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Abstract5

Building carbon intensity is related to material choice, but more importantly, material volume. The building

structural frame itself is responsible for 20-30% of whole-life carbon over 50 years. This figure will double

once we build net-zero operational carbon buildings. Carbon savings in the use of materials are therefore the

key to reducing the environmental impact of buildings. Recent studies have shown that up to 40% of material

in building structural frames could be successfully removed without affecting design code compliance. This

unnecessary overdesign of buildings is in part due to a lack of structural optimisation, and acceptance by designers

of conservative serviceability assumptions that represent the “low hanging fruit” of reducing embodied carbon in

buildings. This paper examines steel frames buildings to determine the carbon savings that can be achieved for

cross-section optimisation, as this is the most accessible form of optimisation, without changing the floor system

and beam layout. For this purpose the Lightest Beam Method (LBM) was developed that studied non-composite

universal beams (UB) members in buildings. Choosing the lightest section with the Eurocodes we can achieve

26.5% of steel savings by mass, with a half of beams governed by serviceability limit states (SLS). If deflection is

calculated using variable loads, the proportion of beams governed by the SLS drops to 31.1% giving additional

2.2% mass savings. The highest steel savings of 34.5% can be achieved for lower natural frequency assumptions

(3 Hz) and using the average rather than the characteristic steel yield strength. In this case the proportion of beams

by mass governed by SLS drops to 19.7%. Based on available case studies it was found that 1/3 of steel in the

frames could have been saved which represents 36% of initial embodied carbon or 5% of whole-life carbon for the

building over 60 years.

1. Introduction6

The construction of buildings and infrastructure make up a significant proportion of the global economy at7

around 13% of the global GDP [1]. Buildings and construction are responsible for almost 39% of energy-related8

carbon dioxide emissions and 36% of global energy use [2]. A quarter of these emissions in 2017 (3.8 GtCO2)9

were connected to production, transport and use of construction materials for buildings. Cement and steel alone10
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represented 6% of global CO2 (2 GtCO2) [3]. With a global population increase to 10.8bn in 2050 [4], the UN11

predicts that global floor area will almost double to 415bn m2 by 2050 [3]. One quarter of this new build will be12

located in China, India and Africa (107 bn m2) [2]. In addition to the population growth, it is expected that in 205013

more than 68% of the population will live in cities, compared to a half in 2010 [4]. Around 70% of buildings by14

floor area are going to be constructed in countries that currently do not have any mandatory building energy codes15

[3]. To meet the CO2 emission targets set by the 21st Conference of the Parties [5], enhancements in the material16

production and use across different industries are necessary [6, 7]. With increasing demand for new buildings and17

infrastructure, significant emission reduction strategies should be immediately implemented. If we do not reduce18

future emissions, we will consume our remaining 2050 carbon budget within 12 years [8].19

The environmental impact of buildings, and thus the carbon intensity, depends on the materials and processes20

related to the production of the building [9, 10]. Much of current research is focused on operational energy, which21

is seeing a move towards net-zero in terms of whole-life energy. Consequently, it is estimated that embodied energy22

from materials will represent almost 100% of total building emissions by 2050 [11, 12]. A part of embodied23

carbon, initial embodied carbon, is material dependent and is relatively easy to assess. Unfortunately there24

is a lack of comparable methodologies, data, and regulation that lead to a reduction of the embodied impacts25

[13, 14, 15, 16], especially embodied carbon in use (e.g. due to maintenance, repair, replacement, refurbishment)26

[17, 18, 19]. Currently, for an average office building located in London and an assumed 60-year service life,27

1/3 of whole-life building emissions represent initial embodied carbon (2/3 of which comes from the building28

structure), 1/3 embodied carbon in-use and emissions connected to end-of building life, and 1/3 operational carbon29

[9, 17]. For a 50-year lifespan commercial building (design life-time according to the EC [20]) the structural30

frames represent 20–30% of whole-life carbon (WLC) [21, 22, 23], 25% of which come from the columns [24].31

The reduction of embodied carbon have a significant impact on achieving “Net zero whole-life carbon” building32

[17].33

The vast majority of structural elements in the UK are designed according to the Eurocodes [20] using Limit34

State Design (LSD) methods. Limit state design is a philosophy under which structures are designed such that35

the probability that a number of performance criteria are exceeded is deemed to be acceptably small during the36

required functional lifetime of the structure. When a structure, or element within a structure, ceases to satisfy37

one or more of these performance criteria, it is deemed to have exceeded a limit state and thus does not meet the38

design requirements. The ultimate limit states (ULS) are those which concern “the safety of people and/or the39

safety of the structure” [25] whereas the serviceability limit states (SLS) concern “the functioning of the structure40
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or structural members under normal use; the comfort of people; the appearance 1; the construction works” [25].41

Following the NA to BS EN 1990 “criteria should be specified for each project and agreed with the client”. The42

requirements of limit state design may be met by design directly based on probabilistic methods (Annex C of43

EN 1990 [25]), or by the partial factor method. The second, is understood to be by far the dominant method used44

in practice. Using the partial factor method, the designer must verify that limit states are not exceeded. This45

requirement is summarised in Eq. 1 and Eq. 2:46

Ed ≤ Rd (1)

Ed ≤ Cd, (2)

where Ed is the design value of effect of an action, Rd is the design value of the resistance, whereas Cd is the47

limiting design value of the relevant serviceability criteria. Serviceability criteria, which include deflections and48

vibrations, are introduced in European design codes but specific constraints (such as deflection limits) are not49

prescribed. Recommendations are made in National Annexes and other publications, but limits remain at the50

discretion of the designer.51

The nature of the codes means that 100% utilisation, or Ed = Rd, would be perfectly safe. Structures where Ed52

= Rd (ULS) and Ed = Cd (SLS) represent structures that are entirely code compliant, highly optimised, and provide53

the required levels of reliability. Unfortunately they are very rarely seen [26, 27, 11]. The disparity between54

Ed and Rd is an indication of overdesign and illustrated in Figure 1 as the “Effect-Resistance Gap” [26]. It can55

be measured by “Utilisation Ratio” (UR) assessing ULS (Ed/Rd) or SLS (Ed/Cd) [11]. Due to high structural56

inefficiency, the material and therefore embodied carbon is unnecessarily wasted. Embodied energy saving could57

be made by simply optimising all members to the code limits and closing the “effect-resistance gap”.58

Analysing current practice, Orr et al. [28] found that 30%-40% material savings could be achieved in concrete59

structures. Moynihan and Allwood [11] found that almost half of the steel in steel framed buildings could be60

removed and safety requirements would still be met. Similar findings were presented by Dunant et al. [27] and61

showed that 30%-40% material savings in steel framed buildings could be achieved. Moreover, 63% of beams were62

governed by SLS, rather than ULS requirements. It should be noted that for these two last cases the average floor63

live loading assumptions, including allowance for partitions, were much higher than structural code requirements,64

4.5 and 4.3 kN/m2 respectively instead of 3.5 kN/m2 [29]. Load overspecification is not investigated in this paper65

1The term “appearance” is concerned with such criteria as high deflection and extensive cracking, rather than aesthetics.
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Figure 1: Diagram illustrating the “Effect-Resistance Gap” [26].

but is the scope of the authors’ future research.66

Less conservative SLS criteria for members that are governed by SLS would reduce materials and hence67

initial carbon in the structural frame. This brings into question the suitability of the design rules themselves.68

Since the serviceability criteria determine whether the structure is comfortable and useable and exceeding them69

would not lead to a structural failure, is it justified that they regularly govern design? One of the results of the70

MEICON project online survey conducted in 2017 [30] was that even if exceeding SLS is non-compliant with71

limit state design, designers are comfortable with allowing accepted limits to be exceeded. It should also be72

highlighted that SLS limits accepted and agreed with the client are usually more conservative than suggested either73

in structural codes or guidance (e.g. BS EN 1993-1-1 UK NA [31, 32]). This might be a reason why engineers74

feel comfortable if SLS limits are exceeded. Understanding SLS performance in relation to ULS requirements is75

essential to understanding how SLS limits affect the use of material within a structure. In order to understand76

the suitability of serviceability criteria used in the design, based on the case studies included in [27, 24, 33, 34],77

this paper aims to quantify the embodied carbon consequences of SLS criteria, and establish the true extent to78

which serviceability is governing design. It focuses on the mass-minimisation of individual members, knowing79

topology and geometry, as this is the most accessible form of optimisation for structural engineers. For the purpose80

of this work, a computational tool has been developed. The purpose of this tool was to find the lightest beam81

from the UB catalogue for a given set of design criteria, whilst also also determining the governing criteria and82

material utilisation of the optimised design. Output from the tool was verified against third-party calculations.83

As a result mass savings were found that could be achieved when choosing the lightest non-composite universal84

beams according to NA BS EN 1993 [31]. Further savings were found under different design assumptions (e.g.85

relaxing SLS limits as well as decreasing the partial factor for permanent loads reduction from 1.35 to 1.1 or using86

an average than characteristic steel yield strength).87

Apart from the Introduction, this paper consists of five main parts. In section 2 we present the alternative88
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methods of structural optimisation indicating which method may provide the greatest material savings. In section89

3, SLS limits are presented with with methods of determining them. In this section we also explain the LBM90

tool operation. In section 4 we verify the LBM tool based on steel floor members from 27 real buildings. In next91

section we use LBM tool to find potential savings for the designed beams due to optimisation. We discuss mass92

and carbon savings, both for non-composite beams and a whole structure in the section 6. Final conclusions were93

drawn in the last section.94

2. Optimisation95

Baldock [35] highlights three main areas associated with the design of structures where optimisation could96

occur: 1) topology (optimal number of members and the way they connect); 2) geometry (the optimal length of97

members); and 3) individual member cross-section sizing. They are listed here in order of decreasing computational98

complexity, and while a truly optimised solution would consider all three, design tradition [36] and layout99

requirements originating from the client tend to limit frame geometries seen in practice [37]. The impact of the100

choice of geometry on embodied carbon was noticed by Dunant et al. [27]. They found no correlation between the101

building complexity on the mass, cost, the floor technology, and the structural members utilisation. Nevertheless,102

Dunant et al. [34] found that using a regular grid could have brought 21% initial (cradle-to-gate) carbon savings in103

analysed case studies, whereas picking the optimal decking variant could have brought 22% carbon savings. Once104

the floor system and beam layout are chosen, initial (cradle-to-gate) carbon savings due to members optimisation105

can reach 7%. Despite the mass-minimisation of individual members yielding the lowest savings it is the most106

accessible form of optimisation for structural engineers and should not be omitted.107

From a structural point of view, full use of material occurs when the design value of the effects of actions is108

equal to the design value of the resistance URULS = 100% (Equation 1). As presented above, ULS limit does109

not always govern the structure. Floor beams spanning more than 6-7m are usually governed by SLS limits -110

the deflection or the natural frequency [27]. Overall depths for reinforced concrete frame elements are typically111

governed by deflection as well [38]. From a material efficiency point of view structures should be designed for112

utilisation ratios of 1.0 but engineers seem reluctant to exceed URs of 0.8 [27, 11]. As a result, it can be assumed113

that at least 20% of steel mass is not utilised [27]. Intuitively, it appears that the potential mass savings can be114

obtained according to the Equation 3, where “Maximum UR” is the value closest to 1.0 for either ULS or SLS.115

However, this is a significant simplification. “Maximum UR” is not necessarily the governing criterion for the116

lightest solution and therefore “Achievable potential mass saving” does not reflect and therefore Equation 3 does117

not reflect the true potential mass and carbon savings for a structure. Nevertheless, the previous literature had used118

Equation 3 and had also assumed that the “Maximum UR” is proportional to the extent to which that criterion119
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governed the structure [27, 11].120

Achievable potential mass saving (%) = 100% −Maximum UR (ULS ;S LS ) (%) (3)

A steel cross-sections optimisation tool according to material efficiency has been introduced by D’Amico at al.121

[37]. “Built Environment Efficiency Tool for Low Environmental Externalities” (BEETLE2) considers “simple”122

construction, where nominally pinned connections are assumed between elements; hence individual members can123

be designed and optimised independently from each other and the bearing system of columns and bracings. The124

tool efficiently calculates the minimum steel mass needed to fulfil safety and serviceability requirements set by125

design codes but, while it can be used to determine the potential mass savings in a steel frame by comparing an126

optimised and non-optimised case study, the output is high-level and therefore the significance of different design127

constraints of the design code is not easily visible.128

There is scope to reduce the use of structural steel while conforming to existing design rules. If material129

savings are calculated based on the “Maximum UR” (3), we find that it reveals little about what criterion governs130

the lightest solution. Rather than estimating the potential for mass savings based on the “Maximum UR”, the131

load and input data would need to be considered to determine the lightest beam solution that adheres to the132

design codes; and a more sophisticated analysis required to determine which criterion is critical and limiting the133

mass of structural beams. For this purpose the Lightest Beam Method (LBM) tool was developed which can134

optimise cross-sections while the impact of each design constraint remains transparent and the governing criterion135

is determined [39]. The LBM chooses the lightest beam, from a catalogue of UBs included in “Blue Book”136

published by SCI [40], in accordance with the European design codes. The input parameters, including those137

usually defined by the code, are editable such that the user can quickly make changes to the input (particularly138

in the context of serviceability constraints) and observe the corresponding change in the required mass. LBM139

allows the user to find steel savings for assumed topology and geometry, and therefore can be used by structural140

engineers as a accessible form of individual member optimisation.141

3. The Lightest Beam Method (LBM)142

This investigation concerns cross-section optimisation, meaning that decisions such as the chosen floor143

system and beam layout have already been made. At this stage, the designer needs to select a steel member144

that meets the minimum performance requirements for a prescribed loading condition (and any other special145

constraints); as established by design codes. For the purpose of this investigation, members are assumed to be146

selected from a discrete catalogue of standard Universal Beams (UB) whose properties are given in the SCI “Blue147
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Book” [40]. Custom-sized fabricated beams are used in industry, but the UB catalogue used is large enough148

that meaningful optimisation can occur. To find the impact of SLS limits on initial carbon intensity, a tool was149

developed to automate member selection according to the Eurocodes. A tool was designed such that for given150

loading conditions, the lightest UB member compliant with the Eurocodes is chosen. The tool minimises the151

required section mass according to each design constraint and in turn highlights which constraint is governing the152

member. The spreadsheet functions by simultaneously calculating the design resistances of each catalogue beam153

according to each design constraint and determines which beams are valid. As the beams are analysed in isolation,154

no information on the layout of the frame or the way the beams interact is required; only the beam length and the155

loading conditions from which design effects can be determined.156

3.1. ULS and SLS limits157

In this paper ULS calculations were made according to the Eurocode 0 [25, 41], Eurocode 1 [29, 42] and158

Eurocode 3 [43, 31], using all prescribed in codes partial safety factors. SLS concern the functioning of the159

structure, the comfort of people and appearance, serviceability requirements may vary for different buildings/160

structures. The most common serviceability criteria associated with steel frame design are deflection and vibration.161

The Eurocodes do not prescribe the SLS limits, they might be however suggested in the National Annexes. BS EN162

1990 [25] specifies that vertical deflections should be limited to avoid deformations that damage the structure or163

deformations that affect appearance. The UK National annex for BS EN 1993-1-1 [31] provides suggested limits164

for non-composite beams (Table 1) that can be calculated according to Equation 4,165

Table 1: Recommended deflection limits for non-composite beams from BS EN 1993-1-1 UK NA [31].

Beam Type Deflection Limit

Cantilevers Length/180
Beams carrying plaster of brittle finish Span/360
Other beams (except purlins and sheeting rails) Span/200

δ =
5

384
wL4

EI
, (4)

where w is uniform load per unit length and is dependent on load case, L the beam span, E the Young’s Modulus166

and I the second moment of area. When considering damage to the structure or finishes, calculations should be167

made using permanent and variable actions. When considering the comfort of the user, the calculations should be168

made under variable actions only.169

Requirements for vibrations can vary significantly depending on the building use, and while vibration theory170

can be complex, designers have typically used floor natural frequency as the measure of performance [31]; seeking171

to avoid resonance with standard human footfall. Natural frequency limits are usually taken as 4 Hz for simply172
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supported condition using permanent loads with 10% of variable loads [44]. The reduced value of variable load is173

recommended by Hicks [45] to more appropriately represent an in-service floor system. Smith [44] recommends a174

simplified design calculation for first mode of vibration, f1 as given in Equation 5 along with a revised minimum175

frequency of 3 Hz,176

f1 ≈
18
√
δ

(5)

where δ is the maximum deflection due to permanent loads only.177

3.2. LBM assumptions178

For auditability and transparency, an overview of the design constraints considered by the spreadsheets is179

provided. The calculations of effects and resistances are in accordance with the design codes and classical beam180

theory. Not all calculations are outlined, but any particular assumptions or special cases are specified. The tool181

selects beams according to the bending moment, shear capacity, deflection, vibration, lateral torsional buckling.182

Fire resistance of beams is omitted from the design as members are assumed to be suitably treated; making fire183

resistance independent of beam mass [46]. For a given beam the key inputs were: effective beam span length (m),184

permanent line load gk (kN/m, excluding beam self-weight), variable line load qk (kN/m). Beam self-weight was185

incorporated into the calculations, but not required as an input since it was taken from the beam catalogue. In186

addition to the inputs unique to each beam, parameters usually defined by the Eurocodes or National Annexes are187

available as input variables. Table 2 lists the parameters required for the analysis; with each input populated with188

typical values. For a given input scenario, the lightest beam from the catalogue of UB members that is compliant189

with the code was output. The tool also provides supplementary information to be used for analysis – the most190

noteworthy being governing criteria and utilisation ratios.191

Table 2: Tool input parameters populated with typical values.

Input Variable Value

Permanent Partial Factor, γG 1.35
Variable Partial Factor, γQ 1.5
Reduction Factor, ξ 1
Max Permissible deflection (L/?) 360
Minimum Fundamental Frequency, f1 (Hz) 4
Steel Grade S355
Gap between precast units (mm) 20
Shear area factor, η 1
Partial Factor Resistance of cross-sections, γM0 1
Partial Factor Resistance of member to instability, γM1 1
Lateral Torsional Buckling Parameter λLT,0 0.4
Lateral Torsional Buckling Parameter β 0.75
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3.3. The tool operation192

The methodology in which the tool selects the optimal beam, outputs utilisation ratios and determines the193

governing criteria is illustrated in the Flow Chart in Figure 2. The Calculations and Engine phases of the tool are194

illustrated in more detail for each design criterion in Figure 3. The chart describes the equations used to calculate195

“Design Effects” and then how checks are carried out against “Design Resistances” or “Permissible Values”.196

Calculations for resistance are not detailed but are in accordance with BS EN 1993-1-1 [31]. The equations for197

“Utilisation Ratio” according to each criterion are also detailed. Owing to developed tool limitation only simply198

supported, uniformly loaded secondary UB were analysed. The tool takes into account the deformation of the199

beam, not the deformation of the floor slab.200

Figure 2: Flow chart illustrating the operation of the developed design tool.
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Figure 3: Further detail on the calculations made by the spreadsheets include the UR equations,
L = Beam length (m), E = Young’s Modulus of Steel, gk = Permanent load per unit length (kN/m), I = Beam second moment of area, qk =

Variable load per unit length (kN/m), Mb,Rd = Design Buckling Resistance, γG = Partial factor for permanent loads, Mc,Rd = Design Bending
Resistance, γQ = Partial factor for variable loads, and Vpl,Rd = Design Plastic Shear Resistance.

10



4. LBM tool verification based on literature case studies201

Data taken from [27] was used to verify the LBM tool; consisting of over 3500 floor plate beams from 30202

buildings (Table 3), 27 of which were designed and already built. Buildings 28, 29 and 30 were modelled buildings,203

having the same floor areas, floor layout, using the same assumptions but differed in structural arrangement. From204

original drawings and correspondence with the Design Consultancy, beam data including type, length, mass and205

connection type were recorded along with loading details, steel quality and information regarding the overlying206

floor system. Analysed raw data was exported from Fastrak a steel building design software, used by the Design207

Consultancy company to design the analysed buildings. For all case studies, approximately two-thirds of the total208

steel frame mass was in steel members that span horizontally and support the building floor [27]. The floors were209

usually slabs of reinforced concrete which sit directly supported by “Secondary” steel beams. These secondary210

steel beams were in turn supported by “Primary” beams running perpendicularly; 90% of all floor beams were211

designed as simply supported. The majority of buildings, except 7, 24, 27-30 (designed using EC3 [43]) were212

designed using BS5950 [47]. Figure 4 shows tonnage of structural frame, including columns, per m2 of building213

with information on the share of non-composite beams. To understand the diversity of beam types within the214

dataset, the beams have been split into different categories as given in Table 4. Using the simplification that the215

“Maximum UR” indicates the governing criterion Dunant et al. [27] determined that serviceability governs in 63%216

of beams and 79% of beams by mass.217

Figure 4: Mass of structural frame per m2 for all case studies.
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Table 3: Overview of the case studies. Sectors are Commercial (C), Education (E), and Model (M). Floor systems are Trapezoidal (T), Pre-cast
Decking (P) and Re-entrant decking (R), Superimposed Dead Load (SDL, kN/m2), Floor Live Load (FLL, kN/m2), Partition Allowance (PA,
kN/m2). All case studies are from the UK [27].

No. Type Year Stage Storeys & High Model System SDL FLL PA Steel
Grade

1 C 2005 As Built 13 50.0 None T 1.25 3.5 1.0 S355
2 C 2009 Tender 17 66.0 None R 0.85 3.5 1.0 S355
3 C 2006 Construction 5 17.5 None P 0.95 2.5 1.0 S275
4 C 2013 Construction 3 12.0 None R 1.50 4.0 0.0 S355
5 C 2010 Construction 6 21.8 None R 0.80 4.0 1.0 S275
6 C 2008 Construction 3 11.0 None R 0.75 2.5 1.0 S275
7 C 2016 Preliminary 10 45.0 Unknown T 0.85 4.0 0.0 S355
8 C 2006 Construction 5 23.3 None T 0.85 3.0 1.0 S355
9 C 2001 Construction 3 11.4 None T 1.00 4.0 1.0 S275

10 E 2016 As Built 3 11.8 Full Frame P 3.10 3.0 0.0 S355
11 E 2017 Preliminary 2 8.0 Full Frame P 2.50 3.0 1.0 S355
12 E 2017 Tender 2 9.0 Full Frame P 3.90 3.0 1.0 S355
13 E 2012 Construction 3 11.6 Full Frame T 2.70 3.0 1.0 S355
14 E 2016 Construction 2 7.7 Full Frame R 0.50 3.0 1.0 S355
15 E 2006 Construction 3 9.3 None P 2.00 4.0 0.0 S275
16 E 2013 Construction 2 7.6 Full Frame T 1.50 3.0 1.0 S355
17 E 2005 Construction 3 11.2 None R 0.85 3.0 1.0 S275
18 E 2013 Tender 5 11.2 None R 0.95 3.0 1.0 S275
19 E 2016 Construction 2 6.3 Full Frame T 0.30 2.5 1.0 S275
20 E 2014 Construction 3 12.6 Full Frame T 0.45 3.0 1.0 S355
21 E 2013 Construction 3 11.6 Full Frame T 0.48 3.0 1.0 S355
22 E 2014 Construction 2 8.7 None P 0.48 3.0 1.0 S355
23 E 2016 Tender 3 11.4 Full Frame T 2.00 3.0 1.0 S355
24 C 2014 Construction 1 5.9 Unknown T 1.80 5.0 0.0 S355
25 C 2016 Tender 13 54.9 Unknown R 1.45 4.0 1.0 S355
26 E 2018 Tender 4 17.2 Full Frame T 2.60 3.0 1.0 S355
27 C 2016 Construction 2 5.7 None P 2.70 3.0 0.0 S355

28 M — — 8 26.8 Floor Plate T 0.85 4.0 1.0 S355
29 M — — 8 26.8 Floor Plate T 0.85 4.0 1.0 S355
30 M — — 8 26.8 Floor Plate T 0.85 4.0 1.0 S355

4.1. Limitations of the data218

The raw data required processing to be compatible with the prepared spreadsheets. It was also incomplete219

in parts and all the assumptions made by Fastrak, such as concrete strength classes, had not been recorded. For220

analysing the data as a case study, it was not vital that exactly the same assumptions were made as long as sufficient221

input data was available to the Excel spreadsheets. In seeking to verify the spreadsheet output against Fastrak’s,222

however, the same assumptions would need to be made for the results to align. The first key set of unavailable223

data was beam line loads. Originally beam layout was manually entered into Fastrak along with loading per unit224

area; which allowed Fastrak to determine loads on the beams. The uniform line loads required by the spreadsheets225

to analyse secondary beams were therefore not provided and needed to be interpreted from the available data.226

Furthermore, there were no data on the serviceability limits to which the beams were designed. Like the beam227

loads, the prescribed permissible values for deflection and vibration needed to be interpreted from Fastrak’s UR228

output. A certain amount of trial and error was required to determine the limits which had been used.229
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Table 4: Overview of the case study beams.

Measure No. of beams Mass (kg) Proportion by mass

Total Beams 3626 1,524,228 -

Floor System

Decking - Trapezoidal 2262 1,094,253 71.8%
Decking - Re-Entrant 773 300,998 19.7%
Precast planks 591 128,977 8.5%

Steel grade

S275 710 227,199 14.9%
S355 2916 1,297,029 85.1%

Beam End Conditions

Fix/Fix 32 17,386 1.1%
Pin/Pin 3227 1,374,815 90.2%
Pin/Fix 181 104,415 6.9%
Fix/Free 186 27,612 1.8%

Beam Types

Primary 1012 526,598 34.6%
Secondary 1909 913,130 59.9%
Core/Trimmer/Tie 705 84,500 5.5%

Composite 1542 1,008,873 66.2%
Non-Composite 2084 515,355 33.8%

Universal Beam 3061 512,030 33.6%
Fabricated 565 1,012,198 66.4%

Governing Criteria (According to maximum UR)

Deflection 1202 441,505 29.0%
Natural frequency 1080 759,301 49.8%
Vertical Shear 183 23,880 1.6%
Bending Moment 1161 299,542 19.6%

4.1.1. Determining beam line loads230

In order to run the LBM tool on each beam, loading conditions were determined. The raw case study data231

detailed loading in terms of a general live load, a general superimposed dead load (SDL), partition loading and232

floor weight all measured per unit floor area. How these loads translated to a uniform line load on the secondary233

supporting beams needed to be determined from the available information. Design drawings were available;234

and the layout of the beams could have been used to determine line loads directly. As an automated and faster235

alternative, however, the loads were calculated indirectly by reverse-engineering the calculations made by Fastrak.236

The permanent and variable loads per unit area were calculated according to Equations 6 and 7 for each case study.237

Permanent Load (less beam self weight) kN/m2 = General SDL + Floor Weight (6)
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Variable Load kN/m2 = General Live Load + Partition Load (7)

For non-composite beams, the provided raw data on “Live Deflection (mm)” was used to calibrate the variable238

load. Once the variable load was found, the tool determined the deflection for each beam. The calculated deflection239

was compared with the deflection calculated by Fastrak, and since deflection is proportional to load, the test240

variable line load was scaled accordingly to match the deflections. The provided raw data on “Dead Deflection241

(mm)” was used to scale the variable load to determine the permanent line load. Checks were carried out to242

confirm the ratio of variable to permanent line load matched the ratio of loads per unit area as in Equations 6 and 7.243

The slight discrepancies were accounted to the self-weight of the beam having been omitted. The point loads for244

primary beams could not be determined in an automated fashion as detailed information on the location of applied245

point loads was not available. As a result, line loads were determined for all for all secondary beams. It should be246

noted that the accuracy of loads determined for beams with small deflections was limited by rounding errors in247

Fastrak’s output for deflection. However, the verification stage was able to omit any outliers. The uniform vertical248

loading eliminates the requirement to consider combination of actions for strength criteria [20] and the design249

action per unit beam length was determined according to Equation 8,250

Design action per unit length, Fd = γGgk + γQqk (8)

where gk is the permanent line load, qk the variable line load and γG and γQ the partial factors for permanent and251

variable loads respectively. Hence, looking at the vertical uniform loads on nominally pinned secondary beams in252

steel frame structures, it is possible to optimise each member in isolation and investigate the relative influence of253

each design constraint.254

4.1.2. Interpreting serviceability limits255

As no information on the deflection and vibration limits used for design were recorded, they needed to be256

interpreted from Fastrak’s UR outputs. The calculations used by Fastrak differed from the limits included in [31]257

and [44] and therefore were interpreted via simulation. Considering the non-composite beams, while the UK258

National Annex BS EN 1993-1-1 [31] states that deflection calculations should consider characteristic variable259

loads only, Fastrak calculated deflection UR according to Equation 9. Fastrak considered variable loads in isolation260

as well as variable and permanent loads combined, with limits of L/360 and L/250 respectively. Significantly,261

these two deflection limits were considered for all simply supported non-composite beams.262

Deflection URNonComp = Max
( Variable δ

Length/360
,

Permanent δ + Variable δ
Length/250

)
(9)
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Similarly for vibration, Fastrak does not use the simplified method recommended by Smith [44] but instead263

utilises the more traditional approach including variable loads. The calculation for vibration UR used by Fastrak264

is given in Equation 10 with a minimum fundamental frequency of 4 Hz,265

Vibration URNonComp = 4 Hz
/ 18
√

1 × Permanent δ + 0.1 × Variable δ
(10)

4.1.3. Verification results266

Having determined the beam line loads and the serviceability criteria used for the case study beams, the267

developed tool was used to calculate the utilisation ratios of each beam according to each design criterion. These268

values could then be compared to the output from Fastrak in order to verify the spreadsheets’ function. For269

verification purposes, the URs calculated by Fastrak are assumed to be correct and henceforth referred to as270

“Fastrak’s output”. The tool’s output for design effects and resistances were previously verified against worked271

examples from literature. Comparing results against Fastrak therefore instead served as a test for the way the input272

data has been interpreted and a check for the way the tool had been set up to mimic the original case study design;273

such as the loads and serviceability measures assumed. The beams that align with the results from Fastrak can then274

be taken as correctly modelled and carried forward to the next stage of the investigation. The 603 non-composite275

beams with loading data were inserted into the tool and the utilisation ratios according to bending, shear, deflection276

and vibration were compared to Fastrak’s results. The deviations of the tool’s output from Fastrak are plotted as277

cumulative frequency graphs in Figure 5. Positive deviation values indicate where the tool has calculated a lower278

UR than Fastrak. Observing each criterion in isolation, it can be observed that URs closely align for the majority279

of beams. As the loads were calibrated according to deflections it is unsurprising that the deflection URs match280

closely. As vibration is a function of deflections it follows that the vibration calculations align well. A very small281

number of beams resulted in large deviations, for which the cause was unclear. It is possible that the serviceability282

limits for these beams differed from the majority and the information was not captured in the data.283

Verification matched well with SLS criteria but the tool had outputted ULS UR relatively low for around 20%284

of beams (Figure 5). The results show that 441/603 beams matched all criteria within 5%. From Case Studies285

26, 28, 29 30, only 5 out of 117 beams matched all criteria within 5%. Raw data for this case studies marked286

these beams as S355 but if the yield strength for this case studies is changed to S275, the match is more precise,287

giving 521/603 beams (Figure 6). Despite the steel grade S275 for Case Studies 26, 28, 29 30 providing a better288

solution, the input steel grade was not changed from S355 in order to be consistent with the raw data. Overall, 441289

beams aligned according to all criteria and were considered valid. Table 5 presents steps that reduces the number290

of non-composite beam due to LBM tool limitations. Table 9 presents percentage of beams that were analysed291
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Figure 5: Cumulative frequency plot comparing UR output from tool and Fastrak for non-composite beams. 441/603 beams matched all
criteria within 5%.

Figure 6: Cumulative frequency plot comparing UR output from tool and Fastrak for non-composite beams using lower steel grade, 521/603
beams matched all criteria within 5%.

from each case study. Case studies 1, 2, 6, 18, 25 were excluded as they did not have beams fulfilling the criteria.292

Model buildings (28, 29 and 30) were also excluded.293

Table 5: Non-Composite Analysis Summary.

Stage No. of beams Units (kg) % of all beam mass

Raw data 3626 1,524,228 100%
Non-Composite 817 190,353 12.5%
Catalogue beams 603 133,345 8.7%
Verification 441 96,301 6.3%
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5. Case studies LBM optimisation294

After determining the input variables necessary to analyse the case study beams and verified them, a series295

of simulations were carried out. The first set of simulations involved recreating the original design criteria and296

running the tool to optimise the members seeking to calculate potential mass savings and governing criteria297

(Simulations 1) and then use the same serviceability criteria as Simulation 1, but for different input parameters298

(Simulations 5, 7). The next set of simulations involved re-selecting beams under the same loading conditions but299

varying other input parameters (Simulations 2, 3, 4, 6, 8).300

5.1. Simulation 1 - Optimisation of the members in accordance with original case studies301

A simulation (S1) that optimises the members in accordance with the original case study design constraints. In302

addition to the established serviceability criteria, the input constants for the non-composite are displayed in Table303

6.304

Table 6: Constant inputs for the non-composite beams matching the original design criteria.

Input Variable Value

Permanent Partial Factor, γG 1.35
Variable Partial Factor, γQ 1.5
Reduction Factor, ξ 1
Esteel, GPa 210
Shear area factor, η 1
Partial Factor Resistance of cross-sections, γM0 1
Partial Factor Resistance of member to instability, γM1 1
Lateral Torsional Buckling Parameter λLT,0 0.4
Lateral Torsional Buckling Parameter β 0.75

5.2. Simulation 2 - alternative SLS criteria305

Simulation 2 (S2) relaxed serviceability to less strict criteria seen in literature. For non-composite beams this306

meant deflection limits were altered to match the suggested values in BS-EN 1993-1-1 UK National Annex [31]307

and vibration criteria adapted to Smith’s [44] recommendation. Therefore, the changes to the tool’s input were as308

follows:309

• Deflection limit changed to L/360 for deflections calculated using variable loads only310

• Fundamental natural frequency minimum value to 4 Hz; calculated according to permanent load deflections311

only312

5.3. Simulation 3 - impact of alternative criteria - vibration limits313

In Simulation 3 (S3), compared to Simulation 2 (S2), only the minimum fundamental frequency limit has314

changed from 4 Hz to 3 Hz, as recommended in SCI P354 [48].315
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5.4. Simulation 4 - impact of alternative criteria - more stricter deflection limits316

While more relaxed serviceability criteria have been investigated, there are certain scenarios where stricter317

constraints are required; such as in hospital operating theatres or beams supporting glass facades. To investigate318

the effect of stricter conditions, the most extreme deflection criteria suggested by Eurocode National Annexes is319

considered. The Finnish National Annex for BS EN 1990 sets a limit of L/400 for total deflection due to variable320

and permanent loads. Simulation 4 used this deflection criterion with Vibration matching the original design (that321

used in Simulation 1).322

5.5. Simulations 5-8 - variation of input constants323

The developed tools are not limited to analysing the impact of serviceability criteria. There is scope to vary an324

array of input constants, usually prescribed by the code or elsewhere, that have the potential to impact embodied325

energy. Four additional experiments were run with altered input constants – each justified by third-party research –326

including changes to steel yield strength and partial factors. The first (Simulation 5 and 6) constant considered327

was the yield strength of steel. Beams are classified as a certain yield strength category; the value taken in design328

calculations is prescribed by the code [31] and decreases with the nominal thickness of the element. Melcher [49]329

carried out statistical analysis on steel samples determining an average yield strength for S355 steel of 402 MPa330

and evaluating the true characteristic value for 95% confidence as 346 MPa. As an extreme test for the effect of331

an altered value, a simulation was run with yield strengths equal to average rather than characteristic values. No332

statistical data was available for S275 steel, but it was scaled based of Melcher’s results to give a value of 310333

MPa. The test was run twice using different serviceability criteria, altering the set ups used in Simulations 1 and 3334

respectively, and presented as Simulations 5 and 6.335

The second input parameter with potential to greatly affect embodied energy is the partial factor. Numerous336

studies look into the derivation of partial factor values. Reliability verification of the partial factor method in337

steel structures was carried out by Kala [50]. A probabilistic risk assessment of reliability concludes that the338

target standard for reliable design [25] requires partial factors due to variable and permanent loads of 1.5 and 1.1339

respectively. The tool was therefore run at this lower value of γG, again altering the set up used for Simulations 1340

and 3, in Simulations 7 and 8.341

5.6. Results of the beam optimisation342

Calculated mass savings are presented in Table 7, whereas comparison of mass savings over original non-343

composite beams for different input constants and serviceability criteria are shown on Figure 7. It has been shown344

that member optimisation is dependent on design criteria and that serviceability can in certain cases be limiting.345

Notably, the relative importance of the prescribed design values and serviceability limits is dwarfed by the savings346
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seen when simply designing to the limit of the code. Referring to Figure 7, recreating the original design criteria347

in Simulation 1 led to savings for non-composite components of 26.5% - which is 8.6% lower than the savings348

predicted by the “Maximum UR” method (Eq. 3, Table 8). Higher savings were found for the LBM (Simulation 2)349

- 28.7%. The greatest savings, of 34.5%, were found for lower natural frequency assumptions (3 Hz) and relaxed350

deflection constraints, combined with using as an assumption an average than characteristic steel yield stress351

(Simulation 6).352

Table 7: Results of the LBM optimisation.

Beam Type
Total Mass Savings

Governing Criteria
Proportion of beams by mass

Absolute (kg) % Bending Shear Deflection Vibration Buckling

Simulation 1 25,533 26.5% 52.5% 0.0% 30.6% 14.8% 2.1%original design constraints

Simulation 7
25,966 27.0% 28.4% 0.0% 53.1% 16.3% 2.1%γG = 1.1

an increase of 0.5% from S1

Simulation 5
26,403 27.4% 23.2% 0.0% 58.2% 16.4% 2.1%Av. yield strength

an increase of 0.9% from S1

Simulation 2
27,621 28.7% 69.0% 0.0% 8.5% 19.7% 2.9%alternative design constraints

deflection using variable loads

Simulation 3
29,569 30.7% 87.6% 0% 9.1% 0.7% 2.6%vibration = 3 Hz

an increase of 2.0% from S2

Simulation 8
32,600 33.9% 83.8% 0.0% 11.3% 2.2% 2.8%γG = 1.1

an increase of 5.2% from S3

Simulation 6
33,269 34.5% 80.3% 0.0% 15.1% 1.7% 2.9%Av. yield strength

an increase of 5.8% from S3

Simulation 4 12,127 12.6% 2.3% 0.0% 97.5% 0.0% 0.3%deflection L/400
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6. Discussion353

6.1. Steel savings for analysed steel beams354

The aim of this paper was to investigate the extent to which serviceability is governing non-composite UB355

beams and the corresponding impact on initial embodied carbon. It was observed that altering certain input356

constants for non-composite universal beams leads to minimal additional mass savings. Table 7 and Figure357

7 summarise the mass savings that could be achieved over the original design due to altered serviceability358

requirements and other inputs. The results of stricter serviceability criteria from Simulation 4 are included for359

reference.360

The analysis shows that optimisation to a full code compliance according to the original design constrains361

(Simulation 1) can bring 26.5% of mass savings. Additional 4.2% mass savings could be achieved if deflection362

is calculated using variable loads (Simulation 2). When comparing S2 to S1 it was found that the proportion363

of beams governed by serviceability falls from 47.5% to 30.6% by mass; with a transition from deflection to364

vibration in S2.365

Simulation 3, which used deflection limits suggested in the UK National Annex (L/360 for deflections366

calculated using variable loads only) with a natural frequency reduction to 3 Hz, according to SCI P354 [48],367

yielded mass savings greater still. With these altered criteria, bending governs the majority of non-composite368

beams. Hence, with the serviceability criteria recommended by the UK National Annex and SCI publications,369

deflection governs less than 10% of beams by mass and vibration almost none. The difference between the mass370

savings of S1 and S3 could be interpreted as there being up to 11.3% additional mass in a floor plate not to provide371

reliability against collapse, but to improve the serviceability performance above published acceptable levels. The372

other extreme of serviceability criteria tested in Simulation 4 (deflection L/400), yielded less than half the savings373

seen with the relaxed constraints of Simulation 3. Deflection governs almost all beams. The additional savings374

realised by the altered input constants are larger in the relaxed serviceability cases since both partial factor for375

permanent loads and yield strength of steel affect the ULS calculations but not the SLS calculations. It follows that376

if more beams are governed by ULS then the relative mass savings from the altered input constants will be higher.377

It is evident that relatively substantial changes in input constants can lead to minimal additional mass savings378

when designing to full code compliance. The change in yield strength particularly is extreme and the average value379

assumed does not satisfy code reliability yet the impact on mass is small. However, the specific changes tested380

are representative of a broader phenomenon relating to input constants: namely, the mass savings realised by the381

altered constants are limited as other criteria (in this case SLS) start to govern. Taking yield strength change as an382

example, the proportion of beams governed by SLS shifts from 47.5% to 76.7% between Simulations 1 and 5. The383
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Figure 7: Comparison of mass savings over original non-composite beams for different input constants and serviceability criteria.

change in input constant has affected the extent to which serviceability governs and consequently the significance384

of the chosen serviceability limits. This example illustrates that there is a balancing act between each design385

criteria. The mass saving benefits of relaxing one constraint can be limited as another criteria starts to govern386

design. Small alterations to input constants affect some criteria and not others, meaning the relative importance of387

serviceability limits can change. If seeking to minimise embodied energy, this highlights the necessity to make388

sure all design decisions are properly considered and justified.

Table 8: Potential in mass savings determined by Dunant at al. [27] according “Maximum UR” method (Equation 3).

Beam No. of Mass Share Governing criterion by mass of beams Av. potential mass
Type beams (kg) (%) Bending Shear Deflection Vibration savings (%)

Non-Composite 441 96,301 6% 20.3% 1.05% 16.6% 62.1% 35.1%
UB

analysed further using LBM

Non-Composite 1550 371,812 24% 27% 3% 21% 49% 34%
UB

the rest

Non-Composite 93 47,242 3% 21% 2% 14% 63% 37%
FB

the rest

Composite 1070 547,615 36% 15% 1% 38% 46% 34%
UB

Composite 472 461,257 30% 17% 1% 28% 54% 33%
FB

Sum 3,626 1,524,228 100%

389

6.2. Global steel savings for provided case studies390

The results show that the greater mass savings can be achieved by choosing the lightest UB with full code391

compliance. Table 9 highlights savings that can be achieved for the analysed case study non-composite beams using392

the LBM, a) for deflection limit L/360 for variable loads and natural frequency of 4 Hz calculated according to393

permanent load deflection (Simulation 2 - S2), b) with an additional assumption of average rather than characteristic394

steel yield strength (Simulation 6 - S6).395
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It should be noted that the simulations did not include all beams from all case studies; however for two of the396

case studies the analysed beams represented 2/3 of all beams by mass. For 8 additional case studies more than397

25% of beams by mass were represented. Hence, the simulation results can be used to assess the potential mass398

savings for buildings directly with high non-composite beam share.399

To find savings for all beams (EC), a combination of LBM (for non-composite secondary beams) and mass400

savings using “Maximum UR” method (for the rest of beams, Table 8, [27]) was used. Results in % and tonnes401

savings are presented on Figures 8 and 9 respectively. Max describes the additional savings achieved for non-402

composite beams from Simulation 6. Savings were calculated under the assumption, that the superimposed dead403

load from slabs does not change.404

Table 9: Share of non-composite beams for case studies with computed savings.

Case Weight of No. of No. of beams Weight after The share Min (S2) Max (S6)
study all beams all beams after verification verification of the original savings savings

[kg] [kg] structure [kg] [kg]

12 12,468 39 13 7,592 61% 4,358 5,238
19 25,736 112 47 14,585 57% 8,372 10,064
11 26,035 152 60 12,848 49% 7,375 8,865
27 5,119 34 15 2,310 45% 1,326 1,594
10 35,863 157 29 15,216 42% 13,101 15,749
5 14,018 43 18 4,821 34% 8,302 9,979
22 8,261 47 14 2,076 25% 1,192 1,433
3 29,278 94 24 7,299 25% 10,474 12,591

15 11,953 68 11 1,676 14% 1,443 1,735
24 90,071 351 104 12,186 14% 3,498 4,204
20 12,761 46 8 1,188 9% 1,022 1,229
23 37,439 132 17 3,045 8% 2,622 3,152
13 61,486 240 27 3,197 5% 2,752 3,308
16 35,114 135 8 1,710 5% 981 1,180
14 33,597 82 2 1,233 4% 708 851
9 84,646 99 12 1,947 2% 1,676 2,015
4 23,211 108 3 438 2% 377 453
17 13,744 87 5 204 1% 176 211
21 67,704 231 13 973 1% 838 1,007
8 64,239 165 5 761 1% 656 788
7 104,533 116 3 699 1% 2,006 2,411
26 143,256 355 3 297 0% 341 410

SUM 940,532 2,893 441 96,301 10% 73,594 88,467

For the 27 case studies analysed, savings due to steel floor beams optimisation could have brought up to 35%405

steel mass savings for the frame. The greatest savings were noticed in case studies 5 and 19 where universal beams406

for composite floors were used. On the top of that, case study 7 was characterised by the highest steel use for m2
407

of the building, and 2/3 all beams were calculated as non-composite.408

6.3. Whole-life embodied carbon savings for case studies409

To assess carbon content, the framework included in BS EN 15643-1:2010 “Sustainability of construction410

works. Sustainability assessment of buildings. General framework” [51] and developed by the Technical411
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Figure 8: Mass savings due to member optimisation for 27 case studies.

Figure 9: Overall steel mass savings for each building due to steel members optimisation (additional savings in tonnes (Max) are presented
over the graph bars).

Committee 350 (CEN/TC350) “Sustainability of construction works” [52] was used. The framework specifies412

standards for the sustainability assessment of buildings - EN 15978:2011 [53], as well as for products used in413

construction - EN 15804:2014 [54]. Both represent the modular approach, within the system boundary presented414
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on Figure 10. Table 10 presents carbon impact of materials used in this study. They include modules A (Initial415

embodied impacts), C (End-of-Life impacts - EoF) and D (Reuse, recovery or recycling potential) [53]). In all416

calculations, Module D was considered separately. Embodied carbon in-use (Modules B1-B5) was excluded due417

to lack of the data [17, 18, 19]. Calculations also exclude operation impact (Modules B6 and B7). Whole-life418

carbon was estimated under the assumption that for an office building located in London, for an assumed 60-year419

lifespan, initial embodied carbon represents 1/3 of whole-life building emissions [9, 17]. The structural frames420

however represent 20–30% of whole-life carbon [21, 22, 23].421

Figure 10: System boundaries definitions in relation to the life cycle stages of a building [18].

A carbon assessment for the original design is presented in Figure 11 with a structural material breakdown in422

Figure 12. The savings due to steel floor beams optimisation varies between 17% and 35% of initial embodied423

carbon for the frame (Figure 13). The highest initial carbon was found for buildings with composite floors that424

used UB beams calculated as non-composite beams.425

The steel structure is responsible for half of initial embodied carbon (15% of whole-life carbon) [9, 17]. Mass426

savings of 35% in the steel structure result in up to 5% of whole-life carbon savings for an assumed 60-year427

lifespan (with the same superimposed loan assumptions). This does not include savings due to the use of less428

24



Table 10: Initial, End-of-Life impact and Reuse, recovery or recycling potential for structural materials. Detailed calculations are available at
https://doi.org/10.17863/CAM.47336. RC - reinforced concrete (with reinforcement ratio 1%) , PS - precast slab (Hollowcore), UB -
Universal Beams, FB - Fabricated Beams, SD - Steel Decking.

Module RC 32/40 Concrete C32/40 Rebar PS UB FB SD
kgCO2eq/kg kgCO2eq/kg kgCO2eq/kg kgCO2eq/kg kgCO2eq/kg kgCO2eq/kg kgCO2eq/kg

A1 0.175 0.129 1.381 0.147 1.304 1.977 2.517
A2 0.007 0.006 0.047 0.010 0.063 0.052 0.061
A3 0.003 0.003 0.021 0.027 0.183 0.432 0.153
A4 0.003 0.003 0.018 0.032 0.027 0.027 0.027
A5 0.004 0.001 0.107 0.005 0.018 0.018 0.018

B - - - - - - -

C1 0.004 0.004 0.002 0.005 0.005 0.099 0.005
C2 0.004 0.003 0.039 0.003 0.015 0.015 0.003
C3 0.003 0.003 0.004 -0.012 0.002 0.002 0.002
C4 0.000 0.000 0.001 0.002 0.003 0.003 0.002

D 0.015 0.006 0.258 0.015 0.802 0.802 1.313
Sum

0.195 0.141 1.622 0.212 1.620 2.624 2.787excl. D
Sum

0.180 0.135 1.364 0.198 0.818 1.822 1.474incl. D

Figure 11: Initial, End-of-Life impact and Reuse, recovery or recycling potential for structural frame, including floors.

conservative assumptions (e.g. floor live load reduction, dead load reduction), using layout optimisation, or using429

less carbon intensive materials. Moving towards net-zero operational carbon buildings, we can expect that initial430

and in-use embodied carbon will represent a 50% share of total emissions. In this case, we might achieve closer to431

10% of whole-life carbon savings for a 60-year building lifespan.432
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Figure 12: Initial and End-of-Life impact for structural frame, including floors - material breakdown.

Figure 13: Initial embodied carbon savings for analysed case studies (frame, slabs).
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7. Conclusions433

The analysis in this paper has only considered savings due to cross-section optimisation, as it is the most434

accessible form of optimisation for structural engineers without changing the floor system or beam layout. It435

was found that 26.5% mass savings could be achieved for non-composite beams by choosing the lightest beams436

in accordance with the Eurocodes. Relaxing serviceability limits and altering inputs leads to an additional 8%,437

giving 34.5% less steel. Although design to ensure full code compliance brings significant steel and embodied438

carbon savings, the loosening of serviceability criteria increases savings by 30% and therefore is strongly advised439

as represents “low-hanging fruit” of reducing embodied carbon in buildings. Overall, this reduces initial carbon440

by up to 35% in the frame which represents up to 5% of whole-life carbon for a 60-year building lifespan. For a441

net-zero operational carbon building, this can reach even 10% of whole-life carbon.442

It was found that by relaxing one constraint, another starts to govern and therefore the mass savings can443

be limited. Small changes in input limitations can affect only some criteria and thus the relative importance of444

SLS limits can change. A change in input constant has been shown to affect the extent to which serviceability445

governs and consequently the significance of the chosen serviceability limits. Considering the change in steel446

yield strength, while the design constraints remained unchanged, the proportion of beams governed by SLS shifts447

from 47.5% to 76.7%. Using alternative design constraints - calculation of deflection using variable loads, and448

using vibration limits as 3 Hz, the proportion of beams governed by SLS drops significantly to 12.4%.449

During this study, it was found that determining potential mass savings based on the“Maximum UR” method-450

ology is an oversimplification and the results overestimate the savings.451

In addition to rationalisation and repetition, the main reason for low material utilisation is the use of 0.8 UR by452

the structural designer as a target instead of 1.0 UR. This paper shows that in order to achieve mass and carbon453

saving, all structural design software (e.g. Fastrak) should adopt the light weight approach, e.g. the Lightest Beam454

Method and, above all, not allow the designer to target low utilisation.455

This work does not include any other savings that could be achieved due to layout optimisation, live load456

reduction, use of low embodied carbon materials or a material reuse strategy; they are the subject of future research457

of the authors.458
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