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Abstract
The bone marrow (BM) is the primary site of postnatal hematopoiesis and
hematopoietic stem cell (HSC) maintenance. The BM HSC niche is an
essential microenvironment which evolves and responds to the
physiological demands of HSCs. It is responsible for orchestrating the fate
of HSCs and tightly regulates the processes that occur in the BM, including
self-renewal, quiescence, engraftment, and lineage differentiation.
However, the BM HSC niche is disturbed following hematological stress
such as hematological malignancies, ionizing radiation, and chemotherapy,
causing the cellular composition to alter and remodeling to occur.
Consequently, hematopoietic recovery has been the focus of many recent
studies and elucidating these mechanisms has great biological and clinical
relevance, namely to exploit these mechanisms as a therapeutic treatment
for hematopoietic malignancies and improve regeneration following BM
injury. The sympathetic nervous system innervates the BM niche
and regulates the migration of HSCs in and out of the BM under steady
state. However, recent studies have investigated how sympathetic
innervation and signaling are dysregulated under stress and the
subsequent effect they have on hematopoiesis. Here, we provide an
overview of distinct BM niches and how they contribute to HSC regulatory
processes with a particular focus on neuronal regulation of HSCs under
steady state and stress hematopoiesis.
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Structural components of the bone marrow niche
The bone marrow (BM) is highly vascularized to provide nutri-
ents and oxygen. The nutrient artery and vein infiltrate the  
compact bone and subsequently branch to form small arteri-
oles. These arterioles connect via transition zone vessels (also 
called type H capillaries) to the venous sinusoids near the endos-
teum, which is the interface between the bone surface and the 
BM1–3. BM sinusoids form a complex network and are found in 
the central marrow, operating as the site where hematopoietic 
cells migrate in and out of the BM4, although a recent study sug-
gested that transcortical vessels in bone represent an additional 
important migration route5.

Each niche likely operates different functions and exhibits its 
own cellular composition. Key cellular niche components are 
the stromal cells necessary for producing niche factors that 
directly act on hematopoietic stem cells (HSCs). Perivas-
cular cells identified by the expression of the intermediate  
filament protein NESTIN contain BM mesenchymal stem cells 
(MSCs) and can be divided in Nestin-Gfp transgenic mice into 
two subsets according to their GFP expression: Nes-GFPbright and 
Nes-GFPdim. Nes-GFPdim cells are located around the sinusoids, 
and Nes-GFPbright cells are located around the arterioles2 and the 
transition zone vessels6. Stromal cells can be further divided to 
neuron-glial antigen (NG2)-expressing cells2, Cxcl12-abundant 
reticular (CAR) cells7, and cells expressing leptin recep-
tor (LepR)1, all of which overlap with Nes-GFP+ cells to 
varying degrees8,9.

NG2+ cells ensheath the arterioles which have been proposed as 
an important niche for regulating the quiescence of HSCs via 
the secretion of Cxcl12, whereas others have attributed the same 
function to LEPR+ cells in the sinusoids2,10–12. Most likely, the 
discrepancies are due to different interpretations of the specifi-
city and recombination efficiency of the Cre lines used, given 
the large overlap among these cell populations8,9. On the other 
hand, CAR cells are defined by Cxcl12 expression, essentially 
coincide with LEPR+ cells and Nes-GFPdim cells, and are located 
throughout the BM1,7.

The BM is highly innervated by various types of nerves, of 
which the autonomic branch is predominant13. Sympathetic 
nerve fibers enter the BM through the nutrient foramen and 
are closely associated with the blood vessels, before sprouting 
and innervating different BM regions14, although some nerves 
may reach the BM associated with transcortical vessels in bone. 
The sympathetic nervous system (SNS) has been demonstrated  
to regulate various hematopoietic cell functions directly or 
indirectly mainly via the stromal cells, mediated by neuro-
transmitters binding to beta adrenergic receptors (β-ADRs)13. 
β-ADRs are coupled with G

s
 trimeric proteins and activate ade-

nylate cyclase, catalyzing the formation of cyclic adenosine  
monophosphate, which subsequently activates protein kinase A 
phosphorylation of the receptor15. Contrastingly, the presence of 
the parasympathetic nervous system (PNS), another branch of 

the SNS, within the BM is vastly unexplored. The PNS uses ace-
tylcholine (ACh) as the main neurotransmitter, which binds to 
muscarinic or nicotinic receptors. One study suggested that the 
PNS may innervate the distal femoral metaphysis16 and another 
similarly supported cholinergic innervation within the BM of 
rats17. However, additional neuroanatomical evidence of para-
sympathetic BM innervation is essentially lacking18. Moreover, 
the bone anabolic effect of the PNS16 was suggested by another 
group to be indirectly mediated through the inhibition of cen-
tral sympathetic tone19. Therefore, clarification on whether the 
PNS innervates the BM is required. Overall, little is known about 
how parasympathetic or, more broadly, cholinergic signaling 
might influence either HSCs or their BM niches.

Bone marrow hematopoietic stem cell niche: location 
matters
The dissection of BM niches is still a developing area because 
of the dynamic features of the niches to meet the physiologi-
cal demands and their alterations in different scenarios such as 
aging, malignancies, or response to stress. Single-cell studies 
have provided insights into the heterogeneity of the stromal cells, 
forming an increasingly complex picture20–22. In addition, HSCs 
themselves are functionally and molecularly heterogeneous23–25, 
raising the possibility that distinct subpopulations of HSCs are 
regulated by specialized niches.

It is possible that distinct vascular niches can orchestrate the bal-
ance between quiescence and proliferation of HSCs, which is 
necessary for homeostasis but also regeneration of the BM fol-
lowing injury. Consequently, studies have investigated how 
the regulation of HSCs differs depending on whether they are 
located within the endosteal region or the central marrow. In 
particular, these differences become more apparent under stress 
conditions. Following irradiation, HSCs tend to home to the 
endosteal region and HSCs isolated from this region exhibit 
greater in vivo homing and reconstitution potential than HSCs 
located in the central marrow26–28.

Furthermore, it has been demonstrated that the endosteal region 
is important to preserve HSC quiescence under proliferative 
stress and to support regeneration of the HSC pool following 
injury29–31. The stromal cell populations within the endosteal 
region better resist myeloablation, and N-cadherin+ MSCs31 and 
CD73+ MSCs32 have been identified as resistant cell popula-
tions that contribute to hematopoietic stem and progenitor cell 
(HSPC) engraftment and subsequent hematopoietic recovery. 
Reserve HSCs and primed HSCs have been distinguished by 
their proliferation and sensitivity to chemotherapy (5-fluorour-
acil). Notably, whereas primed HSCs tend to be located within 
the central BM niche, reserve HSCs are preferentially main-
tained in the endosteal region31. Reserve HSCs are able to resist 
chemotherapy in part due to N-cadherin+ MSCs, which expand 
and produce cytokines to aid recovery after myeloablation31. 
Overall, these studies confirm that the endosteal BM region is 
important for mediating hematopoietic regeneration after stress.
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Neuronal regulation under steady state
Neuronal regulation of hematopoietic stem cells
Cumulative evidence indicates that the SNS regulates the pro-
liferation and differentiation of HSPCs, and the migration of 
HSPCs and leukocytes between the BM and extramedullary sites. 
This was initially suggested because catecholamine levels in 
the blood and the BM adhered to circadian rhythms that also 
affected the proliferation of BM cells that expressed catecho-
lamine receptors33. More recently, Golan et al. demonstrated in 
mice that a morning peak of norepinephrine and TNF induces 
vascular permeability, temporarily increases reactive oxygen 
species (ROS) levels and facilitates HSPC proliferation, differ-
entiation and migration. Whereas, at night, a second TNF peak 
increases melatonin secretion and reduces vascular permeability 
and HSPC ROS levels, facilitating HSPC maintenance34.

A neurally-driven circadian release of HSCs and leukocytes into 
circulation occurs during the resting period, following photic 
cues35. Leukocytes are also recruited to many vital organs,  
including skeletal muscle, following circadian oscillations of 
neural activity36. Noradrenaline binding to β

3
-ADR on stro-

mal cells causes a decrease in the nuclear content of Sp1 tran-
scription factor and finally downregulation of Cxcl1235. The  
interaction of Cxcl12 expressed by stromal cells with its recep-
tor Cxcr4, located on HSCs and leukocytes, is pivotal for HSC/ 
leukocyte retention in the BM37. It has also been demonstrated 
that the bone itself is an important transducer of signals emanating 
from the nervous system leading to HSC mobilization38,39.

We recently demonstrated how parasympathetic choliner-
gic signals coordinate with sympathetic signals to regulate the 
egress and homing of HSPCs and leukocytes in mice40. At night, 
the PNS acts centrally to dampen the noradrenergic sympa-
thetic branch and decrease BM egress of HSPCs and leukocytes 
mediated through β

3
-ADR40. In contrast, epinephrine released 

at night in circulation can stimulate β
2
-ADR and increase vas-

cular adhesion and subsequent BM homing at night40. In the 
morning, a novel cholinergic sympathetic branch regulates  
vascular adhesion and β

3
-ADR expression40. These results illus-

trate how a master rheostat SNS regulates the daily migration of 
HSCs and leukocytes.

Glial cells
Glial cells supporting BM nerve fibers have also been suggested 
to regulate HSC proliferation41. Non-myelinating Schwann cells 
wrap around the sympathetic nerves travelling along the vascu-
lature within the BM. Non-myelination Schwann cells have been 
reported to maintain HSC quiescence via secretion of tumor 
growth factor beta (TGF-β) activator molecules and induction 
of TGF-β/SMAD signaling in HSCs41. This signaling contrib-
utes to HSC quiescence through increased phosphorylation of 
Smad2 and Smad341, hence supporting the maintenance and 
self-renewal of HSCs42.

Effects of muscarinic signaling on hematopoiesis
So far, the studies addressing cholinergic regulation of hemat-
opoiesis have focused mostly on muscarinic receptor signaling. 

One study demonstrated that cholinergic receptor muscarinic 
4 (CHRM4) regulated self-renewal of early erythroid progeni-
tors, and muscarinic receptor antagonists have been proposed as 
a therapy for treating anemia43. Pierce et al. uncovered another 
pathway connecting the brain with the BM to regulate mobi-
lization of HSCs enforced by granulocyte colony-stimulating 
factor (G-CSF)44. The authors demonstrated how the muscarinic 
receptor type 1 (Chrm1) signaling in the hypothalamus promoted 
G-CSF-induced HSC mobilization via the hypothalamic-pitui-
tary-adrenal (HPA) axis44. Thus, priming HSC migration through 
glucocorticoid (GC) hormone levels, which exhibit circa-
dian oscillations, and binding to the receptor Nr3c1 regulates  
G-CSF-induced HSC mobilization44. Whereas these studies 
have uncovered the influence of muscarinic signaling on HSCs, 
further investigation of other cholinergic signaling pathways  
(particularly involving nicotinic receptors) possibly influencing 
HSCs is warranted.

Neuronal hematopoietic stem cell regulation under 
stress
Hematological stress can be caused as a result of a diverse range 
of factors from psychological stress to hematological malignan-
cies. However, one common consequence is the dysregulation of 
the SNS, predominantly affecting myelopoiesis. The following 
sections discuss current studies of neuronal regulation of HSCs 
under various stress conditions.

Immunity
Leukocytes exit the blood following circadian rhythms and 
undergo extensive interactions with endothelial cells as they 
migrate between the BM and extramedullary sites. The expres-
sion of adhesion molecules, chemokines and their receptors fol-
low daily rhythms that regulate the migration of leukocyte subsets 
within distinct vascular beds. Ablation of the transcription fac-
tor BMAL1, which is an essential for clock gene, demonstrated 
that rhythmic leukocyte recruitment is dependent on both cell-
autonomous and microenvironmental oscillations45. Under stress 
conditions (e.g. jetlag or transplantation), alterations in these 
rhythms can have physiological consequences by disrupting 
hematopoietic cell recruitment and recovery. Therefore, time- 
based therapeutics for transplantations and inflammatory dis-
eases may prove beneficial36. In addition, leukocyte adhesion to 
arteries and veins is disproportionately disrupted following an 
inflammatory response, with arteries driving rhythmic inflamma-
tory responses within the vasculature46. Altogether, these studies 
suggest an important influence of circadian rhythms in immune 
response.

Mak and Tracey’s laboratories have pioneered research into 
how neural signals regulate immunity by showing that nore-
pinephrine-induced T cell-derived ACh regulates immune 
response47–50. Recently, they have demonstrated that ChAT is 
induced in both CD4+ and CD8+ T cells during infection in 
an interleukin-21 (IL-21)-dependent manner and is key for 
overcoming infections47. Moreover, they have validated that 
ChAT is expressed and ACh is produced by B cells follow-
ing stimulation with sulphated cholecystokinin, resulting in 
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controlled recruitment of neutrophils48. In the proposed cir-
cuit, the vagus nerve acts via the splenic nerve, which releases 
ACh from T cells. ACh binds to the nicotinic ACh receptor α7 
subunit on macrophages, causing the inhibition of tumor necro-
sis factor release, thus regulating inflammation49. The vagus 
nerve-to-spleen circuit can also be controlled at a central level 
and can be exploited to suppress pro-inflammatory cytokine 
release51,52. Overall, these studies suggest the importance of 
the cholinergic vagus nerve-to-spleen anti-inflammatory path-
ways. However, it is important to mention that other groups 
have suggested alternative ways to explain the cholinergic 
anti-inflammatory reflex. Particularly, the efferent arm of the 
inflammatory reflex seems to involve a different splanchnic 
anti-inflammatory pathway53.

Impact of the autonomic nervous system on the 
skeleton
Apart from the direct regulation of hematopoietic cells and 
their niches, it is likely that circadian oscillation of neural activ-
ity indirectly regulates hematopoiesis and immunity through 
their effects on bone remodeling. Skeletal remodeling com-
prises two phases: resorption by osteoclasts and formation by 
osteoblasts, allowing vertebrates to regulate bone mass daily. 
Osteoblasts are multifunctional cells able to control osteoclast 
differentiation. Notably, the energy expenditure hormone leptin 
inhibits bone formation through a neuronal relay. Sympathetic 
signaling via β

2
-ADR on osteoblasts regulate their proliferation 

and control bone formation downstream of leptin54. The SNS 
favors bone resorption by increasing the expression of Rankl on 
osteoblast progenitor cells, which regulates osteoclast differ-
entiation. Moreover, leptin regulates the expression of the neu-
ropeptide cocaine amphetamine regulated transcript (CART), 
which inhibits bone resorption by controlling Rankl expression55.

In addition, osteoclast function is inhibited by cholinergic para-
sympathetic signals that inhibit sympathetic tone centrally19. The 
skeleton can in turn modulate neural activity through secretion 
of the hormone osteocalcin, which regulates parasympathetic 
tone56. Therefore, it is likely there is an interplay between sym-
pathetic and parasympathetic nervous systems to regulate bone 
remodeling and stress responses. These pathways, which could 
have potential therapeutic implications for several complex disor-
ders including osteoporosis, chronic fatigue and fracture repair57,  
may also profoundly impact hematopoiesis.

Cardiovascular disease
Ischemic myocardium causes the heart to initiate the influx of cir-
culating myeloid cells to the site of damage. In turn, this results 
in the SNS signaling to the BM to increase the production of 
leukocytes to meet the demand, aided by circulating media-
tors such as granulocyte-macrophage colony-stimulating fac-
tor (GM-CSF) and IL-1β produced by the heart58–61. Therefore, 
the SNS regulates inflammation in cardiovascular disease by 
controlling HSPC proliferation and differentiation in response 
to stress. In addition, it was recently demonstrated that patients 
who exhibit recurrent myocardial infarction have a dampened 

emergency hematopoiesis response, due to long-term repro-
gramming of myeloid progenitors from the first myocardial 
infarction, resulting in fewer leukocytes being recruited to 
the site of injury62. Consequently, this is a potentially impor-
tant factor to consider when selecting therapies for recurrent 
myocardial infarction62.

Social and psychological stress
Both social and chronic psychological stress have been dem-
onstrated to lead to SNS-induced upregulation of myelopoiesis 
in mice and subsequently to increases in the production of  
pro-inflammatory cytokines63,64. These effects were reversed 
with the treatment of propranolol, which is a non-selective beta 
blocker63,64. Following on from those studies and previous stud-
ies on adrenergic HSC regulation35, chronic psychosocial stress 
was demonstrated to act on the most primitive progenitors, 
causing an increase in the proliferation of HSPCs in the BM of 
mice65. This finding translated to the human setting, where it 
was observed that chronic stress induced monocytosis and neu-
trophilia in humans65. This was due to the activation of the 
SNS, causing an increase in catecholamine levels, which acti-
vate the β

3
-ADR on BM niche cells, resulting in a decrease in 

CXCL12 levels35. The HSC mobilization to peripheral circula-
tion and the spleen, and the subsequent myeloid expansion in 
the spleen can aggravate chronic inflammatory diseases such as 
atherosclerosis58,66.

Burn injury
In the context of burn patients, who receive multiple blood 
transfusions for the treatment of anemia, increased catecho-
lamine levels induced expansion of HSPCs and increased their 
myeloid regulatory transcription factor (MafB) expression,  
causing a myeloid shift at the expense of megakaryocyte-eryth-
rocyte progenitors67. Chronic propranolol treatment restored the 
expansion of these cells but also influenced the myelo-erythroid 
bifurcation by reducing the granulocyte-monocyte progeni-
tors and increasing megakaryocyte-erythroid progenitor cells 
in the BM of burn-stressed mice67. These observations trans-
lated to the human setting, where ex vivo culture of burn patient 
peripheral blood mononuclear cells also demonstrated that their 
commitment stage of erythropoiesis was impaired and could 
be restored with propranolol67. Consequently, beta-adrenergic 
blockers exhibit therapeutic value for burn patients by redirect-
ing the hematopoietic commitment toward erythroid lineage via 
decreased MafB expression in multipotent progenitors, leading 
to increased erythropoietin responsiveness67. How these forms 
of stress affect hematopoiesis through the nervous system is 
summarized in Table 1.

Aging
The hematopoietic system is disrupted upon aging, result-
ing in the increase of HSCs which are functionally impaired68,69. 
These changes are caused by both cell-intrinsic dysregula-
tion and remodeling of the BM microenvironment70,71. One of 
the hallmarks of hematopoietic aging is that the myeloid out-
put of HSCs increases at the expense of lymphopoiesis68,69. One 
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study carried out transplantations of old HSCs into young recipi-
ents and vice versa. The young microenvironment was able to 
reduce myelopoiesis, confirming the contribution of the microen-
vironment72. We recently noted that the SNS is actively involved 
in aging of the hematopoietic system. Our recent study demon-
strated that sympathetic noradrenergic fibers marked by tyro-
sine hydroxylase (Th) increased in the mouse BM with aging6. 
Increased β

2
-adrenergic signaling in expanded central BM 

niches promoted myeloid cell expansion6. A functional switch 
of neurotransmission, favoring β

2
-ADR over β

3
-ADR signaling 

during aging, appears to favor myeloid cell expansion through 
the regulation of the BM microenvironment6. An active role 
for the nervous system in aging is supported by the increased 
basal sympathetic tone during human aging73–75 and by a recent 
study indicating that increased excitatory neurotransmission 
reduces the life span76. In contrast, another study suggested that 
BM Th+ fibers were reduced (not increased) during aging and 
that surgical denervation of young BM increased myelopoiesis77. 
However, BM noradrenergic nerve fibers appear to decrease 
from youth to adulthood (8-month-old adult mice compared 
with 2-month-old mice; Supplementary Figure 5b in REF77) 
but these fibers appear increased (not decreased) in old (20-
month-old) mice6. Moreover, the possible contribution of 
the inflammation caused by experimental surgical dener-
vation to the hematopoietic aging phenotypes77 should be 
considered.

Diabetes
The disautonomia associated with diabetes has been shown to 
affect the BM, disrupt the peripheral clock, and compromise  
G-CSF-induced HSC mobilization in experimental models 
because of the HSC niche deregulation78,79. In humans, cardiovas-
cular diabetic autonomic neuropathy correlates with decreased  
circulating HSPCs with increased 66-kDa protein from the src 
homology and collagen homology domain (p66Shc) and reduced 
expression of sirtuin 1 (Sirt1)80.

Hematopoietic recovery following radiation
Ionizing radiation and chemotherapy used to treat cancer cause 
BM injury and alter the BM cellular composition. Following 
chemotherapy, there is an increase in apoptosis of mature cells 
along with progenitor cells that are cycling. Chemotherapy can 
damage BM innervation81 and catecholamines, namely nore-
pinephrine can improve hematopoietic reconstitution following 
chemotherapy in mice81,82. Furthermore, G-CSF and GM-CSF 
are commonly used to accelerate myelopoiesis and minimize the 
burden of chemotherapy. These cytokines upregulate the expres-
sion of neuronal receptors on HSPCs, allowing for them to form 
a greater response to neurotransmitters, leading to enhanced 
proliferation and motility of human CD34+ progenitor cells 
and subsequent repopulation of mouse BM83. Additionally,  
mitotically active Nestin-GFP+ perisinusoidal niche cells are 
greatly diminished whereas the Nestin-GFP+ peri-arteriolar niche 
cells exhibit greater chemoresistance because of their higher 
quiescence2.

Consequently, the use of adrenergic agents as a therapeutic 
approach should be investigated further, adding to the available 
evidence on α1-ADR agonists or β-ADR agonists81,82,84.

Hematological malignancies
The SNS has also been implicated in the development of hema-
tological malignancies, predominantly the progression of 
myeloid malignancies. Sympathetic neuropathy occurs in the 
development of both acute myelogenous leukemia (AML) 
and myeloproliferative neoplasms (MPNs)85,86, but the conse-
quences appear to be different. In MPN, IL-1β produced by the 
mutant hematopoietic cells damages sensitive HSC niche com-
ponents, such as neural terminals, Schwann cells, and Nestin+ 
MSCs86. In contrast, experimental AML causes the reduction in 
arteriole-associated NG2+ cell numbers and correlates with the 
expansion of Nestin-GFP+ stromal cells85. In MPN, chronic 
administration of β

3
-adrenergic agonists to compensate for the 

defective innervation can rescue Nestin+ niche cells and improve 
myelofibrosis (BM scarring hampering normal hematopoiesis) 
in both mice86 and humans87. Different effects of β

3
-adrenergic 

agonists in mouse models and human MPN might be explained 
by the different drugs or dosing used. In AML, the relevance of 
sympathetic neuropathy85 remains to be demonstrated in humans. 
The changes in sympathetic regulation of HSC niches dur-
ing aging and age-related myeloid malignancies are briefly 
summarized in Figure 1.

Conclusions and future perspectives
The BM is regulated by neural signals principally emerging 
from the autonomic nervous system. The sympathetic noradren-
ergic branch has been much more explored than the para-
sympathetic (cholinergic) branch, both under steady state and 
during stress hematopoiesis. The data available suggest that 
sympathetic innervation regulates BM homeostasis but is espe-
cially important to respond to stress scenarios. Recent evidence 
suggests that the cholinergic branch of the autonomic nerv-
ous system contributes to this regulation40. However, the roles of 
this cholinergic branch (sympathetic or parasympathetic) in the 
regulation of hematopoiesis remain largely unexplored.

During chronic inflammation, cardiovascular disease, and short-
term social and psychological stress, beta blockers have been 
demonstrated to revert excessive myelopoiesis. Whether a simi-
lar strategy could be proposed to prevent excessive myeloid 
cell production during aging or age-related myeloid malig-
nancies requires further investigation. The possible contribu-
tion of other adrenergic or cholinergic signaling pathways 
to the progression of hematological disorders is an exciting 
area for future investigation.

Abbreviations
ACh, acetylcholine; ADR, adrenergic receptor; AML, acute 
myelogenous leukemia; BM, bone marrow; CAR, Cxcl12-abun-
dant reticular; ChAT, choline acetyltransferase; G-CSF, granu-
locyte colony-stimulating factor; HSC, hematopoietic stem cell; 
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Figure 1. Model illustrating hematopoietic stem cell niche alterations with aging and age-related myeloid malignancies. Scheme shows 
key hematopoietic stem cell (HSC) niche cell types and their alterations during aging and age-related myeloid malignancies. (a) Mesenchymal 
stem cells (MSCs), which can differentiate into osteoblasts or adipocytes, regulate HSCs in endosteal niches enriched in transition zone 
capillaries or in central niches enriched in sinusoids. Nestin-green fluorescent protein (Nes-GFP)bright neural-glial antigen 2 (NG2)+ MSCs are 
associated with endosteal capillaries and arterioles located throughout the bone marrow (BM), whereas Nes-GFPdim leptin receptor (LEPR)+ 
CXC-chemokine ligand 12 (CXCL12)-abundant reticular (CAR) MSCs are associated with sinusoids in the central BM. Sympathetic nerve 
fibers regulate CXCL12 expression in MSCs and the migration of HSCs through the sinusoids. Different MSC subpopulations, endothelial 
cells, non-myelinating Schwann cells, and megakaryocytes contribute to regulate HSC proliferation. (b) During mouse aging, sympathetic 
fibers increase, but β3-adrenergic signaling is reduced, whilst β2-adrenergic signaling increases promoting myeloid skewing. Megakaryocytes 
increase but locate further away from HSCs. (c, d) In myeloid malignancies, a damage to this neural regulation of MSCs might contribute 
to disease progression. (c) In acute myeloid leukemia (AML), sympathetic nerve fibers and NG2+ Nes-GFPbright MSCs decrease, whilst  
Nes-GFPdim MSCs increase, although the implications for human AML are unknown. (d) In MPN, the neuroglial damage leads to apoptosis of 
Nestin-GFP+ MSCs, which can be rescued through chronic treatment with sympathicomimetic drugs that indirectly improve reticulin fibrosis 
in mice and humans. ADR, adrenergic receptor, NA, noradrenaline.
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