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Background: Engineered living materials (ELMs) are an exciting new frontier, where living organisms create highly
functional materials. In particular, protein ELMs have the advantage that their properties can be manipulated via
simple molecular biology. Caf1 is a protein ELM that is especially attractive as a biomaterial on account of its
unique combination of properties: bacterial cells export it as a massive, modular, non-covalent polymer which is
resistant to thermal and chemical degradation and free from animal material. Moreover, it is biologically inert,
allowing the bioactivity of each 15 kDa monomeric Caf1 subunit to be specifically engineered by mutagenesis and
co-expressed in the same Escherichia coli cell to produce a mixture of bioactive Caf1 subunits.

Results: Here, we show by gel electrophoresis and transmission electron microscopy that the bacterial cells
combine these subunits into true mosaic heteropolymers. By combining two separate bioactive motifs in a single
mosaic polymer we demonstrate its utility by stimulating the early stages of bone formation by primary human
bone marrow stromal cells. Finally, using a synthetic biology approach, we engineer a mosaic of three components,
demonstrating that Caf1 complexity depends solely upon the variety of monomers available.

Conclusions: These results demonstrate the utility of engineered Caf1 mosaic polymers as a simple route towards
the production of multifunctional biomaterials that will be useful in biomedical applications such as 3D tissue
culture and wound healing. Additionally, in situ Caf1 producing cells could create complex bacterial communities
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Background
Engineered living materials (ELMs) are an exciting emer-
gent field of study, where living organisms are critical com-
ponents in the formation, maintenance or modulation of a
material [1, 2]. In these systems, the organism is respon-
sible for the processing of simple, sustainable raw ingredi-
ents into highly complex, functionalised “smart” materials,
providing advantages over other systems which are either
more time intensive, involve more expensive or less “green”
reagents, or are less complex.

Proteins are of particular interest for development as
ELMs [2]: evolution has caused the generation of proteins
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with a wide variety of finely tuned bioactivities and material
properties ready to be exploited in different applications;
and molecular biology techniques allow changes to be
made at the sequence level through which these properties
can be modified, or new properties introduced. For the
most part, protein materials are based on those naturally
available, such as collagen and spider silk that have
favourable stiffness and bioactivity, and are in some cases
engineered to further tailor their properties to particular
applications [3—-5]. However, recent studies have also began
to focus on proteins naturally produced by bacteria, such
as the Curli and Cafl proteins from Escherichia coli and
Yersinia pestis respectively. Curli is a component of E. coli
biofilms, and forms an amyloid structure from monomeric
CsgA protein subunits [1]. CsgA can be modified by the in-
corporation of peptide sequences that provide it with novel
functions, such as silver nanoparticle templating and
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adhesion to stainless steel [6], as well as the SpyTag peptide
[7], which allows the conjugation of larger proteins to the
Curli fibres [6, 8]. Moreover, two component fibres con-
taining alternating blocks of CsgA and His-tagged CsgA
monomers could be produced and the patterning altered
using chemical inducers [9]. These developments have led
to exciting applications of Curli in nanotechnology [1, 6,
9], but the amyloid nature of these proteins has limited
their potential use with mammalian cells and tissues.
Unlike Curli, Cafl does not form amyloid structures and
instead possesses an immunoglobulin-like fold [10]. Cafl is
a small ~ 15 kDa protein that is assembled by Y. pestis cells
into long polymers that are megadaltons in size and can
reach up to 1.5pm in length [11]. The subunits are held
together through strong, non-covalent interactions [10, 12]
resulting in remarkable thermal and chemical stability [13].
Additionally, since Cafl is exported from recombinant
bacterial cells it can be economically produced, free from
animal material. Finally, in its unmodified form it interacts
weakly with mammalian cells [14, 15], possibly because
Cafl has evolved to shield Y. pestis from phagocytosis.
These features combine to provide the key benefits of Cafl
— selected peptide sequences can be engineered into the
protein’s inert structure to impart new properties, giving
the robust, manufacturable polymers a precisely definable
bioactivity [15]. Additionally, when reacted with a range of
polyethylene glycol (PEG) cross-linkers Cafl polymers can
form hydrogels of tuneable stiffness and porosity [16],
allowing the polymers to form a 3D scaffold. Therefore,
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Cafl is particularly attractive for use as a biomaterial in
biomedical applications such as 3D tissue culture and
wound healing.

Cafl polymers are members of the chaperone-usher fam-
ily of proteins found in many Gram-negative bacteria. The
monomeric subunits are synthesised in the cytoplasm and
exported into the periplasm, via the Sec pathway [17],
where they bind to a dedicated chaperone. The chaperone
then transfers the subunits to the periplasmic end of the
polymer by inserting their N-terminal B-strand into a va-
cant groove in the terminal subunit. As the polymers grow
they are exported across the bacterial outer membrane via
the usher protein. We have shown previously that if two
versions of Cafl subunit are co-expressed in the same cell
they can both be detected in the resulting secreted Cafl
polymers [15]. However, it is not known whether these are
two separate homopolymers, or a mosaic Cafl heteropoly-
mer (Fig. 1). Clearly, the ability to produce multi-functional
Cafl polymers would be advantageous, allowing the incorp-
oration of multiple bioactive signals. Furthermore, the abil-
ity to dilute strongly bioactive or poorly expressing
subunits with inactive wild-type subunits adds a unique
degree of flexibility to the polymer production system.

In this work, we aimed to demonstrate the ability to pro-
duce true mosaic heteropolymers and assess the functional-
ity of Cafl mosaic polymers using bone tissue engineering
as a case study. Bone possesses the ability to regenerate
after damage [18]. However, in some cases, bone repair is
not effective and the fracture fails to heal, necessitating a
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Fig. 1 Production of mosaic Cafl polymers by E. coli. In this diagram, E. coli have been transformed with the pT7-COP plasmid, which contains
the caf1 operon with a caf! subunit “A” gene (caf1°“***, blue), and a pBad plasmid containing a cafl subunit “B” gene (caf
control of an arabinose inducible promoter. When arabinose is added to cells growing in culture at 35 °C, both the cafl operon and the
additional subunit genes are expressed. Subunits are exported to the periplasm where they are bound by the chaperone, CafiM (green). CafTM
delivers the subunits to the outer membrane usher, Caf1A (tan), which assembles the subunits into a polymer. Both subunits have been detected
in the extracellular fraction of cell cultures expressing both genes, but it was not known whether they form a mosaic homopolymer containing a
. top), or two separate homopolymers (Caf1°“** and Caf1°“"E, bottom). Caf1 polymer models were
prepared from the Caf1:Caf1:Caf1M crystal structure (PDB: 1P5U), and visualised using the CCP4MG software package [50]
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medical intervention [18—20]. One such intervention is the
use of a tissue engineering strategy, where cell scaffolds are
implanted at the injury site and expedite bone repair [20].
Such scaffolds can also be functionalised to release drugs,
for example when used to restore bone loss following sur-
gery to resect tumours such as osteosarcoma [21]. In
addition these materials have the potential to be exploited
in the formation of 3D in vitro models of bone disease [22].
Two important signals in bone tissue engineering are
osteopontin (OPN) and bone morphogenetic protein
2 (BMP2). OPN provides adhesion sites to cells
through integrin attachment [23] and can stimulate
angiogenesis both in vitro and in vivo [24-26],
whereas BMP2 has an important role in the differen-
tiation of cells into osteoblasts [27-29]. Previously,
the incorporation of OPN and BMP2 peptide se-
quences into a protein scaffold facilitated the adhe-
sion of primary rat osteoblasts, prevented their de-
differentiation and supported mineral deposition in
the absence of any extra factors [30]. Therefore, the
combination of these two motifs as bioactive modules
within a single Cafl polymer represents an interesting
exemplar for determining whether multifunctional
mosaic Cafl polymers can be produced.

Here, we demonstrate that the co-expression of Cafl
subunits leads to mosaic heteropolymers using five
cafl mutants and two independent approaches; SDS-
PAGE and electron microscopy. We then co-express
Cafl mutant subunits harbouring the OPN and BMP2
peptide sequences at their N-termini to create a mosaic
OPN:BMP2 heteropolymer. Cell biology experiments
then show that this mosaic polymer can induce the
early stages of bone formation by primary human bone
marrow stromal cells (hBMSCs). Finally, using a syn-
thetic biology approach, we engineer an extra Cafl
gene into our expression plasmid and demonstrate the
production of a 3-subunit mosaic Cafl polymer, sug-
gesting that the system could be expanded to create
even more complex mosaic polymers. These results
demonstrate the major advantages of the ELM system
of Cafl production — through the genetic modification
of the bacterial cells responsible for Cafl biogenesis,
complexity and control over the final material can be
introduced without substantial hands-on input from
the user. This provides a simple route towards the cre-
ation of multifunctional biomaterials, where different
bioactivities can be engineered and combined to pro-
duce highly functionalised materials in a designed
manner for use in applications such as 3D tissue cul-
ture and wound healing. Additionally, Cafl expressing
cells may be useful for in situ creation of engineered
biofilms for biotechnology, as has been shown previ-
ously with other proteinaceous ELMs such as Curli
and S-layers [1, 2].
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Results
Generation of reduced stability Caf1 polymers
To detect if mosaic heteropolymers are produced, it was
necessary to generate a variant whose properties differen-
tiated it from the wild-type subunit (Caft™7). Cafl has a
high thermostability [13], and a previous study has shown
that mutagenesis of single amino acids in the N-terminal
strand reduces the stability of Cafl oligomers in the peri-
plasm of E. coli [12]. In particular, the A5I substitution did
not appear to inhibit formation of Cafl oligomers, but re-
duced the apparent melting temperature from ~ 75-85 °C
to ~ 65 °C. Subunits with a lower stability offered a way to
determine whether co-expression of Cafl subunits results
in the production of Cafl mosaic heteropolymers.
Therefore, E. coli BL21 cells were transformed with pT7-
COPAR-Caf1**" plasmid, which contains the Cafl biosyn-
thetic genes cafIM and caflA, as well as the mutant cafl
subunit caf1**, all under the control of a T7 promoter.
The production of Caf1**" homopolymers (Additional file
1: Table S1) was confirmed by SDS-PAGE analysis (Add-
itional file 1: Figure S1). To determine whether the melting
temperature of the mutant polymers was indeed lower, the
cooperative thermal transitions of the proteins were mea-
sured by circular dichroism (CD) (Fig. 2A). The “melting
temperature” (mid-point of the thermal transition T,,) was
determined to be 82.2 + 0.6 °C, 7.5 °C lower than the melt-
ing temperature of the wild-type protein (89.7+04°C
[13]) measured under the same conditions. Next, the pro-
teins were incubated in SDS-PAGE sample buffer at differ-
ent temperatures for 5 min before analysis on SDS-PAGE.
Unheated Caf1** polymer does not enter the gel due to its
large size but broke down into a visible ladder of oligomers
at 70°C, whereas the Cafl™" polymer remained intact
until 80 °C (Fig. 2B). Therefore, the Caf1**" mutant subunit
forms long Cafl polymers with a lower stability than the
wild-type protein.

Co-expression of caf1 subunits leads to mosaic Caf1
polymers

To determine whether co-expression of cafl subunits
leads to mosaic heteropolymers, we employed the use of
another Cafl mutant subunit containing a hexa-histidine
tag joined by a flexible linker sequence to the N-terminus
of Cafl (Caf1™™, Additional file 1: Table S1). This mutant
has a molecular weight 1.6kDa higher than that of
Caft™?, and so can be resolved from both the wild-type
and Caf1** subunits by SDS-PAGE. Importantly, Caf1'"
has a wild-type N-terminal p-strand, and so will form the
same subunit-subunit interface as the wild-type protein.
Therefore, the Caf1™*, like Caf1™", is stable and will not
break down into oligomers when heated to 70°C for 5
min. Interestingly, Caf1™™ homopolymers could not be
purified in usable quantities, but could be co-expressed
with either Caf™ ' or Caf1** subunits.
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Fig. 2 Characterisation of the Caf1 A ow stability mutant. (@) Near-UV circular dichroism thermal melt of the Caft™" (adapted from [13]) and
Caf1™ proteins. Circular dichroism at 290 nm was followed as 1 mg/mL protein was heated between 25 and 95 °C, and the signal converted into
fraction of protein folded. Data represent the average of three independent replicates. (b) SDS-PAGE analysis of Caf1*™'" and Caf1"*' proteins
heated for 5 min in SDS containing sample buffer at the indicated temperatures. The position of the monomeric species is denoted by a star,
with oligomeric breakdown products seen as a ladder within the region bounded by the bracket
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Three E. coli expression cultures were set up and the
following Cafl polymers purified: (1) containing both
Caf1¥" and Caf1™ subunits, (2) only the Caf1*®! subunit
and (3) both Caf1**" and Caf1™™ subunits. Samples (1), (2)
and (3) were then prepared for SDS-PAGE, as well as (4),
which is an equimolar mixture of (1) and (2). The samples
were then incubated in SDS-PAGE loading buffer at either
70°C or 100°C for 5min and subsequently analysed by
SDS-PAGE. After incubation at 100 °C, all polymers will
denature into their constituent monomers, allowing the
monomer composition to be ascertained. At 70°C, the
pattern of bands, corresponding to the breakdown of the
polymers into oligomers, will depend upon whether the
co-expression of the cafl subunits leads to separate homo-
polymers or to mosaic heteropolymers, according to the
following rationale (Fig. 3A and B):

(i) At70°C, for sample (1), as both Caf1¥T and
Caf1™® subunits have wild-type stability, they will
remain polymeric and not enter the gel.

(ii) For sample (2), the A5I mutation destabilises the
interface, and so should lead to the breakdown of
the polymer into a ladder of oligomers, as in Fig.
2B.

(iii) For sample (3), if the subunits form separate
polymers the result will be the same as (ii) since the
Caf1™ will not break down, leaving only a ladder of
Caf1**' monomers, dimers, trimers etc. If a
heteropolymeric mosaic is present some of the
oligomers will contain one or more heavier Caf1™
subunits, leading to additional bands on the SDS-
PAGE. This will be most obvious at the dimer level

where Caf1**":Caf1™ dimers will be clearly larger
than Caf1**:Caf1**" dimers and Caf1™:Caf1™* di-
mers will not be formed.

(iv) The control, sample (4), mimics the situation
expected if co-expressed subunits form separate ho-
mopolymers, and if this is the case then samples
(2), (3) and (4) should appear identical on the gel
(Fig. 3A).

The SDS-PAGE analysis (Fig. 3C) revealed that, at
100°C, all polymers were completely denatured into their
monomeric subunits, revealing either one monomer band
for the Cafl*®" homopolymer, or two bands for samples
containing either Cafl**" or Cafl™" with Cafl™. After
treatment at 70°C, in sample (1) the Cafl™ "™ protein
remained polymeric and did not enter the gel due to its
size, showing no breakdown into oligomers. In sample (2),
the Caf1**' polymer broke down into the expected pattern
of oligomeric species already seen in Fig. 2B. In sample (3),
the oligomeric breakdown products were again observed,
but in this case clear additional higher molecular weight
bands could be observed for the dimer, trimer and tetramer
bands before the gel resolution made any further bands dif-
ficult to detect. Sample (4) appeared identical to sample (2),
apart from a bright band near the top of the gel corre-
sponding to the Cafl™¥ " and Caf1"™ subunits, which do not
form oligomers at 70°C. Therefore, the presence of the
extra bands in sample (3) which are not present in samples
(2) and (4) demonstrates that co-expression of Cafl subunit
leads to mosaic heteropolymers.

To test the presence of mosaic polymers by a second
independent method, we co-expressed a mixture of two
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Fig. 3 Characterisation of Cafl mosaic polymers by SDS-PAGE. (a) Three mutant Caf1 subunits are depicted as cartoons: Caf1""in yellow, Cafl
in blue and Caf1®*" in orange, with a yellow star showing the location of the A5 mutation in the N-terminal B-strand that forms the subunit-
subunit interface. Caft™™ ", Caf1**" and Caf1”** ™ proteins, as well as a mixture of Caf1** and Caf1™"'" ", are shown in the top panel, with their
expected state when heated to 70 °C shown in the bottom panel. Species which span the box represent full length Caf1 polymers. At 70 °C, the
Caf1™ subunit-subunit interactions break, leading to a pattern of oligomers (Monomer — M, Dimer — D, Trimer — T). The Caft™" and Caf1'ls
subunits have wild-type subunit-subunit interfaces, and do not break down at 70 °C (Polymer - P). If the Caf1 A1 subunit forms mosaic heteropolymers

when co-expressed with the Caf1™ subunit, extra bands corresponding to oligomers containing the higher molecular weight Caf1 Fis subunit will be
present. (b) Expected gel result if co-expression of Caf1 ASEHIS o bunits leads to mosaic heteropolymers. The expected monomer (M), dimer (D) and
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samples 2, 3 and 4 would appear identical. (c) SDS-PAGE analysis of Cafl mosaic polymers. Four samples consisting of a Caf1
mosaic polymer and an equimolar mixture of the Caf1/™* and Caf1"*' polymers, were heated in SDS
sample buffer for 5 min at either 70°C or 100 °C. The Caf1”* and Caf1"'" subunits have similar molecular weights (15.6 kDa), whereas the Caf1™*
subunit has a molecular weight which is ~ 2 kDa higher (17.2 kDa). The positions of these monomeric subunits are highlighted, and oligomeric
breakdown products can be observed within the region bounded by the bracket. Oligomeric breakdown products containing the higher molecular
mosaic polymer sample are highlighted using small white triangles, with the dimer region from sample 3
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Cafl subunits, one harbouring a single inserted cysteine
residue not present in wild-type Cafl (Cafl“’, Add-
itional file 1: Table S1) and the Caf1™** subunit and puri-
fied (Cafl™¥), The cysteine was then biotinylated
with biotin-maleimide. The Caf1™ssBiotin) plymer
was then adsorbed onto a nickel transmission electron
microscopy (TEM) sample grid and probed using a com-
bination of 10 nm (Nickel-NTA) and 20 nm (streptavi-
din) gold nanoparticle conjugates to selectively label
Caf1™ and Caf1©*®°i") regpectively. When visualised
by negative stain TEM, the Cafl polymers looked like

beads on a string, as described previously [11]. Many 20
nm and 10 nm gold particles could be seen to associate
with these polymers, with individual polymers binding
both sizes of gold (Fig. 4, Additional file 1: Fig. S2). In
contrast, when the Cafl™' was prepared and analysed
in the same way, very few gold particles were observed
and these did not appear to associate with the Cafl
polymers (Additional file 1: Figure S2 C and D). This
provides further evidence that co-expression of two dif-
ferent cafl genes in E. coli results in Cafl mosaic hetero-
polymers, rather than separate homopolymers.
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Fig. 4 Characterisation of Cafl mosaic polymers by transmission electron microscopy (a) Schematic of the electron microscopy experiment.
Mosaic Caf1 polymers containing a His tag (blue, Caf1™) and a biotinylated cysteine (yellow, Caf1<*®°"™) are mixed with Nickel-NTA-10 nm and
Streptavidin-20 nm gold conjugates. These recognise and bind to the His tags (blue triangles) and biotinylated cysteines (yellow semicircles)
respectively. On the electron micrograph (grey box), these should appear as light grey beads (Caf1 polymer) surrounded by small and large black
dots, representing the two different size gold conjugates. (b) Negative stain electron micrographs of the His-tagged, biotinylated cysteine
containing mosaic polymer (Caf1"s==Etin His ragged subunits were labelled with Nickel-NTA-10 nm gold particles and biotinylated cysteine
containing subunits labelled with Streptavidin-20 nm gold particles. Images were taken at 92000x magnification. Dotted lines show the position
of the Caf1 polymer. Additional data for WT unlabelled polymers are shown in Supplementary Information

Mosaic Osteopontin:BMP2 Caf1 polymers direct the early
formation of bone by primary human stem cells

Having demonstrated that Cafl mosaic polymers contain
both types of subunit, we sought to determine whether
this property could be used to add two separate bioactiv-
ities to a single Cafl mosaic polymer. Previously, peptide
motifs that mimic the action of osteopontin and bone
morphogenetic protein 2 (OPN and BMP2 respectively)
were shown to have differential effects on osteoblasts
when incorporated into a protein scaffold, and together fa-
cilitated bone formation [30]. The OPN motif facilitated
the adhesion, spreading and vinculin expression of pri-
mary rat osteoblasts, whilst BMP2 had little effect. On the
other hand, incorporation of the BMP2 motif into the pro-
tein triggered SMAD (Sma and MAD related protein) sig-
nalling and matrix mineralisation, corresponding to the
osteogenic differentiation of the cells, whereas OPN had
little effect in this regard. Critically, when the cells were
grown on a surface containing different proportions of

OPN containing protein in the presence of recombinant
BMP2 protein, the degree of SMAD signalling was
dependent on the levels of cell adhesion, showing that
these two motifs can be used synergistically. This system
therefore represented an appealing test case for determin-
ing the utility of Cafl mosaic polymers.

Mutant Cafl subunits harbouring the OPN and BMP2
sequences at their N-termini were generated (cafI°” and
caf1®"?, Additional file 1: Table S1). The corresponding
plasmids, pT7-COP-Caf1°™ (containing the cafl operon,
where the cafl subunit is substituted by the cafI®”N mu-
tant), and pBad-Caf1®™"* (where the cafI®"*? subunit is
under the control of an arabinose inducible promoter) were
used to co-transform E. coli cells. A mosaic Caf1®"NBMP?
polymer was then expressed by growing the cells at 35°C
in the presence of arabinose, and subsequently purified.
Primary hBMSC’s were then grown in a 24-well plate, using
either untreated, Caf1™" or Cafl®"®MP? surfaces as sub-
strates. The cells were cultured for 14 days in the absence
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of any osteogenic supplements, and analysed by phase mi-
croscopy and qRT-PCR. The results showed that the mo-
saic Cafl polymer triggered the osteogenic differentiation
of the cells and the early stages of bone formation, as evi-
denced by distinct patches of mineralisation, which were
not present on either the untreated of Cafl™ " surfaces
(Fig. 5A-C). Moreover, qRT-PCR analysis revealed a large
increase in the expression of Runx2 and BMP2, which are
markers of osteogenic differentiation, in the presence of the
mosaic polymer but not the Cafl™" or untreated surfaces
(Fig. 5D). These results demonstrate that the ability to trig-
ger osteogenic differentiation of human primary cells has
been specifically engineered into the Cafl mosaic polymer.

Engineering a 3-subunit Caf1 mosaic polymer

To demonstrate the potential of Cafl mosaic polymers,
we sought to engineer a 3-subunit mosaic polymer using
a plasmid design that can accommodate multiple sub-
unit genes. To achieve this, we aimed to insert an extra
Cafl coding sequence with its own ribosome binding
site into the pBad plasmid immediately following the
first cafl gene so that both mutants could be translated
from a single mRNA transcript driven by the same pro-
moter. The size of the pBad plasmid, which lacks the
chaperone and usher genes present in pT7-COP, makes
genetic manipulation relatively straightforward. The first
and second ribosome binding sites had the same se-
quence so that both subunits would be translated at the
same rate. The Caf1°"™ and Caf1®"? mutant subunits
were chosen as candidate proteins because of their sizes
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(16.8kDa and 17.6kDa respectively, compared to
Caf1¥'T; 15.6 kDa). This would allow them to be distin-
guished when resolved by SDS-PAGE. The resulting
plasmid, consisting of a pBad backbone, with an arabin-
ose inducible transcriptional unit containing two inde-
pendently translated Cafl mutants was called pBad2x-
Caf1OPNBMP2) (Eig  6A). E. coli cells were then co-
transformed with pBad2x-Cafl©"™NBMP2) qlong with a
plasmid containing either the full Cafl operon (pCOP)
or the operon with a T7 promoter upstream (pT7-COP).
In this system, the main pCOP/pT7-COP plasmid sup-
plies the genes of the Cafl operon (cafIR, cafIM, caflA
and cafl"™”") and the second supplies the two mutant
Cafl subunits. Cultures containing either 0% or 1% w/v
arabinose were grown for 22h at 35°C and proteins
resolved on SDS-PAGE. For the pT7-COP containing
cultures, large amounts of Cafl™" could be observed,
however, in the presence of arabinose, bands corre-
sponding to the mutant subunits could not be seen
(Additional file 1: Figure S3). When pCOP, which
expresses the cafl operon from its native promoters,
was used as the main plasmid, the addition of arabinose
to induce pBad2x-Cafl©"™NBMP2) requlted in the clear
production of two additional bands of higher molecular
weight than Cafl™" (Fig. 6B). Comparison of these
bands with those produced by cultures expressing 2-sub-
unit mosaic polymers of Cafl™¥ O™ and Caf1%/"BMP2
allowed the bands in the 3-subunit system to be posi-
tively identified. Therefore, the use of the engineered
pBad2x plasmid allows the production of a 3-subunit

Fig. 5 Caf1 mosaic polymers direct the early stages of bone formation. Phase microscopy images of primary human bone marrow stromal cells
grown on plastic surfaces that were either uncoated (a) or coated with Caft™" (b) or Caf
of mineralisation triggered by the differentiation of the cells are highlighted with black arrows. (d) gRT-PCR analysis of Runx2 (blue) and BMP2
(orange) expression from each of the cultures at 14 days. Error bars represent the standard deviation from three biological replicates
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Fig. 6 Design and production of a 3-subunit mosaic Cafl polymer. (a) Diagram depicting the pBad-Caf1°"™ and pBad2x-Caf1°"N®""2 plasmids
used in this study. The pBad plasmid was used as a template for the insertion of a cafl mutant gene containing the osteopontin sequence
(Caf1°™, yellow), a second ribosome binding site (RBS, green) and a cafl mutant gene containing the BMP2 peptide sequence (Caf1 BMP2 "hlue) in
order to construct the pBad2x-Caf1°™™#""2 plasmid, which was thus designed to express two cafl genes at once under the control of the
arabinose inducible promoter. The pBad-Caf1°™ plasmid, designed to express only the one cafl gene, is shown alongside as a comparison. (b)
SDS-PAGE analysis showing the expression of a 3-subunit mosaic Caf1 polymer. Cultures of £. coli BL21(DE3) cells transformed with pCOP and
either pBad-Caf1 ™™, pBad-Caf1®™"* or pBad2x O™#“"2 were grown for 22 h in the presence and absence of 1% w/v arabinose. Samples of the
extracellular fraction (flocculent layer and supernatant) were then heated to 100 °C for 5 min in SDS containing buffer and applied to the gel. The
“U” lane represents the pCOP/pBad2x-Caf1°"™#P2 194 arabinose sample that was not heated to 100 °C before application, and shows most Caf1
subunits are present in high molecular weight polymers. The monomeric subunits corresponding to each mutant are shown by numbers next to

the relevant band: 1 is Caf1"", 2 is Caf1°™ and 3 is Caf18M™

mosaic Cafl polymer when co-transformed with the
pCOP plasmid.

Discussion

N-terminal strand mutations result in lower stability Caf1
polymers

The basis for Cafl’s high thermal stability is the tight,
non-covalent interaction between subunits, where small
hydrophobic residues on the N-terminal B-strand of one
subunit slot into pockets in the body of the next subunit
[12]. Mutation to larger hydrophobic residues reduced the
thermostability of Cafl periplasmic oligomers [12]. Our
objective was to create a Cafl polymer with lower stability
to allow us to differentiate it from the wild-type protein.
We selected the A5I mutation as the most promising can-
didate from the previous study, as it caused a drop in
Cafl’s unusual thermostability without affecting its ability
to oligomerise. Here, we show that the A5I mutation per-
mits the production of high molecular weight (> 500 kDa)
Cafl polymers, but with a lower thermal stability. This
mutation was of particular utility in this study, but the
production of Cafl polymers of reduced stability could be

of further use, for example in enhancing the biodegrad-
ability of implanted cell scaffolds.

Co-expression of Caf1 subunits leads to mosaic
heteropolymers
It had been observed that producing different Cafl sub-
units on two separate plasmids results in the simultaneous
production of the two types of Cafl in polymeric form
[15]. It was not known whether these were mosaic hetero-
polymers, containing a random mixture of both types of
subunit, or two separate types of polymers due to a pos-
sible sorting mechanism within the cell. Here, we have
demonstrated that these subunits are assembled together
in a random mosaic heteropolymer, as evidenced by the
differential breakdown products at 70°C between the
Caf1**" homopolymer, the Caf1**** mosaic polymer and
a mixture of the two separate Caf1**" and Caf1™ " poly-
mers, as well as the observation of Caf1"™“¥* mosaic poly-
mers by transmission electron microscopy.

The yields of the mosaic polymers produced here were
lower than those of the single subunit polymers (~ 22
mg/L vs. ~200mg/L [13]). This could be due to the
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inclusion of the Cafl™ subunit, which could not be
expressed on its own and may be more challenging for
the cells to express and incorporate into polymers than
the wild-type subunit. Further optimisation of the pro-
duction process may help to improve these yields.

The dissociation constant (Ky) of the Cafl subunit:sub-
unit interaction has been estimated to be at least 10™'* M,
which would place it amongst some of the tightest known
interactions known [31]. Moreover, the interaction be-
tween FimG and FimF (homologous pilin subunits from E.
coli) has a half-life of 3 x 10” years, providing it with an “in-
finite stability against dissociation” [32]. Therefore, it is un-
likely that the Cafl subunits, once formed into a polymer,
would be able to dissociate spontaneously, eliminating the
possibility of subunit exchange within the polymer. Indeed,
even the subunits on the ends of the polymer associate via
the same donor strand complementation mechanism and
so are likely to remain stably incorporated. Therefore, poly-
mer growth can only take place through the addition of
subunits to the growing ends of a polymer chain.

There are potentially significant advantages to using
mosaic Cafl polymers over conventional single subunit
polymers, or even mixtures of single subunit polymers.
Firstly, multiple functionalities, such as adhesion and
differentiation, can be combined into a single material or
hydrogel, as in our Cafl®"™"F"2 mosaic polymer. Sec-
ondly, as the production of the pBad encoded subunit ap-
peared to be at a lower level than the pT7-COP encoded
subunit, bioactive motifs can be diluted by co-expressing
them with the inert, non-stick Cafl¥" [15]. The density of
adhesion motif can affect the migration and proliferation of
cells, and previous studies have shown that intermediate
densities tend to give optimal values for these processes
[33—37]. Expressing Cafl polymers as mosaics provides the
ability to control the motif density. This may also be of use
in the manufacture of Cafl polymers since it is clear that
some large modifications of the subunit cause a reduction
in expression levels. When these are present at 100% of the
polymer the yields can be seriously reduced as seen with
the Caf1"™ mutant used here. When expressed as a minor
component in a mosaic the yields return to acceptable
levels. Since the Cafl subunit is only 6 nm long a 10 um
diameter cell will interact with hundreds or thousands of
Cafl subunits so even if they are present at 1% of a mosaic
polymer, poorly expressing versions are likely to be bio-
logically active. Finally, some motifs exhibit synergy when
in close proximity to each other, for example the RGDS
and PHSRN motifs of fibronectin [38, 39]. Due to the 6 nm
subunit repeat, the production of mosaic polymers will
result in the random close proximity of Cafl subunits
harbouring different motifs in a way that a mixture of single
subunit polymers might not. Therefore, the ability to pro-
duce, mosaic polymers with defined content increases the
utility of Cafl as a biomaterial.
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Mosaic polymers can trigger complex bioactivity

The formation of bone by primary hBMSCs was used as a
case study for testing the bioactivity of the mosaic poly-
mers. Normally, differentiation of hBMSCs into osteoblasts
and subsequent bone formation requires the presence of a
cocktail of supplements in the serum [40]. However, it has
been shown previously that two peptide sequences from
OPN and BMP2 could promote bone nodule formation in
routine cell culture conditions [30]. These peptides were
engineered into the Cafl scaffold and combined through
co-expression as a Cafl mosaic polymer. hBMSCs were
seen to adhere to the mosaic polymer, and over time the
differentiation of these cells into osteoblasts and deposition
of minerals onto the substrate was observed. Therefore, the
mosaic polymers are bioactive and trigger the desired cell
activity. Moreover, as the mosaic polymers facilitate both
adhesion and differentiation without the use of extra com-
ponents in the serum, their use is simpler than traditional
methods. Cafl has the capacity to incorporate many differ-
ent bioactive peptide motifs, and by combining subunits
containing these motifs together as mosaic polymers,
complex functionalised biomaterials can be produced that
could be tailored for many cell types and applications.

Mosaic Caf1 polymers form from a pool of periplasmic
Caf1M:Caf1 complexes

The results of this study suggest that, upon co-expression
of the two cafI subunit genes, there exists a pool of CaflM
chaperone bound Cafl subunits in the periplasm which is
assembled, presumably at random, by the CaflA usher into
polymers which are secreted outside of the bacterium (Fig.
7). Furthermore, when we constructed a pBad plasmid har-
bouring two cafl genes, induction of gene expression from
this plasmid resulted in the simultaneous production of
three Cafl subunits when co-transformed into E. coli
alongside a plasmid harbouring the natural but not overex-
pressing Cafl operon. The results of this study have shown
that co-expression of two subunits leads to true mosaic het-
eropolymers, and so it is assumed that the co-expression of
three subunits leads to a 3-subunit mosaic heteropolymer.
Our results would indicate that, depending on the limit of
protein expression that can be tolerated by the bacterium,
multiple Cafl subunits could be co-expressed to form the
CaflM:Cafl pool, and hence be assembled by CaflA into
complex mosaic polymers (Fig. 7). It is reasonable to
assume that this system could be further expanded to add
extra Cafl subunits that could further increase complexity
and functionality to the Cafl polymers.

Benefits of the Caf1 biomaterial

The controlled combination of multiple bioactive signals
or functional sites (e.g. protease sites or reactive groups
such as cysteine or biotin) is difficult to achieve in cur-
rently available polymeric materials but simple to achieve
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in Cafl. Whilst natural decellularised ECM has a high bio-
activity, it is difficult to fully characterise the material and
it can vary from batch to batch [41-43]. Synthetic and
natural materials are often functionalised through covalent
attachment of peptides [36, 42—45], which can be expen-
sive and challenging if multiple activities are required. In
contrast, highly functionalised Cafl polymers can be pro-
duced through bacterial fermentation of E. coli trans-
formed with the plasmids described here. This avoids the
problems associated with the synthesis, purification and
attachment of multiple peptides to a material, and instead
exploits the advantages of using a biological “cell-factory”
as a production mechanism, placing Cafl as a clear ex-
ample of an engineered living material. Moreover, unlike
the Curli protein ELM [1], Cafl adopts an Ig-like fold [10]
rather than forming amyloid fibres, allowing its use in a
wider range of biomedical applications, in addition to
nanotechnological applications. Further improvements to
the system should focus on removing the need for arabin-
ose as an inducer, in order to further reduce the costs of
Cafl bioproduction. Additionally, the application of fur-
ther synthetic biology techniques, such as genetic circuits,

may allow even greater control over the biogenesis and
complexity of the Cafl material, as has been shown previ-
ously with other ELMs [1]. In light of these advantages,
engineered Cafl polymers would appear to be a promising
new addition to the array of biomaterials currently avail-
able to those interested in 3D tissue culture and tissue
engineering, as well as in the field of biofilm engineering.

Conclusions

In this work, we have used gel electrophoresis and trans-
mission electron microscopy to demonstrate that co-ex-
pression of cafl subunits leads to the formation of
mosaic heteropolymers. The benefits of these polymers
is twofold: multiple bioactive motifs can be combined to
make a multifunctional biomaterial, and bioactive sub-
units can be diluted to optimal levels. To demonstrate
the utility of these polymers, osteopontin and bone
morphogenetic protein 2 motifs were incorporated into
a single Cafl mosaic polymer, and their activity triggered
the early stages of bone formation by primary human
bone marrow stromal cells. A synthetic biology approach
then allowed the construction of a 3-subunit mosaic
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polymer, demonstrating how the system could be ex-
panded to introduce further functionalities into the Cafl
polymers. These results show how the production of
engineered Cafl mosaic polymers provides a simple
route towards the creation of highly functionalised, de-
signed biomaterials for use in various biomedical appli-
cations, such as 3D tissue culture and wound healing.

Methods

Plasmids and cloning

In this study, five new Cafl mutants were produced: (1)
cafI*®', where alanine 5 in the linking B-strand is mutated
to isoleucine; (2) cafI™, where a hexa-His tag is attached
through a 10 amino acid flexible linker to the N-terminus
of Cafl (18-amino acids total); (3) cafI<, where a single
cysteine residue was inserted at the N-terminus of Cafl; (4)
cafI®™, where a 7 amino acid sequence corresponding to
the a5pB1 integrin recognition site of osteopontin [23] was
added to the N-terminus of Caf1 via a 6 amino acid flexible
linker (13 amino acids total); and (5) caﬂBMP 2 where a 20
amino acid peptide motif corresponding to the knuckle
epitope of bone morphogenetic protein 2 [29, 46] was
inserted at the N-terminus of Cafl. The insertion site of
mutations (2)—(4) was after the signal peptide, immediately
before the start of the N-terminal linking B-strand. The
protein sequences of mutants are shown in Additional file
1: Table S1. With the exception of cafI**, all mutant cafl
genes were synthesised by GeneArt (Thermo Fisher Scien-
tific) in the pBad33SD vector described previously [15].

For expression of Cafl homopolymers, a plasmid (pT7-
Cafl Operon, pT7-COP, previously described as pGEM-T
Cafl [15]) containing all the genes of the Cafl operon
(caf1R, cafIM, caflA and cafl), preceded by a T7 promoter,
was used. We have observed that, when combined with a
T7 promoter, deletion of cafIR (the cafl regulatory protein
[47]) increases cafl expression. Therefore, the pT7-COP
plasmid was further modified by cafiR deletion, to produce
pT7-COPAR. pCOP was produced by substitution of the
T7 promoter with a random 20 nucleotide sequence. Dele-
tion of the T7 promoter from the pT7-COP plasmid lowers
cafl expression, so that it is only driven from the native
promoters within the operon, with no overexpression.

For construction of the cafi**’ mutant (pT7-COPAR-
Caf1*?"), the pT7-COPAR plasmid was used as a template
for PCR, with primers listed in Additional file 1: Table S2.
To construct the pBad2x plasmid, the pBad33SD plasmid
was used as a template and linearised by PCR. Linear
inserts corresponding to the cafI®”™ and caf1®"? mutant
cafl genes were generated by PCR. All species were puri-
fied by gel extraction from 0.8% w/v agarose gels following
electrophoresis using a Monarch gel extraction kit (NEB)
according to the manufacturer’s protocol. Linearised spe-
cies were re-ligated using the sequence and ligation inde-
pendent cloning (SLIC) method [48]. cafI’™, cafi®™™ and
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cafI®™? mutant cafl genes were transferred from the
pBad33SD vector to the pT7-COP plasmid using the InFu-
sion HD cloning kit (Takara Clontech). Primer sequences
are shown in Additional file 1: Table S2.

Protein expression and purification

BL21(DE3) E. coli cells (NEB) were transformed with pT7-
COP or pT7-COPAR-Caf1*?, either on their own or as a
co-transformation with pBad-Caf1™, Expression cultures
were then made by using single colonies of these transfor-
mants to inoculate Terrific Broth media. To induce expres-
sion of the subunit on the pBad plasmid, L-arabinose was
added to the culture to a final concentration of 0.9% w/v.
Wild-type Cafl protein (Cafl™") was produced using a
pT7-COP/pBad-Caf1"™ co-transformed culture that was
not induced with arabinose. Cultures were grown at 35 °C
for 22 h to produce Cafl polymers. Following expression,
cultures were centrifuged at 11325 x g for 15 min to re-
move the cell pellet. Pellets were discarded, leaving the dif-
fuse “flocculent layer” which results from cafI expression
[49] and the supernatant. This material was stirred at room
temperature overnight to extract Cafl polymers from the
flocculent layer. The solution was then centrifuged again at
48384 x g for 50 min to pellet remaining flocculent and in-
soluble material. The supernatant containing Cafl was
concentrated to ~ 10 mL using two Minimate TFF 500 kDa
molecular weight cut off (MWCO) capsules (Pall) arranged
in tandem, then washed 1-4 times by diafiltration with
200 mL phosphate buffered saline (PBS). For polymers con-
taining a His-tagged subunit, the retentate was then ap-
plied to a 5mL HisTrap column (GE Healthcare) pre-
equilibrated in 50 mM Tris-HCl pH 7.5, 150 mM NaCl, 20
mM imidazole and eluted from the column in the same
buffer except that the imidazole concentration was 250
mM. Elution fractions containing the protein were pooled
then concentrated and simultaneously buffer exchanged
into phosphate buffered saline (Sigma Aldrich) using a 100
kDa MWCO Proteus X-spinner (Generon). Caf1™s<r
and Caf1°"NBMP2 mosaic polymers were purified as de-
scribed previously [13, 15]. Bacterial endotoxin was re-
moved from the Cafl™¥" and Caf1°"™®M2 proteins used
in cell assays by passing them through 48 mL Captocore
700 resin (GE Healthcare) packed into a Tricorn 10/600
column (GE Healthcare). This was confirmed to be <
10 endotoxin units/mL using a Pyrogene assay
(Lonza). The final yields of each protein were as fol-
lows: Caft™¥?T, 207 mg/L; Caf1*%, 137 mg/L;
Caft™¥TMs, 254 mg/L; Caft™"™s, 226 mg/L; Cafl-
His:Cys 17,27 mg/L; Caf1°PNBMP2 26 8 mg/L.

Cysteine labelling

Caf1™¥“* protein was buffer exchanged from PBS into
a solution containing 50 mM Tris pH7, 150 mM NaCl
and 5mM TCEP using a PD-10 column (GE Healthcare)
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. Elution fractions containing the protein were then con-
centrated using Vivaspin 20,100 kDa MWCO centrifugal
concentrators, and then further concentrated to approxi-
mately 4 mg/mL using Proteus X-spinner 100kDa
MWCO concentrators (Generon). EZ-link Maleimide-
PEG-Biotin (ThermoFisher Scientific) was added in a 20-
fold molar ratio and the solution incubated overnight at
room temperature. Following incubation, to remove
unreacted label, the protein was applied to a second PD-
10 column and eluted in 50 mM Tris pH 7, 150 mM NaCl
and 5 mM TCEP.

Thermal melts

Thermal melts were measured in triplicate by circular
dichroism spectropolarimetry (CD). 1 mg/mL Cafl pro-
tein in PBS was added to a 1cm path length quartz-
Suprasil cuvette (Hellma 105-201-QS), and the near
UV-CD signal measured at 290 nm (corresponding to a
peak in the Cafl near UV-CD spectrum [15]) while the
temperature was increased at 2 °C/min between 20 and
95°C. The CD signal was converted into the fraction of
protein folded, using the signal at 20 °C to represent fully
folded protein and the minimum CD signal to represent
fully unfolded protein. To determine the melting
temperature (T,,) of the protein, the CD signal was con-
verted into a first order derivative plot and the peak
minimum (equivalent to the mid-point transition where
50% of the protein is unfolded) recorded as the T ,.

Electron microscopy

Solutions were prepared as follows: proteins were diluted
to a concentration of 10 pg/mL in water, 10 nm Ni-NTA-
Nanogold (Nanoprobes) and 20 nm gold — streptavidin
conjugate (Expedeon) as supplied were diluted fivefold.
Nickel electron microscope grids with thin film carbon
supports were glow discharged and placed carbon side
down in 20 pL of the protein solution for 1min, then
placed in the 20 nm gold — streptavidin solution for 5 min.
After this incubation, the grids were washed three times
in water for 10s each, then added to the Ni-NTA-
Nanogold solution for 5 min, washed a further three times
for 10s each, then placed into a solution of 2% uranyl
acetate for 2 min. After each incubation, grids were dried
with filter paper. Grids were then visualised using a Philips
CM100 transmission electron microscope (EM Research
Services, Newcastle University) operated at 100 kV. Im-
ages were taken at a magnification of 92,000x and re-
corded in tagged image file format (TIFF).

Cell biology

Human mesenchymal stem cells from individual donors
were supplied by Lonza having been previously charac-
terised as CD105, CD166, CD29, CD44 positive and nega-
tive for CD14, CD34 and CD45. Cells were routinely
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cultured in alpha Modified Eagle Medium (aMEM,
Thermo Fisher Scientific) supplemented with 10% v/v
FCS (First Link (UK)), 100 units/ml penicillin, 100 pg/mL
streptomycin (both Thermo Fisher Scientific) and 1 ng/
mL FGF-2 (PeproTech). Cells were grown at 37°C in a
humidified incubator with an atmosphere of 5% CO2 and
passaged at approximately 70% confluence with all experi-
ments performed before passage six. To assess the influ-
ence of the Cafl polymer, 24-well plates were coated as
follows: proteins at ~ 4 mg/mL were diluted in PBS (Sigma
D8537) to 100 ug/ml and sterile filtered at 0.2 um. 200 pl
was added to wells (Greiner 24 well glass bottomed plate,
product code 662892) and incubated overnight at room
temperature. These plates were used since we have noticed
that Cafl adheres better to glass than plastic [15]. Solution
was aspirated and wells washed with 2 x 500 ul PBS, then
air dried for 20 mins and stored at 4 °C. 50,000 cells were
plated into each well and cultured for up to 14 days with
the culture medium described above refreshed every 3 or 4
days. To study gene expression, total RNA was isolated
using the Direct-zol RNA Kit (Zymo Research) as directed
by the manufacturer and 450 ng of each sample used as the
template for cDNA synthesis in the QuantiTect Reverse
Transcription Kit (Qiagen). Quantitative PCR was per-
formed using the Sybr Green approach with the 2X Quanti-
Fast SYBR Green PCR Kit (QIAGEN) and relative
quantitation achieved using the comparative Ct (2-AA CT)
method. The primers used in this analysis were HPRT1
(forward — TGACACTGGCAAAACAATGCA, reverse -
GGTCCTTTTCACCAGCAAGCT), Runx2 (forward — G
GTTAATCTCCGCAGGTCAC; reverse — GTCACTGTG
CTGAAGAGGCT) and BMP2 (Qiagen Quantitect” Primer
Assay).

Additional file

Additional file 1: Supplementary tables and figures. Tables S1-S2. and
Figures S1-S3. (PDF 706 kb)
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