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Matching with single-peaked preferences.

Sophie Bade1

Abstract

The crawler is a new efficient, strategyproof, and individually rational mecha-

nism for housing markets with single-peaked preferences. In a housing market

each agent is endowed with exactly one house. These houses are ordered -

by their size for example - and all agents preferences are single-peaked with

respect to that order. The crawler screens agents in order of their houses’

sizes, starting with the smallest. The first agent who does not want to move

to a larger house is matched with his most preferred house. Agents who cur-

rently occupy houses sized between this agent’s original and chosen houses

“crawl” to the next largest unmatched house. This process is repeated until

all agents are matched. The crawler is easier to understand than Gale’s top

trading cycles and can be extended to allow for indifferences.

Keywords: Matching, Single-Peaked Preferences, Gale’s top trading cycles,
Obvious Strategyproofness.

1. Introduction

Consider a housing market where each agent i in a set {1, . . . , n} is en-

dowed with a house, also called i. Suppose there is some objective linear

order on all houses. Houses could be ordered by their location, so that i < j

means that house i lies to the south of house j. Alternatively houses could

be ordered by their sizes, their energy efficiency, etc. All agents preferences
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are single-peaked with respect to the objective order on houses. If prefer-

ences are single-peaked with respect to the north-south ordering then agents

hope to live as close as possible to their preferred latitude. If size is the

relevant objective order, then each agent has an ideal house size. Such an

agent prefers a house that is a bit smaller (larger) than his ideal house to any

other house that is yet smaller (larger). For ease of presentation I assume

throughout that preferences are single-peaked with respect to house sizes.

A mechanism maps each profile of all agents’ preferences to a matching. A

matching, in turn, is a one-to-one function between agents and houses. The

crawler, a new matching mechanism for the single-peaked domain, determines

matchings by screening all houses in order of their size, starting with the

smallest. Once a house whose current occupant i wants to either stay put or

move to a smaller house is found, the crawler matches this agent i with his

most preferred house. If this house is not the house that agent i occupied

at the beginning of this step, then each occupant of a house sized between

these two “crawls” to the next largest house2. This process is repeated until

all agents are matched.

A mechanism is strategyproof if no agent can ever benefit from misrep-

resenting his preferences. It is efficient if it maps each profile of preferences

to a matching for which there does not exist an alternative matching weakly

preferred by all and strictly by some. It is individually rational if no agent is

ever matched with a house he deems worse than the one he was endowed with.

Theorem 1 shows that the crawler is efficient, strategyproof, and individually

rational.

Without the assumption of single peakedness, exactly one mechanism

satisfies these three criteria: when all linear orders are permitted as prefer-

ences, then Gale’s top trading cycles is the unique efficient, strategyproof,

and individually rational matching mechanism. In Gale’s top trading cycles

each agent points to the owner of his most preferred house. Any agent in

a pointing cycle is matched with the house he points to. The procedure is

repeated with all unmatched agents and the restriction of their preferences

2Fixing any unmatched house i, house j > i is called the “next largest” house, if j

remains unmatched and if any house j′ with i < j′ < j is matched
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to the unmatched houses and the algorithm terminates once a matching is

reached.

While Shapley and Scarf’s [17] and Roth’s [13] results that Gale’s top

trading cycles is efficient, strategyproof, and individually rational also apply

to the domain of single-peaked preferences, Ma’s [10] result that Gale’s top

trading cycles is the only such mechanism, does not. I provide a new proof

of Ma’s [10] result to show how this result depends on richness of the domain

of all linear preferences. Proposition 1 then indeed shows that the crawler

differs from Gale’s top trading cycles.

On the domain of single-peaked preferences the crawler has an advantage

over Gale’s top trading cycles. It has an extensive form implementation

that is - in a well-defined sense - easier to understand than any extensive

form implementation of Gale’s top trading cycles. To define mechanisms

that are more or less easy to understand, consider a strategy for some agent

i in an extensive form mechanism. Arbitrarily fix a history where agent i

moves and that can be reached if i plays the given strategy. This strategy is

obviously dominant following Li [9] if i (weakly) prefers the worst outcome

associated with the continuation of his strategy to the best outcome following

a deviation at the current history (and all later histories). To calculate the

relevant worst (best) payoff the agent considers the most harmful (favorable)

choices by all other agents at all histories following the current one. Li

[9] argues that even cognitively impaired agents or agents who suspect the

designer of fraud never see a reason to deviate from an obviously dominant

strategy. Theorem 3 shows that the crawler can be implemented in obviously

dominant strategies. Conversely, I show that even on the restricted domain

of single-peaked preferences Gale’s top trading cycles cannot be implemented

in obviously dominant strategies.3

In Section 6 I define a variant of the crawler that can be used on a

larger domain of single-peaked preferences where agents may be indifferent

3Li [9] already showed in his Proposition 5 that Gale’s top trading cycles cannot be

implemented in obviously dominant strategies on the domain of all linear preferences. Bade

and Gonczarowski [6] provide a characterization of all efficient mechanisms for housing

markets that can be implemented in obviously dominant strategies.
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between some houses. Theorem 4 shows that this variant inherits the three

crucial properties of the crawler: it is efficient, individually rational and

implementable in obviously dominant strategies.

While, the assumption of single-peaked preferences has a long pedigree in

the social choice literature (see for example Moulin [11]), it is a novel assump-

tion in the matching context. Independently of the present paper Damamme,

Beynier, Chevaleyre, and Maudet [7] also study single-peaked preferences in

the context of a housing market and find that sequences of individually ratio-

nal bilateral swaps always reach the Pareto frontier in such housing markets.

Without the restriction to single-peaked preferences the Pareto frontier can

generally only be reached if larger groups of agents exchange their endow-

ments. So Damamme, Beynier, Chevaleyre, and Maudet [7] and the present

paper propose two different criteria according to which Gale’s top trading

cycles is not the best mechanism on the the domain of single-peaked pref-

erences: some mechanisms require less centralization (Damamme, Beynier,

Chevaleyre, and Maudet [7]) others satisfy more stringent incentive proper-

ties (Theorem 3).

2. Definitions

There is a set of agents N : = {1, . . . , n} and a set of equally many

houses O : = {1, . . . , n}. Each agent i ∈ N is initially endowed with house i.

Each agent i has a transitive and complete preference %i over all houses. A

profile of all agents’ preferences is denoted %. A house j is %i-acceptable

if j %i i. If %i ranks some house j above all houses in some set N ′ ⊂ N , I

write j %i N ′.
Houses are ordered by their sizes and i < j means that i is smaller than

j. Extending this terminology to agents I say that agent i is smaller than

agent j if i < j. The preference %i is single-peaked (with respect to the

order < on all houses) if there exists an i∗ ∈ N such that j %i j′ holds if

either j′ < j ≤ i∗ or j′ > j ≥ i∗. A preference is a linear order if it is

antisymmetric. Arbitrary domains of agent i’s preferences and of preference

profiles are denoted Ωi and Ω: = Ω1 × · · · × Ωn. The domains of all linear

preferences, of all single-peaked preferences and of all linear, single-peaked

5



preferences respectively are Ωl, Ω̂, and Ω̂l = Ωl ∩ Ω̂.4

A a matching is a one-to-one function µ : N → N . A match is a pair

(i, o) of an agent i and a house o. The set of all matchings is M. The

identity id : N → N (with id(i) = i for all i ∈ N) represents the initial

endowment. Each agent i only cares about the house he is matched with: he

prefers matching µ to matching µ′ if and only if µ(i) %i µ′(i). A matching µ is

efficient at % if any matching µ′ that is strictly better than µ for some agent

is strictly worse than µ for a different agent. The same µ is individually

rational at % if µ(i) is %i-acceptable for each i.

A social choice function scf : Ω→Mmaps each profile% in the arbitrary

domain Ω to a matching in M. Any social choice function can be viewed as

a direct revelation mechanism. In such a mechanism, the agents declare their

preferences to the designer who chooses the matching scf(%) given that % is

the profile of stated preferences. The mechanism scf is efficient (individually

rational) if scf(%) is efficient (individually rational) at % for each %∈ Ω. It is

strategyproof if no agent has an incentive to misrepresent his preferences,

so scf(%)(i) %i scf(%′i,%−i)(i) holds for all i,%′i and %.

3. The Crawler

The crawler C : Ω̂l →M is defined via a trading algorithm that screens

agents and houses in ascending order. The smallest agent who wants to

either stay or move to a yet smaller house leaves the mechanism with his

most preferred house as his match. All agents who currently occupy houses

at least as large as this agent’s choice and smaller than the house he vacated

“crawl” to the next largest house. The process is repeated until all agents are

matched. To differentiate houses from agents, a generic house is now denoted

at ot. At Step k the agents in Nk and the houses in Ok remain unmatched.

Initialize: N1 ← N , O1 ← N .

Step k:

4The preference represented by ui(j) = − | j−i | is in Ω̂ but not in Ω̂l since i indifferent

between i + 1 and i− 1. Since any %∈ Ω̂ may have multiple most preferred houses, such

preferences are sometimes called single-plateaued.
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Indexation: Let m : =| Nk |. Index agents and houses such that Nk : =

{i1, . . . , im} and Ok : = {o1, . . . , om} with it < it+1 and ot < ot+1 for all

t ∈ {1, . . . ,m− 1}.

Screening: If ot �it ot+1 holds for some t, let t∗ be the minimal such t. If

not, let t∗ : = m. Say that or is the %it∗ -best house in Ok.

Matching: Let C(%)(it∗) = or.

Updating: Let Nk+1 : = Nk \ {it∗} and Ok+1 : = Ok \ {or}. If Nk+1 = ∅
terminate, otherwise go to Step k + 1.

Exactly one agent, the agent it∗ identified in Screening, is matched at each

step. The Indexation step of the algorithm implicitly defines current occu-

pancies in the sense that Agent it occupies House ot for all t ∈ {1, . . . ,m}. So

at each Step k smaller unmatched agents occupy smaller unmatched houses.

Say Agent it∗ gets matched with a house smaller than the one he currently

occupies, so he gets matched with some or with r < t∗. Agent it∗−1 then

crawls to ot∗ , the houses vacated by it∗ . This crawl frees up house ot∗−1 and

crawling goes on until Agent ir moves into house or+1. Any crawling agent

prefers his new house to the house he occupied at the beginning of this step.

Example 1 Define a profile of preferences% for agents and houses {1, . . . , 7}
with 2 %2 N , 6 %4 N , 3 %6 N , 5 %7 N , and where all other agents want

to move to the largest possible house, so 7 %i N for i = 1, 3, 5. Figure 1

illustrates the crawling process. Each line represents the 7 houses. Houses

are denoted by the top labels, agents by the bottom labels and finalized

matches by boxes.

In the first line each house i is occupied by agent i. Screening all houses

starting with the smallest, Step 1 finds Agent 2 as the smallest agent who

does not want to move to a larger house. Since House 2 is the %2-best house,

Agent 2 is matched with House 2 in Step 1. In Step 2, Agent 6 is the smallest

agent who does not want to move to a larger house. The solid arrow in the

second line illustrates that House 3 is the %6-best house. The dashed arrows,

in the same line, show how Agents 3, 4, and 5 each crawl to the next largest

house. The matches between Agent 2 and House 2 and between Agent 6 and

House 3 are illustrated by the boxes around these pairs. In Step 3 Agent 7 is
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the smallest agent who does not want to move to a larger house. The solid

arrow in the fourth line shows that Agent 7 top-ranks House 5. The dashed

arrows represent Agent 4 and 5’s, respective crawls to the next largest house.

Onwards from the fifth line Agent 7 is boxed with House 5. Steps 4 through

7 match the remaining agents with the house they currently occupy, yielding

the matches (4, 6), (5, 7), (3, 4), and (1, 1). No agent crawls in these steps.

The last line in Figure 1 illustrates C(%).

Theorem 1 The crawler C : Ω̂l → M is a well-defined, efficient, strate-

gyproof, and individually rational mechanism.

Proof Fix a profile %∈ Ω̂l.

At any Step k, Screening finds an agent it∗ ∈ Nk. Since this agent it∗ is the

only agent matched at Step k and since he is matched with C(%)(it∗) ∈ Ok,

an as of yet unmatched house, C(%) is a matching and the crawler is well-

defined.

To see that C(%) is efficient, note that the agent matched in Step 1, is

matched with his most preferred house. The agent matched in Step 2 is then

matched with his most preferred house other than the house matched in Step

1. Proceeding inductively we see that the agent matched at any Step k is

matched with his most preferred house that remains unmatched at Step k,

so that C(%) is efficient.

Theorem 3 shows that C can be implemented in obviously dominant

strategies which implies that it is also strategyproof.

Fix an arbitrary agent i. Say %∗i is such that i is the %∗i -best house. Note

that C(%∗i ,%
′
−i)(i) = i holds for any %′−i. Since C is strategyproof we have

C(%)(i) %i C(%∗i ,%−i)(i) = i and C is individually rational. �

4. Gale’s top trading cycles

When there are at least three agents and three houses then the crawler

differs from Gale’s top trading cycles. Gale’s top trading cycles G : Ω→M
is defined for any domain Ω of linear preferences. To define Gale’s top trading

8



1

1

2

2

3

3

4

4

5

5

6

6

7

7

1

1

2

2

3

3

4

4

5

5

6

6

7

7

1

1

2

2

6

3

3

4

4

5

5

6

7

7

1

1

2

2

6

3

3

4

4

5

5

6

7

7

1

1

2

2

6

3

3

4

7

5

4

6

5

7

1

1

2

2

6

3

3

4

7

5

4

6

5

7

Figure 1: The crawling process
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cycles, say ρ : Nρ → Nρ is a cycle on Nρ ⊂ N if for each i, j ∈ Nρ there

exists some number m such that ρm(i) = j, where ρm is the m-th composition

of ρ. Call the set of agents not in this cycle Nρ : = N \ Nρ. The following

algorithm finds G(%) for any profile %∈ Ω.

Initialize: N1 ← N .

Step k: Let each agent in Nk point to his most preferred house in Nk. Define

a cycle ρ : Nρ → Nρ such that each agent i ∈ Nρ points to house ρ(i) ∈ Nρ.

Match each agent i ∈ Nρ with ρ(i). Let Nk+1 ← Nk \ Nρ. Terminate if

Nk+1 = ∅, otherwise go to Step k + 1.5

The parameter Nk denotes the set of unmatched agents at Step k. Since

each agent i initially owns house i and since a house gets matched if and

only if its owner gets matched, the set Nk is also the set of unmatched

houses at Step k. Say all agents in Nρ get matched in the first step of Gale’s

top trading cycles. Shapley and Scarf [17] and Roth [13] show that G is

efficient, strategyproof, and individually rational on any domain Ω of linear

preferences. Ma [10] shows that G is the unique such mechanism on Ωl the

domain of all linear preferences.

Theorem 2 [Ma [10]] Fix a mechanism M : Ωl → M on the domain of

linear preferences. If M is efficient, strategyproof, and individually rational

then it is Gale’s top trading cycles.

The upcoming proof of Theorem 2 highlights the reason why Theorem 2

does not apply to the single-peaked domain. I show that Theorem 2 applies

to any domain where an agent i who sometimes finds a house j acceptable

may be picky about that house j. A preference %i is picky about j if

j and i are the only two %i-acceptable houses. While Ωl, the domain of

linear preferences, contains all picky preferences, the single-peaked domain

Ω̂l does not. Over the years Svensson [18], Anno [1] and Sethuraman [16]

5While this definition asks for all agents in one cycle to be matched in any given trading

round, the standard definition asks for all cycles in any trading round to be matched. This

difference is not relevant, since any cycle that forms at some round remains a cycle until

it gets matched.
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gave substantially more concise proofs of Theorem 2. My proof combines

their simplifying ideas: Following Svensson [18] I use induction over the

steps of Gale’s algorithm. In line with Sethuraman [16] I directly work with

efficient, strategyproof, and individually rational mechanisms (as opposed to

the core).

Proof Say the cycle ρ forms at Step 1 of G(%∗). Define %′i such that each

i ∈ Nρ is picky about ρ(i). To see M(%∗)(i) = ρ(i) for all i ∈ Nρ I show

M(%′Nρ\S,%
∗
S∪Nρ

)(i) = ρ(i) for all i ∈ Nρ and S ⊂ Nρ.

by induction over l : =| S |. Since M is efficient and individually rational,

M(%′Nρ ,%
∗
Nρ

)(i) = ρ(i) holds for all i ∈ Nρ and the hypothesis holds for

l = 0. Assume the hypothesis up to some l ≥ 0. Fix a set S with | S |= l+ 1

and an agent i ∈ S. Let S ′ : = S \ {i}. Since M is strategyproof, and since

the hypothesis applies to S ′ : = S \ {i} we have

M(%′Nρ\S,%
∗
S∪Nρ

)(i) %∗i M(%′Nρ\S′ ,%
∗
S′∪Nρ

)(i) = ρ(i).

Since ρ forms at Step 1 ofG(%∗), ρ(i) is the%i-best house inN , andM(%′Nρ\S
,%∗

S∪Nρ
)(i) must equal ρ(i) for any i ∈ S. Since M is individually rational

and since ρ : Nρ → Nρ is a cycle M(%′Nρ\S,%
∗
S∪Nρ

)(i) = ρ(i) also holds for

each i ∈ Nρ \ S and the hypothesis holds for all S ⊂ Nρ.

Since only the preferences %∗Nρ of the agents in the cycle ρ matter for the

above argument, M(%∗Nρ ,%Nρ
)(i) = ρ(i) holds for all i ∈ Nρ and all %Nρ

.

So the mechanism M ′ with M ′(%Nρ
)(i) : = M(%∗Nρ ,%Nρ

)(i) for all i ∈ Nρ is

well-defined. Since M is efficient, strategyproof and individually rational M ′

is too. Say that the cycles ρ and ρ′ form in Steps 1 and 2 of G(%∗Nρ ,%Nρ
).

By the arguments in the preceding paragraph, M ′(%Nρ
)(i) = ρ′(i) holds for

each i ∈ Nρ′ . Proceeding inductively we see that M = G. �

As most picky preferences are excluded from the linear domain of single-

peaked preferences Ω̂l, there may be multiple efficient, strategyproof and

individually rational mechanisms M : Ω̂l →M. The next proposition shows

that this is indeed the case: the crawler differs from Gale’s top trading cycles.

Proposition 1 If | N |≥ 3 then the crawler C : Ω̂l →M differs from Gale’s

top trading cycles G : Ω̂l →M.
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Proof Define %∈ Ω̂l such that the ideal houses of Agents 1, 2, and 3

respectively are 3, 1, and 1. If there are any agents i > 3 these agents are

endowed with their ideal house. Step 1 of the crawler C(%) and of Gale’s

top trading cycles G(%) match two different agents (namely Agents 2 and 3)

with House 1. �

The alignment of interests implied by the restriction to single-peaked

preferences allows for a larger set of efficient, strategyproof and individu-

ally rational mechanisms. Clearly the crawler and Gale’s top trading cycles

are not the only such mechanisms: the crawler has a dual mechanism that

screens agents and houses in descending order. Mutatis mutandis all of the

arguments in the present paper also apply to this dual mechanism.

5. Obvious Dominance

Some implementations of strategyproof mechanisms are easier to under-

stand than others. To make this intuitive idea precise, Li [9] defines the con-

cept of “obvious dominance” which distinguishes strategies that are merely

dominant from strategies that can easily be recognized as such. Fix a strat-

egy for an agent in some extensive form game. This strategy is obviously

dominant if the following condition holds at any history where the agent

gets to choose and that can be reached if he follows the given strategy.

The agent’s minimal utility if he continues the strategy given any possible

follow-up choices of all other agents must be at least as high as his max-

imal utility given any collective deviation starting at the present history.

Obvious dominance distinguishes between different extensive form mecha-

nisms that implement the same strategyproof social choice function.6 Li [9]

provides experimental evidence that obviously dominant implementations of

strategyproof mechanisms are indeed easier to understand than alternative

implementations that do not satisfy this criterion.

6Li’s [9] lead example to motivate obvious dominance shows that ascending clock auc-

tions implement second price auction in obviously dominant strategies whereas the corre-

sponding direct revelation mechanism does not.
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Li [9] shows that Gale’s top trading cycles with at least 3 agents cannot

be implemented in obviously dominant strategies. The crawler is simpler

to understand: there is an extensive form mechanism that implements the

crawler in obviously dominant strategies.

An extensive form mechanism M is an extensive game form where a

rooted tree represents the set of histories H. A history is terminal if it

is not a subhistory of any other history. The set of all terminal histories is

Z. The set of possible actions after the nonterminal history h is A(h) : =

{a | (h, a) ∈ H}. The set of players is N . The player function P maps any

nonterminal history h ∈ H \ Z to a player P (h) ∈ N who gets to choose

from all actions A(h) at h.7 Each terminal history h ∈ Z is associated with

a matching µ ∈ M. A behavior Bi for player i is a vector of actions that

specifies a choice a ∈ A(h) for each history h with P (h) = i. The path

Path(B) of a behavior profile B : = B1 × · · · × Bn is the set of all histories

that are reached if all agents follow B. So ∅ ∈ Path(B) and (h, a) ∈ Path(B)

if h ∈ Path(B) and BP (h)(h) = a. The outcome M(B) is associated with the

unique terminal history h ∈ Path(B). A strategy Si for player i maps each

%i∈ Ωi to a behavior Si(%i). A strategy profile S = S1× · · · ×Sn consists of

strategies for all agents.

A strategy Si is obviously dominant (Li [9]) for agent i if for every %i∈
Ωi, behavior profiles B and B′, and history h, with h ∈ Path(Si(%i), B−i),
h ∈ Path(B′), P (h) = i, Si(%i)(h) 6= B′i(h) we have

M(Si(%i), B−i)(i) %i M(B′)(i).

A social choice function (or direct revelation mechanism) scf : Ω → M is

implementable in obviously dominant strategies if there exists an extensive

form mechanism M and a profile of obviously dominant strategies S such

that M(S(%)) = scf(%) for all %∈ Ω.

To see that the crawler is implementable in obviously dominant strategies

define an extensive form mechanism where each choice has the same format:

7Bade and Gonczarowski [6] show that simultaneous moves can be ignored without loss

of generality when considering extensive form mechanisms that implement a social choice

function in obviously dominant strategies.
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an agent may either pick a house no larger than his current house or he may

pass the choice to the next largest agent. At the start of the mechanism,

Agent 1 may either choose the smallest house or pass. If he passes then

Agent 2 may either choose one of the two smallest houses or pass. As long as

agents pass, the next agent may either pass or be matched with a house no

larger than the one he currently occupies. The occupant of the largest house

cannot pass; he must pick a house as his match. Once an agent chooses to be

matched, repeat the above questions, starting with the smallest remaining

agent.

Theorem 3 The crawler C : Ω̂l → M can be implemented in obviously

dominant strategies.

Proof To define an extensive form mechanism M , label each nontermi-

nal history h with a vector (Nh, Oh, th). At h, Nh and Oh are the sets of

unmatched houses and agents. These sets are indexed as outlined in the

definition of the crawler and th designates the agent choosing at h. Let

(N∅, O∅, t∅) = (N,N, 1). The player function P maps each history h to

P (h) = ith . The choice set of agent ith at h is A(h) : = {o1, . . . , oth , p}
if th <| Nh | and A(h) : = Oh = {o1, . . . , oth} otherwise. Now consider

(h, a) for all possible actions a ∈ A(h). The history (h, a) is terminal if

and only if Ah = {or}. Otherwise, the label of (h, a) is updated so that

(N(h,or), O(h,or), t(h,or)) : = (Nh\{P (h)}, Oh\{or}, 1) and (N(h,p), O(h,p), t(h,p)) : =

(Nh, Oh, th + 1).

Define a strategy profile S such that SP (h)(%P (h))(h) = p if house oth+1 is

strictly %P (h)-preferred to oth , otherwise let SP (h)(%P (h))(h) be the %P (h)-best

house in Oh.

Each string of pass choices corresponds to a step of the crawling algorithm:

Since agents are asked in order of their index, any such string goes on until

the smallest agent who does not want to move to a larger house. According to

S, such an agent is then matched with his most preferred unmatched house.

So the behavior S(%) induces the choices made in all steps of the crawling

algorithm at %. In sum we obtain M(S(%)) = C(%) for each %∈ Ω̂l.

To see that S is obviously dominant fix an arbitrary history h. Say that

or is the %ith -best house in Oh. If r ≤ th then P (h) = ith is matched with
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or if he follows S. Since or is the %ith -best house in Oh agent P (h) = ith
cannot be made strictly better off by any collective deviation starting at h.

If r > th and if agent ith follows S, then he gets matched with a house in

{oth , . . . , or}. If he deviates at h, his match is in {o1, . . . , oth}. Since or, the

%ith -best house in Oh, is larger than oth and since %ith is single-peaked, the

agent weakly prefers any house in {oth , . . . , or} to any house in {o1, . . . , oth}.
Since h was chosen arbitrarily, S is obviously dominant. �

Any social choice function that can be implemented in obviously dominant

strategies is strategyproof. Theorem 3 therefore implies that the crawler

C : Ω̂l →M is strategyproof, completing the proof of Theorem 3.

The combination of Ma’s [10] uniqueness result (Theorem 2) with Li’s

[9] proof that Gale’s top trading cycles with more than two agents is not

implementable in obviously dominant strategies, implies that no efficient

and individually rational mechanism for housing markets with more than

two agents can be implemented in obviously dominant strategies. Bade and

Gonczarowski [6] study obvious dominance in a variety of settings and come

to the conclusion that only very few efficient social choice functions can be

implemented in obviously dominant strategies. They show in particular that

median voting with single-peaked preferences is not implementable in obvi-

ously dominant strategies. Arribillaga, Masso, and Neme [3] come to a similar

conclusion on the dearth of obviously strategyproof voting mechanisms.

Theorem 3 then simultaneously applies the domain restrictions of the

impossibility results by Li [9] (housing market) and Bade and Gonczarowski

[6] as well as Arribillaga, Masso and Neme [3] (single peakedness) to obtain

a possibility result for the single-peaked housing markets. The crawler is not

only efficient and individually rational, it can be implemented in obviously

dominant strategies. This possibility result differs in two dimensions from the

preceding impossibility results. It concerns a novel mechanism (the crawler)

as well as a novel domain of preferences (single-peaked housing markets). So

one may now wonder whether the restriction on the domain is sufficient for

Gale’s top trading cycles to be implementable obviously dominant strategies.

In the appendix I give a negative answer. I show that G : Ω̂l →M can be

implemented in obviously dominant strategies if and only if there are less

than four agents.
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6. Indifferences

While Gale’s top trading cycles is the unique efficient, strategyproof,

and individually rational mechanism for the linear domain Ωl, there exists a

plethora of different such mechanisms on the grand domain Ω that permits

indifferences. With single-peaked preferences there are - of course - even

more such mechanisms, given that Ma’s [10] uniqueness result (Theorem 2)

does not apply.

Saban and Sethuraman [15] lay out a protocol for the construction of ef-

ficient, strategyproof, and individually rational matching algorithms that re-

duce to Gale’s top trading cycles on the domain of linear preferences. Firstly,

the rules governing trading cycles need to be amended such that they do not

depend on unique most preferred houses. Trading cycles are, secondly not

used to define matches but to update endowments for the continuation of the

algorithm. Saban and Sethuraman [15], thirdly, require occasional matching

steps that match some agents with their current endowments. The fourth

requirement is that agents stay unmatched as long as their participation in

the algorithm may increase the efficiency of the outcome. The fifth require-

ment is that the algorithm terminates. Saban and Sethuraman [15] show

that the mechanisms defined by Jaramillo and Manjunath [8] as well as by

Alcalde-Unzu and Molis [2] fit their requirements.8 Here I extend Saban and

Sethuraman’s [15] protocol to the crawler to obtain the circle-crawler, an

efficient and individually rational matching mechanism that reduces to the

crawler on the domain of linear preferences and that can be implemented in

obviously dominant strategies.

Following Saban and Sethuraman’s [15] first requirement I amend the

crawler’s rules for the identification of agents and houses so that these rules

are well-defined whether or not an agent has a unique most preferred house.

8With an eye towards the reduction of running times, Plaxton [12] proposes a different

protocol for the generation of efficient, strategyproof, and individually rational matching

algorithms that reduce to Gale’s top trading cycles on the domain of linear preferences.

Plaxton’s [12] set of algorithms is contained in Aziz and De Keijzer’s [4]. While the mech-

anisms defined by Aziz and De Keijzer’s [4] need not be strategyproof, they outperform

the mechanisms of Jaramillo and Manjunath [8] as well as by Alcalde-Unzu and Molis [2]

in terms of running times.
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While each step of the crawler and the circle-crawler identifies the smallest

agent i who strictly prefers his current house to the next largest (remaining)

house, they use different rules to identify a house: Where the crawler refers

to agent i’s best house the circle-crawler refers to this agent’s smallest best

house. The crawler would then match agent i with his (smallest) best house.

However, in accordance with Saban and Sethuraman’s [15] second require-

ment, moves from house to house do not immediately yield matches and

the circle-crawler designates agent i to become the current occupant of his

smallest best house. In line with Saban and Sethuraman’s [15] third require-

ment the circle-crawler periodically matches some agents with the houses

they currently occupy. Such matches occur whenever the algorithm revisits

a current occupancy. This condition to match agents not only guarantees

that the circle-crawling algorithm terminates (Saban and Sethuraman’s [15]

fifth requirement), it is also responsible for the efficiency of the circle-crawler

(Saban and Sethuraman’s [15] fourth requirement).

In the circle crawling algorithm agents move to smaller houses without im-

mediately getting matched. The principle that smaller agents occupy smaller

houses does therefore not implicitly define current occupancies. Current oc-

cupancies are instead explicitly defined as one-to-one functions ν : N ′ → N

for N ′ ⊂ N , with the understanding that agent i currently occupies ν(i).

To define the circle-crawler C∼ : Ω̂ → M use the following algorithm to

calculate C∼(%) for each %∈ Ω̂:

Initialize∼: N1 ← N and ν[1] the identity on N .

Step k:

Indexation∼: Let m : =| Nk |. Index houses such that ν[k](Nk) : =

{o1, . . . , om} with ot < ot+1 for all t ∈ {1, . . . ,m − 1}. Index agents Nk : =

{i1, . . . , im} such that ν[k](it) = ot.

Screening∼: If ot �it ot+1 holds for some t, let t∗ be the minimal such t. If

not, let t∗ : = m. Choose agent it∗ . Say or is the smallest %it∗ -best house in

ν[k](Nk).
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Circle-Crawling∼: Define an occupancy ν̃ : Nk → N with

ν̃(it∗) : = or,

ν̃(it) : = ot+1 if r ≤ t < t∗

ν̃(it) : = ot otherwise .

If ν[k′] 6= ν̃ for all k′ ≤ k let Ñ : = ∅, otherwise define Ñ as the set of all

agents i ∈ Nk who were chosen in Screening∼ at some Step k′ < k.

Matching∼: Let C∼(%)(i) : = ν̃(i) for each agent i ∈ Ñ .

Updating∼: Let Nk+1 : = Nk \ Ñ . If Nk+1 = ∅ terminate, otherwise define

ν[k + 1] as the restriction of ν̃ to Nk+1 and go to Step k + 1.

Example 2 illustrates the circle-crawler.

Example 2 Consider N : = {1, 2, 3} together with the profile % where

%1, %2, and %3 respectively top rank the sets {1, 2, 3}, {1, 2}, and {1}.
In the unique efficient matching at %, Agents 1 and 3 swap houses, while

Agent 2 keeps his endowment. In Step 1 of the circle crawler, Screening∼

identifies Agent 2 as the first agent who strictly prefers the house he currently

occupies (House 2) to the next largest remaining house (House 3). So Circle-

Crawling∼ yields the current occupancy ν̃(1) = 2, ν̃(2) = 1, and ν̃(3) = 3.

Since ν[1] 6= ν̃, no agent is matched at Step 1 and ν[2] is set to ν̃. At

Step 2, Screening∼ identifies Agent 3 and Circle-Crawling∼ yields the current

occupancy ν̃(3) = 1, ν̃(2) = 2, and ν̃(1) = 3. Since ν[1] 6= ν̃ 6= ν̃[2], no agent

is matched at Step 2 and ν[3] is set to ν̃. At Step 3, Screening∼ once again

identifies Agent 3 as the first agent who does not strictly prefer the next

largest house and we obtain ν̃ = ν[3]. Since the preceding steps identified

Agents 2 and 3 in Screening∼, we have Ñ = {2, 3} and Matching∼ requires

to match Agents 2 and 3 with the houses they currently occupy (respectively

House 1 and 2). Only Agent 1 is left at Step 4, where he gets matched with

House 3. The circle-crawler, in sum, finds the unique efficient matching at

%.

Theorem 4 The circle-crawler C∼ : Ω̂→M is an efficient and individually

rational matching mechanism that can be implemented in obviously dominant

strategies. For any %∈ Ω̂l we have C(%) = C∼(%).
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Proof To see that C∼ is well-defined and efficient fix a profile %∈ Ω̂.

To see that the circle-crawling algorithm terminates, suppose not. So

suppose there exists a Step k∞ with Nk∞ = Nk 6= ∅ for all k > k∞. Since

finitely many agents and houses remain unmatched there must exist two steps

k′ and k′′ with k∞ ≤ k′ < k′′ such that the current occupancy ν̃ determined

at Step k′′ equals ν[k′]. So at least one agent must, by Matching∼, get

matched in Step k′′, a contradiction. Since any Step k either matches no

one or bijectively matches uniquely defined sets of agents and houses, and

since new steps are initiated as long as some agents remain unmatched, the

circle-crawling algorithm results in a matching C∼(%).

To see that C∼(%) is efficient fix an arbitrary agent i. Say i gets matched

with C∼(%)(i) at Step k. It suffices to see that agent i (weakly) prefers his

match C∼(%)(i) to any house that remains unmatched at Step k and strictly

prefers his match C∼(%)(i) to any house that remains unmatched at Step

k+ 1. Say Circle-Crawling∼ in Step k finds the current occupancy ν̃ and the

set of agents Ñ 3 i, which is then matched in Matching∼. Let Step k′ be

such that ν[k′] = ν̃. Let Step k′′ be the earliest step such that no agent is

matched at the Steps {k′′, k′′+1, . . . , k−1}. Say O : = ν[k](Nk) is the set of

unmatched houses at Step k′′ and O∗ the set of %i-best houses in O. Say omin
and omax are the minimal and maximal elements of O∗. To see that C∼(%)

is efficient at % it then suffices to show that C∼(%)(i) ∈ O∗ ⊂ C∼(%)(Ñ).

Since i ∈ Ñ , Screening∼ at some Step k∗ ∈ {k′′, . . . , k}must choose Agent

i, where he moves from omax to omin. Screening∼ and Circle-Crawling∼ imply

that any agent i◦ who remains unmatched at some Step k◦ weakly prefers

ν[k◦ + 1](i◦) to ν[k◦](i◦). So if k∗ 6= k, we have omin = ν[k∗ + 1](i) -i
ν[k∗ + 2](i) -i · · · -i ν[k](i) -i ν̃(i) = C∼(%)(i). Since omin ∈ O∗ and since

%i is transitive we have C∼(%)(i) ∈ O∗.
If O∗ is a singleton the first claim implies the second. So suppose there

exists a j ∈ O∗ \ {C∼(%)(i)}. Circle-Crawling∼ implies that any agent who

moves from house ot at some step either moves to a smaller house or to

the next largest house ot+1. This together with Agent i’s move from omax
to omin at Step k∗ (as defined above) implies that Agent i occupies each

house in O∗, particularly House j, at some step between k′′ and k. Since
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C∼(%)(i) = ν̃(i) 6= j, House j is not occupied by the same agent at all steps

between k′′ and k. The Agent i′ with ν̃(i′) : = j therefore moves houses at

some steps between k′′ and k. Since ν[k′](i′) = ν̃(i′), Agent i′ must at some

step before k move to a smaller house. At that step Screening∼ must choose

Agent i′, implying i′ ∈ Ñ . We in sum have j = C∼(%)(i′) for some i′ ∈ Ñ
and therefore O∗ ⊂ C∼(%)(Ñ).

To see that the circle-crawler C∼ is implementable in obviously dominant

strategies define an extensive form mechanism M∼. Label each nontermi-

nal history h in M∼ with a vector (Nh, νh, th, oh). At h, Nh is the set of

unmatched agents and νh the current occupancy. The sets Nh and νh(Nh)

of unmatched agents and houses are indexed as outlined in the definition of

the circle-crawler. Agent ith is the player P (h) at h. Finally the function

oh : N → N sets upper bounds on the agents’ matches, so that no terminal

history following on h matches agent i with a house o > oh(i).

Let N∅ = N , ν∅(i) = i for all i ∈ N , t∅ = 1 and oh(i) = maxN for all i ∈
N . Let A(h) : = {o1, . . . , oth , p} if oth < oh(ith) and A(h) : = {o1, . . . , oth} if

oth = oh(ith). Now consider (h, a) for all possible actions a ∈ A(h). If a = p

update labels such that (N(h,p), ν(h,p), t(h,p), o(h,p)) : = (Nh, νh, th + 1, oh). If

a = or calculate ν̃ according to the rules set out in Circle-Crawling∼. If

ν̃ = νh′ for a sub-history h′ ⊂ h, let Ñ be the set of all agents i ∈ Nh with

P (h′′) = i and (h′′, p) 6⊂ h for some h′′ ⊂ h, otherwise let Ñ = ∅. Match

each agent i ∈ Ñ with ν̃(i). If Ñ = Nh then (h, or) is a terminal history. If

Ñ 6= Nh update o(h,or)(ith) : = oth and o(h,or)(i) : = oh(i) for all i 6= ith . Let

N(h,or) : = Nh \ Ñ , ν(h,or) the restriction of ν̃ to N(h,or), and t(h,or) : = 1.

After a pass choice by P (h) the occupant of oth nothing much happens:

the occupant of the next largest unmatched house gets to choose, all else

stays the same. Conversely, the choice of a house at h triggers extensive

updating. We firstly have to calculate a new current occupancy. If that

new current occupancy coincides with a preceding one, then each unmatched

agent who chose a house at subhistory of h gets matched with the house he

currently occupies. The mechanism terminates if all agents are matched. If

not, the upper bound of agent ith = P (h) is updated to the house he occupied

at the start of the step. The new current occupancy is the restriction of the

occupancy determined at the present history to the set of unmatched agents.
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The occupant of the smallest unmatched house gets to choose next.

To define a strategy profile S fix an arbitrary history h and say that

omin and omax are the minimal and maximal most preferred unmatched house

of agent ith = P (h). If either p /∈ A(h) or omax ≤ oth then S(%)(h) is

agent P (h)’s minimal most preferred house in A(h). Otherwise (if p ∈ A(h)

and omax > oth) let S(%)(h) = p. To see that S is obviously dominant

consider the fixed history h. Case 1: p /∈ A(h). For all terminal histories

following on h agent ith gets matched with a house in A(h). Since ith gets

matched with a %ith -best house in A(h) if he follows S at h, this choice is

obviously dominant. Case 2: p ∈ A(h) and omax ≤ oth . Since Agent ith gets

matched with a %ith -best house in the set of all unmatched houses νh(Nh)

if he follows S at h, this choice is obviously dominant. Case 3: p ∈ A(h)

and omax > oth . If agent ith follows S at h he chooses p and gets matched

with a house in
{

min{omin, oth}, . . . , omax

}
. If he deviates to choose some

or at h his maximal potential match o(h,or)(ith) is updated to oth and his

match is in
{
o1, . . . , oth

}
. Since ith ’s largest most preferred house is strictly

larger than oth and since %ith is single-peaked, the agent weakly prefers any

house in
{

min{omin, oth}, . . . , omax

}
to any house in

{
o1, . . . , oth

}
, and S also

prescribes in this final case an obviously dominant choice.

To see that M∼(S(%)) = C∼(%) holds for all %∈ Ω̂ fix an arbitrary %.

Consider the first sequence of pass choices given M∼(S(%)) which terminates

with the choice of a house by some agent who is either the occupant of the

largest house (maxN) or strictly prefers the house he occupies to the next

largest house. This agent’s maximal potential house is updated to the house

he occupied at the start of the current step. Given that the agent follows S

this house is at least as large the agent’s maximal most preferred unmatched

house. The ensuing circle crawl in M∼(S(%)) exactly corresponds to the

first circle crawl in C∼(%). So both M∼(S(%)) and C∼(%) find the same

current occupancy. Both M∼(S(%)) and C∼(%) then apply the same rules

whether and whom to match. Finally both M∼(S(%)) and C∼(%) restrict

the current occupancy to the set of all unmatched agents to obtain a new

current occupancy for the start of the next sequence of pass choices.

The next sequence of pass choices differs from the preceding one only

insofar as that the maximal potential house for some agent may have changed.
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However, the strategy profile S is such that no upper bound oh(i) of any agent

i is ever updated to a house smaller than agent i’s maximal most preferred

unmatched house, implying that on the path of S, S yields the same choices

whether there are upper bounds on houses or not. So the second sequence

of passes in M∼(S(%)) terminates with the choice of the agent chosen in

Step 2 of C∼(%). From then on M∼(S(%)) and C∼(%) again follow the

same rules to update and to match. Proceeding inductively we see that

M∼(S(%)) = C∼(%).

The proof that C is individually rational (see Theorem 1) applies un-

changed to the case of C∼.

To see that C(%) = C∼(%) holds for each %∈ Ω̂l fix an arbitrary such

%. In Step 1 we obtain identical indexations of all agents N and houses N .

Screening and Screening∼ choose the same agent i = it∗ . They also choose

the same house or since the smallest %it∗ -best house in N is the unique %it∗ -
best house. According to the crawler, Agent it∗ is then matched with or. If

r = t∗, then the current occupancy ν̃ determined in Step 1 equals ν[1] and

Step 1 of the circle-crawler also matches it∗ with or. If not, then each Agent it
with r ≤ t < t∗ crawls to the next largest house. Step 2 of the circle-crawler

then once again chooses the same agent i (now agent ir) and house or in

Screening∼. Since agent i (after Step 1) occupies his best house or, he stays

put in the current round of Circle-Crawling∼ and therefore gets matched

with or at Step 2. No matter whether the circle-crawler matches Agent i

at Step 1 or 2, the current occupancy is such that smaller agents occupy

smaller houses. So the next step of the circle-crawler starts out the same as

does Step 2 of the crawler. Proceeding inductively we see C∼(%) = C(%).�

The presence of updated maximal potential houses oh complicates the

proof that M∼(S(%)) equals C∼(%) for any profile of preferences %. In fact,

M ′(S(·)) = C∼(·) also holds for the mechanism M ′ which is identical to

M∼ except that maximal potential houses are not updated in M ′. Dropping

all references to maximal potential houses, the proof that M∼(S(·)) equals

C∼(·) directly applies to show M ′(S(·)) equals C∼(·).
Updated maximal potential houses are however crucial for the obvious

strategyproofness of M∼. To see that S is not obviously dominant in the

22



alternative mechanism M ′ consider a problem with just three agents and

assume that Agent 2 top ranks the largest house. Consider the history (p)

where Agent 1 has chosen to pass. At (p) the strategy S prescribes for Agent

2 to choose p. If Agent 3 chooses House 3 at (p, p) Agent 2 does not get

House 3. If Agent 2 deviates from S and chooses House 1 at (p) he may

be matched House 3. This indeed happens if Agents 1 and 3 behave as if

they are indifferent between all houses, whereas Agent 2, following on (p, o1),

behaves as if he most prefers House 3. What stands out is that Agent 2’s

choice of o1 at (p) together with his later behavior is inconsistent with single

peaked preferences. M∼ forces all behavior in line with the assumption of

single peaked preferences. According to M∼ Agent 2 cannot behave in the

way outlined above: by choosing o1 at p, Agent 2 bars himself from getting

matched with any house larger than House 2.9

The algorithm of the circle-crawler typically goes on for many more steps

than the algorithm of the crawler. Quicker mechanisms for Ω̂ proceed in

two steps: first use a fixed rule to break all indifferences in %, then use the

resulting profile in the crawler. But are such quick mechanisms efficient,

strategyproof, and individually rational? A tie-breaker TB : Ω̂ → Ω̂l

transforms any %∈ Ω̂ to a linear order %TB∈ Ω̂l such that j �i j′ implies

j �TBi j′ for all i, j, j′ ∈ N .10 The mechanism CTB : Ω̂ → M is then

defined such that CTB(%) : = C(%TB) for all %∈ Ω̂. So CTB maps each

profile %∈ Ω̂ to the outcome of the crawler at %TB, the profile obtained by

applying the tie-breaker TB to %. I next show that any such mechanism CTB

is strategyproof and individually rational. However, no such mechanism is

efficient.

Proposition 2 Fix any tie-breaker TB : Ω̂→ Ω̂l. Then the mechanism CTB

is strategyproof and individually rational. If n ≥ 3, then CTB is not efficient.

9I am grateful to a referee for pointing out that S is not even dominant in M ′ and

that the introduction of variable upper bounds oh not only renders S dominant in M∼

but obviously dominant.
10Note that the tie-breaker TB may use different standards for different agents. Say

N = {1, 2, 3}. Then we may have 1 �TB
1 2 �TB

1 3 and 3 �TB
2 2 �TB

2 1 even though 1, 2,

and 3, are indifferent according to both %1 and %2.
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Proof Fix an agent i, a profile %∈ Ω̂ and a preference %i ∈ Ω̂i. Since C

is individually rational we have C(%TB)(i) %TBi i. The definitions of TB

and CTB then imply that CTB(%)(i) = C(%TB)(i) %i i and CTB is individu-

ally rational. Next C(%TB)(i) %TBi C(%
TB

i ,%TB−i )(i) holds since C is strate-

gyproof. By the definition of CTB we then have CTB(%)(i) %TBi CTB(%i,%−i
)(i). Finally the definition of TB yields CTB(%)(i) %i CTB(%i,%−i)(i) and

CTB is strategyproof.

To see that CTB is not efficient with n ≥ 3, fix a profile of preferences

%∈ Ω̂ where %2 top ranks the houses {1, 2, 3} and finds all other houses

unacceptable. Agents 1 and 3 have linear preferences. If there is any agent

i > 3, then i is the only %i-acceptable house. Since any individually rational

matching at % matches any agent i > 3 with house i we can ignore any such

agent i > 3. Efficient and individually rational matchings at % can therefore

be denoted as a three-component vectors with the understanding that the

i-th component represents agent i’s match. The vector (1, 3, 2), for example,

denotes the matching where Agents 2 and 3 swap houses, while all other

agents keep their houses. Given that Agents 1 and 3 strictly rank all houses

we only need to know the tie-breaking rule for Agent 2.

Case 1: %TB2 top ranks House 1. Let %1 and %3 respectively top rank

Houses 2 and 1, so that (2, 3, 1) is the unique efficient and individually ra-

tional matching at %. Since Step 1 of C(%TB) matches Agent 2 with House

1, C(%TB) is not efficient at %.

Case 2: %TB2 top ranks House 2. Let %1 and %3 respectively top rank

Houses 2 and 3, so that (2, 1, 3) is the unique efficient and individually ra-

tional matching at %. Since Step 1 of C(%TB) matches Agent 2 with House

2, C(%TB) is not efficient at %.

Case 3: %TB2 top ranks House 3. Let %1 and %3 respectively top rank

Houses 3 and 2, so that (3, 1, 2) is the unique efficient and individually ra-

tional matching at %. Since Steps 1 and 2 of C(%TB) match Agents 3 and 2

with Houses 2 and 3, C(%TB) is not efficient at %. �
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7. Conclusion

The crawler is a new efficient, strategyproof and individually rational

matching mechanism on the domain of single-peaked preferences. Differently

from Gale’s top trading cycles the crawler can, on the domain of single-peaked

preferences be implemented in obviously dominant strategies following Li [9].

The crawler is similar to a shell-swapping mechanism used by hermit

crabs.11 Hermit crabs need shells for protection but do not grow their own.

They instead salvage empty shells of other animals. To be useful such shells

may neither be too large nor too small: A hermit crab that cannot completely

retract into his shell is more likely to be eaten, the same crab looses agility

if its shell is too large. To accommodate their growth hermit crabs then

periodically require new shells, which they may acquire via “synchronous

vacancy chains”. Such a vacancy chain starts with a crab who wants to

move to a larger shell but happens upon a vacant shell that is too large for

its own needs. This crab may wait next to the vacant shell. More crabs,

who also find the vacant shell too large, may appear on the scene and wait.

As they wait the crabs line up in order of their size, each holding tight to

the next largest shell. Once a crab, for whom the vacant shell is a good fit,

arrives, this crab occupies the vacant shell. The largest crab waiting, that

is the crab at the helm of the line, moves into the shell cast away by the

newcomer. A cascade of moves ensues: each crab moves into the shell it held

onto while waiting. Three things stand out: hermit crabs firstly appear to

have single peaked preferences over shells/houses of different sizes. Hermit

crabs must, secondly, be considered as cognitively limited, so that Li’s [9]

argument in favor of obviously strategyproof mechanisms applies. Finally,

synchronous vacancy chains much more closely resemble the crawler than

Gale’s top trading cycles.

While I have shown that the crawler is implementable in obviously dom-

inant strategies, I have not provided a characterization of all efficient and

individually rational mechanisms for the domain of single-peaked preferences

11I would like to thank Yannai Gonczarowski for pointing out the hermit crab housing

problem to me. The description of synchronous vacancy chains follows Rotjan, Chabot

and Lewis [14].
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Ω̂l that are implementable in obviously dominant strategies. Clearly the dual

crawler that screens houses in descending order is also implementable in obvi-

ously dominant strategies. With just 3 agents even Gale’s top trading cycles

is implementable in obviously dominant strategies. I conjecture that any so-

cial choice function on the matching domain with single-peaked preferences

that is implementable in obviously dominant strategies is a combination of

these three mechanisms.

When more than one mechanism appears normatively reasonable, then

they can be ranked by their computational complexity. In that vein Plaxton

[12] proposes a set of efficient, strategyproof, and individually rational mech-

anisms for (standard) housing markets that are less computationally complex

than Jaramillo and Manjunath’s [8] and Alcalde-Unzu and Molis’ [2] mech-

anisms. Without Ma’s [10] uniqueness result (Theorem 2) we could use the

criterion of computational complexity to distinguish between the crawler,

Gale’s top trading cycles and possibly yet more efficient, strategyproof, and

individually rational mechanisms. Since the crawler matches exactly one

agent per step while Gale’s top trading cycles matches at least one agent

per step, the crawler always needs at least as many steps as Gale’s top trad-

ing cycles to determine a matching. However, the steps of the crawler are

less computationally complex than the steps of Gale’s top trading cycles:

While each agent under Gale’s top trading cycles may point to any house,

the crawling algorithm restricts agents to point either backwards or to the

next largest house. Comparing Gale’s top trading cycles and the crawler,

I conjecture that the computational advantage of each step of the crawler

outweighs the fact that only one agent is matched per step. I furthermore

conjecture that this computational advantage extends to the domain Ω̂ that

permits indifferences. On this domain the circle-crawler C∼ should be even

less computationally complex than the mechanisms defined by Plaxton [12].

While no individually rational and efficient mechanism on the domain

of linear preferences Ωl is implementable in obviously dominant strategies, I

have shown that the crawler satisfies these three desiderata on the subdomain

of single-peaked preferences. In Bade [5] I use single-peaked preferences to

escape from a different impossibility result. In that paper I define shift

exchange problems as housing markets with an infinite stream of overlapping
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generations of agents. No efficient, strategyproof, and individually rational

mechanism matches at least one agent in finite time. However if we impose

that all agents preferences are single-peaked a version of the crawler is not

only efficient, strategyproof, and individually rational, but also matches each

agent within a finite time window around his (original) shift.

8. Appendix

Gale’s top trading cycles on Ω̂l, the domain of linear single-peaked prefer-

ences, is implementable in obviously dominant strategies if and only if there

are at most three agents.12 The upcoming proof of the claim that Gale’s

top trading cycles on Ω̂l with at least four agents is not implementable in

obviously dominant strategies crucially relies on Bade and Gonczarowski’s

[6] gradual revelation principle. In their Theorem 1, Bade and Gonczarowsi

[6] show that a social choice function is implementable in obviously domi-

nant strategies if and only if it is implementable by an obviously incentive

compatible gradual revelation mechanism. A gradual revelation mechanism

is an extensive form mechanism where each action corresponds to a set of

preferences. There are no simultaneous moves, singleton choice sets, or di-

rectly consecutive moves for the same agent. An agent’s strategy is truthful

if he, wherever possible, chooses an action that corresponds to the set of

preferences containing his true preference.

Formally, the player function maps each non-terminal history h to a single

player P (h) who chooses from A(h) with | A(h) |> 1. For any h and a ∈ A(h)

we have P (h) 6= P (h, a). Each history h is associated with a set of preferences

Ωi(h) ⊂ Ωi, with Ω(h) : = Ω1(h) × · · · × Ωn(h). The mechanism starts

with Ω(∅) = Ω. If P (h) = i, then {Ωi(h, a)}a∈A(h) partitions Ωi(h), if not

then Ωi(h) = Ωi(h, a) holds for each a ∈ A(h). A strategy Si in a gradual

revelation mechanism is truthful if at each history h agent i : = P (h) with

preference %i∈ Ωi(h) chooses the action a ∈ A(h) with %i∈ Ωi(h, a).13 If

12Li [9] already showed that Gale’s top trading cycles on the domain Ωl is not imple-

mentable in obviously dominant strategies.
13Since this definition does not determine the agents choice at a history h with %i /∈ Ωi(h)

agents may have multiple truthful strategies.
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all agents follow a truthful strategy then Ω(h) describes everything that the

agents revealed about their preferences up to history h. Finally the gradual

revelation mechanism M is obviously incentive compatible if truthtelling is

obviously dominant for each agent.

Theorem 5 Gale’s top trading cycles G : Ω̂l → M can be implemented in

obviously dominant strategies if and only if there are at most three agents.

Proof Suppose M was an obviously incentive compatible mechanism that

implements G for N = {1, . . . , 4}. Let Ω∗ be the set of all preference profiles

for which agents 1 and 2 want to move to larger houses while agents 3 and 4

want to move to smaller houses. So Ω∗i : = {%i∈ Ω̂l | j %i H implies j > i}
for i = 1, 2 and Ω∗i : = {%i∈ Ω̂l | j %i H implies j < i} for i = 3, 4.

Claim (*) For any history h with Ω∗ ⊂ Ω(h), there exists an action a ∈
A(h) such that Ω∗ ⊂ Ω(h, a): fixing any history on the path of a truthtelling

strategy for any %∈ Ω∗, where no agent has revealed more than the direction

in which he wants to move, the agent moving at the present history will not

reveal any more than the direction in which he wants to move.

To see Claim (*) fix a history h with Ω∗ ⊂ Ω(h), say that i = P (h) ∈
{1, 2} and let j be the other agent in {1, 2}. Suppose there existed two actions

a, a′ ∈ A(h) with %i∈ Ωi(h, a) and %′i∈ Ωi(h, a
′) for some %i,%′i∈ Ω∗i with

i + 1 %′i {1, 2, 3, 4}. For %∈ Ω∗ with 4 %j {1, 2, 3, 4}, j %3 {1, 2, 3, 4}, and

3 %4 {1, 2, 3, 4} we have G(%)(i) = i. On the other hand, G(%′)(i) = i + 1

holds for %′∈ Ω∗ with j+ 1 %′j {1, 2, 3, 4} and 1 %′3 {1, 2, 3, 4}. Since %i∈ Ω∗i
and i ∈ {1, 2}, G(%′) = i + 1 is strictly %i-preferred to G(%)(i) = i, and

the action a is not an obviously dominant choice for agent i with preference

%i at h. There must be an action a ∈ A(h) with Ω∗i ⊂ Ωi(h, a). Since

Ωi′(h, a) = Ωi′(h) holds for all i′ 6= P (h) we obtain Ω∗ ⊂ Ω(h, a). Claim (*)

then holds since the same arguments apply mutatis mutandis to the case of

P (h) ∈ {3, 4}.

Now fix any %∗∈ Ω∗ and say h∗ is the (unique) terminal history reached

if all agents follow a truthtelling strategy at %∗. Since no agent has revealed

anything before the game starts, Ω∗ is a subset of Ω̂l = Ω(∅). The inductive
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application of claim (*) to all histories h with %∗∈ Ω(h) implies Ω∗ ⊂ Ω(h)

for any such history, in particular Ω∗ ⊂ Ω(h∗). So if each agent i with

preference %∗i follows a truthful strategy, then each agent i at most reveals

the direction in which he would like to move. But G is not constant on Ω∗:

G, for example, maps the two profiles %,%′∈ Ω∗ constructed in the preceding

paragraph to two different matchings. So the terminal history h∗ cannot be

mapped to a unique outcome - a contradiction.

Li [9] already showed that the direct revelation mechanism implements

Gale’t top trading cycles with two agents in obviously dominant strategies.

So it only remains to be seen that Gale’s top trading cycles with three agents

{1, 2, 3} with single peaked preferences is implementable in obviously dom-

inant strategies. Consider the extensive form mechanism M3 where Agent

2 first reveals his preferences. Agent 2 gets the middle house (House 2) if

he most likes it. Agents 1 and 3 are then asked whether they would like

to swap houses. If both agree, they swap houses, otherwise each agent is

matched with the house he was endowed with. If Agent 2 top ranks House 1

(House 3), then Agent 1 (3) reveals his preference. If Agent 1 (3) ranks the

smallest (the largest) house at the top, each agent is matched with the house

he was endowed with. If Agent 1 (3) top ranks the middle house, Agents 1

(3) and 2 swap houses, while Agent 3 (1) is matched with the largest house.

In the final case where Agent 1 (3) prefers larger (smaller) houses Agent 3’s

(1’s) preference is elicited. Once all preferences are known the outcome is

established using Gale’s top trading cycles.

To see that truthtelling is obviously dominant in M3 first consider Agent

2. If he most likes his own house, he gets matched with it if he truthfully

reveals his preference. If he prefers the smallest house the he gets the smallest

or the middle house if he truthfully reveals his preference, whereas he gets

with the middle or the largest house if he deviates. The same holds mutatis

mutandis for the case that he most prefers the largest house. So the truthful

revelation is obviously dominant for Agent 2.

Now consider Agent 1 as a second player. If Agent 2 ranks the middle

house at the top, it is obviously dominant for Agent 1 to reveal his preference

in the the simple swapping mechanism with the smallest and largest houses.

If Agent 2 most likes the smallest house, Agent 1 gets matched with his most
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preferred house if he truthfully reveals his preference and if his most preferred

house is either the smallest or the middle house. In the remaining case where

Agent 1 most prefers the largest house, Agent 1 either gets matched with

that house or the middle house if he truthfully reveals his preference, if he

deviates he either gets matched with the middle or the smallest house. So

the truthful revelation of his preference is obviously dominant for Agent 1 if

he is the second player to reveal his preference.

If Agent 1 is the third player to reveal his preference, then it is already

known that Agent 2 wants to move to a larger house and that Agent 3 wants

to move to the smallest possible house. Given that Gale’s top trading cycles is

used to determine all agents’ matches the announcements by Agents 2 and 3

imply that Agent 1 gets matched with the house he declares to be his favorite

choice. So truthtelling is also in this final case obviously dominant. Mutatis

mutandis we see that truthtelling is also obviously dominant for Agent 3. �
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