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Abstract 

Assessing the impact of climate change on floodplain productivity poses unique 

challenges for hydrodynamic models. For example, the dynamics of floodplain fisheries are 

governed both by inundation dynamics across thousands of km2, and water storage timing within 

small depressions (which serve as fish habitat) connected to the river network by meter-scale 

manmade canals, controlled by flow across fishing weirs. Here, we propose to represent these 

features as a system of effective, interconnected sub-grid elements within a coarse-scale model. 

We test this strategy over the Logone floodplain in Cameroon, and its floodplain fishery. We 

first validate this strategy for a local study area (30 km2); we find that hydraulic models at 

resolutions from 30 m to 500 m are able to reproduce hydraulic dynamics as documented by in 

situ water level observations. When applied to the entire floodplain (16,000 km2), we find that 

the proposed modeling strategy allows accurate prediction of observed pattern of recession in the 

depressions. Artificially removing floodplain canals in the model causes residence time of water 

in depressions to be overpredicted by approximately 30 days. This study supports the strategy of 

modeling fine-scale interconnected features as a system of sub-grid elements in a coarse 

resolution model for applications such as assessing the sensitivity of floodplain fisheries to future 

climate change. 

 

Key words: Hydrodynamic modeling, Flood inundation mapping, Logone Floodplain, Small-

scale processes  
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1 Introduction 

Predicting and modeling flood extent and timing is vital to understanding the dynamics of 

floodplain fish and fisheries (Thompson and Polet, 2000; Welcomme and Hagborg, 1977). 

Floodplain fish have evolved to flooding seasonality and their populations are driven by both 

flood and dry season duration, timing and magnitude. Depending on the location and season, 

floodplain fisheries employ various techniques to catch fish. Some techniques, like the use of 

fish canals, alter the drainage system, impacting flood extent, and timing of onset and recession 

of floods, which in turn affect the fish population and productivity (Delclaux et al., 2011; 

Laborde et al., 2016; Moritz et al., 2016). Future climate change is expected to produce changes 

in rainfall patterns and flows in river channels, which will also impact floodplain dynamics. In 

order to study the effects of floodplain fisheries and climate change on floodplain dynamics, 

researchers have turned to hydrodynamic models. 

 

Hydrodynamic models are used to study complex links between hydrologic systems and 

social-ecological systems (Bockelmann et al., 2004; Casas-Mulet et al., 2014; DeVries et al., 

2012; García et al., 2011; Nislow et al., 2002), and the impacts of climate change (Hirabayashi et 

al., 2013; O’Neill and Hulme, 2009). Hydrodynamic models predict the extent and timing of 

floods, and hence providing means to estimate some of the most critical parameters governing 

fish population in floodplain fisheries (Welcomme and Hagborg, 1977). Neal et al. (2012) 

introduced “sub-grid modeling”, a strategy to systematically include and parameterize the effects 

of river channels smaller than the model grid scale in two-dimensional hydraulic models, a 

strategy that has opened the door to new applications (Kennedy et al., 2019; Komi et al., 2017; 

Schumann et al., 2016, 2013; Wing et al., 2017; Wood et al., 2016; Yamazaki et al., 2011). The 
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need to estimate fish productivity and population for floodplain fisheries applications represent 

novel challenges to existing approaches, however.  

 

In order for hydraulic models to be useful in the context of understanding floodplain 

fisheries, they will have to account for an interconnected system of elements functioning at sub-

grid spatial scales. Natural floodplain depressions store water on floodplains, and provide habitat 

for fish to grow. Meter-scale, manmade canals link depressions and the river network, and 

provide means to harvest fish at the end of the season; weirs and fishnets are often installed on 

these canals, and modulate flow during recession. Such features are typically ignored in 

conventional hydrologic and hydrodynamic model simulations (Fernández et al., 2016; Rajib et 

al., 2019). Sub-grid modeling provides the means of representing such features within a larger-

scale model (Neal et al., 2012) that has primarily been used to represent small river channels 

must be adapted to represent this entire floodplain-depression-canal-river system of 

interconnected sub-grid features. 

 

 The objective of this paper is to describe and evaluate a strategy for hydrodynamic 

modeling that can be coupled with a canal-fishery model. We propose the following adaptations 

to traditional sub-grid modeling: i) We aggregate multiple fish canals and multiple depressions 

into a single effective model element to be represented as a sub-grid feature. ii) We treat 

depression storage as a sub-grid element, as well as the fish canals, thus creating an 

interconnected network of multiple types of sub-grid features. iii) We propose a strategy for 

modeling fishnet structures as weirs, as described below. Taken together, these approaches 

represent a distinct and novel strategy in hydraulic modeling. 
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We test this modeling approach in the Logone Floodplain in the Far North Region of 

Cameroon. We work from a previous study in this area that reproduced large-scale floodplain 

dynamics, but ignored fish canals and other small-scale processes important to hydraulic 

connectivity and fisheries (Fernández et al., 2016). We assess sub-grid modeling with a two-part 

strategy. First, we study a single depression with multiple canals over a 30 km2 area, and explore 

whether our strategy successfully captures observed water level dynamics as we vary the model 

spatial scale. Secondly we investigate whether a coarse scale (500 m) model of the entire 

floodplain (16,000 km2) is capable of reproducing inundation dynamics within floodplain 

depressions, which are sensitive to the presence of canals as demonstrated by Laborde et al. 

(2016). If demonstrated to adequately capture both local and floodplain scale dynamics, the sub-

grid modeling approach will pave the way to couple hydrodynamic and fisheries models to study 

the impacts of the same small-scale features on fisheries. This type of modeling approach 

enhances our capacity to quantify and understand the effect of small canals in floodplains and 

flood-prone areas.  

 

2 Study Area 

2.1 Geography, Hydrology and Hydraulics 

The Logone Floodplain, also known as Yaayre, covers about 16,000 km2 (Delclaux et al., 

2011), and is located in the Far North Region of Cameroon. It supports a large number of people 

with a population of about 200,000 (Laborde et al., 2016; Mitchell, 2013). The floodplain is a 

part of Lake Chad basin and contains the Waza National Park (1,700 km2) and Kalamaloue 

National Park (48 km2). The floodplain is highly productive, and acts as breeding grounds for 
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fish when inundated, and provides dry season pastures that support cattle and other livestock and 

fertile land for growing rice.  

 

The Logone Floodplain is a small part of the Logone watershed and is located at the 

downstream part of the Logone River (Figure 1). The floodplain has semi-arid climate, while the 

rest of the watershed has tropical wet and dry (Savannah) climate. The floodplain has mean 

annual rainfall of about 700 mm; the upstream part of the watershed receives about 1200 mm 

annually (Evans and Loth, 2004a, 2004b). The first rainfall on the floodplain, generally in 

June/July, plays an important role by saturating the dry clayey soil, and overbank flow from 

Logone, Logomatya and Lorome Mazra river channels floods the region in September/October. 

The region is inundated for about three to four months (Delclaux et al., 2011; Jung et al., 2011). 

Local rainfall has less control over flooding than the flow in the Logone; overbank flow is the 

biggest contributor to the inundation of the floodplain (Evans and Loth, 2004a). Because the area 

is relatively flat, the flood spreads over a large area of about 8,000 km2 (Delclaux et al., 2010) 

before it drains back to the Logone and the El Beid River in the north. The floodplain also 

experiences significant evapotranspiration throughout the year. Naah, (1990) used piché 

evaporimeters and estimated the annual potential evaporation rate between 2700 mm and 3000 

mm on the floodplain. However, it is important to note that maximum potential evaporation 

occurs between February and April when the floodplain is dry. 

 

In the past decades, human activities have significantly modified floodplain dynamics. As 

a part of a large agricultural project, SEMRY II, for irrigated cultivation of rice, the 

Cameroonian government constructed a dam on the Logone in 1979, which created a 400 km2 

reservoir (Lake Maga, Figure 1) upstream of the floodplain (Loth, 2004). As a result of this, the 
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flooding in the floodplain reduced by about 30% (Delclaux et al., 2010), which had a negative 

impact on the ecological and social systems in the floodplain (Loth, 2004; Scholte, 2005).  

 

2.2 Canal Fisheries 

Fishing is an important regional livelihood on the Logone Floodplain (Delclaux et al., 

2011; Laborde et al., 2016; Landolt, 2010; Loth, 2004). Fishing techniques used include fish 

traps, cast nets, gill nets, hooks and lines, grass fishing. Over the last half century, fish canals 

have gained popularity and their numbers have increased exponentially (Delclaux et al., 2011; 

Laborde et al., 2016).  

 

Fish canals are man-made channels connecting the river to natural depressions in the 

terrain, which act as seasonal ponds (Figure 2). Fishers dig new fish canals and maintain the old 

ones by removing the deposited sediments from the previous flood. These canals are used during 

flood recession to drain floodwater and channel fish moving off the floodplain through fishnets 

(Figure 2(a)). The technique is effective because the fish canals can drain high volumes of water 

during the period of highest fish densities. Figure 2(b) shows a photograph of a fish canal in the 

dry season, and Figure 2(c) shows a photograph of an installed fishnet in a fish canal. 

 

In the dry season, water is generally restricted to the rivers (see Figure 1), Lake Maga and 

a few natural depressions. Floodwaters bring fish onto the floodplain, and the inundated 

floodplain and natural depressions act as feeding and breeding ground for fish. Fish populations 

dynamics are driven by flooding patterns. The onset of flooding is typically when fish spawn, 

and the inundated floodplain provides a productive habitat for their primary growth period. Fish 

mortality is highest in the dry season when water volume is low because of high temperatures 
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and low oxygen. Fish population biomass follows a ‘boom-and-bust’ pattern similar to 

floodplain water volume.  

 

Floodplain fish production is driven by flooding patterns. Production has a positive 

relationship with flood magnitude and a negative relationship with dry season severity. 

Additionally, flood timing and aquatic habitat connectivity are also important variables in 

spawning and survival success. Understanding spatial and temporal patterns in flooding is 

necessary to evaluate the availability of a key natural resource for regional livelihoods.  

 

However, fish canals connect the floodplain to the river and act as a hydraulic extension 

of the river drainage network. Increasing use of fish canals could potentially have effects on the 

flood dynamics with a change in inundation patterns or the timing of onset and recession of 

flooding. Our objective was to build a hydrodynamic model that captures the effect of these 

small-scale features, i.e. fish canals and fishnets, on flood inundation dynamics locally in the 

depressions and globally in the whole floodplain system. 

 

3 Methods and Data 

3.1 Hydrodynamic Modeling of the Logone Floodplain 

We used LISFLOOD-FP model to simulate hydrodynamic processes in rivers, floodplain, 

and fish canals. LISFLOOD-FP is a grid-based hydraulic model with one-dimensional channel 

representation and two-dimensional floodplain representation based on a simplification of the 

shallow water equations (Bates et al., 2010; Bates and De Roo, 2000). It can represent small 

channels using a sub-grid scale parametrization of the channels geometry and friction (Neal et 
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al., 2012), where the channel is represented on a sub-grid scale by using parameters to represent 

channel geometry and friction. With sub-grid parametrization, rivers with widths smaller than the 

spatial resolution of the DEM can be simulated efficiently, and a separate 1D channel model is 

not necessary (Neal et al., 2012; Guy J.P. Schumann et al., 2014). Simplified versions of the 

shallow water equations are then solved in the sub-grid channel and floodplain grid cell 

simultaneously. LISFLOOD-FP has been used to simulate inundation patterns for specific flood 

events (Bates et al., 2005; Neal et al., 2011) and to study long-term floodplain dynamics 

(Rudorff et al., 2014a, 2014b; Schumann et al., 2013), among other applications.  

 

Using LISFLOOD-FP, we built hydrodynamic models at the Bara Depression (details in 

section 3.2), and of the larger Logone Floodplain (details in section 3.3 below). We build the 

Bara model at 30 m resolution to capture small-scale processes, and upscale it to 500 m while 

preserving the effects of these small-scale features. We then build a model of the Logone 

Floodplain at 500 m resolution to examine the effects of the small-scale processes on the larger 

system. 

 

We introduce a new feature in LISFLOOD-FP to represent the fishnet structure, which is 

modeled as a combination of a weir and trash-screen. This feature is specially included for this 

application, and is not available in the standard version of LISFLOOD-FP. Figure 2(c) shows a 

photograph of a fishnet in operation, and consists of sandbags to obstruct the flow which we 

represent as the weir, and a mesh made from twigs and leaves which we represent as the trash-

screen. Water drop across the fishnet (Figure 2(c)) is captured as a loss due to expansion and 

contraction of the flow area in the weir, caused by the acceleration of flow through the structure 
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(Balkham et al., 2010). Equations (1), (2) and Figure 3 show the mathematical representation of 

this structure: 

 ℎ𝑠 = (𝑧𝑤 + 𝑦𝑤 + ℎ𝑒𝑥) − 𝑦𝑑 (1) 

where hs is the afflux of weir flow, zw is the height of weir crest, yw is the depth of weir flow over 

crest, hex is head loss due to contraction and yd the downstream water depth.  

 𝑄 = 𝐶𝑤𝐵′𝑦𝑤
3/2 (2) 

where Q is the discharge in m3/s, Cw is the discharge coefficient for weir flow (typically between 

1.4 to 1.7) and B’ is the effective width at the screen (B’=width*screen coefficient). 

 

3.2 Modeling approach: Bara 

The Bara region is a small area of about 30 km2 in the Logone Floodplain that we studied 

for understanding flooding dynamics. The site consists of a river channel, a depression of ~ 1.1 

km2, and nine fish canals that connect them. Lorome Mazra, the river channel in Bara, flows 

from South to North. To study the effects of fish canals and fishnets, we built a hydraulic model 

of Bara at a resolution of 30 m where each fish canal is individually represented, i.e., every fish 

canal is represented as a unique sub-grid channel. To quantify the impact of small-scale, local 

features captured in a coarser model, we also built a hydraulic model of the same Bara site at a 

resolution of 500 m.  

 

3.2.1 Field data 

In the dry season of 2015, we surveyed the Bara depression using auto-levels to obtain 

the relative elevation profile of the depression. First, we established a reference point and 

recorded the location and ground elevation of this point using a GPS. Then, we recorded the 
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locations and elevations of 97 sample points relative to the reference point using an auto-level. 

We performed ordinary kriging on this dataset to interpolate depression elevations at 30 m 

resolution. Figure 4(a) shows the locations where we collected data, and the final product after 

ordinary kriging. We created a synthetic digital elevation model (DEM) of the region outside of 

the depression (Figure 4(b)) by assuming that the floodplain has a slope of 10 cm/km from south-

to-north, as obtained from Shuttle Radar Topography Mission (SRTM) DEM as the mean slope 

along the entire floodplain. The interpolated data was burnt into the DEM to represent the 

depression. 

 

In the summer of 2016, we surveyed all the fish canals in the Bara region and measured 

their width and depth at 50 m intervals. This data gave us information about the longitudinal and 

cross-sectional profiles of all the fish canals in Bara region. We used this data to parametrize the 

width and depth of all fish canals in this region.  

 

We collected water depth measurements during the flood recession in all the 

representative features of the terrain (floodplain, depression, fish canal and river channel), to 

understand the coupling among them. A staff gage was installed in two locations for each 

feature, water depth was recorded in each location twice daily. Figure 4(b) shows the locations of 

these measurements. Water depth measurements were recorded for eleven days between 8 and 22 

November 2014 (no measurements between 13 and 16 November 2014). Daily mean water depth 

was obtained from the collected data, and the observed depth anomaly was used to evaluate the 

performance of the Bara model. 
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3.2.2 Parametrization of River Channel, Fish canals and Fishnets 

Bathymetry data was not available for the Lorome Mazra River, so we approximated 

channel geometry using remote sensing data. We used a 2009 satellite imagery from 

WorldView-1, which has a spatial resolution of 50 cm, to estimate the width of Lorome Mazra to 

be 25 m. From the field data collected in 2014, the mean depth of fish canals along Lorome 

Mazra was 1.3 m with the range between 0.1 m and 2.8 m. The depth of the river channel has to 

be greater than the depth of fish canals. Using this and the knowledge of field experts, we 

assumed the depth of Lorome Mazra to be 3 m, with an embankment of 60 cm height along the 

river. 

 

In the 30 m model, the nine fish canals were represented as individual features. From the 

field data collected in 2016, we found that the mean width of the fish canals was 3 m and the 

mean depth of the canals near their start at the depression was 20 cm. The canal bed sloped from 

the depression towards the river channel, with a mean bed slope of 60 cm/km.  

 

We built the coarse resolution (500 m) model similar to the fine resolution Bara model. 

The river channel was represented as a sub-grid channel 25 m wide and 3 m deep. The fish 

canals were also represented as sub-grid channels, as in the 30 m model. However, each fish 

canal could not be represented individually, as multiple canals fell within a 500 m grid cell. If 

there was more than one fish canal in a grid cell, all the canals were aggregated such that the 

storage capacity of the aggregated fish canal was the same as the total storage capacity of all the 

fish canals falling in the grid cell. The width of the aggregated canal was calculated as the sum of 

average width of all the canals falling in a grid cell. A uniform depth of 0.5 m was assumed. An 

aggregated canal generally consists of 1 or 2 grid cells, so it wasn’t feasible to define a bed slope 
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gradient. The aggregated length was calculated by dividing the storage capacity of the 30 m 

model by width and depth of fish canals. The depression was also represented as a sub-grid 

feature, which preserved the volume of water stored in the depression from the fine resolution 

formulation. The depth of the depression was assumed to be uniform, as 0.5 m (mean depth of 

depression in the fine resolution model), and the length was calculated given the width of the cell 

was 500 m. 

 

The fishnet used to capture fish works by channeling water flow in the canal through a 

small orifice which has a net attached. Sandbags are used to obstruct the flow. The mesh above 

the sand bags force the fish to move and be caught in the fishnet (Figure 2(c)). In LISFLOOD-

FP, we represented this feature as a combination of a weir and trash screen. Photographs 

collected during field data collection were used to approximate the width of the weir, which 

represented the orifice to which the fishnet was attached, and the crest height of the weir, which 

represented the depth of sandbags. We used field photographs to estimate the weir width as 0.5 

m (1/6th times the average width of the fish canal) and crest height as 30 cm. A trash screen 

coefficient was used to allow a portion of water to flow through the screen. We calibrated its 

coefficient value to produce the desired water drop across the fishnet and found that a trash 

screen coefficient of 0.8 produced a describable water drop across the fishnet of about 20 cm 

(ascertained from field photographs and knowledge of field experts). 

 

3.2.3 Boundary Conditions 

There are no streamflow gages on the Lorome Mazra River, and hence, direct discharge 

observations were not available to set up this model. We obtained the upstream channel flow for 

the model from the Fernández et al., (2016) Logone model. Bara is inundated each year from the 
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overbank flow from the Lorome Mazra River, and the flood wave slowly moving from south to 

north in the floodplain. To represent the flood wave, we calibrated a time-varying water 

elevation boundary condition along the South boundary, as described in the following section. 

We used monthly open water evaporation rates from Naah, (1990). We assumed that all 

precipitation was either infiltrated (before soil saturation) or evaporated, and did not include 

precipitation in the model.  

 

3.2.4 Calibration of the Bara Model 

We used the water level data collected during the flood recession of 2014 to understand 

the flood recession dynamics and we set up the Bara model with boundary conditions to recreate 

the same. A flow along the south boundary accounted for the flood wave moving into the Bara 

region from upstream. The depth of water entering along the south boundary was represented as 

a height boundary condition. We assumed that the floodplain was inundated for three months 

(Delclaux et al., 2011). Since we used a “semi-synthetic” DEM to build the Bara model, we 

needed a credible way to represent the flood wave flowing from south to north. We calibrated the 

depth of water entering the domain along the south boundary, and the onset of flood recession at 

Bara. The maximum flood depth (60 cm) and the timing of onset of recession (5 November 

2001) were calibrated such that depth anomalies in the model for all the features (floodplain, 

depression, and fish canals) were similar to those observed in the field data. 

 

3.3 Modeling approach: Logone Floodplain 

We built the large scale Logone model similar to the coarse resolution Bara model using 

LISFLOOD-FP, and quantified the effects of fish canals on the depressions by implementing a 
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“no-canal” simulation. The model was simulated for a period of 7 years between 2001 and 2007. 

The details are described below.  

 

3.3.1 Topographic Data 

Accurate topographic information is crucial for predicting flood inundation using 

hydrodynamic models. Airborne light detection and ranging (LiDAR) DEMs offer the best 

horizontal resolution and vertical accuracy. However, high resolution LiDAR DEMs are not 

available in the Logone Floodplain. The best available DEMs in this region were obtained from 

satellite data. SRTM DEMs are available globally at a spatial resolution of 30 m; random error in 

their elevation accuracy in sub-Saharan Africa is ~±2 m (Rodriguez et al., 2006), comparable to 

the flood depth in the Logone Floodplain (Delclaux et al., 2011). Hence, modeling with SRTM 

will produce spatial inconsistencies in inundation predictions (Fernández et al., 2016). The 

Multi-Error-Removed Improved-Terrain (MERIT) DEM (Yamazaki et al., 2017) was produced 

by removing multiple errors from existing globally available DEMs, and we used MERIT DEM 

in the present study. In the Logone Floodplain, absolute bias, stripe noise, speckle noise, and tree 

height bias were removed from SRTM DEM to get the MERIT DEM. 

 

We chose a coarse resolution (500 m) in order for the model to mimic spatial resolutions 

likely to be used when requiring computationally efficient simulations across future climate 

scenarios. Simulation at 500 m resolution allowed us to capture more of the depressions used for 

floodplain fisheries and was computationally more tractable than the 250 m resolution. Note that 

Fernández et al., (2016) found that 250 m, 500 m and 1000 m model simulations produced 

similar overall skill in reproducing inundation dynamics over the floodplain, albeit for a different 

model configuration. We resampled the MERIT DEM to 500 m using bicubic interpolation. We 
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used a hole-filling process to ensure that there were no troughs that acted as sinks in the DEM. 

All the channel banks in the floodplain were smoothed using a moving average filter using a 

window of 7x7 cells. This was done to ensure that the river channel did not have sudden changes 

in the terrain.  

 

3.3.2 Sub-grid Parametrization of River Channels, Fish canals and Depressions 

Similar to the Bara model, the river channels were represented as sub-grid elements. In 

LISFLOOD-FP, the locations of sub-grid channels are defined as regions. Each river channel 

was defined as a unique region; the Logone River was divided into two regions, approximately 

upstream and downstream of Logone Gana. Values for the different parameters (parameters 

controlling the depth of the channel given width, channel type and Manning’s coefficient) were 

defined for each region. For the model, we assumed that the channel was clean, straight with no 

rifts, and rectangular in shape, and used a Manning's n of 0.025 s/m1/3 (Chow, 1959). 

 

The width of all the channels were estimated from high resolution satellite imagery of the 

floodplain. The width of the Logone river ranged between 100 m and 400 m. All other channels 

had widths less than 100 m. The details of the calibration for river widths is given in Section 

3.3.4.  

 

In the Logone model, the fish canals were represented as sub-grid elements, similar to the 

representation in the 500 m Bara model. The widths of the fish canals were obtained from field 

data collected in 2013. The field data collection included the length of each canal in the Logone 

Floodplain, the width, depth and elevation at the start (depression) and end (river) of each canal. 

The dataset has information for 1286 canals. The mean length of a fish canal was 809 m, and the 
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median length was 533 m. This meant that most fish canals were contained in 1-2 pixels (of 500 

m resolution). Since it is not possible to define the slope obtained from the field data in one or 

two pixels, and most of the canals are not longer than two pixels, we used a constant depth to 

define its geometry. The mean depth of the fish canals was derived from the field data, and all 

fish canals were assumed to have a constant bankfull depth of 0.8 m. The fish canals were 

represented as a unique sub-grid region with Manning’s n value of 0.025 s/m1/3, similar to the 

river channels.  

 

As in the 500 m Bara model, the depressions were also represented as sub-grid elements 

in the Logone model. The location and area of the depressions were obtained by depression 

mapping using satellite imagery. Supervised maximum-likelihood classification was performed 

on the cloud free imagery from the thermal infrared band of Landsat 5 (1986-87) and Landsat 7 

(2000-03) during the dry season. We only considered the 48 depressions that had canals draining 

into them. In consultation with the field experts, we assumed that all the depressions had a 

constant depth of 1 m. The fishnet was represented as defined in the Bara model. The parameters 

of the fishnet were retained from the calibrated Bara model. 

 

3.3.3 Boundary Conditions 

In situ measurement of daily discharges were available at Katoa, Bongor and Logone 

Gana. Katoa is located at the upstream part of our study area, and the discharge measurements 

available here were used to define the upstream boundary condition. Bongor is located ~60-km 

upstream of Katoa, which is not included in the model domain. Previous studies suggest that the 

difference in discharge between Bongor and Katoa is due to overbank flow from the Logone that 

flows from south to north along the Chadian side of the Logone River (Naah, 1990; Seeber, 
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2013). To account for this flow on the Chadian side of the floodplain, as in Fernández et al., 

(2016), we assumed an additional flow on the east side of the Logone River as the difference in 

discharge between Bongor and Katoa in our model domain. Logone Gana is located in the 

domain of the model, downstream of Katoa. We used the discharge time series at Katoa and 

Bongor as the boundary conditions. We assumed a spin-up time of three months (May to July 

2001) and considered the model predictions starting August 1st, 2001. 

 

We did not provide a precipitation input for the model because flooding in the Logone 

Floodplain is dominated from overbank flow. We assumed that all the precipitation on the 

floodplain is either infiltrated or evaporated, and has no impact on the flooding (Fernández et al., 

2018, 2016). Evaporation rates are high and we used monthly evaporation values from Naah, 

(1990). 

 

3.3.4 Calibration of the Logone model 

Fernández et al. (2016) showed that even though the model captured the flow in the river 

channel, and hence channel to floodplain flow accurately, flood inundation maps produced from 

the model had spatial disagreement with observations. This disagreement can be attributed to 

error in topography, as it is the major remaining unknown. Mason et al. (2016) and Shastry and 

Durand (2019) both use different methods to modify topography for improving flood 

simulations. Here, we manually calibrated the MERIT DEM such that LISFLOOD-FP produced 

inundation maps that were more accurate. In the process of calibration, the DEM pixel elevations 

were altered such that water was forced to flow to the areas that were classified as inundated in 

the Landsat imagery. In other words, the pixel elevations of areas predicted by LISFLOOD-FP to 

be dry were reduced if the Landsat images classified them to be inundated, and vice versa. Flood 
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inundation maps obtained from classified Landsat images (Fernández et al., 2016) in 2006 were 

used for this calibration. 

 

Leopold and Maddock (1953) derived empirical relationships between river width, depth, 

discharge and catchment area based on extensive field measurements in over 100 river locations 

in the United States. These relationships have been used for multiple rivers in many previous 

studies since (Annis et al., 2019; Blöschl and Sivapalan, 1995; Camporese et al., 2010; Finnegan 

et al., 2005; Flint, 1974; Frasson et al., 2019; Gippel and Stewardson, 1998; Kim et al., 2019; 

Magilligan, 1992; Park, 1977; Pinter and Heine, 2005; Schumm, 1956; Tarboton et al., 1991; 

Whipple and Tucker, 1999; Yamazaki et al., 2011). This same geometric theory is used in the 

sub-grid formulation of LISFLOOD-FP (Neal et al., 2012), as this relationship can be used to 

estimate river geometry in data-scarce areas where bathymetry data doesn’t exist (Fernández et 

al., 2016; Lewis et al., 2013; G. J.P. Schumann et al., 2014; Guy J.P. Schumann et al., 

2014).Fernández et al. (2016) calculated the depth of the Logone by estimating r and p as 

parameters obtained by fitting a curve to the channel cross-sections data from (Evans, 1999). The 

depth of the channel was defined as 

 𝐷𝑒𝑝𝑡ℎ = 𝑟 × 𝑊𝑖𝑑𝑡ℎ𝑝 (3) 

 

To limit model complexity, we used a constant depth for each unique channel region. The 

Logone River was divided into two regions (approximately upstream and downstream of 

Logone-Gana), and all other river channels were defined as independent regions. The mean value 

of depths for the two Logone regions obtained from Fernández et al., (2016) were used. The 

upstream Logone channel depth was increased from its initial value (4.1 m) to 4.3 m to curtail 

overbank flooding in some regions. All other channels were calibrated to have a linear 
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relationship with the width (p = 1), with r ranging from 0.03 to 0.12 (resulting depth values 

ranged from 2 m to 3 m). 

 

We calibrated the value of Manning’s n such that the simulated flow of water on the 

floodplain matched the observations from classified Landsat imagery. Since depressions and 

floodplain were known to have dense vegetation in them while flooded, we started with a 

Manning’s coefficient of 0.1 s/m1/3 (Chow, 1959). However, with that n, the flood receded 

quickly, and the floodplain was dry much before the observations suggested. We increased the 

roughness coefficient for the floodplain to 0.3, and the depressions to 0.25 so that the floodplain 

retained water for longer.  

 

3.3.5 Evaluation of the Logone model 

3.3.5.1 River Flow 

We used the discharge measurements at Logone Gana to compare and evaluate the 

performance of the Logone model. The accuracy of the simulation was evaluated by using the 

Nash-Sutcliffe Efficiency (Nash and Sutcliffe, 1970). Nash-Sutcliffe Efficiency (NSE) is defined 

as  

 𝐸 = 1 −
∑ (𝑂𝑖 − 𝑀𝑖)2𝑛

𝑖=1

∑ (𝑂𝑖 − 𝑀̅)2𝑛
𝑖=1

  (4) 

where O refers to the observations and M refers to model predictions. 

 

3.3.5.2 Inundation Area 

We used 40 flood inundation maps from multi-temporal Landsat ETM+ imagery between 

2001 and 2007 to assess the performance of the Logone model in producing flood inundation 
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extents. We used 13 flood inundation maps in 2006 (January to December) for manual 

calibration of the DEM, and the rest to evaluate the performance of the model. In the simulation 

period between 2001 and 2007, we consider 2006 as calibration period and 2001-2005 and 2007 

as evaluation period. We chose 2006 for calibration because we had images in the dry season, the 

flooding season and the flood recession season. Landsat images of the floodplain between July to 

September, when the floods start, that are clear of cloud cover are rare and limited the data we 

could use for this period.  

 

To produce flood inundation maps from the Landsat images, the following process was 

performed. First, the missing data in the images from Landsat 7 images due to the failure of the 

Scan Line Corrector (SLC) instrument on-board was handled by using a gap-filling method. The 

method involved filling the no-data pixels in Landsat ETM+ SLC-off images with the linear least 

square regression analysis of their SLC-on counterparts (Fernández et al., 2016). Landsat 7 SLC-

on image on 21 October 2001 was used in a Iterative Self-organizing Data Analysis (ISODATA) 

classifier to extract and mask out open waters on Lake Maga and the Logone River. Clouded 

areas and cloud-shadowed areas were masked by a 3 x 3 window size majority analysis where 

blue reflectance is greater than 0.2 (Fernández et al., 2016; Sakamoto et al., 2007). Flood extents 

were delineated by using a threshold-based classification of the short-wave infrared (SWIR) 

band (Landsat ETM+ band 7) similar to Fernández et al., (2016) and Westra and De Wulf, 

(2009).  

 

We compared the model predicted flood inundation maps with the satellite observed 

flood inundation to asses the spatial performance of the model. We used two commonly used 

evaluation measures: critical success index (CSI) and hit rate (Aronica et al., 2002; Hawker et 
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al., 2018; Sampson et al., 2015; Schaefer, 1990; Schumann et al., 2016). When flood predictions 

are compared with observations, we have four classes: True Positive (TP; flooded predicted as 

flooded, or hit), True Negative (TN; non flooded predicted as non flooded), False Positive (FP; 

non flooded predicted as flooded, or false alarm) and False Negative (FN; flooded predicted as 

non flooded, or miss). CSI is a measure of accuracy when TN is not considered. It is sensitive to 

hits while penalizing both misses and false alarms.  

 𝐶𝑆𝐼 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 (5) 

 

CSI values range from 0 to 1 where a value of 1 indicates that the model is in full agreement with 

the observations. The hit rate gives the fraction of flooded area that is correctly predicted by the 

model. The values range from 0 to 1; higher value indicates that the model predicts flood 

inundation better. 

 𝐻𝑖𝑡 𝑟𝑎𝑡𝑒 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (6) 

 

We calculated the evaluation statistics only for the flooding season. For this purpose, we 

consider September to January as the flooded season and February to August as the dry season. 

 

3.3.6 Comparison with a “no canal” simulation 

We compared two scenarios, one with and one without canals, and examined what effect 

canals had on flood dynamics in the depressions. To understand the role of canals on the 

floodplain, we simulated the Logone model without any canals. All the parameters were kept the 

same, except for the canals. This “no-canal” simulation was then compared with the original 
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simulation with canals in terms of flood inundation area, flood volume and timing of flood 

recession in the depressions.  

 

4 Results and Discussion 

4.1 Bara: Comparison of Model Simulations and Field Observations 

The field data collected in 2014 showed there was a difference between the rate of 

recession in the river and the other parts of the system. The river stage reduced by ~1 m while 

the water levels in the floodplain, depression and fish canals reduced only by ~0.4 m in the two 

weeks of observations during flood recession. The fishnet structure in the model was used to 

capture this dynamic of the system. Figure 5 shows the recession rates in all the features of the 

floodplain for the collected field data as well as the model. The plot shows the depth anomaly 

with respect to water level on day one of measurement. The slower recession rates in the 

floodplain, depression and fish canal compared to that in the river channel is evident. Table 1 

shows the difference in water depth in the different features of the floodplain between day 1 and 

day 15 of the measurements. The corresponding model simulated change in water depth, and the 

NSE of simulated time series are also shown. It shows that the water drops a little slower in the 

model initially, but achieves the observed water level drop by the end of the measurement 

period. The different recession rate of the river from the other features was effectively captured 

in the coarse resolution model as well (Figure 5(b)). The water depth difference in the 

observations and model, and their corresponding NSE is shown in Table 1 for the various 

features of the floodplain. The range of NSE is from 0.56 to 0.88, which shows that the 

performance of the coarse resolution model is similar to that of the fine resolution model (NSE 

range 0.61-0.93), and has managed to capture the floodplain dynamics in the coarse resolution 
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model. The use of 500 m resolution model to study the entire floodplain is justified by this result 

that the 500 m model when run at Bara still reproduces the water levels observed in the field, 

with a similar precision as the 30 m model. 

 

In the floodplain, fishnet installed in fish canals have an obstruction made from sandbags 

and a screen made from twigs and tree branches which slows down the flow of water from the 

fish canal to the river. The fishnet structure we incorporated in the model successfully captured 

this by creating a drop across the fishnet. Figure 6 shows the water drop across the fishnet on 

three days during the flood recession. It shows that there is a considerable drop caused by the 

fishnet as the flood recession progresses. 

 

4.2 Logone Floodplain  

4.2.1 Flow, Mass Balance 

The Logone Floodplain receives water from the Logone River and loses most water due 

to evaporation. Figure 7 shows the modeled mean mass balance for the six-year study period. 

The mean volume difference between the input and output flows in the model is 0.79 %. We 

assumed that all the precipitation on the floodplain either infiltrated or evaporated, and ignored 

its effect. Figure 7 does not show evaporation as a major flux; however, if we consider the 

modeled evaporation along with the precipitation that has evaporated, it becomes a major flux on 

the floodplain 

 

We studied the dynamics of components of water balance by looking at the entire time 

series of discharge and evaporation. The model inflow and outflow for the entire time series are 

shown in Figure 8(a). There is a noticeable lag between the peak inflow and outflow discharges, 
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with a mean of 29 days and a standard deviation of 10.39 days as the water has to traverse over 

200 km along the river between the inflow and outflow locations. The evaporation in the 

floodplain is shown in Figure 8(b). The peak evaporation occurs around November, 

corresponding to when there is a peak flood. In the summer months, even though potential 

evapotranspiration is very high, actual evapotranspiration is quite low as water in confined to the 

river channels and Lake Maga.  

 

Figure 9 shows the time series of observed and simulated discharge at Logone Gana. 

There was no recorded discharge between June 2nd and October 30th 2006. The model accurately 

simulated the discharge at Logone-Gana. The difference between modeled and observed 

discharge was less than 100 m3/s more than 85% of the time. However, it should be noted that 

peak discharge is generally under-estimated in the model at Logone Gana. The NSE of discharge 

prediction at Logone Gana was 0.94. The accurate prediction of discharge at Logone Gana 

means that the model also accurately predicted the amount of water on the floodplain between 

Katoa and Logone Gana.  

 

4.2.2 Flood inundation 

We compared the model predicted inundation maps to those derived from satellite 

observations. Over the entire model domain, the comparison between observed and simulated 

inundated area is shown in Figure 10. The gray area shows the calibration period, meaning the 

Landsat-derived flood maps obtained during this time period was used for the manual calibration 

of the DEM. The observed and simulated inundated area had a Pearson correlation coefficient (r) 

of 0.94, and coefficient of determination (R2) of 0.81. The model does not capture the peak in 

2001, 2002 and 2005, but it captures the receding inundated area accurately.  
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The accurate prediction of flow at Logone Gana (shown in Figure 9) means that the 

model also accurately predicts the channel to floodplain flow due to overbank flooding. This 

result is reinforced in Figure 10, where the model again accurately predicts the magnitude of 

inundated area. Comparison between observed and simulated patterns of flood inundation is 

shown in Figure 11. Figure 11 (a) to (f) show the flood inundation patterns during the flooded 

season of the calibration period of 2006. It shows that the model captures the flood inundation 

pattern quite well. The spatial mismatch is primarily due to the quality of topographic data, and 

justifies the use of manual calibration to adjust the DEM. Although manual calibration of the 

DEM improved the spatial performance of the model, there is still room for improvement. 

Recent methods like Mason et al. (2016) and Shastry and Durand (2019) could potentially be 

used to improve the DEM, and hence spatial performance of the model.  

 

The spatial patterns in two December maps (Figure 11 (e) and (f)) show that the 

movement of flood wave in the model is quicker than observed along the West side of the 

Logone River, and much slower on the East side. This could be because of difference in 

vegetation between the two regions during the flooded season. We use a constant high value of 

Manning’s coefficient for the entire floodplain to account for vegetation on the West side of the 

Logone River. On the East side of the Logone River, the model holds on to the water for longer 

because of this. However, the conclusions of this paper regarding the depressions and fish canals 

on the West side are not affected by this. Figure 11 (g) to (l) show the flood inundation patterns 

on the days of peak flood from satellite imagery between 2001 and 2005. The observed peak 

flooded imagery occurs in the months of October and November. There are two available 

satellite images during this period in 2005, and both are shown. 
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We analyzed the spatial accuracy of predicted flood inundation maps by comparing them 

to satellite derived observations. Table 2 shows CSI and hit rate values for calibration and 

validation periods. The mean CSI during calibration and validation was 0.33 and 0.25 

respectively, and the mean hit rate during calibration was 0.46, and during validation was 0.32. 

The mean values are lower due to the fact that flood recession in the model is much quicker than 

observed; this can be clearly seen in Figure 11 (e) and (f). However, the model captures the peak 

flood inundation pretty well. In 2006, the peak inundation is captured with a hit rate of 0.71. 

During the evaluation period, the maximum hit rate is 0.67 during the peak of 1-November 2005. 

It should be noted that the model does not capture the peaks in terms of discharge (Figure 9) and 

magnitude of inundated area (Figure 10), and these peaks may be captured if the spatial 

prediction capability at the peaks could be further improved.  

 

4.2.3 Impact of fishnets and fish canals on water storage in depressions 

The effect of the fishnet structure on the flow in the fish canal in Bara depression in the 

large-scale Logone model is shown in Figure 12. It shows the water surface elevation along the 

length of the fish canal on three days during the flood recession. The water drop across the 

fishnet structure is clearly seen. The fishnet structure slows down the flow of water from the fish 

canal to the river, and the model is able to capture this effectively.  

 

Figure 13 shows timeseries of water storage in depressions from two model simulations, 

with and without including fish canals. Figure 13 also shows the total inundated area within all 

depressions, based on the Landsat inundated area maps. While both model simulations 

overestimate the duration of inundation, the simulation including canals is most likely closer to 
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reality. For example, in 2006, for the simulation including canals, by December 3 the total 

depression storage was 763 ha-m, around half the maximum value (1542 ha-m, on October 14). 

The simulation that neglects canals does not reach the half-maximum value until more than a 

month later, on January 12, 2007. The Landsat observation on November 20 almost perfectly 

captured the halfway point of the depression inundation (5.8 km2, down from 12.2 km2 on 

October 3). The observations reach the halfway point around the same time as the simulation 

including canals; the simulation without canals retains its water too long. Indeed, the Landsat 

observation on January 7, 2007 shows that the depressions were essentially dry (< 0.1 km2), 

when the simulation without canals is still half full. Similar dynamics exist for the other years; 

the date depressions are empty is an average of ~29±2 days earlier in simulations that include 

canals (see Figure 13). Thus, simulations including fish canals more closely represents the 

correct inundation dynamics within the depressions. Duration of inundation in the depressions is 

a critical variable for floodplain fisheries, as the duration of inundation in depressions governs 

fish growth. The quicker recession in depressions, as noticed in model simulations and 

confirmed by observations, shortens the growing season for fish, resulting in lower fish biomass 

at the time of recession when most of the fishing occurs. 

 

5 Conclusions 

The goal of the study was to evaluate the strategy of using a hydrodynamic model with 

sub-grid scale channels and structures to represent small-scale anthropogenic controls on 

floodplain dewatering at the scale of the entire Logone Floodplain. This was accomplished using 

the LISFLOOD-FP model applied to the Logone Floodplain in Cameroon. We built a fine 

resolution model (30 m) of one depression (Bara) with fish canals and fishnets, which were 
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successful in approximating the physical processes on the floodplain. We reproduced the change 

in water levels across all features (floodplain, depression, fish canals and river channel) as 

observed during two weeks of flood recession. We upscaled this model to a larger resolution of 

500 m and found that, with the help of sub-grid parametrization of fish canals and depressions, 

we were still able to successfully capture the processes on the floodplain. It is noteworthy that a 

500 m resolution hydrodynamic model was capable of accurately representing small-scale 

features like fish canals that are a few meters wide, and fishnets constructed across these fish 

canals. We applied this strategy of representing fish canals and depressions as sub-grid features 

to the entire floodplain to assess their impact on the flow patterns. We found that fish canals are 

critical for modeling inundation timing in the depressions: model simulations excluding canals 

emptied around a month too late, compared to satellite observations, with important implications 

for using such models to inform fish growth and population. Fishing is a major source of income 

in the Logone Floodplain, and lower fish catches would have a huge impact on the local 

economy. These modeling strategies enable us to quantify small-scale processes in a 

computationally efficient model. These models can be coupled with fisheries model (like 

described in Welcomme and Hagborg, (1977)), to study the impacts of these small-scale features 

on floodplain fisheries.  
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Tables 

Table 1 Observed and Simulated Difference between November-8-2014 and November-22-2014 

Water Levels in Various Floodplain Features. NSE gives the Nash-Sutcliffe Efficiency of the 

Simulated Water Level Difference w.r.t Observed for the 15-day Period. 

Feature Measured (m) 

Fine Resolution Model 

(30 m) 

Coarse Resolution 

Model (500 m) 

Simulated 

(m) 

NSE 

Simulated 

(m) 

NSE 

River 1.12 1.28 0.93 0.95 0.88 

Fish canal 0.44 0.34 0.61 0.43 0.69 

Depression 0.41 0.35 0.80 0.38 0.84 

Floodplain 0.41 0.36 0.83 0.28 0.56 
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Table 2 Evaluation Statistics for Modeled Flood Inundation Prediction Compared to Satellite 

Imagery for the Calibration and Evaluation Period 

 

 

Calibration Period Evaluation Period 

Min Max Mean 

Standard 

deviation 

Min Max Mean 

Standard 

deviation 

Critical Success 

Index (CSI) 

0.15 0.54 0.33 0.16 0 0.63 0.25 0.22 

Hit Rate 0.24 0.71 0.46 0.19 0 0.67 0.29 0.24 
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Figures 

 

Figure 1. Study Area showing Digital Elevation Models (DEMs) of the Logone Floodplain and 

watershed, including the river network, in situ gaging stations and fish canals. 

 

Figure 2. Fish canals in the Logone Floodplain. (a) Schematic of flood recession process; black 

arrows represent the direction of flood recession to the river, blue cross represents the fish 

canals. (b) Photograph of a fish canal in the dry season. (c) Photograph of a working fishnet 

(ACEEN). 

 

Figure 3. Simple representation of the fishnet structure, showing the weir and the screen 

 

Figure 4. Topography of Bara depression. (a) Locations at which data was collected during 

depression survey, and its spatial interpolation. (b) Interpolated depression burnt into a synthetic 

topography 

 

Figure 5. Comparison of simulated and observed water level drop in (a) 30 m model and (b) 500 

m model. Measurements were not available between 13-November and 16-November 2014 

 

Figure 6. Water drop across the fishnet during flood recession 

 

Figure 7. Mean annual mass balance across the model domain between 2001 and 2007. Dark 

gray is water entering the model domain and light gray is water exiting the model domains ( 

 

Figure 8. a) Inflow and outflow discharge time series in the Logone River at inlet and outlet of 

the model domain (b) Evaporation time series from the model for the model domain 

 

Figure 9. Time series of discharge at Logone Gana. Observations were obtained from the in situ 

streamflow gage, data was not available between 2-June-2006 and 30-Oct-2006 

 

Figure 10. Flood inundation time series for the Logone Floodplain. Shaded area represents the 

calibration period 

 

Figure 11. Spatial pattern of flooding from observations and simulation. First two rows show 

flood recession during calibration period. Final two rows are annual peak floods during 

evaluation period 

 

Figure 12. Water drop across the fishnet at Bara in the Logone model 

 

Figure 13. Effect of canals on the amount of water stored in depressions for the Logone 

Floodplain 
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Figure 1. 
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Figure 2. 
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Figure 3. 
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Figure 4. 
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Figure 5
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Figure 6. 

Figure 7. 
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Figure 8. 

 

Figure 9. 
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Figure 10.

Figure 11.
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Figure 12. 

 

Figure 13. 
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