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ABSTRACT
There has been a considerable amount of interest in recent years in
the problem of workflow satisfiability which seeks an allocation of
authorised users to every step of the workflow, subject to workflow
specification constraints. Unfortunately, the workflow satisfiability
problem (WSP) where arbitrary constraints are allowed is computa-
tionally intractable. Wang and Li (2010) were the first to study WSP
in the framework of parameterized complexity (with the parameter
being the number of steps). Wang and Li proved that the WSP for
arbitrary constraints is intractable even in the framework of param-
eterized complexity, i.e., it is highly unlikely to be fixed-parameter
tractable (FPT). Extending the work of Wang and Li (2013) and
Crampton et al. (2013), Cohen et al. (2014) introduced the family
of user-independent (UI) constraints, which are constraints whose
satisfiability does not depend on the identities of the users. Cohen
et al. proved that WSP with UI constraints is FPT. Karapetyan et al.
(2019) employed these ideas in practically efficient solution meth-
ods for WSP with UI constraints, including methods based on SAT
and CSP general purpose solvers.

While the family of UI constraints includes the most common
constraints used in practice, some real-world cases are outside of the
family. In this paper, we generalise the concept of authorizations by
making them context-dependent and show how to absorb some non-
UI constraints into context-dependent authorizations. This allows
us to extend algorithms and their implementations developed for
WSP with UI constraints to arbitrary constraints. We carry out
computational experiments with a general purpose SAT solver,
SAT4J, to test practicality of solving WSP with UI and non-UI
constraints using our approach.
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1 INTRODUCTION
Many businesses and other organizations use computerized systems
to manage their business processes. A common example of such a
system is a workflow management system, which is responsible for
the coordination and execution of steps in a business process. Such
a system is normally multi-user and thus it should include some
form of access control which is facilitated by various restrictions
on users to perform steps. It can be highly non-trivial to decide
whether all the steps can be assigned to available users such that
all restrictions are satisfied. Such a decision problem is called the
Workflow Satisfiability Problem (WSP).
Example. Let us consider the following simple, illustrative exam-
ple of an instance of the WSP. Figure 1 depicts a purchase order
processing introduced in [9]. As shown in Figure 1(a), in the first
two steps of the workflow, the purchase order is created and ap-
proved (and then dispatched to the supplier). The supplier will
submit an invoice for the goods ordered, which is processed by the
create payment step. When the supplier delivers the goods, a goods
received note (GRN) must be signed and countersigned. Only then
may the payment be approved and sent to the supplier.

s1 create purchase order
s2 approve purchase order
s3 sign GRN
s4 create payment
s5 countersign GRN
s6 approve payment

(a) Tasks

s1

s2

s3 s4

s5 s6

=

,

,

, ,

(b) Constraints

Figure 1: A simple constrained workflow for purchase order
processing

Figure 1(b) shows constraints to prevent possible fraudulent use
of the purchase order processing system. In our example, these
constraints restrict the users that can perform pairs of steps in the
workflow: the same user cannot sign and countersign the GRN,
for example. There may also be a requirement that some steps are
performed by the same user. In our example, the user that raises a
purchase order is also required to sign for receipt of the goods. All
in all, Part (b) shows five constraints

(s1, s2,,), (s1, s4,,), (s3, s5,,), (s4, s6,,), (s1, s3,=),
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where (si , sj ,,) is a binary separation-of-duty (SoD) constraint
meaning that steps si and sj have to be assigned to different users
and (si , sj ,=) is a binding-of-duty (BoD) constraint meaning that
steps si and sj have to be assigned to the same user. In particular,
SoD and BoD constraints can be found in [1].

Let S = {si : i = 1, 2, . . . , 6} be the set of steps. To complete a
WSP specification in this example, we introduce a setU = {ui : i =
1, 2, . . . , 8} of users and describe authorization lists:

A(s1) = {u1,u2}, A(s2) = {u2,u3}, A(s3) = {u1,u3},
A(s4) = {u3,u4}, A(s5) = {u3,u4,u5,u8}, A(s6) = {u5,u6,u7}.

The authorization list of si lists all users which can perform si .
It is not hard to verify that the following assignment π : S → U

satisfies all the constraints and authorizations:

π (s1) = π (s3) = u1, π (s2) = u2, π (s4) = u4,
π (s5) = u3, π (s6) = u5.

(1)

In general, the Workflow Satisfiability Problem (WSP)1 contains
a set S of steps and a setU of users and some constraints and autho-
rizations restricting performance of steps by users (the difference
between an authorization and a constraint is that while the former
involves just one step, the latter at least two steps). The aim is to
decide whether there is assignment of users to all steps such that
all authorizations and steps are satisfied. Such WSP instances are
called satisfiable; the other WSP instances are unsatisfiable.
Known WSP constraints. Research on workflow satisfiability
began with the seminal work of Bertino, Ferrari and Atluri [3]
and Crampton [9]. Some authors studying and using the WSP
restrict themselves to binary SoD and BoD constraints only [4, 8,
16]. The interest in only binary SoD and BoD constraints can be
explained by the fact that such constraints are the most widely used
by many customers (in particular, those who use the appropriate
SAP software) [17]. However, many authors consider more general
WSP constraints, see e.g. [6, 12, 17, 24, 25] in order to facilitate more
robust WSP systems.

In particular, Wang and Li [25] introduced relatively simple gen-
eralizations of binary SoD and BoD constraints and showed that
while theWSP is already NP-hard when just binary SoD constraints
are considered, even the WSP with their generalized SoD and BoD
constraints admits efficient, fixed-parameter tractable (FPT) algo-
rithms2 when parameterized by k = |S |. Crampton et al. [12] intro-
duced a more general family of WSP constraints, so-called regular
constraints, for which theWSP still admits an FPT algorithm.While
theoretically the algorithm of [12] is fast, it is unlikely to be so in
practice as it uses the method of inclusion-exclusion which makes
worst and best exponential running times pretty close to each other.
Cohen et al. [6] introduced the concept of diversity in WSP con-
straints and showed that the WSP with constraints of relatively
small diversity can be solved by an FPT algorithm. This algorithm
is based on a practically useful concept of backtracking. Cohen et al.
considered in particular user-independent constraints, which are
of relatively small diversity. A constraint is called user-independent
(UI) if its satisfiability does not depend on the identities of the users.
UI constraints form a useful constraint family as it includes not

1For a formal definition, see the beginning of Section 3.
2For a brief introduction to FPT algorithms, see Section 2.

only all constraints studied in [12] and [25], but also all constraints
listed by the American National Standards Institute in [1].

Cohen et al. [7] implemented their algorithm for UI constraints
and showed that it is of practical interest. Karapetyan et al. [24] in-
troduced and studied a different kind of backtracking algorithm for
the WSP with UI constraints, which turned out to be significantly
faster than the algorithm of [7]. Moreover, Karapetyan et al. showed
that similar concepts can be used in formulations for general-
purpose solvers such as the Pseudo-Boolean solver SAT4J [2], and
the resulting methods are sufficient for many moderate-size WSP
instances. Crampton et al. [10] introduced a generalization of UI
constraints, the family of class-independent (CI) constraints, and
proved that the WSP with CI constraints only, admits an FPT al-
gorithm. However, to use CI algorithms, the setU of users has to
have a hierarchical structure (e.g. if U are users in some hierar-
chical orgamization), which is rather restrictive. Dos Santos and
Ranise [17] developed a software tool for the software company
SAP which can be used to work, in particular, with the run-time
version of the WSP which has UI and CI constraints. Apart from
Pseudo-Boolean and Constraint Satisfaction Problem solvers used
in [7, 24], many researchers studied WSP satisfiability using solvers
based on Satisfiability Modulo Theories and Optimization Modulo
Theories, see e.g. [5, 17]. We refer the reader to [18, 20] for surveys
on workflow satisfiability approaches.
This work. In this paper, we introduce the notion of branching
factor for every WSP constraint. This parameter is motivated by
a basic algorithm of Karapetyan et al. [24], see Algorithm 1 in
Section 2. To the best of our knowledge, the only other parameter
for every WSP constraint is diversity which was introduced by
Cohen et al. [6]. Diversity was also motivated by an algorithm (and
used to estimate its running time), but the algorithm in [6] is less
efficient from the theoretical point of view: its running time for UI
constraints isO (3kBkNO (1) ) rather thanO (BkNO (1) ) of Algorithm
1, where k = |S |, Bk is the kth Bell number, and N is the size of
the problem. More importantly, computational experiments in [24]
clearly demonstrated that the implementation of the algorithm
in [6] for the WSP with UI constraints only, is several orders of
magnitude slower than that of the backtracking implementation of
Algorithm 1 in [24]. Examples in Sections 4 and 5 demonstrate that
for many interesting constraints it is not hard to provide a good
upper bound constraint branching factor. This is not the case for
diversity as it is a more complicated parameter [6].

It was shown in [24] that WSP with UI constraints can be effi-
ciently solved using general-purpose solvers. Software solutions
based on general-purpose solvers tend to be cheaper to develop and
maintain than bespoke algorithms and thus strongly preferred by
practitioners. Thus, in this paper, we test our approach using com-
putational experiments with a general-purpose Pseudo-Boolean
solver, SAT4J [2]. Benchmark instances are described in Section 5.
They are chosen is such a way as to make them computationally
hard to solve. We discuss our solution method in detail in Section
6. The results of the experiments on our benchmark instances are
given in Section 7. They demonstrate that our approach provides a
practical method of solving WSP with UI and non-UI constraints
of relatively small branching factors. We conclude the paper in
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Section 8, where in particular we discuss some directions of further
research.

2 PARAMETERIZED ALGORITHMS AND
COMPLEXITY

Unfortunately, the vast majority of non-trivial decision problems
are intractable, i.e., NP-hard. One approach for solving an NP-hard
decision problem is to use heuristics, but this means that the output
is not always correct. Another approach is the use of parameterized
algorithms. In this case, for the decision problem under considera-
tion we assign a parameter (or, a collection of parameters which is
usually aggregated to only one parameter, the sum of the original
parameters). Examples of such parameters are the tree-width, tree-
depth or other structural parameters of the input graph. This way
the decision problem Π under consideration has two quantities: the
size N of the problem and its parameter k . The usual choice of the
parameter is such that k is much smaller than N on the instances
of Π of interest. A problem together with its parameter is called a
parameterized problem.

The reason for introducing the parameter is to try design an
algorithm of running time O ( f (k )N c ), where f is a computable
function of k only and c is an absolute constant. Such an algorithm
is called fixed-parameter tractable (FPT). FPT algorithms exist for
several parameterized NP-hard problems, in which cases f (k ) “ab-
sorbs” the classical computational complexity of the problem. A
parameterized problem admitting an FPT algorithm is called an FPT
problem (or, the problem is in the class FPT). Unfortunately, there
are many parameterized problems for which there are good rea-
sons to believe that they are not FPT. In parameterized complexity,
such problems are called W[1]-hard and it is widely assumed that
FPT,W[1] [15].

To stress the fact that in an FPT algorithm running timeO ( f (k )N c )
the function f is usually exponential (it does not have to be if the
problem is polynomial-time solvable) and thus f (k ) is often the
dominating factor in the running time, O ( f (k )N c ) is often simpli-
fied to O∗ ( f (k )). For more information about parameterized algo-
rithms and complexity, we refer the reader to the monograph [15].

3 WSP, PLANS, PATTERNS AND PATTERN
BASIC ALGORITHM

The WSP in all its generality is a problem with complicated con-
straints which may require a certain partial order in which the steps
are performed, exclusion of certain steps from being performed by a
plan under certain conditions, etc., see e.g. [5, 13, 14, 17]. However,
it is possible to reduce such a general WSP to a number of more
basic WSPs in which there are no constraints imposing a partial
order of the steps (i.e. the order in which the steps are performed is
immaterial), no steps are excluded from being performed, etc., see
e.g. [13, 14]. Because of the reductions and since new WSP notions
introduced in this paper are already of interest for the basic WSP,
we will restrict our attention to the basic WSP (an instance of such
a WSP is depicted in Figure 1). We will define it as follows.

Let S be a set of steps,U is a set of users, C is a set of non-unary
constraints whose scopes are subsets of S (called just constraints in

what follows3) andA is an authorization function (or, just authoriza-
tion)A : S → 2U . Thus, everyWSP instance is given by a quadruple
(S,U ,C,A). A plan π is a function π : S → U . The aim is to decide
whether there is plan which is authorized i.e. π (s ) ∈ A(s ) for each
s ∈ S , and eligible i.e. satisfies all constraints. A plan is called valid
if it is authorized and eligible. If a WSP instance (S,U ,C,A) has
a valid plan, it is called satisfiable and otherwise unsatisfiable. It
is easy to see that the WSP with only binary SoD constraints is
NP-hard as it is equivalent to the well-known NP-hard Graph List
Coloring problem.

Let us denote |S | by k and |U | by n.Wang and Li [25] observed
that in real-world WSP instances k is often much smaller than n.
This led them to introduce parameterization of the WSP by k .We
will also study this parameterizations like several other papers, cf.
[6, 7, 19, 24]. Wang and Li showed that the WSP is W[1]-hard.

Remark 1. In fact, Wang and Li [25] proved the following result.
Let ρ be a binary relation on U and let S =

{
s1, . . . , sk

}
. Then the

WSP is W[1]-hard if A(s ) = U for every s ∈ S and C consists of
(k
2
)

constraints ci, j with 1 ≤ j < i ≤ k such that a plan π satisfies ci, j if
and only if (π (si ),π (sj )) ∈ ρ. The W[1]-hardness follows by a simple
reduction from the (Graph) Independent Set problem4, which is
W[1]-hard.

Let us now define a WSP constraint formally. A constraint c
with scope T ⊆ S is a pair (T ,Θc ), where Θc is a set of functions
θ : T → U such that c is satisfied by a plan π if for some θ ∈ Θc ,

θ (t ) = π (t ) for each t ∈ T . For example, the scope of a (general)
SoD constraint c is a subset T of S and θ ∈ Θc if and only if θ is
injective.5 Satisfiability of essentially every real-world constraint c
by a plan π can be decided without using the formal definition of a
constraint (e.g., deciding whether an SoD constraint is satisfied by a
plan π can be done by a simple inspection of π ) and in polynomial
time in k and n. In this paper, we assume that satisfiability of every
constraint by a plan can be decided in polynomial time in k and n.

Recall that a constraint is called user-independent (UI) if its satis-
fiability does not depend on the identities of the users. For example,
SoD and BoD constraints are UI. The following generalizations of
SoD and BoD constraints are also UI. The scope of an at-least-p-
out-of-q constraint is a subset T of S of size q and at least p users
can be assigned to the steps of T . Analogously, the scope of an
at-most-p-out-of-q constraint is a subset T of S of size q and at most
p users can be assigned to the steps ofT . ManyWSP constraints are
UI and in fact, all constraints listed by American National Standards
Institute in [1] are UI. Formally, a constraint c = (T ,Θc ) is UI if for
every θ ∈ Θc , and every permutation f : U → U of users there is
a θ ′ ∈ Θc such that θ ′(t ) = f (θ (t )) for each t ∈ T .

To naively decide whether aWSP instance (S,U ,C,A) has a valid
plan, one can generate plans one by one and check whether one of
them is valid, stopping when a valid one is found. However, such an
algorithm is not efficient as the total number of plans is nk . Since
theWSP isW[1]-hard, it is highly unlikely that much more efficient,
i.e., FPT algorithms exist. However, there are FPT algorithms if all
constraints are UI (and with no restrictions on authorizations). To
3We will formally define a constraint later in this section.
4Set ρ to be the non-adjacency relation in the input graph.
5For an example of a non-binary WSP SoD constraint, see Constraint 1 in [25, Example
1].
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describe such an algorithm, we will use the notion of a pattern
introduced by Cohen et al. [6] but we will follow the definition of
patterns from Crampton et al. [11].

A pattern is a partition p = {S1, . . . , Sp } of S into non-empty
subsets S1, . . . , Sp (S1 ∪ · · · ∪ Sp = S and Si ∩ Sj = ∅ for every
i , j) called blocks. We will denote the set of all patterns of S by
P (S ). For example, if S = {s1, s2, s3} then P (S ) = {p1,p2,p3,p4,p5},
where p1 = {{s1}, {s2}, {s3}} (every block of p1 is a singleton), p2 =
{{s1}, {s2, s3}}, p3 = {{s2}, {s1, s3}}, p4 = {{s3}, {s1, s2}} and p5 =
{{s1, s2, s3}} (p5 has only one block).

The pattern p of a plan π is a partition of S into blocks of steps
such that all the steps in a block are assigned the same user but steps
in different blocks are assigned different users. For example, the
plan (1) has pattern p = {{s1, s3}, {s2}, {s4}, {s5}, {s6}}. The number
of blocks in p will be denoted by |p |. By the definition of a UI
constraint, a pair π ′,π ′′ of plans with the same pattern either both
satisfy a UI constraint c or both violate it [6]. Thus, it suffices to
know the pattern of a plan π (without knowing π itself) to decide
whether a UI constraint c is satisfied by π or not and we can say
whether a pattern p of S satisfies a UI constraint c (meaning that
either all plans with pattern p satisfy c or none do). Thus, we have
the following observation:

Remark 2. To decide whether a WSP instance (S,U ,C,A) with
only UI constraints has an eligible plan, it suffices to go over all
patterns of S and check whether there is a pattern that satisfies all
constraints in C (we call such a pattern eligible).

Recall that not every eligible plan is valid as authorizations A
have to be satisfied, too. Following Karapetyan et al. [24], to decide
whether there exists a valid plan with an eligible pattern p, we
construct a bipartite graph Gp with partite sets p (where every
vertex is a block of p) and U such that bu ∈ E (Gp ) (b is a block
in p and u ∈ U ) if and only if u ∈ A(s ) for every s ∈ b. Observe
that a plan with pattern p is authorized if and only ifGp contains a
matchingM ′ saturating p, i.e. for every vertex (block) b ∈ p there is
an edge inM ′ incident to b [24]. Since k ≤ n, this means that a plan
with pattern p is authorized if and only if the size of a maximum
matchingM ofGp equals |p |, the number of blocks in p. If |M | = |p |,
an authorized plan π corresponding to M can be constructed as
follows: π (s ) = u if and only if s ∈ b and bu ∈ M [24]. For an
example of graph Gp , see Figure 2.

This leads to a simple WSP algorithm using patterns whose
pseudo-code is given in Algorithm 1, where UNSAT indicates that
the input instance is unsatisfiable. A more sophisticated and much
more efficient in computational experiments pattern-based back-
tracking algorithm was studied by Karapetyan et al. [24].

Note that |P (S ) |, i.e., the number of partitions of a set of size k ,
equals the kth Bell number6 Bk ≤ k! = O (2k logk ). Now it is not
hard to see that the running time of Algorithm 1 is O∗ (2k logk ).
More advanced algorithms in [6, 24] for the WSP with only UI
constraints are also of running time O∗ (2k logk ). In fact, the time
O∗ (2k logk ) is highly likely to be optimal: Cohen et al. [6] proved
that unless the Exponential Time Hypothesis (ETH) fails, there
is no algorithm of running time O∗ (2o (k logk ) ) for the WSP with
UI constraints; Gutin and Wahlström [19] showed that unless the

6All logarithms in this paper are of base 2.

{s1, s3}

{s2}

{s4}

{s5}

{s6}

u1

u2

u3

u4

u5

u6

u7

u8

Figure 2: GraphGp constructed for the example given in Sec-
tion 1. The authorisations in this example are as follows:
A(s1) = {u1,u2},A(s2) = {u2,u3},A(s3) = {u1,u3},A(s4) = {u3,u4},
A(s5) = {u3,u4,u5,u8} and A(s6) = {u5,u6,u7}. The pattern
is {{s1, s3} , {s2} , {s4} , {s5} , {s6}}. The matching shown in bold
lines corresponds to the valid plan (1): π (s1) = π (s3) = u1,
π (s2) = u2, π (s4) = u4, π (s5) = u3, π (s6) = u5.

Algorithm 1: Pattern Basic Algorithm
input :WSP instanceW = (S,U ,C,A)
output :Valid plan π or UNSAT

1 for p ∈ P (S ) do
2 from A compute Gp ;
3 compute a maximum matchingM in Gp ;
4 if p is eligible and |M | = |p | then
5 return plan π corresponding toM ;
6 else
7 return UNSAT

Strong ETH fails, there is no algorithm of running time O∗ (ck logk )
for any constant c < 2 for the WSP with UI constraints only.7

4 WSP WITH CONTEXT-DEPENDENT
AUTHORIZATIONS AND CONSTRAINT
BRANCHING FACTOR

While authorizationsA in the WSP defined above are fixed, we may
expect more expressibility from the WSP if A is not fixed. A careful
consideration of the authorization part of Algorithm 1 shows that
the algorithmmay remain FPT if we introduce the following context-
dependent authorizations (CDAs) A = {Ap : p ∈ P (S )}. Here Ap

is a “disjunctive" set of authorization functions {A(p )
1 , . . . ,A

(p )
dp
}

(dp = |Ap | and each A
(p )
i maps S to 2U ). We will call Ap a p-

authorization family and A an authorization family. A pattern p is

7The ETH claims that 3-SAT with n variables cannot be solved in time O (2o (n ) ) [21].
The Strong ETH claims that SAT with n variables cannot be solved in timeO (cn ) for
any c < 2 [22]. Note that both ETH and Strong ETH are conjectures.
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Algorithm 2: CDA Basic Algorithm
input :WSP instanceW = (S,U ,C,A), where

Ap =
{
A
(p )
1 , . . . ,A

(p )
dp

}
for each p ∈ P (S ).

output :Valid plan π or UNSAT
1 for p ∈ P (S ) and i ∈ [dp ] do
2 from A

(p )
i compute Gp,i ;

3 compute a maximum matchingM in Gp,i ;
4 if p is eligible and |M | = |p | then
5 return plan π corresponding toM ;
6 else
7 return UNSAT

authorized for a WSP instance (S,U ,C,A) if it is authorized for at
least one of the authorization functions in Ap .

As an example, consider the instance of WSP given in Figure 1.
Recall that it has S = {s1, . . . , s6}, U = {u1, . . . ,u8}, and five con-
straints

(s1, s2,,), (s1, s4,,), (s3, s5,,), (s4, s6,,), (s1, s3,=).

Let us modify the WSP instance by letting A = {Ap : p ∈ P (S )},
where Ap = {A

(p )
i : i = 1, 2} for each p ∈ P (S ) as follows:

A
(p )
1 (s2) = {u2}

A
(p )
1 (s6) = {u5,u6}

A
(p )
1 (si ) = U for i = 1, 3, 4, 5

A
(p )
2 (s2) = {u3}

A
(p )
2 (s6) = {u5,u6,u7}

A
(p )
2 (si ) = U for i = 1, 3, 4, 5

These CDAs describe the following logic. If user u2 is assigned
to approve purchase order (step s2) then only users u5 and u6 are
allowed to approve payment (step s6); however if useru3 is assigned
to approve purchase order, user u7 is also allowed to approve pay-
ment. It is not hard to see that plan (1) satisfies A(p )

1 but does not
satisfy A(p )

2 . Since (1) satisfies at least one authorization family, it
is a valid plan for our modified instance.

Consider Algorithm 2, which is a straightforward modification of
Algorithm 1, whereGp,i is the bipartite graph corresponding to the
authorization function A

(p )
i . It is not hard to see that Algorithm 2

still has the running time O∗ (2k logk ) ifAp is of polynomial size in
bothn and k for each patternp. If we allow the size of eachAp to be
bounded by O (д(k )nrp ),where д is a computable function of k only
and rp is an absolute constant, then the modified basic algorithm
will still be FPT (of running time O∗ (д(k )2k logk )). To distinguish
the WSP introduced earlier in the paper and its generalization with
CDAs, we will denote the latter by WSP-CDA.

While the WSP-CDA seems to be of interest in its own right,
we will show below that its use will allow us to absorb all non-UI
constraints into CDAs. Below we will define the branching factor

of a constraint. Our absorption is efficient for constraints of small
branching factor, especially those of branching factor 1. In fact,
constraints of branching factor 1 are direct generalizations of UI
constraints, see Proposition 4.2 below.

Let

A ′ =
{
A ′p : p ∈ P (S )

}
and A ′′ =

{
A ′′p : p ∈ P (S )

}

be a pair of authorization families, where each

A ′p =
{
A′p,1, . . . ,A

′
p,d ′p

}
and A ′′p =

{
A′′p,1, . . . ,A

′′
p,d ′′p

}
is a p-authorization family. Then the intersection A := A ′ ∩ A ′′ is
an authorization family such that

Ap =
{
A′p,i ∩A

′′
p, j : i ∈ [d

′
p ], j ∈ [d

′′
p ]

}
,

where each A′p,i ∩A
′′
p, j is an athorization function such that

A′p,i ∩A
′′
p, j (s ) := A′p,i (s ) ∩A

′′
p, j (s ).

A pair (S,U ,C ′,A ′) and (S,U ,C ′′,A ′′) of WSP-CDA instances
are called plan-equivalent if for every plan π : S → U , π is valid for
one of them if and only if it is valid for the other.

A constraint c is calledm-branching if there is an authorization
family A (c ) =

{
A

(c )
p : p ∈ P (S )

}
, where each

A
(c )
p =

{
A
(c )
p,1, . . . ,A

(c )
p,mp

}
is ap-authorization family withmp ≤ m, such that everyWSP-CDA
instance (S,U ,C,A) with c ∈ C is plan-equivalent to theWSP-CDA
instance (S,U ,C \ {c},A ∩ A (c ) ). We call A (c ) an authorization
family of c . Letm(c,A (c ) ) := maxp∈P (S )mp . The branching fac-
torm(c ) of c is the minimum ofm(c,A (c ) ) over all authorization
families A (c ) of c .We have the following:

Proposition 4.1. Every constraint c ism-branching for somem.

Proof. ConsiderA (c )
p =

{
A
(c )
p,π : π ∈ Πp

}
,where Πp is the set

of all plans with pattern p and A(c )
p,π (s ) = π (s ) for every s ∈ S .We

can setm = maxp∈P (S ) |A
(c )
p |. □

The above proposition shows that every WSP constraint, even
if it is a non-UI constraint, can be absorbed into CDAs. For some
WSP constraints, though, the branching factor will be impractically
large.

Let us consider examples of a constraint of branching factor 1
and a constraint of branching factorm ≥ 2. Further examples of
CDA constraints are given in Section 5.2.

Example 1. (Type 1 CDA constraint) In the following constraint
c , let T ⊆ S be such that if at most h users are assigned to perform
steps of T , then these users have to be of certain high qualification
and/or security clearance, i.e., they have to belong to a set X ⊂ U .

We can define a p-authorization family for c as follows: A (c )
p ={

A
(c )
p

}
such that for every s ∈ S,A(c )

p (s ) = X if p has at most h blocks

covering T and A(c )
p (s ) = ∅, otherwise. Note thatm(c ) = 1, but c is

not UI (see Proposition 4.2). Indeed, already for a set X of size 1, c has
dependence on users.
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Example 2. (Type 2 CDA constraint) This constraint c is a gen-
eralization of Constraint 2 in [25, Example 1], where |T | = 2. There
are d departments whose users are allowed to perform steps inT ⊆ S .
However, c requires that users of only one department are allowed to
perform all steps in T . LetUi be the users of Department i , 1 ≤ i ≤ d
such thatUi ∩Uj = ∅ for every 1 ≤ i < j ≤ d .

We can define a p-authorization family for c as follows:

A
(c )
p =

{
A
(c )
p,1, . . . ,A

(c )
p,d

}
,

where for j ∈ [d], A(c )
p, j (t ) = Uj for all t ∈ T and A(c )

p, j (s ) = U for all
s ∈ S \T . Thus,m(c ) ≤ d .

The next result shows that constraints of branching factor 1
generalize UI constraints. This follows from Proposition 4.2 and
the fact that type 1 CDA constraints are non-UI constraints of
branching factor 1.

Proposition 4.2. Every UI constraint is of branching factor 1.

Proof. Let c be a UI constraint and let Pc be the set of patterns in
P (S ) which satisfy c . By Remark 2, we can define a p-authorization
family for c as follows: A (c )

p =

{
A
(c )
p

}
, where for every s ∈ S , we

have A(c )
p (s ) = U if p ∈ Pc and A

(c )
p (s ) = ∅, otherwise. □

For the purpose of building an algorithm for WSP-CDA, we can
interpretm-branching constraints as follows. We will say that a
constraint c is absorbed intoA, i.e., c is removed fromC at the cost
of replacing A by A ∩ A (c ) . The size of A ∩ A (c ) will depend
on the branching factor of c, the best case beingm(c ) = 1. Since
(S,U ,C \ {c},A∩A (c ) ) is a WSP-CDA instance, if (S,U ,C,A) has
more than one constraint, we can similarly absorb all of them into
A one by one. Algorithm 2 shows that there is no need to absorb
UI constraints and so our absorption approach may be efficient if
both the number of non-UI constraints and their branching factors
are relatively small. We will formalise this remark as follows.

Theorem 4.3. LetW = (S,U ,C,A) be a WSP-CDA instance in
which all but ℓ constraints are UI and the ℓ constraints are of branch-
ing factor at mostm. ThenW can be solved in time O∗ (mℓ2k logk ).

Proof. Let eachp-authorization familyAp ofW contain at most
d authorizations functions for everyp ∈ P (S ). Let us first absorb the
ℓ non-UI constraints one by one. The resulting WSP-CDA instance
W ′ will have each p-authorization family with at most dmℓ autho-
rization functions. Thus, the running time to absorb all non-UI con-
straints will be O∗ (ℓdmℓ ) = O∗ (mℓ ). Now we can apply Algorithm
2 toW ′. The running time of Algorithm 2 will be O∗ (mℓ2k logk ).
Hence, the total running time will be O∗ (mℓ2k logk ). □

Corollary 4.4. LetW = (S,U ,C,A) be a WSP-CDA instance
in which all but ℓ constraints are UI and the ℓ constraints are of
branching factor at mostm.We have the following:

(1) If ℓ andm are computable functions of k only, thenW can be
solved in FPT time.

(2) If eitherm = 1 or ℓ andm are constants, thenW can be solved
in time O∗ (2k logk ).

(3) Consider constraints ci, j , 1 ≤ j < i ≤ k defined in Remark 1.
Unless FPT = W [1], there is no computable function h of k
only such thatm(ci, j ) ≤ h(k ) for any 1 ≤ j < i ≤ k .

Proof. (1) and (2) immediately follow from Theorem 4.3. To
prove (3), suppose that there is computable function h of k only
such that m(ci, j ) ≤ h(k ) for some 1 ≤ j < i ≤ k . By symmetry
of constraints ci, j , we havem(ci, j ) ≤ h(k ) for all 1 ≤ j < i ≤ k .

Consider theWSPwith S =
{
s1, . . . , sk

}
,C =

{
ci, j : 1 ≤ j < i ≤ k

}

and A(si ) = U for every i = 1, . . . ,k . Note that ℓ = |C | =
(k
2
)
. By

(1), the WSP is FPT. However, by Remark 1 the WSP is W[1]-hard.
If there is no contradiction, FPT must be equal to W[1]. □

5 FURTHER EXAMPLES AND BENCHMARK
INSTANCES

For our computational experiments, we developed a WSP-CDA
pseudo-random instance generator. It is based on the WSP-UI
generator described in [23, 24]. The original generator produces
users with random uniformly distributed authorizations and user-
independent constraints of three types: not-equals, requiring that
two steps are assigned different users; at-least-3-of-5, requiring that
at least three distinct users are assigned the five-step scope; and
at-most-3-of-5, requiring that at most three distinct users are as-
signed the five-step scope. The constraints are produced uniformly
at random. For more details refer to [24].

Our WSP-CDA generator extends the WSP-UI generator by
adding CDA constraints of several types, specifically the two con-
straints described above (1 and 2), and the three constraints de-
scribed in Section 5.2. The parameters of each benchmark instance
are discussed in Section 5.3.
5.1 Parameters for Type 1 and 2 CDA

Constraints
When generating Type 1 CDA constraints, we randomly choose
scope T ⊂ S of size 5, the number h is set to 2 and we randomly
choose 10 users for the set X ⊂ U .

When generating Type 2 CDA constraints, we randomly choose
scope T ⊂ S of size 3, the number of teams is fixed to 3 and each
team consists of 10 randomly chosen users (we guarantee that each
user belongs to at most one team).

5.2 Further Examples of CDA Constraints
In this section, we consider three more constraints and describe
their branching families, which we believe to be optimal, i.e., corre-
sponding to the branching factor. However, we have no optimality
proofs.

Example 3. (Type 3 CDA constraint) Let T ⊆ S and let X be a
non-empty set of users. The constraint c requires that at least one step
in T is performed by a user from X , e.g., to ensure that at least one
step in a subflow is overseen by a senior member of staff.

A p-authorization family of c can be written as follows, where
T = {s1, . . . , st } . For each p ∈ P (S ), let

A
(c )
p =

{
A
(c )
p,1, . . . ,A

(c )
p,t

}
,
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where for j ∈ {1, . . . , t } , A(c )
p, j (sj ) = X and

A
(c )
p, j (si ) = U for i ∈ {1, . . . ,k } \ {j} .

Thus,m(c ) ≤ t .

When generating Type 3 CDA constraints, we randomly choose
the scopeT of size 5 and randomly choose the set of users X of size
10.

Example 4. (Type 4 CDA constraint) This constraint c is defined
as follows. Let s1 and s2 be two distinct steps, and X ⊊ U be a set of
users. Constraint c requires that only the users X are allowed to be
assigned both steps within a workflow. This can be useful to ensure
that only most trusted users can perform both steps.

A p-authorization family of c can be written as follows. For each

p ∈ P (S ) such that (s1, s2,=) holds, let A
(c )
p =

{
A
(c )
p

}
, where

A
(c )
p (s1) = X ,

A
(c )
p (s2) = X ,

A
(c )
p (si ) = U for 3 ≤ i ≤ k .

For each p ∈ P (S ) such that (s1, s2,,) holds, let A
(c )
p =

{
A
(c )
p

}
,

where

A
(c )
p (si ) = U for 1 ≤ i ≤ k .

Thus,m(c ) = 1. Note that c is not a UI constraint.
When generating Type 4 CDA constraints, we randomly select

distinct steps s1 and s2 and the set X of size 5.

Example 5. (Type 5 CDA constraint) In this constraint c , if an
employee from a defence department is assigned s1, then s2 (a signa-
ture step) must be assigned to someone from the security department.
Let U1 be the set of users in the defence department, and let U2 be the
set of users in the security department. We assume thatU1 ∩U2 = ∅.

Let p ∈ P (S ). A p-authorization family of c can be written as

follows. Let A (c )
p =

{
A
(c )
p,1,A

(c )
p,2

}
, where

A
(c )
p,1 (s1) = U1,

A
(c )
p,1 (s2) = U2,

A
(c )
p,1 (sj ) = U for 3 ≤ j ≤ k,

A
(c )
p,2 (s1) = U \U1,

A
(c )
p,2 (sj ) = U for 2 ≤ j ≤ k .

Thus,m(c ) ≤ 2.
When generating Type 5 CDA constraints, we randomly choose

distinct steps s1 and s2 and sets of usersU1 andU2 such thatU1 ∩
U2 = ∅ and |U1 | = 100 and |U2 | = 10.

5.3 Instance Generator Parameters
Following [24], we choose to include only phase-transition in-
stances into our benchmark. Phase-transition instances are in-
stances at the boundary between under-subscribed and over-subscribed
regions. These are typically the hardest to solve instances, and are
most suitable for empirical evaluation of the average running time.

To illustrate phase transition when the number of constraints
is varied, we plotted the running time and the probability of an in-
stance being satisfiable in Figure 3. We chose to use only the Type 5
CDA constraints, and we vary the number of these constraints
in a wide range. All other parameters are fixed; k = 45. For each
combination of parameters, 100 random instances are generated
and then the median running time is reported.

0

200

400

M
ed
ia
n
ru
nn

in
g
tim

e,
se
c

0 20 40 60 80 100
0

20

40

60

80

100

Number of Type 5 CDA constraints

Sa
tis
fia

bl
e,
%

Figure 3: Solution time (solid black line) and satisfiability
probability (red dashed line) as they change with the num-
ber of Type 5 CDA constraints.

In this experiment we observe that if the number of Type 5 CDA
constraints is low then the instances are very likely to be satisfiable,
with multiple solutions, and finding one is relatively easy. On the
other end we see over-subscribed instances, with the satisfiability
probability being very low, and proving the unsatisfiability is also
relatively easy due to intensive propagation. The hardest instances
are in between, when the satisfiability probability is close to 50%.

This shows the importance of selecting phase-transition in-
stances; without appropriate analysis, we would likely choose
under- or over-subscribed instances that are easy to solve and
our conclusions regarding the performance of the solution methods
would be premature.

To generate the benchmark instances, we used the following
parameters for our instance generator. The number of users was
set to n = 10k , the number of not-equals, at-least and at-most
constraints was set to k each. The number of CDA constraints was
chosen individually for each instance, to ensure that the probability
of such an instance being satisfiable is close to 50%, i.e. that the
instance is in the phase transition region. The specific values we
used are reported in Table 1.

Each combination of parameters is assigned a name based on
the parameters, and for each of such combinations we generated
100 random instances, by using different random number generator
seed values.

6 SOLUTION METHODS
To fully exploit the FPT properties of WSP-CDA, our first choice
would be a bespoke algorithm. However, it was shown in [24] that
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CDA constraint type

Instance k T. 1 T. 2 T. 3 T. 4 T. 5

wsp-cda-30-1 30 89 0 0 0 0
wsp-cda-30-2 30 0 1 0 0 0
wsp-cda-30-3 30 0 0 3 0 0
wsp-cda-30-4 30 0 0 0 23 0
wsp-cda-30-5 30 0 0 0 0 14

wsp-cda-35-1 35 130 0 0 0 0
wsp-cda-35-2 35 0 1 0 0 0
wsp-cda-35-3 35 0 0 4 0 0
wsp-cda-35-4 35 0 0 0 31 0
wsp-cda-35-5 35 0 0 0 0 22

wsp-cda-40-1 40 125 0 0 0 0
wsp-cda-40-2 40 0 1 0 0 0
wsp-cda-40-3 40 0 0 4 0 0
wsp-cda-40-4 40 0 0 0 31 0
wsp-cda-40-5 40 0 0 0 0 25

wsp-cda-45-1 45 166 0 0 0 0
wsp-cda-45-2 45 0 1 0 0 0
wsp-cda-45-3 45 0 0 4 0 0
wsp-cda-45-4 45 0 0 0 43 0
wsp-cda-45-5 45 0 0 0 0 34

Table 1: This table gives the number of CDA constraints of
different types used in the benchmark instances.

WSP with UI constraints can be efficiently solved using general-
purpose solvers. Software solutions based on general-purpose solvers
tend to be cheaper to develop and maintain and thus strongly pre-
ferred by practitioners. In this paper, we focus on solvingWSP-CDA
with Pseudo-Boolean (PB) solver to verify that this approach works
well for WSP-CDA too. We use the PBPB formulation from [24] as
a base while extending it with encodings of the CDA constraints.
We produce two PB encodings of each CDA constraint:

‘CDA’ is based on the CDA concept, that is it exploits the M
variables (see formulation (2)–(14) for details) whenever the
authorizations depend on the pattern and introduces auxil-
iary variables to choose between the authorization functions
in the family;

‘Naive’ is based on straightforward encodings of each con-
straint.

6.1 PB Formulation for WSP with UI
constraints

To make the paper self-contained, we give here the PBPB formula-
tion from [24].

Ms1,s2 = Ms2,s1 ∀s1 , s2 ∈ S, (2)
Ms,s = 1 ∀s ∈ S, (3)
Ms1,s2 ≥ Ms1,s3 +Ms2,s3 − 1 ∀s1 , s2 , s3 ∈ S, (4)
Ms1,s2 ≤ Ms2,s3 −Ms1,s3 + 1 ∀s1 , s2 , s3 ∈ S, (5)∑
u ∈U

xs,u = 1 ∀s ∈ S, (6)

xs1,u − xs2,u ≤ 1 −Ms1,s2 ∀s1 , s2 ∈ S and ∀u ∈ U , (7)
xs1,u + xs2,u ≤ 1 +Ms1,s2 ∀s1 , s2 ∈ S and ∀u ∈ U , (8)

xs,u = 0 ∀s ∈ S and ∀u ∈ U \A−1 (s ), (9)
Ms1,s2 = 0 ∀ not-equals constr. {s1, s2}, (10)∑
s1<s2∈T

Ms1,s2 ≥ 2 ∀ at-most constr. with scope T ,

(11)∑
s1<s2∈T

Ms1,s2 ≤ 3 ∀ at-least constr. with scope T ,

(12)
Ms1,s2 ∈ {0, 1} ∀s1, s2 ∈ S, (13)
xs,u ∈ {0, 1} ∀s ∈ S and ∀u ∈ U . (14)

The xs,u variables encode the assignment of users to steps; if
xs,u = 1 then user u is assigned step s . The Ms1,s2 are auxiliary
variables;Ms1,s2 = 1 if and only if steps s1 and s2 are assigned the
same user. While not compulsory, theM variables allow compact
and efficient encoding of UI constraints as they capture the concept
of patterns.

It was shown in [24] that any UI constraint can be formulated
using theM-variables only. Clearly, to encode the CDA constraints,
one may need the x-variables. Below we give Naive and CDA-based
formulations of each of the five CDA constraints introduced above.

6.2 Type 1 CDA Constraint Formulation
Recall that Type 1 CDA constraint requires that, if the number of
users assigned steps T ⊂ S is at most h, then these users have to be
from set X ⊊ U .

Our ‘CDA’ formulation of such a constraint depends on h and
|T |; below we give a formulation for h = 2 and scope of size 5:

7z ≤ 10 −
∑

s1<s2∈T
Ms1,s2 (15)

xs,u ≤ z ∀u ∈ U \ X , ∀s ∈ T (16)
z ∈ {0, 1} (17)

Here z is forced to 0 if the number of users assigned to the scope
T is at most 2, see (15). Indeed, if the number of users assigned to
T is one or two, the number of pairs of steps s1, s2 assigned equal
users has to be at least 4, see [24]. If z is zero, the users not from X
are prohibited from performing any step in T , see (16).
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Our ‘Naive’ formulation of such a constraint is based on counting
the number of users assigned to the scope:

yu ≤
∑
s ∈T

xs,u ∀u ∈ U , (18)

|T |(z − 1) + h + 1 ≤
∑
u′∈U

yu′ (19)

xs,u ≤ z ∀u ∈ U \ X , ∀s ∈ T (20)
z ∈ {0, 1} (21)
yu ∈ {0, 1} ∀u ∈ U (22)

Variable yu is forced to 0 if none of the steps in T is assigned user
u, see (18). Then z is forced to 0 if the number of users assigned to
T is at most h, see (19). Finally, users other than X are prohibited
from being assigned to any s ∈ T if z is 0, see (20).

6.3 Type 2 CDA Constraint Formulation
Recall that the Type 2 CDA constraint requires that all the users
assigned to steps T ⊆ S should be from exactly one department. In
this constraint, we are given a set of stepsT ⊆ S and d departments
U1,U2, . . . ,Ud ⊂ U such thatUi ∩Uj = ∅ for all i , j.

Our ‘CDA’ formulation of such a constraint is as follows:

xs,u = 0 ∀s ∈ T and ∀u <
d⋃
i=1

Ui (23)

xs,u ≤ di ∀u ∈ Ui and ∀i ∈ {1, 2, . . . ,d } and ∀s ∈ T (24)
d∑
i=1

di = 1 (25)

di ∈ {0, 1} ∀i ∈ {1, 2, . . . ,d } (26)

Here variable di takes 1 if and only if users from department i are
assigned to stepsT . This is enforced by (24). Constraint (25) ensures
that exactly one department is selected. Constraints (23) are needed
to make sure that none of the steps are assigned users from outside
the listed departments.

Our ‘Naive’ formulation of such a constraint is as follows:

xs ′,u ≤ 1 −
∑

u′∈U −i

xs,u′ ∀s ′ ∈ T \ {s} , ∀u ∈ Ui , ∀i (27)

xs ′,u = 0 ∀s ′ ∈ T and ∀u <
d⋃
i=1

Ui (28)

where s ∈ T is a step in T selected arbitrarily and

U −i =
*.
,

d⋃
j=1

Uj
+/
-
\Ui ,

i.e. the set of users from all the departments except department i .
The point of (27) is that if a member of team i is assigned to step s
then no users from any other teams are allowed to perform steps
in T . Constraints (28) are to ensure that no users from outside the
listed departments are assigned any of the steps in T .

6.4 Type 3 CDA Constraint Formulation
Recall that Type 3 CDA constraint requires that at least one of
steps T is performed by a user from X ⊊ U . We are given T =
{s1, s2, . . . , st } ⊆ S and a non-empty set of users X ⊊ U .

Our ‘CDA’ formulation of such a constraint introduces variables
ci ∈ {0, 1} for i = 1, 2, . . . , t that will control which of the two
authorization families is used.

xsi ,u ≤ 1 − ci ∀u ∈ U \ X , (29)
t∑
i=1

ci = 1 (30)

ci ∈ {0, 1} i = 1, 2, . . . , t . (31)

Our ‘Naive’ formulation of this constraint is as follows:∑
s ∈T

∑
u ∈X

xs,u ≥ 1. (32)

6.5 Type 4 CDA Constraint Formulation
Recall that Type 4 CDA constraint requires that only the users
X ⊊ U are actually allowed to be assigned both steps s1, s2 ∈ S at
the same time.

Our ‘CDA’ formulation of such a constraint uses theM variables
to distinguish between different patterns:

xs1,u ≤ 1 −Ms1,s2 ∀u ∈ U \ X , (33)
xs2,u ≤ 1 −Ms1,s2 ∀u ∈ U \ X . (34)

When steps s1 and s2 are assigned the same user, Ms1,s2 = 1 and
this forces xs1,u = xs1,u = 0 for every u < X .

The ‘Naive’ formulation works with the x-variables prohibiting
any user not from X to perform both s1 and s2 at the same time:

xs1,u + xs2,u ≤ 1 ∀u ∈ U \ X . (35)

6.6 Type 5 CDA Constraint Formulation
Recall that Type 5 CDA constraint requires that, if a user from
department 1 is assigned step s1, then s2 has to be assigned to
someone from department 2. LetU1 ⊊ U be the set of users in the
department 1, and U2 ⊊ U be the set of users in department 2. We
assume thatU1 ∩U2 = ∅.

Our ‘CDA’ formulation is as follows:

xs1,u ≤ i ∀u ∈ U1, (36)∑
u ∈U2

xs2,u ≥ i, (37)

i ∈ {0, 1} . (38)

It makes use of an auxiliary variable i . Constraint (37) forces i to 0
unless s2 is assigned to someone from department 2. If i = 0 then
no one from department 1 can be assigned to s1.

Our ‘Naive’ formulation encodes the constraint in one straight-
forward inequality: ∑

u ∈U1

xs1,u ≤
∑
u ∈U2

xs2,u . (39)

7 EXPERIMENTAL RESULTS
We conducted a series of computational experiments to establish
the practical difficulty of the WSP-CDA and the effectiveness of the
two formulations discussed in the previous section.

We used the SAT4J solver [2] with our Pseudo-Boolean formula-
tions. Our experimental machine is based on two Intel Xeon E5-2690
(2.6 GHz) CPUs, 128 GB RAM. Each solver was restricted to using
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one CPU core, and we never ran more than one solver per physical
core.

The results are reported in Table 2. Each running time is averaged
over 100 runs, one run per instance (recall that we generated 100
instances for each combination of instance parameters). The lower
running time in a row is underlined. Note that we provide only
the lower bound for the Naive formulation solution time for the
‘wsp-cda-45-1’ instances as we could not complete the experiment.

Instances Naive formulation, sec CDA formulation, sec

wsp-cda-30-1 48.8 10.8
wsp-cda-30-2 4.4 4.4
wsp-cda-30-3 8.3 9.3
wsp-cda-30-4 6.8 5.5
wsp-cda-30-5 7.7 7.9

wsp-cda-35-1 514.2 52.6
wsp-cda-35-2 6.8 6.6
wsp-cda-35-3 29.8 30.9
wsp-cda-35-4 16.0 11.6
wsp-cda-35-5 25.3 26.2

wsp-cda-40-1 1711.5 189.9
wsp-cda-40-2 12.7 12.6
wsp-cda-40-3 94.0 91.6
wsp-cda-40-4 47.3 30.9
wsp-cda-40-5 94.1 84.0

wsp-cda-45-1 > 10000.0 2370.7
wsp-cda-45-2 42.4 39.4
wsp-cda-45-3 746.2 739.0
wsp-cda-45-4 206.8 144.3
wsp-cda-45-5 699.7 622.7

Table 2: Results of computational experiments with the
benchmark instances.

We conclude that the WSP-CDA benchmark instances can be
efficiently solved even for the large instances with k = 45 and
n = 450. We further observe that the ‘CDA’ formulations are, overall,
more efficient. Specifically, the ‘CDA’ formulation is significantly
more efficient for Type 1 CDA constraints and considerably more
efficient for Type 4 CDA constraints. The ‘CDA’ formulation also
outperforms the ‘Naive’ formulation on the large instances with
Type 5 CDA constraints. In all other cases, the two formulations
perform very similarly.

Using the results reported in Table 2, we also analyse how the
solution times vary with the size of the problem instance. Figure 4
shows how the average running time of the ‘CDA’ formulation
changes with k , for each constraint type.

Observe that the curves are slightly non-linear. Given the loga-
rithmic scale of the vertical axis, this indicates that the running time
grows a little quicker than exponentially. This is consistent with
the other results reported in the literature showing that the average
running times of FPT algorithms for WSP scale approximately as
kconst·k .

To compare the practical difficulty of the CDA constraints, we
also show the solution times for instances with UI constraints only.
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Figure 4: Average solution times as they vary with the size
of the problem k . Each curve corresponds to benchmark in-
stances with a certain type of the CDA constraints.

To enable fair comparison, we use instances with the number of
not-equals constraints adjusted to achieve around 50% satisfiability
probability (i.e., phase transition), exactly as in [24]. It follows from
our experiments that CDA constraints do not significantly affect
the solution times; some instances are harder than the instances
with UI constraints only while others are easier. This is well-aligned
with the theoretical findings given in Section 4; the WSP remains
tractable with this extended family of constraints.

8 CONCLUSIONS
While the previous research on the WSP was mainly focused on
the family of UI constraints or some of its representatives, in this
paper, we consider non-UI constraints. We generalise the concept of
authorizations by making them context-dependent and show how
to absorb non-UI constraints into context-dependent authorizations.
This allows us to extend algorithms developed for WSP with UI
constraints to arbitrary constraints. We carry out computational
experiments with a general purpose Pseudo-Boolean solver, SAT4J,
to test practicality of solving WSP with UI and non-UI constraints
using our approach.

It would be interesting to characterize non-UI constraints whose
branching factor is bounded from above by a constant, in particular,
constraints of branching factor 1. It would also be interesting to
carry out computational experiments with other types of general
purpose solvers, in particular, with CSP solvers, as well as with
other types of non-UI constraints.
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