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1 Introduction

A particle consistent with the Standard Model (SM) predictions for the Higgs boson [1–4] was observed in
2012 by the ATLAS and CMS collaborations [5, 6] at the LHC. Further analysis of ATLAS and CMS
data collected in proton–proton (pp) collisions at centre-of-mass energies of 7 TeV, 8 TeV and 13 TeV in
two LHC data-taking periods (Runs 1 and 2) has led to precise measurements of the mass of this particle
(around 125 GeV) [7–9], tests of its spin and parity (JP = 0+) against alternative hypotheses [10, 11], as
well as to measurements of its production and decay rates [12–14].

Recently, experiments at the LHC observed Higgs boson production in association with weak gauge bosons
V = W, Z (VH production) [15] and Higgs boson decays into pairs of bottom quarks (H → bb̄) [15,
16]. With these results, the four most important Higgs boson production modes predicted by the SM,
gluon–gluon fusion (ggF), vector-boson fusion (VBF), and associated production of a Higgs boson with
either a weak gauge boson (VH) or a top-quark pair (tt̄H) are established. Similarly, several of the main
modes of Higgs boson decays into fermionic (bb̄, ττ) and bosonic (WW , Z Z , γγ) final states are observed.
All results, typically expressed in the form of ‘signal strengths’, defined as the ratio of the observed to
the expected product of the production cross-section times branching ratio into a certain final state, are
consistent with SM predictions within uncertainties.

To probe the kinematic properties of Higgs boson production in more detail, to reduce the impact of
theoretical uncertainties on the measurements and to make the measurements easier to compare with future
updated calculations, the framework of simplified template cross-sections (STXS) has been introduced [17,
18]. In this framework, the cross-sections for the various Higgs boson production modes are measured in
exclusive regions carefully defined by fiducial selections based on the kinematic properties of Higgs boson
production. The extrapolation from the phase space selected by the analysis criteria to that for which the
cross-section measurements are presented is thus reduced.

The STXS measurements are designed to proceed in stages of increasing granularity with more recorded
data. In ‘stage 0’, cross-sections are measured separately for the four main production modes in a fiducial
Higgs boson rapidity region |yH | < 2.5,1 mainly driven by the ATLAS and CMS detector acceptances for
most of the reconstructed objects (leptons, photons and b-jets). In ‘stage 1’ these regions are split into
31 subregions according to kinematic properties such as the number of particle-level jets with transverse
momentum pT > 30 GeV (excluding any jets from Higgs boson decays), the transverse momentum of the
Higgs boson, or the transverse momentum of the weak gauge boson V for VH, V → leptons production. In
simulation, particle-level jets are built by clustering all generated stable particles (cτ > 10 mm), excluding
the decay products of the Higgs boson as well as the neutrinos and charged leptons from the decays of the
weak gauge boson, using the anti-kt clustering algorithm [19] with a radius parameter R = 0.4.

Stage-0 STXS were measured recently with 36.1 fb−1 of 13 TeV ATLAS data using H → γγ [20] and
H → Z Z∗ → 4` decays [21], with results in agreement with SM predictions. In addition, Refs. [20]
and [21] contain some ‘reduced’ stage-1 STXS measurements of ggF and VBF regions, after merging
together regions where the data lack sufficient sensitivity to Higgs boson production. Given the low VH
production cross-sections, the only Higgs boson decay mode that can currently be measured is H → bb̄,

1 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector
and the z-axis along the beam pipe. The x-axis points from the IP to the centre of the LHC ring, and the y-axis points
upwards. Cylindrical coordinates (r, φ) are used in the transverse plane, φ being the azimuthal angle around the z-axis. The
pseudorapidity is defined in terms of the polar angle θ as η = − ln tan(θ/2). When dealing with massive particles, the rapidity
y = 1/2 ln[(E + pz )/(E − pz )] is used, where E is the energy and pz is the z-component of the momentum.
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with its large branching ratio of 58%. This paper presents a measurement of ‘reduced’ stage-1 VH STXS
(defined in Section 3) using H → bb̄ decays with 79.8 fb−1 of 13 TeV pp collisions collected by ATLAS
between 2015 and 2017. The results are used to investigate the strength and tensor structure of the
interactions of the Higgs boson with vector bosons using an effective Lagrangian approach [22].

2 Data and simulation samples

The data were collected with the ATLAS detector [23, 24] between 2015 and 2017, triggered by isolated
charged leptons or large transverse momentum imbalance, Emiss

T . Only events with good data quality were
kept.

The Monte Carlo simulation samples used for the measurements presented here are identical to those used
for the measurement of the inclusive VH, H → bb̄ signal strength [15]. Several samples of simulated
events were produced for the signal (qq̄ → WH, qq̄ → ZH and gg → ZH) and main background (tt̄,
single-top, V+jets and diboson) processes. They were used to optimise the analysis criteria and to determine
the expected signal and background distributions of the discriminating variables used in the final fit to
the data. The multijet background is largely suppressed by the selection criteria and is estimated using
data-driven techniques.

The signal templates in each STXS region were obtained from simulated qq̄ → WH and qq̄ → ZH
events with zero or one additional jet, calculated at next-to-leading order (NLO), generated with the
Powheg-Box v2 + GoSam + MiNLO generators [25–28]. The contribution from loop-induced gg → ZH
production was simulated at leading order (LO) using the Powheg-Box v2 generator [25]. Additional scale
factors were applied to the qq̄ → VH processes as a function of the generated vector-boson transverse
momentum (pVT ) to account for electroweak (EW) corrections at NLO. These factors were determined
from the ratio between the VH differential cross-sections computed with and without these corrections by
the Hawk program [29, 30]. The mass of the Higgs boson was fixed at 125 GeV.

In the measurement of the pp → ZH cross-sections, the relative contributions of the qq̄ → ZH and
gg → ZH processes are determined by the most accurate theoretical cross-section predictions currently
available: next-to-next-to-leading order (NNLO) in QCD and NLO in EW [31–37] for qq̄ → ZH, and
next-to-leading order and next-to-leading logarithm (NLO+NLL) in QCD [38–42] for gg → ZH.

3 Event selection and categorisation

The object reconstruction, event selection and classification into categories used for the measurements, are
identical to those described in Ref. [15]. The selection and the event categories are briefly summarised
below.

Events are retained if they are consistent with one of the typical signatures of VH, H → bb̄ production and
decay, with Z → νν̄, W → `ν or Z → `` (` = e, µ). Vector-boson decays into τ-leptons are not targeted
explicitly. However, they satisfy the selection criteria with reduced efficiency in the case of leptonic
τ-lepton decays.

In particular, events are kept if they contain at most two isolated electrons or muons, and two good-quality
high-pT (> 45, 20 GeV) jets with |η | < 2.5 satisfying b-jet identification (’b-tagging’) requirements (which
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have an average efficiency of 70% for jets containing b-hadrons that are produced in inclusive tt̄ events [43]).
The two b-jet candidates are used to reconstruct the Higgs boson candidate; their invariant mass is denoted
by mbb. Additional jets are required to have pT > 20 GeV for |η | < 2.5 or pT > 30 GeV for 2.5 < |η | < 4.5,
and not be identified as b-jets.

Events with either zero, one or two isolated electrons or muons are classified as ‘0-lepton’, ‘1-lepton’ or
‘2-lepton’ events, respectively. The 0-lepton events and the 1-lepton events are required to have transverse
momentum imbalance, as expected from the neutrinos from Z → νν̄ or W → `ν decays; in the 2-lepton
events, the leptons must have the same flavour (and opposite charge for events with muons) and an invariant
mass close to the Z boson mass.

Additional requirements are applied to suppress background from QCD production of multijet events in the
0-lepton and 1-lepton channels. To suppress the large tt̄ background, events with four or more jets are
discarded in the 0-lepton and 1-lepton channels. Finally, a requirement on the reconstructed transverse
momentum pV,rT of the vector boson V is applied. It is computed, depending on the number, Nlep, of
selected electrons and muons, as either the missing transverse momentum Emiss

T (Nlep = 0), the magnitude
of the vector sum of the missing transverse momentum and the lepton pT (Nlep = 1), or the dilepton pT
(Nlep = 2). The minimum value of pV,rT is 150 GeV in the 0- and 1-lepton channels, and 75 GeV in the
2-lepton channel.

Events satisfying the previous criteria are classified into eight categories (also called signal regions in the
following), shown in Table 1, with different signal-to-background ratios. These categories are defined by
the number of jets, Njet (including the two b-jet candidates), Nlep, and pV,rT . Additional categories (also
called control regions in the following) containing events satisfying alternative selections are introduced
to constrain some background processes such as W boson production in association with jets containing
heavy-flavour hadrons (W+HF), or top-quark pair production. The signal contribution in such categories is
expected to be negligible.

4 Cross-section measurements

The reduced VH, V → leptons stage-1 STXS regions used in this paper are summarised in Table 2, which
also indicates which reconstructed-event categories are most sensitive in each region. All leptonic decays
of the weak gauge bosons (including Z → ττ and W → τν) are considered for the STXS definition.

Compared to the original stage-1 proposal presented in Ref. [17], the following changes have been made
for the reduced VH, V → leptons stage-1 STXS regions of Table 2:

• the pZ
T < 150 GeV stage-1 regions are split into two subregions, pZ

T < 75 GeV and 75 < pZ
T <

150 GeV, to avoid theory uncertainties from extrapolations to a phase space not accessible to this
measurement;

• an additional gg → ZH, pZ
T > 250 GeV region has been introduced, similarly to what is already

done for qq̄→ ZH.

These two changes lead to a total of 14 modified stage-1 regions, which are then combined together in
reduced stage-1 regions, chosen to keep the total uncertainty in the measurements near or below 100%, in
the following way:
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Table 1: Summary of the reconstructed-event categories. Categories with relatively large fractions of the total
expected signal yields are referred to as ‘signal regions’ (SR), while those with negligible expected signal yield,
mainly designed to constrain some background processes, are called ‘control regions’ (CR). The quantity mtop is the
reconstructed mass of a semileptonically decaying top-quark candidate in the 1-lepton channel. The calculation of
mtop uses the four-momenta of one of the two b-jet candidates, the lepton, and the hypothetical neutrino produced
in the event. The neutrino four-momentum is derived using the W boson mass constraint [15] and mtop is then
reconstructed from the combination of the b-jet candidate and the value of the neutrino longitudinal momentum
that yields the smallest top-quark candidate mass. The mtop ≤ 225 GeV requirement in the 1-lepton signal region is
needed to maintain orthogonality with the W+HF control region.

Channel
Categories

75 GeV < pV,rT < 150 GeV pV,rT > 150 GeV
2 jets ≥ 3 jets 2 jets 3 jets ≥ 3 jets

0-lepton − − SR SR −
1-lepton

mbb ≥ 75 GeV or mtop ≤ 225 GeV − − SR SR −
mbb < 75 GeV and mtop > 225 GeV − − CR CR −

2-lepton
ee and µµ channels SR SR SR − SR
eµ channel CR CR CR − CR

• the qq̄ → ZH and gg → ZH regions are merged. There are currently not enough data events
to distinguish qq̄ → ZH from gluon-induced ZH production despite their different kinematic
properties;

• the 150 < pVT < 250 GeV regions with zero or at least one particle-level jet are merged.

Two sets of reduced stage-1 regions are considered. In one, called the ‘5-POI (parameters of interest)’
scheme, five cross-sections, three for ZH production (75 < pZ

T < 150 GeV, 150 < pZ
T < 250 GeV and

pZ
T > 250 GeV) and two for WH production (150 < pWT < 250 GeV and pWT > 250 GeV), are measured.

In the other one, called the ‘3-POI’ scheme, three cross-sections, two for ZH (75 < pZ
T < 150 GeV and

pZ
T > 150 GeV) and one forWH (pWT > 150 GeV), are measured. The 5-POI scheme leads to measurements

that have total uncertainties larger than those in the 3-POI scheme, but are more sensitive to enhancements
at high pVT from potential anomalous interactions between the Higgs boson and the EW gauge bosons.

The reconstructed-event categories do not distinguish between events with generated pVT below or above
250 GeV. Discrimination between the two pVT regions 150–250 GeV and > 250 GeV is provided by
the different shapes of the boosted-decision-tree discriminant (BDTVH ) used in the final fit to the data,
as illustrated in Figure 1 in the case of the 1-lepton, 2-jet category. This arises from the fact that the
reconstructed pV,rT is largely correlated with the BDTVH output, for which it constitutes one of the most
discriminating input variables together with mbb and the angular separation of the two b-jets.

The product of the signal cross-section times the H → bb̄ branching ratio and the total leptonic decay
branching ratio for W or Z bosons is determined in each of the reduced stage-1 regions by a binned
maximum-likelihood fit to the data. The cross-sections are not constrained to be positive in the fit. Signal
and background templates of the discriminating variables, determined from the simulation or data control
regions, are used to extract the signal and background yields. A simultaneous fit is performed to all the
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Table 2: The 3-POI and 5-POI ‘reduced stage-1’ sets of merged regions used for the measurements, the corresponding
kinematic regions of the stage-1 VH simplified template cross-sections, and the reconstructed-event categories that
are most sensitive in each merged region. The stage-1 regions are modified (i) by splitting the two ZH, pZ

T < 150 GeV
regions (from qq̄ and gg) into four regions, based on whether pZ

T < 75 GeV or 75 < pZ
T < 150 GeV; (ii) by adding a

pZ
T < 250 GeV requirement to the gg → ZH, pZ

T > 150 GeV regions (with zero or at least one extra particle-level jet),
and (iii) by adding a separate gg → ZH, pZ

T > 250 GeV region. The three regions WH, pWT < 150 GeV, qq̄→ ZH,
pZ
T < 75 GeV and gg → ZH, pZ

T < 75 GeV, in which the current analysis is not sensitive and whose corresponding
cross-sections are fixed to the SM prediction in the fit, are not shown.

Merged region Merged region
Stage 1 (modified) STXS region

Reconstructed-event categories
3-POI scheme 5-POI scheme with largest sensitivity

Nlep pV,rT interval Njet

WH, pWT > 150 GeV
WH, 150 < pWT < 250 GeV qq̄→ WH, 150 < pWT < 250 GeV, 0-jet

1 > 150 GeV 2, 3qq̄→ WH, 150 < pWT < 250 GeV, ≥ 1-jet
WH, pWT > 250 GeV qq̄→ WH, pWT > 250 GeV

ZH, 75 < pZ
T < 150 GeV ZH, 75 < pZ

T < 150 GeV qq̄→ ZH, 75 < pZ
T < 150 GeV 2 75–150 GeV 2, ≥ 3

gg → ZH, 75 < pZ
T < 150 GeV

ZH, pZ
T > 150 GeV

ZH, 150 < pZ
T < 250 GeV

qq̄→ ZH, 150 < pZ
T < 250 GeV, 0-jet

gg → ZH, 150 < pZ
T < 250 GeV, 0-jet

qq̄→ ZH, 150 < pZ
T < 250 GeV, ≥ 1-jet 0 > 150 GeV 2, 3

gg → ZH, 150 < pZ
T < 250 GeV, ≥ 1-jet 2 > 150 GeV 2, ≥3

ZH, pZ
T > 250 GeV qq̄→ ZH, pZ

T > 250 GeV
gg → ZH, pZ

T > 250 GeV

signal and control regions. Systematic uncertainties are included in the likelihood function as nuisance
parameters.

The likelihood function is very similar to that described in Ref. [15]. In particular, the same observables are
used, namely BDTVH in the signal regions and either the invariant mass mbb of the two b-jets or the event
yield in the control regions. The treatment of the background and of its uncertainties is also unchanged.
The only differences relative to the likelihood function in Ref. [15] concern the treatment of the signal:

• Instead of a single signal shape (for BDTVH or mbb) or yield per category, multiple shapes or yields
are introduced, one for each reduced stage-1 STXS region under study.

• Instead of a single parameter of interest, the inclusive signal strength, the fit has multiple parameters
of interest, i.e. the cross-sections of the reduced stage-1 regions, multiplied by the H → bb̄ and
V → leptons branching ratios.

• Overall theoretical cross-section and branching ratio uncertainties, which affect the signal strength
measurements but not the STXS measurements, are not included in the likelihood function.

The expected signal shapes of the discriminating variable distributions and the acceptance times efficiency
(referred to as ‘acceptance’ in the following) in each reduced stage-1 region are determined from simulated
samples of SM VH, V → leptons, H → bb̄ events. The acceptance of each reconstructed-event category
for signal events from the different regions of the 5-POI reduced stage-1 scheme is shown in Figure 2(a).
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Figure 1: BDTVH distributions for different pVT STXS regions in the 1-lepton, 2-jet reconstructed-event category.
Only regions contributing at least 10% of the expected signal yield in the reconstructed-event category are displayed.
The distributions of the total signal and background are also shown. The BDTVH distributions are scaled to the same
(unit) area to highlight the shape differences.

The fraction of signal events in each reconstructed-event category originating from the different regions in
the same scheme is shown in Figure 2(b).

As shown in Figure 2(a), the current analysis is not sensitive to WH events with pWT < 150 GeV and to
ZH events with pZ

T < 75 GeV, since their acceptance in each category is at the level of 0.1% or smaller.
Therefore, in the fits the signal cross-section in these regions is constrained to the SM prediction, within the
theoretical uncertainties. Since these regions contribute only marginally to the selected event sample, the
impact on the final results is negligible. A cross-check in which the relative signal cross-section uncertainty
for the pWT < 150 GeV and pZ

T < 75 GeV regions is conservatively set to 70% of the prediction (i.e. about
seven times the nominal uncertainty) leads to variations of the measured STXS below 1%.

The sources of systematic uncertainty are identical to those described in Ref. [15], except for those
associated with the Higgs boson signal simulation, which are re-evaluated [44]. In this re-evaluation the
uncertainties are separated into two groups:

• uncertainties affecting signal modelling – i.e. acceptance and shape of kinematic distributions –
in each of the three or five reduced stage-1 regions (hereafter referred to as theoretical modelling
uncertainties), and
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Figure 2: In the 5-POI reduced stage-1 scheme, (a) the acceptance (including the efficiency of the experimental
selection) for VH, V → leptons, H → bb̄ events of each reconstructed-event category (y-axis) for each STXS signal
region (x-axis), in percent; (b) the fraction of signal (in percent) from each STXS signal region (x-axis) in every
reconstructed-event category (y-axis). Entries with acceptance times efficiency below 0.01% or signal fractions
below 0.1% are not shown.
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• uncertainties in the prediction of the production cross-section for each of these regions (hereafter
referred to as theoretical cross-section uncertainties).

While theoretical modelling uncertainties enter the measurement of the STXS, theoretical cross-section
uncertainties do not affect the results, but only the predictions with which they are compared. The
consequent reduction of the impact of the theoretical uncertainties on the results with respect to the signal
strength measurements is one of the main advantages of measuring STXS.

The two groups of systematic uncertainties are estimated for high-granularity STXS regions, and then
merged into the reduced scheme under consideration. This approach makes it easy to compute the systematic
uncertainties for merging schemes different from those presented here. The uncertainties are evaluated by
dividing the phase space into five pVT regions (with the following lower edges: 0 GeV, 75 GeV, 150 GeV,
250 GeV and 400 GeV), and each pVT region into three bins depending on the number of particle-level jets
(zero, one, or at least two), independently for the qq̄→ VH and gg → ZH processes. When two STXS
regions are merged, their relative theoretical cross-section uncertainties lead to a modelling uncertainty.
These uncertainties are evaluated as the remnant of the theoretical cross-section uncertainties for the
high-granularity regions after the subtraction of the theoretical cross-section uncertainty for the merged
region.

The high-granularity regions are used to calculate theoretical cross-section uncertainties for the missing
higher-order terms in the QCD perturbative expansion and for the uncertainties induced by the choices
of the parton distribution function (PDF) and αS. Fourteen independent sources of uncertainties due to
the missing higher-order terms lead to total uncertainties of 3%–4% for qq̄ → VH and 40%–50% for
gg → ZH with pVT > 75 GeV [44]. Thirty-one independent sources of PDF and αS uncertainties, each
of them usually smaller than 1%, lead to a total quadrature sum between 2% and 3% depending on the
STXS region. The theoretical modelling uncertainties change the shapes of the reconstructed pV,rT and mbb

distributions in the same way as described in Ref. [15]. Four independent sources for the QCD expansion
and two independent sources for the PDF and αS choices are considered.

Systematic uncertainties in the signal acceptance and shape of the pV,rT and mbb distributions due to the
parton shower (PS) and underlying event (UE) models are estimated from the variations of acceptance
and shapes of simulated events after changing the Pythia 8 PS parameters or after replacing Pythia 8
with Herwig 7 for the PS and UE models [15]. The signal acceptance uncertainties due to the PS and UE
models (five independent sources) are typically of the order of 1% (5%–15%) with a maximum of 10%
(30%) for the qq̄ → VH (gg → ZH) production mode. Two independent nuisance parameters account
for the systematic uncertainties induced by the PS and UE models in the pV,rT and mbb distributions. In
addition, a systematic uncertainty due to the EW corrections is parameterised as a change in shape of the
pVT distributions for the qq̄→ VH processes [15].

5 Results

The measured reduced stage-1 VH cross-sections times the H → bb̄ and V → leptons branching ratios,
σ × B, in the 5-POI and 3-POI schemes, together with the SM predictions, are summarised in Table 3. The
results of the 5-POI scheme are also illustrated in Figure 3. The SM predictions are shown together with
the theoretical cross-section uncertainty for the merged regions computed as described in the previous
section. The measurements are in agreement with the SM predictions.
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The cross-sections measured in the pVT > 150 GeV intervals are not equal to the sum of those measured for
150 < pVT < 250 GeV and pVT > 250 GeV. This is because the signal template for pVT > 150 GeV in the
3-POI fit is computed from the sum of the templates of the two regions assuming that the ratio of yields in
those regions is that predicted by the SM, while in the 5-POI fit the normalisations of the two templates are
floated independently.

The cross-sections are measured with relative uncertainties varying between 50% and 125% in the 5-POI
case, and between 29% and 56% for the 3-POI. The largest uncertainties are statistical, except for the WH
cross-sections with pWT > 150 GeV in the 3-POI case and with 150 < pWT < 250 GeV in the 5-POI case. In
the 5-POI case, an anti-correlation of the order of 40%–60% is observed between the cross-sections in the
ranges pVT > 250 GeV and 150 < pVT < 250 GeV, which are measured with the same reconstructed-event
categories.

The dominant systematic uncertainties are due to the limited number of simulated background events and
the theoretical modelling of the background processes. The uncertainties due to the theoretical modelling
of the VH signal are small, with relative values ranging between 6% and 12%. The uncertainties in the
predictions are 2–3 times larger for ZH than for WH in the same pVT interval due to the limited precision of
the theoretical calculations of the gg → ZH process.

Table 3: Best-fit values and uncertainties for the VH, V → leptons reduced stage-1 simplified template cross-sections
times the H → bb̄ branching ratio, in the 5-POI (top five rows) and 3-POI (bottom three rows) schemes. The
SM predictions for each region, computed using the inclusive cross-section calculations and the simulated event
samples described in Section 2, are also shown. The contributions to the total uncertainty in the measurements
from statistical (Stat. unc.) or systematic uncertainties (Syst. unc.) in the signal modelling (Th. sig.), background
modelling (Th. bkg.), and in experimental performance (Exp.) are given separately. The total systematic uncertainty,
equal to the difference in quadrature between the total uncertainty and the statistical uncertainty, differs from the sum
in quadrature of the Th. Sig., Th. Bkg., and Exp. systematic uncertainties due to correlations. All leptonic decays of
the V bosons (including those to τ-leptons, ` = e, µ, τ) are considered.

Measurement region SM prediction Result Stat. unc. Syst. unc. [fb]
(|yH | < 2.5, H → bb̄) [fb] [fb] [fb] Th. sig. Th. bkg. Exp.

5-POI scheme

W → `ν; 150 < pVT < 250 GeV 24.0 ± 1.1 20 ± 25 ± 17 ± 2 ± 13 ± 9
W → `ν; pVT > 250 GeV 7.1 ± 0.3 8.8 ± 5.2 ± 4.4 ± 0.5 ± 2.5 ± 0.9
Z → ``, νν; 75 < pVT < 150 GeV 50.6 ± 4.1 81 ± 45 ± 35 ± 10 ± 21 ± 19
Z → ``, νν; 150 < pVT < 250 GeV 18.8 ± 2.4 14 ± 13 ± 11 ± 1 ± 6 ± 3
Z → ``, νν; pVT > 250 GeV 4.9 ± 0.5 8.5 ± 4.0 ± 3.7 ± 0.8 ± 1.2 ± 0.6

3-POI scheme

W → `ν; pVT > 150 GeV 31.1 ± 1.4 35 ± 14 ± 9 ± 2 ± 9 ± 4
Z → ``, νν; 75 < pVT < 150 GeV 50.6 ± 4.1 81 ± 45 ± 35 ± 10 ± 21 ± 19
Z → ``, νν; pVT > 150 GeV 23.7 ± 3.0 28.4 ± 8.1 ± 6.4 ± 2.4 ± 3.6 ± 2.3
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Figure 3: MeasuredVH,V → leptons reduced stage-1 simplified template cross-sections times the H → bb̄ branching
ratio.

6 Constraints on anomalous Higgs boson interactions

The strength and tensor structure of the Higgs boson interactions are investigated using an effective
Lagrangian approach [22]. Extra terms of the form c(D)i O

(D)
i /ΛD−4, where Λ is the energy scale of the

new interactions, O(D)i are dimension-D operators, and c(D)i are numerical coefficients, are added to the
SM Lagrangian to obtain an effective Lagrangian inspired by that in Ref. [45]. Only dimension D = 6
operators are considered in this study, since dimension D = 5 operators violate lepton or baryon number,
while dimension D > 6 operators are further suppressed by powers of Λ.

The results presented in this paper focus on the coefficients of the operators in the ‘Strongly Interacting
Light Higgs’ formulation [46]. This formalism is defined as the effective theory of a strongly interacting
sector in which a light composite Higgs boson arises as a pseudo Goldstone boson, and is responsible for
EW symmetry breaking. Among such operators, four directly affect the VH cross-sections because they
introduce new Higgs boson interactions with W bosons (OHW , OW ) and Z bosons (all four operators):

• OHW = i (DµH)† σa (DνH)Wa
µν,

• OHB = i (DµH)† (DνH) Bµν,

• OW = i
2

(
H†σa

↔
DµH

)
DνWa

µν,

• OB =
i
2

(
H†
↔
DµH

)
∂νBµν.

The corresponding CP-odd operators ÕHW , ÕHB, ÕW , and ÕB, are not considered.
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Modifications of the gg → ZH production cross-section are only introduced by either higher-dimension
(D ≥ 8) operators or corrections that are formally at NNLO in QCD, and are not included in this study, in
which the expected gg → ZH contribution is kept fixed to the SM prediction.

The operator Od = yd |H |2Q̄LHdR (plus Hermitian conjugate) with Yukawa coupling strength yd, which
modifies the coupling between the Higgs boson and down-type quarks, induces variations of the partial
width ΓbbH and of the total Higgs boson width ΓH , and therefore of the H → bb̄ branching ratio. This
operator affects the measured cross-sections in the same way in each region.

Constraints are set on the coefficients of the five OW , OB, OHW , OHB and Od operators in the ‘Higgs
Effective Lagrangian’ (HEL) implementation [47], using the known relations between such coefficients
and the stage-1 STXS based on leading-order predictions [48]. Such relations include interference terms
between the SM and non-SM amplitudes that are linear in the coefficients and of order 1/Λ2, and the
SM-independent contributions that are quadratic in the coefficients and of order 1/Λ4. In the HEL
implementation, the coefficients ci of interest are recast into the following dimensionless coefficients:

c̄HW =
m2
W

g

cHW

Λ2 , c̄HB =
m2
W

g′
cHB

Λ2 , c̄W =
m2
W

g

cW
Λ2 , c̄B =

m2
W

g′
cB
Λ2 , c̄d = v2 cd

Λ2 ,

where g and g′ are the SU(2) and U(1) SM gauge couplings, and v is the vacuum expectation value of the
Higgs boson field. These dimensionless coefficients are equal to zero in the SM.

The sum c̄W + c̄B is strongly constrained by precision EW data [49] and is thus assumed here to be zero,
and constraints are set on c̄HW , c̄HB, c̄W − c̄B and c̄d. The relations between the HEL coefficients and
the reduced STXS measured in this paper are obtained by averaging the relations for the regions that are
merged with weights proportional to their respective cross-sections.

Simultaneous maximum-likelihood fits to the five STXS measured in the 5-POI scheme are performed to
determine c̄HW , c̄HB, c̄W − c̄B and c̄d. Due to the large sensitivity to the Higgs boson anomalous couplings
to vector bosons provided by the pVT > 250 GeV cross-sections, the 5-POI results place tighter constraints
on these coefficients (e.g. approximately a factor two for c̄HW ) than do the 3-POI results. For this reason,
constraints obtained with the 3-POI results are not shown here.

In each fit, all coefficients but one are assumed to vanish, and 68% and 95% confidence level (CL)
one-dimensional intervals are inferred for the remaining coefficient. The negative-log-likelihood one-
dimensional projections are shown in Figure 4, and the 68% and 95% CL intervals for c̄HW , c̄HB, c̄W − c̄B
and c̄d are summarised in Table 4. The parameters c̄HW and c̄W − c̄B are constrained at 95% CL to be
no more than a few percent, while the constraint on c̄HB is about five times worse, and the constraint
on c̄d is of order unity. For comparison, Table 4 also shows the 68% and 95% CL intervals for the
dimensionless coefficients when the SM-independent contributions, which are of the same order (1/Λ4)
as the dimension-8 operators that are neglected, are not considered. The constraints are typically 50%
stronger than when the SM-independent contributions are not neglected.
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Figure 4: The observed (solid) and expected (dotted) profiled negative-log-likelihood functions for the one-dimensional
fits to constrain the coefficients (a) c̄HW , (b) c̄HB, (c) c̄W − c̄B and (d) c̄d of an effective Lagrangian (described in the
text), when the other coefficients are assumed to vanish.
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Table 4: The expected and observed 68% CL (four top rows) and 95% CL (four bottom rows) intervals for the
effective Lagrangian coefficients c̄HW , c̄HB, c̄W − c̄B and c̄d when the other coefficients are assumed to vanish. Each
row is composed of two sub-rows: the first one uses the interference between SM and non-SM amplitudes and
the SM-independent contributions, while the second sub-row uses only the interference between SM and non-SM
amplitudes.

Coefficient Expected interval Observed interval
Results at 68% confidence level

c̄HW [−0.003, 0.002] [−0.001, 0.004]
(interference only [−0.002, 0.003] [−0.001, 0.005])

c̄HB [−0.066, 0.013] [−0.078, −0.055]
⋃

[0.005, 0.019]
(interference only [−0.016, 0.016] [−0.005, 0.030])

c̄W − c̄B [−0.006, 0.005] [−0.002, 0.007]
(interference only [−0.005, 0.005] [−0.002, 0.008])

c̄d [−1.5, 0.3] [−1.6, −0.9]
⋃

[−0.3, 0.4]
(interference only [−0.4, 0.4] [−0.2, 0.7])

Results at 95% confidence level
c̄HW [−0.018, 0.004] [−0.019,−0.010]

⋃
[−0.005, 0.006]

(interference only [−0.005, 0.005] [−0.003, 0.008])
c̄HB [−0.078, 0.024] [−0.090, 0.032]
(interference only [−0.033, 0.033] [−0.022, 0.049])

c̄W − c̄B [−0.034, 0.008] [−0.036,−0.024]
⋃

[−0.009, 0.010]
(interference only [−0.009, 0.010] [−0.006, 0.014])

c̄d [−1.7, 0.5] [−1.9, 0.7]
(interference only [−0.8, 0.8] [−0.6, 1.1])
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7 Conclusion

Using 79.8 fb−1 of
√

s = 13 TeV proton–proton collisions collected by the ATLAS detector at the LHC,
the cross-sections for the associated production of a Higgs boson decaying into bottom-quark pairs and
an electroweak gauge boson W or Z decaying into leptons are measured as functions of the vector-boson
transverse momentum pVT . The cross-sections are measured for Higgs bosons in a fiducial volume with
rapidity |yH | < 2.5, in the ‘simplified template cross-section’ framework.

The measurements are performed for two different choices of the number of pVT intervals. The results have
relative uncertainties varying between 50% and 125% in one case, and between 29% and 56% in the other.
The measurements are in agreement with the Standard Model predictions, even in high pVT (> 250 GeV)
regions that are most sensitive to enhancements from potential anomalous interactions between the Higgs
boson and the electroweak gauge bosons.

One-dimensional limits on four linear combinations of the coefficients of effective Lagrangian operators
affecting the Higgs boson couplings to the electroweak gauge bosons and to down-type quarks have also
been set. For two of these parameters the constraint has a precision of a few percent.
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