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Abstract 

Porous nitride semiconductors are a fast-developing area of study, which open up a wide range of new 

properties and applications, including strain free optical reflectors, chemical sensors and as a pathway to device 

lift-off. This article reviews the current progress in porous nitrides formed through electrochemical and 

photoelectrochemical methods. Using a simple electrochemical cell, pores are formed by injecting holes into the 

surface layer in order to oxidise the material into a soluble form and releasing nitrogen gas. The process is 

controlled principally by the electric field that drives the injection of holes and hence the applied potential and 

doping density are the key parameters for controlling pore morphology, along with how and whether 

illumination is used. We describe the mechanisms responsible for this process in detail and outline the trends for 

changing pore size and pore shape. For example, larger applied potential creates a larger electric field and hence 

larger pores. These methods have been used to produce a wide variety of different structures. We present a 

layered porous structure created by the modulation of the applied potential. Alternatively, layered structures can 

be produced by growing alternate doped and non-intentionally doped layers. Electrochemical etching can then 

create pores only in the doped layers, as they are conductive. This process can be performed by etching laterally 

through access trenches that expose the doped material or through the etching of dislocations to create 

nanopipes that allow subsurface porosity to form. This process requires no prior processing steps. We combine 

this method with patterning of surface protective layers to influence where the resulting pores grow. Based on 

these various fabrication processes, significant progress has been made towards applications of porous GaN 

across optoelectronics, sensing and for improving material quality. 

Introduction 

Nitride semiconductors are one of the most important families of semiconductor, offering a material system 

whose bandgap spans the entire visible spectrum through alloys of InN, GaN and AlN. These materials have 

allowed the blossoming of efficient LED lighting [1] and are transforming high power transistors [2]. Porous 

nitride semiconductors represent a new development that broadens the potential applications for the nitrides to 

include sensors [3,4], catalysis [5,6], and hybrid materials [7], as well as providing routes to improve the 

efficiency of more conventional nitride devices [8–10], improve material quality [11,12] and to create novel 

structures, such as membranes [13,14]. Etching nitride semiconductors via traditional wet-etching methods is 

notoriously difficult due to their chemical stability [15], meaning that techniques for creating new nano- and 

micro-structures are fairly limited. Reactive ion etching (RIE) can be used for top down etching [16,17], and 

KOH based solutions can be used to selectively etch certain nitride layers over others to create an undercut [18]. 

By bringing electrochemical etching (ECE) techniques into play, however, there is a much wider array of 

possible morphologies that can be fabricated.  

Forming porous semiconductors via ECE is not new; the most widely studied porous semiconductor is porous 

Si, first fabricated in the 1950s [19]. It did not receive much interest, however until 1990 when Leigh Canham 

demonstrated luminescence from porous Si [20], which led to much excitement around the possibility of all Si 

photonic devices. Despite the excitement, commercial development of porous Si photonics has been prevented 

by the instability of the luminescence [21] and the material’s high resistivity [22,23] due to Si’s readiness to 

oxidise and high sensitivity to surface states. The opportunities arising from porous nitrides are not limited by 

these constraints, as they are highly inert and properties are much less affected by surface states. While there are 

many alternative ways to make porous nitrides [24–27], this review will focus on the large body of work using 

ECE and photo-electrochemical etching (PECE). This presents a versatile system, allowing the formation of a 

wide range of pore morphologies for surface and subsurface pores with wide applications to industrial 
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development. The review briefly describes the experimental set-up for forming pores in the nitrides using 

electrochemical methods. It then goes on to give a detailed analysis of the mechanisms responsible for pore 

formation and how these can be related to the observed pore morphology through the depletion model. The 

focus of this section is to give the reader an understanding of the mechanisms that drive the pore formation 

process and affect the resulting morphology, rather than to provide a comprehensive collection of experimental 

recipes. Next it describes the wide range of porous structures that have been demonstrated in the nitrides, 

including in nitrides other than GaN. Finally it describes the opportunities and challenges of the emerging 

applications. 

Methods and Mechanisms of Electrochemical Pore Formation 

Experimental Set-up 

ECE and PECE of GaN has been performed with wide ranging parameters to form porous structures with 

various morphologies. The basic set-up is the same for all of these and is shown in Figure 1. This consists of: 

• A nitride based sample to be porosified, connected as the anode; 

• An inert counter electrode, connected as the cathode, usually platinum; 

• An electrolyte, forming an ionic conduction path between the electrodes; 

• An applied potential between the anode and cathode from a voltage or current source; 

• In the case of photo-electrochemical etching (PECE) the sample is also illuminated, normally using 

a high energy UV lamp. 

Within this basic set-up there are wide choices to be made of growth structure, electrolyte, applied potential 

and illumination power and wavelength. There are also differences in the physical set-up, such as the inclusion 

of a known reference electrode (e.g. Ag/AgCl) or the use of a stirrer or pump to create electrolyte flow.  

 

 
Figure 1: A schematic illustration of the basic electrochemical set-up for forming porous GaN. 

The Electrochemical Process 

PECE of GaN was first used for electropolishing, i.e. removing material completely rather than just 

porosifying it [28]. In that work, the applied potential was very low and without illumination no etching was 

observed. This could be best described as electrically enhanced photochemical etching, as the reaction is driven 

by the incident light and the role of the potential is simply to remove the photo-generated carriers. The authors 

proposed a mechanism for the process based on prior work on GaAs that the photo-injected holes assist the 

oxidation of Ga. The oxidation of GaN is an electrochemical reaction, driven by holes and can be shown as [29]: 

2𝐺𝑎𝑁 +  6ℎ+  →  2𝐺𝑎3+ + 𝑁2      (1), 

The Ga3+ ions can then dissolve in the electrolyte. This is now generally accepted as the appropriate mechanism 

for electrochemical etching of nitrides in both ECE and PECE [30,31], although some work specifies that Ga2O3 

is formed, which can then be dissolved in the electrolyte [32]. This fits with the finding that when the same 

process is performed with pure water as the electrolyte, the surface is oxidised, but the oxide is not dissolved, so 

pores are not created [33]. 
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Equation 1 shows that the process is driven by free holes. In the case of PECE, the incident light creates 

electron-hole pairs and the photogenerated holes are swept to the nitride/electrolyte interface by the applied 

electric field, where they drive the etching reaction [34]. In ECE there are no photogenerated carriers, but holes 

can be created in an n-type semiconductor in two ways: Zener tunnelling or impact ionization. In Zener 

tunnelling the band bending resulting from the applied negative potential at the electrolyte interface is large 

enough that the valence band at the interface reaches a higher energy than the conduction band in the bulk. This 

allows electrons to tunnel from the interface valence band into the bulk conduction band, leaving behind a free 

hole. This is only possible with high doping, such that the space-charge region (SCR) is thin enough to allow 

tunnelling. Impact ionization occurs under an even larger electric field. In this case a highly energetic 

conduction band electron creates an electron hole pair by colliding with a valence band electron and losing its 

kinetic energy. This requires carriers to be accelerated by the electric field over a large enough distance to gain 

sufficient kinetic energy. Hence a large SCR is required, which occurs at low doping density. Assessment of the 

potentials and doping density at which pores are formed in GaN suggests that Zener tunnelling is most often the 

significant process [29,35], although avalanche breakdown could become significant at higher potentials and 

have an impact on the mechanism and morphology [36]. One model describing pore formation in III-V 

semiconductors more generally is the current burst model. In this situation avalanche breakdown occurs around 

some inhomogeneity and causes a large supply of holes that drives an oxidation reaction. The oxide that forms 

then quenches the reaction by reducing the electric field at that point. The oxide is steadily dissolved by a 

chemical process until it becomes thin enough for another burst to occur [37]. This leads to characteristic 

oscillations in the width of the pores. The current burst model has been presented in detail as one mechanism for 

pore formation in silicon [38] and the oscillations have been observed in the formation of surface pores in GaN 

[31]. The requirement of an electric field at the nitride/electrolyte interface means that both ECE and PECE are 

conductivity-selective etching methods. If the material is not conductive enough then there will not be an 

electric field at the interface, holes will not be injected into the surface and the material will not etch. This 

means that NID layers can be used as etch stops. This is shown in the cross-sectional SEM image of Figure 2. 

Layers of Si-doped and NID GaN are grown in an alternating structure and the edge is exposed by creating 

trenches, using inductively coupled plasma reactive-ion etching (ICP-RIE). Through ECE the Si-doped GaN is 

transformed to porous GaN, which creates a highly reflective distributed Bragg reflector (DBR). The NID 

material forms an effective etch stop, as the applied electric field between this material and the electrolyte is 

zero, so there is nothing to generate the free holes necessary to drive the oxidation reaction. Almost all reported 

porous nitride materials are n-type doped due to the requirement for reasonably high conductivity and the 

challenge of effective p-type nitride doping. Porosity has been created at the surface of p-type GaN using PECE 

[33,39], as well as a novel approach using alternating current [40]. This approach is a PECE based method in 

which the material is oxidised during the positive half cycle of the applied current, by the same chemical 

reaction given in Equation 1, while electrons are removed from the surface during the negative half cycle, in 

order to prevent the accumulation of surface electrons, which would tend to inhibit the etching process [41]. 

 

 
Figure 2: Cross-sectional SEM image of a GaN/porous GaN DBR. The porous layers are separated by solid GaN layers, which 

is the NID material. Reproduced with permission from [8]. Copyright 2015 American Chemical Society. 
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The Depletion Model of Pore Formation 

The doping density and the applied potential are the two most influential factors in controlling pore formation 

and their morphology, as these are the ways of changing the applied electric field. Figure 3 shows a phase 

diagram to illustrate this for the ECE of GaN [31]. When the applied potential and doping concentration are low 

there is no etching, as the electric field is not large enough to inject holes into the surface GaN to oxidise it. 

Increasing the potential and/or the doping concentration increases the electric field applied at the 

GaN/electrolyte interface. At some point, the electric field will be large enough to cause hole injection at certain 

“hotspots” and etching will begin to form pores. Increasing potential and/or doping density further allows the 

electric field to completely etch the doped layer to cause electropolishing. Within the central region of Figure 3 

where porous etching is achievable, there is a range of achievable morphologies. Pore size can be controlled by 

varying the applied potential for a given doping density or vice versa. At a high potential, near the 

electropolishing regime, pores are large, whereas at low potential, near the no etching regime, pores are small 

[35]. Figure 4 shows three cross-sectional SEM images, which illustrate the variation of pore morphology with 

potential and doping density for a doped GaN layer etched laterally in a nitric acid electrolyte. The leftmost 

SEM image shows pores formed close to the electropolishing regime with ND = 1 × 1020 cm−3 and a large 

potential (in this case 3 V. The topmost porous layer in the middle SEM image has the same ND, but a lower 

applied potential and this produces smaller, denser pores. The lower porous layer in this image has slightly 

smaller pores again, due to a lower doping density of ND = 7 × 1019 cm−3, while the porous layers in the 

rightmost image have even lower values (ND = 3 × 1019 cm−3 and ND = 1 × 1019 cm−3 for the top and bottom 

layers respectively) and is etched at the lowest potential. This leads to layers of sparse, small pores. 

 

 
Figure 3: Phase diagram showing how the dual factors of potential and doping density control the etching process, showing 
the no etching regime, where the electric field is too low (squares), the electropolishing regime where all doped material is 

removed (horizontal lines), and between these two the “nanoporous” regime, where pores are formed (circles). The red 
annotations are not referred to within this review article. Reprinted from [31], with the permission of AIP Publishing. 

 
Figure 4: Cross-sectional SEM images for three samples etched laterally in Nitric acid, showing pores close to the 

electropolishing regime (left) to close to the onset of etching (right). Left: ND = 1 × 1020 cm−3/undoped GaN alternating 
layers with a potential of around 3 V. Middle: ND = 1 × 1020 cm−3/undoped GaN/ND = 7 × 1019 cm−3 layers from top to 
bottom, with a potential of around 2 V. Right: ND = 3 × 1019 cm−3/undoped GaN/ND = 1 × 1019 cm−3 layers from top to 

bottom, with a potential of around 1 V. The red annotations are not referred to within this review article. Reprinted from 
[35]. 
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The morphology of pores formed under different etching conditions can be understood through a depletion 

model [31]. When a positive potential is applied to an n-doped planar nitride semiconductor relative to an 

electrolyte, the electric field will create band bending at the surface, causing a depletion region to grow and if 

the potential is large enough, forming an inversion layer. Injected holes can then drive the oxidation of GaN by 

the electrochemical process shown in equation 1, which removes material. For a planar surface, the size of the 

electric field at the nitride surface will be defined by the potential across the depletion region and its width: 

𝐸𝐷𝑒𝑝𝑙 =
𝑉𝐷𝑒𝑝𝑙

𝑊𝐷𝑒𝑝𝑙
      (2), 

where EDepl is the electric field across the depletion region, VDepl is the potential dropped across it and WDepl is 

the width of the depletion region. It is generally assumed that VDepl will be a significant proportion of the applied 

potential, as the depletion region is highly resistive compared to the bulk semiconductor and the electrolyte [42]. 

Some work has suggested that the voltage drop along a GaN electrode is significant, this will depend strongly on 

the particular doping density, layer thickness and sample length [43]. To derive WDepl we can use the derivation 

of the depletion width for a reverse biased p+n junction (see [44] or similar textbook), where we assume the 

space charge region in the electrolyte is negligible: 

𝑊𝐷𝑒𝑝𝑙 = √
2𝜖𝑟𝜖0𝑉𝐷𝑒𝑝𝑙

𝑞𝑁𝐷
     (3), 

where 𝜖𝑟 is the relative permittivity of the semiconductor, 𝜖0 is the permittivity of free space, q the fundamental 

charge of an electron and ND is the donor doping density of the semiconductor. Combining equations 2 and 3 

gives: 

𝐸𝐷𝑒𝑝𝑙 = √
𝑞

2𝜖𝑟𝜖0
√𝑉𝐷𝑒𝑝𝑙 𝑁𝐷    (4), 

Thus, EDepl and WDepl are both proportional to the root of VDepl, while EDepl is also proportional to the root of 

ND, but WDepl is proportional to the inverse of the root of ND. Following [35], we can define a critical electric 

field, ECrit above which material will be etched. Approximating the pores as circular in a 2D model, the 

thickness of the walls between pores, t, is then given by: 

𝑡 =
2𝜖𝑟𝜖0𝐸𝐶𝑟𝑖𝑡

𝑞𝑁𝐷
     (5), 

This indicates that the pore wall thickness is independent of voltage, but inversely proportional to ND. This 

would suggest that the pore walls become thicker with a large decrease in ND, as has been shown experimentally 

[31]. As ND decreases, a larger potential is required to achieve ECrit. Continuing with the 2D circular pore model 

from [35], the electric field at distance r from the pore centre is given by: 

𝐸(𝑟) =  
1

2𝜋𝑟𝜖𝑟𝜖0 
[𝑞𝑁𝐷𝜋(𝑟2 − 𝑟0

2) + 𝑄]    (6), 

where r0 is the internal radius of the pore and Q is the total charge in the anion layer. The point at which the pore 

stops growing in size will be when E(r0) = -ECrit. Using equation 6, this gives: 

−𝐸𝐶𝑟𝑖𝑡 =  
𝑄

2𝜋𝑟0𝜖𝑟𝜖0 
     (7), 

which can be rearranged as: 

𝑟0 =  
−𝑄

2𝜋𝜖𝑟𝜖0𝐸𝐶𝑟𝑖𝑡 
     (8), 

Q, the total charge in the anion layer, must balance the total charge in the depletion layer, which is given by: 

𝑄 = √2𝑞𝜖𝑟𝜖0𝑉𝐷𝑒𝑝𝑙 𝑁𝐷     (9), 

Therefore, for a given ND increasing the potential will increase pore size. At large ND, the threshold potentials 

required to create pores and to induce electropolishing are lower. This simple 2D analysis can therefore explain 

the observed morphology of pores. 

The growth direction of pores formed through anodic porosification can generally be described as either 

crystallographically or current-line orientated [37]. No influence of crystallography on the pore growth direction 

has yet been observed in porous GaN [29]. Comparisons of N-polar and Ga-polar material show no significant 

difference after PECE [45], while pores have been formed in c-plane grown GaN by etching in various 

crystallographic directions and no differences have been reported between them. What’s more, very similar 

structures have been achieved in both m-plane and a-plane grown GaN [9,46]. Instead, the pore direction can be 

characterised as following the flow of current and therefore perpendicular to equipotential surfaces [37]. This 

orientation is disrupted in the case of PECE, where the illumination creates extra holes and can change the 

morphology [34]. 
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Pore Formation and Interaction 

The data shown so far has been of pores formed laterally in doped GaN layers exposed to the electrolyte via 

scribed trenches. Pores can also be formed vertically in doped surface layers and this shows the same trend of 

decreasing pore wall thickness with increasing doping density, but shows decreasing pore size with increasing 

doping density. This has been shown by Chen et al. who found the pore wall thickness reduced from around 110 

nm to around 15 nm, while the pore diameter reduced from around 65 nm to around 10 nm observed for doping 

density varied from 31018 cm-3 to 1.21019 cm-3 [31]. This is due to the initiation of pores and the interaction 

between them. For a given potential the density of pore initiation points will be larger for a higher doping 

density, as this reduces WDepl and increases the electric field, allowing more points on the surface to reach the 

critical electric field. This is supported by the plan-view SEM images of Figure 5, where the density of pores 

increases with ND. This can also be seen in the cross-sectional SEM images of Figure 5b-d, but ND and the 

potential are changed simultaneously between these samples and as a higher potential increases the electric field 

too, this is less straightforward to interpret [29]. Around each pore there will exist a depletion region and as the 

pores grow the depletion regions of adjacent pores will meet, which reduces the electric field at the interface 

with the electrolyte [47]. A higher density of pores means that pores cannot grow as wide before they are 

inhibited by adjacent pores. This also affects the morphology of pores, which can range from highly branched 

(Figure 5a) to vertically aligned (Figure 5d), which is controlled by the relative lengths of the depletion region 

(WDepl) and the distance between adjacent pores (dpore). Where dpore > 2WDepl then the material between the pores 

can support a current, which allows the pores to grow wider and branches can split off into the space between 

pores. Where dpore < WDepl then the thin region of material between the pores is fully depleted, meaning that 

pores can only grow vertically and the pores are well-aligned [31]. Once initial etch pits have formed then both 

the density of etch pits and the curvature of the pit will have an influence on subsequent pore growth. At a 

curved surface with a radius of curvature, r ≪ WDepl then the electric field is enhanced and is given by [29]: 

𝐸𝐷𝑒𝑝𝑙 =
𝑉𝐷𝑒𝑝𝑙

𝑟⁄       (10), 

This acts to concentrate ECE at the pore tip, which is why pores can be formed, rather than etching away layers 

of material completely. 

 

 

 
Figure 5:  Cross-sectional and plan-view (inset) SEM images of porous GaN with varied ND, anodised in 25% HF at 20 V. (a) 
ND = 3 × 1018 cm−3, (b) ND = 5  × 1018 cm−3, (c) ND = 8 × 1018 cm−3, (d) ND = 1.2  × 1019 cm−3. Scale bars are 500 nm. Reprinted 

from [31], with the permission of AIP Publishing. 
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Influence of Electrolyte 

The electrolyte has two main roles that it must fulfil for ECE or PECE to occur. Firstly, it must provide a 

conductive path to complete the electrolytic circuit and allow an electric field at the nitride/electrolyte interface 

to provide the continuous supply of holes. Secondly, it must be able to prevent the formation of solid oxides 

forming and passivating the surface. In forming porous silicon by anodization, this requires HF based 

electrolytes, in order to dissolve SiO2 [20], but a wide variety of electrolytes have been used to create porous 

nitride structures via ECE or PECE including both acids, such as sulphuric acid [29], HF [31] and oxalic acid 

[48] as well as bases, such as NaOH [32] and KOH [49]. The pH of the electrolyte has been suggested to 

influence the resulting pore morphology in PECE due to the relative negative charge of some dislocation centres 

[50]. This changes the rates of gallium oxide etching by H+ ions and OH- ions, with acidic electrolytes 

preferentially targeting dislocations and basic ones targeting the more positive regions away from dislocations, 

leaving dislocations un-etched. The pH can also have an influence when etching binary alloys, as different metal 

oxide compounds etch preferentially in different pH, which can result in an insoluble oxide film being formed 

[51].  

The influence of electrolyte concentration has also been studied. The conventional assumption is that the 

semiconductor depletion region is much thicker than the thickness of the space charge region of the electrolyte , 

which can therefore be neglected [42] and indeed it has been suggested that electrolyte concentration for ECE of 

GaN in oxalic acid does not influence the observed pore morphology [52]. However, a more detailed study of 

electrolyte concentration of ECE in HF finds that increasing concentration (from 10% to just under 35 % by 

volume) reduces pore diameter (from around 40 nm to around 20 nm, increases pore wall thickness from around 

20 nm to around 60 nm and changes the threshold potential necessary for the onset of porosification (from 

around 10 V to around 5) and electropolishing (from around 15 V to around 40 V) [31]. These numbers are 

likely to depend on other experimental conditions, such as the ND of the material and are provided only as a 

guide. This work suggests that, at low potential, increasing concentration decreases the voltage drop in the 

electrolyte, which lowers the necessary potential to create pores. At high applied potential, the assumption of all 

the potential being dropped across the semiconductor depletion region will be more accurate, but a high 

electrolyte concentration will increase the chemical dissolution rate of the oxide. This reduces the rate of oxide 

build-up and increases the potential needed to achieve electropolishing. Although applied potential and doping 

density are the main parameters for controlling pore formation, choice of electrolyte pH and concentration can 

also be used to tune pore morphology to some extent. 

 

Structures 

As we have seen, forming porous nitrides relies on creating an electric field between the material and a 

suitable electrolyte. For porous GaN to be utilised in devices it is important to be able to control which regions 

of a structure porosify and to protect certain regions from etching. This can be done by controlling the electric 

field, the flow of the electrolyte and in the case of PECE the illumination. This section details methods for doing 

this and reviews the range of structures that have been demonstrated. 

The simplest porous GaN structure is where a porous layer is formed at the surface. This can be achieved 

with a surface layer of doped nitride semiconductor, such that the pores initiate at the surface and grow 

vertically into the structure [47]. An etch stop of un-doped material can be used to control the thickness of the 

porous layer, else the etch duration can be controlled to terminate the reaction and the methods described above 

can be used to control pore morphology. In fact, quite complicated structures can be created with single doped 

layers, by changing the etch conditions during the reaction. In particular, modulation of the applied potential can 

create layers of different porosity, as is well established in porous silicon [53,54]. We have demonstrated this by 

applying the periodic potential profile shown in Figure 6a to a sample with a 2 m thick n-doped layer with 

ND~51018cm-3 using the ECE set-up described in [9]. The potential was alternated between 8 V and 14 V 

holding each one for 200 and 100 seconds respectively. The current trace can be correlated with the morphology 

shown in the cross-sectional SEM image of Figure 6b. Initially, the current ramps up slowly and a thin, low 

porosity interface layer can be seen at the top surface. When the potential switches to 14 V there is a large 

transient before the current rises sharply, corresponding to the first highly porous layer. The potential is 

switched back to 8 V while the current is still rising and the current then settles to 0.4 mA. This pattern repeats 

twice more, but when the current switches to 8 V for the fourth time (15 minutes), the current is much lower, as 

there is no material left to etch. This creates a structure with a periodic variation in porosity. This method works 

because the electric field is concentrated at the pore tip and the potential is being carried along the un-etched 
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material, from below. This means that once material has become porous, it will not be etched any further, even 

upon increasing the applied potential. By varying the potentials and the timing of the applied potential a wide 

variety of morphologies could be achieved, but careful calibration of the settling time when switching is 

required. Using higher doped material may help to achieve sharper boundaries between layers, as has been 

found with porous silicon [54]. Similar methods have also been used to create porous GaN membranes, as 

discussed in the applications section. 

 

 
Figure 6: a) Potential (black, dashed) and current (red, solid) profiles for ECE of a single doped layer with periodic potential 

modulation and b) SEM image showing the resulting morphology. 

Subsurface Pores 

Creating porous layers below solid nitride material has been demonstrated in three ways: etching laterally 

from scribed trenches [55], using vertical pathways through dislocations in non-porous material [9] and by 

regrowing material on a structure that contains porous layers [56]. These methods have distinct pros and cons 

and together they offer a wide range of possible structures for different applications. Patterning trenches for the 

electrolyte to access subsurface doped layers and etch them laterally has been demonstrated by many groups 

[57–59]. This is done by growing a nitride structure containing one or more highly doped layers to be made 

porous. Access trenches are then scribed into the structure to the required depth and these expose the doped 

layers to the electrolyte, such that etching can proceed from them laterally. Electrical contact is made to the 

sample in order to create an electric field to the doped layers and create pores. An example of this is illustrated 

in Figure 7, where a porous layer (indicated as NP, for “nanoporous”) has been created under an LED structure 

[60]. The pores are formed after the material growth, but before the device processing. In this case, trenches 

were formed by laser scribing (LS), but ICP-RIE can also be used [58]. Figure 7a shows an overview of a single 

LED chip with n and p pads and the LS lines between devices. Figure 7c-e show the strong pore alignment 

achieved in the NP layer, growing perpendicular to the LS lines. Creating straight pores with low branching can 

be achieved by tuning the etching parameters as discussed above. 
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Figure 7: SEM images of a porous layer formed underneath an LED structure. (a) shows an oblique overview of the LED, (b), 
the cross-section at a laser scribed (LS) line between 2 LED chips with an inset image of the undesired porosity in the n-LED 
layer, cross-section of the subsurface pores (c) perpendicular and (d) parallel to the LS lines, (e) oblique view of the porous 
layer where some of the structure has peeled away, showing nanopores aligned along the etching direction, and (f) cross-

section showing pores in two differently doped layers near to the LS line. Reprinted with permission from [60], © The 
Optical Society. 

A challenge of this method is preventing etching of other doped layers in the structure, in this case the n-GaN 

of the LED itself. The structure shown in Figure 7 contained three n-GaN, Si-doped layers prior to etching. The 

topmost layer is the n-contact of the LED, labelled “n-GaN:Si” in Figure 7b. The second layer is exposed by the 

LS trenches and is more highly doped, labelled “n+-GaN:Si” in Figure 7b and with a nominal doping density of 

81018cm-3. This the layer that is intended to be porosified. Below this is a third n-doped layer with a lower 

doping density of 41018cm-3, which was used to make electrical contact for the ECE process. Figure 7b shows 

the cross-section around the LS line, which indicates undesired porosity in the n doped layer of the LED and 

Figure 7f shows the same in the contact layer. The researchers found that the higher doping density for the NP 

layer resulted in a higher etch rate than for the other doped layers. As the electrical contact was made to the 

lower doped layer the increasing resistance of the NP layer as it becomes porous also acts to lower the potential 

seen by the n-LED layer. These factors resulted in the n-LED layer only becoming porous close to the LS lines, 

as seen in Figure 7b (inset). This does make it difficult to have highly doped non-porous layers on top of porous 

layers using this method. A SiO2 layer was also deposited onto the top-surface prior to laser scribing, in order to 

prevent surface etching, which is very commonly used in this method. Other work has deposited a protective 

layer after the trenches are scribed in order to passivate the side walls and prevent unwanted pores forming [61]. 

Etching access trenches adds some complexity to the fabrication process, but with careful design to prevent 

unwanted etching it offers a flexible system for pore formation and has been demonstrated for single layers and 

multilayer structures, most notably in forming DBRs [55,62].  

The second approach to forming subsurface pores is a remarkable method, by which multiple layers of buried 

n-doped material can be porosified across whole wafers with almost no measurable change to the surface or the 

NID layers separating them [9]. The big advantage of this approach is that it can be used to create multiple 

layers of subsurface porosity across whole wafers in a single processing step without any prior patterning. The 

process is very similar to the first method, described above, but instead of providing access trenches to the 
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subsurface layers the etching proceeds vertically from the top surface down into the structure through 

dislocation pathways. The non-intentionally doped surface and barrier layers are almost entirely left intact, 

while the doped layers become porous. Our recent work used plan-view high angle annular dark field imaging in 

the scanning transmission electron microscope (HAADF-STEM) imaging to understand this process using a 

porous GaN DBR [63]. Figure 8a shows an edge dislocation in the structure prior to ECE, showing a typical 

core structure consisting of a five-membered and a seven-membered ring, whereas after ECE Figure 8b shows a 

hollow core at the centre of an edge or mixed dislocation, identified by the Burgers circuit diagram. This 

demonstrates that dislocation cores in the NID layers are being etched by the ECE process in order to provide 

pathways for the etching of doped material at lower layers. The lower magnification HAADF-STEM image in 

Figure 8c shows the morphology in the porous layers. Fern-like pore structures are visible, which branch out 

radially from dislocation cores, one of which is ringed with a white circle. The pores spread out from the cores 

to form domains as highlighted by the yellow lines. Where the domains meet, a boundary of un-etched material 

is observed. The size of the domains depends on the proximity of other dislocation cores. Perhaps surprisingly, 

this method has also been shown to work in an alkaline electrolyte [64].  

 

 
Figure 8: High resolution HAADF-STEM image of a dislocation seen along the <0001> zone axis (i.e. seen end-on). (a) a non-
porous GaN DBR sample, and (b) a porous GaN DBR sample. (c) Lower magnification HAADF-STEM image of a porous layer 
in the porosified sample. Contrast is thickness-related (i.e. dark means pore). The white circle highlights a dislocation core 

and the yellow lines highlight the porous cells formed around individual dislocations. Reprinted from [63]. 

 

One limitation to this vertical etching method is the challenge of defining which regions become porous 

horizontally across the wafer. This is straight forward to achieve in the lateral method through the design of the 

patterned trenches. Devising a method for horizontal patterning of the vertical etch method could provide a 

powerful system for forming defined pads of subsurface porosity where required, for applications such as 

providing thermal insulation for sensors [65]. We have explored this approach by using simple lithography 

techniques to block the electrolyte from accessing dislocation pathways in certain regions. The patterning 

material must be insoluble and impermeable to the electrolyte in order to protect the underlying surface 

effectively. We have found that commercial, Microposit photoresist can be used to achieve this, which allows 

standard photolithography techniques to be used. 200 m wide stripes were formed using photoresist on the 

surface of a sample with a 1 m thick n-doped GaN layer topped by a 200 nm thick NID GaN cap and the ECE 

method described elsewhere was applied [9].  
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Figure 9a shows an optical image of this sample, showing porous material in the un-protected regions and 

nonporous material under the photoresist, which are indicated by the blue shading. There is some leakage of 

porosity underneath the photoresist, which is highlighted at one edge by the yellow line in Figure 9a. The cross-

sectional SEM image in Figure 9b shows the porous region leaking under the protective photoresist layer. The 

challenge of achieving a well-defined line between the porous and non-porous regions is that the process uses 

randomly distributed dislocation pathways to access the doped layer. Where uncovered dislocations lie close to 

the photoresist they can create porosity for a large distance underneath it, but in other regions there are no 

dislocations near the photoresist and the leakage is less. This can be seen by the variation in distance between 

the photoresist edge and the yellow line in Figure 9a. This sample has a thicker NID GaN capping layer than the 

previous work with DBRs. This leads to larger circular domains of porous material, as measured optically, than 

was seen for DBRs and suggests that the density of nanopipe formation is lower. A straighter line could 

therefore be produced more easily for material with thinner capping layers, as the variation in distance from the 

nearest uncovered dislocation will be less. This will still produce leakage underneath the protective layer, which 

would need to be factored in when defining the pattern and will lower the minimum achievable line thickness. 

For PECE, lateral patterning can also be achieved using a metal layer that blocks the light [66]. 

 

 
Figure 9: a) Optical image showing surface patterning of a 1 m thick subsurface porous layer. The blue shading indicates 
either end of each photoresist stripe, the yellow line shows the line of the porous material that has “leaked” underneath 

the photoresist at one boundary. The scale bar is 200 m. b) Cross-sectional SEM image of the same sample, showing 

porosity leaking slightly under the protective photoresist. Scale bar is 1 m. 

The two methods for forming subsurface pores outlined above (lateral etching through access trenches and 

vertical etching through dislocations) are both limited by the difficulty of producing a structure with a highly 

doped layer above a porous layer. A third approach to forming subsurface pores overcomes this by forming the 

desired porous layers and then returning the sample to the reactor to grow more material on top. This eliminates 

the risk of unintended pores being formed in the higher layer, meaning the regrown layers can be highly doped. 

This method has been demonstrated to improve LED performance for both single porous layers on silicon 

substrates [67], as well as porous DBRs produced using vertical etch pathways on sapphire [10]. The pore 

morphology can be altered during regrowth, depending on the growth temperature used. Yang et al. found that 

annealing a porous GaN DBR at 950C enhanced the specular reflectivity significantly, whereas annealing at 

1100C lowered it severely due to the resulting change in pore morphology [68]. These porous structures 

improved light-extraction efficiency significantly, and other applications of overgrowth on porous structures are 

discussed in the applications section. 
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Porous Nitrides other than GaN 

So far, almost all of the discussion has been around forming porous GaN, as this has been where the bulk of 

research efforts on porous nitrides have been focussed, but a key characteristic of nitride devices is the use of 

other alloys in the family of nitride semiconductors. Initial work seems to suggest that forming pores in these 

materials follows much the same path as for porous GaN with few material specific deviations, therefore the 

description of the depletion model presented for the formation of pores in GaN above provides a useful starting 

point for the development of pores in other nitride alloys. Electropolishing in order to selectively remove InGaN 

layers to form an undercut has been demonstrated in order to create microdisk lasers [69]. This uses a difference 

in bandgap to select which layers to etch. All the work we could find in the literature to form bulk porous 

material from In containing nitrides through anodization came from one group and uses both HF and KOH 

based electrolytes [70,71] and explores the influence of the light source, finding that anodization without 

illumination produced etching only at grain boundaries and other inhomogeneities, whereas incident light allows 

the formation of surface pores [72]. This results in a limited pore depth, corresponding to the absorption length 

of the incident light. It has been reported that increasing etch time increases the porosity of these InGaN layers 

[71] and similar work has been done for InAlGaN, showing an increase in surface pore density with increasing 

etch time under PECE in KOH [73]. Comparing to results with GaN, this may suggest that this etching is 

occurring in a low-potential, pre-breakdown regime [31]. Although ECE of InGaN in KOH failed to form pores 

without illumination, it could be that a higher applied potential or ND would allow the formation of pores, but 

this is not explored [72]. Indeed, ECE of InGaN in a HF based electrolyte does show surface pores, but as these 

samples were etched under constant current the applied potential is not reported, and ND is not reported for 

either so it is difficult to make a comparison [70]. We have found that subsurface Si-doped InGaN layers can be 

porosified in much the same way as GaN layers. As an example, Figure 10 shows a cross-sectional SEM image 

of a porosified InxGa1-xN layer with x=12% on GaN on sapphire with a 100 nm GaN cap. The InGaN was 

porosified at 7 V in oxalic acid. Pores can also be seen at the sapphire GaN interface, which arises when an 

unintentionally doped layer is present at this interface, as has been observed previously [74]. 

 

 
Figure 10: Cross-sectional SEM image of a porous InGaN layer. Scale bar is 500 nm. 

For alloys containing aluminium, we have demonstrated periodic structures of Al0.6Ga0.4N using ECE in 

oxalic acid, following the same ECE methods developed for porous GaN, although AlGaN’s lower conductivity 

necessitates a higher applied potential for similar morphology [75]. Similarly, surface porous Al0.55Ga0.45N has 

been created using ECE in KOH [76]. Lateral etching of subsurface porous layers shows that ECE with KOH 

has much less doping selectivity than using HNO3. KOH formed triangular pores that were not well confined to 

the doped layers by exposing {101̅1̅} surfaces, whereas etching with acidic electrolytes forms oval pores, which 

are well confined to the doped layers [77]. Porous AlGaN layers have also been demonstrated through lateral 

etching in a subsurface doped layer from an etched hole when the applied potential was too low to completely 

remove the doped layer and create a membrane [78]. In this work, they show the same trend of increasing pore 

size with applied potential, and also find that higher AlN content requires a higher potential to remove the doped 

layer. This is attributed to a reduction of the electron affinity with increasing AlN content, which increases the 

depletion width. 

Photoelectrochemical etching of AlGaN structures is more challenging with increasing AlN content, as the 

absorption efficiency reduces. PECE electropolishing of AlGaN has been reported for AlN content up to 20% 

[79]. This method shows a slower etch rate than for GaN, due to lower light absorption [80]. We could find little 
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reported work to produce porous AlGaN via PECE, although voids have been created in low AlN content 

AlGaN using a heterostructure [81] and surface pores have been reported, although it is unclear as to whether 

these pores penetrate the surface with significant depth, or are merely a surface roughening effect [82]. The use 

of PECE adds another dimension when forming pores in nitride heterostructures, as control of the etching 

process can be achieved through bandgap specific absorption. For example, InGaN has a lower bandgap than the 

other nitride semiconductors, meaning that by controlling the photon energy of the incident light InGaN can be 

etched while leaving other material intact. In this way it has been used as a sacrificial layer [83–85], as well as 

using AlGaN (a higher bandgap material) as an etch stop when etching GaN [66]. Seeing as high doping 

selectivity has been widely demonstrated for porosification and doping does not change the lattice constant, this 

approach has not been widely demonstrated to form porous nitrides. Bandgap selectivity has been used with 

PECE to tune the size of InGaN quantum dots [51]. An InGaN layer etches under PECE to form dots. The 

etching terminates when the dots reach a critical size, which is determined by the absorption wavelength 

reducing to below the wavelength of the incident light. As well as InGaN and AlGaN, PECE of the quaternary 

InAlGaN structure has also been used to produce pores, using a HF electrolyte [86]. 

In this section, we have shown that a large range of porous nitrides can be produced through anodization and 

that the resulting morphology depends strongly on potential, doping density, how illumination is used and can 

also be influenced by the choice and concentration of electrolyte. There are certainly multiple ways to achieve 

similar morphologies and as yet there is no definitive comparison across these four parameters. 

 

Applications 

We have seen how porous nitrides can be created with various morphologies in a wide range of structures. 

We’ll now discuss the applications for which porous nitrides are being developed. The wide range of 

applications being considered is testament to the versatility of porous nitride structures. These applications 

include the improvement of LED and laser performance, chemical and thermal sensors, as well as the use of 

porosity to relax strain and reduce dislocation density. 

Optical Devices 

DBRs are key components for forming optical cavities and creating vertical cavity surface emitting lasers 

(VCSELs), as well as increasing the extraction efficiency of LEDs. They are periodic superlattices of two 

materials with differing refractive index that are designed to have high reflectivity for a given target wavelength. 

This is done by choosing the thickness of each layer to be a quarter of the target wavelength in that material, 

such that constructive interference leads to a strong reflection peak. Unlike the GaAs material system, epitaxial 

DBRs are very challenging to fabricate in the nitrides, due to the constraints of strain and the limited range of 

refractive index [87]. AlInN with InN content around 18% is lattice-matched to c-plane GaN and a superlattice 

of the two can be grown without building up strain [88], but the refractive index contrast between the two is 

small, meaning that many repeats and therefore a long growth time are required to obtain high reflectivity [89]. 

There is no available pair of materials which allows lattice matching along all directions on a non-polar nitride 

surface.  Porous DBRs have the potential to overcome these problems, as they can be grown as a single alloy 

with periodic doping variation and therefore no difficulties with strain, but when porosified they have much 

greater refractive index contrast between the layers, which results in far fewer lattice pairs being necessary for 

high reflectivity and therefore shorter growth times. A porous DBR has been demonstrated in this way with 

reflectivity >99.5% and a much wider stop-band than epitaxial GaN DBRs with similar reflectivity [8]. These 

structures also show electrical conductivity after ECE, meaning they can be used for electrical injection [9]. 

Figure 11 shows the structure of the first electrically injected nitride VCSEL with a bottom porous DBR, made 

on m-plane GaN [90]. This exhibited record optical output power for an m-plane GaN VCSEL of 1.5 mW. The 

DBR was laterally etched via RIE etched trenches using ECE in oxalic acid. The polarization of the light output 

was linearly polarized in the a-direction, which suggests that optical scattering from the DBR was negligible. 

One concern with these structures is thermal conductivity. We have shown that this can be reduced by more than 

an order of magnitude by creating pores, which can be used for on-chip thermal insulation for high sensitivity 

thermal sensors [65]. For most optoelectronic devices this would pose a heat management problem, but recent 

analysis suggests that optimisation of pore morphology can allow for high electrical and thermal conductivity 

while still maintaining reasonable refractive index contrast when compared to the epitaxial and dielectric 

alternatives [91]. Porous GaN has also been used in edge emitting lasers to provide lateral optical confinement 

through a novel, tapered porous layer [92]. 
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Figure 11:  Cross-sectional schematic of an m-plane VCSEL with bottom porous DBR and (right) an SEM image of the DBR. 

Reprinted from [90], with permission of IOP publishing. 

 

 

 
Figure 12: (a) Optical reflectivity spectra obtained from a laterally etched DBR with different polarization conditions. The 

blue shaded curve is collected with no polarizers, while the coloured, solid lines are taken with the analyser aligned ∥ and 

⟂ to the pores. These data are referenced to give an absolute reflectivity value for each polarisation condition. (b) Shows 
the effective refractive index of the porous GaN layer obtained by fitting a transfer matrix model to the data in (a). The 

solid lines show the best estimate and the dashed lines give the spread of the uncertainty. Reprinted from [93]. 

Porous GaN has also been shown to exhibit birefringence if the pores are strongly aligned [60]. This offers a 

powerful tool for incorporating polarisation engineering into GaN optical devices. Our recent work has explored 

the mechanisms for this in detail by using advanced FIB-SEM imaging techniques to reconstruct the 3D 

morphology of porous GaN DBRs formed through both lateral and vertical channel etching. We then explored 

the relationship between the morphology and the observed birefringence by correlating it with finite element 

modelling [93]. Figure 12a shows measured reflectivity spectra of a porous GaN DBR that was etched laterally 

from scribed trenches, leading to highly aligned pores. The Figure shows the reflectivity of the structure with 

different incident polarisation. When the incident light is polarised parallel to the pore direction (0, ∥), the 

stopband width is much narrower than when the light is polarised perpendicular to the pores (90, ⟂) and the 

result for non-polarised light lies in between the two. This indicates that the effective refractive index of the 

porous GaN layers is a function of polarisation. By fitting the reflectivity stopbands with a transfer matrix 

model, which assumes a constant refractive index for each porous layer, the effective refractive index can be 

measured, as plotted in Figure 12b. This shows a strong birefringence of the porous GaN layers of Δn=0.14 

±0.05 at 500 nm, with a lower refractive index parallel to the pores than perpendicular to them. This puts it 

among the most strongly birefringent natural materials, such as calcite (with Δn ≈ -0.17 across the visible range 

[94]). The modelling shown in this work suggest that the degree of birefringence depends strongly on the size of 

the gaps between pores, suggesting that higher birefringence is possible from optimised porous GaN structures. 
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Porous DBRs have also been demonstrated in UV photodetectors for light recycling [95]. This uses a GaN 

active layer with an AlGaN DBR below it, such that absorption losses are minimised in the DBR. This increases 

both the responsivity and sensitivity at the tuned wavelength. Porosity in the active region of nitride 

photodetectors has also been demonstrated [59,70,96–98] with porous GaN showing improved performance 

compared to bulk GaN devices and high detectivity in the UV [59]. This is attributed to high internal gain from 

charge trapping of carriers at the semiconductor metal interface. The porous structure will also create light 

trapping and reduce reflection. 

Piezoelectric Devices 

Nitride semiconductors have large piezoelectric constants, making them of particular interest for piezoelectric 

sensors and nanogenerators [99,100]. In order to benefit from this, the material must be compliant, but due to 

GaN's high stiffness this requires the use of structures like membranes or nanowires. A further barrier for using 

nitrides in these devices is the high conductivity that reduces the piezoelectric field by carrier screening, but in 

structures such as nanowires the large surface area can suppress this through Fermi-level pinning. This has been 

demonstrated using ECE to undercut GaN structures to create membranes for piezoelectric nanogenerators 

(PNGs) [101]. Porosity offers a way of reducing stiffness and suppressing carrier screening in a similar way to 

nanowire arrays, but through a cheap and versatile fabrication approach. Porous GaN PNGs have been 

demonstrated with both laterally and vertically etched pores [102,103]. Figure 13 shows the output of a laterally 

porous PNG with three different porosities. The highly porous device shows significantly larger output power 

than the less porous devices due to a higher degree of Fermi-level pinning at the surfaces of the pores, which 

acts to suppress carrier screening. The piezoelectric size effect also enhances the piezoelectric constants of 

surface layers, as compared to the bulk values [102].  

 

 
Figure 13:  Output voltage and current under periodic pressing and releasing measured from (a), (d) bulk, (b), (e) low-

porosity, and (c), (f) high-porosity porous (labelled NP, for “nanoporous”) GaN piezoelectric nanogenerators with lateral 
porosity. The porosity of the bulk, low- and high-porosity GaN is 0%, 18%, and 38%, respectively. Reprinted from [102], 

with permission of IOP publishing. 

Chemical Devices 

The use of GaN in chemical sensing is well-documented due to its high temperature tolerance and chemical 

inertness, which make it particularly suited to sensing in extreme environments. Nanostructuring increases the 

surface area of the device, which can increase sensitivity, but the advantages of nanostructuring through 

nanowire growth are hampered by poor reproducability [104]. Porous nitrides offer a straightforward fabrication 

method for nanostructuring material, which may be able to overcome the fabrication challenges seen in 

nanowires. Sensing of myriad different species in liquid and gas has been demonstrated using porous nitrides. 

Liquid sensors use a porous nitride electrode  in an electrochemical cell. Many of these use a composite material 
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with metal nanoparticles deposited into the porous matrix [4,105,106], while the detection of Ag(I) ions has 

been demonstrated using a porous GaN electrode with no further deposition process [107]. Simple hydrogen gas 

sensors have also been demonstrated using Pt contacts on an InAlGaN layer [86]. Porosifying the InAlGaN 

layer via PECE lead to better sensitivity, lower power consumption and faster response time, compared to the 

non-porous InAlGaN device. More recent work has passivated the porous surface by sulfur treatment and 

functionalised the surface with Pt nanoparticles [3]. This device showed high sensitivity to H2 down to 30 ppm. 

Work towards porous GaN sensors is in its infancy, and whilst there have been demonstrations of advantages 

over bulk GaN devices they must show long-term stability and high reproducability if they are to be of real 

commercial interest.  

Catalysis, in particular for water-splitting applications, is a huge area of research pursuing a source of 

hydrogen fuel with no direct CO2 emissions [108]. The nitrides have ceramic like stability, while offering high 

electrical conductivity and a wide bandgap, as well as offering band edge potentials that allow hydrogen 

generation at zero bias, making them of keen interest as electrodes in such systems [5,109]. Porosification 

creates a much higher surface area and enhanced light absorption due to scattering, which can dramatically 

improve catalysis effiency [110], as well as increasing the electrode stability [111]. Porous GaN electrodes have 

also been demonstrated as photocatalysts for the breakdown of organic molecules, showing superior 

performance compared to both bulk nitride and to porous Si electrodes [5]. Porosity has been combined with 

conventional lithography techniques to create composite porosity, whereby structures combine pores at two 

different scales, which increases absorption even further and thereby increases catalytic photocurrent [112]. As 

we have seen, porosity can vary a lot between porous nitride samples and the pore morphology has a strong 

effect on the photon conversion efficiency [113]. While many promising early results have been produced, 

optimisation of the structure and demonstration of H2 production over long lifetimes are yet to be demonstrated. 

Composite Devices 

Porous nitrides offer the possibility of producing composite materials through the infiltration of the pores 

with another species. Porous GaN offers a robust, conductive scaffold that can provide electrical transport to a 

wide variety of materials. We have already discussed examples of porous GaN composite devices, where porous 

GaN is infiltrated with metal nanoparticles for  chemical sensing [3,4,105,106]. The choice of nanoparticle can 

functionalise the device to provide a chemical selective response. The particular strength of porous nitrides for 

these sensors is their chemical and mechanical robustness, making them suitable for harsh environments and 

offering long-term stability. 

Beyond nanoparticles, we have demonstrated infiltration of porous GaN with lead-bromide perovskites, such 

that the GaN acts to encapsulate the material and dramatically increase its lifetime [7]. This offers a number of 

advantages. Firstly, as shown in the PL spectra of Figure 14, the encapsulation offered by the porous GaN 

matrix serves to protect the perovskite from decomposition in the atmosphere. After 10 days in ambient air, the 

PL signal is preserved when deposited on porous GaN, but drops significantly when deposited on glass or planar 

GaN. Moreover, the porous GaN sample still showed a bright PL signal after almost a year. The second 

advantage is in terms of light extraction, as the porous structure will help to scatter light out of the device [114]. 

This may be one reason why the as-deposited PL signal is stronger for the porous GaN sample in Figure 14. 

This suggests that this method could be relevant to colour-conversion layers on nitride LEDs, which 

simultaneously increase light extraction efficiency. Beyond this a porous nitride layer could provide electrical 

injection into solution processed semiconductor devices. This opens up opportunities for hybrid 

organic/inorganic optical devices, where the advantages of one can compensate the disadvantages of the other. 
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Figure 14: PL spectra for MAPbBr3 perovskite deposited on (a) glass, (b) non-porous GaN, and (c) porous GaN, indicating 

the decrease in PL intensity after 10 days in ambient atmosphere with and without epoxy-glass sealing. Reprinted from [7], 
published under a creative commons license. 

Improving Material Quality 

Reducing dislocation density is an important area of research in the nitrides. Using porous layers as growth 

templates has been shown to relax strain, which reduces the density of dislocations formed as well as blocking 

threading dislocations from propagating. Strain relaxation in GaN grown on porous GaN was reported as early 

as 1999 of a 3 µm thick GaN layer grown by HVPE and producing low roughness and high crystalline quality 

[115]. Many sources demonstrate strain relaxation in nitride films grown on porous nitride surface layers 

compared to bulk templates, indicated by both Raman [12,50,67,115] and XRD [34,56] data. A study of PECE 

GaN grown on sapphire found that crystalline quality and relaxation of compressive stress increase with etching 

current, but there is yet to be a detailed study to find the optimal conditions for the strain relief of regrown 

layers. 

To demonstrate the improvement in material quality from porous templates, LEDs have been regrown on 

porous structures. These see enhancement in the electroluminescence output due to decreased leakage, greater 

extraction efficiency due to light scattering at the porous layer, increased internal quantum efficiency due to 

higher material quality and increased carrier confinement due to reduced quantum confined stark effect (QCSE) 

from lower strain fields [34,50,67,116]. Reduced strain fields have also been indicated as the cause of a blue-

shift in the band-edge luminescence peak for GaN layers grown on porous GaN [34]. In our own work we have 

regrown LEDs on porous DBR templates and although there was significant enhancement from other effects, we 

did not find evidence of strain relaxation from XRD, or blueshift in the luminescence due to reduced QCSE 

[10]. This suggests that porosity must be on the template surface in order to provide strain relief for the regrown 

layer. As well as strain relief, reduction of the FWHM of XRD rocking curves has been used to suggest that 

films grown on porous templates have lower dislocation density [49,67] and this has also been shown in AlGaN 

grown on porous and non-porous GaN templates shown by AFM measurements after acid treatment to expose 

dislocations [56]. It has been suggested that part of this comes from the annihilation of threading defects at voids 

forming in the porous layer during regrowth [117]. However, XRD data from other, similar work showed a 

negligible reduction in dislocation density [34]. This indicates that there is a need for optimisation of the process 

for maximum dislocation reduction, as the difference in results seems to arise from the very different pore 

morphologies that were regrown on.  

Mechanical Lift-off 

As well as using porous nitrides in devices, there has been promising development of using ECE and PECE 

as processing steps for lifting off nitride devices so that they can be transferred to alternative substrates. This is 

of interest as a way to overcome some of the limitations of sapphire substrates, such as thermal conductivity 

[118], as well as making growth on GaN substrates more economical, by allowing substrate reuse [119]. Lift-off 

on UV transparent substrates, such as sapphire can be achieved via laser lift-off, but chemical methods are 

required for lift-off from GaN substrates. Porous GaN membranes have been created through both ECE [120] 

and PECE [13]. This process etches from the surface of the sample to create pores through the structure and can 

be released by pushing the etching into the electropolishing regime by either increasing the etching potential (as 

in Procedure A) or the doping density, ND (as in Procedure B) as shown in  Figure 15. The limitation of this 

method is that the membranes must be porous, although membranes of porous GaN DBRs have been created 
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from structures with modulated doping that leads to high porosity layers and almost non-porous layers using the 

wafer-scale method via dislocation pathways [121].  

These processes produce flexible single-crystal GaN membranes showing strain relaxation. In order to 

produce non-porous membranes, an alternative lift-off approach uses access trenches to create undercutting. 

This has been demonstrated using ECE to lift-off 90 nm thick nonporous membranes, which are depleted, due to 

the joining of the two surface depletion regions, allowing the creation of normally off transistors [14]. These 

novel demonstrations show the flexibility of electrochemical etching techniques in the nitrides. In terms of 

device lift-off, a PECE approach has been developed to allow the batch processing of flip-chip LEDs to allow 

GaN substrate reuse. Here, a SiNx layer was used to protect the devices from the PECE process, while 

unprotected sacrificial layers were undercut, allowing the release of the devices and transfer to an alternative 

substrate [122]. 

 

 
Figure 15: (a)–(g) Schematic drawings of two procedures to produce free-standing porous GaN membranes using ECE. 

Procedure A  uses an increase in the applied potential to release the membrane, while Procedure B uses an increase in the 
material’s doping density (ND). Reprinted from [120], with permission of IOP publishing. 

 

Summary 

Porous nitrides are a fast developing research area for the nitrides that open up new application spaces for 

nitride semiconductors by allowing material parameters to be changed in a whole new way. The refractive 

index, thermal conductivity, birefringence and surface area can all be engineered with porosity in a highly 

controllable way through ECE and PECE. Control of these methods relies principally on controlling the local 

electric field strength between the material and the electrolyte. To facilitate etching, doped layers must be in 

contact with the electrolyte, either at an exposed surface or, interestingly, via nanoscale channels such as those 

formed at dislocation cores. A key challenge of incorporating porous material into practical devices is to find 

ways of preventing unwanted etching of other doped regions in the device. The three approaches of etching 

directly, etching via trenches and regrowing material on porous structures offer a flexible choice for achieving 

practically any required structure. Porous DBRs have an exciting application in forming cavities for VCSELs, 

which has been an ongoing challenge for the nitrides. By using porosity in AlN and AlGaN, this method can be 

extended into the UV, where efficient light emission is particularly challenging. More generally, the potential of 

porous layers as strain-relief to improve material quality has the potential to benefit all aspects of nitride 

semiconductors. Beyond these areas, considerable effort is being pursued in sensing applications, where the high 

surface area transforms the sensitivity of GaN. This is also an area that has seen porosity used as a method for 

creating hybrid materials, which offers a broad playground for creating novel material properties. 

Acknowledgements 

The authors gratefully acknowledge funding from the EPSRC under grant numbers: EP/M010589/1, 

EP/L015455/1, and EP/R511675/1.  

Page 18 of 28AUTHOR SUBMITTED MANUSCRIPT - JPhysD-122903.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



   
 

   
 

 

References 

[1]  Humphreys C J 2008 Solid-State Lighting MRS Bulletin 33 459–470 

[2]  Amano H, Baines Y, Beam E, Borga M, Bouchet T, Chalker P R, Charles M, Chen K 

J, Chowdhury N, Chu R, Santi C D, Souza M M D, Decoutere S, Cioccio L D, Eckardt 

B, Egawa T, Fay P, Freedsman J J, Guido L, Häberlen O, Haynes G, Heckel T, 

Hemakumara D, Houston P, Hu J, Hua M, Huang Q, Huang A, Jiang S, Kawai H, 

Kinzer D, Kuball M, Kumar A, Lee K B, Li X, Marcon D, März M, McCarthy R, 

Meneghesso G, Meneghini M, Morvan E, Nakajima A, Narayanan E M S, Oliver S, 

Palacios T, Piedra D, Plissonnier M, Reddy R, Sun M, Thayne I, Torres A, Trivellin N, 

Unni V, Uren M J, Hove M V, Wallis D J, Wang J, Xie J, Yagi S, Yang S, Youtsey C, 

Yu R, Zanoni E, Zeltner S and Zhang Y 2018 The 2018 GaN power electronics 

roadmap J. Phys. D: Appl. Phys. 51 163001 

[3]  Shafa M, Priante D, ElAfandy R T, Hedhili M N, Mahmoud S T, Ng T K, Ooi B S and 

Najar A 2019 Twofold Porosity and Surface Functionalization Effect on Pt–Porous 

GaN for High-Performance H2-Gas Sensors at Room Temperature ACS Omega 4 

1678–84 

[4]  Xi R, Zhang S-H, Zhang L, Wang C, Wang L-J, Yan J-H and Pan G-B 2019 

Electrodeposition of Pd-Pt Nanocomposites on Porous GaN for Electrochemical Nitrite 

Sensing Sensors 19 606 

[5]  Cao D, Xiao H, Xu H, Cui J, Gao Q and Pei H 2015 Enhancing the photocatalytic 

activity of GaN by electrochemical etching Materials Research Bulletin 70 881–6 

[6]  Zhang M-R, Chen X-Q and Pan G-B 2016 The Fabrication and Photocatalysis of Gold 

Nanoparticles/Porous GaN Composite ChemistrySelect 1 3159–62 

[7]  Lim K T P, Deakin C, Ding B, Bai X, Griffin P, Zhu T, Oliver R A and Credgington 

D 2019 Encapsulation of methylammonium lead bromide perovskite in nanoporous 

GaN APL Materials 7 021107 

[8]  Zhang C, Park S H, Chen D, Lin D-W, Xiong W, Kuo H-C, Lin C-F, Cao H and Han J 

2015 Mesoporous GaN for Photonic Engineering—Highly Reflective GaN Mirrors as 

an Example ACS Photonics 2 980–6 

[9]  Zhu T, Liu Y, Ding T, Fu W Y, Jarman J, Ren C X, Kumar R V and Oliver R A 2017 

Wafer-scale Fabrication of Non-Polar Mesoporous GaN Distributed Bragg Reflectors 

via Electrochemical Porosification Scientific Reports 7 45344 

[10]  Jarman J C, Zhu T, Griffin P H and Oliver R A 2019 Light-output enhancement of 

InGaN light emitting diodes regrown on nanoporous distributed Bragg reflector 

substrates Jpn. J. Appl. Phys. 58 SCCC14 

[11]  Huo Q, Shao Y, Wu Y, Zhang B, Hu H and Hao X 2018 High quality self-separated 

GaN crystal grown on a novel nanoporous template by HVPE Scientific Reports 8 

3166 

Page 19 of 28 AUTHOR SUBMITTED MANUSCRIPT - JPhysD-122903.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



   
 

   
 

[12]  Hartono H, Soh C B, Chua S J and Fitzgerald E A 2007 High Quality GaN Grown 

from a Nanoporous GaN Template J. Electrochem. Soc. 154 H1004–7 

[13]  Xiao H, Cui J, Cao D, Gao Q, Liu J and Ma J 2015 Self-standing nanoporous GaN 

membranes fabricated by UV-assisted electrochemical anodization Materials Letters 

145 304–7 

[14]  Xiong K, Park S H, Song J, Yuan G, Chen D, Leung B and Han J 2014 Single Crystal 

Gallium Nitride Nanomembrane Photoconductor and Field Effect Transistor Adv. 

Funct. Mater. 24 6503–8 

[15]  Zhuang D and Edgar J H 2005 Wet etching of GaN, AlN, and SiC: a review Materials 

Science and Engineering: R: Reports 48 1–46 

[16]  Pearton S J, Vartuli C B, Shul R J and Zolper J C 1995 Dry etching and implantation 

characteristics of III-N alloys Materials Science and Engineering: B 31 309–17 

[17]  Kao C-C, Huang H W, Tsai J Y, Yu C C, Lin C F, Kuo H C and Wang S C 2004 

Study of dry etching for GaN and InGaN-based laser structure using inductively 

coupled plasma reactive ion etching Materials Science and Engineering: B 107 283–8 

[18]  Mileham J R, Pearton S J, Abernathy C R, MacKenzie J D, Shul R J and Kilcoyne S P 

1996 Patterning of AlN, InN, and GaN in KOH‐based solutions Journal of Vacuum 

Science & Technology A 14 836–9 

[19]  Uhlir A 1956 Electrolytic Shaping of Germanium and Silicon Bell System Technical 

Journal 35 333–47 

[20]  Canham L 1990 Silicon Quantum Wire Array Fabrication by Electrochemical and 

Chemical Dissolution of Wafers Appl. Phys. Lett. 57 1046–8 

[21]  Wolkin M V, Jorne J, Fauchet P M, Allan G and Delerue C 1999 Electronic States and 

Luminescence in Porous Silicon Quantum Dots: The Role of Oxygen Phys. Rev. Lett. 

82 197–200 

[22]  Ram S K 2014 Electrical Transport in Porous Silicon Handbook of Porous Silicon ed 

L Canham (Springer International Publishing) pp 263–79 

[23]  Bisi O, Ossicini S and Pavesi L 2000 Porous silicon: a quantum sponge structure for 

silicon based optoelectronics Surface Science Reports 38 1–126 

[24]  Zhang L, Wang S, Shao Y, Wu Y, Sun C, Huo Q, Zhang B, Hu H and Hao X 2017 

One-step fabrication of porous GaN crystal membrane and its application in energy 

storage Scientific Reports 7 1–9 

[25]  Mena J, Carvajal J J, Martínez O, Jiménez J, Zubialevich V Z, Parbrook P J, Diaz F 

and Aguiló M 2017 Optical and structural characterisation of epitaxial nanoporous 

GaN grown by CVD Nanotechnology 28 375701 

[26]  Malvajerdi S S, Elahi A S and Habibi M 2017 A novel technique based on a plasma 

focus device for nano-porous gallium nitride formation on P-type silicon Phys. 

Plasmas 24 043511 

Page 20 of 28AUTHOR SUBMITTED MANUSCRIPT - JPhysD-122903.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



   
 

   
 

[27]  Talapaneni S N, Park D-H, Choy J-H, Ramadass K, Elzatahry A, Al Balawi A S, Al-

Enizi A M, Mori T and Vinu A 2016 Facile Synthesis of Crystalline Nanoporous GaN 

Templated by Nitrogen Enriched Mesoporous Carbon Nitride for Friedel-Crafts 

Reaction ChemistrySelect 1 6062–8 

[28]  Minsky M S, White M and Hu E L 1996 Room‐temperature photoenhanced wet 

etching of GaN Appl. Phys. Lett. 68 1531–3 

[29]  Tseng W J, van Dorp D H, Lieten R R, Vereecken P M and Borghs G 2014 Anodic 

Etching of n-GaN Epilayer into Porous GaN and Its Photoelectrochemical Properties J. 

Phys. Chem. C 118 29492–8 

[30]  Vajpeyi A P, Tripathy S, Chua S J and Fitzgerald E A 2005 Investigation of optical 

properties of nanoporous GaN films Physica E 28 141–9 

[31]  Chen D, Xiao H and Han J 2012 Nanopores in GaN by electrochemical anodization in 

hydrofluoric acid: Formation and mechanism Journal of Applied Physics 112 064303 

[32]  Hartono H, Soh C B, Chua S J and Fitzgerald E A 2007 Fabrication and 

characterization of nano-porous GaN template for strain relaxed GaN growth phys. 

stat. sol. (b) 244 1793–6 

[33]  Lin C-F, zheng J, Yang Z, Dai J, Lin D, Chang C, Lai Z and Hong C S 2006 High-

Efficiency Ingan-Based Light-Emitting Diodes with Nanoporous Gan:mg Structure 

Applied Physics Letters 88 

[34]  Jang L-W, Jeon D-W, Polyakov A Y, Govorkov A V, Sokolov V N, Smirnov N B, 

Cho H-S, Yun J-H, Shcherbatchev K D, Baek J-H and Lee I-H 2014 Electrical and 

structural properties of GaN films and GaN/InGaN light-emitting diodes grown on 

porous GaN templates fabricated by combined electrochemical and 

photoelectrochemical etching Journal of Alloys and Compounds 589 507–12 

[35]  Zhang C, Yuan G, Bruch A, Xiong K, Tang H X and Han J 2018 Toward Quantitative 

Electrochemical Nanomachining of III-Nitrides J. Electrochem. Soc. 165 E513–20 

[36]  Nowak G, Xia X H, Kelly J J, Weyher J L and Porowski S 2001 Electrochemical 

etching of highly conductive GaN single crystals Journal of Crystal Growth 222 735–

40 

[37]  Föll H, Langa S, Carstensen J, Christophersen M and Tiginyanu I M 2003 Pores in 

III–V Semiconductors Advanced Materials 15 183–98 

[38]  Carstensen J, Christophersen M and Föll H 2000 Pore formation mechanisms for the 

Si-HF system Materials Science and Engineering: B 69–70 23–8 

[39]  Lin C-F, Chen K-T, Lin C-M and Yang C-C 2009 InGaN-Based Light-Emitting 

Diodes With Nanoporous Microhole Structures IEEE Electron Device Lett. 30 1057–9 

[40]  Quah H J, Ahmed N M, Hassan Z and Lim W F 2016 Surface Alteration of Planar P-

Type Gallium Nitride to Porous Structure Using 50 Hz Alternating Current-Assisted 

Photo-Electrochemical Etching Route J. Electrochem. Soc. 163 H642–51 

Page 21 of 28 AUTHOR SUBMITTED MANUSCRIPT - JPhysD-122903.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



   
 

   
 

[41]  Lim W F, Hassan Z, Ahmed N M and Quah H J 2018 Porous Formation in p-Type 

Gallium Nitride Films via 50 Hz Operated Alternating Current-Assisted Photo-

Electrochemical Etching in Methanol-Sulfuric Acid Solution J. Electrochem. Soc. 165 

H620–8 

[42]  Morrison S R 1980 Electrochemistry at semiconductor and oxidized metal electrodes 

(New York: Plenum Press) 

[43]  Schwab M J, Chen D, Han J and Pfefferle L D 2013 Aligned Mesopore Arrays in GaN 

by Anodic Etching and Photoelectrochemical Surface Etching J. Phys. Chem. C 117 

16890–5 

[44]  Solymar L, Walsh D and Syms R R A 2014 Electrical Properties of Materials 

(Oxford, New York: Oxford University Press) 

[45]  Weyher J L, Brown P D, Rouvière J L, Wosinski T, Zauner A R A and Grzegory I 

2000 Recent advances in defect-selective etching of GaN Journal of Crystal Growth 

210 151–6 

[46]  Mishkat-Ul-Masabih S, Luk T S, Rishinaramangalam A, Monavarian M, Nami M and 

Feezell D 2018 Nanoporous distributed Bragg reflectors on free-standing nonpolar m-

plane GaN Appl. Phys. Lett. 112 041109 

[47]  Kumazaki Y, Matsumoto S and Sato T 2017 Precise Structural Control of GaN Porous 

Nanostructures Utilizing Anisotropic Electrochemical and Chemical Etching for the 

Optical and Photoelectrochemical Applications J. Electrochem. Soc. 164 H477–83 

[48]  Park J, Song K M, Jeon S-R, Baek J H and Ryu S-W 2009 Doping selective lateral 

electrochemical etching of GaN for chemical lift-off Applied Physics Letters 94 

221907 

[49]  Radzali R, Zainal N, Yam F K and Hassan Z 2014 Characteristics of porous GaN 

prepared by KOH photoelectrochemical etching Mater. Res. Innov. 18 412–6 

[50]  Soh C B, Tay C B, Tan R J N, Vajpeyi A P, Seetoh I P, Ansah-Antwi K K and Chua S 

J 2013 Nanopore morphology in porous GaN template and its effect on the LEDs 

emission J. Phys. D: Appl. Phys. 46 365102 

[51]  Xiao X, Lu P, Fischer A J, Coltrin M E, Wang G T, Koleske D D and Tsao J Y 2015 

Influence of pH on the Quantum-Size-Controlled Photoelectrochemical Etching of 

Epitaxial InGaN Quantum Dots J. Phys. Chem. C 119 28194–8 

[52]  Zhang Y, Ryu S-W, Yerino C, Leung B, Sun Q, Song Q, Cao H and Han J 2010 A 

conductivity-based selective etching for next generation GaN devices phys. stat. sol. 

(b) 247 1713–6 

[53]  Sailor M J 2011 Preparation of Spatially Modulated Porous Silicon Layers Porous 

Silicon in Practice (Wiley-VCH Verlag GmbH & Co. KGaA) pp 77–117 

[54]  Agarwal V 2014 Porous Silicon Multilayers and Superlattices Handbook of Porous 

Silicon ed L Canham (Springer International Publishing) pp 153–62 

Page 22 of 28AUTHOR SUBMITTED MANUSCRIPT - JPhysD-122903.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



   
 

   
 

[55]  Park J, Kang J-H and Ryu S-W 2013 High Diffuse Reflectivity of Nanoporous GaN 

Distributed Bragg Reflector Formed by Electrochemical Etching Appl. Phys. Express 6 

072201 

[56]  Fareed R S Q, Adivarahan V, Chen C Q, Rai S, Kuokstis E, Yang J W, Khan M A, 

Caissie J and Molnar R J 2004 Air-bridged lateral growth of crack-free 

Al0.24Ga0.76N on highly relaxed porous GaN Appl. Phys. Lett. 84 696–8 

[57]  Huang K-P, Wu K-C, Fan F-H, Tseng W-P, Shieh B-C, Chen S-H and Lin C-F 2014 

InGaN Light-Emitting Diodes with Multiple-Porous GaN Structures Fabricated 

through a Photoelectrochemical Etching Process ECS J. Solid State Sci. Technol. 3 

R185–8 

[58]  Yuan G, Xiong K, Zhang C, Li Y and Han J 2016 Optical Engineering of Modal Gain 

in a III-Nitride Laser with Nanoporous GaN ACS Photonics 3 1604–10 

[59]  Liu L, Yang C, Patanè A, Yu Z, Yan F, Wang K, Lu H, Li J and Zhao L 2017 High-

detectivity ultraviolet photodetectors based on laterally mesoporous GaN Nanoscale 9 

8142–8 

[60]  Hsu W-J, Chen K-T, Huang W-C, Wu C-J, Dai J-J, Chen S-H and Lin C-F 2016 

InGaN light emitting diodes with a nanopipe layer formed from the GaN epitaxial 

layer Opt. Express, OE 24 11601–10 

[61]  Mishkat-Ul-Masabih S M, Luk T S, Monavarian M and Feezell D F 2019 

Polarization-pinned emission of a continuous-wave optically pumped nonpolar GaN-

based VCSEL using nanoporous distributed Bragg reflectors Opt. Express, OE 27 

9495–501 

[62]  Shieh B-C, Jhang Y-C, Huang K-P, Huang W-C, Dai J-J, Lai C-F and Lin C-F 2015 

InGaN light-emitting diodes with embedded nanoporous GaN distributed Bragg 

reflectors Appl. Phys. Express 8 082101 

[63]  Massabuau F C-P, Griffin P H, Springbett H P, Liu Y, Kumar R V, Zhu T and Oliver 

R A 2019 Dislocations as channels for the fabrication of sub-surface porous GaN by 

electrochemical etching Under Review 

[64]  Yang X, Chen Z, Cao D, Zhao C, Shen L, Luan C, Pang Z, Liu J, Ma J and Xiao H 

2019 Large-area, liftoff nanoporous GaN distributed Bragg reflectors: Fabrication and 

application Applied Surface Science 489 849–55 

[65]  Spiridon B F, Griffin P H, Jarman J C, Liu Y, Zhu T, Luca A D, Oliver R A and 

Udrea F 2018 On-Chip Thermal Insulation Using Porous GaN Proceedings 2 776 

[66]  Trichas E, Kayambaki M, Iliopoulos E, Pelekanos N T and Savvidis P G 2009 

Resonantly enhanced selective photochemical etching of GaN Appl. Phys. Lett. 94 

173505 

[67]  Lee K J, Chun J, Kim S-J, Oh S, Ha C-S, Park J-W, Lee S-J, Song J-C, Baek J H and 

Park S-J 2016 Enhanced optical output power of InGaN/GaN light-emitting diodes 

grown on a silicon (111) substrate with a nanoporous GaN layer Opt. Express 24 

4391–8 

Page 23 of 28 AUTHOR SUBMITTED MANUSCRIPT - JPhysD-122903.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



   
 

   
 

[68]  Yang X, Xiao H, Cao D, Zhao C, Shen L and Ma J 2018 Fabrication, annealing, and 

regrowth of wafer-scale nanoporous GaN distributed Bragg reflectors Scripta 

Materialia 156 10–3 

[69]  Tamboli A C, Haberer E D, Sharma R, Lee K H, Nakamura S and Hu E L 2007 

Room-temperature continuous-wave lasing in GaN/InGaN microdisks Nature Photon 1 

61–4 

[70]  Abud S H, Hassan Z and Yam F K 2014 Fabrication and characterization of metal-

semiconductor-metal photodetector based on porous InGaN Mater. Chem. Phys. 144 

86–91 

[71]  Radzali R, Zainal N, Yam F K and Hassan Z 2013 Nanoporous InGaN of high In 

composition prepared by KOH electrochemical etching Materials Science in 

Semiconductor Processing 16 2051–7 

[72]  Radzali R, Hassan Z, Zainal N and Yam F K 2014 Nanoporous InGaN prepared by 

KOH electrochemical etching with different light sources Microelectronic Engineering 

126 107–12 

[73]  Radzali R, Hassan Z, Zainal N and Yam F K 2015 Structural and optical 

characteristics of porous InAlGaN prepared by photoelectrochemical etching J. Alloy. 

Compd. 622 565–71 

[74]  Zhu T and Oliver R A 2012 Unintentional doping in GaN Phys. Chem. Chem. Phys. 

14 9558–73 

[75]  Griffin P, Zhu T and Oliver R 2018 Porous AlGaN-Based Ultraviolet Distributed 

Bragg Reflectors Materials 11 1487 

[76]  Zhang L, Guo Y N, Yan J C, Wu Q Q, Wei X C, Wang J X and Li J M 2019 Deep 

ultraviolet light-emitting diodes with improved performance via nanoporous AlGaN 

template Opt. Express, OE 27 4917–26 

[77]  Lu X, Li J, Su K, Ge C, Li Z, Zhan T, Wang G and Li J 2019 Performance-Enhanced 

365 nm UV LEDs with Electrochemically Etched Nanoporous AlGaN Distributed 

Bragg Reflectors Nanomaterials 9 862 

[78]  Bergmann M A, Enslin J, Yapparov R, Hjort F, Wickman B, Marcinkevičius S, 

Wernicke T, Kneissl M and Haglund Å 2019 Electrochemical etching of AlGaN for 

the realization of thin-film devices Appl. Phys. Lett. 115 182103 

[79]  Chiou Y, Huang L and Lee C 2010 Photoelectrochemical Function in Gate-Recessed 

AlGaN/GaN Metal–Oxide–Semiconductor High-Electron-Mobility Transistors IEEE 

Electron Device Letters 31 183–5 

[80]  Youtsey C, Bulman G and Adesida I 1997 Photoelectrochemical etching of GaN MRS 

Online Proceedings Library Archive 468 

[81]  Usikov A, Helava H, Nikiforov A, Puzyk M, Papchenko B and Makarov Y 2016 

Photoelectrochemical Corrosion of GaN/AlGaN-Based p-n Structures American 

Journal of Applied Sciences 13 845–52 

Page 24 of 28AUTHOR SUBMITTED MANUSCRIPT - JPhysD-122903.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



   
 

   
 

[82]  Chuah L S, Hassan Z and Abu Hassan H 2007 Dark current characteristics of Ni 

contacts on porous AlGaN-based UV photodetector J. Optoelectron. Adv. Mater. 9 

2886–90 

[83]  Kim J, Kim D-U, Lee J, Jeon H, Park Y and Choi Y-S 2009 AlGaN membrane grating 

reflector Appl. Phys. Lett. 95 021102 

[84]  Sharma R, Haberer E D, Meier C, Hu E L and Nakamura S 2005 Vertically oriented 

GaN-based air-gap distributed Bragg reflector structure fabricated using band-gap-

selective photoelectrochemical etching Appl. Phys. Lett. 87 051107 

[85]  Aharonovich I, Woolf A, Russell K J, Zhu T, Niu N, Kappers M J, Oliver R A and Hu 

E L 2013 Low threshold, room-temperature microdisk lasers in the blue spectral range 

Appl. Phys. Lett. 103 021112 

[86]  Radzali R, Hassan Z, Zainal N and Yam F K 2015 Preparation of porous 

InAlGaN/Si(111) by photoelectrochemical etching for high performance hydrogen gas 

sensors at room temperature Sens. Actuator B-Chem. 213 276–84 

[87]  Zhang C, ElAfandy R and Han J 2019 Distributed Bragg Reflectors for GaN-Based 

Vertical-Cavity Surface-Emitting Lasers Applied Sciences 9 1593 

[88]  Butté R, Carlin J-F, Feltin E, Gonschorek M, Nicolay S, Christmann G, Simeonov D, 

Castiglia A, Dorsaz J, Buehlmann H J, Christopoulos S, Hög G B H von, Grundy A J 

D, Mosca M, Pinquier C, Py M A, Demangeot F, Frandon J, Lagoudakis P G, 

Baumberg J J and Grandjean N 2007 Current status of AlInN layers lattice-matched to 

GaN for photonics and electronics J. Phys. D: Appl. Phys. 40 6328–6344 

[89]  Dorsaz J, Carlin J-F, Gradecak S and Ilegems M 2005 Progress in AlInN–GaN Bragg 

reflectors: Application to a microcavity light emitting diode Journal of Applied Physics 

97 084505 

[90]  Mishkat-Ul-Masabih S M, Aragon A A, Monavarian M, Luk T S and Feezell D F 

2019 Electrically injected nonpolar GaN-based VCSELs with lattice-matched 

nanoporous distributed Bragg reflector mirrors Appl. Phys. Express 12 036504 

[91]  Zhou T, Zhang C, ElAfandy R, Yuan G, Deng Z, Xiong K, Chen F-M, Kuo Y-K, Xu 

K and Han J 2019 Thermal transport of nanoporous gallium nitride for photonic 

applications Journal of Applied Physics 125 155106 

[92]  Anderson R, Cohen D, Mehari S, Nakamura S and DenBaars S 2019 Electrical 

injection of a 440nm InGaN laser with lateral confinement by nanoporous-GaN Opt. 

Express, OE 27 22764–9 

[93]  Griffin P H, Patel K, Zhu T, Langford R M, Kamboj V S, Ritchie D A and Oliver R A 

2019 Using FIB-SEM serial block-face imaging to understand birefringence in porous 

GaN DBRs In Draft 

[94]  Smartt R N and Steel W H 1959 Birefringence of Quartz and Calcite J. Opt. Soc. Am., 

JOSA 49 710–2 

Page 25 of 28 AUTHOR SUBMITTED MANUSCRIPT - JPhysD-122903.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



   
 

   
 

[95]  Wu C-J, Wang G-J, Kao C H, Yang Z-J, Chen H, Lin Y-S, Lin C-F and Han J 2019 

Photon-Recycling in Ultraviolet GaN-Based Photodiodes with Porous AlGaN 

Distributed Bragg Reflectors ACS Appl. Nano Mater. 2 5044–8 

[96]  Beh K P, Yam F K, Tan L K, Ng S W, Chin C W and Hassan Z 2013 

Photoelectrochemical Fabrication of Porous GaN and Their Applications in Ultraviolet 

and Ammonia Sensing Jpn. J. Appl. Phys. 52 08JK03 

[97]  Peng F, Qin S-J, Hu L-F, Wang J-Y, Yang J-M, Chen X-Q and Pan G-B 2016 

Electrochemical fabrication and optoelectronic properties of hybrid heterostructure of 

CuPc/porous GaN Chemical Physics Letters 652 6–10 

[98]  Meng R, Ji X, Lou Z, Yang J, Zhang Y, Zhang Z, Bi W, Wang J and Wei T 2019 

High-performance nanoporous-GaN metal-insulator-semiconductor ultraviolet 

photodetectors with a thermal oxidized Ga2O3 layer Opt. Lett., OL 44 2197–200 

[99]  Zimmermann T, Neuburger M, Benkart P, Hernandez-Guillen F J, Pietzka C, Kunze 

M, Daumiller I, Dadgar A, Krost A and Kohn E 2006 Piezoelectric GaN sensor 

structures IEEE Electron Device Letters 27 309–12 

[100]  Huang C-T, Song J, Lee W-F, Ding Y, Gao Z, Hao Y, Chen L-J and Wang Z L 2010 

GaN Nanowire Arrays for High-Output Nanogenerators J. Am. Chem. Soc. 132 4766–

71 

[101]  Kang J-H, Jeong D K and Ryu S-W 2017 Transparent, Flexible Piezoelectric 

Nanogenerator Based on GaN Membrane Using Electrochemical Lift-Off ACS Appl. 

Mater. Interfaces 9 10637–42 

[102]  Kang J-H, Jeong D K, Ha J-S, Lee J K and Ryu S-W 2017 Enhanced performance of a 

GaN piezoelectric nanogenerator with an embedded nanoporous layer via the 

suppressed carrier screening effect Semicond. Sci. Technol. 32 025001 

[103]  Waseem A, Jeong D K, Johar M A, Kang J-H, Ha J-S, Lee J K and Ryu S-W 2018 

Enhanced piezoelectric output of NiO/nanoporous GaN by suppression of internal 

carrier screening Semicond. Sci. Technol. 33 065007 

[104]  Wright J S, Lim W, Norton D P, Pearton S J, Ren F, Johnson J L and Ural A 2010 

Nitride and oxide semiconductor nanostructured hydrogen gas sensors Semicond. Sci. 

Technol. 25 024002 

[105]  Zhang M-R, Chen X-Q and Pan G-B 2017 Electrosynthesis of gold 

nanoparticles/porous GaN electrode for non-enzymatic hydrogen peroxide detection 

Sensors and Actuators B: Chemical 240 142–7 

[106]  Zhang M, Liu Y, Wang J and Tang J 2019 Photodeposition of palladium nanoparticles 

on a porous gallium nitride electrode for nonenzymatic electrochemical sensing of 

glucose Microchim Acta 186 83 

[107]  Zhang M-R and Pan G-B 2017 Porous GaN electrode for anodic stripping 

voltammetry of silver(I) Talanta 165 540–4 

Page 26 of 28AUTHOR SUBMITTED MANUSCRIPT - JPhysD-122903.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



   
 

   
 

[108]  Maeda K and Domen K 2010 Photocatalytic Water Splitting: Recent Progress and 

Future Challenges J. Phys. Chem. Lett. 1 2655–61 

[109]  Cao D, Xiao H, Fang J, Liu J, Gao Q, Liu X and Ma J 2017 Photoelectrochemical 

water splitting on nanoporous GaN thin films for energy conversion under visible light 

Mater. Res. Express 4 015019 

[110]  Alvi N H, Soto Rodriguez P E D, Kumar P, Gómez V J, Aseev P, Alvi A H, Alvi M 

A, Willander M and Nötzel R 2014 Photoelectrochemical water splitting and hydrogen 

generation by a spontaneously formed InGaN nanowall network Appl. Phys. Lett. 104 

223104 

[111]  Ryu S-W, Zhang Y, Leung B, Yerino C and Han J 2012 Improved 

photoelectrochemical water splitting efficiency of nanoporous GaN photoanode 

Semicond. Sci. Technol. 27 015014 

[112]  Yang C, Xi X, Yu Z, Cao H, Li J, Lin S, Ma Z and Zhao L 2018 Light Modulation 

and Water Splitting Enhancement Using a Composite Porous GaN Structure ACS Appl. 

Mater. Interfaces 10 5492–7 

[113]  Benton J, Bai J and Wang T 2014 Utilisation of GaN and InGaN/GaN with 

nanoporous structures for water splitting Appl. Phys. Lett. 105 223902 

[114]  Chhajed S, Lee W, Cho J, Schubert E F and Kim J K 2011 Strong light extraction 

enhancement in GaInN light-emitting diodes by using self-organized nanoscale 

patterning of p-type GaN Appl. Phys. Lett. 98 071102 

[115]  Mynbaeva M, Titkov A, Kryzhanovski A, Kotousova I, Zubrilov A S, Ratnikov V V, 

Davydov V Y, Kuznetsov N I, Mynbaev K, Tsvetkov D V, Stepanov S, Cherenkov A 

and Dmitriev V A 1999 Strain relaxation in GaN layers grown on porous GaN 

sublayers Materials Research Society Internet Journal of Nitride Semiconductor 

Research 4 e14 

[116]  Cao D, Zhao C, Yang X and Xiao H 2019 Fabrication and improved properties of 

InGaN-based LED with multilayer GaN/nanocavity structure Journal of Alloys and 

Compounds 806 487–91 

[117]  Soh C B, Chow S Y, Tan L Y, Hartono H, Liu W and Chua S J 2008 Enhanced 

luminescence efficiency due to carrier localization in InGaN/GaN heterostructures 

grown on nanoporous GaN templates Appl. Phys. Lett. 93 173107 

[118]  Ueda T, Ishida M and Yuri M 2011 Separation of Thin GaN from Sapphire by Laser 

Lift-Off Technique Jpn. J. Appl. Phys. 50 041001 

[119]  Rajan A, Rogers D J, Ton-That C, Zhu L, Phillips M R, Sundaram S, Gautier S, 

Moudakir T, El-Gmili Y, Ougazzaden A, Sandana V E, Teherani F H, Bove P, Prior K 

A, Djebbour Z, McClintock R and Razeghi M 2016 Wafer-scale epitaxial lift-off of 

optoelectronic grade GaN from a GaN substrate using a sacrificial ZnO interlayer J. 

Phys. D: Appl. Phys. 49 315105 

Page 27 of 28 AUTHOR SUBMITTED MANUSCRIPT - JPhysD-122903.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



   
 

   
 

[120]  Zhang Y, Sun Q, Leung B, Simon J, Lee M L and Han J 2011 The fabrication of 

large-area, free-standing GaN by a novel nanoetching process Nanotechnology 22 

045603 

[121]  Yang X, Chen Z, Cao D, Zhao C, Shen L, Luan C, Pang Z, Liu J, Ma J and Xiao H 

2019 Large-area, liftoff nanoporous GaN distributed Bragg reflectors: Fabrication and 

application Applied Surface Science 

[122]  Hwang D, Yonkee B P, Addin B S, Farrell R M, Nakamura S, Speck J S and 

DenBaars S 2016 Photoelectrochemical liftoff of LEDs grown on freestanding c-plane 

GaN substrates Opt. Express, OE 24 22875–80 

 

Page 28 of 28AUTHOR SUBMITTED MANUSCRIPT - JPhysD-122903.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t


