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Summary: Mapping the chromo-
somal locations of transcription fac-
tors, nucleosomes, histone modifica-
tions, chromatin remodeling
enzymes, chaperones, and polymer-
ases is one of the key tasks of
modern biology, as evidenced by
the Encyclopedia of DNA Elements
(ENCODE) Project. To this end, chro-
matin immunoprecipitation followed
by high-throughput sequencing
(ChIP-seq) is the standard methodo-
logy. Mapping such protein-DNA
interactions in vivo using ChIP-seq
presents multiple challenges not
only in sample preparation and
sequencing but also for computa-
tional analysis. Here, we present
step-by-step guidelines for the com-
putational analysis of ChIP-seq data.
We address all the major steps in the
analysis of ChIP-seq data: sequencing
depth selection, quality checking,
mapping, data normalization, assess-
ment of reproducibility, peak calling,
differential binding analysis, control-
ling the false discovery rate, peak
annotation, visualization, and motif
analysis. At each step in our guide-
lines we discuss some of the software
tools most frequently used. We also
highlight the challenges and pro-
blems associated with each step in
ChIP-seq data analysis. We present
a concise workflow for the analysis of
ChIP-seq data in Figure 1 that
complements and expands on the
recommendations of the ENCODE
and modENCODE projects. Each step
in the workflow is described in detail
in the following sections.

Introduction to ChIP-seq
Technology

Chromatin immunoprecipitation followed

by sequencing (ChIP-seq), first described in

2007 [1–4], allows in vivo determination of

where a protein binds the genome, which

can be transcription factors, DNA-binding

enzymes, histones, chaperones, or nucleo-

somes. ChIP-seq first cross-links bound

proteins to chromatin, fragments the

chromatin, captures the DNA fragments

bound to one protein using an antibody

specific to it, and sequences the ends of the

captured fragments using next-generation

sequencing (NGS). Computational map-

ping of the sequenced DNA identifies the

genomic locations of bound DNA-binding

enzymes, modified histones, chaperones,

nucleosomes, and transcription factors

(TFs), thereby illuminating the role of these

protein-DNA interactions in gene expres-

sion and other cellular processes. The use

of NGS provides relatively high resolution,

low noise, and high genomic coverage

compared with ChIP-chip assays (ChIP

followed by microarray hybridization).

ChIP-seq is now the most widely used

procedure for genome-wide assays of

protein-DNA interaction [5], and its use

in mapping histone modifications has been

seminal in epigenetics research [6].

The Analysis of ChIP-seq Data
Sequencing Depth

Effective analysis of ChIP-seq data

requires sufficient coverage by sequence

reads (sequencing depth). The required

depth depends mainly on the size of the

genome and the number and size of the

binding sites of the protein. For mamma-

lian transcription factors (TFs) and chromatin

modifications such as enhancer-associated

histone marks, which are typically localized

at specific, narrow sites and have on the

order of thousands of binding sites, 20

million reads may be adequate (4 million

reads for worm and fly TFs) [7]. Proteins

with more binding sites (e.g., RNA Pol II)

or broader factors, including most histone

marks, will require more reads, up to 60

million for mammalian ChIP-seq [8].

Importantly, control samples should be

sequenced significantly deeper than the

ChIP ones in a TF experiment and in

experiments involving diffused broad-do-

main chromatin data. This is to ensure

sufficient coverage of a substantial portion

of the genome and non-repetitive autoso-

mal DNA regions. To ensure that the

chosen sequencing depth was adequate, a

saturation analysis is recommended—the

peaks called should be consistent when the

next two steps (read mapping and peak

calling) are performed on increasing num-

bers of reads chosen at random from the

actual reads. Saturation analysis is built

into some peak callers (e.g., SPP [9]). If this

shows that the number of reads is not

adequate, reads from technical replicate

experiments can be combined. To avoid

over-sequencing and estimate an optimal
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sequencing depth, it is important to take

into account library complexity. Several

tools are available for this purpose. For

example, the preseq package allows users

to predict the number of redundant reads

from a given sequencing depth and how

many will be expected from additional

sequencing [10]. Similarly, the ENCODE

software tools offer a quality metric called

the PCR bottleneck coefficient (PBC),

defined as the fraction of genomic locations

with exactly one unique read versus those

covered by at least one unique read.

Read Mapping and Quality Metrics
Before mapping the reads to the

reference genome, they should be filtered

by applying a quality cutoff (Box 1). The

remaining reads should then be mapped

using one of the available mappers such as

Bowtie [11], BWA [12], SOAP [13], or

MAQ [14]. Recent versions support

gapped alignment (e.g., Bowtie2), but

detection of indels is not necessary for

most ChIP-seq experiments. It is impor-

tant to consider the percentage of uniquely

mapped reads reported by the mapper.

The percentage varies between organisms,

and for human, mouse, or Arabidopsis

ChIP-seq data, above 70% uniquely mapped

reads is normal, whereas less than 50%

may be cause for concern. A low percent-

age of uniquely mapped reads often is due

either to excessive amplification in the PCR

step, inadequate read length, or problems

with the sequencing platform, but with

some ChIPed proteins it may be unavoid-

able (e.g., if the protein binds frequently in

repetitive DNA). The read mappers are

designed to allow a (user-settable) number

of mismatches in the reads, and it is

important to choose this parameter to be

appropriate with the NGS platform being

used (consult the manufacturer). A final

potential cause of high numbers of ‘‘multi-

mapping’’ reads is that the protein binds

frequently in regions of repeated DNA. In

this last case, using paired-end sequencing to

reduce the mapping ambiguity may help. It

should be kept in mind that multi-mapping

reads will be ignored (filtered out) by most

peak-calling algorithms (see section ‘‘Peak

Calling’’), although they can drive the

discovery of novel binding sites [15].

After mapping, the signal-to-noise ratio

(SNR) of the ChIP-seq experiment should

be assessed, for example via quality metrics

such as strand cross-correlation [7] or IP

enrichment estimation using the software

package CHANCE [16] (Box 2). These

measures will detect several possible failure

modes of ChIP-seq: insufficient enrichment

by immunoprecipitation step, poor frag-

ment-size selection, or insufficient sequenc-

ing depth. Strand cross-correlation analysis

is built into some peak callers (e.g., SPP or

MACS [17] [version 2]).

Peak Calling
A pivotal analysis for ChIP-seq is to

predict the regions of the genome where

the ChIPed protein is bound by finding

regions with significant numbers of

mapped reads (peaks). A fine balance

between sensitivity and specificity depends

on choosing an appropriate peak-calling

algorithm and normalization method

(Boxes 3–6, Table S1, and [18,19])

based on the type of protein ChIPed:

point-source factors such as most TFs

(Box 3), broadly enriched factors such as

histone marks (Box 4), and those with

both characteristics such as RNA Pol II

(Box 5) [20]. It is strongly recommended

that mapped reads from a control sample

be used (e.g., from input DNA), although

some peak callers can use GC content or

mappability as information necessary to

assess the level of non-specific or back-

ground binding. Duplicate reads (same 59

end) can be removed before peak calling to

improve specificity (Box 7). Although

some peak callers support both single

and paired-end reads (e.g., MACS), others

Figure 1. Workflow for the computation-
al analysis of ChIP-seq.
doi:10.1371/journal.pcbi.1003326.g001

Box 1. Quality metrics of sequence reads

Preprocessing of ChIP-seq data will, in general, be similar to that of any other
sequencing data and will assess the quality of the raw reads to identify possible
sequencing errors or biases (FastQC can be used for an overview of the data
quality). Phred quality scores are used to describe the confidence of each base call
in each sequence tag, are logarithmically linked to error probabilities, and can be
used to filter low-quality reads. After this filtering step, it may also be necessary to
trim the end of reads that are of low quality (see sickle, https://github.com/
najoshi/sickle). Additionally, library complexity is a common quality measure for
ChIP-seq libraries (preseq package [10] or PCR bottleneck coefficient [PBC] from
ENCODE tools, https://code.google.com/p/phantompeakqualtools/), and library
complexity is linked to many factors such as antibody quality, over-cross-linking,
amount of material, sonication, or over-amplification by PCR. The latter can be
corrected by systematic identification and removal of redundant reads, which is
implemented in many peak callers as it may improve their specificity. Readers
may be interested in the Galaxy toolbox, which offers access to many of the tools
described here [50].
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are specifically designed to improve sensitivity

and specificity in paired-end sequencing

(e.g., SIPeS [21]). Existing peak callers

have many user-settable parameters that

can greatly affect the number and quality

of the peaks called. For instance, the

enrichment metric for most peak callers,

such as p-value or FDR, could be hugely

affected by the statistical model used, the

sequencing depth, or the actual number of

binding sites in the genome. Thus, using

the same p-value or FDR threshold does

not ensure that the numbers of peaks called

are comparable across libraries and diffe-

rent peak callers [22]. A better approach is

to threshold the irreproducible discovery

rate (IDR) [23], which, along with motif

analysis, can also aid in choosing the best

peak-calling algorithm and parameter set-

tings (see sections ‘‘Assessment of Repro-

ducibility’’ and ‘‘Motif Analysis’’).

Assessment of Reproducibility
To ensure that experimental results are

reproducible, it is recommended to per-

form at least two biological replicates of

each ChIP-seq experiment and examine

the reproducibility of both the reads and

identified peaks [7,24]. The reproducibil-

ity of the reads can be measured by

computing the Pearson correlation coeffi-

cient (PCC) of the (mapped) read counts at

each genomic position [25]. The range of

PCC is typically from 0.3–0.4 (for unre-

lated samples) to .0.9 (for replicate

samples in high-quality experiments).

Low values typically suggest one or both

replicates may be of low quality. However,

this quantity can be dominated by a small

number of very highly enriched regions, so

it may not reflect the reproducibility for

regions that are less enriched [26]. Thus it

is important to remove the artefact regions

with high ChIP signals, such as regions

near centromeres, telomeres, satellite re-

peats, and ENCODE and 1000 Genomes

blacklisted regions, before computing the

PCC. To measure the reproducibility at

the level of peak calling, IDR analysis

(Box 8) [23] can be applied to the two sets

of peaks identified from a pair of repli-

cates. This analysis assesses the rank

consistency of identified peaks between

replicates, and outputs the number of

peaks that pass a user-specified reproduc-

ibility threshold (e.g., IDR = 0.05). It has

been reported that using a reproducibility-

based metric (e.g., IDR) rather than an

enrichment-based metric (e.g., FDR or p-

value) makes the numbers of peaks

declared more comparable across experi-

ments [7]. In addition, IDR analysis can

also be used for comparing and selecting

peak callers [8,23] and identifying exper-

iments with low quality [7].

Differential Binding Analysis
Comparative ChIP-seq analysis of an

increasing number of protein-bound re-

gions across conditions or tissues is ex-

pected with the steady raise of NGS

projects. For example, temporal or devel-

opmental designs of ChIP-seq experiments

can provide different snapshots of a

binding signal for the same TF, uncover-

ing stage-specific patterns of gene regula-

tion [27,28]. With this in mind, one should

note that the simple binary overlap of two

sets of peaks (e.g., BEDTools [29]) does

not represent the optimal approach when

comparing peaks [25].

Two alternatives have been proposed.

The first one—qualitative—implements

hypothesis testing on multiple overlapping

sets of peaks [30], therefore extending the

two-set overlap approach mentioned

above. The second one—quantitative—

proposes the analysis of differential bind-

ing between conditions based on the total

counts of reads in peak regions or on the

read densities, i.e., counts of reads over-

lapping at individual genomic positions

(Table S3 and [31,32]). The direct

calculation of differentially bound regions

Box 2. Quality metrics of read counts

Strand cross-correlation analysis [7] assesses data quality by measuring the
degree of immunoprecipitated (IP) fragment clustering in ChIP-seq experiments.
It is developed based on the observations that (1) a high-quality ChIP-seq
experiment often shows a significant clustering of enriched DNA sequence tags at
the locations bound by the protein of interest, and that (2) the enriched sequence
tags on the forward and reversed strands are positioned at a distance from the
binding site center that depends on the fragment size distribution [9]. This
method quantifies the degree of clustering by computing the cross-correlation
between the two strands, i.e., the Pearson correlation between the strand-specific
read density profiles as a function of the shift (k) applied to one of the two strands
(Figure S1). The cross-correlation typically peaks at the shift corresponding to
the fragment length and the shift corresponding to the read length. The ratio
between the cross-correlation at the fragment length and the background cross-
correlation, referred to as normalized strand cross-correlation coefficient (NSC),
and the ratio between cross-correlation at the fragment length and the cross-
correlation at the read length, referred to as relative strand cross-correlation
coefficient (RSC), jointly reflect signal-to-noise ratio in the ChIP-seq data. Very
successful ChIP experiments generally have NSC.1.05 and RSC.0.8 [7], although
there can still be significant biological information present in ChIP-seq data not
meeting these criteria. Readers may refer to [7] for prototypical profiles of cross-
correlation illustrated on ENCODE data.

The software CHANCE [16] assesses IP strength by estimating and comparing the
IP reads pulled down by the antibody and the background, using a method called
signal extraction scaling [77]. For each sample, it first bins the genome into non-
overlap bins both for the IP and the Input, then partitions the bins into a signal
region and a background region by comparing the cumulative distributions of
tag counts in the bins of the IP and the Input. It next computes a p-value for
significance of enrichment according to the percentage allocation of reads in
each type of regions. Based on the empirical p-value distribution computed from
a set of ENCODE IP-Input and Input-input experiments on human data, it
estimates a q-value by treating the two types of experiments as true positives and
false positives, respectively. The q-value thus is interpreted as the fraction of
comparisons with ENCODE data that show differential enrichment at the level of
the user’s data but turn out to be technical replicates of the Inputs. The software
determines the success of the experiment based on the q-values, and also reports
some descriptive quality statistics, such as the percentage increase in mean tag
density in IP compared to Input and the percentage of the genome classified as
signal region. Because the q-values are computed based on human data, users
should be aware that the q-values may not be relevant if their data are generated
from other organisms.

CHANCE also provides a graphical visualization of IP strength with genome
coverage, by plotting the empirical cumulative percentage of tags covered by the
bins that are sorted in an increasing order of read density for both the IP and the
Input. By examining and comparing the IP and Input curves, one may identify
quality issues, such as insufficient sequencing depth, amplification bias, and weak
IP enrichment.
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between treatment samples without con-

trols (i.e., using one of them as a control) is

not recommended because highly enriched

regions could be identified due to artefacts

or different chromatin structure and not

due to true binding events.

Typically, both methodologies assume

that significant (see section ‘‘Peak Calling’’)

and reproducible (see section ‘‘Assessment

of Reproducibility’’) peaks have been found

in advance independently for each condi-

tion. In order to increase sensitivity for

detecting differentially bound regions (at

the expense of increasing the number of

false positives), more relaxed thresholds can

be used to find peaks at each condition.

Then, depending on the biological ques-

tion, the sets of peaks called in any of the

conditions can be considered separately, or

collapsed into one or more meaningful lists

of consensus peak regions. One can use the

qualitative approach to get an initial over-

view of differential binding. However, peaks

identified in all conditions will never be

declared as differentially bound sites by this

approach based just on the positions of the

peaks [33]. The quantitative approach works

with read counts (e.g., DBChIP [33]) or

read densities (e.g., MAnorm [34]) com-

puted over peak regions, and has higher

computational cost, but is recommended as

it provides precise statistical assessment of

differential binding across conditions (e.g.,

p-values or q-values linked to read-enrich-

ment fold changes). It is strongly advised

to verify that the data fulfill the require-

ments of the software chosen for the

analysis. For instance, DIME [35] assumes

that a significant proportion of peaks are

common to the conditions under compar-

ison, MAnorm assumes that peaks that are

common in both conditions do not change

significantly, while other methodologies

may expect a constant number of peaks

across conditions [25]. Importantly, with

some tools only two conditions can be

submitted simultaneously for comparison

(e.g., MAnorm), and some may perform

better depending on the protein ChIPed

(e.g., ChIPDiff [36] for histone marks and

POLYPHEMUS [37] for RNA Pol II).

Peak Annotation
The aim of the annotation is to associate

the ChIP-seq peaks with functionally

relevant genomic regions, such as gene

promoters, transcription start sites, inter-

genic regions, etc. In the first step, one

uploads the peaks and reads (in an

appropriate format, e.g., BED or GFF

for peaks, WIG or bedGraph for normal-

ized read coverage; see Text S1 and [38–

41]) to a genome browser, where regions

can be manually examined in search for

associations with annotated genomic fea-

tures. If comparable data (e.g., ChIP-

qPCR) is available, it can be compared

with the ChIP-seq peaks and reads

manually in the browser as well. A

systematic analysis can also be performed

using tools in packages such as BEDTools

to compute the distance from each peak to

the nearest landmark (e.g., TSS), or to

identify the genes within a given distance

of a peak. The output of such ‘‘location

analyses,’’ obtained for instance using

CEAS [42] or the Bioconductor package

ChIPpeakAnno [43], can be further cor-

related with expression data (e.g., to

determine if proximity of a gene to a peak

is correlated with its expression) or sub-

jected to a gene ontology analysis (e.g., to

Box 3. Peak calling: Punctate-source transcription factors

Nowadays, since ChIP-seq data of point-source factors are the most abundant
type, most peak callers are designed and fine-tuned for these factors. Existing
peak callers differ from each other in terms of signal smoothing and background
modeling. Because DNA around interaction sites is more easily sheared, the ends
of ChIPed DNA fragments would form footprints on DNA whose size is more
related to protein-DNA interaction than to size selection during library
preparation. Those peak callers able to capture this experiment-specific
information can greatly improve accuracy of prediction. For example, peak
callers SPP [9] and MACS [17] (version 2) use cross-correlation to find the lag
between reads mapped to the minus and the plus strand as the size of actual
protein-DNA interacting regions. After smoothing, background models are then
used to remove noise either directly from the control sample or from features of
the genome sequence such as GC content or mappability (BEADS [84]). Peaks are
finally called above a user-defined SNR level. Models used for the statistical
assessment of enriched regions (peaks) range from Poisson (CSAR [85]), local
Poisson (MACS), negative binomial (CisGenome [56]) to zero-inflated negative
binomial (ZINBA [86]), or even extend to more sophisticated machine learning
modeling techniques such as Hidden Markov Model (HPeak [87] and BayesPeak
[88]).

Most peak-calling algorithms apply a window-based method to detect peaks, so
nearby binding events may be erroneously merged. To improve the spatial
resolution of binding event predictions, several peak callers use peak shape as a
clue. PeakSplitter [89] can look for local maxima in a broader region containing
several sub-peaks. GPS [67] builds a probabilistic model of the distribution of
ChIP-seq reads at given peak candidate regions to deconvolve nearby homotypic
events. The R packages polyaPeak and NarrowPeaks can analyze the shape of the
peaks to re-rank and narrow down the final peak list, respectively. These
approaches are highly recommended as a post-processing step after general peak
calling for point-source factors.

Box 4. Peak calling: Broad enriched regions from histone marks

Due to the increasing interest in epigenetic regulation, epigenetic marks such as
histone modifications, DNA methylation, and chromatin remodeling factors are
being explored through ChIP-seq. Some of these marks are enriched strongly in
narrow genomic regions (e.g., H3K4me3 at gene promoters), and the peak callers
appropriate for point-source factors (discussed in Box 3) can be used. However,
most histone marks tend to have more broadly spreading and weaker patterns
(e.g., H3K27me3). Several peak callers are specifically designed for predicting
broad regions from ChIP-seq data, including SICER [90], CCAT [91], ZINBA, and
RSEG [92]. Other peak callers including SPP, MACS (version 2), and PeakRanger
[93] can also be used with this type of ChIP-seq data by using their options to
increase ‘‘bandwidth’’ or to relax the ‘‘peak cutoff.’’

For broad marks, the pattern of enrichment should be described as ‘‘domains’’
instead of ‘‘peaks’’ because there are no clearly defined peak summits. An
alternative representation of the pattern of mapped reads is hierarchical:
combining multiple levels of enrichment. For example, MACS (version 2) and
Scripture [94] (originally designed for RNA-seq) can make narrow calls for strong
enrichment inside broader calls for weak enrichment associated with domain
boundaries.
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determine if the ChIPed protein is in-

volved in particular biological processes).

Gene ontology analysis can be done using

DAVID [44], GREAT [45], or GSEA

[46]. Sometimes, the reads densities rela-

tive to a specific annotated feature are

plotted and compared across different

samples, thus revealing protein-binding

pattern differences between them [47].

Motif Analysis
Motif analysis is useful for much more

than just identifying the causal DNA-

binding motif in TF ChIP-seq peaks.

When the motif of the ChIPed protein is

already known, motif analysis provides

validation of the success of the experiment.

Even when the motif is not known before-

hand, identifying a centrally located motif

in a large fraction of the peaks by motif

analysis is indicative of a successful experi-

ment. Motif analysis can also identify the

DNA-binding motifs of other proteins that

bind in complex or in conjunction with the

ChIPed protein, illuminating the mecha-

nisms of transcriptional regulation. Motif

analysis is also useful with histone modi-

fication ChIP-seq because it can discover

unanticipated sequence signals associated

with such marks. Table S4 and [48,49]

list a small sample of the publicly available

tools for motif analysis.

Motif analysis is applied to the genomic

regions identified by peak-calling algorithms.

Hence, the first step in motif analysis is to

assemble a set of genomic sequences in

FASTA format corresponding to all the

significant ChIP-seq peaks [50–54]. The

second step in motif analysis is motif

discovery and it is advisable to input the

peak sequences to two or more of the many

algorithms able to discover sequence motifs

in unaligned DNA sequences [55–58], as

the algorithms have complementary strengths

and weaknesses. Some motif discovery

algorithms form part of pipelines that

perform several motif analysis steps (e.g.,

MEME-ChIP [57] and peak-motifs [58]),

including word-based motif discovery al-

gorithms and motif enrichment algorithms

that can identify motifs present in only a

small fraction of the peaks. Following motif

discovery, comparing the discovered motifs

with known DNA motifs using motif

comparison software [59,60] is useful to

confirm the presence of the ChIPed TF

motif if its (or its TF-family) binding motif is

known. The results will also provide hints

about other TFs that bind near the ChIPed

TF. Next, central motif enrichment anal-

ysis will determine if other known DNA

motifs are enriched near the centers (or

summits) of the ChIP-seq peaks [61]. It can

also be useful to perform local motif

enrichment analysis on regions centered

on genomic landmarks such as transcrip-

tion start sites overlapped by ChIP-seq

peaks [61]. Additionally, a motif spacing

analysis detects preferred distances and

arrangements of pairs of motifs that can be

indicative of physical interactions between

TFs [62]. Finally, motif prediction maps

and visualizes the genomic locations of the

motifs in each of the ChIP-seq regions

[63,64]. In this step, the discovered or

enriched motifs are used to scan the ChIP-

seq peak regions, and the coordinates of

the matches are uploaded to a genome

browser for visualization.

Outlook

The challenges of ChIP-seq require

novel experimental, statistical, and com-

putational solutions. Ongoing advances will

allow ChIP-seq to analyze samples con-

taining far fewer cells, greatly expanding its

applicability in areas such as embryology

and development where large samples are

prohibitively expensive or difficult to ob-

tain. Nano-ChIP-seq can analyze a sample

as small as 10,000 cells [65]. No less critical

is to trim today’s peaks that are much wider

than the actual transcription factor binding

sites. This is necessary to distinguish

artefacts from bona fide joint binding

events: most transcription factors competi-

tively, cooperatively, or co-bind with other

Box 5. Peak calling: Mixed signals

There are also some factors (such as RNA Pol II) that bind to DNA in regions with
bigger variation. It is known that some RNA Pol II complexes are stalled while
others are moving along with active transcription [95]. In the first case, data
ideally should be treated as for a point-source factor, whereas in the second case,
the data should be treated as for factors with broad marks. An ideal algorithm
should accommodate both patterns, which means peak calling should be more
general. Some tools have options for both narrow and broad peak calling, such as
SPP, MACS, ZINBA, and PeakRanger. However, with careful parameter tweaking
any algorithm suitable for broad peak detection would work for this type of data.

Box 6. Normalization

Whether comparing one ChIP sample against input DNA (sonicated DNA), ‘‘mock’’
ChIP (non-specific antibody, e.g., IgG) in peak calling, or comparing a ChIP sample
against another in differential analysis, there are linear and non-linear
normalization methods available to make the two samples ‘‘comparable’’ (Table
S2). Although many methodologies focus on normalization to a control sample,
none of them make the distinction on the type of control samples used. An
intuitive and commonly used linear normalization technique is called sequencing
depth normalization. In this method the number of reads is multiplied by a scale
factor to make the total reads in different samples the same (see [9,96] for details).
A slight modification of the method is used in PeakSeq [24], where a scale factor is
estimated in a region (,10 Kb) using linear regression. Many other existing
methods also use a normalization factor to linearly scale samples, focusing on
normalization against control samples (see for example CisGenome [56], MACS
[17], and USeq [97]). Another scaling normalization method known as RPKM
(Reads per Kilobase of sequence range per Million mapped reads) proposed in
[98] adjusts for biases due to the higher probability of reads falling into longer
regions.

A non-linear normalization adjusts for biases with non-linear trend. In a method
described in [28] the data is normalized with respect to mean and variance using
locally weighted regression (LOESS). It is based on the assumption that the effect
of biological condition change does not cause global binding alterations. This
assumption can be applied, for example, when comparing samples with different
stages of disease progression, or on samples before and after a certain treatment
(see section ‘‘Differential Binding Analysis’’). A modified version of this non-linear
normalization is implemented as MAnorm [34], assuming that peaks common in
the two conditions do not undergo global changes. The R package called
POLYPHEMUS [37] has also been developed, implementing two normalization
methods: (1) the non-linear method described in [28] and (2) a Quantile
normalization that makes the distribution in different samples the same.
Normalization issues are, at present, not fully exploited although they might
have a substantial impact on the results [28,37,99].
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transcription factors, the transcriptional

machinery, or cofactors. The effects of

context-dependent regulatory mechanisms

can fundamentally differ from the effects of

individual binding events [66]. To address

this issue, the Genome Positioning System

(GPS) resolves closely spaced peaks using a

segmented expectation maximization algo-

rithm [67]. A promising experimental

method for localizing narrow peaks is

ChIP-exo that uses bacteriophage l exo-

nuclease to digest the ends of DNA frag-

ments not bound to protein [68].

The number of false positive peaks can

be reduced both experimentally and

computationally. Improving antibody

specificity is a long-term endeavor, and

despite impressive progress, still a quarter

of histone modification antibodies fail the

specificity test [69]. Another way to

eliminate massive amounts of false positive

peaks is to limit the regulatory binding sites

to nucleosome-depleted regions, which are

accessible for regulator binding. These

regions are mapped by DNase I hypersen-

sitivity sequencing (DNase-seq) and similar

techniques: Thurman et al. found that 94%

of the human transcription factor binding

sites fell into DNase hypersensitivity regions

with only a few exceptions like the trans-

cription factors ZNF274, KAP1, and

SETDB1, which also bind to closed

chromatin [70]. False positive peaks are

also due to unrealistic p-values (and hence

FDRs) coming from unrealistic statistical

models used in most methods [71]. The

computational analysis of peak calling is

still in its infancy, expanding the diverse

and condition-specific performance of the

methods [72,73], therefore we recommend

using several methods for peak calling.

Perhaps the most important novel

developments are related to the detection

and analyses of distal regulatory regions,

which are distant in sequence but brought

close in 3-D space by DNA bending. To

reveal such 3-D mechanisms of transcrip-

tional regulation, two major techniques

have emerged: chromatin interaction anal-

ysis by paired-end tags (CHIA-PET) [74]

and chromosome conformation capture

assays such as circular chromosome con-

formation capture (4C) [75] or chromo-

some conformation capture carbon copy

(5C) [76].

Biological functions of binding sites are

not necessarily indicated by the reproduc-

ibility of peaks or FDR/IDR values (Box
8, [7,23,77,78]). This issue re-emerged

during the ENCODE Project that pro-

duced unprecedented regulatory infor-

mation [66,79] under rigorous quality

standards [7]. DNA-protein binding is

dynamic, and the measured strength of a

binding event depends (among other

things) on the fraction of cells in the (often

inhomogeneous) sample where it occurs,

as well as the proportion of the time it is

occupied in a given cell. Hence, ‘‘weak’’

binding sites, regardless of what signifi-

cance threshold is used, may have strong

biological functions [80–82]. ChIP-seq will

also detect indirect DNA binding by the

protein (via another protein or complex),

so predicted sites not containing the motif

may also be functional. Finally, binding

does not necessarily imply function, so it

will remain necessary to use additional

information (such as expression or chro-

matin conformation data) to reliably infer

the function of individual binding events

[83].

The diverse experimental and computa-

tional methods discussed here are revolu-

tionizing our understanding of the complex

networks that, by regulating transcription,

impact translation and almost all biological

processes.

Supporting Information

Text S1 Standard graphing track
data formats for genome browser
visualization.

(DOCX)

Figure S1 Assessment of read qual-
ity using strand cross-correlation.
Strand cross-correlation is computed as

the Pearson correlation between the pos-

itive and the negative strand profiles at

different strand shift distances, k. The

cross-correlation (panel A) usually peaks

at two distances of shift, one correspond-

ing to the read length, and one to the

average fragment length of the library.

The absolute and relative height of the two

peaks is useful for assessing IP enrichment.

Adapted from Landt et al. [7].

(TIF)

Figure S2 The irreproducible dis-
covery rate (IDR) framework for

Box 7. Duplicated reads

Duplicate (identical) reads present a challenge because they can arise from
independent DNA fragments or by PCR amplification of a single fragment. In the
former case, the duplicate reads are signals, in the latter case they are noise
(experimental artefact). A safe solution is to keep a fixed number of hits per
genomic location (considering different strands as different locations) according
to sequencing depth, and in this way better specificity (fewer false positive peaks)
can be achieved [8]. However in terms of estimating the protein’s affinity for a
given genomic region, it is more reasonable to consider all hits. This can be done
in a well-designed pipeline with certain steps before and after peak calling. For
example, one can remove a certain number of duplicates to call confident peaks,
and then put duplicates back to refine properties of these peaks such as peak
height and boundaries.

Box 8. Irreproducible discovery rate (IDR)

Given a set of peak calls for a pair of replicate data sets, the peaks can be ranked
based on a criterion of significance, such as the p-value, the q-value, or the fold
enrichment. Significant peaks generally are ranked more consistently across the
replicates than the peaks with low significance. This provides an indicator of the
transition from real signal to noise. IDR [23] quantifies this transition by classifying
peaks into a reproducible and an irreproducible group, where the peaks in the
reproducible group should be ranked higher and more consistently across
replicates than the irreproducible group (Figure S2). It assigns each signal a
reproducibility index, which estimates its probability to be reproducible, and also
reports the expected rate of irreproducible discoveries in the selected peaks
(referred to as IDR) in a fashion analogous to that of false discovery rate (FDR). An
R package for computing IDR is given in [23]. Prototypical examples illustrated
using ENCODE data may be found in [7]. When using IDR, a relatively relaxed
peak-calling threshold is advised because the IDR algorithm requires sampling of
both signal and noise distributions to assess the reproducibility of peaks.

A major advantage of the IDR method is that it is independent of the peak-calling
algorithms and can be applied to a variety of significance criteria, across labs and
platforms. It has been shown that it produces a stable threshold that is more
consistent across laboratories, antibodies, and analysis protocols (e.g., peak
callers) than FDR measures [7].
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assessing reproducibility of ChIP-seq
data sets. Panel A shows a scatterplot of

the significance scores of peaks identified

in two replicate ChIP-seq experiments.

The IDR method classifies peaks into

reproducible (black) and irreproducible

(red) groups, and computes for each peak

the probability that the peak belongs to the

irreproducible group. It ranks and selects

peaks according to this probability, and

computes IDR, the expected rate of

irreproducible discoveries in the selected

peaks. Panel B shows the estimated IDR at

different rank thresholds when the peaks

are sorted by the original significance

score.

(TIF)

Table S1 Examples of peak call-
ers employed in ChIP-seq. The list

includes tools that allow the processing

and post-processing of diverse types of

narrow read-enriched regions (peaks),

broad enriched regions (domains), and

mixed signals such as in RNA Pol II

ChIP-seq.

(DOCX)

Table S2 Normalization methods
for the comparative analysis of
ChIP-seq data sets.

(DOCX)

Table S3 Software packages for the
analysis of differential binding in
ChIP-seq. The table shows examples of

algorithms available for differential bind-

ing analysis using ChIP-seq data.

(DOCX)

Table S4 Software tools for motif
analysis of ChIP-seq peaks and
their uses. The table gives examples of

publicly available software tools for per-

forming motif analysis on ChIP-seq peaks

or nearby genes. The tools are grouped by

the major task (‘‘category’’), and check-

marks indicate the specific steps that each

tool performs. Web-based motif discovery

input size limits—ChIPMunk: unknown;

CompleteMOTIFS: 500,000 base pairs;

MEME-ChIP: 50,000,000 base pairs;

peak-motifs: no limit; Cistrome: 5,000 peaks.

(DOCX)
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