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ABSTRACT  

 

Cell death is an important target for imaging the early response of tumours to 

treatment. In this study a phosphatidylserine-binding protein (C2Am) has been 

derivatised with a fluorine-18 containing maleimide for imaging tumour cell death in a 

xenograft murine advanced colorectal cancer.  

A one-pot, two-step automated synthesis of N-(5-[18F]fluoropentyl)maleimide 

using a GE TRACERlab FXFN automated module (within 58±5.8 min (n = 12), >98% 

radiochemical purity and 12±3% decay corrected yield) has been developed. This was 

used to label the single cysteine present on C2Am within 30 min in PBS 

(Am=212000±30000 MBq/µmol (n = 3)). Using xenograft models of breast and colorectal 

cancer, and a TRAIL-R2 agonist for inducing cell death, the binding of [18F]FPenM-

C2Am was tested in vitro and in vivo using biodistribution and dynamic PET imaging 

studies. Cell death detection was validated by cell death histology assays CC3 and 

TUNEL. For colorectal cancer, there was a positive correlation between [18F]FPenM-

C2Am signal in tumours post treatment and the corresponding histologic markers of cell 

death CC3 (Pearson r = 0.82) and TUNEL (Pearson r = 0.95).  

 [18F]FPenM-C2Am showed a favourable biodistribution profile, with 

predominantly renal clearance and minimal retention in spleen (0.79±0.05 %ID/g), liver 

(1.18±0.13 %ID/g), small intestine (0.97±0.25 %ID/g) and kidney (6.90±0.56 %ID/g) at 

2 h after probe administration. In a xenograft model of colorectal cancer treated with a 

TRAIL-R2 agonist, for 24h, at 0.2-0.4 mg/kg, i.v. [18F]FPenM-C2Am generated tumour-

to-muscle and tumour-to-blood ratios following treatment of 6.7±0.8-fold and 1.89±0.23-

fold, respectively, at 2 h after administration. A statistically significant pairwise 

difference was obtained between the tumour-to-muscle contrast prior to and following 

therapy (P=0.0137, unpaired two-tailed t-test).  

Given the favourable biodistribution profile of [18F]FPenM-C2Am, and its ability 

to produce rapid and cell death-specific image contrast, this agent has potential for clinical 

translation. We have initiated cGMP manufacture and toxicology studies required for a 

Phase 1 trial. 
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Aberrant cell surface glycosylation has been described as one of the key hallmarks 

of cancer. Monitoring glycosylation could provide an insight into tumour progression, 

proliferation and ultimately could potentially be used for monitoring treatment response.  

Aberrant glycosylation can be observed by harnessing the cell’s metabolism to 

incorporate into its glycome unnatural sugars bearing bioorthogonal chemical reporters. 

These reporters are targeted subsequently by fluorescent, magnetic or optoacoustic probes 

that allow imaging.   

As part of this work, we have demonstrated in vitro that a peracetylated 

cyclopropene mannosamine (Ac4ManNCCp)-modified sugar can be used as a tool for 

imaging hypersialylation in an advanced colorectal cancer model. Further optimisation of 

the probe to improve solubility is required to facilitate transitioning from in vitro to in 

vivo imaging.  Nevertheless, overcoming this solubility issue would allow for facile 

labelling of surface glycans using PET radionuclides. 
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1 INTRODUCTION 

Since 1990 the incidence rate of cancer has gone up by 13%.2 Despite this alarming 

increase, non-invasive anticancer therapy assessment is still based on a rather slow 

process: measurements of decreased tumour size or altered metabolism. Monitoring 

whether these changes are clinically significant can require weeks. Meanwhile, not only 

do patients undergo extensive toxic anticancer therapy that could prove ineffective, but 

the healthcare system is also burdened. Hence it is imperative for clinicians to have access 

to a non-invasive, fast technique to assess the efficacy of anticancer therapies.3  

1.1 Cancer – a worldwide disease 

Cancer is one of the leading causes of mortality worldwide, with 8.2 million deaths 

and 14.1 million new diagnoses reported in 2012. In the UK, more than 350,000 new 

cases were reported in 2015 and 160,000 lives were lost to cancer in 2016.4 Despite the 

high number of cancer-related deaths and an ever-increasing number of diagnosed 

patients, cancer survival rates have improved dramatically over the last decades. For 

example, the 2013 Office for National Statistics UK Report shows that since 2000, the 5-

year survival rates for prostate and lung cancer have increased from 59.8% to 81.7% and 

from 5.5% to 11% respectively.5,6 Overall, in the past 40 years, cancer survival rates have 

doubled from 25% to 50% according to Cancer Research UK.2 

Breast cancer survival rates have doubled in the last 40 years; 78% of women with 

breast cancer will survive 10 years or more according to the latest Cancer Research UK 

statistics (2010-2011).7 A similar trend has been observed in the case of colon cancer. 
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Despite incidence rates remaining the same throughout the last 30 years, with 

approximately 41,700 new cases every year, 10-year survival rates have almost doubled, 

since the early 1970s, reaching 57% in 2010-11. Survivability statistics have improved 

over the decades but colon cancer is still the 2nd most common cause of cancer death in 

the UK in 2016, with more than 16,000 deaths.8 

Considerable effort has been made to introduce novel anticancer therapies that 

make a difference to patients’ survival and quality of life. In the case of prostate cancer, 

the 5-year survival rate increased from 25% to 84% in the last 40 years. This success 

could be attributed, in part, to the use of the prostate-specific antigen (PSA) blood test. 

The test could indicate the potential presence of prostate cancer from an early stage. This, 

in turn, if addressed promptly, can lead to an improvement of the 5-year survival rate.9 

However, the PSA blood test is controversial, as it lacks specificity: 3 out of 4 men with 

raised PSA levels do not have cancer. Moreover, it also has low sensitivity, as it fails to 

detect the presence of cancer in 15% of cases, making it a less than ideal cancer detection 

method.10  

Since 1990, more than 100 new molecular entities (NMEs) were approved by the 

Food and Drug Administration (FDA) for use in oncology.11,12 These can be categorised 

either as growth factor inhibitors (e.g. trastuzumab)13, angiogenesis inhibitors blocking 

vascular endothelial growth factors (e.g. bevacizumab14,15, sunitinib16 – binds to VEGFs), 

apoptosis-inducing drugs (e.g. MEDI303917 – TRAIL-R2 agonist) and lately 

immunotherapies (e.g. pembrolizumab – anti PD-118,19; atezolizumab20,21 – anti PD-L1).22 

One of the first FDA approved growth factor inhibitors, trastuzumab, proved to be 

particularly effective in a type of invasive breast cancer by targeting the overexpression 

of proteins generated by the HER2 oncogene. This oncogene is present in 30% of breast 

cancer cases.23 Despite this novel targeting agent, breast cancer can become resistant to 

trastuzumab. This can happen in two ways: either through a mutation where the cell loses 

the tumour suppressor function of PTEN or by developing a truncated form of the HER2 

receptor (p95HER2) that trastuzumab does not bind to. However, a second line of therapy 

based on a small molecule inhibitor, lapatinib, can be used.24 

In 2018 alone, the FDA approved 24 new drugs for oncological use25 and 62 novel 

applications for previously approved drugs.26 All of these have been granted following 

thorough and lengthy clinical trials where patients were subjected to the therapies for 

weeks before the outcome could be assessed. It follows that the need for a non-invasive 
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imaging tool that allows early assessment of treatment efficacy would also be beneficial 

in the context of clinical trials.3  

There are also novel technologies that contribute to the fight against cancer. For 

example, intraoperative electrosurgery using the intelligent Knife (iKnife) can inform the 

surgeon in real time if the tissue he/she is resecting is cancerous or not. The system works 

by analysing the vapours from tissue that has been cauterised (electric current to heat the 

tissue rapidly) using a mass spectrometer.27 Intraoperative radiotherapy (IORT) that 

delivers radiation during surgery is another example of technology that contributes to the 

fight against cancer. Stereotactic radiotherapy such as the Cyber Knife or Gamma knife 

deliver focused radiation to brain tumours with pinpoint accuracy while minimising 

radiation dose to adjacent tissue.28 Moreover, updates of current imaging technologies (in 

terms of speed, detection resolution and sensitivity) have also had a positive impact in the 

fight against cancer. For example, a PET scanner with an increased axial field of view 

(10 times larger than current clinical scanners) was introduced in 2017. This machine has 

a 40 fold sensitivity gain compared to existing PET scanners and is able to reduce the 

time required to perform a full body scan from ~20 minutes to less than a minute.29    

Despite these efforts to introduce novel therapies and technologies, cancer is still 

the cause of more than a quarter of all deaths in the UK (28% in 2016).30,31 This is mainly 

attributed to therapy failing to induce tumour cell death due to the tumours becoming 

intrinsically resistant to treatment.24,32 Another major factor that contributes to variable 

response to therapy is the fact that that tumours are heterogeneous.3 Liquid biopsies (e.g. 

circulating tumour DNA33, circulating tumour cells34), solid tumour biopsies35,36 and 

imaging modalities (e.g. [18F]FAZA or [18F]FMISO PET/CT for monitoring tumour 

hypoxia levels37) have reconfirmed this fact. Tumour heterogeneity also poses increased 

challenges in assessing the extent to which such tumours respond to treatment. Early 

detection of tumour heterogeneity post treatment can be used as a predictor of metastatic 

potential.  

Despite considerable technological breakthroughs in the area of cancer detection 

and ever-increasing diversity of available treatment options, clinicians currently rely on 

tumour size and altered metabolism to non-invasively assess treatment response in cancer. 

This is a very slow process: approximately 4-8 weeks are required in order to detect 

clinically relevant changes in tumour morphology.38,39 Therefore, the need for early 

detection of treatment response in cancer is not currently satisfied.  
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1.2 Monitoring of treatment response in cancer 

In 1979, The World Health Organisation set out to minimise inconsistencies in 

reporting the results of tumour response to treatment and published the first standardised 

report of this kind in 1981.40,41 Since then, other groups have tried to update these rules, 

with the most widely used standard to date being RECIST 1.0 (Response Evaluation 

Criteria in Solid Tumours) published in 2000.42  

According to RECIST, imaging of cancer response to treatment is based on either 

an anatomic response (i.e. a decrease in size of the tumour) or a metabolic response (i.e. 

by monitoring changes in tumour glucose metabolism)42 Although standardisation and 

image resolution have been greatly improved over the years, shortcomings such as the 

extensive time required to observe tumour shrinkage after treatment administration have 

not yet been overcome.  

Anatomic-based tumour treatment response, assessed clinically by computed 

tomography (CT), can be effectively evaluated at only six to eight weeks post-therapy, 

according to RECIST 1.0 and 1.1.42,38 A partial response to therapy is categorised as an 

anatomical decrease in tumour size of at least 30%.38,39 The latency of this process (partly 

due to the immune system having to remove apoptotic tumour cells) translates to patients 

having to receive anti-tumour therapy for weeks without any early indication of its 

effectiveness. Monitoring of tumour morphology is unable to predict treatment response 

in real time, meaning that tumours could metastasise while the patient is undergoing 

ineffective therapy43.  

Another drawback of monitoring tumour size in order to predict treatment 

response is the failure to distinguish pseudoprogression from a nonresponder. 

Pseudoprogression occurs when tumours respond to treatment but initially grow in size 

due to inflammation caused by accumulation of immune cells. For example, 

pseudoprogression is encountered in 20% of glioblastoma multiforme cases and if 

misinterpreted, it can lead to exchange of therapy for a less effective one.44 Furthermore, 

there is a subjective human component in assessing the size of lesions. It becomes 

particularly difficult to keep a consistent diagnosis when tumour shapes are irregular or 

in cases where an unclear boundary between healthy and tumour tissue occurs.45  

Another drawback of anatomic based assessment is the lack of a possibility to 

differentiate between radiotherapy induced inflammation, consolidation (pulmonary 



Chapter 1: Introduction 

Flaviu Bulat – October 2019   5 

oedema) or benign tumour cavitation (necrotic core that lacks nutrients and oxygenation) 

in non-small cell lung carcinoma patients treated with bevacizumab (angiogenesis 

inhibitor). 45,46,47 

Monitoring tumour metabolic response to treatment is an alternative to monitoring 

tumour anatomic response. This is frequently performed by injecting positron-emitting 2-

[18F]fluoro-D-deoxyglucose (18F-FDG) and imaging its accumulation in glycolytic 

tumours using Positron Emission Tomography (18F-FDG PET).48,49 

Similarly to RECIST, in 2009, 18F-FDG PET data has been collated in 2009 in the 

form of the PERCIST 1.0 (PET Response Criteria in Solid Tumours), a standardised 

qualitative and quantitative set of imaging guidelines.50 A successful treatment, according 

to PERCIST, is usually indicated by a decrease of at least 30% in the standardised uptake 

value (SUV) compared to pre-treatment scan results. A much higher threshold of 65% is 

required for lymphomas.50 Standardised uptake value is a relative measure of radiotracer 

uptake; it represents the activity concentration (r) measured in kBq/ml detected by PET 

imaging within a specific volume/region of interest (ROI), divided by the injected activity 

(a’) of the radiotracer in kBq divided by weight of the patient (w) in grams.  

SUV = 
!

"#×	& 

The weight is a substitute for volume and it assumes that 1 g is 1 mL; however, 

some suggest the use of lean body mass for instead of the total weight for 18F-FDG 

measurements is more appropriate as fatty tissue uptake is low for this particular tracer. 

This is also known as the standardized uptake value normalized by lean body mass (SUL) 

and is used with hydrophilic tracers.  

However, imaging metabolic response also has disadvantages. Firstly, 18F-FDG 

has low specificity and thus it accumulates in all areas of the body such as liver, kidney 

and bladder but particularly in the brain and heart. This means that tumour uptake of 18F-

FDG in these areas is not easily quantifiable.51 Furthermore, radiation-related 

inflammatory 18F-FDG uptake (which can occur due to lymphocyte and macrophage 

accumulation) can lead to a false negative treatment response. One way of minimising 

this effect is by extending the post-treatment scan to 12 weeks post concurrent chemo-

radiotherapy, in order to allow inflammation to clear. In the case of chemotherapy and/or 

surgery, only a 4 week extension is required.45 
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There are, however, a few examples where monitoring tumour metabolism using 

18F-FDG is desirable. Gastrointestinal stromal cancer treated with Glivec (Imatinib) can 

be imaged 24 hours post treatment administration.52 In the case of lymphoma, the effects 

of therapy can be observed within 72 hours.53 However, this quick treatment response 

monitoring is limited to these two particular cancer types.  

Other radiotracers have been developed that are specific to certain 

targets/biomarkers. Figure 1 shows a selection of widely used PET radiotracers for 

detection and monitoring treatment response of cancers. The selection consists of non-

specific (FDG), specific and targeted (PSMA, FAPI, RGD) radiotracers labelled with 

short half-life (carbon-11, 20.4 min; gallium-68, 67.7 min and fluorine-18, 109.7 min) 

radioisotopes. 

 

Figure 1. PET tracers routinely used for detection and monitoring treatment response of cancer. 

Table 1 summarises the mode of action, clearance and uptake of clinically used 

radiotracers for the detection of cancer.  
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Table 1. Selection of PET radiotracers used for detection of cancer 

Radiotracer Mode of action For PET imaging of   Clearance route/ 
Uptake organs 

18F-FDG Non-specific radiotracer. 
Warburg effect – upregulation of glucose 
metabolism in cancerous cells results in 
increased FDG uptake  

Majority of cancers 
(those that are sugar 
avid) 
Poor for: high 
background area 
(brain), low sugar avid 
tissue 
(bronchoalveolar 
carcinoma, thyroid 
cancer), no glucose 
receptors (prostate) 

Renal clearance and 
high uptake in heart 
and brain. 

18F-FET Gliomas have upregulated amino acid 
transporters.54 
18F-FET is using the L-amino acid transport 
system uptake to accumulate in cancerous 
cells. 18F-FET is not incorporated into 
proteins. 

Gliomas, lymphoma, 
intracerebral 
malignant 
lymphoma55,56  

Renal clearance 
with uptake in liver, 
kidney and muscle. 

18F-Galacto-
RGD 

Angiogenesis is the growth of blood supply 
from pre-existing vessels and it is a key 

hallmark of cancer. Integrin ⍺vβ3 is a 
transmembrane glycoprotein with a role in 
proliferation of tumour invasion and 

metastasis. ⍺vβ3 binds to tripeptides such as 
arginine-glycine-aspartic acid (RGD). 18F-
galacto-RGD is therefore a tracer that used 
for observing angiogenesis using PET.57 
 

Melanoma, late-stage 
glioblastoma, ovarian, 
breast cancer, prostate 
cancer.58,59 

Renal clearance 
with uptake in 
kidney, urogenital 
tract, liver, spleen 
and intestine. 

18F-
Fluciclovine 

Upregulation of human L-type amino acid 
and alanine-serine-cysteine transporter in 
carcinomas (prostate cancer included) leads 
to uptake of 18F-fluciclovine. Upregulation of 
these transporters are an indication of 
aggressive disease.60,61 

Prostate cancer, 
carcinomas 

Pancreas and liver 
uptake, some 
muscle uptake. 
Clearance is less 
important as 
imaging occurs 3-5 
minutes post 
injection.62 

18F-FLT 18F-FLT is a cellular proliferation tracer. 
Upon cellular uptake, 18F-FLT is 
phosphorylated by thymidine kinase 1 
(upregulated in the S phase of mitosis) and 
trapped as the mono phosphate derivative. 
Further phosphorylation by thymidylate 
kinase (TMPK) and nucleotide diphosphate 
kinase forms triphosphate version. Mono 
phosphate is then degraded back to FLT by 
deoxinucleotidase which results in efflux of 
FLT. ~30% represents triphosphate which 
remains cytosolic. 
Since FLT lacks 3’-OH it can’t be 
incorporated into DNA.63,64 

Gliomas (glioblastoma 
multiforme, anaplastic 
astrocytoma)65 
 
Gastro-oesophageal 
cancer but limited due 
to high background 
generated by the 
liver.66 

Renal clearance, 
metabolised by liver 
(glucuronidation)67  

18F-FMISO First tracer to image tumour hypoxia. Nitro 
group on 18F-FMISO is reduced to a primary 
amine in the reducing environment of 
hypoxic tissue and partly binding covalently 
to macromolecules intracellularly.68 
Slow tracer accumulation and clearance 
results in 2-4 hours delay before scanning. 69  

Head and neck, 
glioma, squamous cell 
carcinoma, 
non-small cell lung 
cancer.70,71 

 
 

Renal clearance 
with minor uptake in 
liver, brain and 
colon.72 
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Radiotracer Mode of action For PET imaging of   Clearance route/ 
Uptake organs 

18F-FAZA Same uptake mechanism as 18F-
FMISO however shows faster 
clearance and better tumour-to-
background ratio over 18F-FMISO.  

Multiple studies show uptake in 
head and neck, high-grade 
glioma, squamous cell 
carcinoma, non-small cell lung 
cancer. No uptake in prostate, 
lymphoma and limited in cervical 
cancer.73 

Renal clearance with 
uptake in liver, 
kidneys and muscle69  

[18F]Fluoride Sodium fluoride uptake by bones 
as [18F]F- ion exchanges with OH- 
from hydroxyapatite to form 
fluoroapatite 
High uptake is an indication of 
increased perfusion associated 
with bone lesions/bone 
metastases. 

Benign and malignant bone 
anomalies, bone metastases 

Renal clearance; bone 
uptake74 

[11C]Choline  Upregulation of 
phosphatidylcholine (PC) 
synthesis in cancerous 
tissue consequently increases 
uptake of [11C]choline.  

Neuroblastoma, low and high 
grade gliomas75, prostate 
(replaced by 68Ga tracers) 

Renal with uptake in 
kidney and liver 
predominantely75 

[11C]Acetate  Acetate is a precursor in the 
biosynthesis pathway of 
cholesterol and fatty acids. 
[11C]Acetate highlights increased 
lipid metabolism associated with 
cancer. 

Primary brain tumours, 
hepatocellular carcinoma and 
prostate76 

Uptake mainly in the 
pancreas, spleen and 
liver76 

L-[1-11C] 
Methionine 

High uptake represents increased 
protein synthesis metabolism in 
cancerous lesions. Brain uptake of 
amino acids (AA) is facilitated 
across the blood-brain-barrier 
hence can be used for brain 
cancers. 
Pitfall: non-specific uptake in non-
tumour lesions – ischemic brain 
tissue (e.g. cranial hyperostosis)77 

Low-grade gliomas, lymphomas, 
head & neck and squamous cell 
carcinoma.78,79,80,77  

Hepatic and renal 
clearance. 
High uptake in liver 
and pancreas.81 

68Ga-PSMA-
11 and 
68Ga-PSMA-
617 

Increased expression of prostate 
specific membrane antigen 
(PSMA) in prostate cancer cells 
compared to other PSMA 
expressing tissues (kidney, 
proximal small intestine, salivary 
glands)  

Prostate cancer  Renal excretion with 
high uptake in  
kidneys and lacrimal, 
parotid, 
submandibular 
glands.82,83 Small 
intestine, liver and 
spleen show moderate 
uptake.84  

68Ga-FAPI  A cell surface serine protease 
(fibroblast activation protein—
FAP) is upregulated in cancer. 
Fibroblast activation protein 
inhibitor is a targeted tracer that 
binds to FAP highlighting areas 
within the body with upregulated 
levels of protein. 

Uptake in 28 cancers types: 
SUVmax>12 seen in breast, 
sarcoma, esophageal, 
cholangiocarcinoma and lung 
cancer. Average SUVmax (6-12) in 
hepatocellular, colorectal, head-
and-neck and ovarial carcinoma, 
pancreatic and prostate cancer.85 
Also used for observing healing 
tissue heart infarction86, liver and 
lung fibrosis.85  

Predominantly renal. 
Healthy tissue shows 
minimal uptake.  
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For the past 20 years, short lived radioisotopes such as fluorine-18 and carbon-11 

have become increasingly popular for detection of cancer. Recently, the trend for the use 

of fast labelling kits has been increasing. This method is preferred due to the ability to 

generate high specific activity, high purity radiotracer in a relatively short time (5-10 

minutes). The main advantage of using a kit to produce a radiotracer is its simplicity 

therefore reducing the burden on the operator and limiting errors. In addition, the required 

radioisotopes can be obtained on site from a benchtop generator (germanium-68 

generators for gallium-68 are readily available) avoiding the need of an expensive 

cyclotron and synthesis modules.  

The use of gallium-68 has increased worldwide due to significant technical 

breakthroughs in the area of PET imaging of prostate cancer. Radiochemistries were 

developed to enable chelation of gallium-68 to yield radiotracers such as [68Ga]Ga-

PSMA-HBED-CC (known as 68Ga-PSMA-11)87,88 which was first used in humans in 

201189, followed by [68Ga]Ga-DOTA-PSMA (known as PSMA-617), [68Ga]Ga-PSMA-

THP90 and others.82,91 The successful chelation chemistry and usage of 68Ga-PSMA-617 

as a radiotracer, in particular, has enabled PSMA to become a theranostic agent. 

Theranostics, also termed radiotherapeutics, are targeted imaging agents that, besides 

being labelled with an imaging isotope (e.g. gallium-68 for PET imaging), have a chelate 

chemistry that also permits facile loading with a radionuclide for radiotherapy that can 

double as a SPECT imaging agent. Theranostic agents based on radionuclides used for 

therapy were produced to chelate either a (e.g. actinium-225) or b- (e.g. lutetium-177; 

notably 177Lu-PSMA-617) emitters.92,93 

The collective advantages and drawbacks of the aforementioned clinical tracers 

and imaging methods for measuring tumour treatment response can also shed light on the 

desiderata for an improved imaging method. Firstly, we would like to have a non-invasive 

imaging method that identifies treatment response within a short period of time 

– preferably hours – post therapy administration. This is because patients’ cancer 

prognosis would be improved by detecting as early as possible whether the administered 

anticancer therapy (e.g. chemotherapy, immunotherapy) is effective or not. Early 

assessment of treatment response would not only reduce the risks of following an 

ineffective treatment but it would also eliminate the unnecessary side effects caused by a 

non-beneficial therapy. Early assessment of treatment response would then also lead to a 

significant reduction of healthcare costs.3   
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Secondly, this imaging method should also reliably identify treatment response 

irrespective of cancer type and stage, as well as be compatible with any therapy type 

(chemotherapy, radiotherapy, immunotherapy etc.). In this thesis, we suggest that cell 

death monitoring is an imaging method that encompasses all of the important properties 

identified above in order to accurately predict therapy outcome.3  

1.3 Targeted cell death imaging as a marker of early treatment 
response in cancer  

Increased levels of tumour cell death have been shown to correlate with higher 

survivability in breast94 and cervical cancer95. There is a strong correlation between the 

extent of cell death post treatment and a positive outcome.96,97 In early treatment of breast 

cancer, 69% of the responders to chemotherapy showed a 50% increase in apoptotic index 

(% of apoptotic cells in a biopsy), whereas 75% of the non-responders showed no 

significant increase of apoptotic index.98 Therefore, tumour cell death could be used as 

an indication of therapy outcome. However, currently, no imaging agents that monitor 

cell death exist in clinical use.99,100  

The next sections will summarise the essential biological processes and tracers 

used to image cell death.  

1.3.1 Phosphatidylserine, an early stage cell death biomarker 

 

Phosphatidylserine (PS – Figure 2) is a negatively charged phospholipid that is 

part of the inner leaflet of every cell plasma membrane and has multiple roles; in neuron 

axon terminals, PS helps synaptic vesicles to bind to the presynaptic membrane in the 

presence of calcium to initiate exocytosis of neurotransmitter in the synaptic cleft.101 PS 

has an important role in blood-clotting by externalising PS in thrombin activated platelets 

which results macrophage recruitment and fibrin formation.102 PS also induces membrane 

curvature, initiates receptor endocytosis, formation of vesicles and most importantly it is 

an important part of the ‘eat me’ signal, upon cell apoptosis, to activate 

phagocytes.103,104,105,106   
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Figure 2. The structure of phosphatidylethanolamine (left) and the negatively charged 

phosphatidylserine (right). One of the fatty acids represented by the R substituent groups is often stearic 

acid and the other is often an unsaturated fatty acids: oleic acid (C18 monounsaturated), arachidonic acid 

(C20 tetraunsaturated) or docosahexaenoic acid (C22 hexaunsaturated).107,108 

There are two main ways in which cell death can occur following therapy: 

apoptosis or necrosis. The latter is a non-regulated, energy independent event that is 

initiated upon permanent disruption of the integrity of the plasma membrane. This can 

occur through infection, toxins, radiation exposure (radionecrosis), physical intervention 

(by generating shear stress) or a rapid change in: pH, osmotic pressure or 

temperature.109,110  

Apoptosis, on the other hand, is a chain of complex events that lead to an organised 

breakdown of the cell. It was first characterised by Kerr, Wyllie, and Currie in 1972 as a 

cascade of events that leads to an energy-dependent controlled cell death.111 Apoptosis 

can occur in two ways: via an intrinsic or extrinsic mechanism. The intrinsic pathway is 

characterised by mitochondrial outer membrane permeabilization which releases 

cytochrome c triggering the formation of the apoptosome which leads to activation of 

executioner caspase-3 and -7 which leads to apoptosis.112,113 It can be triggered as a result 

of DNA damage, aberrant cell-cycle, endoplasmic reticulum stress, hypoxia or metabolic 

stress. The extrinsic pathway is regulated via the tumour necrosis factor (TNF) receptor 

superfamily. Upon ligand binding, these receptors crosslink, triggering a p53-independent 

activation of the caspase cascade that leads to activation of caspase-8 which in turn 

activates the executioner caspase, caspase-3. This then executes programmed cell death 

(apoptosis).112,114 

One morphological event that occurs early during programmed cell death is the 

exposure of phosphatidylserine (PS) and phosphatidylethanolamine (PE). In healthy cells, 

flippase enzymes use ATP to actively maintain 96% of PS in the inner leaflet of the cell 
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membrane. To maintain an equilibrium of phospholipids numbers, an enzyme called 

floppase uses ATP to flip phosphatidylcholine, sphingolipids and cholesterol against their 

concentration shifting them from the intracellular to the extracellular space.115 In 

apoptotic cells, a third type of enzymes called scramblases become active and rapidly flip 

phospholipids resulting in exposure of PS on cell surface.116  The exposure of PS on the 

cell surface occurs early, prior to membrane permeabilization and blebbing, cell 

shrinkage, nuclear condensation and DNA degradation. Its role is to initiate phagocytosis 

(i.e. clearing up of apoptotic cells by macrophages) by triggering the immune system.117 

One important fact is that PS externalisation occurs whenever a cell dies, regardless of 

how cell death was initiated.  

PS is an exceptional biomarker for early indication of cell death.  First of all, it 

only becomes available on the cell surface upon initiation of programmed cell death. 

Therefore, targeted imaging agents have facile access to PS since they don’t have to cross 

the plasma membrane to reach it. Secondly, PS is an abundant target in apoptotic tumour 

cells and its tissue concentration has been determined (assuming a 1:1 binding of C2A to 

PS) in EL4 and MDA-MB-231 to be 277 and 127 μM respectively.99 Thirdly, it remains 

present on the cell surface for as long as the apoptotic body is present in the tumour. In 

addition, treated tumours accumulate necrotic cells that increase the local PS 

concentration.118 Since tumours are large and cell death is extensive during therapy, 

macrophages require time to clear apoptotic and necrotic cells from lesions. This means 

that there is a wide window for imaging cell death, making PS an ideal candidate to be 

used as a biomarker for cell death.100 

Currently, in the clinic, apoptosis can only be identified by biopsy sampling and 

ex-vivo labelling of biomarkers such as cleaved caspase-3 (CC3 – a cytosolic biomarker 

for late-stage apoptosis). Biopsies are invasive and have risks associated with them: local 

discomfort, damage to surrounding tissue and increased possibility of infection. 

Moreover, biopsies are unable to sample the whole tumour and thus heterogeneous areas 

of cell death might not be identified.119 

Non-invasive methods such as imaging probes for CC3 are currently being 

assessed in a clinical setting on breast cancer patients pre- and post-chemotherapy using 

[18F]ICMT-11;120 however, CC3 is a cytosolic biomarker therefore access to it is 

challenging due to the need for the imaging agent to cross the plasma membrane. 

Moreover, CC3 is a transient biomarker, meaning there is only a narrow timeframe when 
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imaging cell death is possible. This timeframe is characteristic to each cancer type as they 

respond differently to therapy. Therefore, it is inconvenient to use CC3 as a biomarker 

for cell death, as it would require further optimisation of the imaging protocol for each 

cancer type. 

1.3.2 Imaging cell death – a clinical challenge 

 

Non-invasive imaging of cell death (either through apoptosis or necrosis) 

following therapy is the end goal of this thesis. No such imaging agents have been 

approved for routine clinical scans as of today. In what follows, we aim to provide a 

synopsis of relevant imaging agents, some that failed clinical trials and some that are 

promising candidates for clinical trials.100,121 

 

Figure 3. Four representative tracers for imaging cell death. From left to right: (A) [99mTc]Annexin-

HYNIC- V, a gold standard in pre-clinical studies that failed clinical trials; (B) [18F]ICMT-11, which failed 

to show a correlation between uptake and positive treatment response; (C) [18F]ML-10 and (D) [18F]C-

SNAT, both showed gut uptake, hepatobiliary and renal excretion thus limiting their application to upper 

body cancers (e.g. breast, neck, brain); 

By far, the most studied agent for detection of cell death is based on a 36 kDa 

protein named annexin V. It detects cell death by binding to PS as a hexamer with 

nanomolar affinity. It was introduced in 1998 as a successful non-invasive imaging agent 

for monitoring cell death in murine models of cardiac transplant rejection, hepatic 

apoptosis and treated lymphoma.122 Annexin V quickly became a very popular tool for 

pre-clinical imaging of cell death following chemo/radiotherapy.123  
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In vitro and in vivo studies showed promising results for cell death imaging using 

[99mTc]Annexin V (see Figure 3, A) as a SPECT tracer.124,125,126,127  

Despite being a promising candidate for clinical use, it failed clinical trials II/III 

due to non-specific binding to organs, slow blood clearance and accumulation in 

kidneys.128,129 Despite efforts to improve the specificity of labelling, by the introduction 

of unique modifiable amino acids by site-directed mutagenesis, and thus its 

biodistribution, kidney accumulation was still excessively high resulting in the kidney 

being dosed with high levels of ionising radiation.130,131 

[18F]ICMT-11 (Figure 3, B) is a small molecule that crosses the cell membrane 

and labels cleaved caspase-3 (CC3), which is an alternative cell death biomarker to PS. 

Despite targeting an intracellular protein, the biodistribution profile of [18F]ICMT-11 

looked promising for PET/CT clinical translation.132 In a human study involving 

treatment of invasive ductal carcinoma (breast cancer), 4 out of 15 patients showed 

apoptosis dominant signature by PET however only 3 were correlated with the 

histological assessment by cleaved caspase-3 (the 4th patient PET predicted stable disease 

whereas histology showed partial response). 9 out of 15 showed a necrotic dominant 

signature by PET and 7 out of these correlated with histological assessment. Finally, 2 

out of 15 patients showed no voxel intensity change pre- and post-therapy however 

tumour localisation was possible with one of the patients and the noted prediction of 

partial response was confirmed by histology.120 However, the major drawback of this 

study is that no patients with progressive disease were studied. 

[18F]ML-10, known as 2-(5-[18F]fluoropentyl)-2-methyl malonic acid (Figure 3, 

C), is a small molecule that targets cell death by crossing the plasma membrane and 

accumulating in cells showing a characteristic apoptotic membrane imprint.133 This 

imprint is defined as activation of membrane phospholipid scrambling, acidification 

caused by membrane depolarisation, negatively charged phosphatidylserine exposure on 

the cell surface and irreversible loss of intracellular pH control. [18F]ML-10 was first used 

to label cerebral infarction-associated cell death in 2008, showing a 6-10 fold higher 

uptake in the affected area compared to background.133 First in human studies in 2011 

showed promising biodistribution, stability, dosimetry (urinary bladder being the limiting 

organ for dose activity distribution) and renal clearance, with a short plasma half-life of 

~1 hour.1 Multi-centre clinical trials have been underway since then. One clinical trial in 

China unfortunately showed that there was no significant difference between [18F]ML-10 



Chapter 1: Introduction 

Flaviu Bulat – October 2019   15 

uptake pre- and post- Cyber Knife stereotactic radiotherapy, despite tumours showing a 

positive treatment response by MRI, 2 to 4 months post radiotherapy.134 Another problem 

with this tracer is the optimisation of the imaging protocol. Recently, it was shown in a 

murine head and neck cell carcinoma xenograft model that no significant [18F]ML-10 

uptake occurred at 1-day post chemotherapy. However, at 3-7 days post chemotherapy, 

the uptake of [18F]ML-10 became significant. The authors conclude that further 

optimisation of the time point for imaging post therapy is required with this radiotracer.135 

A more sensitive tracer and alternative to [18F]ML-10 is [18F]C-SNAT, which is a 

peptide tracer (see Figure 3, D) that binds to CC3 via cyclisation and causes 

nanoaggregation.136 However, due to its hepatobiliary and renal excretion route in vivo 

shown in pre-clinical studies, its use is limited to monitoring cell death in the upper half 

of the body (e.g. breast cancer).137 

In 2016, a pre-clinical 19 amino acid peptide SPECT tracer called 

[99mTc]duramycin was used to image another extracellular biomarker of cell death; 

phospholipid PE. Radiotherapy, chemotherapy and a combination of both were used to 

induce cell death in murine colorectal xenograft study. [99mTc]duramycin uptake in mice 

bearing Colo205 colorectal cancer xenografts showed oxaliplatin treated tumours uptake 

of duramycin correlated strongly with apoptosis determined by CC3 (P < 0.001, Pearson 

r = 0.85)  and TUNEL (P < 0.001, Pearson r = 0.81) staining. In the case of radiotherapy 

[99mTc]duramycin uptake correlated well again with CC3 and TUNEL staining (P < 

0.001; Pearson r = 0.88 and 0.73 respectively).138  

The Pearson correlation (Pearson R test) measures the strength of linear 

correlation between two variables. The test outcome is a variable with a value between -

1 and 1. A positive linear correlation would represent a value of 1, 0 meaning no 

correlation and -1 a negative linear correlation.  

Despite the development and preclinical evaluation of numerous tracers for 

imaging tumour cell death, no agent has yet been approved for routine clinical use. This 

is generally due to poor biodistribution and off-target binding. 

We therefore propose an alternative solution to these major drawbacks by using a 

small 14 kDa protein, the C2A domain of Synaptotagmin I, which due to its smaller size 

shows a much faster biodistribution and clearance compared to Annexin V. 
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1.3.3 C2A protein, the subunit of Synaptotagmin I 

 

C2A, which binds PS, is one of two C2 domains of the protein synaptotagmin I, a 

Ca2+ sensor situated in the presynaptic nerve terminal. Synaptotagmin I protein consists 

of an N-terminal transmembrane region (TMR), a variable linker and two C-terminal C2 

domains: C2A and C2B. Its role is to crosslink membranes upon Ca2+ binding, and it 

initiates fusion of vesicle membranes with the plasma membrane of the presynaptic axon 

terminal.139 The fact that C2A binds with high affinity to PS in a calcium-dependent 

manner was discovered by Davletov and Sudhof in 1993.140 Calcium ion binding has a 

role in changing the protein’s electrostatic potential and neutralising aspartate residues, 

rather than changing its conformation. This favours interaction with negatively charged 

phosphatidylserine. 141 

 

Figure 4. (A) C2Am protein NMR solution structure. The blue arrow indicates the mutated site at 

position 78, opposite to the binding site in order to minimise effects on affinity for PS, where serine has 

been replaced by a cysteine residue to enable conjugation with maleimide prosthetic groups. (B) Amino 

acid representation of the binding site. The three green spheres represent Ca2+ ions coordinated by aspartate 

residues. 142 

In vitro studies showed that fluorescently labelled C2A has a 5-fold lower binding 

to viable cells (thus improved specificity for apoptotic cells) compared to an equivalent 

fluorescently labelled Annexin V.99 That means that despite having a lower binding 

affinity for PS (20 nM)143 compared to Annexin V (0.3-15 nM)99, C2A has a reduced off-

(A) (B)
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target binding to viable cells and organs, thus making it a more specific probe for labelling 

cell death.  

C2A protein has been modified using site-directed mutagenesis at position 78 

(position 217 on synaptotagmin I) in order to replace a serine residue with cysteine, which 

allows single Michael addition reactions to occur via the only thiol present, as detailed in 

Figure 4.99  

The Brindle group has been labelling the C2A protein for in vivo imaging of 

tumour cell death using, super-paramagnetic iron oxide (SPIO)144, Gd3+-DTPA143 SPECT 

radioligands (technetium-99m and indium-111)99 and optoacoustic145 probes.  Here we 

have developed C2Am as a PET radiotracer as this promised an improved biodistribution 

profile through the use of radiolabelled organic prosthetic groups rather than chelates.  

1.4 Positron Emission Tomography (PET) 

 

The existence of antimatter (positron) was first predicted by Paul Dirac in 1928.146 

Ernest Lawrence proved that particles can be accelerated in a circular path, leading to the 

development of the cyclotron for which he received the Nobel prize in 1939.147 His 

contribution was the unique way to accelerate protons to high energies in a very limited 

space, by proposing a circular path rather than using a straight line. These two discoveries 

were the cornerstone to advances in nuclear science and form the basis of nuclear 

medicine and molecular imaging. In the early 1950s, the first positron emission imaging 

experiment was performed by Gordon Brownell and Charles Burnham at the 

Massachusetts General Hospital (positrons are anti-electrons). Positron emission imaging 

was refined in 1961 by James Robertson’s ring detector, which is similar to that found in 

today’s PET scanner. However, it was only after the successful use of 18F-FDG in 1976, 

in which a study on two volunteers showed 18F-FDG uptake in the brain, that PET became 

widely accepted.148 

Positron emission tomography is a medical imaging technique used to detect the 

position of a positron emitter radiotracer within a subject. The principle of PET imaging 

is detailed in Figure 7; a positron is emitted upon radioactive decay of certain 

radioisotopes due to the conversion of a proton into a positron (β) ), neutron and a 

neutrino (*+). For example, fluorine-18 decays to oxygen-18: F	 → 	 O/0/ +	β) + *+2
0/ . 
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The positron then travels a short distance (~1 mm), which is highly dependent on the 

environment and the energy of the positron, and collides with an electron. The 

annihilation event that occurs upon this collision produces 2 gamma photons of 511 keV 

each, travelling at ~180° with respect to each other and perpendicular to the initial 

trajectory of the positron. These two photons are detected coincidentally by opposing 

detectors; see Figure 5. These are called true coincidences; see Figure 6. 149 

 

Figure 5. Schematic of the Mediso nanoScan PET detector: A positron-emitting isotope (radiation 

warning trefoil) generates a positron (β+) particle which upon annihilation with an electron situated in the 

near proximity produces two 511 keV gamma photons (wavy black arrows) at 180° with respect to each 

other. A static circular array of detectors (black rectangle = crystal arrays, numbered boxes = PMT), detects 

the two opposing γ photons as a coincidence event (red rectangles). This is then processed by the 

coincidence unit which will reconstruct the trajectory of these photons thus determining the spatial position 

of the source.  

 

Figure 6. Different types of coincidences. True coincidence occurs when the two gamma photons 

following an annihilation process end up exciting two detectors opposite each other (180°). Scattered 

coincidence occurs due to change of travel direction of one of the gamma photons due to interaction with 

surrounding electrons (Compton effect). As a result, the generated LOR is misleading as it does not contain 

the site of annihilation. A random coincidence occurs when two different annihilation sites emit gamma 

photons that reach detectors within the coincidence time leading to the formation of an erroneous LOR 

between them. The static circular array of detectors (black rectangle = crystal arrays, numbered boxes = 

PMT), detects the two opposing γ photons as coincidence events (red rectangles).149 
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Multiple coincidences generated by activation of more than two detectors within 

the same interval are not allowed as assigning Line of Responses (LORs) would not be 

possible. The narrow volume between the two detectors, where the positron-electron 

annihilation occurs, is called the LOR; see Figure 7.  

 

Figure 7. Electron-positron annihilation diagram. Positron (red) travels ~1 mm and annihilates with 

an electron (blue) to generate two 511 keV gamma photons at ~180° to each other. Gamma photons are 

detected by opposing detectors composed of a crystal array (black rectangles) and a photomultiplier tube 

(white box). Line of response volume is highlighted in yellow. 

Significant advances have been made throughout time that lead to increased 

sensitivity, resolution and data storage management. Early models of PET had axial 

collimators installed; these were restricting detection of gamma photons within the same 

ring or adjacent rings.  This is called a 2D acquisition mode. 3D mode became available 

in the late 1980s by improving the capacity of processing coincidence events between 

different detector rings. The more LORs are used in a reconstruction process the higher 

the sensitivity of the scan. 

 

Figure 8. Acquisition using 2D (A) and 3D (B). In 2D mode, collimators limit gamma photons 

access to scintillators reducing the LOR to adjacent rings. In the 3D mode, detectors can be reached by any 

gamma photon. Detectors are composed of collimators (blue lines; A) a crystal array (black rectangles; 

A&B) and a photomultiplier tube (white box A&B).150 

As a result of the 3D mode acquisition, sensitivity increased by a factor of 4-6 

however removing the septa increased scatter coincidence detection from 10-15% to 30-

40%.150 
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Scanning volume and sensitivity can be adjusted by increasing LOR density. This 

can be done by adjusting the PET’s detector mode. (Figure 9) Once data is acquired, 

detector mode can be selected again for the reconstruction. A 1-5 scan can be 

reconstructed using a 1-5 mode but also be binned down to 1-3 or 1-1 modes as required. 

 

Figure 9. PET acquisition and reconstruction detector modes. 1-1 mode means that 1 detector is 

accepting coincidence events from just 1 opposing detector. A 1-3 mode means 1 detector accepts 

coincidences from 3 adjacent and opposing detectors. For example detector 0 accepts coincidences from 

5,6 and 7. 1-5 mode means that 1 detector accepts coincidences from 5 opposing detectors. Acquisition and 

reconstruction can be done in three different modes: 1-1, 1-3 and 1-5. This directly affects sensitivity, the 

higher the mode the higher the sensitivity. Notably, raw data increases significantly upon using a high 

detector mode. Picture taken from the Mediso nanoSCAN PET manual.   

Significant improvement of image quality was attributed to the use of Cerium-

doped lutetium oxyorthosilicate (LSO) scintillation crystal detectors. LSO is a high-

density material (high photoelectric fraction) that can stop high energy gamma photons 

more efficiently. LSO and Cerium-doped lutetium yttrium orthosilicate (LYSO) have 

higher light yield compared to its predecessors Bismuth germanate oxide (BGO) and 

Cerium-doped gadolinium orthosilicate (GSO); see Table 2 for more details. A high 

percentage of light emission per unit of energy absorbed is desirable as it increases the 

signal-to-noise ratio. Fast crystal excitation following absorption of a 511-keV photon, 

emission of light and decay of scintillation light is an important characteristic of modern 

detectors.150 Short decay time of scintillation light facilitates narrow coincidence 

detection time of 4-12ns consequently reducing dead time losses. Dead time loss occurs 

when the crystal being saturated with light is hit by another gamma photon. As a result, 

the latter photon absorption is not detected as a separate event thus not counted. Dead 

time loss events occur upon using high activity (high count rate).149 
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Table 2. Scintillation materials used for making PET detectors. LSO and LYSO materials are 

superior to bismuth germanate oxide (BGO) and cerium-doped gadolinium orthosilicate (GSO) regarding 

light yield and decay of light. Adapted from Slomka et al (2016).150 

Material Density (g/cm3) 
Light yield  

(% of NaI(Tl) light) 

Decay of scintillation 
light (ns) 

NaI(Tl) 3.67 100 230 

BGO 7.13 8 300 

GSO 6.71 16 60 

LSO 7.4 75 40 

LYSO 5.37 75 53 

Photomultipliers (PMTs) capture crystal scintillation light, amplify it and convert 

it to electrical signal. Their function is to characterise photon energies, resolve its position 

accurately and discriminate rapidly between different events. Conventional PMTs were 

large and covered several crystals at a time leading to low spatial resolution. Digital 

photomultipliers made of silicon (SiPMs) couple individually to each scintillation crystal. 

This results in higher spatial and timing resolution. 

PET data acquisition occurs as list mode where the detector pairs (position), 

energy and time of each coincidence event is recorded in a separate file. Using this 

information, images are then reconstructed by harnessing the multi-core power of 

graphics processing units (GPUs). Images are then anatomically co-registered for ease of 

interpretation. Image reconstruction includes a series of corrections: decay, attenuation 

correction, scatter correction and random events. PET/CT scanners use computed 

tomography (CT) to perform an attenuation correction during image reconstruction. 

Attenuation happens when gamma photons emitted by radiotracers are scattered and/or 

absorbed by tissue, which can be up to 90% in areas where electron density and tissue 

thickness is high.151 Attenuation correction takes into account the position of the 

radiotracer, as well as, the volume and tissue density of the body shielding it and corrects 

its effects. The decay of the radiotracer is important and easy to correct for. Provided that 

the right radioisotope is added in the decay calculation (i.e. half-life is known), the correct 

concentration of radiotracer at any given time can be accurately determined throughout 

the scan.149 
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Scatter correction can be done based on the Compton principle. Scattered photons 

lose significant energy in the process. This energy loss can be detected by PMTs. 

Therefore photon pairs (coincidences) with high difference in photon energy can be 

discarded. Random correction is done based on the coincidence event delay window of 

5-12 nanoseconds (depending on manufacturer). If two single events reach detectors at 

more than 5-12 ns apart, they are discarded.149 

1.4.1 Latest PET equipment development 

Powerful computers, fast electronics and photomultipliers combined with high 

density, fast decaying scintillation crystals enabled the redevelopment of time-of-flight 

(TOF) PET in the early 2000s. TOF-PET was initially built in the early 1980s; however, 

the crystals had low stopping power (low density) and using large PMTs resulted in low 

spatial resolution therefore its applicability was limited to research. Development and 

widespread use of LSO/LYSO crystals and fast photomultipliers lead to the development 

of the first commercial TOF-PET system (Phillips Gemini TF PET/CT) in 2006.152,153  

The differences in photon travel times, resulting from an annihilation, are 

measurable. This time difference can be used for a the better localisation of the initial 

annihilation event. (see Figure 10) Fast coincidence detector systems are the key to the 

success of this measurement. The Phillips Gemini TF scanner has a coincidence timing 

resolution of 585 ps.153 

 

Figure 10. Comparison between PET and time-of-flight PET imaging. The static circular array of 

detectors (black rectangle = crystal arrays, numbered boxes = PMT), detects the two opposing γ photons as 

coincidence events (red rectangles), LOR (yellow background), grey bars represent the probability of 

containing the initial annihilation event and its location within the LOR. In the case of TOF-PET, the higher 

the grey bar the higher the probability. Adapted from Vandenberghe et al.152 
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This technology promises to reduce the signal-to-noise ratio, reduce the overall 

image noise and increases quantitative accuracy in small lesions while offering a better 

image quality. Such performance translates directly to clinical outcomes such as better 

images in heavy patients (i.e. where attenuation of signal poses a significant hurdle). It 

also reduces the scanning time or the dose required to obtain an image.152 

Positron emission tomography/magnetic resonance imaging (PET/MRI) is an 

emerging technology and it combines the anatomical and quantification power of the MRI 

with the physiologic data obtained by the PET. Challenges in building such a system 

consisted mainly of building an appropriately shielded PET detector that can withstand 

the strong magnetic field of an MRI scanner. PMTs are susceptible to the magnetic field, 

therefore special silicon photomultipliers (SiPMs) that have high gain (106), fast response 

time (100 ps) and are insensitive to magnetic field have been used to overcome this 

problem.154 The first whole body PET/MRI was installed in 2010 and since then the 

number of studies using them grew exponentially. Table 3 provides a comparison 

between PET/CT and PET/MRI, highlighting their strengths and limitations. 

Table 3. Summary of key advantages and limitations of PET/MRI and PET/CT. Table adapted 

from Ehman et al.155 

 Advantages Limitations 

PET/CT 

• Widely available   

• Established imaging protocols  

• Evidence proven indications  

• Familiarity among equipment providers  

• Quantitative accuracy well established  

• Imaging of small pulmonary nodules  

• Exams performed in as little as 30 minutes 

• Limited soft tissue contrast 

• Fast CT exam does not provide extra 
time for PET acquisition 

• IV contrast not routinely used 

• If focused MRI needed, must be 
additional exam  

• Ionizing radiation from CT component 

PET/MRI 

• Improved soft tissue contrast  

• Added value of diffusion weighted 
acquisitions  

• Increased available time to collect PET data  

• Better motion correction 

• Convenience and time savings with 
combined exams  

• Use of MRI specific contrast agents  

• No ionizing radiation from MRI component 

• Limited availability 

• Protocols and indications still in 
development 

• Requires knowledgeable radiologists in 
both nuclear medicine and MRI  

• Quantitative accuracy still being 
determined  

• Exams may take 1 hour or longer  

• Limited evaluation of pulmonary 
parenchyma 

As of 2017, a full body PET scanner has been produced at the University of 

California, Davis, and this significantly reduces scanner time to a few minutes and 40-

fold sensitivity increase for a total body scan just by extending the field-of-view (FOV) 

from 20 cm to 200 cm.29 This significant increase in sensitivity compared to current PET 
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scanners is due to the fact that current scanners only cover an eighth of the body within 

the FOV and thus the signal outside this area is not recorded. Coupled with the fact that 

only 3-5% of the emitted gamma radiation is detected as coincidence events, as the rest 

is either out of the range of detectors, attenuated or scattered.29 As a consequence of 

increased sensitivity, shorter times are required in the scanner which in turn translates to 

less artefacts generated by potential patient movements. Finally, this results in less 

activity required to acquire a scan thus lower dose given to the patient. The construction 

and usage of the total body PET is a strong argument for the future use of PET imaging. 

However, the fact that the radionuclides cannot be stored (thus having to be used 

immediately) can be a drawback. Furthermore, production and usage require special 

facilities (e.g. cyclotron, radiochemistry lead shielded lab) and specially trained 

radiochemists to produce the desired radiopharmaceuticals, limiting the availability of 

this technology.156	

PET is constantly increasing in popularity in the medical imaging field mainly due 

to its high sensitivity (as low as femtomoles) and short-lived radiotracers, which minimise 

the radiation dose. High-energy gamma photons, emitted from the positron-electron 

annihilation, are able to penetrate tissue, organs and bones; making PET a suitable 

modality for deep body imaging. The main advantage of PET is its inherent strong signal-

to-noise ratio (SNR), which can be achieved due to the very low natural background 

radiation coming from body tissue. Moreover, radioactive organic compounds (e.g. 

antibodies) can be targeted at specific sites.  

1.4.2 Single-photon emission computed tomography (SPECT) 

PET is not the only imaging technique in clinical usage. Other imaging methods 

are available, each of them with advantages and disadvantages, e.g. speed, resolution, 

cost and sensitivity. A detailed comparison of these imaging modalities can be found in 

Table 4	 (Adapted from Baker et al. 2010).157	 The alternative radionuclide imaging 

modality is single-photon emission computed tomography (SPECT). The SPECT 

scanner, depicted in Figure 11, consists of three gamma cameras that rotate around the 

patient and detect the gamma photons emitted by injected sources. A sodium iodide 

crystal produces light photons when struck by gamma photons which have been filtered 

through a lead collimator. The light signal is then converted to an electrical signal by 

photomultiplier tubes. By knowing the position of the camera, the image can then be 
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reconstructed and the position of the radiation source can be accurately determined. Pre-

clinical systems (e.g. Bioscan NanoSPECT/CT) have up to four cameras to boost 

sensitivity and resolution. Recently, this technology has been used in clinical scanners 

using a multi-camera SPECT with other imaging modalities such as PET and CT within 

the same scanner (Mediso AnyScan TRIO).158	

 

Figure 11. Schematic of the latest Mediso AnyScan TRIO gamma camera SPECT scanner. Gamma 

photons (wavy black lines) are collimated to a NaI(Tl) thalium doped sodium iodide crystal, signal being 

picked-up and amplified by photomultiplier tubes and converted to an electrical signal. The image is then 

reconstructed for analysis. The scanner has the capability to use multi modal imaging by combining three 

different modalities in one scanner. It has the possibility to combine SPECT, CT and PET all in one 

scanner.158  

The resolution of a SPECT scanner depends on the size of the pinholes of the 

collimator (see Figure 11). Moreover, the lower gamma photon energies (140 keV for 

99mTc) used in SPECT causes more pronounced attenuation artefacts compared to PET, 

especially in larger patients. These are caused by tissue (diaphragm, breasts) between the 

gamma camera and the imaged organ (e.g. heart).156,151  

One major drawback with current clinical SPECT systems is that no quantitative 

imaging can be performed i.e. the voxel intensity detected cannot be converted to an 

activity. This is a strong argument for the usage of PET to monitor and quantify the 

biodistribution of a tracer which can be accurately and non-invasively determined. On the 
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downside, the initial investment for a PET scanner is much higher than for a SPECT one. 

Another drawback of PET is the requirement for a local cyclotron, which is an expensive 

asset and high maintenance costs therefore limited to a few locations within a country. 

Since most research facilities do not have access to a cyclotron, mobile isotope generators 

are much desired. The most widespread generator is the molybdenum-99 – technetium-

99 metastable. Recently, the first gallium-68 generator to be used for human productions 

(GalliaPharm, Eckert & Ziegler) was approved by the European Medicines Agency for 

use in 14 European countries in 2014 and by the FDA in 2016 for use in the US.159 It 

sparked a revolution in the area of PET imaging of prostate cancer (more details in 

subchapter 2.1.2). 

By comparing the advantages and shortcomings of the two imaging modalities, 

we have concluded that PET would be a more suitable modality for studying cell death 

following therapy using the C2Am protein.  



Chapter 1: Introduction 

Flaviu Bulat – October 2019   27 

 Table 4. Imaging modalities compared by cost, resolution, speed and sensitivity (adapted from Baker et al. 2010)157 

  

Modality Label Signal Advantages Disadvantages Initial cost Speed Sensitivity 
(mols detected) 

Resolution 
(mm) 

PET Radiolabelled molecule γ - ray High sensitivity, high scanning 
speed with total body PET29 Radiation exposure High Low 10-15 1-2 

SPECT Radiolabelled molecule γ-ray More than one isotope can be 
used at once Radiation exposure High Low 10-14 1-2 

CT None X-ray Fast, anatomical detail Limited resolution of soft 
tissue Moderate Moderate N/A 0.05 

MRI Gadolinium based tracer Magnetic 
field 

No radiation, soft tissue imaging, 
hyperfine resolution with 

INUMAC 11.7 tesla scanner160 

Slow acquisition, 
movement artefacts near 

heart 
High Low 10-9 to 10-6 0.05 

Optical Bioluminescent or 
fluorescent 

Light, 
infra-red 

Molecular events can be 
monitored. No radiation 

Low resolution, 
penetration depth Low High 10-12 1-2 

Photo-
acoustic 

Probe with high molar 
extinction coefficient (ε) 
and low quantum yield 

(ϕ) 

Light & 
Sound 

Better depth resolution than light. 
No radiation exposure 

Not yet optimised for 
clinical use Low High 10-12 0.05 

Ultra-sound Microbubbles Sound No radiation exposure Operator involved. No air-
containing structures Low High 10-8 0.05 
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2 LABELLING OF C2AM FOR 

PET IMAGING 

The main aim of this work was to design, synthesise and evaluate an 18F-labelled 

PET radiotracer. This chapter introduces the challenges of selecting and synthesising the 

optimum 18F-labelled prosthetic group for protein thiol labelling but first, the advantages 

of protein conjugation via cysteine amino acids are presented. 

2.1 Protein bioconjugation for molecular imaging  

Proteins are nature’s control switches that regulate events in living cells and 

organisms. They play an important role in intra and extracellular signalling, structural 

support, transport, DNA replication, and as enzymes they catalyse a myriad of metabolic 

reactions. 

Proteins differ from each other due to their primary structure (i.e. their amino acid 

sequence).  However, due to their need to fulfil multiple roles, proteins have an added 

level of complexity where the structure and function are often modified after synthesis. 

This late event is called post-translational modification (PTM). These modifications 

include: protein glycosylation (important in cell-cell recognition); acetylation and 

phosphorylation, which can act as an on/off switches; acylation with fatty acids, which 
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can control solubility and membrane docking; and ubiquitinylation - a marker for protein 

degradation.161  

In order to better understand the biochemical processes that proteins undergo in 

live cells, their concentration and stability need to be monitored and quantified over time. 

Through site-selective chemical modification, often termed bioconjugation, synthetic 

labels can be introduced that allow the study of the proteome (e.g. identification by mass 

spectrometric analysis, affinity purification, amino acid analysis) and biochemical 

characterisation.162  Proteins can also be chemically labelled with toxic ‘warheads’ 

(therapeutic payload)163 and thus be used as therapeutic agents e.g. an anti-HER2 

monoclonal antibody conjugated through a maleimide moiety to the maytansinoid drug 

DM1 – trastuzumab-SMCC-DM1.164 

Proteins involved in the study of biochemical processes can be conjugated to 

imaging labels such as fluorescent and optoacoustic145, paramagnetic143 or radioactive99 

tags.165 Therefore, the biodistribution and pharmacokinetics of these proteins in the body 

can be monitored and quantified non-invasively using a variety of imaging modalities. 

Radiolabelling of proteins for studying the degradation and excretion of proteins 

(e.g. globulins, albumin, human growth hormone) was introduced in the 1940s and early 

1950s.166,167 These early studies used iodine-131 to label tyrosine side chains of amino 

acids. However, it was shown that installation of multiple iodine labels per protein 

molecule increased its degradation and excretion whereas 0.5 iodine molecules per 

protein was found to be ideal.166 

To facilitate protein labelling, chemistries used in the area of metabolic imaging 

have been adopted. For the past three decades bioorthogonal reactions – a term coined by 

Bertozzi et al. in the early 2000s168,169 – have increased in popularity, especially in the 

area of metabolic glycan imaging. A subtype of these bioorthogonal reactions, more 

specifically the 3+2 cycloaddition of an azide to a strained alkyne in the absence of any 

copper catalyst – known as strain promoted azide-alkyne cycloaddition (SPAAC)  – has 

been used for the study of glycans and their metabolism.170,171,172 It has also been used in 

the context of PET imaging using 2-[18F]fluoroethylazide.173 
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Nevertheless, the most popular reactions for covalently linking proteins to 

synthetic molecules remain bioconjugation reactions with native amino acids such as 

lysine and cysteine. 

2.1.1 Protein bioconjugation via thiol labelling 

One of the most commonly used amino acids for modification is lysine due to its 

primary ε-amino side chain that can react with multiple chemical partners (e.g. NHS 

esters). Lysines are abundant174 in native proteins (5.8% in human proteins175) and most 

of them are available for reaction, therefore labelling a small number of these lysines per 

antibody is relatively easy. Labelling proteins and peptides with N-succinimidyl para-

[18F]fluorobenzoate ([18F]SFB) has been attempted on many occasions; however the 

radiochemical yield was always low and multiple lysines are labelled leading to a 

heterogenous mixture of tracers.176,177  Moreover, the latter is not  the most elegant 

approach since multiple labels can hinder the targeting ability of the protein, increase 

immunogenicity, alter protein pharmacokinetics and pharmacodynamics significantly 

and also interfere with subsequent quantification. 

Because of the limitations inherent in conjugation to lysine residues, selective 

methods for conjugating small molecules to proteins often use cysteine instead. Cysteine 

is an amino acid with a relatively low natural abundance in proteins (3% in human 

proteins175).174 Common roles are to form disulphide bridges and to bind metals. As a 

result it is usually found embedded in the core of proteins, making it unavailable for 

conjugation.178  Solvent exposed cysteines can be introduced into recombinant proteins99 

using site-directed mutagenesis.179,180 This can ensure that the amino acid to be modified 

is accessible and the modification does not interfere with the protein’s active site.  

Chemical modification of proteins via cysteine labelling can be performed in two 

ways: either by alkylation using an a-halocarbonyl (e.g. 5-iodoacetamidofluorescein or 

monobromobimane) or by conjugation with Michael acceptors such as maleimides, vinyl 

sulfones, 2-vinylpyridines or 4-vinylpyridines. (Scheme 1). 
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Scheme 1. From left to right: alkylation of cysteine with iodoacetamide, conjugation of cysteine 

with N-alkyl-maleimides, 4-vinylpyridines and vinyl sulfones. 

Alkylation with iodoacetamide is a relatively slow reaction, 3 orders of magnitude 

slower than maleimide conjugation under comparable conditions.181,182 Maleimides are 

biocompatible compounds that conjugate to thiols with high specificity and fast kinetics, 

which make them good prosthetic group candidates for protein labelling. Conjugation of 

the thiol of tripeptide L-glutathione (GSH) to 2-vinylpyridine is 500-fold slower than to 

maleimides.183 This makes vinylpyridines too slow for the purpose of this study. Vinyl 

sulfones reacting with GSH at pH 6.5-8.5 have half-lives of between 69 and 6 minutes, 

approximately 6000-fold slower than maleimides.184  

Michael addition of GSH to N-ethylmaleimide has a very high rate constant of 

~1500 M-1 s-1 at pH 7, as estimated by Gorin et al. in 1966.185 This translates to a half-

life of ~2.6 seconds at pH 7 and a concentration of 1 mM. These results have been 

confirmed experimentally in this study using N-(5-fluoropentyl)maleimide (synthesised 

in-house) and GSH (see subchapter 2.2.3).  

Fast reactions are crucial for conjugation of prosthetic groups bearing short-lived 

radioisotopes (e.g. carbon-11, fluorine-18). The speed of the Michael addition reaction is 

dependent on the thiolate concentration, reaction conditions (e.g. temperature, pH), 

degree of steric hindrance and pKa of the thiol.  The effect of pH on the conjugation rate 

of reaction is related to thiolate formation, as described by Gorin et al.185 and Bednar181. 

Thiol (-SH) is 5 x 1010-fold less reactive than thiolate (-S-) towards maleimides.181 
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Therefore, pH determines the speed and specificity of the conjugation reaction. Slightly 

basic pH (7.5 - 8.5) can partially deprotonate (deionise) the –NH3
+ group of lysine side 

chains, which thus become nucleophilic and compete with thiolate ions from cysteines 

for maleimide conjugation. The pKa of the lysine side chain primary amine is 8.95 which 

is very close to the cysteine’s thiol of 8.4. Therefore, at pH >8-8.5 maleimide conjugation 

to primary amines can become significant.186,187 

A drawback of the Michael addition reaction is its reversible nature. Once 

conjugated, maleimides can undergo retro-Michael addition (i.e. b-elimination of the 

thiol). This can lead to loss of maleimide label by thiol exchange with other thiolates 

present in higher concentrations in the same solution. (Scheme 2.) However, the half-life 

of the retro-Michael reaction of GSH with N-ethylmaleimide was shown to be 350 to 400 

hours,188,189 which is slower than the half-life of fluorine-18 (109.8 minutes). Once 

conjugated, the retro-Michael addition can be minimised by hydrolysis of the maleimide 

to the equivalent maleamic acids. These conjugates have increased stability and 

consequently will not undergo thiol exchange.190,191 This is due to maleamic acids 

showing very low rate constants for the retro-Michael reaction.192,189 The N-linked side 

chain of the maleimide has a direct influence on the hydrolysis reaction rate. An electron 

withdrawing side chain will increase the hydrolysis rate by increasing the electrophilicity 

of the maleimide carbonyls. These carbonyl groups are therefore prone to hydroxyl/water 

attack, whereas an electron donating N-substituent does the opposite and decreases the 

rate of hydrolysis.189,188 
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Scheme 2. Maleimide A reacting with a R1-SH yields conjugate B. This can undergo hydrolysis to 

permanently generate maleamic acid conjugates C1 and C2.  The conjugation of maleimide A to R1-SH 

can be reversed and undergo thiol exchange in the presence of a second thiol, R3-SH, to obtain a second 

conjugate D. Adapted from Baldwin and Kiick.189 

To conclude, the covalent reaction of maleimides with a cysteine thiol is the best 

choice for obtaining quantitative and time-efficient labelling of peptides or proteins. The 

decision was based on their high reaction rate constant, high thiol specificity and no toxic 

by-products (c.f. iodoacetamide, which produces toxic iodide ions). In addition, 

maleimides allow a great diversity of functional groups (fluorescent probes, spacers, good 

leaving groups that can be 18F-labelled) to be introduced via the side-chain on the nitrogen 

atom. Maleimides have been used extensively in diverse applications. As an example, a 

common medical application is generating antibody drug conjugates (ADCs) by linking 

the targeting agent (antibody) to their toxic payload via Michael addition. ADCs have 

been observed to increase or decrease their activity depending on the hydrolysed or cyclic 

state of their maleimide.192  

Native C2A contains 14 lysine and no cysteine residues. For the purpose of 

specific conjugation reactions, a mutant form, C2Am, was created previously, with a 

single surface-exposed cysteine residue at the opposite end of the protein active site.99 

Thiol pKa values are generally close to neutral: in the case of cysteine it is 8.4 whereas in 

the context of GSH the thiol is less acidic with a pKa of 9.7.193 The calculated pKa of the 

free thiol cysteine (C95) of C2Am is 10.3 and it is significantly lower compared to the 

pKa of cysteine (C315) on a site-directed mutant of Annexin V, another PS-binding 
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protein that has been used for imaging194,195,196, is ~14. These values were estimated using 

the constant pH Molecular Dynamics simulations of Matos et al.197 At physiological pH 

7.4, the higher the pKa of the thiol, the lower the thiolate concentration will be. 

Experiments have shown that the maleimide conjugation rate constant increases with 

thiolate concentration.181 This means that the conjugation rate will be slower for Annexin 

V than for C2Am. 

We shall now focus on the justification for selecting fluorine-18 as the 

radionuclide of choice, based on the properties of an ideal radiotracer.   

2.1.2 Radioisotope of choice, radiotracer properties and radiosynthesis 

There is a diverse range of radioisotopes that decay via positron emission. Some 

of them have been used extensively for PET imaging. (Table 5) The choice of 

radioisotope should be made based on a number of properties that a novel radiotracer 

must fulfill in order to satisfy the application’s requirements.198, 199 

Table 5. Selection of radionuclides emitting positrons used for PET imaging.198 

Radionuclide Half-life 

(min) 

Positron 
decay 

(% β+) 

Positron energy 
(MeV) 

Positron travel in 
water (mm) 

Maximum Mean Maximum Mean 

11C 20.4 99.77 0.96 0.39 4.1 1.1 

18F 109.8 96.7 0.63 0.25 2.4 0.6 

64Cu 768 17.87 0.65 0.28 2.9 0.64 

68Ga 68.3 87.7 1.90 0.84 8.2 2.9 

89Zr 4704 23 0.9 0.4 4.0 1.18 

 

Firstly, the radiotracer should be labelled with an isotope with an adequate half-

life that allows sufficient time for radiosynthesis, local transport and PET imaging. PET 

imaging refers to administration of radiotracer, biodistribution (pharmacokinetics, 

pharmacodynamics), binding to the target, clearance from the blood pool (generating 
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contrast), excretion and scanning time. All of these steps require time to be completed 

and this has to be accounted for and be compatible with the radiotracer’s decay half-life.  

Secondly, the radiotracer should demonstrate an adequate biodistribution profile. 

It must be soluble in saline or biocompatible aqueous buffers in order to be administered 

systemically. Moreover, it must be stable under physiological conditions (pH 7.4, 37 °C), 

distribute rapidly in the body, be metabolized (if required) and finally the unbound 

material must be excreted rapidly to generate contrast.  

An ideal tracer should bind its abundant target with high (nanomolar) affinity and 

it should also show high selectivity for one biomarker with minimal off-site binding.99 

C2Am has a lower affinity (20-50 nM)99 for its target (phosphatidylserine) compared to 

Annexin V’s multimeric binding (0.03-15 nM)200,201. However, this is probably offering 

C2A an advantage as it binds less to viable cells than Annexin V. The desired radiotracer 

should show excellent stability in its final formulation to accommodate transport and 

delivery. Once injected, its stability should not be compromised by the reduction-

oxidation potential of blood, physiological pH, or partial pressure of oxygen. In terms of 

pharmacodynamics, a successful imaging agent should not have any effect on the body.  

In order to achieve maximum tumour contrast, the PET radiotracer should be 

prepared with high molar activity (Am) and be imaged at the ideal time window for 

binding to the target with maximum contrast. Molar activity is the amount of radioactivity 

(measured in GBq) per total amount of compound (measured in μmol) (e.g. Am = 50000 

MBq/μmol).  

In terms of cell death, it has been suggested that there are two time-points where 

cell death can be detected. One time-point occurs 1-2 hours post-administration of 

chemotherapy when the there is an initial wave of cell death , and the other 24-48 hours 

later when there is further cell death.202  

One advantage of using short lived isotopes (e.g. fluorine-18) is that repeat scans 

can be performed, if necessary, at relatively short time intervals (e.g. every 24 hours). 

Previously, the Brindle group have shown that C2Am generates cell death-dependent 

tumour contrast within two hours of intravenous administration, due to its fast 
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biodistribution profile.100,203 Therefore, labelling the C2Am protein with short lived 

radionuclides such as fluorine-18 would be sensible. 

Fluorine-18 is a pure positron emitter (96.7% of decays emit a positron) that has a 

relatively short half-life of 109.7 minutes, decaying to a non-toxic element, oxygen-18. 

For comparison, with gallium-68, only 87.7% of the emissions release a positron. This is 

reflected in a lower sensitivity (∼15%) compared to fluorine-18.204  However, the higher 

median energy of gallium-68 positron means that there is less attenuation and therefore 

higher sensitivity for internal organs; however, a higher positron mean energy can reduce 

resolution, particularly in pre-clinical systems, due to the longer distance of positron 

travel. Fluorine-18 has a lower mean positron energy (0.25 MeV) than gallium-68 (0.84 

MeV) and this translates into a shorter positron travel distance (0.6 mm and 2.9 mm, for 

fluorine-18 and gallium-68, respectively, Table 5.) and thus higher spatial resolution. 

Lower positron energy also means lower dosimetry, i.e. less radiation exposure for the 

patient. 

Thirdly, the radiosynthesis should be reproducible and as rapid as possible, 

typically being finished within a half-life of the radioisotope. Numerous chemistries have 

been proposed over the past decades that make real-time radiochemistry feasible.  

Ideally, radiochemists prefer to include fluorine-18 as a late-stage step in the 

fluorination reaction. However, fluorination using fluorine-18 often requires a multi-step 

synthesis. Choosing the correct labelling method and reaction type are critical steps. 

Reactions should to be rapid enough to reach an acceptable yield within a short time, 

typically within a half-life of fluorine-18, i.e. ∼1	hour. A successful radiosynthesis will 

also yield a radiotracer with high molar specific activity.  

In order to be able to perform radiosynthesis in a safe, reproducible and fast 

manner, a module-assisted (automated) synthesis device is used. Using these contained 

shielded modules, radiochemists can work with high activities whilst minimizing 

radiation exposure of the operator. Larger quantities of radioactive agents can be 

produced and shipped to locations within a wider travel distance. Moreover, automation 

increases reproducibility, limits human error, improves efficiency and speed of 
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production, leading to shorter, more consistent synthesis times and more reproducibly 

synthesised tracers, particularly when implemented under cGMP.  

2.1.3 Radioactive maleimides used for protein labelling 

Over the past three decades, a significant number of maleimides have been 18F-

labelled. Notable examples, reported to have been used for labelling proteins and peptides 

include: [18F]FPPD (1989)205, [18F]FBAM (2003)206, [18F]FPyME (2005)207, [18F]FBEM 

(2006)208, [18F]FPenM (2013)209,  [18F]FBSEM (2017)210 (Figure 12).  

 

Figure 12. Examples of 18F-labelled maleimides for protein thiol labelling and also the structure of 

[18F]SFB intermediate for the synthesis of [18F]FBEM. 

The [18F]FBEM maleimide prosthetic group is derived from [18F]SFB. The latter 

requires 3 steps, 2 reaction pots and 80 min to synthesise using the updated synthesis 

protocol of Vaidyanathan and Zalutsky.177 By adding 2-aminoethyl maleimide to 

[18F]SFB, [18F]FPEB is synthesised. The first radiosynthesis of [18F]FPEB described by 
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Cai et al. (2006, Scheme 3.)208 was extensive, at 150±20 minutes, and low yielding (RCY 

5±2%) but it was quickly adopted by the community.211,212,213,214 An automated 

radiosynthesis described by Kiesewetter et al., used a 2-pot synthesiser, 3-step synthesis 

(c.f. 4 steps, 150±20 minute synthesis of Cai et al.208) and required 95 min to complete 

(not including 10-15 min HPLC purification) and gave a radiochemical yield of     

17.3±7.3%.215  

 

 

Scheme 3. Production of [18F]FBEM according to Cai et al.’s procedure.208 

A simplified 3-step 1-pot synthesis was first described by Kabalka et al. in 2008.216 

The production is complete within 60 minutes. The key hydrolysis/saponification step 

uses an aqueous tetrapropylammonium hydroxide solution. The downside is that this 

method requires a second time-consuming azeotropic distillation before the final N-

succinimidyl moiety is added. 

An alternative to the 1-pot, 3-step [18F]SFB production, is the 1-pot 1-step 

fluorination of a 2-thiophenyl iodonium salt. (Scheme 4.)   The Carroll and Aigbirhio labs 

were the first to produce [18F]SFB via this method in 2008, with a radiochemical yield of 

4-23% (n = 8).217 The simple 1-pot, 1-step production was then filed for patenting later 

that year.218 Diaryliodonium precursors are difficult to handle but tracers such as 

[18F]flumazenil, used to visualise  areas with reduced GABAA receptor activity in patients 

with epilepsy, have been produced by 18F-fluorination of a thiophenyl diaryliodonium 

salt.219 
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Scheme 4. Production of [18F]SFB from (4-((2,5-dioxopyrrolidin-1-

yloxy)carbonyl)phenyl)(thiophen-2-yl)iodonium trifluoroacetate precursor.217 

Finally, an attractive alternative to [18F]FBEM was [18F]FPenM due to its facile 

18F-labelling. However the original synthesis of [18F]FPenM required a 3-step synthesis, 

2 synthesis pots and 110 minutes, with an overall uncorrected radiochemical yield of 11-

17% according to Yue et al.209  

 

 

Scheme 5. Synthesis of [18F]FPenM according to Yue et al.’s method.209 Fluorination of tosylate 

precursor, followed by Boc deprotection and finally transimidation to produce [18F]FPenM. 

The synthesis requires 2 pots and removal of basic reagents from the initial 

fluorination reaction; hence 2 reactors and an elaborate procedure are required. This is 

due to the fact that maleimides are not stable under fluorination conditions and have to be 

added after the fluorination step. Since this method had to be automated and transferred 

to a single pot automated synthesiser (GE TRACERlab FXFN), the whole protocol had to 

be simplified. 

A considerable advance on the original [18F]FPenM synthesis was suggested in a 

patent by Hamamatsu,220 but Fujita’s paper (2017)210 provided the key details to a 

successful synthesis (see Scheme 6). These publications use furan protected maleimide 
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precursors to yield a 18F-labelled maleimide prosthetic group. The chemistry involved 

represents a significant simplification of previous procedures using a time efficient 1-pot, 

2-step radiosynthesis that did not required purification between the two steps and can be 

achieved within 65 minutes (including HPLC purification and formulation). 

 

Scheme 6. Maleimide radiotracer formation in Fujita et al.’s work.210 

An alternative to maleimide labelling of proteins is the use of SPAAC chemistry 

and 2-[18F]fluoroethyl azide. The 18F-labelled azide has been used previously to label 

small molecules and peptides.221 The triazole product of the SPAAC reaction is stable to 

acidic, basic and oxidative conditions and therefore it is a very popular reaction in 

metabolism studies.222,223,170 2-[18F]Fluoroethyl azide was used in conjunction with 

strained alkynes in a pre-targeted labelling method.173 The main drawback of this 

approach is the relatively slow reaction rate between azides and strained alkynes. With 

reaction rate constants of less than 0.1 M-1 s-1, achieving 50% labelling using a very 

concentrated C2Am protein solution of 1 mM (16.2 mg/mL) would require 166 minutes. 

Therefore, the radiolabelling of proteins via this method could be relatively slow. 

2.1.4 Microfluidic (Advion NanoTek) vs batch (GE TRACERlab FXFN) 

radiochemistry 

The NanoTek Microfluidic Synthesis System is a modular, liquid-flow-based 

microfluidic chemistry system with the ability to combine both microscale process steps. 

Modular components give the user maximum flexibility for both research and clinical 

applications.224 The NanoTek flow system is capable of remotely adding small fractions 

of liquids and mixing them efficiently in a heated loop. This allows for rapid optimisation 

of reaction conditions. It also allows the use of higher temperatures than the solvent 
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boiling point due to adapters that generate backpressure. This in turn allows superheating 

of solvents and reduces the reaction time compared to batch chemistry, while giving 

comparable yields. However, these advantages come with a major drawback. Due to the 

narrow tubing, purposely built for low volumes and laminar flow that increases diffusion 

mixing, the system is prone to frequent blockages.  

An alternative system is the batch system designed by GE called the TRACERlab 

FXFN. The two systems are compared in Table 6. This completely different system 

showed none of the above drawbacks however it was lacking the capability to quickly 

optimise reaction conditions, therefore limiting the number of daily reactions. It was 

decided that due to its superior versatility, lack of blockages and the possibility of using 

semi-prep purification the GE TRACERlab FXFN synthesizer represented the best choice 

of module system.  

Table 6. Advantages and disadvantages of microfluidic vs. batch automated synthesisers 

	 Advantages	 Disadvantages	

GE	TRACERlab	FXFN	

	

Reproducibility 

Robust methods 

No blockages of PE tubing 

(I.D. of 1 mm) 

HPLC purification 

 

One set of reaction conditions 

possible per batch of activity 

Only one reactor (vial) 

available for synthesis 

 

Advion	 NanoTek	

Flow	micro-reactor	

 

Fast optimization of reaction 

conditions 

Multiple reactions possible 

with one batch of radioactive 

material 

Superheating solvents by 

increasing their boiling point 

using backpressure 

regulators 

 

Frequent blockages due small 

internal diameter tubes (0.14 

mm I.D.)  

2.2 Synthesis of precursors to prosthetic groups 

 

The two iodonium precursors 1 and 2 (from Figure 13.) were received from Dr 

Mike Carroll (Newcastle University) and were used without further purification. 

Precursor 1 was used for the production of [18F]SFB, 2 is a precursor for the production 
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of [18F]FPPD and was received with its own HPLC standard. N-succinimidyl 4-

fluorobenzoate (6), the standard reference for fluorination of precursor 1, was synthesised 

in-house. Precursors 3, 4 and 5 were synthesized in-house along with the appropriate 

standards 6, 7.  

 

Figure 13. Precursors arranged in the order that were considered for 18F-fluorination in this study. 

Compounds 1 and 3 are precursors for [18F]FBEM, 2 for [18F]FPPD, 4 for 2-[18F]fluoroethylazide and 5 for 

[18F]FPenM. 

2.2.1 Precursors synthesis 

The synthesis of aryltrimethylammonium triflate 3 was from Guhle et al.’s 

work.225 Methyl trifluoromethanesulfonate (1.3 eq.)  was added to ethyl 4-

(dimethylamino)benzoate and the product was filtered and recrystallised from Et2O to 

give 3 in good yield (72%). (see Scheme 7) 

 

Scheme 7. Ethyl 4-(trimethylammonium triflate) benzoate precursor (3) synthesis 

HPLC standards for [18F]SFB and [18F]FBEM production were required and these 

were synthesised according to Vaidyanathan and Zalutsky (1992)226 and adapted from 
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Lacroix et al.213 respectively. (Scheme 8, Scheme 9) 4-Fluorobenzoic acid was coupled 

to N-hydroxysuccinimide using EDC (1.3 eq.) dissolved in DCM. After a quick silica 

plug purification, the desired product 6 (Scheme 8.) was obtained as a white crystalline 

solid and was used to synthesise the other HPLC standards. N-(2-Maleimidylethyl)-4-

fluorobenzamide standard 7 to validate [18F]FBEM synthesis was synthesised and 

purified by HPLC to yield a white solid (80%).  

 

Scheme 8. Synthesis of N-succinimidyl 4-fluorobenzoate from 4-fluorobenzoic acid and N-

hydroxysuccinimide. 

 

Scheme 9. Synthesis of N-(2-maleimidylethyl)-4-fluorobenzamide HPLC standard 7 

An HPLC standard for the 18F-fluorination step of benzoate precursor 3 was 

required. It was synthesised by esterification of 4-fluorobenzoic acid with ethanol using 

the carboxyl activating agent EDC (1-ethyl-3-(3-dimethylaminopropyl)carbodiimide) to 

yield ethyl 4-fluorobenzoate 28 (31%) . (Figure 8.) 
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Figure 14. Synthesis of ethyl 4-fluorobenzoate HPLC standard 28 

Precursors 4, 8, 9, and 10 were synthesised by adapting the protocol reported by 

Evans et al.227 2-Azidoethanol and triethylamine (5 eq. excess) were stirred at room 

temperature for 12 hours with tosyl chloride (1.5 eq). Flash column chromatography was 

used to purify the product and after solvent evaporation, the pure tosylate precursor 4 was 

isolated as a colourless liquid (83%).227 

 

Figure 15. Azido sulfonate precursors synthesis 

2-Fluoroethyl azide was synthesised for use as an HPLC standard. 2-Fluoroethanol 

was added to methanesulfonyl chloride (1.2 eq) and triethylamine (2 eq.) and the resultant 

mixture was stirred at room temperature under nitrogen for 16 hours. The solvent was 

evaporated in vacuo to yield crude 2-fluoroethyl methanesulfonate 8, which was carried 

through to the next step without further purification. To a stirred solution of 2-fluoroethyl 

methanesulfonate in DMF, sodium azide (2 eq.) was added and the suspension was stirred 

at room temperature for 48 hours. The reaction mixture was filtered to remove the white 

precipitate (sodium azide). The filtrate was used without further purification as pure 2-
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fluoroethyl azide is unstable and could decompose by explosion, therefore solvent was 

not removed. 1H and 19F NMR spectra were acquired to confirm production of the desired 

product and compared to a previously published synthesis.227 

2-Azidoethyl sulfonate precursors 8-10 were also synthesised. Manual 18F-

fluorination was tested with all of the precursors, however no significant improvement in 

conversion rates was observed hence precursor 4 was taken forward to automation. 4 was 

less volatile than the product, hence distillation can be used to purify and separate product 

2-[18F]fluoroethylazide from its precursor. 

2.2.2 Synthesis of precursors for [18F]FPenM  

A more facile radiosynthesis was required for automation and ease of conjugation 

to C2Am. Labelling of a furan-protected maleimide was described in the Hamamatsu 

Photonics patent220 and in Fujita’s work210. These two publications describe furan-

protected maleimides that are stable during basic 18F-fluorination conditions.  

Three precursors, 5, 14 and 25 (see Figure 16.) were synthesised by adapting 

Coleman’s procedure.228 

 

Figure 16. Three protected maleimide precursors synthesised in this study. 

In order to explore the best yielding fluorination reaction three leaving groups have 

been used: mesyl 5, tosyl 14 and nosyl 25. Both 5 and 14 precursors were initially 

synthesised by Connor Willmington-Holmes (Part III student). More material was soon 

needed and therefore scale-up reactions have been required and were performed by 

myself. Of the three leaving groups, mesylate worked best (see below) and the synthesis 

of the mesylated precursor has since been further scaled-up for cGMP production and that 
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is the work presented here. Highly pure starting materials have been used and careful 

purification using an automated flash chromatography system has been performed in 

order to avoid any human-related errors and also to increase the reproducibility and 

robustness of the process. (Scheme 10) 

Maleic anhydride 11 was added to furan in a Diels-Alder reaction to yield furan 

protected maleic anhydride 12. This reaction was adapted from a synthesis of maleimide 

polymers.229 Purification by recrystallisation from ethyl acetate was sufficient to ensure 

good purity. 

5-Aminopentan-1-ol and 12, in the presence of triethylamine and EtOH were 

heated at 105 °C to induce cyclisation and promote elimination of water to form 13. This 

method was based on Coleman et al.228 but adaptations were made in an attempt to 

increase the yield. Despite lowering heat (c.f. 170-180 °C in Coleman et al.) to 105 °C 

yields were still very low (22%). Radical scavenging was not attempted as the previously 

mentioned papers attempted this using hydroquinone and p-t-butylcatechol and were 

unsuccessful.  

It was noted that the part III student used lower temperatures (90 °C) and shorter 

times 4-6 h and yet obtained better yields (up to 50%). Therefore, it may be that heat 

induced polymerisation can be a major contributor to the poor yield. 

Imide 13 was purified using flash column chromatography and reacted with either 

mesyl chloride, tosyl chloride or nosyl chloride to yield 5, 14 and 25. These were purified 

again using flash column chromatography to yield pure precursors ready for 18F-labelling. 
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Scheme 10. Three-step synthesis of precursor 14. 

An N-(5-fluoropentyl)maleimide 16 HPLC standard was required to confirm the 

production of the equivalent radioactive molecule and to generate a concentration-

absorbance calibration plot for determining its molar radioactivity. 

A simple 2-step synthesis (Scheme 11) of the standard was followed to yield 16 

as a volatile oil. (details in Subsection 2.6.1) The first step was to fluorinate mesylate 5 

using tetrabutylammonium fluoride (TBAF) for nucleophilic substitution (SN2) replacing 

the methanesulfonate leaving group yielding 15 in a good yield. This was purified by 

flash column chromatography. Furan-protected maleimide 15 was dissolved in a high 

boiling point aprotic solvent (DMSO) and heated at 160 °C to remove the furan protecting 

group and to yield 16. The temperature required for the retro Diels-Alder deprotection 

step does cause polymerisation, reducing the yield therefore limiting the duration of the 

reaction increased the yield.230,228 Finally, 16 was purified by flash column 

chromatography and used as an HPLC standard for radiosynthesis.   

 

Scheme 11. Synthetic route to N-(5-fluoropentyl)maleimide 16.  
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C2Am (1.29 mM) freshly reduced was added to 16 (9 μM, ~1000 eq.) in PBS to 

yield FPenM-C2Am conjugate standard for HPLC analysis. Conjugated protein was 

purified by spin filtration (Amicon Ultra 0.5 mL 3 kDa centrifugal filter cartridge) and 

concentrated to a final solution of FPenM-C2Am (1.29 mM). Mass spectrometry on the 

protein samples were run on a Waters Xevo SQD2 instrument to confirm the mass of the 

conjugate (m/z = 16408.5 [MH]+). 

2.2.3 Kinetics of N-(5-fluoropentyl)maleimide conjugation with L-

glutathione 

As described in section 2.1.1 maleimides react readily with solvent exposed thiols 

through Michael-addition to generate covalently linked conjugates. The rate constant for 

the Michael-addition conjugation reaction of L-glutathione (GSH) with 16 was 

determined by stopped-flow UV spectroscopy. 

 

Figure 17. Superimposed UV-vis (200 to 400 nm) spectra of 16 (1 mM and 0.5 mM) and GSH (1 

mM). 16 absorbs light at 300 nm while GSH does not. 

Kinetic experiments were performed on an automated SX18.MV stopped flow 

spectrometer, which can analyse reactions that reach equilibrium within milliseconds of 

mixing. GSH and 16 were mixed in different concentrations in a 1:1 ratio as detailed in 

Table 7. Further details of the experiment can be found in the Experimental 2.6.1 and 

Table 11. 
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Maleimide conjugation to thiolates is a second order reaction and first order with 

respect to each reactant.231 

Reaction rate = k [GSH] [N-(5-fluoropentyl)maleimide] 

Where k is the rate constant. As GSH and 16 have the same initial concentrations 

and react in a 1:1 ratio, the rate law becomes 

Reaction rate = k [N-(5-fluoropentyl)maleimide]2 

Finally, the integrated rate law is: 

1
[(-(5-,-./0/12345-)78-2979:2]<

= >t +	 1
[(-(5-,-./0/12345-)78-2979:2]A

 

By plotting 1/[N-(5-fluoropentyl)maleimide] against time, the rate constant k is 

equal to the slope of the graph (Figure 18., Figure 19., Figure 20.). Experiments were run 

in triplicate and the rate constant k is an average of the three runs shown in Figure 18, 

Figure 19 and Figure 20. Rate constants are displayed in Table 7. 

 

Figure 18. Plot showing 1/16 concentration with time following conjugation with GSH at pH 7.27 

and 24.8 °C. Initial concentration of 16 = GSH = 0.625 mM 

y3	=	3185.8x	+	1260.3
R²	=	0.9742

y2	=	3139x	+	1224.6
R²	=	0.9825

y1	=	3013.9x	+	1232.4
R²	=	0.978

0

2000

4000

6000

8000

10000

0 0.5 1 1.5 2 2.5

1/
[N
-(
5-

fl
uo
ro
pe
nt
yl
)m
al
ei
m
id
e]
	(
M
-1
)

Time	(s)

N-(5-fluoropentyl)maleimide	(0.625	mM)	reaction	
kinetics	at	pH	7.27	and	24.8	°C



Targeted Imaging Agents for Detecting Tumour Cell Death following Therapy 

 

50  Flaviu Bulat – October 2019 

 

 

Figure 19. Plot showing 1/16 concentration with time following conjugation with GSH at pH 7.19 

and 24.8 °C. Initial concentration of 16 = GSH = 1.25 mM 

 

Figure 20. Plot showing 1/16 concentration with time following conjugation with GSH at pH 6.58 

and 24.7 °C Initial concentration of 16 = GSH = 2.5 mM 
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Table 7. Kinetics of 16 conjugation with GSH and the effects of pH 

Initial	 [GSH]0	 and	 [N-5-
fluoropentylmaleimide]0	

	

Average	 rate	
constant	 k	 (M-1	
s-1)	

Final	
solution	
pH	

Temperature	(°C)	

2.5	mM	 1474	±	106	 6.85	 24.7	

1.25	mM	 1841	±	36	 7.19	 24.8	

0.625	mM	 3113	±	73	 7.27	 24.8	

The effects of pH described in literature are consistent with the experimental data 

shown in Table 7. Higher pH leads to an increase in the rate constant due to increased 

thiolate concentration. Finally, the reaction time required for the conjugation to reach 

90% completion is less than 5 seconds at pH 7.19 and 1 mM; therefore, the speed of 

maleimide conjugation is more than sufficient for the purpose of labelling proteins. 

The conjugation product of 16 and GSH (Experimental 2.6.1) was analysed by 

NMR, LC-MS and accurate mass ESI. (spectra attached in the Appendix 8.21) 

2.3 Radiosynthesis of prosthetic groups 

All protocols for the synthesis of 18F-labelled functional groups were developed at 

the Molecular Imaging Chemistry Laboratory (MICL) in the Wolfson Brain Imaging 

Centre (WBIC) on the Cambridge Biomedical Campus.  

2.3.1 18F-Fluorination of iodonium salts to yield [18F]SFB  

Initially, a high-risk high-reward project was initiated by 18F-labelling iodonium 

triflate (1, Scheme 12), synthesised by Carroll’s lab (Newcastle), to obtain [18F]SFB 17232, 

233 followed by amide bond formation with N-(2-aminoethyl)maleimide to yield the 

[18F]FBEM 18. This would then be used to conjugate to C2Am. 18F-Fluorination of 

diaryliodonium salts promised to reduce the synthesis time and simplify the production 

protocol for [18F]SFB compared to the traditional 3-step multi-pot method. 18F-labelling 

was attempted by both manual synthesis and a module-assisted microfluidic synthesis rig 

in order to generate [18F]FBEM. We wanted to reproduce Carroll et al.’s paper217 and 

Olma and Shen’s patent218 by 18F-fluorination of 2-thiophenyl iodonium triflate and 
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automate the production process using either the Advion NanoTek microfluidic system 

or the batch synthesiser GE TRACERlab FXFN.  

Initially, manual 18F-fluorination of 1 (3 mg in DMF) was attempted at 130 °C in 

DMF for 10 minutes, however no peaks other than that of K222, K[18F]F were observable 

on the radio-HPLC chromatogram.  

Upon using the NanoTek Advion liquid flow reactor, 18F-fluorination of 1 

generated one peak (9.7 min) other than the K[18F]F peak (4.1 min), as shown on radio 

chromatograms in Figure 21. The peak at 9.7 min was only generated at high 

temperatures, 180 or 190 °C and slow flow rate (5 μL/min) through the heated coil reactor 

loop. Conversion was very poor at 160 °C but the results were consistent with the remarks 

of Reed et al.233 

 

Scheme 12. Proposed labelling of C2Am using 18F-labelling of iodonium precursor 1. 
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Figure 21. Radio-chromatograms of 4 samples post Advion synthesis of [18F]SFB starting from 

iodonium precursor 1. The radio-chromatograms show: 18F-fluoride only (A); then reaction mixtures heated 

at 180 °C (B), 190 °C (C) and 160 °C (D). 

However, this peak did not match the UV peak of the SFB HPLC standard. Hence 

the production of [18F]SFB could not be confirmed. However, SFB is prone to hydrolysis 

under reverse-phase HPLC aqueous conditions. It is therefore believed that the HPLC 

conditions may have degraded the SFB. The HPLC should have been run using a normal 

phase column, which was not available at that time. 

Finally, the process was abandoned as a result of line blockages occurring every 

run. This was consistent with the remarks of Reed et al.234 Blockages still occurred 

frequently despite an increase in backpressure from 250 psi to 350 psi. These were 

probably caused by insoluble potassium bicarbonate, which blocked the very narrow 

microfluidic lines (ID = 0.14 mm).  

In the meantime, iodonium trifluoroacetate precursor 2 arrived from the Carroll 

laboratory. This already contained a maleimide attached to the para position of the aryl 

moiety of the iodonium salt. (Scheme 13.) 

This is another very interesting radiotracer to label C2Am due the possibility of a 

one-step fluorination. Unfortunately, after several attempts it was concluded that no 

product can be isolated and this could be due to the harsh basic conditions that hydrolyse 

the maleimide. This is not the only reason. It is known that electron-withdrawing groups 

linked to the nitrogen heteroatom of the maleimide decrease their stability to hydrolysis. 

A
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Therefore, it would have been very challenging to produce a maleimide radiotracer 

directly from an iodonium precursor without protecting the maleimide moiety from F- 

and OH- attack. 

 

Scheme 13. Proposed fluorination of precursor 2 and conjugation to C2Am  

Following the problems with blockages with the narrow microfluidic lines on the 

Advion, the batch synthesiser GE TRACERlab FXFN was considered a better choice of 

automated equipment. The radiosynthesis that follows was optimised for the TRACERlab 

FXFN.  

2.3.2 Production of [18F]SFB by 18F-fluorination of ethyl 4-

(trimethylammonio)benzoate  

Ethyl 4-(trimethylammonio)benzoate (precursor 3, see Scheme 14)  was used for 

manual [18F]SFB synthesis. The first 18F-fluorination step occurred with excellent 

conversion (>95%) following manual synthesis. It was then decided to automate the 

sequence. However due to the complicated protocol of Cai et al.208, a dual reactor setup 

was required to separate the aqueous saponification steps, using NaOH and HCl (later 

using Scott and Shao’s protocol235 with TPAH), from anhydrous N-hydroxysuccinimide 

addition. 
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Scheme 14. Automated synthesis of [18F]SFB, inspired by the work of Scott and Shao (2010).235 

The GE TRACERlab FXFN synthesis rig was modified to couple an externally 

heated Wheaton V-vial acting as an external reactor. Initially, this system was modified 

for 18F-labelling of precursor 3.  We sought to separate the 18F-fluorination from the rest 

of the synthesis to facilitate purification, monitoring of subsequent products and avoiding 

time consuming reactor cleaning steps. Therefore, the second reactor was intended to be 

used for ester hydrolysis, succinimidyl formation and N-(2-aminoethyl)maleimide 

coupling.  This reactor also had remote temperature control functionality thus subsequent 

steps that required variable temperatures could be completed.  

The radiosynthesis was automated up to the point of product 20 (conversion rate 

74%, Figure 22.) and hydrolysis of the ethyl ester to [18F]FBA was attempted but could 

not be confirmed against the fluorobenzoic acid standard due to quick elution on a reverse 

phase HPLC column.   
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Figure 22. 18F-fluorination of precursor 3.  Radio-chromatogram (A) showing ester 20 eluting at 

12.1min (peak 4). UV chromatogram (B) showing UV absorbance (254 nm) of the crude 18F-fluorination 

reaction to yield 20 (peak 8 at 11.8 min). UV chromatogram (C) showing UV absorbance (254 nm) of the 

crude 18F-fluorination reaction to yield 20 co-injected with ethyl 4-fluorobenzoate standard 28 (peak 9 at 

11.8 min).  

The dual reactor automated system setup is shown in Figure 23. Modifications 

from the standard setup (shown in Figure 24) were as follows:  

The external V-vial reactor was manually set to 95 °C before the start of synthesis 

and this temperature was adequate for both drying target water containing fluorine-18 and 

for 18F-fluorination of precursor 3. For this to happen, 4 lines were set up through the 

septum lid:  

1. Helium line for drying and pressurising reactor 1 – line coming from V31 from 

the HPLC bottles was used;  

2. Vacuum for drying the fluoride was provided through a line going to reactor 2, 

which is directly coupled to the vacuum pump. A charcoal trap was also set-up between 

the two reactors to prevent any gaseous contamination of the second reactor. A manually 

controlled valve was installed along this line to control/limit vacuum to reactor 2 when 

required, for example when transferring contents from reactor 1 to reactor 2 by vacuum.  

A

B

C
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3. Line connecting vial 1 (Kryptofix K222 solution) through V13, was moved to 

reactor 1 to dispense 18F from QMA directly into the external reactor 1. Line connecting 

vials 2 and 3 were joined with line 1 and moved to reactor 1 to be able to dispense dry 

ACN and precursor to the external reactor 1. 

4. A line connecting the two reactors was set up to allow content transfer and was 

controlled externally by a 2-way valve. 

It was quickly recognised that the next precursor, furan-protected maleimide 

precursor yielding [18F]FPenM, was a much better alternative to the extensive protocol 

required to synthesise [18F]FBEM. 

 

Figure 23. GE TRACERlab FXFN modified to mimic a GE TRACERlab FXN PRO (dual reactor) 

automated synthesizer. Picture showing reactor 1 (blue arrow – left) and reactor 2 (red arrow - right) 
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Figure 24. GE Healthcare TRACERlab FXFN control screen showing the default line connections. 

These were modified to accommodate an external reactor as described in the text. 

2.3.3 2-[18F]Fluoroethylazide 

An alternative to [18F]FBEM conjugation to C2Am is to use a bioorthogonal 

copper-free click reaction. An attempt to label a strained cyclooctyne (DBCO) prosthetic 

group on C2Am-maleimide-PEG4-DBCO with 2-[18F]fluoroethylazide was made using 

the strain promoted azide-alkyne cycloaddition reaction (SPAAC). 

Initially, both mesylate and tosylate precursors were manually 18F-labelled to yield 

2-[18F]fluoroethylazide and the RCY of the reactions were analysed by HPLC.236 The 

tosylate was chosen as it facilitated separation by vacuum distillation of 2-

[18F]fluoroethyl azide from the less volatile tosylate precursor. The equivalent propyl 

mesylate and tosylate precursors were also 18F-labelled but these required HPLC 

purification, which is a time-consuming process, so these precursors were not used for 

further studies.   
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An automated synthesis using the GE Healthcare TRACERlab FXFN module was 

employed, followed by manual vacuum distillation, to yield 2-[18F]fluoroethylazide with 

>99% radiochemical purity and 8±3% RCY yield (decay corrected, n = 3) (see 

radiochromatogram in Figure 25).214,237,173 

 

Scheme 15. Labelling C2Am using the 2-[18F]fluoroethylazide precursor. 18F-labelled product of 

4 was distilled to yield 2-[18F]fluoroethylazide (22) (top reaction). C2Am-PEG4-DBCO was conjugated to 

22 to yield [18F]C2Am-PEG4-DBCO as a mixture of regioisomers (26 and 27). 

C2Am derivatised with a strained alkyne (dibenzocyclooctyne-amine) was 

labelled with 2-[18F]fluoroethylazide via copper-free SPAAC. (see Scheme 15) C2Am-

PEG4-DBCO (4.5 mg/ml, 278 µM) labelling with 22 was achieved but the conversion 

was very low (see Figure 26). This is believed to be due to the purification method used 

to purify 2-[18F]fluoroethylazide. Distillation was employed to separate the volatile 

radiotracer from its precursor. While this is a time-efficient method, an impurity, possibly 

azidoethene, which resulted from elimination of the tosylate group, is believed to be 

distilled with the radiotracer (see Figure 25). This can compete with 2-

[18F]fluoroethylazide for the click reaction with C2Am-PEG4-DBCO. 
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Figure 25. HPLC analysis of distilled 2-[18F]fluoroethylazide.  

 showing radioactive azide at 11.8 min (top radio chromatogram), possible azido ethene at 10.9 

min (B UV at 254 nm chromatogram) and 2-fluoroethylazide HPLC standard (bottom UV at 254 nm 

chromatogram) showing the azide peak at 11.3 min. 

The radio-chromatogram of 2-[18F]fluoroethylazide clicked to the C2Am-PEG4-

DBCO is shown below (Figure 26). The radiopeak at 11.8 min correlates with UV at 

280nm peak of the protein at 11.4 min. 

 

Figure 26. Radio-HPLC chromatogram of the crude click reaction between 2-[18F]fluoroethyl azide 

and C2Am-PEG4-DBCO. The peak at 11.8 min in the radiochromatogram A is the 18F-labelled C2Am. 

Chromatogram B (UV 280nm) shows C2Am-PEG4-DBCO as a mix of stereoisomers 26 and 27 at 11.4 

min. 

2-[18F]Fluoroethylazide, being a small molecule, was retained by the size 

exclusion column designed for separating proteins. Therefore, the click conjugation yield 
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could not be determined as the 2-[18F]fluoroethylazide peak could not be observed within 

the time frame of the isocratic elution (15 min). Most of the activity was found to be 

retained on the column. Judging by the low counts of peak 1 in the radiochromatogram 

in Figure 26 and the fact that most of the activity injected on the column was retained, it 

was clear that the copper-free click reaction had a very low conversion yield.  

This is supported by the data shown by Evans et al. 2012 where 2-

[18F]fluoroethylazide reacting with different strained cyclooctynes showed very low 

conversion, even after being heated up to a range of temperatures: 40-90 °C. The only 

successful reaction in their case was the fastest reacting cyclooctyne, DIFO, which was 

reacted with 2-[18F]fluoroethylazide in acetonitrile (incompatible with proteins) at 90 °C 

(again too high for proteins) to obtain a good yield (higher than the rest of the 

cyclooctynes) of 97% and 62% at 40 °C.227 

2.3.4 Manual production of N-(5-[18F]fluoropentyl)maleimide 

([18F]FPenM)  

Furan protected maleimide radioactive prosthetic groups promise to be an 

excellent alternative to the classic [18F]FBEM bifunctional group as they are faster and 

easier to prepare.  

This study has combined the incompletely described radiosynthesis of [18F]FPenM 

in the Hamamatsu patent220 with suggestions from Fujita’s work210. After formulation in 

an aqueous buffer, it can be conjugated to thiol-containing biomolecules. 

Initially, mesylate 5 was manually 18F-labelled and gave an excellent radio-HPLC 

yield in excess of 96%. It was presumed that better leaving groups such as tosyl and nosyl 

would result in an increased conversion rate. In search of a better conversion yield, tosyl 

and nosyl precursors were synthesised. These three precursors (see Scheme 16) were 

tested in parallel by manual 18F-labelling and the conversion rates monitored by radio-

HPLC.  
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Scheme 16. The three precursors with three different leaving groups that were 18F-labelled 

manually. 

The first step, 18F-labelling of the precursor, was described in the patent220 as 

occurring between 60-100 °C in 10-15 minutes. The 18F-labelling conditions attempted 

in this work were 92 °C, for 10 and 15 minutes and using 5 or 10 mg of precursor. There 

was a slight increase in conversion between 10 and 15 minutes therefore a middle point 

of 12 minutes was chosen as the ideal time for labelling. There was no difference in 

labelling between 5 and 10 mg of precursor therefore 5 mg precursor was adopted, making 

the process slightly less expensive. Finally, the highest conversion rate, according to the 

radio-HPLC chromatograms, was observed with the mesylate precursor (>96%). (see 

Figure 27. and Table 8. 

 

Figure 27. Three radio-chromatograms showing 18F-labelling of precursors: tosylate 14 (A), 

mesylate 5 (B), 25 (C) to yield the furan protected maleimide 23. Peak at 2.3 min represents unreacted 

K[18F]F and peak at 9.5 min represents 18F-fluorinated maleimide 23. 
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Table 8. The radio-HPLC conversion yield of three precursors upon 18F-fluorination using 

optimised reaction conditions (92 °C, 12 minutes, 5 mg precursor in DMSO) 

Precursor  Radio-HPLC 
conversion (%) 

5 (OMs) 96 

14 (OTs) 80 

25 (ONs) 38 

The second step, thermal deprotection of the maleimide by retro-Diels Alder 

removal of the furan moiety, was described in the patent as occurring between 100-160 

°C but preferably between 120-130 °C within 5 to 20 minutes however ideally, 10 to 15 

minutes was sufficient. At no point did the patent describe the thermal instability at high 

temperatures of the maleimides formed. Fujita’s work addresses this problem by adding 

methanesufonic acid to acidify the solution and inhibit degradation by hydrolysis of the 

maleimide moiety. 

Deprotection temperatures of 120, 150 and 160 °C were investigated for a limited 

amount of time (6 min) to reduce the possibility of polymerisation of the maleimide. It 

was concluded that 160 °C is required to completely remove the furan protection within 

6 minutes. Despite the high temperatures, no decomposition was observed during the 

manual synthesis. 

The 2-step, single pot preparation (process described before in Scheme 6.) of 

[18F]FPenM requires 58 minutes (c.f. 95 minutes for production of [18F]FBEM). It is also 

a simpler process needing 2 steps (fluorination, deprotection) thus fewer starting reagents 

are required. This requires less reagent vials on an automated system therefore automated 

systems such as the GE TRACERlab FXFN can be used.  

2.3.5 Automated radiosynthesis of [18F]FPenM for pre-clinical imaging 

After optimisation of 18F-fluorination reaction conditions such as: precursor 

concentration, temperatures and time required for the 2-step production of [18F]FPenM 

using manual synthesis, an automated protocol was developed at the Molecular Imaging 

Chemistry Laboratory (MICL). The remote controlled synthesis rig GE TRACERlab 
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FXFN was used for this purpose following general reaction conditions from the only two 

patents covering furan protected maleimides.238,220 

 

Scheme 17. Reaction scheme for synthesising 24 (N-(5-[18F]fluoropentyl)maleimide 

([18F]FPenM)). 

Using a preprogrammed sequence to produce [18F]FPenM (Appendix 8.2), the 

maximum activity of [18F]fluoride target water was obtained from the Cambridge 

University cyclotron, complying with the holding capacity specified by the license issued 

by the UK’s Environmental Agency (<30 GBq). [18F]Fluoride was trapped on a Sep-Pak 

QMA cartridge and eluted with Kryptofix 222® (known as K222) and K2CO3 in ACN/water 

to increase the reactivity of the fluoride. K222 dissolved in organic dry solvents is used to 

provide free fluoride (F-) ions by complexing the K+ ions.239 K[18F]F was then dried using 

azeotropic distillation using three portions of ACN. The first step of the radiosynthesis 

was to use the dried K[18F]F in an SN2 nucleophilic substitution reaction with precursor 

5 dissolved in dry DMSO at 92 °C for 12 min to yield furan protected maleimide 23. The 

second step was to remove the furan protecting group by retro Diels-Alder cycloaddition 

at high temperatures (160 °C) to yield the desired maleimide 24 in 6 minutes. It was noted 

upon scale-up of activity (< 30 GBq), permitted by the use of remote-controlled 

automated equipment located in lead-shielded ‘hot-cells’, that no [18F]FPenM (24) was 

produced. Despite a successful first 18F-fluorination step, confirmed by radio-HPLC, 

[18F]FPenM was degrading quantitatively before HPLC purification and formulation. 

This problem occurred due to extreme temperatures required by the reverse Diels-Alder 

deprotection step. It was speculated that hydrolysis degraded [18F]FPenM. To overcome 

this problem, methanesulfonic acid was added in DMSO, before the furan deprotection 

step at 160 °C for 6 minutes, to lower the pH (overcome K2CO3 base used for eluting 

fluorine-18). This inhibited hydrolysis, as suggested by Fujita et al.,210 and [18F]FPenM 

could be isolated.  
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Following thermal deprotection, the reaction mixture was then cooled to < 35 °C 

and added to the HPLC vial through a Sep-Pak Alumina N Plus light cartridge to retain 

residual fluorine-18 and polar side products. The HPLC vial was pre-filled with 150 mM 

NH4OAc (pH 4.12) to buffer the acidic reaction mixture. The reactor was washed with 

DMSO and 150 mM NH4OAc buffer (pH 4.12) to recover remaining material that had 

been left on the walls of the reactor and to improve the radiochemical yield. The solution 

from the HPLC vial, containing the prosthetic tracer, was loaded onto a C18 reverse phase 

HPLC column (radio-chromatogram in Appendix 8.3) and purified with an isocractic 

flow of 38% ACN in 50 mM NH4OAc (pH 5.6) with added ascorbic acid (0.1 mg/mL) to 

inhibit radiolysis-induced degradation. Radiolysis was first observed upon activity scale-

up (Subsection 2.3.7) and it induced hydrolysis and polymerisation, limiting the 

radiochemical purity, radiochemical yield and the specific activity that can be produced. 

Upon addition of ascorbic acid (1-2 mg/mL) to all the purification and formulation steps, 

radiochemical purity and radiochemical yield increased significantly to > 95%. 

The [18F]FPenM peak eluted at 14.3±0.3 min (purification chromatogram in 

Appendix 8.3) and was collected in the SPE flask containing 50 mM NH4OAc buffer (pH 

5.6) and ascorbic acid 1 mg/mL. [18F]FPenM was then trapped on a pre-activated Sep-

Pak Plus Light C18 cartridge and eluted first with ethanol and then HEPES-buffered-

saline (20 mM HEPES), as such the final solution contains 23% ethanol. Analysis by UV 

and radio-HPLC was used to confirm the production of [18F]FPenM 24 by co-injection 

with unlabelled standard FPenM 16 (see Figure 28). The radiosynthesis, purification and 

formulation took 58±5.8 min (n = 12) from start-of-synthesis, with a moderate 

radiochemical yield (12±3%, decay corrected to start-of-synthesis, n = 11) and high 

radiochemical purity (95±3.4% by radio-HPLC, n = 11).  
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Figure 28. Validation of [18F]FPenM radiosynthesis. Radiochromatogram A shows [18F]FPenM 

eluting at at 10.2 min. Chromatogram B represents the UV trace of radiotracer [18F]FPenM and peak 2 at 

9.7 min displaying the FPenM residual peak. Chromatogram C displays the spiked sample (shown in B) 

with FPenM HPLC standard (peak 2 at 9.7 min).  

Specific radioactivity of [18F]FPenM was 1144000±161000 MBq/mg (n = 3), 

molar radioactivity 212000±30000 MBq/µmol (n = 3) and were determined by using the 

integral of its UV peak at 220 nm against a standard calibration curve.  

The current yield was limited to 12±3% due to heat and radiation induced 

polymerisation of the maleimide followed by radiolytic degradation. Radiolysis is 

discussed in section 2.3.7. High temperature (160 °C) is required to remove the furan 

protecting group rapidly, but temperatures above 100 °C have been shown to increase 

levels of polymerisation.228,230 Radiation induced degradation of maleimide can lead to 

polymerisation by secondary interaction of radical species (H• and HO•) that induce a 

cascade of reactions (e.g. hydrolysis and radical formation). This then generates up to 5 

different radicals, depending on the maleimide.240 C-H scission in the alkyl side chain and 

H• addition to the maleimide double bond are the most common reactions. These 

maleimide radicals then attack other radical maleimide monomers to initiate a 

polymerisation reaction, as shown in Figure 29.241 In order to improve the current yield, 

further optimisation of the process is required. Radical inhibitors such as benzoquinone 

have been shown to inhibit radiation induced maleimide polymerisation and therefore 

improve the radiochemical yield.242  

A

B 11

C



 

Flaviu Bulat – October 2019   67 

 

 

Figure 29. Radical formation and polymerisation of N-alkyl maleimides as described by Zott and 

Heusinger240 and Kagiya et al.242 

Stability of the maleimides at room temperature in neutral aqueous buffer is 

challenged by another process: hydrolysis. This is a common stability concern with 

maleimides as the hydrolysis product, maleamic acid, does not react rapidly with thiols.189 

In this case, the hydrolysis half-life of the maleimide standard 16 was 30±2.2 hours 

(n = 4) at 20 °C in PBS, pH 7.4. This was determined by monitoring by UV-HPLC the 

degradation of the maleimide 16 over time a period of 14 hours. Therefore, hydrolysis of 

[18F]FPenM before conjugation with C2Am protein is not a concern, as conjugation 

occurs over several minutes. Hydrolysis post conjugation to C2Am would be beneficial, 

as upon hydrolysis, the maleamic acid conjugate does not undergo retro-Michael reaction 

and thiol exchange.  

2.3.6 Solid phase extraction (SPE) cartridge and optimisation of [18F]FPenM 

purification 

Purification of [18F]FPenM produced by automated synthesis was carried out on a 

reverse phase HPLC column using a 15-minute isocratic run. Simplification of this 

process was required for the whole tracer synthesis process (including C2Am labelling) 

to be translatable to cGMP automated synthesisers. Also, by replacing the HPLC 

purification with SPE purification, the time of synthesis can be reduced by 15 min 

therefore increasing the decay corrected yield. In order to implement this cartridge 
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purification method on an automated system, manual optimisation had to be performed 

first.  

Using the crude [18F]FPenM reaction mixture (1.5 mL) synthesised on the GE 

TREACERLab FXFN (radio-chromatogram in Figure 30.), the solution was diluted 10-

fold with acetate buffer (50 mM ammonium acetate, 1 mg/mL ascorbic acid, pH 6.0) and 

was manually loaded 1 mL on each of the Waters Sep-Pak C18 light/plus reverse phase 

purification cartridges. Using the conditions shown Table 6 and Table 7 below, cartridges 

were washed with different concentrations of acetonitrile - acetate buffer solutions to 

elute side products. Activities of the eluted solutions and SPE cartridges were monitored 

and recorded after each step and all were decay corrected for the start-of-purification. 

Finally, the product of interest was eluted with an ethanolic HBS solution and analysed 

by HPLC. 

 

Figure 30. Radio-HPLC chromatogram of the crude [18F]FPenM as eluted from the automated 

TRACERlab FXFN synthesis rig. The chromatogram shows 24 at 7.3 min with 81% radiochemical purity. 
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Figure 31. Radio-HPLC chromatogram of the C18 Sep-Pak cartridge-purified [18F]FPenM. The 

chromatogram shows 24 (7.3 min, > 95% radiochemical purity) as it was ready to be conjugated to C2Am. 

A single Waters Sep-Pak light C-18 reverse phase cartridge provided excellent 

purification (>95% purity by radio-HPLC, Figure 31.) and with 74% recovery of 24 

(which was 95% pure by radio-HPLC at the start of the method).  This can replace HPLC 

purification and hence reduce the synthesis time by ~20 minutes. However, a peak at 5.5 

min was observed in the UV (210 nm) chromatogram that required investigation as it 

potentially was 5-(N-maleimido)pentanol, which can react with thiols. However, this 

peak disappeared upon eluting cartridge C18-Light with Method 3: 20% MeCN:Acetate 

buffer (50 mM). (Figure 32.) 
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Figure 32. UV-HPLC (210nm) chromatogram of products eluted from the first three Methods using 

C18 Sep-Pak light cartridges (A, B, C correspond to Methods 1, 2, 3 - see table 6). Peak at 5.5 min is an 

impurity, potentially 5-(N-maleimido)pentanol. Method 3 shown in chromatogram C did not show the 

presence of this particular impurity hence it was selected as the optimum cartridge purification method. 

Therefore, this method was used for cGMP production optimisation runs. In the 

future, if 24 is deemed to be required as a highly concentrated solution, in order to 

maximise the molar activity of the final [18F]FPenM-C2Am radiotracer, then purification 

by a distillation method will be investigated. 24 is a volatile organic compound, as was 

discovered upon attempted concentration by ethanol evaporation during formulation. 

Therefore, distillation is a feasible purification method. 
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Table 9. Elution of Waters Sep-Pak C18 light cartridges showed improved recovery of 24 

compared to Waters Sep-Pak C18 plus. Activity has been decay corrected for the start-of-purification. 

 

Method 1 

(one C18 light) 

Method 2 

(one C18 light) 

Method 3 

(one C18 light) 

Method 4 

(two C18 light 

connected in series) 

Loading solvent acetate buffer (50 mM ammonium acetate + 1 mg/mL ascorbic acid, pH 6) 

Volume 1 mL 

Activity not retained on 

cartridge after loading 

(passthrough) 

15.7 MBq 25 MBq 10 MBq 12 MBq 

Activity Cartridge 50 MBq 50 MBq 38 MBq 53 MBq 

Washing eluent 5:95 

ACN:Acetate 

buffer 

10:90 

ACN:Acetate 

buffer 

20:80 

ACN:Acetate 

buffer 

20:80 ACN:Acetate 

buffer 

Volume (mL) 0.15 mL ACN 

and 2.85 mL 

acetate buffer 

0.3 mL ACN 

and 2.7 mL 

acetate buffer 

0.6 mL ACN and 

2.4 mL acetate 

buffer 

0.6 mL ACN and 

2.4 mL acetate 

buffer 

Activity side products 

eluted 

42.5 MBq 40 MBq 19.1 MBq 41 MBq 

Activity Cartridge 42.5 MBq 40 MBq 19.1 MBq 41 MBq 

Eluting solvent EtOH/HBS with 0.1 mg/mL ascorbic acid 

Volume (mL) 0.3 mL EtOH in 1 mL HBS 0.3 mL EtOH in 1.5 

mL HBS 

Product eluted (MBq) 37 MBq 35 MBq 16.8 MBq 35 MBq 

Leftover cartridge 

activity (MBq) 

5 MBq 4 MBq 2.5 MBq 3.8 MBq 

Product recovery (%) 74 70 44 66 

Radiochemical 

Purity (%) 

95 96 93 96 
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Table 10. Elution of Waters Sep-pak C18 plus cartridges showing poor recovery of 24 compared 

to Waters Sep-pak C18 light. Activity has been decay corrected for the start-of-purification. 

 

Method 5 

(one C18 plus) 

Method 6 

(one C18 plus) 

Method 7 

(one C18 plus) 

Method 8 

(one C18 plus) 

Method 9 

(two C18 plus 

in series) 

Loading solvent acetate buffer (50 mM ammonium acetate + 1 mg/mL ascorbic acid, pH 6) 

Volume 1 mL 

Activity 

Cartridge 

37 MBq 50 MBq 36 MBq 34 MBq 23 MBq 

Washing eluent 10:90 

ACN:Acetate 

buffer 

20:80 

ACN:Acetate 

buffer 

30:70 

ACN:Acetate 

buffer 

35:65 

ACN:Acetate 

buffer 

35:65 

ACN:Acetate 

buffer 

Volumes (mL) 0.9 mL ACN 

and 8.1 mL 

acetate buffer 

1.8 mL ACN 

and 7.2 mL 

acetate buffer 

2.7 mL ACN 

and 6.3 mL 

acetate buffer 

3.15 mL ACN 

and 6.85 mL 

acetate buffer 

3.5 mL ACN 

with 6.5 mL 

acetate buffer 

Activity side 

products eluted 

11 MBq 28 MBq 32 MBq 31 MBq 20 MBq 

Activity 

Cartridge 

26 MBq at 22 MBq 3.5 MBq 3 MBq 3.4 MBq 

Eluting solvent EtOH/HBS with 0.1 mg/mL ascorbic acid 

Volume (mL) 0.3 mL EtOH in 1.5 mL HBS 0.5 mL EtOH 

in 2 mL HBS 

Product eluted 

(MBq) 

12.9 MBq 10.7 MBq 1.7 MBq 1.7 MBq 1.5 MBq 

Leftover 

cartridge 

activity (MBq) 

11.7 MBq 9 MBq 2.3 MBq 1.8 MBq 1.8 MBq 

Product 
recovery (%) 

35 21 5 5 7 

Radiochemical 

purity (%) 

96 98 65 55 >99 
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2.3.7 Radiolysis of water and effects on [18F]FPenM  

 

It has been long known that high molar activity brings an increased risk of 

radiolytic degradation of radiotracers. Several studies quote radiolysis as being one of the 

leading factors in radiotracer degradation.243, 244, 245, 246 The extent of radiolysis damage 

is mainly proportional to the molar activity and to a lesser extent on the volume, the dose 

and the pH.243 Radiolysis dramatically changes with activity and can ultimately be a 

limiting factor in obtaining a stable formulation for long-distance transport. 

Radioprotectants (radical scavengers) such as ethanol, benzoquinone, AIBN, thiosulfate, 

nitrite and ascorbic acid have been suggested as inhibitors of water radiolysis.245,242 

Radiotracers are formulated in aqueous solutions for injection.  Radiolysis of water 

(Figure 33.) occurs when ionising radiation travels through a bulk aqueous solution and 

creates a path of electrons that have gained in energy. Depending on this energy, water 

molecules can ionize (~13 eV), excite (~7.4 eV) or transfer heat. Irradiation of water with 

high energy photons (e.g. g- or X-rays) leads to multiple-step excitation/ionisation 

processes that result in decomposition of water to ions, radicals and highly reactive 

oxygen species (ROS) and occurs over a short timeframe (nanoseconds).247,248 The 

resulting electrons, radicals (e.g. H• and HO•) and ions (H3O
+) generated by the 

radiolysis of water can react with organic molecules within their proximity and thus 

generate a variety of side products.  
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Figure 33. Ionising radiation causing water radiolysis yielding highly reactive radicals, ions and 

hydrogen peroxide. (adapted from Lousada et al.)247 

In this study, degradation of the [18F]FPenM (24) was identified during 

formulation and after the end of the synthesis.  

The degradation was detected by radio-HPLC immediately after the end-of-

synthesis. A high number of side products were observed, despite the radiotracer 

undergoing a successful semi-preparative HPLC purification. These side products have 

only been observed upon radiosynthesis scale-up (from 1 GBq to 30 GBq of fluorine-18 

starting activity) hence two main causes are thought to have induced radiolytic 

degradation: the relatively high molar radioactivity (212000±30000 MBq/µmol) 

combined with the low formulation volume (1.3 mL) and high activity (~2 GBq at the 

end-of-synthesis).  

Another factor that can increase radiolysis is the formulation method (the 

formulation process is detailed in Subsection 2.6.2.2). A pre-wetted Waters Sep-Pak C18 

light cartridge (~0.2 mL in volume) was used to trap 24 in order to reformulate it in the 

desired volume and buffer. Petrik et al. have shown that irradiation of silicon dioxide 

(silica; SiO2) dissolved in water results in more hydrogen gas production than bulk water 

on its own.249  Hydrogen gas is formed from hydrogen radicals (H•), so it is likely that 
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the radical-mediated degradation of the maleimide molecules will be higher when they 

are trapped on the C18 silica cartridge.  

Radio-HPLC analysis (Figure 34 A) of 24 (r.t = 10 minutes) shows the effects of 

radiolysis within 15 minutes following semi-preparative purification and formulation (9 

other compounds were on the chromatogram with lower retention times). There are three 

ways to reduce the radiolytic degradation 24: (i) dispersal of molecules (dilution), (ii) 

addition of radical scavengers or (iii) cooling the solution down to low temperatures (-78 

°C).230 Out of these measures, adding radical scavengers was the only feasible method in 

our system. The effects of dilution and cooling would have had a more significant impact 

on slowing down the maleimide-thiol conjugation than the providing a radioprotection 

benefit. 

Addition of ascorbic acid (1 mg/mL) was included in all the steps involved in the 

purification of 24 (e.g. HPLC loading vial, dilution flask, HPLC solvent, product 

collection vial) and shown to inhibit radiolysis significantly, as shown in Figure 34 A. 

 

Figure 34. Radiochromatograms of [18F]FPenM. B (no ascorbic acid added) shows multiple peaks 

have appeared (15 mins post formulation) despite HPLC purification and formulation. A (addition of 1 

mg/mL ascorbic acid) shows significantly less side-product formation (15 mins post formulation).   

One aspect of product degradation that could be investigated in the future is 

whether the degradation occurs due to gamma ray photons or due to the high energy 

fluorine-18 positrons. This can be done by placing a vial with the standard adjacent (1 cm 

away) to a fluorine-18 positron source (mean 18F positron travel distance in water = 0.64 
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mm)250. If no degradation of the standard is observed, then it can be safely assumed that 

gamma derived hydrolysis does not occur and the decomposition is mainly due to positron 

bombardment.  

2.4 Labelling C2Am with [18F]FPenM 

2.4.1  [18F]FPenM-C2Am radiotracer synthesis 

The overexpression and purification of site-directed mutant C2Am, with a single 

solvent-exposed cysteine residue, has been described previously99 Free thiol-containing 

C2Am was reduced with 10 mM DTT for 30 min at 20 °C. Next, [18F]FPenM prosthetic 

group was conjugated to the protein in solution via a Michael-addition reaction at room 

temperature (20 °C) for 30 min at pH 5. (Scheme 18.) The low pH was generated by 

addition of ascorbic acid to the buffer (1 mg/mL) and by the ascorbic acid added at the 

formulation stage (0.1 mg/mL). The low pH stabilised the maleimide, protecting it from 

hydrolysis and increasing the selectivity of the Michael addition reaction for thiols, by 

protonating lysine primary amine side chains. However, this measure slows down the 

overall reaction rate, hence 30 min were required for a nearly quantitative labelling 

(monitored by radio-HPLC). The typical conjugation radiochemical yield was 87±4.3% 

(n = 5) determined by radio-HPLC. (87% of the [18F]FPenM (24) was conjugated to the 

C2Am) 

 

Scheme 18. C2Am-SH conjugation via Michael addition with 24 to form [18F]FPenM. 

To determine the percentage of [18F]FPenM that had become attached to the 

protein, the radio-HPLC method was modified with longer runs and 10% acetonitrile 

added after the first 20 minutes to aid elution of unbound 24.  Therefore, the analytical 

conditions for [18F]FPenM-C2Am production confirmation were 0-20 min 100% PBS, 
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20-40 min 90:10 PBS:ACN, 40-45 min 100% PBS, on a xBridge BEH 125A 3.5 µm size 

exclusion column (Waters) using a 0.7 ml/min flow rate. 

To remove the prosthetic group and any of its hydrolysis side-products, peak 3 in  

the chromatogram in Figure 36, the protein solution was purified by gel filtration using a 

Sephadex G-25 desalting cartridge (NAP-5 GE Healthcare Life Sciences).  An important 

point is that this cartridge is unable to separate 18F-labelled from unlabelled C2Am. 

 

Figure 35. HPLC chromatogram of reduced C2Am-SH. Chromatogram shows the UV absorbance 

at 280 nm of C2Am peak 2 at 11.6 min. Peak 1 at 3.7 min are presumably aggregates of C2Am. Peak 3 

(37.9 min) is due to the HPLC solvent system change at 20 min. 
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Figure 36. HPLC chromatogram of the crude Michael-Addition reaction between 24 and C2Am-

SH yielding [18F]FPenM-C2Am. Radiochromatogram A: [18F]FPenM-C2Am is the first peak (12.7 min), 

peak 5 (38.7 min) is unreacted 24. Chromatogram B shows the UV absorbance at 280 nm: the first peak is 

[18F]FPenM-C2Am (11.8 min), peak 2 represents traces of ascorbic acid (14.8 min), the final peak (37.9 

min) is due to the HPLC solvent system change at 20 min. Chromatograms C and D are expanded 

chromatograms A and B respectively focused on the [18F]FPenM-C2Am peak.  

Gel filtration was performed on a column pre-equilibrated with PBS. Three 

fractions were collected, the first fraction was protein- and tracer-free, the second fraction 

contained >99% pure by radio-HPLC [18F]FPenM-C2Am (Figure 37), ready for injection, 

and the third fraction contained some [18F]FPenM-C2Am and unbound 24. Another radio-

HPLC of [18F]FPenM-C2Am was run, this time spiked with a FPenM-C2Am HPLC 

standard. The UV peak 2 at 12.1 minutes increased which confirms the production of 

[18F]FPenM-C2Am radiotracer. 
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Figure 37. QC chromatogram of pure [18F]FPenM-C2Am. Radiochromatogram (A) represents the 

radiodetector trace and showed [18F]FPenM-C2Am elution at 12.8 min. Chromatogram B represents the 

UV (280 nm) trace and showed absorbance of reduced C2Am protein at 11.9 min and 12.1 min (FPenM-

C2Am). The peak at 36 min is the solvent front due to the solvent system change at 20 min. Peaks 1, 2 and 

3 are probably caused by dimerization of unlabelled C2Am (disulphide bond formation) and hydrophobic 

interactions promoted aggregation hence the multiple peaks. 

 

Figure 38. QC chromatogram of pure [18F]FPenM-C2Am with added (spiked) FPenM-C2Am 

HPLC standard. Chromatogram A represents the radiodetector trace and showed [18F]FPenM-C2Am 

elution at 12.8 min. Chromatogram B represents the UV (280 nm) trace and showed absorbance of reduced 

C2Am protein at 11.9 min and 12.2 min (FPenM-C2Am). Chromatogram C represents the UV (280 nm) 

trace and showed absorbance of reduced C2Am protein at 11.8 min and 12.1 min (FPenM-C2Am spiked 

with FPenM-C2Am HPLC standard hence the increased peak). The peak at 36 min is the solvent front due 

to the solvent system change at 20 minutes. 
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The protein concentration of the injected radiotracer was determined by Merck 

Direct Detect Infrared spectrometer. Protein recovery after NAP-5 gel filtration cartridge 

purification was 33±2% (n = 5) of the initial amount of protein added to the reaction. The 

very low recovery rate was mainly due to the hydrophobicity of the top and bottom 

polyethylene frits in the cartridge. Another contributing factor to the loss of protein on 

the NAP-5 is due to dimerization (Figure 39.) and aggregation occurring during the 

conjugation reaction with maleimide 24, despite the protein being relatively dilute (0.8 

mg/mL). These aggregates are then effectively filtered and retained by the NAP-5 

cartridge. (Figure 36) These factors contribute to frit binding despite the fact that the 

concentration (0.7 mg/ml) is below the maximum loading of 1 mg/ml recommended by 

the manufacturer. This problem will be avoided in future by shortening conjugation times, 

hence less aggregate formation, and by purifying the protein using a preparatory size 

exclusion column directly on the automated GE TRACERlab FXFN synthesiser. 

 

Figure 39. [18F]FPenM-C2Am analysed on a UPLC Ultimate 3000 using a GE Superdex 75 (300 

mm) analytical column. Top chromatogram (UV 280 nm channel) shows 2 peaks separating oxidised 

C2Am from C2Am and [18F]FPenM-C2Am. The first small peak increases with time, confirming oxidation 

and dimerization of C2Am with time shown in Figure 40.  
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Figure 40. Same [18F]FPenM-C2Am sample as shown in Figure 39 injected again after 24 hours at 

room temperature. Analysed on a UPLC Ultimate 3000 using a GE Superdex 75 (300 mm) analytical 

column. UV chromatogram (280 nm channel) shows multiple peaks separating aggregates (peak 1, 20% 

area), oxidised C2Am (peak 2, 40% area) from conjugated C2Am (FPenM-C2Am, 40% area) seen as peak 

3. Chromatograms courtesy of Dr André Neves. 

To confirm disulfide bridge formation (dimerisation), CuCl2 (50 μM) was added 

to a freshly reduced C2Am sample and then analysed by HPLC (see Figure 

41).251,252,253,254 Addition of CuCl2 yielded the similar results as oxidation by air upon 

leaving the C2Am sample overnight at room temperature (see Figure 40).  
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Figure 41. UV chromatograms showing oxidation of freshly reduced C2Am and then subsequent 

reduction using DTT. Chromatogram A: dimerization of C2Am was accelerated by the addition of CuCl2 

(50 μM) to confirming that peak 1 at 3.2 min is the oxidised C2Am. Chromatogram B: reduction of oxidised 

C2Am from chromatogram A using DTT (20 mM, 4 min) showed complete reduction of protein. 

Chromatogram C: expansion of chromatogram B to allow observation of the reduced protein peak 1 at 4 

min, the large peak at 8.2 min represents DTT. Chromatograms courtesy of Dr André Neves. 
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Figure 42. PET/CT scan of a NAP-5 cartridge (column volume 8.3 mL) used for [18F]FPenM-

C2Am purification, with 2.71 MBq activity left on the cartridge. The transverse plane (bottom right picture) 

clearly shows significant activity (in red) on the loading and eluting frits. Maximum-intensity-projection 

(top left), coronal (top right) and sagittal (bottom left) planes also confirm the presence of activity mainly 

in the plastic frits. PET images palette shown: Sokolov. 

The molar activity of [18F]FPenM-C2Am  was calculated by dividing the activity 

of the pure fraction by the protein concentration and found to be 29500±10600 MBq/µmol 

(n = 5) (1.8±0.65 MBq/µg) at the end-of-synthesis (conjugation and purification) and 

~16600 MBq/µmol (~1 MBq/µg) at the time of injection into tumour-bearing mice 

(typically injected after 1.5 hours after radiosynthesis).  

2.4.2  [18F]FPenM-C2Am radiotracer stability test 

[18F]FPenM-C2Am radiotracer solution (5.7 μM) in PBS was stable for over 3 

hours at room temperature and at 37 °C. (Figure 43., Figure 44.) There was no 

defluorination, nor was [18F]FPenM prosthetic group deconjugation observed.  However, 

unlabelled C2Am was constantly oxidised by atmospheric oxygen and consequently 

generated dimers and aggregates. Tavaré et al. have previously shown the formation of 

dimeric forms of a cysteine-labelled version of C2A ([99mTcCO3]C2AcH).255 This 

suggests that aggregation can occur via the interaction of hydrophobic regions of the C2A 

protein that are in closer contact following disulphide bridge formation.  
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Figure 43. [18F]FPenM-C2Am radiotracer stability test in PBS at 37 °C (black 5 min, pink 1 h after 

incubation at 37 °C). Peak at 13.1 min is [18F]FPenM-C2Am  radiotracer. C2Am concentration was 1 μM. 

Sensitivity of the radiodetector was increased before analysing the 1-hour sample to compensate for decay 

and to enable peak observation along with other potential decomposition products. 

 

Figure 44. [18F]FPenM-C2Am radiotracer stability in PBS at 37 °C: black 2 h, blue 3 h after 

incubation in PBS at 37 °C. Peak at 13.2 min is [18F]FPenM-C2Am radiotracer. C2Am concentration was 

1 μM. 
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[18F]FPenM-C2Am  was also stable in bovine serum albumin (50 mg/mL, C2Am 

0.5 μM) for 3 hours at 37 °C. A second small radioactive peak started to appear (at 8.9 

mins on the chromatogram) after 1 hour incubation (see Figure 45 and Figure 46). This 

correlated well with the albumin UV peak at 8.4 min, suggesting therefore that the side 

product could be the result, to a minor extent, of a thiol exchange reaction, which is 

specific to maleimides, between C2Am and albumin. 

 

 

Figure 45. Stability of [18F]FPenM-C2Am in a solution of bovine serum albumin (BSA). Radio 

HPLC chromatogram (A) showing [18F]FPenM-C2Am at 13.1 min following incubation in BSA at 37 °C 

for 1 h. UV trace (B) recorded at 280 nm shows BSA peak 1 at 7.5 and peak 2 at 8.4 min for the 2 h 

incubation. C2Am concentration was 1 μM. 
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B
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Figure 46. Stability of [18F]FPenM-C2Am in a solution of bovine serum albumin (BSA). Radio 

HPLC chromatogram (A) showing [18F]FPenM-C2Am following incubation in BSA at 37 °C (black 2 h, 

blue 3 h). UV trace (B) recorded at 280 nm shows BSA peak 1 at 7.5 and peak 2 at 8.4 min for the 3 h 

incubation. In the radiochromatogram (A) a peak appears at 8.9 min (14% area) suggesting a product of 

aggregation of BSA and [18F]FPenM-C2Am or a metabolite. C2Am concentration was 1 μM. 

Over the course of a three hour incubation at 8.9 min started to increase in intensity 

(to (14%), and therefore the purity of the [18F]FPenM-C2Am radiotracer decreased to 

86%, as indicated by radio HPLC. Based on UV and radio detector retention times, this 

peak has been assigned to the albumin peak at 8.44 on the UV chromatogram. This is not 

a concern, as no such metabolites have been observed by radio-HPLC in mouse blood 

serum analysed 10 min post-injection. The maximum blood pool concentration of the 

radiotracer [18F]FPenM-C2Am is achieved in vivo at 10 min post intravenous 

administration, as determined by Dr André Neves, using time-activity analysis of regions 

of interest, derived  from mouse PET/CT scans. 

2.5 Conclusion 

Several types of 18F-labelled moieties were considered for tagging C2Am. 

Initially, synthesis of 4-[18F]fluorobenzamido-N-ethylaminomaleimide ([18F]FBEM) 

A

B
11
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from diaryliodonium precursors was attempted. Then the classic (and lengthy) synthesis 

of [18F]FBEM was attempted (Section 2.3). In conclusion, [18F]SFB synthesis from 

iodonium precursors was unsuccessful, both manually and using automated microfluidics 

modules or GE TRACERlab.  

In parallel with this approach, 2-[18F]fluoroethylazide was successfully 

radiosynthesised and bioorthogonally ‘clicked’ to a dibenzocyclooctyne-PEG4-C2Am. 

Despite initial success, the click reaction was too slow partially labelling C2Am-PEG4-

DBCO. The resulting radiotracer was unsuitable for PET imaging. (section 2.3.3)  

Finally, the N-5-[18F]fluoropentylmaleimide ([18F]FPenM) prosthetic group was 

synthesised manually and optimised for automated synthesis. [18F]FPenM was 

synthesised in good yield (12±3%, decay corrected to start-of-synthesis, n = 11), in a short 

amount  of time 58±5.8 min (n = 12), high radiochemical purity (95±3.4% by radio-

HPLC, n = 11) and excellent molar activity (212000±30000 MBq/µmol (n = 3)). Upon 

scale-up radiolysis and thermal decomposition were inhibited using ascorbic acid and 

methanesulfonic acid respectively. 

The conjugation of [18F]FPenM to C2Am proceeded almost quantitatively 

(87±4.3% (n = 5) by radio-HPLC)  yielding [18F]FPenM-C2Am with a high molar activity 

29500±10600 MBq/µmol (n = 5). Reaction proceeded quantitively due to its fast kinetics. 

This has been previously investigated and shown that GSH reacted quickly with N-(5-

fluoropentyl)maleimide (3113±73 M-1 s-1 at pH 7.27 and 25 °C) which is consistent with 

literature. (see section 2.2.3) Despite maleimides undergoing retro-Michael addition, no 

decomposition of the [18F]FPenM-C2Am was observed in PBS over 3 hours (section 

2.4.2.). 

Considering all of the above, we concluded that [18F]FPenM-C2Am could be used 

to image cell death in two tumour models. 
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2.6 Experimental 

2.6.1 General synthetic chemistry (Department of Chemistry) 

 

All reactions were performed under anhydrous conditions and inert atmosphere 

(nitrogen) in oven-dried glassware unless otherwise stated. All solvents used were 

purchased and distilled by technicians in accordance to departmental protocols. Deionised 

water used for general reactions was supplied by the Department of Chemistry. Deionised 

water for HPLC was purchased from VWR. Brine and sodium bicarbonate saturated 

solutions were prepared by departmental technicians. All purchased reagents were used 

without any further purification. All chemicals were handled in accordance with the 

Hazard and Precautionary Statements provided by the manufacturer or if unavailable 

treated as Hazardous, Dangerous and Carcinogenic. Yields of products quoted refer to 

chromatographically and spectroscopically homogenous materials. All spectra and 

chromatograms of compounds were attached in Appendix 8. 

Thin layer chromatography (TLC) analysis was performed on Merck aluminium-

backed plated pre-coated with silica (0.2 mm, F254) or Merck TLC silica gel 60 F254 glass 

plates. Products were visualised using either fluorescence indicators such as manganese 

activated zinc silicate which emits green fluorescence upon excitation with UV light λ = 

254 or by staining with 10% solution of KMnO4, Iodine or Ammonium Cerium 

Molybdate (Hanessian’s stain).  

Flash column chromatography (FC) was performed on silica gel Merck Kieselgel 

60 F254 320-400 mesh or Silicagel Fluorochem 60Å pore size and 40-63 um particle size. 

Flash chromatography was also performed on either a Teledyne Isco CombiFlash Rf+ or 

NextGen 300+ automated purification systems. Products were detected using the 200-400 

nm inline UV diode array detector and isolated using an automated fraction collector.  

Semi-prep HPLC was performed on an Agilent 1100 using a diode array detector 

(G1315B) set to monitor 254, 210 and 280 nm wavelengths. ChemStation Software 

revision A.10.02 was used to set-up methods and sequences for the runs. The instrument 
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was used with a reverse phase Zorbax SB-C18 (250 mm x 10 mm, 5 μm; Agilent) semi-

prep column.  

The purification method was using a 15 minute 5-95% ACN:H2O gradient with 

0.1% formic acid modifier running at 4 ml/min unless otherwise specified. Analytical 

HPLC was performed on an analytical Kinetex XB-C18 100A (100 mm x 2.1 mm, 2.6 

μm; Phenomenex) column using a 10 minute 5-95% ACN:H2O gradient with 0.1% formic 

acid modifier running a flow of 1 ml/min. 

1H NMR spectra were acquired at 400 MHz on a Bruker AV-400 Avance III. 

Chemical shifts (δH) are quoted in parts per million (ppm), referenced to the appropriate 

residual solvent peak. 13C NMR spectra were acquired at 101 MHz on a Bruker AV-400 

Avance III and chemical shifts (δC) are quoted in parts per million (ppm), referenced to 

the appropriate residual solvent peak. 19F NMR proton coupled or decoupled spectra were 

acquired at 376 MHz on a Bruker AV-400 Avance III and chemical shifts (δF) are quoted 

in parts per million (ppm). NMR data was analysed using TopSpin 4.0.6 version 1.0 or 

ACD Labs Academic Version. 

Liquid chromatography mass spectrometry (LC-MS) was performed on a Waters 

SQD2 instrument. The UPLC system is an H-Class UPLC (Waters) using an 2.1 x 50 mm 

Acquity UPLC BEH C18 (2.1 x 50 mm, 1.7 µm; Waters) column and a Xevo G2-S QTOF 

quadrupole MS (Waters) running in positive mode with an electrospray source. For small 

molecules, UPLC separation was carried out using a 4-minute method using a 10-90 % 

MeCN gradient over 3.5 mins followed by 100% MeCN flush to 4.38 mins and finally 

re-equilibration to 10 % MeCN. The MS source had a temperature of 120 °C, capillary 

voltage of 3 kV and sampling cone voltage of 40 V. Fragmentation MS-MS experiments 

were run with a collision energy ramp of 15-40 V and fixed masses for detection were 

selected as appropriate. For proteins the UPLC is running an 8 min 5-95% MeCN:H2O 

gradient at 0.2 mL/min with added 0.1% formic acid modifier. 

High resolution mass spectrometry (HRMS) was performed on either a Waters 

Xevo G2-S QTOF or a Waters LCT Premier instruments. The first system uses a UPLC 

H-Class solvent management system running an 8 min 5-95% MeCN:H2O gradient at 0.2 

mL/min with added 0.1% formic acid modifier) coupled to an electrospray ionisation 
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(ESI) tandem mass spectrometer (MS/MS quadrupole and time-of-flight). The MS/MS is 

calibrated against a leucine-enkephalin internal standard, 1 mg/mL (m/z = 556.2771). 

MassLynx V4.1 software was used to run the samples, interpret the data and deconvolute 

protein spectra. This instrument was used for both organic small molecules and for 

proteins.  

The Waters LCT Premier instrument is a time-of-flight mass analyser with an 

Agilent 1100 autosampler and pump for sample injection. The system runs 50:50 

ACN:H2O isocratic solvent mix with 0.25% formic acid as mobile phase modifier and 

can analyse organic small molecules ranging from 150 Da to 1500 Da. 

An Applied Photophysics SX.18MV stopped flow system was used to determine 

the rate constant of fast chemical reactions. System was used with 4 bar of nitrogen 

pressure to drive the plunger mixing the two reagents to be analysed. Temperature 

surrounding the flow cell and the drive syringes was accurately maintained to 25 °C. 

Software used to acquire data was the Applied Photophysics Ltd SX.18MV Kinetic 

Spectrometer Workstation version 4.53. Each run was set to acquired 1000 data points. 

 

N-Succinimidyl-4-fluorobenzoate standard (6) 

 

4-Fluorobenzoic acid (150 mg, 1.07 mmol), N-hydroxysuccinimide (182 mg, 1.89 

mmol, 1.8 eq.) and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (140 μL, 1.39 mmol, 

1.3 eq.) were dissolved in DCM (3 ml). The reaction mixture was left to stir for 24 h at 

r.t. The solution was then concentrated in vacuo, loaded on a silica plug and eluted using 

1% MeOH in DCM. The solvent was removed in vacuo to give the desired ester 6 as a 

white crystalline solid (118 mg, 46%).  
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δH (400 MHz, CDCl3): 2.93 (4H, s, CH2), 7.19-7.24 (2H, m, CH), 8.17-8.20 (2H, 

m, CH) 

δC (100 MHz, CDCl3): 25.7, 116.3 (d, J = 22 Hz), 121.4 (d, J = 3 Hz), 133.4 (d, J 

= 10 Hz), 160.9, 166.9 (d, J = 257 Hz), 169.2 

δF (376 MHz, CDCl3): -102 (proton decoupled) 

 

N-(2-(2,5-Dioxo-2,5-dihydro-1H-pyrrol-1-yl)ethyl)-4-fluorobenzamide (7)  

 

N-(2-Aminoethyl)maleimide (20 mg, 0.07 mmol, 1 eq) was suspended in DMF 

(0.8 mL) and DIPEA (10 μL, 0.07 mmol) added, stirring vigorously for 30 min at room 

temperature. N-succinimidyl 4-fluorobenzoate (18 mg, 0.07 mmol) was then added and 

stirred for 1 h. The product was purified by HPLC according to the standard semi-prep 

conditions. The product was eluted at 8.05 min and collected. Solvent was removed in 

vacuo to yield amide 7 as a white powder (15 mg, 0.057 mmol, 80%).  

δH (400 MHz, MeOD): 3.58 (2H, t, J = 6 Hz, CH2), 3.75 (2H, t, J = 6 Hz, CH2), 

4.60 (H, s, NH), 6.82 (2H, s, CH=CH), 7.18 (2H, t, J = 8.5 Hz), 7.76-7.81 (2H, m, CH) 

δF (376 MHz, MeOD): -111.78 
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Ethyl 4-(trimethylammonium triflate) benzoate (3) 

 

Ethyl 4-(dimethylamino)benzoate (100 mg, 0.51 mmol) was dissolved in DCM (5 

mL). Methyl trifluoromethanesulfonate (106 μL, 0.65 mmol, 1.3 eq) was added dropwise 

with a syringe. The solution was stirred for 12 h at room temperature. Solvent was 

removed in vacuo and the white powder was purified by recrystallisation from diethyl 

ether. Product was collected by suction filtration to yield ethyl 4-(trimethylammonium 

triflate) benzoate as a white powder (188 mg, 0.37 mmol, 72%). 

m.p. = 109-111 °C 

δH (400 MHz, CDCl3): 1.42 (3H, t, J = 7.2 Hz, CH3), 3.80 (2H, s, CH3), 4.42 (2H, 

q, J = 7.2 Hz, CH2), 7.95 (2H, d, J = 9.2, CH), 8.26 (2H, d, J = 9.2, CH) 

δC (100 MHz, CDCl3): 14.2, 57.3, 61.9, 119.9, 132.1, 132.9, 149.8, 164.4 

Ethyl 4-fluorobenzoate standard (28) 

 

p-Fluorobenzoic acid (150 mg, 1.07 mmol) was dissolved in DCM (1 mL) and 

stirred at 0 °C for 5 min. 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide (140 μL, 1.39 

mmol, 1.3 eq) was added and stirred for a further 5 minutes. EtOH (100 μL, excess) was 

added and stirred at RT for 16 hours. Product was purified by flash column 

N

O O

CF3SO3

OO

F
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chromatography (50:50 EtOAc: Hexanes), solvent was removed in vacuo and product 

was collected as a colourless liquid (55 mg, 0.33 mmol, 31%).  

δH (400 MHz, MeOD): 1.41 (3H, t, J = 7.14 Hz, CH2), 4.40 (2H, q, J = 7.14 Hz, 

CH2), 7.12 (2H, t, J = 8.4 Hz), 8.05-8.11 (2H, m, CH) 

δF (376 MHz, MeOD): -107 

 

2-Azidoethyl 4-methylbenzenesulfonate (4) 

 

 

 

2-Azidoethanol (100 mg, 1.15 mmol) and triethylamine (500 μL, 6.81 mmol) were 

dissolved in DCM (500 μL) and p-toluenesulfonyl chloride (285 mg, 1.5 mmol, 1.5 eq) 

was added. The mixture was stirred at room temperature for 12 h, then diluted with DCM 

and quenched with water 10 mL. The organic layer was washed with deionised water (10 

mL), saturated sodium bicarbonate (10 mL) and brine (10 mL), dried with MgSO4, 

filtered and then solvent was removed in vacuo. Purification by flash column 

chromatography (100% EtOAc) gave tosylate 4 as a colourless liquid (228 mg, 0.95 

mmol, 83%). 

Rf  (100% EtOAc) 0.81 

δH (400 MHz, CDCl3): 2.45 (3H, s), 3.47 (2H, t, J = 5 Hz), 4.15 (2H, t, J = 5 Hz), 

7.36 (2H, d, J = 8 Hz), 7.8 (2H, d, J = 8 Hz) 

δC (100 MHz, CDCl3): 21.7, 49.6, 68.1, 128, 130, 132.6, 145.3 
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2-azidoethyl methylsulfonate precursor (8) 

 

 

 

2-Azidoethanol (50 mg, 0.57 mmol) and triethylamine (388 μL, 5.29, ) were 

dissolved in DCM (500 μL) in a RBF. Methanesulfonyl chloride (53 μL, 0.68 mmol, 1.2 

eq.) was added to the mixture and stirred at room temperature for 12 hours. The mixture 

was diluted with DCM and washed with deionised water (10 mL), saturated sodium 

bicarbonate (10 mL), brine (10 mL) dried with MgSO4, filtered and then solvent was 

removed in vacuo.  Precursor 8 was collected as a yellow oil (50 mg, 0.30 mmol, 52%). 

δH (400 MHz, CDCl3): 3.08 (3H, s), 3.59 (2H, s), 4.35 (2H, s) 

δC (100 MHz, CDCl3): 37.9, 50.0, 67.6 

 

2-Fluoroethylazide (HPLC standard) (26) 

 

2-fluoroethanol (0.56 mL, 7.9 mmol) in DCM (15 mL) was added p-

toluenesulfonyl chloride (2.33 g, 12.2 mmol, 1.2 eq) and triethylamine (1.5 mL, 45 mmol) 

and the resultant mixture was stirred at room temperature under nitrogen for 16 hours. 

Crude mixture was diluted with DCM (30 mL) and then washed with H2O (2 x 10 mL). 

The solvent was evaporated in vacuo to yield an orange oil. Product was recrystallised 

from hexane to yield 2-fluoroethyl p-toluenesulfonate as a white powder (1.583 g, 6.56 

mmol, 83%). 2-fluoroethyl p-toluenesulfonate (200 mg, 0.92 mmol) in DMF (5 mL) was 

added sodium azide (179.2 mg, 2.75 mmol) and the suspension was stirred at room 

temperature for 48 hours. The reaction mixture was filtered to remove the white 
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precipitate. The filtrate was used without further purification. Pure 2-fluoroethylazide 

(26) is unstable and could decompose by explosion therefore solvent was not removed. 

δH (400 MHz, CDCl3): 3.51 (2H, dt, J = 27 Hz, 4.4 Hz), 4.58 (2H, dt, J = 47 Hz, 

4.4 Hz) 

δF (376 MHz, CDCl3): -224.6 

7-oxanorborn-5-ene-2,3-dicarboxylic anhydride (12) 

 

Maleic anhydride puriss ³99% (10 g, 102 mmol, Lot# STBH5037, Sigma-Aldrich) 

was added to a round bottom flask and flushed with nitrogen gas. Furan ³99% (10 ml, 

137.5 mmol, 1.35 equivalents, Lot# BCBR7870V, Sigma-Aldrich) was injected dropwise 

under inert atmosphere (N2). After 30 minutes, EtOAc ³99.8% (6 mL, Lot# 1862399, 

Fisher Scientific) was added to form a suspension. The reaction was stirred vigorously at 

room temperature for 7 hours. Product was collected by vacuum filtration, washed with 

EtOAc ³99.8% (10 mL, Lot# 1862399, Fisher Scientific) and set under high vacuum (1 

mbar) for 3 hours to yield 7-oxanorborn-5-ene-2,3-dicarboxylic anhydride as white 

crystalline powder (13.261 g, 79.82 mmol, 78%).  

 

Rf (100% EtOAc) 0.81 

δH (400 MHz, CDCl3): 3.17 (2H, s), 5.46 (2H, s), 6.58 (2H, s) 

δC (100 MHz, CDCl3): 48.7, 82.2, 137.0, 169.8 
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2-(5-hydroxypentyl)-3a,4,7,7a-tetrahydro-1H-4,7-epoxyisoindole-1,3(2H)-

dione (13) 

 

7-oxanorborn-5-ene-2,3-dicarboxylic anhydride (7.661 g, 46.11 mmol) was 

suspended in absolute ethanol (50 mL, Lot# 18I044016, VWR) in a round bottom flask 

and purged with N2 gas. 5-aminopentan-1-ol 95% (6.19 g, 60 mmol, 1.3 eq., Lot# 

BCBW8001, Sigma-Aldrich) was added to the flask portion wise. Triethylamine ³99.5% 

BioUltra (12.8 mL, 92.22 mmol, 2 eq., Lot# STBH8268, Sigma-Aldrich) was then added 

to the mixture dropwise with stirring. The solution was then set to reflux at 105 °C for 8 

hours. Reaction was cooled at room temperature and ethanol was removed in vacuo and 

the resulting yellow oil adsorbed on Merck silica gel 60 (Lot# TA2078685819). Silica 

was loaded on a Redisep RF 25g solid load cartridge (Cat# 69-3873-240) and initially 

purified on a Teledyne Isco NextGen CombiFlash 300+ using a 40g HP Silica Gold 

column (Cat#69-2203-347, Lot# 291117603W) and an isocratic run with 100% EtOAc 

³99.8% (Lot# 1862399, Fisher Scientific). Re-purification was done on a 24g HP Silica 

Gold column (Cat#69-2203-346, Lot# 282229603W) in 100% EtOAc ³99.8% (Lot# 

1862399, Fisher Scientific) using 40 mL/min. 

Fractions 10-19 containing the product were collected and combined, solvent was 

removed in vacuo and product 2-(5-hydroxypentyl)-3a,4,7,7a-tetrahydro-1H-4,7-

epoxyisoindole-1,3(2H)-dione (2.56 g, 10.187 mmol, 22%) collected as a white 

crystalline solid. 

Rf (100% EtOAc) 0.48 

m.p. = 65-67 °C 

δH (400 MHz, CDCl3): 1.30 (2H, m), 1.54 (4H, m), 1.94 (H, s, -OH), 2.79 (2H, s), 

3.44 (2H, t, J = 7 Hz), 3.56 (2H, t, J = 5 Hz), 5.21 (2H, s), 6.47(2H, s) 
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δC (100 MHz, CDCl3): 22.7, 27.2, 32.0, 38.8, 47.3, 62.3, 80.9, 136.5, 176.4  

5-(1,3-dioxo-1,3,3a,4,7,7a-hexahydro-2H-4,7-epoxyisoindol-2-yl)pentyl 

methanesulfonate (5) 

 

2-(5-hydroxypentyl)-3a,4,7,7a-tetrahydro-1H-4,7-epoxyisoindole-1,3(2H)-dione 

(2.56 g, 10.187 mmol) was dissolved in DCM (50 ml, Lot# 1417944, Fisher Scientific) 

in a nitrogen flushed round bottom flask. Solution was stirred in an ice bath for 10 

minutes. Methanesulfonyl chloride ³99.7% (946 μl, 12.225 mmol, 1.2 eq., Lot# 

SHBJ4329, Sigma-Aldrich) was injected dropwise under inert atmosphere (N2). 

Triethylamine ³99.5% BioUltra (4.256 mL, 30.561 mmol, 3 eq., Lot# STBH8268, 

Sigma-Aldrich) was added dropwise to the stirring solution. The solution was allowed to 

warm up at room temperature and stirred for 12 hours. The solvent was removed in vacuo 

and the yellow oil was adsorbed on Merck silica gel 60 (Lot# TA2078685819), loaded on 

a Redisep RF 25g solid load cartridge (Cat# 69-3873-240) and purified on a Teledyne 

Isco NextGen CombiFlash 300+ using a 40g HP Silica Gold column (Cat#69-2203-347, 

Lot# 291117603W) and an isocratic run with 100% EtOAc ³99.8% (Lot# 1862399, 

Fisher Scientific) for 10 column volumes with a flow of 110 mL/min. Fractions 

containing the product were collected and combined, solvent was removed in vacuo to 

yield 5-(1,3-dioxo-1,3,3a,4,7,7a-hexahydro-2H-4,7-epoxyisoindol-2-yl)pentyl 

methanesulfonate precursor (2.698 g, 8.192 mmol, 80%) as a white crystalline powder. 

 

Rf (100% EtOAc) 0.65 

m.p. = 94-96 °C 

δH (400 MHz, CDCl3): 1.40 (2H, m), 1.61 (4H, m), 1.76 (2H, q), 2.84 (2H, s), 3.00 

(3H, s), 3.49 (2H, m), 4.20 (2H, s), 5.26 (2H, s), 6.51 (2H, s) 

δC (100 MHz, CDCl3): 22.5, 26.8, 28.5, 37.4, 38.4, 47.4, 69.6, 80.9, 136.5, 176.3 

N

O
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TOF-ESI-MS: found m/z = 330.1122 [MH]+([C14H19NO6S] + H+ requires 

330.1011) 

 

2-(5-fluoropentyl)-3a,4,7,7a-tetrahydro-1H-4,7-epoxyisoindole-1,3(2H)-

dione (15) 

 

5-(1,3-dioxo-1,3,3a,4,7,7a-hexahydro-2H-4,7-epoxyisoindol-2-yl)pentyl 

methanesulfonate (1.34 g, 4.068 mmol) was dissolved in THF analytical grade (25 mL, 

Fisher Scientific, Lot# 1691146) and added to a nitrogen flushed RBF. TBAF 1M (6.1 

mL, Acros Organics, Lot# A0402228) was added under anhydrous conditions dropwise 

over 20 minutes while stirring at room temperature. Reaction was set to reflux at 95 °C 

for 30 minutes. Reaction was cooled to room temperature; solvent was removed in vacuo 

and the resulting yellow oil was adsorbed on Merck silica gel 60 (Lot# TA2078685819). 

The resulting powder was dry loaded on a Redisep RF 25g solid load cartridge (Cat# 69-

3873-240) then it was purified on a Teledyne Isco NextGen CombiFlash Rf+ using an 

80g Redisep Rf column (Cat# 69-2203-380, Lot# 272131604X) and 20:80 

PetEther:EtOAc gradient (Petroleum spirit 40-60 Cat# 23826.464, Lot# 19B214022,  

VWR; EtOAc ³99.8% Lot# 1862399, Fisher Scientific) to 100% EtOAc as per 

chromatogram in Appendix 8.18 over 5 column volumes. Fractions 5 to 13, containing 

the product, were collected and combined, solvent was removed in vacuo to yield 2-(5-

fluoropentyl)-3a,4,7,7a-tetrahydro-1H-4,7-epoxyisoindole-1,3(2H)-dione (819 mg, 3.23 

mmol, 79%) as a white solid. 

Rf (100% EtOAc) 0.81 

δH (400 MHz, CDCl3): 1.37 (2H, m), 1.67 (4H ,m), 2.82 (2H, s), 3.47 (2H, t, J = 7 

Hz), 4.40 (2H, dt, J = 47 Hz, 6 Hz), 5.25 (2H, t, J = 0.9 Hz), 6.50 (2H, t, J = 0.9 Hz) 
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δC (100 MHz, CDCl3): 22.3 (d, J = 6 Hz), 27.1, 29.8 (d, J = 20 Hz) 38.6, 47.4, 

80.9, 83.7 (d, J = 165 Hz), 136.5, 176.3 

δF (376 MHz, CDCl3): -218.5 (tt, J = 47 Hz, 25 Hz) 

1-(5-fluoropentyl)-1H-pyrrole-2,5-dione (16) 

 

2-(5-fluoropentyl)-3a,4,7,7a-tetrahydro-1H-4,7-epoxyisoindole-1,3(2H)-dione 

(732 mg, 2.89 mmol) was dissolved in DMSO ³99.6% extra dry over molecular sieves 

(5mL, Lot# 1724013, Acros Organics) in a nitrogen flushed RBF. The flask was heated 

to 160 °C for 30 minutes with periodic monitoring of reaction progression by TLC. Upon 

completion, the flask was cooled down by submersion in an ice/water bath. Subsequently, 

Merck silica gel 60 (Lot# TA2078685819) was added to the RBF and the resulting 

powder was dry loaded on a Redisep RF 25g solid load cartridge (Cat# 69-3873-240) and 

purified on a Teledyne Isco NextGen CombiFlash Rf+ using a 40 g Redisep Rf column 

(Cat# 69-2203-340, Lot# 262217001Y) and an isocratic run with 100% Et2O puriss p.a. 

Ph. Eur. ³99.8% (Lot# J0080, Honeywell) as per chromatogram in Appendix 8.19 for 8 

column volumes with a flow of 30 mL/min. Fractions 6 to 10, containing the product, 

were collected and combined, solvent was removed in vacuo to yield 1-(5-fluoropentyl)-

1H-pyrrole-2,5-dione (338.4 mg, 1.827 mmol, 63%) as a colourless oil which crystallises 

as a white solid upon storing at -20 °C. 

Rf (1:1 EtOAc:Hex) 0.78 

Rf (100% EtOAc) 0.92  

Rf (100% Et2O) 0.98 

δH (400 MHz, CDCl3): 1.39 (2H, m), 1.68 (4H, m), 3.53 (2H, t, J = 7 Hz), 4.42 

(2H, dt, J = 47 Hz, 6 Hz), 6.68 (2H, s) 

N
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δC (100 MHz, CDCl3): 22.4 (d, J = 6 Hz), 28.1, 29.8 (d, J = 20 Hz) 37.6, 83.7 (d, 

J = 165 Hz), 134.1, 170.8 

δF (376 MHz, CDCl3): -218.6 (tt, J = 47 Hz, 25 Hz) 

TOF-ESI-MS: found m/z = 186.2220 [MH]+ ([C9H12FNO2]+H+ requires 

186.0930) 

LC-MS: m/z = 186.2 [MH]+ detected at 1.49 minutes  

N5-(1-((carboxymethyl)amino)-3-((1-(5-fluoropentyl)-2,5-dioxopyrrolidin-3-

yl)thio)-1-oxopropan-2-yl)glutamine (27) 

 

L-Glutathione reduced ³98% (153.66 mg, 0.5 mmol, CAS# 70-18-8, Sigma-

Aldrich) was dissolved in HBS (100 mL, 20 mM HEPES, 150 mM NaCl, pH 7.49) to 

yield a final 5 mM solution with a pH of 5.4.  

5-fluoropentylmaleimide (9.26 mg, 0.05 mmol) was dissolved in HBS (10 mL, 20 

mM HEPES, 150 mM NaCl, pH 7.49) to yield a final solution with a pH of 7.49.  

A serial dilution of GSH (5 mM, 2.5 mM, 1.25 mM) in HBS and 5-

fluoropentylmaleimide (5 mM, 2.5 mM, 1.25 mM) in HBS were prepared. GSH and 5-

fluoropentymaleimide solutions with equivalent concentration were mixed in a 1:1 ratio, 

~ 0.5 mL of each reagent, in a single mixing experiment using the SX.18MV stopped 

flow spectrometer as per Table 11. The consumption of 5-fluoropentymaleimide was 

monitored at 300 nm with strictly maintained temperature at 24.8 °C.  
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Table 11. L-glutathione and N-5-fluoropentylmaleimide solutions mixed 

No. GSH in 
HBS 

N-5-fluoropentyl 
maleimide in HBS 

Mixing 
ratio 

Final mixed solution concentration [GSH] 
/ [N-5-fluoropentyl maleimide] in HBS 

1 
5 mM 

pH 5.4 

5 mM 

pH 7.49 
1:1 

2.5 mM 

pH 6.85 

2 
2.5 mM 

pH 6.75 

2.5 mM 

pH 7.48 
1:1 

1.25 mM 

pH 7.19 

3 
1.25 mM 

pH 7.01 

1.25 mM 

pH 7.48 
1:1 

0.625 mM 

pH 7.27 

 

The resulting N-5-fluoropentylmaleimide-L-glutathione conjugate was analysed 

by 19F-NMR, LC-MS and high-resolution mass spectrometry. 

δF (376 MHz, CDCl3): -216.6 (ddt, J = 47 Hz, 27 Hz, 8.5 Hz) 

TOF-ESI-MS: found m/z = 493.1755 [MH]+ ([C19H29FN4O8S]+ H+ requires 

493.1769) 

LC-MS: m/z = 493.1 [MH]+ at 1.21 minutes (see LCMS conditions in 

Experimental 2.6.1) 

5-(1,3-dioxo-1,3,3a,4,7,7a-hexahydro-2H-4,7-epoxyisoindol-2-yl) pentyl 4-

methyl-benzenesulfonate (14) 

  

 

2-(5-hydroxypentyl)-3a,4,7,7a-tetrahydro-1H-4,7-epoxyisoindole-1,3(2H)-dione 

(195 mg, 0.77 mmol, 1 eq.) was dissolved in DCM (2 ml) in a round bottom flask. 

Triethylamine (294 μl, 2.1 mmol, 2.7 eq.) was added to the stirring solution. p-Toluene 

sulphonyl chloride (175 mg, 0.924 mmol, 1.2 eq.) was added to the flask and stirred at 

N

O

O

O
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room temperature for 12 hours. Solvent was removed in vacuo and the yellow oil was 

purified by flash column chromatography (100% EtOAc) to yield the 5-(1,3-dioxo-

1,3,3a,4,7,7a-hexahydro-2H-4,7-epoxyisoindol-2-yl) pentyl 4-methyl-benzenesulfonate 

precursor (236 mg, 0.58 mmol, 75%) as a crystalline white solid. 

TLC: 100% EtOAc Rf = 0.78 

m.p. = 112-113 °C 

δH (400 MHz, CDCl3): 1.29 (2H, q, J = 7.7 Hz), 1.52 (2H, q, J = 7.5 Hz), 1.65 (2H, 

q, J = 7.5 Hz), 2.45 (2H, q, J = 7 Hz), 2.83 (2H, s), 3.43 (2H, t, J = 7 Hz), 3.99 (2H, t, J = 

6.5 Hz), 5.25 (2H, s), 6.51 (2H, s), 7.34 (2H, d, J = 8.3 Hz), 7.78 (2H, d, J = 8.3 Hz) 

5-(1,3-dioxo-1,3,3a,4,7,7a-hexahydro-2H-4,7-epoxyisoindol-2-yl) pentyl 4-

nitrobenzenesulfonate (25)  

 

2-(5-hydroxypentyl)-3a,4,7,7a-tetrahydro-1H-4,7-epoxyisoindole-1,3(2H)-dione 

(450 mg, 1.79 mmol) was dissolved in dichloromethane (10 mL) under inert atmosphere. 

Triethylamine (502 uL, 3.58 mmol, 2 eq.) and 4-nitrobenzene sulphonyl chloride (475 

mg, 2.15 mmol, 1.2 eq.) were added to the flask with stirring at 0 °C. The mixture was 

stirred for 12 hours at room temperature. Solvent was removed in vacuo to yield a yellow 

oil which was purified by flash chromatography using 30:70 (EtOAc: DCM). Product 5-

(1,3-dioxo-1,3,3a,4,7,7a-hexahydro-2H-4,7-epoxyisoindol-2-yl) pentyl 4-

nitrobenzenesulfonate was collected as a pale yellow waxy solid (357 mg, 0.82 mmol, 

45%). 

TLC: 100% EtOAc Rf = 0.85 

TLC: 30:70 EtOAc:DCM Rf = 0.78 

m.p. = 132-133 °C 
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δH (400 MHz, CDCl3): 1.27 (2H, q, J = 7 Hz); 1.51 (2H, q, J = 7 Hz); 1.68 (2H, q, 

J = 7 Hz); 2.81 (2H, s); 3.42 (2H, t, J = 7 Hz); 4.01 (2H, t, J = 7 Hz); 5.21 (2H, s); 6.49 

(2H, s); 8.10 (2H, d, J = 8.4 Hz); 8.38 (2H, d, J = 8.4 Hz) 

δC (100 MHz, CDCl3): 22.3; 26.7; 28.2; 38.3; 47.4; 71.4; 80.9; 124.5; 129.2, 136.5, 

141.9, 150.8, 176.3 

TOF-ESI-MS: found m/z = 437.1084 [MH]+ ([C19H20N2O8S]+ H+ requires 

437.1019) 

2.6.2 Radiochemistry (in the Wolfson Brain Imaging Centre - Cambridge) 

 

Precursors were synthesised in the Department of Chemistry and transported to 

the Molecular Imaging Chemistry Laboratory (MICL) radiochemistry facility for 18F-

fluorination. All radioactive work was thoroughly risk assessed, checked that was in 

accordance with local rules, environmental protection agency (EPA) permit and was 

agreed upon by the local radioprotection supervisor (RPS).  

The cyclotron used for radionuclide production was a GE PETTrace negative ion 

16.5 MeV proton accelerator. Fluorine-18 was produced by bombarding 18O-water 

(18O(p,n)18F nuclear reaction) in a silver target (liquid target) with a volume 

of  approximately 1.8 ml. Irradiation with a ramping current of 15-40 uA for 3-21 minutes 

(depending on amount of fluorine-18 required) produces 1-30 GBq of H[18F]F.256 The 

activity was eluted into crimped 10 mL vials using chemically pure (CP) grade Helium 

gas (99.999%). 

Cyclotron produced fluorine-18 water and 18F-labelled organic compounds were 

measured on a Capintek CRC-15R dose calibrator. Yields of products quoted refer to 

chromatographically homogenous materials that are decay corrected to the start-of-

synthesis unless otherwise specified. Decay correction has been calculated with RadPro 

online calculator.257 
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The radiochemical yield was then calculated as the ratio between activity of 

product measured at the end of synthesis decay corrected to the start of synthesis and the 

18F activity at the start of synthesis expressed as a percentage. 

Dry solvents and reagents for radiosynthesis were purchased from Sigma-Aldrich, 

Fisher Scientific and Acros Organics and used without further purification or drying. 

Deionised water was purified by Merck Synergy UV water purification system providing 

water with a high resistivity 18.2 MΩ x cm. Sep-Pak solid phase purification (SPE) 

cartridges (Waters Sep-Pak C18 Plus Light, Alumina N Plus Light) were purchased from 

Waters. Before use, the Sep-Pak Alumina N Plus Light cartridge was eluted with 2 mL 

dry DMSO and the Sep-Pak Plus Light C18 was eluted with 2 mL ethanol followed by 

10 mL of deionised water. 

The optimised Kryptofix® 222 (4,7,13,16,21,24-Hexaoxa-1,10-

diazabicyclo[8.8.8] hexacosane) solution containing 2.5 mg K2CO3, 15 mg K222, 1.5 mL 

(95:5 ACN:water) was used for quaternary methyl ammonium (Waters Sep-Pak Accell 

plus QMA Carbonate light) cartridge elution for all 18F drying procedures. 

2.6.2.1 Manual Radiosynthesis 

Cyclotron water (~1.8 mL) containing up to 1 GBq [18F]F- was loaded on a Waters 

Sep-Pak Accell Plus QMA Carbonate light cartridge. Kryptofix® 222 solution (1.5 mL 

solution containing 2.5 mg K2CO3, 15 mg K222, 95:5 ACN:water)  was eluted through the 

cartridge into a Wheaton V-shaped vial. Azeotropic drying was performed at 95 °C under 

a flow of N2 (~100 mL/min) using 2 mL dry ACN added in 3 x 0.67 mL portions. 

Subsequent 18F-fluorination reactions were carried out in Wheaton V-shaped vials under 

inert atmosphere (N2) using a heating block in a lead lined fume hood.  

2.6.2.2 Automated Radiosynthesis 

Remote controlled module-assisted radiosynthesis was carried on either Advion 

NanoTek microfluidic system or GE Healthcare TRACERlab FXFN automated systems 

operated in lead shielded ‘hot’ cells. These modules were used for both optimising 

reaction conditions and for large-scale tracer production.  
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The Advion NanoTek system is composed of three individual modules: the 

NanoTek CE for drying the fluoride, the NanoTek LF that holds 2 reagents in syringes 

and the MinuteMan LF that holds up to 4 microreactors. Experiments were run remotely 

from a PC using the Nanotek 1.4.0 software. Nitrogen (2 bar) flow was used to dry 

fluoride at 95 °C in the presence of Kryptofix® 222. 

 

Figure 47. Advion NanoTek modular automated synthesiser in a lead shielded hot cell. 

i. Using Advion NanoTek module to synthesise [18F]SFB from 2-thiophenyl 

iodonium precursor 1  

Below, you can see a diagram (Figure 48.) of the system used for 18F-fluorination 

of precursor 1 to produce [18F]SFB. P1 is the valve connecting the pump used for 

iodonium precursor 1 delivery to the flow reactor. P3 is the valve connecting the 

concentrator V shaped vial used for 18F fluoride drying to the reactor.  
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Figure 48. Schematic of the arrangement of pumps, lines and valves on an Advion Nanotek. 

The [18F]fluoride water was received in a sealed vial and then placed in the hot 

cell and connected to the system. The concentrator pump passes the aqueous 18F-water 

through a Waters Sep-Pak QMA carbonate light cartridge where it was trapped. A 

solution of K222/K2CO3 (15 mg/2.5 mg) in MeCN/H2O (9:1 (v/v), 450 μL was used to 

elute the K[18F]F from the QMA into the concentrator. Upon heating to 95 °C and using 

a stream of argon (2 ml/s) the fluoride is dried. It is then resuspended in dry acetonitrile 

(500 μL) and loaded in loop 3 by pump 3. The iodonium precursor (5 mg), dissolved in 

dry DMF or DMSO (500 μL), is loaded in loop 1. The synthesis begins by mixing both 

solutions in a 1:1 ratio in the two heated reactor loops with a total volume of 31.4 μL as 

per the Table 12 below: 

 

 

 

 

 

Document Name: Date: Document Number: Revision: 

User Manual NanoTek 07-08 05/19/2008 800-0009 C 

 

Page 10 of 66 Uncontrolled Document Advion 
BioSystems 

 

5.5 STANDARD SYSTEM PLUMBING DIAGRAM (AUTOMATIC DISCOVERY) 
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Table 12. Reaction conditions used to generate [18F]SFB from precursor 1 using Advion NanoTek 

Reaction# 
Temperature 

(°C) 

Pump 3 
volume 

(μL) 

Pump 1:  

Pump 3 

ratio 

Rate 

(μL/min) 

1 130 100 1:1 30 

2 150 100 1:1 30 

3 160 100 1:1 30 

4 170 100 1:1 30 

5 190 100 1 30 

 

ii. GE Healthcare TRACERlab FXFN synthesis 

GE Healthcare TRACERlab FXFN automated synthesizer was coupled to an 

external UV diode array detector set at 220 nm. The automation rig required compressed 

air (5 bar), nitrogen (2 bar) and helium (1.5 bar) gases for every synthesis. Semi-prep 

HPLC for radioactive prosthetic groups was performed on a reverse phase Sigma-Aldrich 

SUPELCOSIL LC-18 (250 mm x 10 mm) column using a SYKAM S1122 dual piston 

solvent delivery system, which was remotely controlled through the TRACERlab FXFN 

software (see Figure 49). 
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Figure 49. GE Healthcare TRACERlab FXFN Windows XP control screen. It allows manual control 

over each valve and automated control through pre-programmed macros controlling valves, HPLC and gas 

flow.  

A) Vial loading on GE TRACERlab FXFN for [18F]FBEM preparation (see Figure 49 

for position reference) 

Cartridge #1 QMA – Waters Sep-Pak Accell Plus QMA Carbonate Plus Light cartridge 

Vial 1 – 1.5 mL Kryptofix
®
 222 (2.5 mg K2CO3, 15 mg K222, 1.5 mL 95:5 (v/v) ACN: H2O) 

Vial 2 – dry ACN (2 mL) 

Vial 3 –  Ethyl 4-(trimethylammonium triflate) benzoate precursor (5 mg,) in dry DMF (1 mL) 

Vial 4 – NaOH (0.1 M, 1 mL), in syringe outside hotcell HCl (1 M, 0.7 mL) 

Vial 5 – DMSO (0.5 mL), NH4OAc buffer (150 mM, 1 mL, pH 6.8) + ascorbic acid (2 mg/mL) 

+ AcOH (10 µL), final buffer pH 4.12 

HPLC Vial – NH4OAc buffer (150 mM, 2 mL, pH 6.8) + ascorbic acid (2 mg/mL) and AcOH (20 

µL), final buffer pH 4.12 
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2.6.2.3 2-[18F]fluoroethyl azide production (22) 

 

Vial loading on GE TRACERlab FXFN for 2-[18F]fluoroethyl azide preparation 

(see Figure 49 for position reference) 

Cartridge #1 QMA – Waters Sep-Pak Accell Plus QMA Carbonate Plus Light cartridge 

Vial 1 – 1.5 mL Kryptofix
®
 222 (2.5 mg K2CO3, 15 mg K222, 1.5 mL 95:5 (v/v) ACN: H2O) 

Vial 2 – dry ACN (2 mL) 

Vial 3 – azide tosylate precursor 4 (5 mg, 15.2 µmol) in dry DMF (1 mL) 

 

Using a preprogrammed sequence (details in Appendix 8.1) on a GE TRACERlab 

FXFN, precursor 4 (5 mg, 15.2 µmol) in dry DMF (1 mL) was added to dried K[18F]F-

Kryptofix 222 (2 GBq –  start-of-synthesis). The mixture was stirred at 88 °C for 10 min 

then distilled over to a separate vial in an adjacent hot cell. 2-[18F]fluoroethylazide was 

collected with a radiochemical yield of 8±3% (decay corrected, n = 3).  

2.6.2.4 [18F]C2Am-PEG4-DBCO (26 and 27) 

 

A 2-[18F]fluoroethylazide solution (260 MBq at end of synthesis) was dissolved 

in PBS (15 µL) and added to C2Am-PEG4-DBCO (4.5 mg/ml, 278 µM, 5 µL) in a ratio 

of 1:4 v/v to yield a final crude protein solution (1.1 mg/ml, 70 µM) and allowed to react 
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for 30 min at room temperature. The crude mixture was analysed by HPLC and the UV 

and radiochromatogram shown in Figure 26. 

2.6.2.5 [18F]FPenM production (24) 

 

i. Vial loading on GE TRACERlab FXFN for [18F]FPenM preparation (see 

Figure 49 for position reference) 

Cartridge #1 QMA – Waters Sep-Pak Accell Plus QMA Carbonate Plus Light cartridge 

Cartridge #2 Intermediate – Waters Sep-Pak Alumina N Plus light cartridge 

Cartridge #3 SPE – Waters Sep-Pak Plus Light C18 cartridge 

Vial 1 – 1.5 mL Kryptofix
®
 222 elution solution (2.5 mg K2CO3, 15 mg Kryptofix K222, 1.5 mL 

95:5 (v/v) ACN: H2O) 

Vial 2 – ACN (2 mL) dried over molecular sieves  

Vial 3 – mesylate 5 (5 mg, 15.2 µmol, 15.2 mM) in dry DMSO (1 mL) 

Vial 4 – Methanesulfonic acid (20 µL) in dry DMSO (0.5 mL) 

Vial 5 – DMSO (0.5 mL), NH4OAc buffer (150 mM, 1 mL, pH 6.8) + ascorbic acid (2 mg/mL) 

+ AcOH (10 µL), final buffer pH 4.12 

HPLC Vial – NH4OAc buffer (150 mM, 2 mL, pH 6.8) + ascorbic acid (2 mg/mL) and AcOH (20 

µL), final buffer pH 4.12 

Vial 6 – None  

Vial 7 – None 

Vial 8 – EtOH (0.3 mL) 

Vial 9 – HBS buffer (1 mL, pH 7.4) 

Dilution Flask – NH4OAc buffer (50 mM, 30 mL, pH 6.8) + ascorbic acid (1 mg/mL) +  

AcOH (300 µL), final buffer pH 3.65 

Product vial – HBS buffer (100 µL, pH 7.4) + ascorbic acid (1 mg/mL), final buffer pH 4.5 

HPLC Solvent – 38:62 ACN (183 mL): NH4OAc buffer (50 mM, 30 mL, pH 6.8) + ascorbic acid 

(0.1 mg/mL) + AcOH (300 µL), final buffer pH 5.6-5.7 
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ii. Automated synthesis of [18F]FPenM 

  

Using a preprogrammed sequence (details in Appendix 8.2) on a GE TRACERlab 

FXFN, precursor 5 (5 mg, 15.2 µmol) in dry DMSO (1 mL) was added to dried K[18F]F-

Kryptofix 222 (27±1 GBq – start-of-synthesis). The mixture was stirred at 92 °C for 12 

min then added methanesulfonic acid (20 µL) in dry DMSO (0.5 mL) and heated at 160 

°C for 6 min. Reaction mixture was cooled down to < 35 °C and moved by positive 

pressure to the HPLC vial through a pre-activated (by DMSO, 2 mL) Waters Sep-Pak 

Alumina N Plus light cartridge. The HPLC vial was pre-filled with NH4OAc solution (22 

mg NH4OAc, 2 mL H2O) with ascorbic acid (4 mg) and AcOH (20 µL). Reactor was 

washed with 0.5 mL DMSO and NH4OAc solution (11 mg NH4OAc, 1 mL H2O, 150 

mM) with ascorbic acid (2 mg) and AcOH (10 µL). The solution from HPLC vial 

containing prosthetic tracer (5 mL) was loaded on the HPLC column and purified with an 

isocractic flow of 3 mL/min of 38% ACN in 50 mM NH4OAc (with 1% ascorbic acid and 

1% AcOH). The purified peak at around 14 min (see purification chromatogram in 

Appendix 8.3) was collected and diluted in the SPE flask containing NH4OAc solution 

(50 mM, 115 mg NH4OAc, 30 mL, pH 5.6) with ascorbic acid (30 mg) and AcOH (300 

µL). The solution was flowed through an ethanol/water (2 mL/10 mL) pre-activated Sep-

Pak Plus Light C18. Ethanol 0.3 mL and HBS 1 mL were flowed through the cartridge to 

elute N-(5-[18F]fluoropentyl)maleimide ([18F]FPenM) (~ 2 GBq – end-of-synthesis, 1.3 

mL). This was produced in 58±5.8 min (n = 12) a moderate radiochemical yield (12±3%, 

decay corrected to start-of-synthesis, n = 11) and high radiochemical purity (95±3.4% by 

radio-HPLC, n = 11). Specific (1144±161 GBq/mg (n = 3)) and molar activities 

(212000±30000 MBq/µmol (n = 3)) of [18F]FPenM were determined by UV-HPLC 

monitoring at 220 nm.  
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Figure 50. HPLC of [18F]FPenM showing the radiochromatogram. Peak 4 at 10.1 minutes 

represents [18F]FPenM. 

2.6.2.6 N-(5-[18F]fluoropentyl)maleimide-C2Am ([18F]FPenM-C2Am) 
bioconjugation 

  

C2Am (123 µg, 25.6 µl, 7.58 nmol, 297 µM) was conjugated to 24(150 µL, 359 

MBq) to yield, after gel filtration, N-(5-[18F]fluoropentyl)maleimide-C2Am (56.1 µg, 

3.42 nmol) with a conjugation yield of 87±4.3% (n = 5) by radio-HPLC. Crude N-(5-

[18F]fluoropentyl)maleimide-C2Am solution (175.6 µL, 42.7 uM) was purified by 

manual loading on a Sephadex G-25 desalting cartridge (PD-10, Illustra NAP-5; GE 

Healthcare Life Sciences) and gravity filtered and collected 3 fractions. 1st fraction was 

eluted with PBS (300 µl) was discarded as it did not contain any activity. The 2nd fraction 

(~100 MBq end-of-purification, 56.1 µg, 3.42 nmol, 550 µl, 5.7 µM) was eluted with PBS 

(550 µl) to yield the >99% pure (by radio HPLC) [18F]FPenM-C2Am. The molar activity 

of [18F]FPenM-C2Am was 29500±10600 MBq/µmol (n=5) (1.8±0.65 MBq/µg) at the 

end-of-synthesis (conjugation and purification) and ~16600 MBq/µmol (~1 MBq/µg) at 

S
C2Am N

O

O
18F

[18F]FPenM-C2Am
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the time of injection. The 3rd fraction (~50 MBq at end-of-purification) was eluted with 

PBS (1 mL). NAP-5 cartridge (~80 MBq at end-of-purification) was also counted and 

then discarded. Merck Direct Detect Infrared spectrometer was used to determine protein 

concentration. 

Analytical reverse-phase HPLC was carried out on a UHPLC+ Thermo Scientific 

Dionex UltiMate 3000 and data interpreted with Chromeleon 7 software (version 

7.2.0.3765). The instrument equipped with a Primesphere C18-HC 110A (250 x 4.6 mm, 

5μm; Phenomenex) analytical column was used for HPLC QC analysis of small organic 

18F-labelled prosthetic groups running a 10 minute 5-95% ACN:H2O gradient running at 

1 ml/min followed by 3 minutes of 5:95 ACN:H2O column re-equilibration wash.  

An xBridge BEH 125A (7.8 x 300 mm, 3.5 μm; Waters) size exclusion column 

(SEC) was used for protein HPLC QC runs. 100% PBS isocratic run at 0.7 ml/min flow 

rate for 45 minutes. 10% acetonitrile was added between 20 and 40 minutes. 

2.6.3 Protein reduction and storage (CRUK – Cambridge Institute) 

All buffers used were made up by the core facilities according to standard recipes. 

Solvents, reagents and media were used as provided from the vendors without further 

purification. Thermo Scientific Heraeus Fresco 21 microcentrifuge was used for 

concentrating reduced C2Am using Amicon Ultra 0.5 mL 3 kDa centrifugal filter 

cartridges and for forming cell pellets.  

Analytical size exclusion HPLC was carried out, in the molecular imaging 

chemical laboratory, on a UHPLC+ Thermo Scientific Dionex UltiMate 3000 and data 

interpreted with Chromeleon 7 software (version 7.2.0.3765). A xBridge BEH 125A (7.8 

x 300 mm, 3.5 µm; Waters) size exclusion column (SEC) was used with 100% PBS and 

0.7 ml/min flow rate for 45 minutes; 10% acetonitrile was added between 20 and 40 

minutes to elute any small organic molecules. 

2.6.3.1 C2Am protein reduction reaction and storage 

Recombinant C2Am was expressed as a GST fusion protein in E. coli and purified 

by affinity chromatography by Dr André Neves, Senior Research Associate of the Brindle 

group, and provided as a solution in HBS (20 mM HEPES, 100 mM NaCl, 5mM EDTA, 
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pH 7.4) containing 5 mM 1,4-dithiothreitol (DTT) and 5 mM ethylenediaminetetraacetic 

acid (ETDA).  

A solution of C2Am (1.43 mg in 50 μL, 1.76 mM) was reduced with a 10 mM 

DTT (0.6 mg, 3.8 μmol) in PBS (400 μL) at room temperature for 30 minutes. The 

mixture was loaded in an Amicon Ultra 0.5 mL 3 kDa centrifugal filter cartridge and 

passed through the filter by centrifugation at 14,000 g for 25 minutes. Protein was 

dissolved in PBS (400 μL) and the spin-filtration wash repeated 2 times. The protein was 

concentrated to a final solution (70 μL, 1.43 mg, 1.29 mM) and aliquoted in 14 low protein 

binding 0.5 mL Eppendorf tubes, each containing reduced C2Am (5 μL, 143 μg, 1.29 

mM) under inert atmosphere (Argon). Vials were stored in a – 80 °C freezer. 

2.6.3.2 Synthesis of N-5-fluoropentylmaleimide-C2Am HPLC standard (28) 

iii.  

To C2Am (7 μL, 143 μg, 8.8 nmol, 1.26 mM) was added N-(5-

fluoropentyl)maleimide (0.166 μg, 9 μM, ~1000 eq.) in PBS (100 μL) and left to react at 

room temperature for 2 hours. The mixture was loaded in an Amicon Ultra 0.5 mL 3 kDa 

centrifugal filter cartridge and passed through the filter by centrifugation at 14000 g for 

25 minutes. Protein was dissolved in PBS (400 μL) and the process repeated 3 times. The 

protein was concentrated to a final solution (75 μL, 1.43 mg, 1.29 mM). Mass 

spectrometry on the protein samples were run in the Department of Chemistry on a Waters 

Xevo SQD2 instrument. LC-MS and HPLC chromatograms of N-(5-

fluoropentyl)maleimide conjugated C2Am can be found in the Appendix 8.7, 8.8. 

TOF-ESI-MS: C2Am (reduced) m/z = 16222.5 [MH]+  

TOF-ESI-MS: N-(5-fluoropentyl)maleimide-C2Am conjugate m/z = 16408.5 [MH]+ 

S
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28
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3 IN VITRO STUDIES USING 

[18F]FPENM-C2AM  IN 

BREAST AND COLORECTAL 

CANCER CELL LINES 

3.1 Introduction 

 

Alam et al.99 and Xie et al.258 have shown previously that fluorescently-labelled 

derivatives of C2Am can be used as imaging probes for the detection of cell death, using 

flow cytometry, following chemotherapy treatment. Cell death, induced by DNA 

intercalating agents (e.g. doxorubicin and etoposide), was detected in two cancer models, 

by a membrane integrity marker (SYTOX® green nuclear staining) and shown to correlate 

with increased binding of fluorescently-labelled  C2Am-AF64799. 

Flow cytometry allows heterogenous populations of cells to be discriminated and 

separated based on their physical properties (e.g. cell size, cell shape, relative 

fluorescence intensity). Cells are scanned by multiple lasers as they pass individually 

through a narrow flow chamber. This allows the cytometer to sort cells based on the 

detected properties. (see Figure 51) 
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Figure 51. Schematic diagram of a flow cytometer. Cells flow in a single file through a flow 

chamber where a set of perpendicular laser light beams passes through. The optical properties of cells are 

detected by analysing scattered incident light. Detectors such as forward-, side-scatter and other fluorescent 

optical detectors (optical mirrors and filters selectively allow the passage of light of different wavelengths) 

convert the light into electrical signals which are then interpreted by dedicated software (e.g. BD 

FACSDiva). Schematic adapted from Creative Diagnostics – Flow cytometry guide.259  

In this study, the extent of cell death induced by activation of the tumour necrosis 

factor TNF-related apoptosis-inducing ligand receptor 2 (TRAIL-R2) was assessed. 

MEDI3039, a TRAIL-R2 agonist, was used to induce apoptosis, via the extrinsic 

pathway, in models of triple-negative breast (MDA-MB-231-D) and colorectal (Colo205-

D) cancer. Apoptosis was assessed indirectly via the reduction in cellular NADH 

autofluorescence and concomitant increase in SYTOX® green nuclear stain fluorescence. 

Depletion of NADH autofluorescence occurs in dying cells and can be detected in the UV 

(Excitation λ = 335-350 nm; Emission λ = 440-470 nm) by flow cytometry and used to 

discriminate between dying and viable cells.99,260 The DNA damage that occurs as a result 

of cytotoxic treatment induces the activation of poly-ADP-ribose polymerase (PARP). 

NAD+ is a substrate for PARP1, the most abundant family member, which catalyses 

multiple transfers of the ADP-ribose part of NAD+ to acceptor proteins thus forming 

poly(ADP-ribose)-protein. These poly(ADP-ribose) moieties interact with DNA to 
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facilitate access for the repair mechanism to take place.261 As a consequence of formation 

of poly(ADP-ribose), NAD+ and consequently NADH are depleted from cells.262  

The two human cancer cell lines, Colo205 and MDA-MB-231 (in short MDA) 

were chosen because of their fast doubling times in vitro and their rapid growth when 

implanted as xenografts mice. The cell lines were transduced with a lentiviral vector to 

express firefly luciferase (for bioluminescence measurements, see Scheme 19) and a red-

fluorescent protein (mStrawberry). Cells that expressed consistently high levels of 

mStrawberry were selected by fluorescence-activated cell sorting (FACS).263 These 

transfected cell lines have been named Colo205-Dual and MDA-MB-231-Dual and were 

obtained from Dr Susana Ros, Research Associate in the Brindle group. Bioluminescence 

imaging (BLI) differs from fluorescence imaging (FLI), in that light is emitted as a result 

of an enzymatic oxidative decarboxylation reaction rather than from a light absorbing and 

emitting fluorophore. BLI was performed in vivo post implantation of a xenograft in the 

mouse, and upon intraperitoneal (i.p.) injection of D-luciferin, the substrate for the 

enzyme (firefly luciferase or fLuc), which requires oxygen and ATP as co-factors. 

Bioluminescence produced by the tumour cells can be detected and quantified and 

consequently tumour formation, growth and viability can be assessed non-invasively over 

time.   

 

Scheme 19. Bioluminescence light emission upon biochemical oxidation of D-luciferin to 

oxyluciferin in the presence of firefly luciferase. Note that the availability of O2 and ATP is critical for the 

reaction. 264 PPi = pyrophosphate ; AMP = adenosine monophosphate  

MEDI3039 induces cell death by activating tumour necrosis factor (TNF)-related 

apoptosis-inducing ligand receptor 2 (TRAIL-R2,265,17 which are overexpressed in some 
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human tumour cells, including colorectal and breast carcinomas. Upon activation, the 

receptor trimerizes, internalizes and triggers a cascade of biochemical pathways which 

lead to the activation of caspase-8, resulting in apoptosis.266 Nikoletopoulou et al. have 

suggested that ATP concentration, upon trigerring cell death, regulates the balance 

between apoptosis and necrosis.267 High levels of ATP are required for the cells to 

undergo apoptosis, whereas low ATP levels leads to necrosis hence ATP cellular level 

acts a switch between apoptosis and necrosis.268  Activating TRAIL-R2 receptors leads 

to DNA damage, which in turn activates PARP1, consuming the NAD(H+) pool, leading 

to depletion of ATP and triggering of necrosis. 

3.2 Monitoring cell death following treatment using fluorescence 

imaging 

 

Colo205-D and MDA-MB-231-D were cultured in RPMI-1640 and DMEM media 

respectively, both media were supplemented with 10% FBS. Cell viability was 

determined initially using a Vi-CELL cell viability analyser, which detects viability via 

the Trypan Blue dye exclusion method269. Flow cytometry was then used to accurately 

determine cell viability 24 hours post treatment with different concentrations of 

MEDI3039 in the two cancer cell lines, where cell membrane integrity was assessed by 

staining with SYTOX® green (50 nM). 

3.2.1 Assessment of MDA-MB-231-D cell viability using SYTOX® green 

following incubation of the cells with MEDI3039 (10 pM)  

MDA-MB-231-D cells were incubated with MEDI3039 (10 pM) for 24 hours and 

then with SYTOX® green (50 nM) at 37 °C for 10 minutes. Cells were harvested and after 

washing, the extent of cell death was assessed by flow cytometry.  

Data presented in Figure 55 shows NADH autofluorescence (Excitation λ = 350 

nm; Emission λ = 475 nm, measured at 450 nm) and SYTOX® green fluorescence 

(Excitation λ = 504 nm; Emission λ = 523 nm) (n= 3). The scatter plot of NADH 

autofluorescence versus SYTOX® green fluorescence allowed differentiation of three cell 

populations: viable, apoptotic, and necrotic cells (Figure 52E and F).  
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Following MEDI3039 treatment, MDA cell viability dropped significantly from 

88 to 17% (P < 0.0001) and necrosis increased significantly from 8 to 75% (P = 0.0005). 

Apoptosis increased from 5 to 8% (P < 0.01). (see Figure 52 and Figure 55).  

Statistical analysis was performed using unpaired two-tailed t-test with Welch’s 

correction. These results suggest that MDA cells die predominantly by necrosis following 

treatment with the TRAIL-R2 agonist. A confirmation of the viability for the control cells 

was done using a Vi-CELL cell analyser. This gave a viability of 94.8%, slightly higher 

than the viability obtained from flow cytometry (87.9±1.6%). 
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Figure 52. Histograms A (control) and B (treated with MEDI3039 10 pM) show significantly 

increased SYTOX® green nuclear stain emission (530 nm) upon treatment (overlay of 3 replicates). 

Histograms C (control) and D (treated) show significant reduction of NADH autofluorescence (450nm) 

upon treatment (overlay of 3 replicates). Scatter plots E (control) and F (treated) showing rectangular gates 

which split the cell population into viable cells, apoptotic cells and necrotic cells by plotting NADH 

autofluorescence against SYTOX® green fluorescence.  
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3.2.2 Assessment of MDA-MB-231-D cell viability using SYTOX® green 

in cells incubated with MEDI3039 (5 pM)  

This experiment used half the concentration of MEDI3039 (5 pM) to induce cell 

death in MDA-MB-231-D cells for 24 hours and its outcome was assessed by flow 

cytometry, as described in the previous section (see Figure 53). 

In this case viability dropped significantly (P < 0.001) from 79 to 38% and necrosis 

increased significantly from 15 to 49% (P < 0.001). Apoptosis increased from 4 to 12% 

(P < 0.05). Further details are presented in Figure 55.  These results reinforce the idea that 

MDA cells undergo cell death via necrosis in the presence of the TRAIL-R2 agonist.  

 

Figure 53. Scatter plots showing SYTOX® green (50 nM) stained MDA-MB-231-D control cells 

(left) and treated cells (right) with MEDI3039 (5 pM). Rectangular gates split the cell population into viable 

cells, apoptotic cells and necrotic cells by plotting NADH autofluorescence (emission at 450 nm) against 

SYTOX® green fluorescence (emission at 530 nm).  

 

3.2.3 Assessment of Colo205-D cell viability using SYTOX® green in cells 

incubated with MEDI3039 (5 pM) 

MEDI3039 (5 pM) was used to induce cell death in Colo205-D cells for 24 hours 

and the outcome assessed by flow cytometry using the same parameters as described 

previously (see Figure 54). 
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Figure 54. Scatter plots showing Colo205-D cell viability (by NADH UV autofluorescence at 450 

nm) and cell membrane integrity (SYTOX® green emission at 530 nm) of control (left plot) and cells treated 

with 5 pM MEDI3039 (right plot).  

 

Colo205-D cell viability dropped significantly, from 83 to 4%. Moreover, cells 

were undergoing both necrosis 48% and apoptosis 48%. At this drug concentration (5 

pM) cell viability was only 4% after 24 hours of treatment. Upon assessing the level of 

side scatter and forward scatter (area), only 57% of the events detected by the cytometer 

were cells while the rest were cell debris.  

The collated data are shown in Figure 55 for Colo205-D and MDA-MB-231-D 

cells treated with MEDI3039 (at 5 or 10 pM).  
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Figure 55. Plots showing extent of cell death upon MEDI3039 treatment of the two cancer cell 

types. Plot A shows the average % of events identified as cells; B shows the average % of viable cells. C 

the average % of apoptotic cells; D the average % of necrotic cells. Data are mean ± SEM (n = 3, per group 

and the error bars lie within the symbols when not visible). Statistical analysis was performed using 

unpaired two-tailed t test with Welch’s correction. (*P<0.05, **P<0.005, ***P<0.0005, ****P<0.0001); 
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In conclusion, MEDI3039 induces cell death in both cancer cell lines. MDA cells 

undergo cell death predominantly by necrosis whereas Colo205-D cells undergo cell 

death via both apoptosis and necrosis.  

Viability of control and treated cells was also assessed by automated (Vi-CELL) 

cell analyser (Table 13). In the case of MEDI3039 (5 pM) treated MDA-MB-231-D cells, 

Vi-CELL consistently overestimated viability (87%) compared to flow cytometry (38%). 

This is due to Vi-CELL not being able to differentiate between healthy cells and apoptotic 

ones hence it considers them as healthy cells, as it doesn’t have the capability to monitor 

NADH absorbance. It therefore overestimated true cell viability.  

A direct comparison between trypan blue staining (assessed with Vi-CELL) and 

SYTOX green staining (flow cytometry) on MDA-MB-231-D cells treated with 

MEDI3039 (5 pM) then again Vi-CELL would overestimate the viability showing 87 and 

51% respectively. A small contributor to this variability was due to the inherent properties 

of the cell death markers themselves. A study showed that trypan blue overestimates cell 

viability by up to 35% upon comparison with acridine orange/propidium iodide.270 

A similar pattern was observed with Colo205-D where Vi-CELL showed a 

viability of 68% compared to the true cell viability resulted from the flow cytometry 

reading of 4%. If compared directly: trypan blue (Vi-CELL) vs SYTOX green staining 

(flow cytometry) and excluding NADH indicator of apoptosis viability was again 

overestimated showing 68 (Vi-CELL) and 54% (flow cytometry) respectively.  

For the Vi-CELL analysis, another observation was that the size of the treated 

Colo205-D cells decreased after treatment and the apparent number of cells doubled. This 

was likely the result of the formation of apoptotic cell bodies. 

 

 

 

  



 

Flaviu Bulat – October 2019   125 

 

Table 13. Cell viability assessed after MEDI3039 (5 pM) using Vi-CELL analyser.  

  Total cells 
counted 

Viable 

cells 

counted 

Viability 
(%) 

Total cells 
/ml (x10^6) 

Viable 
cells 
/ml 
(x10^6) 

Avg. diam. 
(microns) 

Avg. 
surface 
per cell 
(microns2) 
 

MDA-MB-

231-D 

Treated 

3346 2920 87.3 3.62 3.16 14.18 632 

MDA-MB-

231-D 

Control 

4187 4086 97.6 4.53 4.42 14.01 617 

Colo205-D 

Treated 
10201 6888 67.5 11.05 7.46 8.99 254 

Colo205-D 

Control 
5327 4675 87.8 5.77 5.06 13.48 571 

 

3.3 Labelling dying tumour cells using [18F]FPenM-C2Am  

 

Cell labelling experiments were performed using the radioactive tracer 

[18F]FPenM-C2Am, described in subchapter 2.4. Radiotracer uptake by MEDI3039-

treated and control cells was determined using gamma counting. The labelling process of 

apoptotic/necrotic cells with [18F]FPenM-C2Am at a molecular level is shown in Scheme 

20.  
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Scheme 20. Labelling apoptotic and necrotic tumour cells with [18F]FPenM-C2Am following 

MEDI3039 treatment. Phosphatidylserine is exposed by the apoptosis/necrosis induced by MEDI3039 

treatment. [18F]FPenM-C2Am is represented by the orange c-shape object tagged by the radioactive trefoil. 

PS = phosphatidylserine 

The total activity of [18F]FPenM-C2Am added to the cells was measured using a 

radioisotope dose calibrator (Capintek CRC-15R), which allows a wide range of activities 

to be detected (0.1 MBq – 200 GBq).  

The activity adhering to cells was measured with an Automatic Gamma Counter 

(AMG, Hidex) equipped with a highly sensitive 3-inch well-shaped NaI scintillation 

detector with a maximum activity detection of ~0.1 MBq. Activity is detected as light 

emitted by the scintillation cystal upon exposure to incident high energy gamma photons, 

beta or alfa particles. This set-up has a higher dead time compared to the ionisation 

chamber used in the dose calibrator due to the decay time of the scintillation light, which 

lasts 0.23 µseconds. Since the two radioisotope detectors (gas ionisation vs. scintillation 

counter) operate over a different activity range calibration against the same source was 

not possible. Therefore, a serial dilution was performed, starting from a known activity 

measured by the well counter. The serial dilution was then measured on the AMG and 
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compared to the measurements on the Capintek dose calibrator to determine the counting 

efficiency of the gamma counter. The Hidex gamma camera showed a 28% efficiency in 

relation to the Capintek dose calibrator. All the results reported below are corrected by 

this factor. 

3.3.1 Labelling MDA-MB-231-D cells with [18F]FPenM-C2Am  

Inevitably, due to the very low concentration of [18F]FPenM and the presence of 

fluorine-19 contamination, conjugation of C2Am does not lead to 100% labelled protein. 

Therefore [18F]FPenM-C2Am contains a mixture of [18F]FPenM-C2Am, [19F]FPenM-

C2Am, C2Am, and C2Am-S-S-C2Am dimer.  The quoted concentrations for 

[18F]FPenM-C2Am refer to the concentration of the protein in this mixture. 

All the radioactivity measurements were decay-corrected to the start time of 

[18F]FPenM-C2Am addition. Background radiation was measured prior to the  run and 

subtracted from the analysed samples.  

MDA-MB-231-D control cells and cells treated with MEDI3039 (10 pM for 24 

hours) (n = 3, passage no. 15) were harvested, counted and viability assessed with a Vi-

CELL analyser. The cells were re-suspended in labelling buffer (1 mL HBS with 1% FBS 

and 2 mM CaCl2) and incubated with [18F]FPenM-C2Am (~10, 5 and 1 μM, 11-7 MBq, 

Am = 10500 MBq/µmol at the start of labelling) at 37 °C for 20 minutes. Cell pellets were 

washed three times with labelling buffer (1 mL) and counted for 1 minute using the AMG 

set to monitor the fluorine-18 gamma emission (511 keV). The results in Figure 56 show 

that there was a significant (P = 0.0011) difference in uptake of [18F]FPenM-C2Am 

between control and treated MDA-MB-231-D cells. The error bars were large due to the 

addition of three different [18F]FPenM-C2Am concentrations 1, 5 and 10 μM in each 

experiment ranging from 7 to 11 MBq which resulted in different activities retained per 

million cells.  However, the activity ratio between control and treated cells was constant 

at 4.3±0.6 (standard error of the mean, n=3). 
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Figure 56. Binding of [18F]FPenM-C2Am to control and MEDI3039-treated (10 pM) of MDA-

MB-231-D cells. The average % of total activity retained by the cell pellet is shown. Statistical analysis 

was performed using a paired two-tailed t test (**P<0.005). Average ratio between control and treated, 

signal to baseline ratio (SBR) was 4.3±0.6. Data are mean ± SEM (n = 3, per group). 

The effect of [18F]FPenM-C2Am concentration (Am = 24300 MBq/µmol at start 

of labelling) is shown in Figure 7. There was consistently more than a 2-fold difference 

in uptake of [18F]FPenM-C2Am between control and treated cells at all the different tracer 

concentrations.  

 

Figure 57. Labelling of MEDI3039-treated and control MDA-MB-231-D cells with different 

concentrations of [18F]FPenM-C2Am. Plots show the % of total activity retained per million cells for each 

of the five [18F]FPenM-C2Am concentrations.  
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3.3.2 Labelling Colo205-D cells with [18F]FPenM-C2Am  

Colo205-D cells were subjected to the same labelling protocol as the MDA cells. 

(see Figure 58). However, due to the extensive cell death generated by MEDI3039 

treatment (at 5 pM), as shown in the fluorescence experiments, pelleting the cell 

preparation by centrifugation was difficult. Therefore, washes were performed carefully 

so as not to remove any apoptotic/necrotic cells. The pellet required double the 

centrifugation force (1800 vs 900g) compared to MDA cells in order to obtain a pellet. 

Probably because of this, the data for percentage of retained [18F]FPenM-C2Am activity 

per million cells (Figure 58) out of total activity added per million cells was not as 

consistent for the Colo205-D cells as it was for MDA-MB-231-D cells. However, the 

ratio of [18F]FPenM-C2Am activity uptake between control and treated cells showed at 

least a 2-fold increased uptake by treated cells as compared to control cells. 

 

Figure 58. Labelling of MEDI3039-treated (5 pM) and control Colo205-D cells with different 

concentrations of [18F]FPenM-C2Am. Plots showing the % of activity retained per million cells out of the 

total activity added for each of the five [18F]FPenM-C2Am concentrations.  The plot also shows the binding 

ratio for treated and untreated cells for each [18F]FPenM-C2Am concentration. Data are mean ± SEM (n = 

2, per group) 
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3.4 Conclusion 

MDA-MB-231-D and Colo205-D cells showed distinct cell death profiles in 

response to treatment with MEDI3039 (5 pM). MDA cells died predominantly by 

necrosis (46±2%) whereas Colo205-D cells showed 48±3% apoptosis and 48±2% 

necrosis post treatment. Intriguingly, Colo205-D seemed to respond much better than 

MDA upon MEDI3039 (5 pM) treatment as only 57±4% of events observed on the flow 

cytometer were cells, the rest were cell debris. Therefore, 5 pM MEDI3039 drug was too 

high for observation of moderate levels of Colo205-D cell death at 24 hours.  

Labelling of MDA-MB-231-D cells with [18F]FPenM following treatment with 

MEDI3039 (10 pM) showed that the percentage of total [18F]FPenM activity in the cell 

pellet was significantly (P<0.005) greater in the treated than the control cells. This was 

encouraging for the prospect of using [18F]FPenM as a PET tracer for imaging cell death 

in vivo. 

Finally, Colo205-D was highly apoptotic and necrotic within 24 hours following 

treatment with MEDI3039 (5 pM) and significant disintegration of the cells had occurred. 

Cell labelling experiments with a range of [18F]FPenM concentrations, from 1 nM to 1000 

nM, showed a significant difference in uptake between control and treated cells, 

confirming the potential of  [18F]FPenM for imaging cell death in vivo. 

In conclusion, based on these cells experiments, [18F]FPenM-C2Am showed 

promise as a potential tracer for imaging cell death in vivo.  

3.5 Experimental 

 

All buffers used were prepared by the CRUK Cambridge Institute core facilities. 

Solvents, reagents and media were used as provided from vendors without further 

purification. MEDI3039 TRAIL-R2 agonist (85 kDa) was received from MedImmune. 

SYTOX® green (Invitrogen cat. no. SKU#S7020), 5 mM in DMSO (stored at – 20 °C in 

0.5 µL aliquots) was diluted 1000x (0.5 µl in 495 µl of DMSO) to to yield a 5 µM stock 

solution. 
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Cell cultures were monitored daily using a Nikon Eclipse TS100 microscope 

(using a Nikon Plan Fluor 4x 0.13 wide view lens). Cell viability and number were 

determined using a Beckman Coulter Vi-CELL XR Cell Viability Analyzer 2.04. Cell 

viability was also quantified using a BD LSRII flow cytometer equipped with 4 lasers 

(UV – 355 nm, Violet – 406 nm, Blue – 488 nm, Red – 633 nm) and running BD 

FACSDiva software v8.0.1. 

3.5.1 Detection of cell death using flow cytometry: 

One million MDA-MB-231-D cells (passage number 9) were seeded in Thermo 

Scientific™ Nunc™ Nunclon™ 6-well cell culture plates (9.6 cm2 surface area per well) 

and incubated for 12 hours at 37 °C and 5% CO2. MEDI3039 (5 or 10 pM) was added to 

90% confluent cells and incubated for 24 hours at 37 °C and 5% CO2.  

One million Colo205-D cells (passage number 11) were seeded in Thermo 

Scientific™ Nunc™ T25 flasks and incubated for 12 hours at 37 °C and 5% CO2. 

MEDI3039 (5 pM) was added to confluent cells and incubated for 24 hours at 37 °C and 

5% CO2. 

Cells were then harvested, re-suspended in flow cytometry staining (FACS) buffer  

(PBS with 1% FBS) and stained with SYTOX® Green (50 nM) at 37 °C for 10 minutes 

on a thermal mixer (Eppendorf Thermomixer R). Cell pellets were then washed 3 times 

with ice-cold FACS buffer. Cells were re-suspended in ice-cold FACS buffer and 

analysed on a BD Biosciences LSRII flow cytometer with a minimum of 10000 events 

counted. For detection of SYTOX® Green (absorption/emission peaks at 504/523 nm) the 

dye was excited with an argon ion laser at 488 nm and its emission monitored at 530 nm. 

NADH was excited at 355 nm (UV laser) and detected by monitoring its emission at 450 

nm. Experiments were run in triplicate and results are presented as an average. Data were 

analysed using FlowJo software (vs. 10.5.3). Statistical analysis was performed using 

GraphPad Prism software (vs. 8.0.0).  

3.5.2 Detection of cell death using [18F]FPenM-C2Am: 

MDA cells (passage no. 15) were seeded in Thermo Scientific™ Nunc™ T25 or 

T75 flasks (~1 or 5 million in each depending on flask size) and incubated for 24 hours 
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at 37 °C and 5% CO2. PBS for control cells or MEDI3039 (10 pM) for treated cells was 

added to the medium and incubated for a further 24 hours. 

Colo205-D cells (passage no. 11) were seeded in T25 flasks (~1.5 million in each) 

and incubated for 24 hours at 37 °C and 5% CO2. PBS for control cells or MEDI3039 (5 

pM) for treated cells was added to the medium and incubated for a further 24 hours.  

Control and treated cells were harvested, counted and viability assessed with a Vi-

CELL analyser and re-suspended in labelling buffer (1 mL) (10 mM HEPES, 150 mM 

NaCl, 1% FBS and 2 mM CaCl2, pH 7.4). [18F]FPenM-C2Am was added (1, 100, 250, 

500, 1000 nM, 5 mM and 10 mM) and incubated at 37 °C for 20 minutes. Cell pellets 

were washed 3x with labelling buffer (1 mL) and counted for 1 minute using the Hidex 

AMG.  

Hidex AMG was used to count the cell pellets after [18F]FPenM-C2Am labelling. 

The gamma camera was set to detect fluorine-18 gamma emission energy (511 keV) and 

the cell pellets scanned for 1 minute. Hidex AMG application version 1.5 software was 

used for collecting and exporting data.  

3.5.3 General cell culture protocols for Colo205-D and MDA-MB-231-D 

cancer cell lines: 

Colorectal cancer cells – (Colo205-D passage no. 7) and breast cancer cells – 

(MDA-MB-231-D passage no. 11) were obtained from ATTC culture collection and 

transfected in house with fLuc by Dr Susana Ros, a senior member of the Brindle group. 

A mix of Colo205-D adherent and suspension cells were seeded in Thermo Scientific 

NUNC cell culture flasks (T25, T75 or T175) with a mixture of 90% RPMI Medium 1640 

1X (REF 21875-034, LOT 1979014) supplemented with 10% heat inactivated FBS (foetal 

bovine serum, South American origin). MDA-MB-231-D adherent cells were seeded in 

Thermo Scientific NUNC cell culture flasks (T25, T75 or T175) with a mixture of 90% 

DMEM 1X (Dulbecco’s Modified Eagle’s Medium, REF 41966-029, LOT 1979092) 

supplemented with 10% heat inactivated FBS (foetal bovine serum, South American 

origin). Tissue culture flasks were incubated at 37 °C and 5% CO2 in Thermo Heracell 

150 incubators. (Appendix 8 for cell culture protocols) 
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4 IN VIVO DETECTION OF CELL 

DEATH USING [18F]FPENM-

C2AM  IN A MURINE 

XENOGRAFT MODEL OF 

COLORECTAL CANCER  

4.1 Introduction 

 

Novel in vitro cell culture techniques that aim to better mimic the basic 

physiological conditions that exist within an organ such as cell-cell interactions, hormone 

secretion etc. have lately been developed. However, such three-dimensional advanced 

tissue culture models, termed organoids, still fail to replicate the complex physiological 

conditions that exist within a higher organism.271,272 Therefore, animal testing is still used 

extensively and is paramount for improving safety of pharmaceuticals despite increased 

opposition from initiatives such ‘Stop Vivisection’273, facilitated through the European 

Citizens’ Initiative mechanism274.   However, important medical discoveries, such as 

recent work in cancer immunology and the discovery of programmed death ligand 1 (by 

James Allison and Tasuku Honjo – Nobel prize in 2018), would have been unachievable 

without extensive in vivo testing in animals. On the other hand, only 8% of candidate 

drugs that went into clinical trials after promising animal testing were eventually 

approved.275 Examples include TGN1412, an anti-CD28 monoclonal antibody for 

treating multiple sclerosis and certain cancers, (developed by TeGenero), which not only 

failed to fulfil its therapeutic effect but also caused multiple organ failure despite being 

tested on multiple animals, including mice, at doses hundreds of times higher than the 

equivalent delivered to humans.275 
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In vivo testing is beset by problems due to differences in physiology between 

different species but most scientists agree that the benefits outweigh the downsides and 

by implementing new EU regulations regarding animal usage (directive 2010/63/EU 

mentioned 3Rs – replace, reduce, refine) their welfare is also ensured. 

Advancing a drug from bench to bedside is not a straightforward task. Both the 

Food and Drug Agency (USA)276, and the European Medicines Agency (Europe) and 

Medicines and Healthcare Products Regulatory Agency (UK) all require a toxicology 

report demonstrating that no side effects are seen in animals in order to better mitigate 

risks prior to First-in-Human studies.  

In order to demonstrate that [18F]FPenM-C2am is capable of detecting tumour cell 

death in vivo, a xenograft athymic mouse model of advanced colorectal cancer, treated 

with the TRAIL-R2 agonist MEDI3039 for cell death induction, were used in 

biodistribution and dynamic PET imaging studies. 

4.2 Biodistribution analysis of [18F]FPenM-C2am in Balb/c nu/nu 

mice bearing Colo205-D tumours 

 

For these experiments, Colo205-D cells were cultured and propagated as described 

in Chapter 3. Two weeks prior to the biodistribution experiment, six 8-week old Balb/c 

nu/nu female mice (Charles River Laboratories) were implanted subcutaneously with 

Colo205-D cells (5 x 106). Then, 24 hours before the biodistribution experiment, the 

control group (n = 3) was treated with drug vehicle (PBS) and the treated group (n = 3) 

was injected with a single dose of MEDI3039 (0.4 mg/kg, i.v.). Bioluminescence images 

were acquired prior to treatment as well as 24 hours post-treatment; regions of interest 

(ROIs) were drawn around tumours and their intensities were measured,  which showed 

lower radiance in the treated cohort (post-treatment) compared to controls (see Table 14).  
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Table 14. Mouse bioluminescence and injected [18F]FPenM-C2Am activity (MBq) details. 

Mouse Treatment 

Control or 

MEDI3039 

(0.4 mg/kg, 

i.v.) 

Bioluminescence 

readout* of 

tumour ROI 

before treatment 
 

Bioluminescence 

readout* of 

tumour ROI after 

treatment 

Injected 

activity 

(MBq) 

Injected 

protein 

mass  

(μg) 

A Untreated 1.8 x10
8
 1.7 x 10

9
 1.218 1.2 

B Treated 1.5 x 10
8
 1.7 x 10

9
 1.225 1.2 

C Treated 1.0 x 10
8
 2.0 x 10

7
 2.037 2 

D Treated 6 x 10
7
 8 x 10

6
 0.969 1 

E Untreated 2.5 x 10
7
 1.3 x 10

8
 2.494 2.5 

F Untreated 1 x 10
7
 5.6 x 10

7
 1.967 2 

• *tumour total bioluminescence intensity (photons/sec/cm2/sr) 

[18F]FPenM-C2Am was produced according to the protocol described in Chapter 

2 and delivered to the imaging suite at the Cancer Research UK Cambridge Institute (for 

full details, see Experimental 4.5). Mice were anesthetised and injected with 200 μl of 

[18F]FPenM-C2Am (1–2.5 MBq) solution containing C2Am (1–2.5 μg) in PBS. The 

injected activity and quantity in each mouse is shown in Table 14 and the molar activity 

at the time of injection was of Am = 16200 MBq/μmol (As = 1.0 MBq/μg at time-of-

injection). 

[18F]FPenM-C2Am showed a favourable biodistribution profile, by gamma 

counting of mouse organs, at 2 hours after probe administration, as seen in Figure 59, 

with predominantly renal clearance and minimal retention in an untreated advanced 

colorectal tumour (0.17±0.02% ID/g), spleen (0.6±0.04% ID/g), liver (0.76±0.09% ID/g), 

small intestine (0.59±0.19% ID/g) and kidney (3.83±0.4% ID/g). In mice treated with 

MEDI3039 significant retention in the tumours (1.68±0.15% ID/g) was observed, again 

with predominantly renal clearance and minimal nonspecific retention in spleen 

(0.66±0.05% ID/g), liver (1.05±0.05% ID/g), small intestine (1.42±0.2% ID/g) and 

kidney (4.50±0.47% ID/g) at 2 hours after probe administration. Significant stomach 

uptake was observed post treatment which was initially attributed to possible activation 
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of TRAIL-R2 by MEDI3039 present in mouse stomach and small intestine. TRAIL-R2 

in humans (DR5) shares 79% sequence identity with its mouse equivalent (MK) 

receptors, so an interaction of the MEDI3039 drug with the mouse receptors is 

plausible.277 However, no such side effects have been noted previously during extensive 

testing of the MEDI3039 drug in triple negative breast cancer murine xenografts by Greer 

et al. (2019)278. Previous TRAIL-R2 agonists (e.g. G6T8) tested by Swers et al. (2013) 

showed selective binding to human death receptors over mouse TRAIL-R2 receptors.114 

Therefore, the apparent stomach uptake was not observed in any subsequent PET/CT and 

biodistribution experiments. 

 

Figure 59. Biodistribution profile of [18F]FPenM-C2Am in control and (MEDI3039, 0.4 mg/kg) 

treated Balb/c nu/nu mice bearing Colo205-D tumours. An unpaired one-tailed t-test showed a significant 

difference between control and treated tumour (P=0.0006); control and treated stomach (P=0.0022). Data 

are mean ± SEM (n = 3, per group; the error bars lie within the symbols when not visible); (ns >0.05, 

*P<0.05, **P<0.005, ***P<0.0005). 
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At two hours after administration, [18F]FPenM-C2Am generated significant 

differences between the control and treated tumour-to-muscle (P = 0.0089) and tumour-

to-blood (P = 0.093) ratios (see Figure 60). 

 

 

Figure 60. Tumour-to-muscle and tumour-to-blood ratios in control and treated (MEDI3039, 0.4 

mg/kg, I.V.) Colo205-D xenograft tumour bearing Balb/c nu/nu mice. Unpaired two-tailed t-tests with 

Welch’s correction showed significant differences (**P<0.01) between tumour-to-muscle and tumour-to-

blood ratios between control and treated. Data are mean ± SEM (n = 3, per group) 

4.3 PET/CT imaging and biodistribution analysis of [18F]FPenM-

C2am in Balb/c nu/nu mice bearing Colo205-D tumours 

 

PET/CT imaging experiments were performed in a cohort of 8-week old Balb/c 

female nu/nu mice (n = 5). Animals were implanted with 5 x 106 Colo205-D cells and 

tumours were allowed to grow for 2 weeks. Subsequently, they were subjected to a three-

day PET/CT imaging protocol shown in Figure 61. Mice (n = 5) were imaged in two 

consecutive cohorts (of n = 3 and n = 2) due to the maximum scanner capacity of 3 mice. 
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Figure 61. PET/CT imaging protocol pipeline and the times associated with each process. End-of-

bombardment to scanner time was less than two hours (approximately the fluorine-18 half-life of 109.7 

minutes) 

On day one, the first cohort of mice (n = 3), were subjected to the PET/CT imaging 

protocol with the tracer [18F]FPenM-C2am (9 µg, 2.93 μM, 4.6–5.2 MBq, Am = 10100 

MBq/µmol) to set a baseline for radiotracer uptake in untreated tumours. On day two (24 

hours later) MEDI3039 (0.4 mg/kg) drug was administered i.v. to induce cell death in the 

tumours. On day three, 24 hours post-treatment, the PET/CT imaging protocol was 

repeated using [18F]FPenM-C2am (4.6 μg, 1.43 μM, 4.9–6 MBq, Am = 18300 MBq/μmol) 

in order to evaluate tracer uptake  following therapy (see Figure 62). Details regarding 

injected radiotracer amounts are summarised in Table 15. Mice were sacrificed 2 hours 

post-radiotracer injection and their organs were collected for biodistribution and 

histological assessment. 
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Table 15. [18F]FPenM-C2Am injection doses and amounts before and after treatment. 

Mouse  Injection 
dose pre-
treatment 
(MBq) 

Time of 
injection 

Protein 
amount ug 

Injection 
dose post-
treatment 
(MBq) 

Time of 
injection 

Protein 
amount ug 

1 4.66 13:11:45  8 6.07 14:34:37  5 

2 5.79 13:14:21  9 4.92 14:33:10  4 

3 5.2 13:13:00  8 5.76 14:32:06  5 

 

 

Figure 62. Cell death imaging using [18F]FPenM-C2Am. Sagittal PET/CT images of a 

representative tumour-bearing mouse (first cohort n = 3), before (AT) and 24 hours after MEDI3039 

treatment (0.4 mg/kg, i.v.) (BT). Imaging was performed 2 hours after the administration of [18F]FPenM-

C2Am (0.23 ug/g, 4.9–6 MBq, i.v.). Tumour (t), liver (li) and kidney (k) are shown. PET image palette 

used: NIH fire. (image courtesy of Dr André Neves) 

The imaging protocol for the second cohort of mice (n = 2) was performed as 

follows: on day one the mice were injected with [18F]FPenM-C2Am (4 μg, 2.93 μM, 0.4–

1 MBq, Am = 3310 MBq/µmol) to set a baseline for radiotracer uptake in untreated 

tumours. On day two, MEDI3039 (0.2 mg/kg) drug was administered i.v. to induce 

tumour cell death. On day three, PET/CT imaging was repeated with [18F]FPenM-C2am 

(10 μg, 2.86 μM, 3.3–3.6 MBq, Am = 5700 MBq/μmol). Details regarding injected 
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radiotracer amounts are summarised in Table 16. Mice were sacrificed 2 hours post-

radiotracer injection as described above.  

Table 16. [18F]FPenM-C2Am injection doses and amounts before and after treatment. 

Mouse 

Injection 

dose pre-

treatment 

(MBq) 

Time of 

injection 

Protein	
amount	ug 

Injection	
dose	 post-
treatment	
(MBq) 

Time	 of	
injection 

Protein	
amount	ug 

4 1.04 16:08:14 5 3.63 17:38:10 10 

5 0.39 16:09:41 2 3.37 17:38:37 10 

 

The biodistribution of [18F]FPenM-C2am post-PET imaging, shown in Figure 63, 

is consistent with the experiment presented in subsection 4.2. Nonspecific kidney 

retention two hours post i.v. injection was very low at 6.9±0.5 %ID/g, suggesting that the 

probe is excreted rapidly and hence has favourable pharmacokinetic properties. Treated 

tumour uptake was 1.19±0.11 %ID/g, which was consistent with our previous 

biodistribution results. Bone uptake was low (0.65±0.15 %ID/g) and similar to the blood 

pool (0.65± 0.15 %ID/g) uptake suggesting that no defluorination is occurring during the 

two-hour scanning period. The main difference compared to the previous results is lower 

stomach uptake 0.28±0.5 %ID/g (cf. 1.72±0.33 %ID/g) post treatment. 
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Figure 63. Average %ID/g of [18F]FPenM-C2Am (A: 4.6 μg and B: 9.2 μg) injected i.v. in a cohort 

of (A: n=3 and B: n=2) nu/nu mice bearing Colo205-D tumours that were treated with MEDI3039 (A: 0.4 

mg/kg and B: 0.2 mg/kg, i.v.) and imaged using the PET/CT protocol over a 3-day period. Organs were 

collected for biodistribution, weighed and counted on day three after 2 hours of dynamic PET imaging. 

Kidney uptake demonstrated a good clearance with low retention (A: 6.2±0.5 and B: 7.9±0.1 %ID/g). Data 

are mean ± SEM (error bars lie within the symbols when not visible). 

PET imaging analysis using [18F]FPenM-C2Am, showed mainly renal clearance 

and minimal retention in the spleen (0.79±0.05 %ID/g), liver (1.18±0.13 % ID/g), small 

intestine (0.97±0.25 %ID/g) and kidney (6.90±0.56 %ID/g) at 2 hours after probe 

administration was consistent with the results observed in the experiments presented 

above. In this Colo205-D colorectal cancer xenograft mouse model, [18F]FPenM-C2Am 

generated tumour-to-muscle and tumour-to-blood ratios following treatment of 6.7±0.8-

fold and 1.89±0.23-fold, respectively, at 2 h after administration. PET imaging data was 

analysed by Dr André Neves. A statistically significant pairwise difference was obtained 

between the tumour-to-muscle contrast at 2 hours post injection prior to and following 

therapy (P = 0.0137, unpaired two-tailed t-test) (see Figure 64). 
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Figure 64. Time activity curves for [18F]FPenM-C2Am post-treatment, shown as tumour-to-muscle 

ratio (left) and kidney and liver clearance (right). The tumour uptake peaked at 20 minutes following 

injection, with subsequent clearance. After one hour of administration, the tumour-to-muscle ratio increased 

thus generating tumour-muscle contrast (grey line, left plot) in the range of 4 to 6-fold (n = 5). Kidney 

uptake peaked at 20 minutes post injection, with subsequent clearance of >90% within 2 hours. Liver uptake 

peaked at 10 minutes post injection, with efficient clearance afterwards. All data has been decay-corrected.  

(figures courtesy of Dr André Neves) 

The partial uptake of the probe in the gallbladder and gut is notable but 

inconsistent throughout a cohort of mice. Gallbladder uptake was detectable particularly 

after 30 min of administration, by PET imaging and visible at the two-hour point (see 

Figure 67). We initially hypothesised that the MEDI3039 drug (DR5 specific TRAIL 

agonist17) could potentially induce cell death in the mouse digestive system. However, 

subsequent lack of histologic evidence for the presence of cell death in the gallbladder 

and small intestine, suggested that a more likely explanation for partial retention is partial 

hepatobiliary excretion of the tracer. This can therefore lead to retention in the small 

intestine and gallbladder. (see Figure 66 and Figure 67) This matter requires further 

investigation. 
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Figure 65. Histology samples stained with cleaved caspase-3 (CC3). Gallbladder (GB)/liver (LI) 

left and small intestine (SI) on the right. Minimal CC3 staining present was probably due to slow 

preparation of histological specimens and the fact that the small intestine epithelial cells have a high 

proliferation and cell death rate.279 

 

Figure 66. Sagittal PET/CT images of [18F]FPenM-C2Am in the same mouse bearing a Colo205D 

tumour (white arrow) 24 hours before (top row) and 24 hours after treatment (lower row) with MEDI3039 

(0.4 mg/kg). Tumour uptake 24 hours after MEDI3039 drug administration (lower row) starts to increase 

1-hour post injection. PET palette used: NIH fire. Images courtesy of Dr André Neves. 
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Figure 67. Maximum intensity projection PET/CT images 2 hours post [18F]FPenM-C2Am 

injection in a Colo205D tumour-bearing mouse The tumour (white arrow) and gallbladder (white chevron) 

are indicated. Images were acquired 24 hours before (left image) and 24 hours after treatment with 

MEDI3039 (0.4 mg/kg) (right image). Images courtesy of Dr André Neves. 

There was a good correlation between tumour %ID/g determined by PET at 2 

hours and histology CC3 staining (Pearson r = 0.82) and TUNEL staining (Pearson r = 

0.95) confirming the presence of cell death in the mice tumours after treatment (n = 5). 

(Figure 68).  
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Figure 68. Histology staining of tumours with hematoxylin and eosin (HE), cleaved caspase-3 

(CC3) and terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL). Images courtesy of 

Dr André Neves. 

4.4 Conclusion 

 [18F]FPenM-C2Am showed a favourable biodistribution in treated and control 

mice bearing human xenografts of advanced colorectal cancer. A statistically significant 

difference in tracer uptake was found between control and treated tumours. In addition, 

the radiotracer showed low non-specific retention in organs with predominant renal 

clearance.  These results demonstrate that [18F]FPenM-C2Am is a promising radiotracer 

for PET imaging of cell death following therapy. 

Furthermore, we have also developed a reliable and reproducible workflow for the 

production of [18F]FPenM-C2Am that was used successfully in a three day imaging 

protocol to assess tumour uptake of [18F]FPenM-C2Am, before and after targeted 

treatment. Importantly, images from two-hour dynamic PET scans have shown that post 
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treatment, the tumour-to-muscle retention ratio of  [18F]FPenM-C2Am was significantly 

higher than prior to treatment in the same animals. Contrast started to develop within one 

hour of administration of the imaging agent. Time activity analysis showed that 

radiotracer renal uptake proved to be quick, peaking at 20 minutes post injection, followed 

by fast excretion, generating good tumour contrast. Intestinal and liver uptake were 

minimal and potentially represent a minor secondary route of excretion of the radiotracer. 

Finally, biodistribution was performed at the end of the three-day imaging protocol and 

results proved to be consistent with the previous experiment in terms of organ tracer 

uptake, as seen in vivo by PET/CT imaging.  

 

4.5 Experimental 

 

4.5.1 Colo205-D implantation and tumour formation in mice 

 

Athymic BALB/c nu/nu female mice (n = 6) were purchased from Charles River 

Laboratories. All animal procedures were carried out under the authority of project and 

personal licenses issued by the United Kingdom Home Office under the United Kingdom 

Animals (Scientific Procedures) Act, 1986, and had been reviewed by the Cancer 

Research UK, Cambridge Institute Animal Welfare and Ethical Review Body. Colo205-

D cells (passage no. 15) were harvested and their viability (98.5%) checked using an 

automated cell counter (Vi-CELL). In vivo PET/CT imaging and biodistribution 

experiments were carried out with the support of Dr André Neves.  

Six 8-week old mice were injected with ~5 x 106 Colo205-D cells (passage no. 15, 

98.5% viability) two weeks prior to imaging or biodistribution experiments. 

Bioluminescence imaging was used to monitor tumour growth and tumour response to 

treatment. This was measured following injection of D-Luciferin (150 mg/kg, i.p.) and 

measured on an IVIS 200 (Perkin Elmer) fluorescence imaging camera. Mice were 
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anaesthetised with 3% (v/v/) isoflurane for induction and 1.8-2.5% isoflurane for 

maintenance. 

Twenty-four hours prior to the biodistribution experiment, a cohort of (n = 3) mice 

were treated with a single dose of MEDI3039 (0.4 mg/kg). Control mice (n = 3) were 

injected with PBS. 

4.5.2 [18F]FPenM-C2Am synthesis for biodistribution experiment 

[18F]FPenM (2 GBq at end-of-synthesis) was produced with a good yield of 7.1% 

non-decay corrected (starting from 28 GBq at start-of-synthesis) with a high 

radiochemical purity of >99%. (see UV and radiochromatogram in Figure 69)  

 

 

Figure 69. Radiochromatogram (A) and UV chromatogram (B) of the prosthetic group [18F]FPenM 

prior to C2Am conjugation. The absorbance of the prosthetic group in the UV (at 210 nm) is minimal due 

to the lack of aromaticity of the N-alkylmaleimide (18F]FPenM) molecule. 

An aliquot of [18F]FPenM (100 μL, 224 MBq at the end-of-synthesis) was used 

for conjugation to C2Am (108 μg, 22 μL, 303 μM), with a final protein concentration of 

54.6 μM. After 30 minutes, at RT without stirring, the reaction was analysed by HPLC 

and >91% of the tracer was bound to the protein. (see UV and radiochromatogram in 

Figure 70) 

A

B
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Figure 70. Radiochromatogram (A) of crude [18F]FPenM-C2Am solution prior to desalting (using 

a NAP-5 cartridge). Peak #1 was the [18F]FPenM-C2Am conjugate, which elutes at 12.6 min; peak #2 was 

a degradation by-product of [18F]FPenM at 22.4 min and peak #3 was unreacted [18F]FPenM at 38.5 min. 

UV 280 nm chromatogram (B) showing the [18F]FPenM-C2Am conjugate peak #1 at 11.7 min, peak #2 

representing ascorbic acid additive at 14.8 min, peaks #3 and #4 caused by the solvent system changing 

from 100% PBS to 10% MeCN in PBS and the new solvent front reaching the detector. The estimated 

conversion yield of the conjugation reaction was >91%. Note that the UV detector is located upstream of 

the radiodetector in the HPLC system, generating a difference in measured retention times of ca. 0.8 min. 

The [18F]FPenM-C2Am/[18F]FPenM mixture (122 μL, 185 MBq) was loaded on 

to a disposable NAP-5 (GE Healthcare) gravity desalting cartridge and eluted with PBS. 

Three fractions were eluted: fraction 1 (eluted with 250 μL PBS) did not contain any 

radioactivity, fraction 2: 70.7 MBq (eluted with 500 μL PBS) contained [18F]FPenM-

C2Am with >99% radiopurity according to the HPLC radiochromatogram (see Figure 

71).  Fraction 3: 0 MBq (eluted with 1000 μL PBS) did not contain [18F]FPenM-C2Am: 

but contained ascorbic acid.(see Figure 72)  Therefore fraction 2 was used for the 

biodistribution experiment; this fraction contained 32 μg of protein as determined by the 

Merck Direct Detect Infrared spectrometer and thus protein recovery was 30% after NAP-

5 column purification. 
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Figure 71. UV and radiochromatogram of >99% pure [18F]FPenM-C2Am conjugate. Peak #1 

eluting at 12.8 min radiochromatogram (top) represents [18F]FPenM-C2Am after NAP-5 column 

purification and was used for in vivo biodistribution studies. Peak #1 in the UV 280 nm chromatogram 

(bottom) eluting at 11.9 min represents the conjugated C2Am.  Peak #2 at 36 minutes and peak #3 at 37.9 

min are caused by the solvent system changing from 100% PBS to 10% MeCN in PBS thus the new solvent 

front reaching the detector as peak #2 and #3. 

 

Figure 72. Radiochromatogram (A) and UV (B) of fraction 3 eluted from NAP-5 size exclusion 

column. Peak #1 eluting at 16.5 min in the UV 280 nm chromatogram (B) represents ascorbic acid, peak 

#2 at 37.9 min was caused by the solvent system changing from 100% PBS to 10% MeCN in PBS thus the 

new solvent front reaching the detector. 

[18F]FPenM-C2Am tracer (50.59 MBq at delivery) was delivered to the imaging 

suite as a 410 μl (26.6 μg, 4 μM solution) stock solution in PBS. Protein concentration 

was determined upon decay, using a Merck Direct Detect Infrared spectrometer, as 65 
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μg/mL (4 μM) with a molar activity of 31200 MBq/μmol at time-of-delivery (As = 1.9 

MBq/μg at time-of-delivery).  A solution of [18F]FPenM-C2Am in PBS was made up by 

diluting 150 μL stock protein tracer with 1463 μL PBS to yield a C2Am solution (9.7 μg, 

0.37 μM solution, 1613 μL). Each of the 6 mice were injected with 200 μl solution (10 

ml/kg, i.v.) of [18F]FPenM-C2Am containing C2Am (1.2 μg, 0.37 μM) in PBS. The molar 

activity at the time of injection was 16200 MBq/μmol (As = 1.0 MBq/μg at time-of-

injection) 

4.5.3 [18F]FPenM-C2Am synthesis for PET imaging experiment 

4.5.3.1 PET/CT imaging before MEDI3039 treatment   

[18F]FPenM-C2Am tracer (86 MBq at delivery) was delivered to the imaging suite 

as a 500 μl (47.6 μg, 5.87 μM solution) stock solution (HPLC tracer previously shown in 

subsection 2.4). Following decay, the protein concentration was determined using a 

Merck Direct Detect Infrared spectrometer at 95.2 μg/mL (5.87 μM solution) with a molar 

activity of 29300 MBq/μmol at time-of-delivery (As = 1.8 MBq/μg at time-of-delivery).  

A solution of [18F]FPenM-C2Am in PBS was made up by diluting 300 μL stock protein 

tracer with 300 μL PBS to yield a C2Am solution (28.56 μg, 2.93 μM solution, 600 μL). 

The first cohort mice (n = 3) were injected with 200 μl of [18F]FPenM-C2Am containing 

C2Am (9.52 μg, 2.93 μM) in PBS. The molar activity at the injection point was of 10100 

MBq/μmol (As = 0.62 MBq/μg at time-of-injection).  
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Figure 73. QC chromatogram of pure [18F]FPenM-C2Am with added (spiked) FPenM-C2Am 

HPLC standard. Chromatogram A represents the radiodetector trace and showed [18F]FPenM-C2Am 

elution at 12.8 min. Chromatogram B represents the UV (280 nm) trace and showed absorbance of reduced 

C2Am protein at 11.9 min and 12.2 min (FPenM-C2Am). Chromatogram C represents the UV (280 nm) 

trace and showed absorbance of reduced C2Am protein at 11.8 min and 12.1 min (FPenM-C2Am spiked 

with FPenM-C2Am HPLC standard hence the increased peak). The peak at 36 min is the solvent front due 

to the solvent system change at 20 minutes. 

Another solution of [18F]FPenM-C2Am in PBS was made up by diluting 200 μL 

stock protein tracer with 200 μL PBS to yield a C2Am solution (19 μg, 2.93 μM solution, 

400 μL). The second cohort of mice (n = 2) were injected with 200 μl solution of 

[18F]FPenM-C2Am containing C2Am (9.52 μg, 2.93 μM) in PBS. The molar activity at 

the time of injection was of 3310 MBq/μmol (As = 0.2 MBq/μg at time-of-injection). 

4.5.3.2 PET/CT imaging after MEDI3039 treatment  

[18F]FPenM-C2Am tracer (112.8 MBq at delivery) was delivered to the imaging 

suite as a 550 μl (51 μg, 5.8 μM solution) stock solution (HPLC shown below). Following 

radioactive decay, protein concentration was determined using a Merck Direct Detect 

Infrared spectrometer at 93 μg/mL (5.8 μM solution) with a molar activity of 35600 

MBq/μmol at time-of-delivery (As = 2.2 MBq/μg at time-of-delivery).  A solution of 

[18F]FPenM-C2Am in PBS was made up by diluting 150 μL tracer with 450 μL PBS to 

yield a C2Am solution (13.9 μg, 1.43 μM solution, 600 μL).  The first cohort of mice (n 

= 3) were injected with 200 μl solution of [18F]FPenM-C2Am containing C2Am (4.6 μg, 

1.43 μM) in PBS. The molar activity at the time of injection was 18300 MBq/μmol (As = 

1.12 MBq/μg at time-of-injection). Mice were sacrificed 2 hours post radiotracer injection 
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by cervical dislocation at an interval of 8 minutes and their organs collected for 

biodistribution analysis by gamma counting. Tumours were collected and preserved in 

4% formalin solution for 24 hours then preserved in 70% ethanol for histological 

assessment. 

 

Figure 74. Radiochromatogram of >99% pure [18F]FPenM-C2Am conjugate (top) and UV 280 nm 

chromatogram of [18F]FPenM-C2Am conjugate (bottom). Peak #1 shown at 12.7 min in 

radiochromatogram (A) represents [18F]FPenM-C2Am after NAP-5 column purification and used for in 

vivo PET imaging. Peak #1 on the UV 280 nm chromatogram (B) at 12.2 min represents the reduced C2Am. 

Peaks eluting between 6 and 8 minutes are probably aggregation of dimeric C2Am. 

Another solution of [18F]FPenM-C2Am in PBS was made up by diluting 200 μL 

stock with 200 μL PBS to yield a C2Am solution (18.5 μg, 2.86 μM solution, 400 μL).  

The second cohort mice (n = 2) were injected with 200 μl solution of [18F]FPenM-C2Am 

containing C2Am (9.2 μg, 2.86 μM) in PBS. The molar activity at the time of injection 

was 5700 MBq/μmol (As = 0.35 MBq/μg at time-of-injection). Mice were sacrificed 2 

hours post radiotracer injection by cervical dislocation and their organs collected for 

biodistribution analysis.  

4.5.3.3 PET imaging 

A Mediso nanoScan PET/CT scanner with a PET ring diameter of 18.4 cm and a 

single FOV of 10 cm was used for animal scanning. The scanner was used in conjunction 

with a Minerve 3-place bed for mice was used to acquire CT projection images and PET 

coincidence detection. CT tomograms were acquired for determination of the 3D volume 
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for PET reconstruction. Software used was Nucline version 1.4 (Mediso). CT acquisition 

settings: normal FOV (no zoom), 55 kVp tube voltage, 360 projections, semi-circular, 

full scan, exposure time 300 ms, 1-4 binning. Reconstruction CT settings: Butterworth, 

medium voxel size, spatial resolution <30 μm. PET images were normalised and 

corrected for decay and attenuation. PET acquisition settings: coincidence mode 1-5, 

single field-of-view (FOV), count rate: normal mode, coincidence time window 5 ns, 

dynamic PET acquisition for 2 hours, spatial resolution 0.7 mm (using the Tera-Tomo™ 

3D reconstruction engine) or 1.2 mm (using filtered back projections (FBP) according to 

NEMA standards). PET scans reconstruction settings: isotropic 0.6 mm voxel size using 

a three dimensional mode (Tera-Tomo™ 3D reconstruction engine), energy window 400-

600 keV, coincidence mode 1-5, and 23 reconstructed frames at 0.25, 0.5, 0.75, 1, 2, 3, 4, 

5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 75, 90, 105 and 120 min. PET/CT images 

were analysed and time activity curves generated by Dr André Neves using VivoQuant 

4.0. 

4.5.3.4 Organ/tissue counting 

Mice were sacrificed 2 hours post [18F]FPenM-C2am administration and their 

organs collected post-mortem in pre-weighed screw-top plastic tubes. An automatic 

gamma counter (AMG, Hidex) was used to count the organs and tissue samples. The 

gamma camera was set for the fluorine-18 gamma emission energy spectrum (511 keV) 

to scan cells and organs for 1 minute. Hidex AMG application version 1.5 software was 

used for collecting and exporting data. After activity decay (generally 24 hours), tubes 

were collected and reweighed. %ID/g was then calculated by dividing the decay corrected 

activity of organs by their weight in grams. 

4.5.3.5 Histology staining  

Staining was performed by the histopathology department within Cambridge 

Institute for Cancer Research Cambridge. CC3 staining were performed on an automated 

Leica Bond Max using anti-CC3 antibody (Cell Signalling Tech) in a 1:100 dilution. 

TUNEL was performed on the same system using a Promega DeadEnd Colorimetric kit. 

Slices were scanned with a Zeiss Mirax Scan 150 at a resolution of 0.369 μm/pixel and 

images interpreted with Aperio ImageScope using Positive Pixel Count algorithm to 

determine %CC3 and %TUNEL labelling. 
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5 IMAGING TUMOUR GLYCANS 

5.1 Introduction to glycans and their relevance in cancer 

 

The phenotypical complexity of humans (~21,000 genes)280 compared to simpler 

organisms (e.g. C. elegans worm ~17,800 genes)281 has been suggested to be due to 

extensive post-translational modification (PTM) present in >50% of proteins in the 

human genome.282-283 One type of PTM that adds an extra level of complexity to the 

already diverse proteome is glycosylation,284 which has been described as the process of 

glycan addition to proteins and lipids.  

Glycans are sugar polymers (termed oligosaccharides) which are composed of a 

selection of building blocks (monosaccharides) connected to each other by O-linked 

glycosidic bonds. There are twelve common monosaccharides shown in Figure 75 which 

form the main components of glycans in vertebrates depicted in Figure 76.285 One of the 

most common glycan-capping sugars present in vertebrate glycoproteins is sialic acid, 

which is a general term for acidic sugars, containing a nine-carbon structure. The most 

common form of sialic acid in humans is N-acetylneuraminic acid (Neu5Ac), while N-

glycolylneuraminic (Neu5Gc) acid is present in other mammals but not in humans due to 

a mutation in the sequence encoding for the enzyme (cytidine monophosphate (CMP)-N-

acetylneuraminic acid hydroxylase), which converts Neu5Ac to Neu5Gc.286 
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Figure 75. Most common monosaccharides that are components of glycans in vertebrates. Figure 

adapted from Varki et al.285 (2009)  

Glycans are conjugated to proteins and lipids or secreted on their own (e.g. 

hyaluronan – a component of the extracellular matrix). They have an important role in 

mediating and regulating the processes of cell recognition, cell adhesion, inflammation, 

energy storage and pathogen invasion. For example, the ABO blood group system, 

discovered by Karl Landsteiner at the beginning of the 20th century, is determined by 

glycan epitope antigens (A, B or O) present on the surface of red blood cells and 

modulated by glycosyltransferases.285  

There are four types of glycan-conjugated proteins287: nitrogen (N-), oxygen (O-), 

carbon (C-) and sulfur (S-) linked glycoproteins. While N- and O-linked glycans are the 

most abundant types285 in eukaryotic cells, C-linked glycans are less abundant, examples 

including RNase II288 and interleukin-12289 proteins with α-mannosyl modifications on 

the  C-2 of tryptophan amino acids. S-linked glycans are linked through cysteine290 and 

are common in bacteria. Figure 76 shows N-linked glycans that are attached to proteins, 

forming glycoproteins, through amide bonds linking the asparagine (Asn) side chain to 

N-Acetylglucosamine (GlcNAc) at the specific amino acid sequence Asn-X-Ser/Thr 

(where X represents any amino acid). O-linked glycans are attached to proteins by linking 

either serine or threonine (Ser/Thr) side chains to N-acetylgalactosamine (GalNAc).291 

These O-linked glycans are present in mucins,292 which are large megadalton 
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glycoprotein complexes that play critical roles as barriers on epithelial surfaces and in 

cell-cell interactions in epithelial tissues (e.g. MUC2 in small intestine). Glycans linked 

to lipid ceramides, through either galactosylceramide or glucosylceramide, are termed 

glycosphingolipids and are found embedded in the outer leaflet of the plasma membrane. 

Glycosphingolipids are also often capped by sialic acids (most commonly N-

acetylneuraminic acid) and have a role in regulating proliferation via receptor tyrosine 

kinase (RTK) signaling.291  

Glycans are synthesised continuously and incorporated into proteins or lipids in 

the ER and Golgi apparatus by a complex array of glycosyltransferase enzymes that use 

the intracellular pool of monosaccharides. The glycome, representing the totality of 

glycans at any given time, is a dynamic pool and its changes have been associated with 

oncogenic transformation, following environmental and physiological 

perturbations.285,291,293 

 

Figure 76. Main classes of glycans in mammalian cells. Schematic adapted from Pinho and Reis 

(2015).44 

5.1.1 Aberrant glycosylation in cancer 

Glycans play an important role in the physiological changes that occur during 

tumourigenesis and progression; facilitating metastasis, angiogenesis and invasion. 

Aberrant glycosylation, such as overexpression of sialic acids, fucosylation and hyper 
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branching (e.g. generating multiple antenna in N-linked glycans) of glycans are a key 

hallmark of cancer. These modifications have a direct impact on cell signalling, adhesion 

and invasion (metastasis).  

In colorectal cancers, overexpression of glycosyltransferases (e.g. 

sialyltransferases) leads to aberrant glycosylation such as branching and polysialic acid-

capped glycans. In colorectal cancer cells, such as Colo205, branching and formation of 

tri- and tetra-antennary modifications has been observed by mass spectrometry (Figure 

77). The latter effect was found to be caused by the overexpression of N-

acetylglucosaminyltransferases (GnT IV and V), which have a role in extending N-glycan 

branching, and whose overexpression has been associated with malignancy.294  

Monitoring of these aberrant modifications could prove useful for diagnosis, early 

detection of the disease and treatment response. Glycan overexpression is known to occur 

with cancer progression, potentially providing a means to assess disease stage.294 
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Figure 77. Mass spectrometric analysis of N-glycans in two colorectal cancer cell lines. Aberrant 

sialylation and hyper branching (bi-, tri- and tetra-antennary) was observed in the Colo320 cell line. 

Colo205 cells exhibit N-linked glycans with excessive fucosylation and hyper branching (bi-, tri- and tetra-

antennary). Image adapted from Holst et al.295 
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5.1.2 Imaging of glycans 

 

Glycan imaging has been performed previously using lectins. These are either 

proteins or glycoproteins capable of binding specific glycan signatures. The detection of 

high-grade dysplasia in Barrett’s oesophagus, a pre-stage to oesophageal 

adenocarcinoma, has been proposed by the Brindle group as an in situ endoscopy imaging 

method, using topical application of fluorescently labelled lectins296. This approach was 

also used by the Brindle group for differentiating, with high sensitivity and specificity, 

between benign hyperplastic colon polyps, normal colon epithelium and a range of low- 

to high-grade dysplasia in colorectal cancer297. Lectins are unsuitable for systemic 

delivery due to slow pharmacokinetics and pharmacodynamics caused by their relatively 

large size and relatively low affinity towards individual glycans (micromolar range). 

Moreover, some toxicity can also be exhibited by lectins therefore rendering the systemic 

administration of these probes unsuitable for in vivo imaging.298 Nevertheless, as topical 

imaging agents, particularly in the GI tract, lectins may still be useful for the early 

detection of cancer, having been trialled recently in a Phase-0 study for the detection of 

oral pre- and malignant lesions.299 

Since glycosylation is a dynamic post-translational modification, key 

monosaccharide building blocks can potentially be replaced by reporter-bearing unnatural 

monosaccharides during biosynthesis. This is the basis of metabolic labelling of glycans 

using non-natural sugars (see Figure 78). Unnatural monosaccharides and their detection 

using chemical reporters have been described previously by our research group and used 

in fluorescence and gadolinium-based MR imaging.300,301  
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Figure 78. Diagram showing metabolic labelling of glycans. Peracetylated methylcyclopropene 

mannosamine (Ac4ManNCCp) is taken up (by passive diffusion and/or endocytosis) by cells. Upon 

internalisation monomeric Ac4ManNCCp is deacetylated (mannosamine converted to neuraminic acid)302, 

activated and incorporated into glycans in the Golgi apparatus (purple lamellar assembly) as a neuraminic 

acid. Labelled glycans (containing the non-natural sugar – red discs) are either N-linked or O-linked to 

proteins (green) and lipids (blue discs) and exported to the cell surface.  
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This project investigated the use of N-methylcyclopropene amide mannnosamine  

(Ac4ManNCCp) as a chemical reporter for fluorescent-tetrazine ligation of N-

methylcyclopropene neuraminic acid (Neu5CCp) (see Figure 78). The reaction of 

methylcyclopropenes with tetrazine has previously been used as a bioorthogonal reaction 

for in vitro imaging of glycans.303-304 However, in vivo glycan imaging has yet to be 

described using this reporter sugar.  

5.1.3 Bioorthogonal reporter and metabolic labelling strategies 

Bioorthogonal is a term used to describe the chemistry undertaken by pairs of 

synthetic molecules, used for tagging biomolecules, in a living organism. The two 

component molecules of the bioorthogonal reaction are not affected by the plethora of 

endogenous molecules present in that organism and are stable under physiological 

conditions. These molecules should also not interfere with any cellular metabolic 

processes. The term bioorthogonal was coined by Carolyn Bertozzi in 2003305 and used 

used the Staudinger ligation (Scheme 21) for in vivo labelling of glycans. However, this 

reaction is not completely bioorthogonal, as the phosphine moiety can reduce disulphide 

bonds present in proteins. Moreover, the phosphine is prone to oxidation by air, and 

therefore can be rather unstable.169 Despite these pitfalls, it has been used successfully in 

vivo for imaging glycans.222,306  

 

Scheme 21. Staudinger ligation mechanism. 
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Some bioorthogonal reactions occur through click chemistry. “Click” chemistry 

refers to ligation reactions that occur reliably in aqueous solvents, irrespective of the 

nature of the molecules to be ligated. The commonest click reaction occurs when an azide, 

as a 1,3-dipole, undergoes a [3+2] cycloaddition reaction with a terminal alkyne, using 

copper (I) as a catalyst.307 However, ionic copper used as a reaction catalyst is toxic to 

cells and therefore biocompatible copper-free click chemistry has been developed. One 

such bioorthogonal reaction is the cycloaddition of an azide to a cyclic, strained alkyne308 

or alkene309. The reaction of cyclononynes and cyclooctynes with phenylazide was first 

described by Wittig and Krebs in 1961.308 It is now known as strain promoted azide-

alkyne cycloaddition (SPAAC) and its mechanism shown in Scheme 22. Cyclic alkynes 

have a favourable pre-strained structure that favours SPAAC reaction. In addition, a 

smaller HOMO (azide)-LUMO (alkyne) energy gap compared to acyclic alkynes  

reaction means that the reaction can proceed without the need for a catalyst.310,311 

The first bioorthogonal [3+2] cycloaddition between an azide and a cyclooctyne 

has first been used in vitro for cell-surface glycan imaging by Bertozzi et al. in 2004.312 

Since then, this particular reaction has been extensively used for metabolic labelling of 

glycans, by our research groups (Leeper and Brindle) 301,313,314 and others168,169,312,315,316. 

 

Scheme 22. The [3+2] cycloaddition between a 1,3-dipole azide and a strained cyclooctyne. 

Recently, 1-methyl-3-substituted cyclopropene reacting bioorthogonally with a 

1,2,4,5-tetrazine (Scheme 23) has been found to be a faster alternative to SPAAC.317  

 

R
N N N+

N
N
NR

R



 

Flaviu Bulat – October 2019   163 

 

 

Scheme 23. A typical reaction mechanism of an inverse electron demand Diels-Alder cycloaddition 

of methylcyclopropene to a 3,6-disubsituted 1,2,4,5 tetrazine derivative. 

In 2012, the Prescher lab developed the first methylcyclopropene amide 

mannosamine named Ac4ManNCyc (shown in Figure 79), containing a cyclopropene 

chemical reporter.318 This was the first attempt to metabolic labelling of glycans using a 

methylcyclopropene tagged sugar. In 2013, dual sugar labelling of glycans with 

Ac4ManNCyc and Ac4ManNAz was by the Devaraj lab.319 The two sugars were 

independently reacted to two different fluorogenic probes, Ac4ManNCyc with tetrazine-

AlexaFluor-488 and Ac4ManNAz with DIBO-647  respectively. 

 

Figure 79. Structure of Ac4ManNCyc and Ac4ManNAz used by the Devaraj lab. 

Following Devaraj’s successful work (2012) of labelling live cell membranes 

using a novel methylcyclopropene carbamate phospholipid320, Späte et al. used a 

peracetylated methylcyclopropene carbamate N-linked mannosamine (Ac4ManNCCp, 

Figure 80) and a peracetylated azido mannosamine to undertake dual sugar labelling of 

glycans in HEK 239T cells.304 Considering the 100-fold faster320 reaction rates of methyl 

cylcolopropenecarbamate to tetrazines compared to SPAAC, the Prescher lab have since 

used the novel cyclopropene moiety to derivatise three important glycan sugars: 

mannosamine (precursor to sialic acid), glucosamine and galactosamine. These sugars 

have been succesfully metabolically incorporated into 4T1 breast cancer cells and 

labelled with a tetrazine-biotin tagging moiety.321  
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Figure 80. The chemical structure of three methylcyclopropene modified monosaccharides. 

 

Preliminary in vitro flow cytometry data were acquired by Dr Yelena Wainmann, 

using the peracetylated methylcyclopropene carbamate mannosamine 36 (see Scheme 

25), synthesised initially by Master’s student Beatrice Longo, both members of the Leeper 

lab. Pilot flow cytometry experiments carried out by Dr Wainman in vitro (unpublished 

work) studied metabolic labelling of LL2 lung carcinoma cells using Ac4ManNCCp 36 

(100 µM; 24 h). Subsequent labelling of the methycyclopropene tag using a two-step 

method using a tetrazine-biotin and NeutrAvidin-DyLight680 (NA680) showed a signal-

to-background ratio (SBR) of 30 by flow cytometry. This promising result led to 

subsequent in vitro and in vivo testing. However, streptavidin/neutravidin (53 kDa and 68 

kDa respectively) based imaging was less favoured for in vivo use due to their slow 

clearance. This can be caused by their large size, low capillary permeability, their 

immunogenicity and strong non-covalent interaction (Kd = 1 x 10 -15 mol/L)325 with 

endogenous biotin found in serum (concentration of 0.5 ng/mL).326,327 Therefore, an 

alternative approach was to use a bioorthogonal molecule, s-tetrazine-PEG11-

DyLight649, to label methylcyclopropene neuraminic acid on glycans. This fluorescent 

probe is compatible with in vivo imaging unlike previously used immunogenic 

streptavidin-tetrazines.321 
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Table 17. Comparison of the kinetics of bioorthogonal reactions, stability, advantages and 

disadvantages 

Bioorthogonal 

reaction 

1 2 3 4 

 

 

  

 

OR 

 

Kinetics  

(rate constant k) 

 

Up to 22000   

M-1s-1  (in H2O) 322,323 

0.094 M-1s-1  

(in 100% MeOH)171  

2.5 x 10-3  

M-1s-1 (CDCl3)* 

 

 

*Measured by Dr 

Stoeckmann and 

published in his 

PhD dissertation. 

Top: 13±2 M-1 s-1 at 30 

°C in a solution of 

water/DMSO (12% 

DMSO)320  

OR 

Bottom (Tz-R8): 27 ±2 

M-1 s-1 in TRIS-HCl pH 

7.4 with added DMSO 

(5%)324 

Stability  

trans-Cyclooctene 

(TCO) stable for up to 

2 months -20 °C  

TMDIBO stable at 

room temperature 

Phosphine moiety 

is prone to 

oxidation. Must be 

kept under argon. 

Can be oxidised in 

vivo by disulphide 

bonds 

Stable for months in the 

freezer. 
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functional group 

Bioorthogonal 

reaction 

Small chemical 
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accepted by the 
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metabolic labelling 
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TCO can isomerise to 

cis-cyclooctene thus 

unreactive towards 
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Alkyne moiety 

increases lipophilicity 

leading to poor aqueous 

solubility. 

Prone to oxidation. 

Relatively slow 

reaction rates for 
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Cyclopropene moiety 

increases overall 

molecule lipophilicity 
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reviewed publications) 
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5.2 Synthesis of N-cyclopropenyl carbamate mannosamine 

(Ac4ManNCCp) 

 

A new batch of methylcyclopropene derivatised mannosamine 36 (Ac4ManNCCp) 

was synthesized for testing in vitro. A cyclopropanation reaction between 1-

(trimethylsilyl)propyne 29 and ethyl diazoacetate in the presence of rhodium diacetate 

yielded protected cyclopropene ethyl-ester 30.321 Reduction with diisobutylaluminium 

hydride (DIBAL-H) for 1 hour at 0 °C yielded silyl protected alcohol 31 in a low yield of 

17% (cf. 53% yield by Patterson et al.321) over 2 steps. Alcohol 31 was deprotected with 

18-crown-6 and caesium fluoride (CsF) under anhydrous conditions to yield 

cyclopropene caesium salt 32 as a cloudy solution. This intermediate was unstable and 

polymerised easily therefore no attempt was made to isolate it. Addition of nitrophenyl 

carbonate to 32 in the presence of pyridine for 24 hours yielded carbonate 33 in a low 

yield of 19% (see Scheme 24). The reason for the low yield might be explained by 

prolonged reaction times used for trimethylsilyl deprotection compared to the literature 

(12 hours vs 2.5 hours). This increased cyclopropene polymerisation, hence the resulting 

cloudy solution and the low yield obtained. The challenge with these two steps was to 

solubilise CsF using cryptands while also keeping the reaction strictly anhydrous. CsF 

was dried for 1 hour at high vacuum (0.66 mbar) and ~300 °C (using a heat gun). Solvents 

were dried over freshly activated molecular sieves (4 Å), which had been activated in the 

same way as drying of CsF.  
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Scheme 24. Synthesis of methylcyclopropene nitrophenyl carbamate 33 

By reacting D-mannosamine 34 with the activated methylcyclopropene carbonate 

33, as per conditions described by Patterson et al.321, methylcyclopropene mannosamine 

35 was synthesised. The solution quickly turned yellow, indicating the release of the 4-

nitrophenolate anion. Peracetylation of 35 using excess acetic anhydride in pyridine 

yielded Ac4ManNCCp 36 in a moderate 75% yield. (see Scheme 25) 

 

Scheme 25. Synthesis scheme of Ac4ManNCCp 36 sugar. 

 

5.3 In vitro metabolic labelling of Colo205-D cells  

 

Ac4ManNCCp sugar 36 was dissolved in DMSO and used for metabolic glycan 

labelling of a colorectal cancer cell line (Colo205-D). A three-day protocol, see Figure 

82, was used to label Colo205-D cells with 36. On day 1, cells were seeded into 6-well 

Si

N=N=CHC(O)OC2H5 (0.7 eq.),
Rh2(OAc)4 (0.5 mol%)

DCM, 
inert atmosphere (N2)

1. 0 °C, 10 min
2. RT, 4 h

Si

O O
1. DIBAL-H (0.74 eq.),

Et2O,
0 °C,

60 min

Si

OH

THF,
RT

12 h

OO

OO

NO2

pyridine (5 eq.)
DCM
3 h

19% 32

3029

CsF (1.5 eq.),
18-crown-6 (1.5 eq.)

ClCO2C6H4NO2

31

33

2. KNaC4H4O6·4H2O 
(sat. sol.),

H2O,
0 °C,
17%

Cs

OHO
HO

HN

O

O

OH

OH

OHO
HO

NH2

OH

OH
HCl

34 35 36

Cyclopropene pNP
33 (1.85 eq.)

DIPEA (3.7 eq.)
Ac2O (10 eq.)

pyridine (10 eq.) OAcO
AcO

HN

O

O

OAc

OAc

Ac4ManNCCp

DMF (dry)
RT,
12 h

DMF (dry),
RT,

12 h,
75%



Targeted Imaging Agents for Detecting Tumour Cell Death following Therapy 

 

168  Flaviu Bulat – October 2019 

 

culture dishes with 4 wells left for controls (DMSO vehicle). Passaging of Colo205-D 

cells was done according to the culture protocol previously described in Chapter 3. On 

day 2 (16 hours later), 36 (100 µM in DMSO) was added to cells (vehicle – DMSO – to 

control cells). On day 3, cells were harvested and derivatized with Tz-PEG11-Dylight649 

(5 µM) – synthesised by Dr Henning Stoeckmann (Figure 81) – and SYTOX green (50 

nM) for 20 min at 37 °C. The SYTOX green stain was used to exclude necrotic cells. 

 

Figure 81. The chemical structure of Tz-PEG11-Dylight649. 

 

Figure 82. A 3-day protocol for metabolic labelling of Colo205-D cells with 36 (100 µM) and then 

with Tz-PEG11-Dylight649 (5 µM, 660 nm) and monitored for cell necrosis with SYTOX green (50 nM, 

530 nm). On day 3, cells were harvested and labelled with Tz-PEG11-Dylight649 (5 µM). Tz-PEG11-

Dylight649 and SYTOX green (50 nM) cell fluorescence was analysed by a BD LSRII flow cytometer. 
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Colo205-D sugar treated cells and controls (DMSO, FACS buffer, unlabelled 

Colo205-D cells) were analysed by flow cytometry to determine the extent of cell 

autofluorescence at 660 nm. As shown in Figure 83, no significant fluorescence emission 

was detected from controls. DMSO, FACS buffer, Colo205-D cells and controls showed 

a median fluorescence intensity (MFI) of ~35 which is a low value compared to the ~2500 

MFI of cells labelled with Tz-PEG11-Dylight649 (5 µM).  

 

Figure 83. Figure showing controls for DMSO (red), Colo205-D cells autofluorescence (blue), 

FACS buffer (orange) and FACS buffer-washed cells labelled with sugar 36 (light green). Tz-PEG11-

DyLight649 (5 µM) treated cells are also shown: Colo205 control cells (dark green) and cells labelled with 

peracetylated sugar 36 (100 µM, yellow). 

Scatter plots of Colo205-D cells derivatised with Tz-PEG11-Dylight649 (660 nm) 

against SYTOX® green (530 nm) were analysed to quantify the extent of labelling 

between viable and necrotic control and peracetylated sugar 36 labelled cells. (see Figure 

84, Figure 85 and Figure 86) In these experiments SYTOX green has shown very little 

cell death suggesting that sugar 36 is not inducing necrosis. The signal-to-baseline ratio 

(SBR) of Tz-PEG11-DyLight649 fluorescence (i.e. the ratio of MFIs of sugar-labelled and 

control cells) was 7.6±0.31 (n = 5) (Figure 86).  
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This favourable SBR indicates that this probe has the potential to be used for in 

vivo studies. However, cell-viability was significantly affected by the addition of sugar 

36 despite no necrosis being recorded, dropping from 82 to 74% (P = 0.0022, n = 6). 

 

Figure 84. Scatter plots of Colo205-D control (no sugar, left) and sugar 36 (100 µM) labelled cells 

(right) labelled with Tz-PEG11-DyLight649 (5 µM) and SYTOX green (50 nM) for 20 minutes at 37 °C. 

 

Figure 85. Histogram plot (below) of Colo205-D control (no sugar) and sugar 36 (100 µM) treated 

cells (right) derivatised with Tz-PEG11-DyLight649 (5 µM) and SYTOX green (50 nM) for 20 minutes at 

37 °C. 
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Figure 86. Unpaired Mann-Whitney tests, showing significant difference (P = 0.0079, n = 5) 

between Colo205-D control (no sugar) and cells labelled with Ac4ManNCCp (100 µM; 24h) (right) after 

treatment with Tz-PEG11-DyLight649 (5 µM, 20 min). Viability decreased significantly from 82 to 74% (P 

= 0.0022, n = 6). 

Further tests were carried out to optimise the required concentration and time for 

the fluorescent probe labelling. From Figure 87, it was deduced that 1 hour is sufficient 

for achieving a close-to-maximal SBR of 14.4 using a solution of Tz-

Dylight649/SYTOX® green (5 µM /50 nM).  

 

Figure 87. Optimisation of labelling time with Tz-PEG11-DyLight649 (5 µM).  
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Next, different concentrations of Tz-PEG11-Dylight649 (5, 10, 20 and 40 µM) 

were used for labelling sugar treated cells for 1 hour at 37 °C: 5 µM gave the best SBR 

of 30 according to the graph shown in Figure 88. 

 

Figure 88. Optimisation of Tz-PEG11-DyLight649 concentration. 

Confocal microscopy was used to image fixed Colo205-D labelled with 

peracetylated sugar 36 (100 µM) and labelled with Tz-PEG11-DyLight649 (5 µM) and 

SYTOX® green (50 nM). No image quantification was performed. The images confirm 

that the Tz-PEG11-DyLight649 fluorescence (Figure 89 C) was confined to the cell 

surface and not distributed throughout the cytoplasm. 
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Figure 89. Confocal microscopy of fixed Colo205-D labelled with peracetylated sugar 36 (100 

µM; 24 hours) and labelled with Tz-PEG11-DyLight649 (5 µM; 30 min) and SYTOX green (50 nM; 30 

min). A) SYTOX® green channel (530 nm), B) mStrawberry channel (610 nm), C) DyLight649 channel 

(660 nm), D) an overlay of all three aforementioned channels. Scale bars = 20 µm. 

 

5.4 In vivo metabolic labelling of Colo205-D tumours  

 

Female Balb/c nu/nu mice (n = 5) were implanted with Colo205-D cells (~5 

million) and tumours were grown for 2 weeks. Mice were dosed by oral gavage with 

Ac4ManNCCp (300 mg/kg) suspension in PBS with 12% DMSO (PBS with 12% DMSO 

for control mice) for 3 consecutive days. On day 4 mice were injected with Tz-PEG11-

DyLight649. Mice were sacrificed on day 4 and the fluorescence intensity of the different 

organs was measured (performed by Dr André Neves). This showed no difference 

between control and sugar-labelled mice (Figure 90). Thus the in vivo experiment failed 

to replicate the labelling of DMSO dissolved sugar 36 observed in vitro. This is most 

probably due to the fact that 36 was insoluble in PBS (even upon 12% addition of DMSO) 
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thus it was rather unlikely that it became bioavailable following oral administration. 

Gavage delivery of sugars was selected in this case as an alternative to intraperitoneal 

injection. The latter method was extensively used in vivo in the past222,301 to deliver non-

natural sugars. However, a previous experiment undertaken by Dr Neves indicated that 

i.p. delivery of sugar 36 resulted in abdominal non-specific labelling.  

 

Figure 90. Mean fluorescence intensity of ex-vivo organs showing no contrast between sugar 

treated mice and controls. (n = 5) 

In preparation for in vivo delivery for assessing biodistribution and imaging 

experiments, the 36 was dissolved in PBS (rather than DMSO). The solution became 

cloudy suggesting that sugar was not fully dissolved. Heating and addition of DMSO up 

to maximum concentration of 12% (maximum compatible with animal injection) was 

attempted in order to improve solubility. Using this PBS (with 12% DMSO) dissolution 

of sugar 36, in vitro flow cytometry labelling was assessed. Upon Tz-PEG11-DyLight649 

(5 µM; 20 min at 37 °C) labelling of cells, a significantly lower SBR of 3.1±0.4 (n = 2) 

was obtained using the PBS (with 12% DMSO) dissolved sugar 36 compared to the 

DMSO dissolved one: SBR of 9.0±0.2 (n = 3). (see Figure 91) The poor dissolution is 
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presumably due to increased hydrophobicity of 36 leading to poor solubility and therefore 

low incorporation into cells. 

 

Figure 91. Comparison of SBRs obtained with sugar 36 dissolved in DMSO (n = 3) and sugar 36 

dissolved in PBS (n = 2). A significant decrease in SBR was observed upon changing the dissolution 

solvent. (Two-tailed Welch’s t test performed, P = 0.03) 

Alternative formulations using 15% polyethylene glycol (PEG-400) in PBS were 

tested but there was no visible effect on solubility.328,329 This translated in no sugar-

dependent labelling between control and sugar labelled cells upon analysis by flow 

cytometry. A final attempt at dissolving 36 in PBS was attempted: β-cyclodextrin was 

added to improve the solubility of peracetylated sugar 36 by entrapping it in its 

hydrophobic core and therefore increasing its availability for cells to metabolise. 

β-Cyclodextrin is a cyclic heptasaccharide composed of seven glucopyranose sugars and 

has been extensively used in formulations for improving solubility.330,257 Upon using this 

additive, the SBR dropped from 7 (obtained by dissolving the sugar in 100% DMSO) to 

2 when using β-cyclodextrin (25 mg/mL) or 3 β-cyclodextrin (125 mg/mL), as shown in 

Figure 92. One possible explanation is that β-cyclodextrin fails to provide as a reservoir 

of sugar 36. 
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Figure 92. Comparison of SBR upon Colo205-D labelled with sugar 36 (n = 4, in DMSO), sugar 

36 + β-cyclodextrin (n = 2, 25 mg/mL in PBS) and sugar 36 + β-cyclodextrin (n = 2, 125 mg/mL in PBS), 

then treated with Tz-PEG11-DyLight649 (5 µM) for 1 hour at 37 °C. 

5.5 Conclusion 

Ac4ManNCCp 36 is a promising chemical reporter for metabolic labelling of 

glycans. In this work use, a single tetrazine fluorescent probe Tz-PEG11-Dylight649 (5 

µM) was used in vitro to label Colo205-D cells for 1 hour at 37 °C. This was sufficient 

for achieving a close-to-maximal SBR of 30 between sugar 36 derived cells and control. 

These results are consistent with findings by Dr Wainman where a similar SBR of 44 was 

obtained upon metabolic labelling of LL2 Lewis lung carcinoma cells with sugar 36.  

However, in that study, the fluorescent tetrazine used to label sugar 36, required the use 

of NeutrAvidin-DyLight680 which was incompatible with in vivo use due to its 

immunogenicity. The use of NeutrAvidin-DyLight680 generates better SBR due to the 

hydrophilic nature of the probe and low non-specific binding to cells. 

 Despite initial promising results, upon preparation for in vivo delivery, it was 

observed that peracetylated methylcyclopropene-derived mannosamine 36 lacked 

aqueous solubility. This could be one of the main causes for which this sugar failed to 

generate contrast in an advanced colorectal tumour in vivo. Perhaps this is also the reason 
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for which none of these peracetylated methylcyclopropene-derived sugars were published 

in vivo publications imaging with these sugars. 

Therefore, further improvement of structure-activity relationship (SAR) of sugar 

36 was required to improve solubility, bioavailability and potentially facilitate metabolic 

labelling of glycans. This project was assigned to Shahd Fouad (Master’s student). By 

reducing the degree of acetylation of Ac4ManNCCp (mono-, di- and tri- acetylated 

methylcyclopropene mannosamine) increased aqueous solubility was observed. In her 

thesis, Shahd showed by flow cytometry that tri-acetylated sugar provided the best SBR 

(MFI – 13.9±0.9) out of the mono-, di- and tri acetylated sugars upon derivatisation with 

tetrazine-PEG11-AF649 (5 µM) in sugar labelled Colo205-D cells. 

5.6 Experimental 

 

5.6.1 Synthesis of Ac4ManNCCp 

 

(2-Methyl-3-(trimethylsilyl)cycloprop-2-en-1-yl)methanol (31) 

 

To a suspension of ethynyltrimethylsilane 29  (3.00 mL, 2.274 g, 20.3 mmol) and 

Rh2(OAc)4 (44 mg, 0.101 mmol, 0.5% mol) in DCM (20 mL) stirred at 0 °C in an inert 

atmosphere (N2), ethyl diazoacetate (1.72 mL (with <15% DCM), 1.62 g, 14.21 mmol, 

0.7 eq.) was added dropwise (1 mL/min) with vigorous stirring. The green suspension 

was warmed to RT and stirred vigorously for 4 hours. The suspension was passed through 

a silica plug and DCM (20 mL) was used to wash the plug. The fractions collected were 

combined and concentrated in vacuo to approximately 5 mL. The yellow solution 

containing ethyl ester 30 was added dropwise (0.16 mL/min) to a solution of DIBAL-H 

(15 mL of a solution 1.0 M in hexanes, 15 mmol, 0.74 eq.) in Et2O (30 mL) at 0 °C, 

Si

O

31

Cs
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making sure the temperature did not rise above 3 °C. The reaction was monitored by TLC 

(Hex/EtOAc 9:1, Rf 0.6, potassium permanganate stain) and was stirred until the 

methylcyclopropene ester 30 was consumed (within 60 min) to yield silyl-protected 

methylcyclopropene alcohol 31, Rf (10:90 EtOAc:Hexanes)  0.3. 

Saturated aqueous Rochelle’s salt (10 mL) was then added dropwise, making sure 

the temperature does not exceed 4 °C. The mixture formed a gel, which was extracted 

with Et2O (3 x 30 mL). The organic layers were combined, washed with brine, dried 

(MgSO4), filtered and concentrated in vacuo. The resulting yellow oil was purified by 

flash column chromatography (eluting with 30% EtOAc in hexanes) to yield 31 (540 mg, 

3.45 mmol, 17% over two steps) as a faintly yellow oil. 1H NMR spectrum was consistent 

with previously reported data.320 The 13C NMR spectrum differed from literature320 

showing one more upfield -CH2- adjacent to -O-Cs+ due to Cs shielding (115.5 ppm vs 

literature 135.9 ppm). 

Rf (30:70 EtOAc:Hexanes) 0.51 

δH (400 MHz, CDCl3): 0.17 (9H, s), 1.56 (1H, t, J = 4.6 Hz), 2.21 (3H, s) 3.47 (2H, 

d, J = 4.6 Hz) 

δC (100 MHz, CDCl3): -1.1, 13.4, 22.2, 69.3, 111.3, 115.5. 

 (2-Methylcycloprop-2-en-1-yl)methyl (4-nitrophenyl) carbonate (33) 

 

Alcohol 31 (540 mg, 3.46 mmol), 18-crown-6 (1370 mg, 5.19 mmol, 1.5 eq.) and 

freshly dried anhydrous CsF (784 mg, 5.19 mmol, 1.5 eq) were dissolved in THF (8 mL). 

The solution was stirred at RT for 12 hours. The reaction was then diluted with DCM (5 

mL) and freshly distilled dry pyridine (1.4 mL, 17.3 mmol, 5 eq.) was added. 4-

Nitrophenyl chloroformate (1.4 g, 7 mmol, 2 eq.) was added and reaction was monitored 

O

OO

NO2

33
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by TLC (30% EtOAc in hexanes, permanganate stain). After 3 hours, the starting material 

was consumed. The reaction mixture was then diluted with DCM (20 mL), washed with 

brine (2 x 50 mL), dried (MgSO4), gently concentrated in vacuo (>150 mbar) and purified 

by flash column chromatography (eluting with 10-30% EtOAc in hexanes) to afford the 

carbonate 33 as a white crystalline solid (162 mg, 0.65 mmol, 19% over two steps). NMR 

spectra were in accordance to literature.318 

Rf (30:70 EtOAc:Hexanes) 0.74 

δH (400 MHz, CDCl3): 1.71 (1H, dt, J = 5.36, 1.4 Hz), 2.17 (3H, d, J = 0.9 Hz) 

4.14 (1H, dd, J = 11.1, 5.5 Hz), 4.21 (1H, dd, J = 11.1, 5.2 Hz, 1H), 6.61 (1H, s), 7.39 

(2H, d, J = 9.2 Hz), 8.28 (2H, d, J = 9.2 Hz) 

δC (100 MHz, CDCl3): 11.7, 16.6, 77.4, 101.7, 120.2, 121.8, 125.3, 145.3, 152.7, 

155.8 

N-(((2-Methylcycloprop-2-en-1-yl)methoxy)carbonyl)mannosamine 

tetraacetate (36) Ac4ManNCCp 

    

Mannosamine HCl salt (75 mg, 0.35 mmol) was dissolved in DMF (0.5 mL) and 

N,N-diisopropylethylamine (226 µL, 1.3 mmol, 3.7 eq.) at 60 °C for 30 minutes. The 

solution was cooled to RT and a solution of carbonate 33 (162 mg, 0.65 mmol, 1.85 eq.) 

in dry DMF (5 mL) was added. The reaction was monitored by TLC (10:90 MeOH:DCM, 

permanganate stain) and upon completion (12 hours) pyridine (282.5 µL, 3.5 mmol, 10 

eq.) and Ac2O (330.5 µL, 3.5 mmol, 10 eq.) were added. The reaction was stirred for a 

further 12 hours and then solvent was removed in vacuo. The resulting yellow oil was 

adsorbed on silica gel and purified by flash column chromatography (10:90 MeOH:DCM) 

to yield Ac4ManNCCp 36 (120 mg, 0.26 mmol, 75% after 2 steps) as a white powder. 1H 

36

OAcO
AcO

HN

O

O

OAc

OAc

Ac4ManNCCp
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NMR spectra were in accordance to literature321 however some peaks at 4.11 ppm were 

not fully resolved due to solvent residue covering some peaks. 

 Rf (10:90 MeOH:DCM) 0.25 

 δH (400 MHz, CDCl3): (mixture of anomers 2:1 α:β) 

(α anomer) 1.66 (1H, m), 2.02 (3H, s), 2.04 (3H, s), 2.14 (3H, s),  2.17 (3H, s), 

3.95 (2H, t, J = 5.1 Hz), 4.02 (1H, m) 4.26 (1H, dd, J = 12.3, 4.3 Hz), 4.34 (1H, dd, J = 

8.7, 3.8 Hz), 5.02 (1H, d, J = 4.2 Hz), 5.20 (1H, t, J = 9.9 Hz), 5.31 (1H, dd, J = 10.2, 4.2 

Hz), 6.08 (1H, s), 6.58 (1H, d, J = 4.8 Hz) 

(β anomer) 1.66 (1H, m), 2.03 (3H, s), 2.05 (3H, s), 2.08 (3H, s), 2.11(3H, s), 2.14 

(3H, s), 3.78 (1H, ddd, J = 9.6, 5.05, 2.58), 4.02 (1H, m), 4.05-4.08 (m, 2H) 4.26 (1H, dd, 

J = 12.3, 4.3 Hz), 4.47 (1H, d, J = 8.7), 5.02-5.04 (1H, m), 5.10 (1H, s) 5.16 (1H, t, J = 

9.9 Hz), 5.84 (1H, s), 6.58 (1H, d, J = 4.8 Hz) 

5.6.2 Metabolic labelling of Colo205-D with Ac4ManNCCp and Tz-PEG11-

DyLight 649 derivatization for flow cytometry analysis 

Stock solutions used: 

Three peracetylated methylcyclopropene sugar solutions: 

1. Ac4ManNCCp (110 mM in 100% DMSO) was used for feeding cells for in vitro analysis of 

the sugar probe; 

2. Ac4ManNCCp (25 mM in PBS (11.4 mg/mL) with 25 mg/mL β-cyclodextrin); 

3. Ac4ManNCCp (16 mM in PBS (7.3 mg/mL) with 120 mg/mL β-cyclodextrin); 

Tz-PEG11-DyLight 649 (50 µM in PBS) synthesised by Henning Stöckmann, former member of 

the Leeper lab;  

SYTOX
®
 green (30 µM in DMSO, Invitrogen cat. no. SKU#S7020)  

Derivatisation solution: Tz-DyLight 647 (150 µL, 50 µM in PBS) diluted 10-fold 

in FACS buffer (1347.5 µL) with SYTOX® green (2.5 µL, 30 µM in DMSO) to generate 

a working solution Tz-dylight647/SYTOX® (5 µM/50nM in PBS) sufficient for labelling 

15 samples.   
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i. Colo205-D cell seeding and culture  

Colo205-D cells were seeded into Nunc Cell-culture treated 6-well culture dishes, 

at a density of 4 x 104 viable cells/cm2 (~4 x 105 cells per well). A volume of 2 ml of 

RPMI-1640 tissue culture medium (with added 10% heat inactivated FBS) was used per 

well. The area of a single well is 9.6 cm2. Cells were allowed to settle on the plate for 16 

hours. 

ii. Cell labelling with Ac4ManNCCp 

Ac4ManNCCp (11 µL, 110 mM in 100% DMSO) was diluted 10-fold in DMSO 

(99 µL). Each well (2 mL) was treated with Ac4ManNCCp (18.2 µL, 11 mM) to generate 

a concentration of 100 µM or with DMSO (18.2 µL) for the control cells. Cells were 

incubated for 24 hours in a 5% CO2 incubator at 37 °C.  

iii. Ac4ManNCCp derivatisation with Tz-PEG11-DyLight649 for flow cytometry 

Colo205-D cells treated with Ac4ManNCCp were treated with Gibco 0.25% 

Trypsin- 1 mM EDTA (0.5 mL) per well and returned to the incubator for 3 minutes to 

facilitate dissociation from vessel. Cells were then transferred to Eppendorf tubes, washed 

with FACS buffer (1 mL, PBS containing 1% foetal bovine serum), then reacted with the 

derivatisation solution (100 µL) containing Tz-PEG11-DyLight649 (5 µM) and SYTOX® 

green (50 nM) in FACS buffer for 20 min at 37 °C with shaking at 600 rpm. Cells were 

pelleted (800 G), washed with FACS buffer (1000 µL) and the process was repeated 3 

times. Cells were then set on ice to be analysed by flow cytometry on an LSRII flow 

cytometer (BD Biosciences). For each sample 10,000 data points were acquired. Cells 

were analysed in triplicate. Fluorescence emitted by Tz-PEG11-DyLight 649 and 

SYTOX® green was analysed using FlowJo software. 

Flow cytometer filters used (nm) and their associated photomultiplier voltages: 

forward scatter – 350V; side scatter – 352V; SYTOX® green blue 530nm/30 channel – 

400V; mStrawberry blue 610nm/20 channel – 489V; Tz-PEG11-DyLight649 red 

660nm/20 channel – 500V; NADH UV 450nm/50 channel – 500V; laser/wavelengths 

used: UV - 355 nm; argon ion laser - 488 nm; violet diode laser - 406 nm; red laser - 633 

nm. 
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iv. Confocal microscopy imaging 

Colo205-D cells incubated for 24h with Ac4ManNCCp (100 μM) were seeded in 

an ibidi cell culture pot at concentration of ~5×105 cells/cm2 and allowed to adhere to the 

plate surface for 2h. Growth media was washed away with PBS (1 mL) and cells were 

treated with Tz-PEG11-DyLight649 (5 μM) and SYTOX® green (50 nM) in FACS buffer 

(500 μL) and incubated at 37 °C for 20 minutes. Cells were washed with cold FACS 

buffer (3 x 1 mL) and then fixed with PBS (1 mL) containing 4% formalin at RT for 15 

min. Then cells were washed with PBS (3 x 1 mL) and ethanol (1 mL) to dry the slide. 

The slide was imaged on a Leica TCS SP5 Confocal Microscope (63x objective with oil). 
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6 CONTRIBUTIONS AND 

FUTURE WORK 

6.1 Imaging cell death using C2A protein 

This work was set out to design and synthesise a PET imaging agent to be used 

for detecting tumour cell death in vivo in response to therapy. 

An automated radiosynthesis of 2-[18F]fluoroethylazide and labelling of a C2Am-

DBCO by SPAAC was achieved however the yield was too low to be used for PET 

imaging. 

A more efficient labelling method, using Michael-addition, an N-(5-

[18F]fluoropentyl)maleimide functional group ([18F]FPenM) was successfully conjugated 

to a free thiol C2Am for the first time. An automated synthesis was developed to produce 

this fluorine-18 maleimide functional group within a shorter time (58±5.8 min) compared 

to other maleimides in the literature209,210, in a moderate yield (12±3%) and with a high 

molar radioactivity 212000±30000 MBq/µmol (n = 3). Its speed of conjugation to thiols, 

determined in this study by reaction with glutathione, was determined to be sufficiently 

fast for the synthesis of PET imaging agents. FPenM hydrolysis rate was determined to 

be slow (30±2.2 hours), showing good stability in aqueous media (PBS) thus allowing for 

conjugation of proteins for an extended period of time. Finally, [18F]FPenM was 

successfully used for conjugation of C2Am protein for the first time, yielding a cell death 

radiotracer with a high molar activity suitable for in vivo PET imaging studies. 

[18F]FPenM-C2Am was successfully used in vitro to detect tumour cell death 

following treatment with a TRAIL-R2 agonist in two cancer models: a triple negative 

breast cancer and an advanced colorectal carcinoma. 

Biodistribution and PET imaging studies were successfully carried out using 

[18F]FPenM-C2Am in murine xenograft of advanced colorectal cancer using the same 
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TRAIL-R2 agonist (MEDI3039) for inducing cell death. Cell death was validated by 

histology using cleaved caspase-3 (CC3) and terminal deoxynucleotidyl transferase 

dUTP nick end labelling (TUNEL) and were positively correlated with PET imaging 

tumour uptake values.  

Given the favourable biodistribution profile of [18F]FPenM-C2Am, and its ability 

to produce rapid and cell death-specific image contrast, this agent has potential for clinical 

translation. We have initiated GMP manufacture and toxicology studies required for a 

Phase 1 trial.   

Future work using the [18F]FPenM-C2Am will consist of analysing the % increase 

in probe uptake between pre- and post-treatment and correlation with histological staining 

with CC3 and TUNEL in a murine breast cancer xenograft model (MDA-MB-231 cells). 

Further experiments are planned to extend the scope of [18F]FPenM-C2Am 

radiotracer by varying the cancer type (triple negative breast cancer) and treatment: 

chemotherapy (5-fluorouracil, doxorubicin) and radiotherapy. In addition, experiments 

using an inactive version of the C2Am protein (iC2Am) will be used as a better control 

for imaging cell death post treatment. This will help detect excretion pathways and any 

non-specific binding. 

 

6.2 Imaging tumour glycans in an advanced colorectal cancer 

using Ac4ManNCCp 

 

First, a methylcyclopropene derived sugar (Ac4ManNCCp) was synthesised and 

used in vitro to demonstrate glycan sialylation for the first time in Colo205-D cancer cells. 

This bioorthogonal labelling of glycans used a biocompatible fluorogenic tetrazine which 

upon flow cytometry analysis showed an excellent SBR of 30. Previous publications that 

used flow cytometry to study glycan labelling used biotin-

streptavidin/avidin/NeutrAvidin labelling methods which generate superior SBRs but are 

incompatible with in vivo testing due to immunogenicity concerns.318,321 
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Labelling glycans using Ac4ManNCCp using the biocompatible Tz-PEG11-

Dylight649 was attempted for the first time in a murine advanced colorectal xenograft 

model however it failed to generate contrast. Despite the successful in vitro detection of 

glycans, in vivo labelling was impossible due in part to poor solubility of Ac4ManNCCp 

in aqueous media. As of 2019, there is no evidence in literature for the use of 

methylcyclopropene sugars (Ac4ManNCCp) for in vivo metabolic labelling of glycans 

and we suspect it’s due to their poor solubilities. 

Following our Masters’ student (Shahd Fouad) successful improvement of the 

solubility of Ac4ManNCCp by using a tri-acetylated equivalent, the project has now been 

assigned to Daniel Parle (PhD student in the Leeper lab) to investigate the effect on 

metabolic labelling of glycans using mono- di- and triacetylated sugars.  

Dual sugar labelling of glycans in vivo using azide and methylcyclopropane 

derived sugars is the ultimate goal as this can enable better profiling of glycans in cancer 

cells. “Finger-printing” glycans using non-natural sugars could help to better understand 

carcinogenesis, invasion and predict prognosis of cancer following therapy.332 

As of 2019, methylcyclopropene continues to be a highly desirable chemical 

handle for labelling glycans. The fast nature of the bioorthogonal reaction between a 

methylcyclopropene and a 3,6-disubsituted-1,2,4,5-tetrazine enables quick in vivo 

labelling reactions. Therefore, an 18F-labelled tetrazine could be used for the first time to 

image metabolically labelled glycans by PET.  
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8 APPENDICES 

8.1 GE TRACERlab FXFN programming sequence for 2-

[18F]fluoroethyl azide 

 

0 Set Temp. Setpoint Reactor = 40  

0 Set Vacuum Pump = On  

0.1 Set Process Control = Status Text (taken from comment)  

0.1 Wait TFeomr p. Regulator Status Reactor = Temp. OK  

t1+0.2 Set V24 = Open  

t1+0.2 Set HPLC UV Detector Lamp = Off  

t1+0.2 Set Process Control = Status Text (taken from comment)  

t1+0.4 Set V19 = Open  

t1+0.5 Set V25 = b (down)  

t1+0.5 Set V03 Vial3 = Open  

t1+5 Set Stirrer = On  

t1+10 Set V24 = Close  

t1+10 Set V19 = Close  

t1+10 Set Temp. Setpoint Reactor = 88  

t1+10 Set V03 Vial3 = Close  

t1+11 Set Stirrer = Off  

t1+2'0 Set Stirrer = On  

t1+2'3 Set Stirrer = Off  

t1+3'40 Set Stirrer = On  

t1+3'43 Set Stirrer = Off  

t1+5'20 Set Stirrer = On  

t1+5'23 Set Stirrer = Off  

t1+8'0 Set Stirrer = On  

t1+10'4 Set Stirrer = Off  

t1+10'4 Set Temp. Setpoint Reactor = 40 
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8.2 GE TRACERlab FXFN programming sequence for N-(5-

[18F]fluoropentyl)maleimide preparation 

 

Drying 18F automated procedure sequence 

 

Show message with abort 0 Set Process Control = button and wait  

t1+0.1 Set Process Control = Show message with abort button and wait  

t2+0 Set Stirrer = On  

t2+0 Set V20 = Open  

t2+0 Set Vacuum Pump = On  

t2+0.1 Set Process Control = Start Region  

t2+10 Set V25 = b (down)  

t2+10 Set V20 = Close  

t2+10 Set V24 = Open  

t2+10 Set Process Control = End Region  

t2+12 Set V10 = b (left)  

t2+12 Set V11 = b (left)  

t2+12 Set V23 = Open  

t2+12 Set V24 = Close  

t2+12 Set V25 = a (up)  

t2+50 Set V10 = a (right)  

t2+50 Set V23 = Close  

t2+50 Set V11 = a (right)  

t2+50 Set V13 = Open  

t2+50 Set V01 Vial1 = Open  

t2+50 Set V24 = Open  

t2+1'10 Set Temp. Setpoint Reactor = 95  

t2+1'20 Set V20 = Open  

t2+1'20 Set V13 = Close  

t2+1'20 Set V01 Vial1 = Close  

t2+1'22 Wait TFeomr p. Regulator Status Reactor = Temp. OK  

t3+1'2 Set V02 Vial2 = Open  

t3+1'2 Set V02 Vial2 = Close  

t3+2'8 Set V02 Vial2 = Open  

t3+2'8 Set V02 Vial2 = Close  

t3+3'16 Set V02 Vial2 = Open  
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t3+3'18 Set V02 Vial2 = Close  

t3+8'0 Set V25 = b (down)  

t3+8'0 Set V20 = Close  

Time List:  

Time Device Value Dur. Comment  

Check gases pressures  

(He: 130kPa, CA: 360kPa)  

Confirm transfer of activity has been completed  

 

Precursor labelling with fluorine-18 and furan deprotection to from N-(5-[18F]fluoropentyl) 
maleimide  

 

0 Set Vacuum Pump = On  

0 Set V19 = Open  

0 Set Temp. Setpoint Reactor = 50  

0.1 Wait TFeomr p. Regulator Status Reactor = Temp. OK  

t1+0 Set Temp. Setpoint Reactor = 92  

t1+0.1 Set Process Control = Status Text (taken from comment)  

t1+0.2 Set Process Control = Status Text (taken from comment)  

t1+0.2 Set HPLC UV Detector Lamp = On  

t1+0.2 Set V24 = Open  

t1+0.4 Set V19 = Open  

t1+0.5 Set V25 = b (down)  

t1+0.5 Set V03 Vial3 = Open  

t1+5 Set V19 = Close  

t1+5 Set V24 = Close  

t1+5 Set V03 Vial3 = Close  

t1+5 Set Stirrer = On  

t1+12'0 Set V04 Vial4 = Open  

t1+12'1 Set V24 = Open  

t1+12'2 Set V19 = Close  

t1+12'2 Set V04 Vial4 = Close  

t1+12'2 Set V24 = Close  

t1+12'3 Set Temp. Setpoint Reactor = 160  

t1+12'3 Wait TFeomr p. Regulator Status Reactor = Temp. OK  

t2+5'30 Set Temp. Setpoint Reactor = 22  
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t2+5'31 Wait TFeomr p. Regulator Status Reactor = Temp. OK  

t3+6'1 Set Needle Reactor 1 = Down  

t3+6'1 Set V12 = OFF (to HPLC vial)  

t3+6'1 Set V14 = Open  

t3+6'1 Set V20 = Open  

t3+6'6 Set Needle Reactor 1 = Up  

t3+6'21 Set V20 = Close 

 

N-(5-[18F]fluoropentyl)maleimide purification using HPLC 

 

0 Set Vacuum Pump = Off  

0.2 Set HPLC Pump Flow Set Point = 0.5  

1 Set HPLC UV Detector Lamp = On  

2.3 Set V12 = OFF (to HPLC vial)  

5 Set HPLC Pump Flow Set Point = 1 

8 Set V20 = Close  

8.1 Set V14 = Close  

9 Set HPLC Pump Flow Set Point = 2 

11 Set HPLC Pump Flow Set Point = 3 

12 Set V26 = b (left)  

13 Set V12 = ON (to waste)  

13.1 Wait Fluoride Detector = On  

t1+0.1 Wait Fluoride Detector = Off  

t2+0.1 Set Load/Inject Valve = Inject  

t2+0.1 Set V26 = a (right)  

t2+10 Wait Chromatography Peak Detector = Start of Peak  

t3+30 Wait Chromatography Peak Detector = End of Peak 

 

N-(5–[18F]fluoropentyl)maleimide trap and release on Sep-Pak C18(formulation) 

 

t1+0 Set V18 (HPLC Fraction) = a (left)  

t1+0.1 Set V21 = b (down)  

t1+0.2 Set V17 = a (left)  

t1+0.3 Set V15 = a (left)  

t1+40 Set V21 = a (up)  

t1+40.1 Set V17 = b (right)  
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t1+40.2 Set V15 = b (right)  

t1+40.3 Set V19 = Open  

t1+40.4 Set V08 Vial8 = b (up)  

t1+41 Set V09 Vial9 = b (up)  

t1+41.5 Set V22 = a (right)  

t1+1'6 Set V19 = Close  

t1+1'6 Set Process Control = Stop Synthesis  

t1+1'6 Set Process Control = Show message and wait 

 

8.3 GE TRACERlab FXFN activity report for N-(5-

[18F]fluoropentyl)maleimide radiosynthesis and semi-prep 

purification chromatogram 

 

 

Product: 18F, Process: 5fluoropentylmal, Batch No.: 130918, Operator: wbic, Start of Synthesis: 9/13/2018 10:43:08 , Page 1/2
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Product: 18F, Process: 5fluoropentylmal, Batch No.: 130918, Operator: wbic, Start of Synthesis: 9/13/2018 10:43:08 , Page 1/1
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8.4 Advion Nanotek activity balance sheet for [18F]SFB 

radiosynthesis 

 

 

 

 

        Radionuclide: 18F 

  ACTIVITY BALANCE   Half-life, min: 109.77 

    EOB: 10:30:00     

  Start of Synthesis (SOS)   10:47     

  #1 25 1' uA 0.2uAh activity A(t) 
time 
(hh:mm) 

activity at 
SOS 

% decay 
corrected 

  18F-fluoride EOB 1752.0 10:47 1752.0 --- 

            

  Conc.vial 33.0 13:13 180.0 10.3% 

  QMA trap 7.0 12:27 13.2 0.8% 

  18O-water 408.0 11:52 615.1 35.1% 

  Product vial 1 0.0 12:27 0.0 0.0% 

  Product vial 2 3.0 12:33 5.9 0.3% 

  Product vial 3 0.2 12:33 0.4 0.0% 

  Product vial 4 33.0 13:06 79.4 4.5% 

  Waste  23.0 13:10 56.7 3.2% 

  Total activity recovered     950.6 54.3% 

QC:  % Fluoride 0       

  % Product 0       

  % Others         

            

            

  Missing Activity, MBq:      801.4 45.7% 
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8.5 Protocol for culturing Colo205D cancer cells 

 

 

These are semi-suspension cells thus they grow in suspension and attached to the 

flask. 

1. Transfer growth media (~ 20 mL for T75 flask) and floating cells in a sterile 50 

mL Falcon centrifuge tube. 

2. Rinse flask containing the attached cell layer with 1 x PBS (5 mL) and transfer 

PBS to Falcon tube. 

3. Add Gibco 0.25% Trypsin- 1 mM EDTA (1.5 mL) to the T75 flask and return 

to incubator at 37°C to facilitate dissociation from vessel for 3 minutes. 

Do not agitate the cells to avoid clumping of cells. 

4. Wash flask with RPMI-1640 (4.5 mL) (with added 10% heat inactivated FBS) 

growth media and aspirate cells by gently pipetting. 

5. Transfer the detached cells into the 50 mL centrifuge tube containing the old 

medium and centrifuge at 1,200 rpm for 3min. 

6. Remove the supernatant and resuspend the cell pellet in 10 mL of fresh and pre-

warmed growth media. 

7. Add an appropriate aliquot of the cell suspension to a new culture T75 flask 

containing fresh RPMI-1640 medium (20 mL) and incubate cells at 37 °C. 

Growth media: Gibco RPMI-1640, REF 21875-034 supplemented with 10% heat 

inactivated FBS 
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Subculture: Passage cells every 2 to 3 days. A subcultivation ratio of 1:4 to 1:8 is 

recommended. 

 

8.6 Protocol for culturing MDA-MB-231-D cancer cells 

 

These are adherent cells thus they grow attached to the culture flask. 

1. Aspirate old growth media (~ 20mL for T75 flask). 

2. Rinse flask containing the attached cell layer with 1 x PBS (5 mL) and aspirate 

the PBS. 

3. Add Gibco 0.25% Trypsin - 1 mM EDTA (1.5 mL) to the T75 flask and return 

to incubator at 37 °C to facilitate dissociation from vessel for 3 minutes. 

4. Wash flask with Gibco with 10% heat inactivated FBS (4.5 mL) growth media 

and aspirate cells by gently pipetting. 

5. Transfer the detached cells into the 50 mL centrifuge tube containing the old 

medium and centrifuge at 1,200 rpm for 3min. 

6. Remove the supernatant and resuspend the cell pellet in 10 mL of fresh and pre-

warmed growth media. 

7. Add an appropriate aliquot of the cell suspension to a new culture T75 flask 

containing 20 mL fresh medium and incubate cells at 37°C. 

Growth media: Gibco DMEM 1X (Dulbecco’s Modified Eagle’s Medium, REF 

41966-029) supplemented with 10% heat inactivated FBS 

Subculture: Passage cells every 2 to 3 days.  
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8.7 Liquid Chromatography Mass Spectrometry spectrum of 

reduced C2Am (Deconvoluted) 

 

8.8 Liquid chromatography mass spectrometry spectrum of N-(5-

fluoropentyl)maleimide-C2Am (ceconvoluted) 
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8.9 HPLC chromatograms of FPenM-C2Am standard and 

[18F]FPenM-C2Am   

 

Figure 93. FPenM-C2Am HPLC standard- HPLC chromatogram - radio detector top, 254 nm UV 

trace bottom (peak at 12.183 min). C2Am (5 ug, 20 uL) protein was injected on the column. 
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Figure 94. 2. [18F]FPenM-C2Am HPLC chromatogram - radio detector top (peak at 12.797), 254 

nm UV tracer bottom (peak at 11.897 min). 20uL of [18F]FPenM-C2Am  (1.85 ug, 4 MBq) was injected on 

the column. 

8.10 1H, 13C and 19F NMR spectra for N-succinimidyl-4-

fluorobenzoate standard 
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8.11 1H and 19F NMR spectra for N-(2-(2,5-dioxo-2,5-dihydro-

1H-pyrrol-1-yl)ethyl)-4-fluorobenzamide 
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8.12 1H and 13C NMR spectra for Ethyl 4-(trimethylammonium 

triflate) benzoate precursor 
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8.13 1H and 13C NMR spectra for 2-azidoethyl methylsulfonate 

precursor  
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8.14 19F NMR spectrum for 2-fluoroethylazide (HPLC standard) 
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8.15 7-Oxanorborn-5-ene-2,3-dicarboxylic anhydride  
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8.16 2-(5-Hydroxypentyl)-3a,4,7,7a-tetrahydro-1H-4,7-

epoxyisoindole-1,3(2H)-dione 

 

Sample: 190317@21-46-1 CombiFlash NEXTGEN : NextGen Demo Sunday 17 March 2019 09:46PM

Page 1 of 1

Column: Silica 24g Gold  
SN: E00401509BDA20B1 Lot: 282229603W
Flow Rate: 40 ml/min
Equilibration Volume: 5.0 CV
Initial Waste: 0.0 CV
Air Purge: 1.0 min
Solvent A: Pet Ether 40-60
Solvent B: Ethyl Acetate

Peak Tube Volume: Max.
Non-Peak Tube Volume: Max.
Loading Type: Solid
Wavelength 1 (red): 254nm
    Peak Width: 1 min
    Threshold: 0.20 AU
Wavelength 2 (purple): 280nm

Run Notes: 

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0
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0.000.00
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0.30

0.35

0.40

0.45

0.50

Absorbance Percent B

1
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3
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6
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8
9
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13

14
15

16
17

18
19

20
21

Run Length 9.6 CV (8.1 Min)

Duration %B Solvent A Solvent B
0.0 90.0 Pet Ether 40-60 Ethyl Acetate
1.0 100.0 Pet Ether 40-60 Ethyl Acetate
8.6 100.0 Pet Ether 40-60 Ethyl Acetate

Peak # Start Tube End Tube
1 A:6 A:6
2 A:11 A:11

1 2 3 4 5

678910

11 12 13 14 15

1617181920

21 22 23 24 25

2627282930

31 32 33 34 35

3637383940

41 42 43 44 45

4647484950

51 52 53 54 55

5657585960

61 62 63 64 65

6667686970

71 72 73 74 75

6

11

Rack A

16 mm x 150 mm Tubes
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8.17 5-(1,3-Dioxo-1,3,3a,4,7,7a-hexahydro-2H-4,7-

epoxyisoindol-2-yl)pentyl methanesulfonate 

 

 

Sample: 190325@12-44-1 CombiFlash NEXTGEN : NextGen Demo Monday 25 March 2019 12:44PM

Page 1 of 1

Column: Silica 40g Gold  
SN: E00401509C461798 Lot: 291117603W
Flow Rate: 110 ml/min
Equilibration Volume: 0.0 CV
Initial Waste: 0.0 CV
Air Purge: 1.0 min
Solvent A: Pet Ether 40-60
Solvent B: Ethyl Acetate

Peak Tube Volume: Max.
Non-Peak Tube Volume: Max.
Loading Type: Solid
Wavelength 1 (red): 254nm
    Peak Width: 30 sec
    Threshold: 0.25 AU
Wavelength 2 (purple): 280nm

Run Notes: 

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0
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0.000.00

0.05
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0.15

0.20
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0.30

0.35

0.40

0.45

0.50

Absorbance Percent B

1 2 3 4 5 6 7 8 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

Run Length 10.0 CV (5.0 Min)

Duration %B Solvent A Solvent B
0.0 80.0 Pet Ether 40-60 Ethyl Acetate
0.5 80.0 Pet Ether 40-60 Ethyl Acetate
3.5 91.8 Pet Ether 40-60 Ethyl Acetate
0.1 90.0 Pet Ether 40-60 Ethyl Acetate
0.0 100.0 Pet Ether 40-60 Ethyl Acetate
2.4 100.0 Pet Ether 40-60 Ethyl Acetate
3.5 100.0 Pet Ether 40-60 Ethyl Acetate

Peak # Start Tube End Tube
1 B:10 B:17

1 2 3 4 5

678910

11 12 13 14 15

1617181920

21 22 23 24 25

2627282930

31 32 33 34 35

3637383940

41 42 43 44 45

4647484950

51 52 53 54 55

5657585960

61 62 63 64 65

6667686970

71 72 73 74 75

10

11 12 13 14 15

1617

Rack B

16 mm x 150 mm Tubes
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8.18 2-(5-Fluoropentyl)-3a,4,7,7a-tetrahydro-1H-4,7-

epoxyisoindole-1,3(2H)-dione 

Preparative purification of 2-(5-fluoropentyl)-3a,4,7,7a-tetrahydro-1H-4,7-

epoxyisoindole-1,3(2H)-dione using the Teledyne Isco NextGen CombiFlash Rf+ 

 

 

Sample: 5-fluoropentyl_furanmaleimide Rf+ : Lisa Sunday 16 June 2019 04:17PM

Page 1 of 1

RediSep Column: Silica 80g  
SN: E0410A4DEEA6B Lot: 272131604X
Flow Rate: 60 ml/min
Equilibration Volume: 2.0 CV
Initial Waste: 0.0 CV
Air Purge: 0.0 min
Solvent A: Pet Ether
Solvent B: Ethyl Acetate

Peak Tube Volume: Max.
Non-Peak Tube Volume: Max.
Loading Type: Solid (Pause)
Wavelength 1 (red): 254nm
    Peak Width: 2 min
    Threshold: 0.20 AU
Wavelength 2 (purple): 210nm

All Wavelength (orange): 200-300nm
    Peak Width: 2 min
    Threshold: 0.20 AU

Run Notes: 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

0

10

20

30

40

50

60

70

80

90

100

0.000.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

Absorbance Percent B

1 2 5 6 7 8 9 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

Run Length 5.0 CV (10.4 Min)

Duration %B Solvent A Solvent B
0.0 80.2 Pet Ether Ethyl Acetate
0.6 80.2 Pet Ether Ethyl Acetate
3.1 100.0 Pet Ether Ethyl Acetate
0.8 100.0 Pet Ether Ethyl Acetate
0.5 100.0 Pet Ether Ethyl Acetate
0.0 70.0 Pet Ether Ethyl Acetate
0.0 70.0 Pet Ether Ethyl Acetate

Peak # Start Tube End Tube
1 A:1 A:2
2 A:5 A:9

1 2 3 4 5

678910

11 12 13 14 15

1617181920

21 22 23 24 25

2627282930

31 32 33 34 35

3637383940

41 42 43 44 45

4647484950

51 52 53 54 55

5657585960

61 62 63 64 65

6667686970

71 72 73 74 75

1 2 5

6789

Rack A

16 mm x 150 mm Tubes
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1H, 13C and 19F NMR spectra of spectra of 2-(5-fluoropentyl)-3a,4,7,7a-

tetrahydro-1H-4,7-epoxyisoindole-1,3(2H)-dione 
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8.19 1-(5-Fluoropentyl)-1H-pyrrole-2,5-dione  

Preparative purification of N-(5-fluoropentyl)maleimide standard 
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1H, 13C and 19F NMR spectra of 1-(5-fluoropentyl)-1H-pyrrole-2,5-dione  

Sample: 5-fluoropentylmaleimide Rf+ : Lisa Sunday 16 June 2019 07:56PM

Page 1 of 1

RediSep Column: Silica 40g  
SN: E04150644E21F8 Lot: 262217001Y
Flow Rate: 30 ml/min
Equilibration Volume: 4.0 CV
Initial Waste: 0.0 CV
Air Purge: 2.0 min
Solvent A: Pet Ether
Solvent B: Diethyl Ether

Peak Tube Volume: Max.
Non-Peak Tube Volume: Max.
Loading Type: Solid (Pause)
Wavelength 1 (red): 300nm
    Peak Width: 2 min
    Threshold: 0.20 AU
Wavelength 2 (purple): 210nm

All Wavelength (orange): 200-300nm
    Peak Width: 2 min
    Threshold: 0.20 AU

Run Notes: 

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0

0

10

20

30

40
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80

90

100

0.000.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

Absorbance Percent B

1 2 3 4 5 6 7 8 9 10 12 13 15 1617 18 19 20 21 22 23

Run Length 7.7 CV (12.4 Min)

Duration %B Solvent A Solvent B
0.0 100.0 Pet Ether Diethyl Ether
0.6 100.0 Pet Ether Diethyl Ether
2.6 100.0 Pet Ether Diethyl Ether
2.3 100.0 Pet Ether Diethyl Ether
1.7 100.0 Pet Ether Diethyl Ether
0.5 100.0 Pet Ether Diethyl Ether

Peak # Start Tube End Tube
1 A:5 A:5
2 A:6 A:9
3 A:10 A:10
4 A:15 A:16

1 2 3 4 5

678910

11 12 13 14 15

1617181920

21 22 23 24 25

2627282930

31 32 33 34 35

3637383940

41 42 43 44 45

4647484950

51 52 53 54 55

5657585960

61 62 63 64 65

6667686970

71 72 73 74 75

5

678910

15

16

Rack A

16 mm x 150 mm Tubes
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Accurate mass spectra of 1-(5-fluoropentyl)-1H-pyrrole-2,5-dione  
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8.20 1H and 13C NMR spectra of 5-(1,3-Dioxo-1,3,3a,4,7,7a-

hexahydro-2H-4,7-epoxyisoindol-2-yl) pentyl 4-

nitrobenzenesulfonate 
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8.21 19F NMR and accurate mass spectra of N5-(1-

((Carboxymethyl)amino)-3-((1-(5-fluoropentyl)-2,5-

dioxopyrrolidin-3-yl)thio)-1-oxopropan-2-yl)glutamine 
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8.22 1H NMR spectra of 5-(1,3-Dioxo-1,3,3a,4,7,7a-hexahydro-

2H-4,7-epoxyisoindol-2-yl) pentyl 4-methyl-benzenesulfonate 
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8.23 1H and 13C NMR spectra of (2-Methyl-3-

(trimethylsilyl)cycloprop-2-en-1-yl)methanol (31) 
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8.24 1H and 13C NMR spectra of 2-(Methylcycloprop-2-en-1-

yl)methyl (4-nitrophenyl) carbonate (33) 
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8.25 1H NMR spectra of N-(((2-Methylcycloprop-2-en-1-

yl)methoxy)carbonyl)mannosamine tetraacetate (36) Ac4ManCCp 
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