspond to FLRW universes with S ∼ tη, for some constant η, and η ≤ 1 if the

(d-dimensional) SEC is satisfied.

Our starting point will be a D-dimensional manifold that is topologically a product

of this FLRW spacetime with a compact n-dimensional manifold B (so D = d + n) and,

following [6], we consider a general D-metric of the form

ds2D = Ω2(y; t)ds2FLRW + hαβ(y; t)dyαdyβ , (2.3)
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where hαβ is the metric on B in local coordinates {yα;α = 1, . . . , n}, and Ω is a nowhere-

zero ‘warp factor’: a scalar function on B. The condition for ds2FLRW to be an Einstein

frame metric for the effective d-dimensional gravity theory is [6]∫
B
dny
√

dethΩd−2 = GD/Gd , (2.4)

where the constant on the right-hand side is the ratio of the Newton constants in the higher

and lower spacetime dimensions.

Taking a time derivative of the Einstein-frame condition we deduce that

0 =

∫
B
dny
√

dethΩd−2X ≡ 〈X〉 (2.5)

where

X =
1

2
tr
(
h−1ḣ

)
+ (d− 2)

(
Ω̇/Ω

)
. (2.6)

Following [6], we shall refer to 〈X〉 = 0 as the “first-order Einstein-frame condition”.

Obviously, X ≡ 0 is not required for 〈X〉 = 0, but it does suffice.

We are interested in D-metrics of the above type that satisfy the Einstein field equa-

tions; for an appropriate choice of units these equations are

GMN = TMN (M,N = 0, 1, . . . , D − 1) . (2.7)

We do not need to solve these equations. Instead, we compute the Einstein tensor on the

left hand side directly from the metric of (2.3). We then identify this with the stress tensor,

which is therefore expressed in terms of the scale factor S(t), the warp factor Ω(t,y) and

the compact-space metric hαβ(t,y). By construction, this stress tensor supports the given

D-dimensional spacetime; for a specific D-metric it is a specific function of time and the

coordinates of B. One could ask what specific form of matter has this stress tensor, but an

answer to this question is not required for a determination of whether appropriate energy

conditions are satisfied.

We first focus on the SEC. This is a condition on the stress tensor that, given the

Einstein equations (2.7), is equivalent to positivity of the time-time component of the

D-dimensional Ricci tensor RMN . A computation yields

R00 = −(d− 1)
[
(S̈/S) + (Ω̈/Ω)− (Ω̇/Ω)2 + (Ω̇/Ω)(Ṡ/S)

]
− 1

2
tr
(
h−1ḧ

)
+

1

2
(Ω̇/Ω)tr

(
h−1ḣ

)
+

1

4
tr
(
h−1ḣ

)2
+ (d− 1)|∇Ω|2 + Ω∇2Ω , (2.8)

where ∇ represents the covariant derivative in the internal B space with metric hαβ . It

is implicit here that ∇Ω and ∇2Ω are defined. More, generally, we will assume that all

components of the D-metric are continuous and at least twice differentiable, with respect

to both time and local coordinates for the compact space B. Also, as is customarily

understood in this context, we assume that B has no boundary.

Consider the case of a time-independent metric on B; i.e. ḣαβ ≡ 0. In principle the

warp factor Ω2 could still be time-dependent, and we shall investigate this possibility later,
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but it is excluded if the first-order Einstein-frame condition (2.5) is implemented in an

“unaveraged” way by setting X ≡ 0. It is also excluded by the restriction to “time-

independent compactifcations”. In this case, R00 ≥ 0 is equivalent to

d(d− 1)
(√

dethΩd−2
)
S̈/S ≤

√
deth∇2Ωd , (2.9)

and integration over B yields S̈ ≤ 0, which excludes accelerated expansion, and hence a

dS universe. This is essentially the GMN theorem.

3 A time-dependent de Sitter compactification

We shall now show, by example, that the D-dimensional SEC does not forbid time-

dependent non-singular dS compactifications. We start from a 5D metric of the form

ds25 = Ω2(t+ y)ds2dS + ϕ2(t+ y)dy2 (y ∼ y + 2πL) . (3.1)

The compact space has the topology of a circle, and Ω and ϕ are non-zero periodic functions

of t+ y. A calculation, using the flat-slicing of dS with k = 0, shows that

R00 = −3H2 − (ϕ̈/ϕ) + (ϕ̇/ϕ)(Ω̇/Ω)− 3(Ω̈/Ω) + 3(Ω̇/Ω)2 +H(Ω̇/Ω)

+ (Ω/ϕ)2
[
(Ω̈/Ω)− (ϕ̇/ϕ)(Ω̇/Ω) + (Ω̇/Ω)2

]
. (3.2)

The Einstein-frame condition is∫ 2πL

0
dy ϕ(t+ y)Ω2(t+ y) = G5/G4 , (3.3)

but this fixes only the scale of the product function ϕΩ2 because the left hand side is

time-independent as a consequence of periodicity. As explained earlier the Einstein-frame

condition implies its “first-order” variant 〈X〉 = 0, even though X 6≡ 0 in this example.

Let us choose

Ω = 2A {1 + a sin [(t+ y)/L]} , ϕ = A {1 + 2a sin [(t+ y)/L]} , (3.4)

where the dimensionless constant A is chosen to satisfy (3.3). The dimensionless constant

a must satisfy 2|a| < 1 to ensure that Ω and ϕ have no zeros. For a = 0 we have

R00 = −3H2 < 0, so the SEC is violated. Otherwise, R00 is periodic in t+ y and hence an

oscillating function of y for given t. The SEC will be satisfied if this function is positive

over one period of its argument and it is possible to choose a and LH such that this is the

case. An example is a = 1/5 and LH = 0.1, for which R00 is plotted in figure 1, in units

for which L = 1; we find that R00 remains positive for 0 < LH < 0.24. Similar examples

can be found for toroidal compactification from any dimension D > 4.

To summarise: the SEC does not forbid time-dependent compactification to de Sitter

space. However, as will be shown below, the 5D stress tensor that supports this SEC-

compliant solution of the 5D Einstein equations does not satisfy the DEC.
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Figure 1. R00 of (3.2) as periodic function of y with period 2π; computed for L = 1 from (3.4)

with a = 0.2 and H = 0.1.

4 The DEC and a no-go theorem

According to (2.7), the d× d block of the Einstein tensor GMN can be identified with the

Tµν components (µ, ν = 0, 1, . . . , d−1) of the D-dimensional stress tensor. The result takes

the ideal fluid form expected from the FLRW isometries:

T00 = −ρg00 , Tij = Pgij , i, j = 1, . . . d− 1 . (4.1)

It should be appreciated here that that the density ρ and pressure P are functions on the D-

dimensional spacetime (in contrast to the energy density and pressure in the d-dimensional

FLRW spacetime, which are functions only of time). The DEC requires ρ to be greater

than, or equal to, the absolute value of every other component of the (D-dimensional)

stress tensor. In particular, it requires ρ ≥ |P |, which is equivalent to ρ± P ≥ 0 for both

choices of sign. These combinations are

ρ− P = (d− 2)(S̈/S) + (d− 2)2(Ṡ/S)2 + (2d− 3)(Ṡ/S)X + Ẋ +X2

− (d− 1)
[
2Ω∇2Ω + (d− 2)|∇Ω|2

]
+R(h) + (d− 2)2(k/S2) ,

ρ+ P = −(d− 2)(S̈/S) + (d− 2)(Ṡ/S)2 + (Ṡ/S)X − Ẋ +
1

(d− 2)
X2

− 1

4(d− 2)

[
tr
(
h−1ḣ

)]2
− 1

4
tr
(
h−1ḣ

)2
+ (d− 2)

k

S2
, (4.2)

where R(h) is the Ricci scalar for the compact space metric, and X was defined in (2.6).

Although X has zero average over B (with weighting by
√

dethΩd−2) this is not generally

true of Ẋ since

〈Ẋ〉 = −〈X2〉 . (4.3)
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Notice that ρ + P has no term involving either ∇Ω or R(h)! In the dS case, for the

flat-slicing choice (2.2), the DEC inequality ρ+ P ≥ 0 is1

− Ẋ +HX +
1

(d− 2)
X2 ≥ 1

4(d− 2)

[
tr
(
h−1ḣ

)]2
+

1

4
tr

[(
h−1ḣ

)2]
. (4.4)

As we are concerned with expanding universes, we may assume here that H > 0. The

left-hand side is zero if X ≡ 0, which is a consequence of an “unaveraged” implementa-

tion of the Einstein-frame condition; in this case the inequality can only be satisfied if

the compact space metric is time-independent. But then we have a time-independent dS

compactification, which violates the SEC.

The fact that 〈X〉 = 0 tells us that X will take both positive and negative values on

B when X 6≡ 0. Let us consider the implications of this for our dS compactification of

the previous section, for which X and Ẋ are non-zero periodic functions. In one period X

will have at least two zeros (exactly two in our example) and if Ẋ is negative at one zero

then it must be positive at some other zero of X. It follows that there is a point on B (a

circle in our example) for which X = 0 and Ẋ > 0; but the left-hand side of (4.4) is then

negative, which violates the inequality. The stress tensor implicit in our example therefore

violates the DEC.

In general, at any given time t0, there will be a region of B in which X > 0, call it B+,

and a region in which X < 0, call it B−. There will also be points, and possibly a region,

where X = 0; call this set B0. This gives us a partition of B into a union of disjoint sets:

B = B− ∪B0 ∪B+ , (4.5)

where B± are empty sets only when X ≡ 0. This partition will, in general, be time-

dependent.

Let us now suppose that the compact space metric is strictly time-dependent. In this

case the DEC inequality implies the strict inequality

− (d− 2)Ẋ + (d− 2)HX +X2 > 0 . (4.6)

Of course, it could happen that the time-dependent compact space metric evolves to one

that is time-independent, such that this strict inequality is replaced by one that allows

equality, but we will deal with this possibility below. For now we assume that the strict

inequality holds after any sufficiently large time T . In then follows that Ẋ < 0 on B0 for

t > T . This implies that all points in B0 at any given time t = t0 > T will be in B− at

t = t0 + dt. However, by continuity, we will also have Ẋ < 0 in some neighbourhood of

every boundary point of B0. Points in such a neighbourhood that are not in B0 will be

in B− or B+, and those in B− will remain in B−, but those in B+ that are sufficiently

close to the boundary with B0 will move into B0 ∪ B−. Since this is true for all t0 > T ,

there will be a flow of points from B+ to B0 ∪B−, leading to a monotonic decrease in the

volume of B+. Recalling that the average of X on B is zero, we see that a delta-function

1The k 6= 0 time-slicings of dS, which require a different scale function S(t), yield the same result but

with H replaced by either H tanhHt or H cothHt, which has no effect on the arguments to follow.
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type singularity of X must form if the volume of B+ shrinks to zero, which is inevitable

unless Ẋ → 0 on B0, and this can happen only if ḣ→ 0 too.

If ḣ → 0 then we have two cases to consider: either the D-metric evolves to one for

which X ≡ 0 (which requires Ω̇→ 0) or it evolves to one for which X 6≡ 0. The former pos-

sibility presumes a time-evolution towards a time-independent dS compactification, which

is ruled out by the SEC. This conclusion is immediate if the time-independent dS compact-

ification is reached at finite time, but continuity implies that it is still true if we suppose

that it is reached only asymptotically as t→∞.

This leaves only the possibility that the D-metric is, or evolves to, one for which the

compact space metric is time-independent but the warp factor is still time-dependent, in

which case X = (d− 2)Ω̇/Ω. The DEC inequality (4.4) is now

− (d− 2)Ẋ + (d− 2)HX +X2 ≥ 0 . (4.7)

On B0 this implies that Ẋ ≤ 0. Unless this inequality is saturated, there will again be a

monotonic decrease in the volume of B+ but now we may suppose, without violating the

inequality, that the D-metric evolves to one for which B+ has some non-zero volume and

Ẋ = 0 on B0, from which time onwards the partition (4.5) is time-independent.

In the context of this time-independent partition of B, consider points in B− in the

vicinity of B0, where X = −ε for small positive ε. In this case (4.7) becomes

− Ẋ −Hε+O(ε2) ≥ 0 , (4.8)

which implies that Ẋ < 0 in this region for t > t0. This implies in turn that the distance

between the surface X = −ε and the B0/B− boundary, where X = 0, must shrink to zero,

at least asymptotically, leading to a discontinuity of X. This discontinuity must either be

reached in finite time, implying a singular D-metric, or asymptotically as t → ∞. In the

latter case the D-metric itself is not singular, but its singular limit implies a breakdown

of the approximation implicit in our use of the D-dimensional Einstein field equations to

discuss cosmological compactifications.

5 Summary and discussion

Gravity is an attractive force only for matter satisfying the SEC, but this is not a funda-

mental physical requirement. A more important condition physically, for various reasons,

is the DEC. The dark energy generally presumed to be the cause of the observed dS-like

accelerated expansion of the universe is the form of “matter” that maximally violates the

SEC while still satisfying the DEC. However, effective supergravity theories for String/M-

Theory in dimensions D = 10, 11 have stress tensors that satisfy the SEC, and this presents

obstacles to the idea that a 4-dimensional dS universe could arise from compactification.

One such obstacle is the GMN no-go theorem for time-independent dS compactifications.

One might suppose, for any non-singular cosmological compactification, that the SEC

is necessarily satisfied in the lower dimension if it is satisfied in the higher dimension. If this

were true it would imply that compactification to a generic FLRW spacetime is possible only
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if its expansion is non-accelerating. However, transient acceleration is typical, for reasons

reviewed in [7], where it was conjectured that late-time acceleration might still be excluded.

This conjecture was proved by Teo for vacuum solutions2 of the higher-dimensional Einstein

equations [8], but we recently exhibited counterexamples for a non-zero stress tensor sat-

isfying both the SEC and the DEC in the higher dimension [6]. Specifically, we considered

compactifications to power-law FLRW universes, for which the expansion is driven by per-

fect fluid matter with a linear equation of state, and we showed that the higher-dimensional

SEC imposes a lower bound on the pressure to energy density ratio w; for a 4-dimensional

universe this bound is w > −1/2, so the expansion is accelerating for w ∈ (−1/2,−1/3).

The SEC bound w > −1/2 was derived in [6] in the context of generic time-dependent

compactifications to FLRW universes in Einstein conformal frame, but with this Einstein-

frame condition imposed in the “unaveraged” way that has hitherto been standard. How-

ever, this implementation of the Einstein-frame condition is unnecessarily restrictive, and

we have explored here some additional possibilities that arise when this restriction is re-

laxed. An obvious question is whether there are additional possibilities with w < −1/2.

We have not attempted to fully answer this question but we have shown that even dS

compactifications, for which w = −1, are not excluded by the SEC, although the DEC was

violated in our example.

Thus, the SEC is a remarkably weak condition on cosmological compactifications once

time-dependence is allowed. Equally remarkable is the power of the DEC in this context:

even though it is never violated in the lower dimension, it forces the higher-dimensional met-

ric to evolve towards a singularity. If we demand non-singularity then the combined SEC

and DEC in the higher-dimension prevent compactification to dS irrespective of whether

this compactification is time-independent or time dependent! This result cannot be derived

from either the SEC or the DEC alone: we have exhibited a dS compactification that is

compatible with the SEC but violates the DEC, and if we insist only on the DEC then it

is easy to find SEC-violating matter that will allow dS-compactification (an example is a

positive cosmological constant, which allows a toroidal dS compactification).

The modern understanding of Einstein’s gravitational field equations is that they arise

as an effective description, valid at sufficiently low energy, of some quantum gravity theory,

possibly String/M-theory. In this context, singularities indicate a breakdown of this low-

energy effective description. The GMN no-go theorem is therefore a statement about

limitations of the effective theory on the assumption that all matter satisfies the SEC:

no non-singular time-independent dS compactification metric will solve the Einstein field

equations. The no-go theorem proved here, based on the DEC, makes a subtly different

statement: any non-singular time-dependent dS compactification metric that solves the

Einstein field equations within some initial time period will have a singularity in its future.

The broad-brush implication of the DEC for time-dependent dS compactifications is

not that it is impossible but that it can only be properly considered in the context of some

ultra-violet completion of higher-dimensional General Relativity, such as String/M-theory.

2This restriction was not stated as a premise but is essential to the proof, as is an “unaveraged” imple-

mentation of the Einstein-frame condition.
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