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Abstract 

The computational cost of using discrete element method (DEM) simulations for particulate 

processes with fine and cohesive particles is enormously large. To overcome this limitation, 

various coarse-grain DEM models have been developed which use a smaller number of larger 

sized particles. Although the computational cost is significantly reduced, the accuracy of the 

simulations depends on the underlying scaling law. We propose a scaling of the Johnson-

Kendall-Roberts (JKR) contact model for adhesive viscoelastic particles. A scaling law using 

a single Bond number or Cohesion number criterion is insufficient to keep the motion of the 

coarse-grained particles the same as the original particles. The scaling law in this work is 

developed based on mass, momentum and energy conservation, which achieves good 

consistency between the kinematic characteristics of the coarse-grained and original particles. 

The simulated effective coefficients of restitution were compared for a range of particle-wall 

impact velocities and validated against experimental data. 

Keywords: Discrete element method; coarse-grain model; JKR contact model; cohesive 
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1. Introduction 

The discrete element method (DEM) has become an important tool to study granular flows in 

numerous fields of application, including pharmaceutical, chemical, food, ceramic and 

metallurgical powder processing (Zhu et al., 2008; Guo and Curtis, 2015; Sakai, 2016). In DEM 

simulations, the motion of each particle is calculated using Newton’s second law of motion and 

therefore detailed contact information relating to particle-particle and particle-geometry is 

available to facilitate the understanding of the underlying mechanisms in various processes. 

However, DEM is a very computationally expensive method for modelling realistic industrial 

processes since of order tens of thousands to millions of particles are required to be simulated  

to correctly describe such systems, which requires huge computational resources.  

To overcome the limitation on the number of simulated particles, researchers have developed 

a variety of the so-called coarse-grain DEM models (Sakai and Koshizuka, 2008; Lu and 

Benyahia, 2018). In the coarse-grain DEM, large-sized coarse-grained particles are introduced 

to represent a group of the original particles in order to reduce the total number of the simulated 

particles in the system. The concept of a coarse-grained particle is also referred to as an 

“imaginary large particle”, “representative particle” or “parcel” in the literature (Kazari et al., 

1995; Radl et al., 2011; Mokhtar et al., 2012; Liu et al., 2013; Chen and Wang, 2014; Lu et al., 

2014). Although the computational cost is significantly reduced, the accuracy and reliability of 

the coarse grain DEM simulations depend crucially on the underlying scaling laws. Utilizing a 

scaled-up particle size inevitably changes the kinematics of the particles and thus certain 

material properties must be modified to compensate for this adjustment. Several scaling laws 

have been suggested for the linear spring contact model, and some other non-cohesive contact 

models, while there have been many fewer attempts to systematically study cohesive systems 

(Sakai et al., 2012; Nasato et al., 2015; Thakur et al., 2016). It is anticipated that the scaling 

law will become more critical when the simulated materials are cohesive since particle size, 

material stiffness and adhesive properties will considerably affect the particle interaction 

behaviour (Hærvig et al., 2017). 

The Johnson-Kendall-Roberts (JKR) and Derjaguin-Muller-Toporov (DMT) interactions are 

two commonly used elastic adhesive normal contact models employed in DEM simulations for 

smooth spherical particles (Johnson et al., 1971; Derjaguin et al., 1975). The JKR theory takes 

the adhesive force as acting within the contact area and contributing to the deformation of the 

contacting surfaces, so a larger contact area than that predicted by Hertz theory is obtained. 
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Consequently, the JKR theory is appropriate for soft materials with moderate and high surface 

energy. JKR-based DEM simulations have been widely used to investigate fine powder mixing, 

agglomeration and breakage of agglomerates (Kempton et al., 2012; Yang et al., 2013; 

Alizadeh et al., 2018; Chen et al., 2019). Additionally, DMT-based DEM simulations have 

been applied for studying the entrainment and dispersion of  hard and low surface energy 

materials (van Wachem et al., 2017).  

Table 1 lists a summary of the typical coarse-grained models available in the published 

literature. It can be seen that most of the early studies were developed for non-cohesive gas-

solid fluidization systems and used a simple linear spring-dashpot model or Hertzian model. It 

should be noted that correctly modelling the interphase interaction forces is very important for 

the simulation of gas-solid systems. Hence, most previous research focused on appropriately 

scaling the interphase interaction forces, while fewer efforts were carried out to consider the 

scaling of the inter-particles interaction forces. Lu et al. (2014)  proposed an equation to scale 

the restitution coefficient of the coarse-grained system based on the kinetic theory of granular 

flows. However, the equation should be used with caution, especially when the calculated 

restitution coefficient is very small. Nasato et al. (2015) found that the dimensionless overlap-

based scaling law failed for modelling cohesive materials since no predictive behaviour could 

be obtained for a shear test simulation with the JKR model. Behjani et al. (2017) developed a 

Cohesion number-based scaling for the JKR model, however it is not clear how the contact 

details on the particle scale will change if the proposed scaling law is applied. In this work, we 

demonstrate how the contact stiffness, viscoelastic adhesive forces and torques will be altered 

after the particle size is enlarged in the JKR model. A scaling law is then developed on the 

contact level to achieve a consistency between the kinematics of the coarse-grained particle 

and those of the original particles. The contact duration, maximum overlap and the effective 

coefficient of restitution of particle-particle and particle-wall impacts are studied and used to 

verify the proposed scaling law, which is applicable to both JKR and DMT contact interactions. 
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Table 1 Summary of some typical coarse-grained models available in the published literature 

Authors Contact model Scaling method  System studied 

Kuwagi et al. (2004); 

Kuwagi et al., (2009) 

Linear spring-

dashpot and van 

der Waals model 

Similar particle 

assembly 

Gas-solid fluidized 

bed 

Washino et al. (2007) Linear spring-

dashpot 

Similarity analysis Gas-solid fluidized 

bed 

Link et al. (2009) and 

Sutkar et al. (2013) 

Linear spring-

dashpot 

Archimedes and 

Reynolds number-

based scaling 

Gas-solid spout 

fluidized bed 

Sakai and Koshizuka 

(2009) (Sakai and 

Koshizuka, 2008; 

Sakai et al., 2010; 

Sakai et al., 2012; 

Sakai et al., 2014) 

Linear spring-

dashpot and van 

der Waals model 

Force balance and 

rotational energy 

conservation 

Gas-solid pneumatic 

conveying and 

fluidized bed 

Bierwisch et al. 

(2009) 

Hertzian and JKR 

model 

Dimensional 

analysis 

Cavity filling 

Mokhtar et al. (2012) Linear spring-

dashpot 

Similar particle 

assembly 

Gas-solid fluidized 

bed 

Lu et al. (2014) Linear spring-

dashpot 

EMMS-model based 

scaling 

Gas-solid fluidized 

bed 

Nasato et al. (2015) Linear spring, 

Hertzian and JKR 

model 

Dimensionless 

overlap-based 

scaling 

Simple shear test 

Thakur et al. (2016) Hertz–Mindlin and 

Edinburgh elastic-

plastic adhesive 

model 

Stiffness scales 

linearly with particle 

size; adhesion force 

scales with the 

square of particle 

size 

Powder confined 

compression. 

Chu et al. (2016) Hertzian model Velocity and 

momentum 

conservation 

Dense medium 

cyclone 
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Behjani et al. (2017) JKR model Dimensionless 

Cohesion number-

based scaling 

Continuous drum 

granulator 

Tausendschön et al. 

(2020) 

Liquid bridge, 

capillary force 

model and Van der 

Waals model 

Dimensionless 

overlap-based 

scaling; Bond 

number-based 

scaling; Stress-based 

scaling 

Gas-solid 

fluidization in a 

periodic domain 

 

2. Coarse-grain JKR model 

2.1 Preliminary analysis 

In a coarse-grain model, the coarse-grained particle size is set to be several times larger than 

the original particle size to decrease the number of particles to be tracked in a system. The ratio 

between the diameter of a coarse-grained particle and an original particle is referred to as the 

coarse-grain ratio k here,  

 

 𝑘 = 𝑑𝑝,𝐶𝐺 𝑑𝑝,𝑜⁄ , (1) 

where ,p CGd  is the diameter of the coarse-grained particle and ,p od  is the diameter of the 

original particle. The total mass of the coarse-grained particles in the system can be calculated 

as follows, 

 

 𝑚𝑠𝑦𝑠,𝐶𝐺 = 𝑁𝑝,𝐶𝐺𝑚𝑝,𝐶𝐺 =
𝜋

6
𝑁𝑝,𝐶𝐺𝜌𝑝,𝐶𝐺𝑑𝑝,𝐶𝐺

3  (2) 

Since we would like to decrease the number of particles to be tracked, the density of the coarse-

grained particle should be the same as that of the original system to ensure mass conservation 

for the whole system. That is, 

 𝑚𝑠𝑦𝑠,𝑜 = 𝑚𝑠𝑦𝑠,𝐶𝐺 and  𝑁𝑝,𝑜 = 𝑘3𝑁𝑝,𝐶𝐺 ⇒  𝜌𝑝,𝑜 = 𝜌𝑝,𝐶𝐺 (3) 

In order to make the coarse-grained system comparable to the original system, it is necessary 

to guaranty that the total momentum is the same for both systems, which gives, 
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∑ 𝑚𝑝,𝐶𝐺,𝑖𝒖𝑝,𝐶𝐺,𝑖

𝑁𝑝,𝐶𝐺

𝑖=1

= ∑ 𝑚𝑝,𝑜,𝑖𝒖𝑝,𝑜,𝑖

𝑁𝑝,𝑜

𝑖=1

 

(4) 

Following Sakai and Koshizuka (2009), it is assumed in this work that the translational motion 

of the coarse-grained particle is equivalent to be the average of that of the original particles. 

The momentum balance equation for the coarse-grained particles can be calculated as, 

 
𝑚𝑝,𝐶𝐺

𝑑𝒖𝑝,𝐶𝐺

𝑑𝑡
= 𝑚𝑝,𝐶𝐺𝒈 + 𝑭𝑐𝑜𝑛𝑡𝑎𝑐𝑡,𝐶𝐺 

(5) 

Combined with the above analysis ( 3

, ,p CG p om k m= and , ,p CG p o=u u ), it can be seen that the 

coarse-grained gravitational force, inter-particle contact force are 3k  times of those of the 

original particles. That is, 

 𝑚𝑝,𝐶𝐺𝒈 = 𝑘3𝑚𝑝,𝑜𝒈 (6) 

 𝑭𝑐𝑜𝑛𝑡𝑎𝑐𝑡,𝐶𝐺 = 𝑘3𝑭𝑐𝑜𝑛𝑡𝑎𝑐𝑡,𝑜 (7) 

Based on the mass conservation, Eq. 6 is consistent if the density of the coarse-grained particle 

is kept the same as that of the original particle. The coarse-grained particle contact force needs 

to be carefully considered because it is also related to the energy conservation of the system. 

The energy of the coarse-grained system may be dissipated through friction, inelastic collision 

and work of adhesive peeling.  

2.2 JKR contact model 

According to JKR theory (Johnson et al., 1971), two colliding surfaces jump into contact at 

point A (shown in Figure 1) where the normal force immediately drops into a certain value, 

𝐹𝐴 = − 8 9⁄ 𝐹𝐶 , due to van der Waals attractive forces. The velocity of the sphere is then 

reduced gradually, and the deformation is increased accordingly. The rise of the deformation 

increases the repulsive force between spheres and the contact force reaches equilibrium at point 

B. When the total kinetic energy is transferred into the elastic energy of the sphere, the contact 

deformation reaches a maximum at point D where the repulsive force is also largest. At this 

point, the compression process is terminated, and the unloading process begins. The normal 

displacement then returns to zero overlap at point A where all stored kinetic energy is recovered. 

However, the spheres remain sticking to each other at this point. As the spheres continue to 

move apart, the attractive force will reach its maximum value at point C. The force at this point 
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𝐹𝐶 is called the pull-off force in the JKR model. The contact breaks until the point of separation 

at S.  Johnson et al. (1971) showed the contact force could be calculated as a function of contact 

area given as, 

 
𝐹𝑛 =

4𝐸∗𝑎3

3𝑅∗
− √16𝜋𝛾𝐸∗𝑎3 

(8) 

where 𝐸∗ is the effective Young’s modulus given by 
2 2

1 2

*

1 2

1 1 1

E E E

 − −
= +   where iE  and i  

(i=1,2) denote Young’s moduli and Poisson’s ratios of the contacting spheres, respectively, 𝛾 

is the surface energy and 𝑅∗ is the effective radius given by 
*

1 2

1 1 1

R R R
= +  where 1R  and 

2R  

are the radii of the two spheres, respectively.  

 

Figure 1. JKR contact force-displacement relationship. Point A: Contact forms and loading begins. Point B: 

equilibrium position where force is zero. Point D: maximum deformation and unloading begins.  Point C: 

maximum attractive force (pull-off force). Point S: separation point where the contact breaks. Ws: work of 

adhesive peeling. The relative positions of two colliding spheres are shown in purple. 

The contact radius 𝑎 can be related to the overlap between particles 𝛿, which is given as follows, 
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𝛿 =
𝑎2

𝑅∗
− √

4𝜋𝛾𝑎

𝐸∗
 

(9) 

The forces, overlaps and contact radii at points A, B, C, S can be calculated analytically. They 

are provided in Table 2.  

Table 2. Forces, overlaps and contact radii at points C, S, A, B 

Point  Force Overlap Contact radius 

C −3𝜋𝛾𝑅∗ 
−0.57 (

𝜋2𝛾2𝑅∗

𝐸∗2
)

1 3⁄

 

 

(
9𝜋𝛾𝑅∗2

4𝐸∗
)

1 3⁄

 

 

S −1.67𝜋𝛾𝑅∗ 
−1.19 (

𝜋2𝛾2𝑅∗

𝐸∗2
)

1 3⁄

 

 

(
𝜋𝛾𝑅∗2

4𝐸∗
)

1 3⁄

 

 

A −2.67𝜋𝛾𝑅∗ 0 

 

(
4𝜋𝛾𝑅∗2

𝐸∗
)

1 3⁄

 

 

B 0 
1.44 (

𝜋2𝛾2𝑅∗

𝐸∗2
)

1 3⁄

 

 

(
9𝜋𝛾𝑅∗2

𝐸∗
)

1 3⁄

 

 

 

According to Eq. 7 in the preliminary analysis and observing the force formula of pull-off force 

𝑭𝐶 given in Table 2, the scaling ratio for the surface energy can be derived. 

 
𝑭𝐶,𝐶𝐺 = 𝑘3𝑭𝐶,𝑜 ⇒ 𝛾𝐶𝐺 = 𝑘3𝛾0

𝑅0

𝑅𝐶𝐺
= 𝑘2𝛾0 

(10) 

It can be seen from Table 2 that once the surface energy is scaled, the forces at points S, A, B 

are all scaled proportionally. Nevertheless, scaling surface energy ensures that some attractive 

parts of the contact force are correctly scaled. As shown in Eq. 8, the contact force is also a 

function of the effective Young’s modulus and contact radius. The scaling law for the effective 
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Young’s modulus is difficult to derive directly from Eq.8 but can be derived from the 

consideration of energy conservation for the system. Since the JKR loading and unloading 

paths do not coincide, the work indicated by the shadowed area in Figure 1 is lost. This energy 

dissipation refers to as the work required to pull two adhered spheres apart to create new 

surfaces, which is called the work of adhesive peeling (Yin, 1992). This work of adhesive 

peeling can be quantified by calculating the area above the curve ACS and is given as follows, 

 

𝑊𝑠 = ∫ 𝐹𝑛𝑑𝛿

𝛿𝑠

𝛿𝐴

= ∫ (
4𝐸∗𝑎3

3𝑅∗
− 4√𝜋𝛾𝐸∗𝑎3) (

2𝑎

𝑅∗
− √

𝜋𝛾

𝐸∗𝑎
) 𝑑𝑎

𝑎𝑠

𝑎𝐴

  =22.5 (
𝛾5𝑅∗4

𝐸∗2
)

1 3⁄

= 0.936𝐹𝑐𝛿𝑠

 

(11) 

If there are no energy losses due to elastic wave propagation and plastic deformation, the only 

work dissipated during a collision is the work of adhesive peeling. By applying the energy 

balances for the coarse-grained particle collision process and that of the original particles, we 

may write, 

 1

2
𝑚𝑜

∗𝑢𝑟,𝑜
2 =

1

2
𝑚𝑜

∗𝑢𝑖,𝑜
2 − 𝑊𝑆,𝑜 

(12) 

 1

2
𝑚𝐶𝐺

∗𝑢𝑟,𝐶𝐺
2 =

1

2
𝑚𝐶𝐺

∗𝑢𝑖,𝐶𝐺
2 − 𝑊𝑆,𝐶𝐺 

(13) 

 where iu  is the impact velocity and ru  is the rebound velocity. It can be seen that the work of 

adhesive peeling needs to be scaled in order to keep the rebound velocity of coarse-grained 

particle the same as that of original particle, i.e.  

 𝑊𝑆,𝐶𝐺 = 𝑘3𝑊𝑆,𝑜 (14) 

Substituting the formula of the work of adhesive peeling (Eq. 11) into Eq.14, the scaling ratio 

of the effective Young’s modulus can be derived as follows, 

 𝐸𝐶𝐺
∗ = 𝑘2.5𝐸𝑜

∗ (15) 

Recalling that the overlap and contact radius are both functions of the material properties (as 

shown in Table 2), the change of the contact radius and overlap after coarse-graining can be 

derived. The following relationships are obtained, 
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 𝑎𝐶𝐺 = 𝑘0.5𝑎𝑜 (16) 

 𝛿𝐶𝐺 = 𝛿𝑜 (17) 

A previous attempt at establishing a scaling law for the JKR model assumed that the contact 

overlap is scaled proportionally to the particle size after coarse-graining (Nasato et al., 2015). 

However, they found the resulting relationship failed to achieve accurate predictions for shear 

tests of cohesive materials. The scaling law derived in this work suggests that the overlap 

should stay the same after coarse-graining while the contact radius is increased by a factor of 

 𝑘0.5 during the contact. Substituting the coarse-grained contact radius and other variables into 

the contact force formula (Eq. 8), we can double-check that the contact force is indeed scaled 

by a factor of 𝑘3 in both the attractive and repulsive processes. Since the contact force is scaled 

by  𝑘3 while the contact overlap is invariant, we can infer that the contact stiffness is scaled 

by 𝑘3 . In fact, both the normal and tangential stiffnesses are scaled by 𝑘3  , which can be 

concluded from the following formula (Mindlin and Deresiewicz, 1953; Thornton and Yin, 

1991). 

 
𝑘𝑛 =

𝑑𝐹𝑛

𝑑𝛿
= 2𝐸∗𝑎

3 − 3√𝑎𝐶 𝑎⁄

3 − √𝑎𝐶 𝑎⁄
 

(18) 

 𝑘𝑡 = 8𝐺∗𝑎 (19) 

where 
*G is the effective shear modulus given by 

1

𝐺∗ =
2−𝜈1

𝐺1
+

2−𝜈2

𝐺2
. If the Poisson ratio of the 

coarse-grained particles is equal to that of the original particles, the effective shear modulus is 

scaled by 𝑘2.5. Furthermore, if dashpots are introduced as contact damping to model the energy 

dissipation due to viscous deformation in the system, the scaling ratio for the coefficient of 

restitution must be checked. The damping force in normal direction can be calculated as follows, 

 𝐹𝑑 = 𝜂𝑛𝒖𝑛,𝑖𝑗 (20) 

 𝜂𝑛 = −2√5 6⁄ 𝛽√𝑆𝑛𝑚∗ (21) 

 𝑆𝑛 = 2𝐸∗𝑎 (22) 

 
𝛽 =

𝑙𝑛𝑒

√𝑙𝑛2𝑒 + 𝜋2
 

(23) 
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It can be seen from the following derivation that the coefficient of restitution does not need to 

be scaled in the coarse-grained system.   

 𝐹𝑑,𝐶𝐺 = 𝑘3𝐹𝑑,𝑜 ⇒ 𝜂𝑛,𝐶𝐺 = 𝑘3𝜂𝑛,𝑜 ⇒ 𝛽𝐶𝐺 = 𝛽𝑜 ⇒ 𝑒𝐶𝐺 = 𝑒𝑜 (24) 

As the effective Young’s modulus is properly scaled, the spring part of the tangential force is 

also scaled. Through the Coulomb law /t nF F =  , it can be seen that the friction coefficient 

does not need to be scaled in the coarse-grained system because both normal and tangential 

forces have been scaled at the same time.  Similarly, if a rolling friction model is used in the 

simulation, the rolling friction coefficient does not need to be scaled in the coarse-grained 

system. So far, we have all the required scaling laws for the material properties in the coarse-

grained system. Table 3 lists a summary of the scaling ratios for the material properties in the 

coarse-grained system.  

Table 3. Scaling laws for the coarse-grain JKR contact model 

Property  Scaling law 

Radius 𝑅𝐶𝐺 𝑅𝑜⁄ = 𝑘 

Density 𝜌𝐶𝐺 𝜌𝑜⁄ = 1 

Surface energy 𝛾𝐶𝐺 𝛾𝑜⁄ = 𝑘2 

Young’s modulus 𝐸𝐶𝐺 𝐸𝑜⁄ = 𝑘2.5 

Poisson’s ratio 𝜈𝐶𝐺 𝜈𝑜⁄ = 1 

Friction coefficient 𝜇𝐶𝐺 𝜇𝑜⁄ = 1 

Restitution coefficient 𝑒𝐶𝐺 𝑒𝑜⁄ = 1 

 

3. Simulation results  

As shown in Figure 2, three cases were designed to test the proposed scaling law, i.e. head-on 

collision of two particles with different sizes; particle-wall oblique impact and particle-wall 

normal impact. The first case was used to verify the applicability of the proposed scaling law 

for a size-disperse system. The second case was used to test if the tangential force and torque 

were properly scaled as expected. Experimental data of the third case will be used to validate 



12 

 

the feasibility of the coarse-graining law to predict the effective coefficient of restitution for 

particle and wall impacts under a variety of collision velocities. The material properties of the 

simulated cases are listed in Table 4.  

 

Figure 2. Diagram of the simulation cases: (a) Head-on impact of unequal-sized particles (b) Oblique impact of 

a particle with a plane surface (c) Normal impact of a particle with a plane surface.  

Table 4. The simulation parameters of the modeling cases 

Variable Case a Case b Case c 

Particle size (m) 5×10─4; 1×10─3 1.27×10─6 1.27×10─6 

Poisson ratio (-) 0.3 0.3 0.3 

Young’s modulus (MPa) 1 140; 98×103 140; 98×103 

Surface energy (J m─2) 0.5 0.02 0.021 

Restitution coefficient (-) 1.0 1.0 0.97 

Friction coefficient (-) 0.0 0.3 0.3 

Impact velocity (m s─1) 0.4 (─5, 0, ─7.5) 1~20 

 

Figure 3 shows the simulation results of the first test case. It can be seen that the contact 

mechanics of the coarse-grained particles are in excellent agreement with those of the original 

particles if the scaling law in this work is applied. The time evolution of post-collision 

velocities and forces of the coarse-grain system match well with those of the original system. 

However, the behaviours of coarse-grained particles simulated by using a Bond number scaling 

criterion and Cohesion number scaling criterion result in significant deviations compared with 

those of the original particles. Note that the Bond number here is defined as the ratio of 
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maximum attractive force and the gravity force (Thakur et al., 2016). The Cohesion number is 

defined as the ratio of work of adhesive peeling over the particle’s gravitational potential 

energy with regards to a characteristic height equal to particle equivalent radius (Behjani et al., 

2017), given as 𝐶𝑜ℎ =
1

𝜌𝑔
(

Γ5

𝐸∗2𝑅∗8)
1/3

. Figure 3a shows the velocity evolution of the particle in 

the left-hand side (the smaller particle shown in Figure 2a), in which all the scaling laws predict 

a similar trend of the particle velocity. When two particles jump into collision, the contact force 

is attractive which causes a slight increase of the particle velocity. As the collision continues, 

the kinetic energy of particle continues to transfer into the elastic strain energy until the particle 

velocity reaches zero. The unloading process then begins, and particle velocity gradually 

increases due to the release of the strain energy. The post-collision velocity of the left-hand 

side particle is larger than the pre-collision because it gains part of momentum from the more 

massive right-hand side particle. The post-collision velocity is underestimated by the Bond 

number scaling criterion due to the inappropriate scaling of the contact force as shown in Figure 

3b. It is noted that the contact duration is overestimated by the Bond number scaling criterion 

which also results in a more considerable maximum contact overlap during the collision, as 

shown in Figure 3c. This is because the Bond number scaling criterion fails to properly scale 

Young’s modulus, causing a relative smaller contact stiffness, as shown in Figure 3d. 

Meanwhile, it can also be seen from Figure 3d that the whole JKR contact force-displacement 

curve is appropriately scaled using the proposed scaling law. In general, The Cohesion number 

scaling criterion shows improved results than the Bond number scaling criterion but still 

predicts apparent differences in the microscopic contact details such as the contact duration 

and maximum deformation. 
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Figure 3. Comparisons of the contact mechanics for head-on collision of coarse-grained particles simulated 

using different scaling laws. (a) The time evolution of the velocity of the particle (b) The time evolution of the 

normal force normalized by the cut-off force (c) The time evolution of the contact overlap (d) The force-

displacement relations extracted from the simulations. 

Figure 4 shows the simulation results of the particle-wall oblique impact case using the scaling 

law developed in this work. It can be seen that there is good consistency between the coarse-

grained system and the original system for contact mechanics. The tangential stiffness, 

tangential force, rotational velocity and particle velocity are scaled adequately as expected. 

Note that the current scaling law ensures the translational velocity of the coarse-grained particle 

is invariant compared with that of the original particle. The rotational velocity at the particle 

centroid is reduced k times as the coarse-graining ratio increases k times, which is to ensure the 

tangential overlap between colliding particles is invariant and the rotational kinetic energy is 

appropriately scaled. This will be further illustrated in the discussion section. 
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Figure 4. Contact mechanics of particle-wall oblique impact simulated by the scaling law developed in this 

work. (a) The time evolution of the tangential contact stiffness (b) The time evolution of the tangential force 

normalized by the cut-off force (c) The time evolution of particle rotational velocity (d) The time evolution of 

particle translational velocity. 

Figure 5 shows the simulation results of particle-wall normal collision against a range of impact 

velocities in which the coarse-grained simulations using the proposed scaling law all achieve a 

good match with the experimental data of Dahneke (1975). The decrease of the effective 

coefficient of restitution at low impact velocity is mainly due to the energy loss caused by the 

work of adhesive peeling. As shown in Eq. 11, the work of adhesive peeling is fixed for specific 

material properties and independent of the impact velocity. The significance of this part of 

energy loss becomes smaller as the particle kinetic energy becomes larger. Therefore, it reaches 

a plateau when the impact velocity larger than 10 m s−1. The plateau of the effective coefficient 

of restitution at high impact velocities depends on the damping coefficient of the dashpot. The 

consistency of predictions between different coarse-graining ratios means that the energy due 

to the work of adhesive peeling and viscous damping are correctly scaled in the coarse-grained 

simulation. Furthermore, the good agreement between the coarse-grained simulations and 

experiential results indicates that the material parameters and collision properties of small fine 

particles could be deduced from experimental measurements on relatively large particles by 

assuming the scaling properties of the JKR model. Finally, we also checked the maximum 
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overlaps, contact durations and energy losses as a function of impact velocity under different 

coarse-grained ratios. We note that there is an excellent agreement between those coarse-

grained simulations and results are not shown here for brevity. 

 

Figure 5. Comparisons between the coarse-grain simulations and experimental results by Dahneke (1975) with 

spherical particle colliding with a plane wall. 

4. Discussion 

In the above analysis, the translational velocity of the coarse-grained particle is assumed to 

agree with that of the original particle. This leads to the relative approach between contacting 

coarse-grained particle maintains the same as that of the original particle. The contact stiffness 

and contact forces are scaled as 𝑘3 and the contact torques are scaled as 𝑘4. As far as the 

rational motion is concerned, the coarse-grained particle angular velocity is scaled as 𝑘−1 since 

the moment of inertia (𝐼)  is scaled as  𝑘5 . The scaling of the angular velocity makes the 

rotational kinetic energy (
1

2
𝐼𝛚2) between the coarse-grain particle and the group of original 

particles agree. On the other hand, it also makes the translational velocity of the coarse particle 

at the contact point (𝐯𝑐 = 𝐯𝑖𝑗 + 𝛚𝑖 × 𝐑𝑖𝑐) agree with that of the original particle. This ensures 

that the tangential overlap is correctly scaled during the collision.  

 𝑑𝝎𝑝,𝐶𝐺

𝑑𝑡
=

𝑹𝑝,𝐶𝐺 × 𝑭𝑡,𝐶𝐺

𝐼𝐶𝐺
= 𝑘−1

𝑑𝝎𝑝,𝑜

𝑑𝑡
 

(25) 

As presented in the simulation results of the first case, a scaling law using the Bond number 

criterion fails to reproduce the kinematics of the original particles despite the fact that it is 

usually used in the scaling simulations of cohesive materials (Thakur et al., 2016). The Bond 
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number is defined as the ratio of maximum attractive force and the gravity force. For the JKR 

model, it gives, 

 
𝐵𝑜 =

𝐹𝐶

𝑚𝑔
=

3𝜋𝛾𝑅∗

𝑚𝑔
= 2.25

𝛾

𝜌𝑔𝑅∗2
 

(26) 

It can be verified that the Bond number is invariant after coarse-graining by the scaling law 

proposed in this work. The Bond number only appropriately scales the ratio of surface energy 

to particle size.  Behjani et al. (2017) argued that the Bond number does not include Young’s 

modulus to account for deformation and they suggested a dimensionless number based on the 

ratio of work of adhesive peeling over the particle’s gravitational potential energy with regards 

to a characteristic height equal to particle equivalent radius.  

 
𝐶𝑜ℎ =

1

𝜌𝑔
(

Γ5

𝐸∗2𝑅∗8
)

1/3

 
(27) 

where Γ is the interfacial energy and Γ = 2γ for an interaction of the same material. However, 

it can be verified that the Cohesion number defined in this form is not invariant if the scaling 

law proposed in this work is substituted into Eq.27.  Therefore, it cannot ensure that the 

kinematics of coarse-grained particles agree with those of the original particles on the 

microscopic scale, which is confirmed in the particle head-on collision simulation results. In 

fact, if the separation distance of the adhesive peeling (from points A to S) is used for the 

characteristic height of gravitational potential energy, the Cohesion number reduced to a 

similar form of the Bond number and becomes scale-invariant.  

 
𝐶𝑜ℎ =

𝑊𝑠

𝑊𝑔
=

0.9355𝐹𝑐𝛿𝑠

𝑚∗𝑔𝛿𝑠
=

0.9355 × 3𝜋𝛾𝑅∗

4
3 𝜋𝑅∗3𝜌𝑔

= 2.1
𝛾

𝜌𝑔𝑅∗2
 

(28) 

Another simple yet effective test of the validity of a scaling law is whether or not it is able to 

correctly predict the sticking/rebounding problem of fine particles after coarse-graining. The 

collision-sticking phenomenon among fine particles exists in a variety of areas of engineering, 

biology and environmental sciences. The question of whether a collision may result in sticking 

or rebounding is of importance for the formation of particle agglomerates or deposits. When 

the initial kinetic energy is less than the work of adhesive peeling in the JKR model, the two 

collision particles will adhere. The critical sticking velocity can be obtained analytically in the 
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JKR model and given as 𝑉𝑠𝑡𝑖𝑐𝑘 = √
45

𝑚∗ (
𝛾5𝑅∗4

𝐸∗2 )
1 6⁄

. It can be seen that using only a Bond number 

or either form of Cohesion number as the scaling law is not enough to predict the critical 

sticking velocity after coarse-graining. The critical sticking velocity is invariant if the scaling 

law of this work is applied, which is a significant advantage over the other approaches. From 

a practical point of view, this ensures the collision dynamics of the coarse-grained particles 

under low impact velocity regime is the same as that of the original particles, which will be 

essential to capture agglomeration, de-agglomeration and deposition phenomena.  

Besides the JKR model, the DMT theory is another approach that can be used to simulate 

cohesive materials. The DMT theory assumes that the attractive force does not affect the 

deformation of the contacting surfaces and considers the adhesive force and Hertz theory 

separately. Therefore, the DMT theory is more suitable for hard material with low surface 

energy. In contrast, the JKR theory is appropriate for soft materials with moderate and high 

surface energy. The appropriateness of choice between JKR and DMT adhesive elastic contact 

can be characterized by the dimensionless Tabor parameter, defined as (Tabor, 1977), 

𝑇𝑎 = (
4𝑅𝛾2

𝐸2𝜀3
)

1/3

 
(29) 

where   is the equilibrium spacing in the Lennard–Jones potential. The parameter 𝑇𝑎 was 

shown by Tabor (1977) to be a measure of the magnitude of the elastic deformation compared 

with the range of surface forces. The JKR model is suggested to be used for high values of  𝑇𝑎 

and DMT is suitable for low 𝑇𝑎. It can be seen that 𝑇𝑎 is scaling invariant if the scaling law in 

this work is applied. Moreover, by observing the contact force formula of DMT theory 

(Derjaguin et al., 1975; van Wachem et al., 2017) and following a similar analysis, it can be 

demonstrated that the current scaling law is also applicable to the DMT model.   

A suitable numerical time step is essential to perform efficient simulations of relatively large 

systems for relatively long times. The maximum value of DEM simulation time step is dictated 

by the duration of a contact, i.e. 𝛿𝑡 = 𝑇𝑐/𝐾𝑁, where 𝐾𝑁 is the minimum number of steps during 

one contact duration 𝑇𝑐 (Van der Hoef et al., 2006). It is recommended that 𝐾𝑁 must not be less 

than 5, and is normally set to be a value in the range of 15~50. In the Hertzian contact model, 

the contact time duration can be derived analytically (Raman, 1920; Seville and Wu, 2016), i.e. 

𝑇𝐻𝑒𝑟𝑡𝑧,𝑐 = 5.09 (
𝜌

𝐸∗)
2/5 𝑅∗

𝑣
𝑖
1/5 , where 𝑣𝑖 is the impact velocity. It can be seen that the contact 
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duration is unaffected if the scaling law in this work is used. Note that if the surface energy is 

zero, the JKR model is reduced to Hertzian model. Unfortunately, there is no analytical solution 

for the time duration of full JKR model. However, as shown in Figure 3b and Figure 3c, the 

contact duration is scaling invariant in both cohesive and elastic regimes using the proposed 

scaling law in this work. Additionally, Chen et al. (2015) derived a characteristic collision time 

for the JKR model, given by 𝑇𝐽𝐾𝑅,𝑐 = 6.72𝜌1/2𝛾−1/6𝑅7/6𝐸−1/3. It can be verified that this 

characteristic collision time is invariant if the scaling law of this work is adopted, which is 

another significant advantage over previous methods. Therefore, the numerical time step of the 

coarse-grained simulations can be the same as for the original system. As shown in Figure 6, 

the contact durations are also numerically confirmed to be scaling invariant under a wide range 

of impact velocities.  

 

Figure 6 Contact durations under a range of impact velocities for original (red, half-filled squares) and coarse-

grained (blue, half-filled triangles) systems. The material parameters are the same as for case 3 in section 2.2. 

 

To verify the feasibility of the proposed scaling law in a many-particle system, simulations of 

the angle of repose were carried out. First, a hollow cylinder was filled with particles which 

were allowed to settle under gravity onto a flat planar surface. The cylinder was then lifted with 

a vertical speed of 0.01 m s−1, thus releasing particles from the bottom. A stable pile of particles 

was formed at the end of each simulation. An elastic-plastic spring-dashpot rolling friction 

model was adopted (Ai et al., 2011). The number of simulated particles in the original system 

was 40,000 and a coarse-graining ratio of 2 was used in coarse-grained simulations. Other 

simulation parameters are given in Table 5. Comparisons between the simulated angle of 
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repose using different coarse-grain scaling laws are shown in Figure 7. It can be seen that 

coarse-grained simulations with scaling by Bond or Cohesion number overestimate the angle 

of repose since the agglomeration and de-agglomeration rates are not correctly scaled. It can 

also be seen from case 1 in section 2.2 that the contact duration becomes larger and the 

repulsive force on an individual particle contact scale is reduced if the Bond or Cohesion 

number is used, which explains why the coarse-grained particles appear to become more 

‘sticky’, resulting in a higher pile height than for the original system. However, if the scaling 

law of this work is adopted, the predicted coarse-grained angle of repose matches well with the 

original system. Furthermore, it is found that the speed-up of the coarse-grained simulation in 

this case is 7.75, which significantly reduces the computational cost. 

Figure 8 shows the coarse-grained simulation results of a rotating drum with two different 

operational conditions using the scaling law proposed in this work. The simulated drum is a 

cylinder with radius 42 mm and height 20 mm. The particle properties are identical to those 

listed in Table 5. It can be seen that the dynamical angles of repose predicted by the coarse-

grained simulations agree well with simulations of the original systems. The dynamics of the 

particles can be seen in the supplemental material in which the simulation videos are provided. 

Finally, it is worth mentioning that the present scaling method implicitly assumes it is 

homogeneous in a coarse-grain particle, future work may need to consider the microstructure 

in the coarse-grain model for simulating more complex systems. 
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Figure 7. Comparisons between the predicted angle of repose using different coarse-grain scaling laws (b-d) 

with coarse-graining ratio k = 2 (blue), and the original system (a) with fine particles (red). The orange dot-dash 

line indicates the pile height for the original system. For figures (b-d), half of the original system is shown in the 

left (in red) and overlaid on coarse-grained simulation results (in blue) to aid comparison. 

Table 5. Simulation parameters for the angle of repose case 

Parameter Value 

Cylinder radius (m) 1.5×10─2 

Particle radius (m) 5×10─4 

Density (kg m─3) 1600 

Surface energy (J m─2) 0.015 

Young’s modulus (MPa) 10 

Poisson’s ratio 0.3 

Particle-particle rolling friction coefficient 0.3 

Particle-wall rolling friction coefficient 0.3 

Particle-particle rolling damping coefficient 0 

Particle-wall rolling damping coefficient 0 

Particle-particle sliding friction coefficient 0.5 

Particle-wall sliding friction coefficient 0.5 

Restitution coefficient 0.6 

Numerical time step (s) 5×10─6 
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Figure 8. Simulations of a rotating drum with two different operational conditions. (a) RPM = 10, fill ratio = 

0.14; (b) RPM = 20, fill ratio = 0.28. Plots on the left are the simulations of the original system (with fine 

particles) and plots on the right are the coarse-grained simulations with k = 2.  

5. Conclusions 

In this work, a scaling law for the simulation of coarse-grained cohesive viscoelastic particles 

interacting via the JKR model was developed. The translational velocity of the coarse-grained 

particles was assumed to be consistent with that of the group of the original particles, and the 

respective scale ratios for the material properties were derived. It was found that the Bond 

number of the coarse-grained system is invariant if the proposed scaling law is applied. 

However, it was shown that only applying a Bond number criterion or Cohesion number 

criterion for the coarse-grained simulation is insufficient to ensure that the kinematics of the 

coarse-grained particles agree with those of original particles. This is because the 

dimensionless Bond number only considers the scaling of the maximum attractive surface force 

compared to the gravitational force. Although the Cohesion number includes the effect of 

elastic modulus, simulation results showed that it still predicts apparently quantitative 

differences in the microscopic contact details on coarse-grained simulations. The Tabor 

parameter is another important dimensionless number, representing the ratio of elastic 

deformation force to the attractive surface force, that is shown to be invariant to coarse-graining 

under the scaling law in this work. In fact, a combination of Bond number and Tabor parameter 
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gives the same scaling ratios of the material properties required in the spring part of the normal 

force as the scaling law proposed in this work. 

Besides scaling the material properties for the normal elastic force, we also derived the coarse-

graining ratios for the coarse-grained restitution coefficient and friction coefficient in order to 

properly scale the dashpot damping force and tangential force. The head-on collision of 

unequal-sized particles and particle-wall oblique impact cases were simulated to verify the 

developed scaling law. Simulation results showed that the scaling law proposed in this work 

could quantitatively reproduce the same velocity evolution as for the original particle. Another 

appealing feature of proposed scaling law is that the maximum overlap, contact duration and 

effective coefficient of resolution under a variety of impact velocities were shown to be 

invariant under coarse-graining. Furthermore, the critical sticking velocity is also invariant 

under coarse-graining using the current scaling law, which is vital for the coarse-grained 

simulation of mixing, agglomeration and de-agglomeration of fine powders under a variety of 

applications. Finally, we demonstrated a simple application by predicting angle of repose for a 

cylindrical column of particles settling under gravity, and showed that, in contrast to the Bond 

or Cohesion number criteria, our new scaling law was able to preserve the original shape and 

height of the particle bed for the coarse-grained particles. 
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