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Abstract

Kelvin–Helmholtz instability induced turbulence is one promising mechanism by which loops in the solar corona
can be heated by MHD waves. In this Letter we present an analytical model of the dissipation rate of Kelvin–
Helmholtz instability induced turbulence εD, finding it scales as the wave amplitude (d) to the third power
(εD∝d3). Based on the concept of steady-state turbulence, we expect the turbulence heating throughout the
volume of the loop to match the total energy injected through its footpoints. In situations where this holds, the
wave amplitude has to vary as the cube-root of the injected energy. Comparing the analytic results with those of
simulations shows that our analytic formulation captures the key aspects of the turbulent dissipation from the
numerical work. Applying this model to the observed characteristics of decayless kink waves we predict that the
amplitudes of these observed waves are insufficient to turbulently heat the solar corona.

Unified Astronomy Thesaurus concepts: Magnetohydrodynamics (1964); Solar coronal heating (1989); Solar
corona (1483); Solar coronal waves (1995)

1. Introduction

Recent developments in the study of heating of coronal loops
by MHD waves highlight the potential importance of
turbulence forming at the boundary between the loop and the
ambient corona (e.g., Magyar & Van Doorsselaere 2016;
Antolin et al. 2017, 2018; Howson et al. 2017; Karampelas
et al. 2017, 2019a, 2019b; Terradas et al. 2018; Hillier &
Arregui 2019). This turbulence is created by the Kelvin–
Helmholtz instability (KHi; e.g., Chandrasekhar 1961; Barbu-
lescu et al. 2019; Hillier et al. 2019), a shear-flow instability
that can develop on the surface of oscillating flux tubes (see, for
example, Heyvaerts & Priest 1983; Hollweg 1987; Ofman et al.
1994; Terradas et al. 2008; Soler et al. 2010; Antolin et al.
2014, 2015, 2016), driven by the shear flows associated with
the MHD kink wave. Once the turbulence has developed, it is
the formation of small scales in the velocity and magnetic fields
that allows for fast dissipation of the wave energy, making it a
process that is possibly relevant to heat coronal loops.

In recent years, it has been observed that there are low-
amplitude, transverse waves occurring in coronal loops. They
were first detected in imaging data by Wang et al. (2012), and
then later spectroscopically by Tian et al. (2012). They were
shown to be different from the classic, impulsively excited
transverse kink waves by Nisticò et al. (2013), who named
these waves decayless waves. Anfinogentov et al. (2015)
showed that these decayless waves are truly omnipresent, by
selecting loops in subsequent active regions and showing that
all these active regions show the decayless waves. The fact that
these waves are omnipresent makes them an excellent
candidate for heating the solar corona.

While the true mechanism for the existence of these
decayless waves is still debated, they have been modeled
numerically by Karampelas et al. (2017) as footpoint-driven
coronal loops, recovering many observational characteristics
(Van Doorsselaere et al. 2018; Guo et al. 2019). Driven Alfvén
waves in inhomogeneous plasma have already been connected
to coronal heating through the energy deposition at the resonant

layers of coronal loops, by past numerical studies (Poedts et al.
1989; Steinolfson & Davila 1993), while also establishing the
development of KHi due to the strong shear velocities in those
layers (Ofman et al. 1994; Poedts & Boynton 1996). Chromo-
spheric coupling has been shown to lead to movement of those
layers across the loop, resulting in heating in the entire loop
volume (Ofman et al. 1998). In the newer numerical studies,
the driven oscillations are shown to develop long-lived
turbulence throughout the loop providing continuous deposi-
tion of energy (Karampelas et al. 2019a, 2019b) throughout its
entire cross-section (Karampelas & Van Doorsselaere 2018).
This can be seen as an example of quasi-steady-state
turbulence, where the energy injected as large-scale oscillatory
motions through the loop footpoints cascades to smaller scales
through the KHi, which is followed by energy dissipation once
viscous or diffusive scales are reached. A key question
regarding this process is: how does the rate at which wave
energy is dissipated depend on the amplitude of the oscillation
of the loop structure? Indeed, this question is key in
determining if the KHi is important in heating coronal loops,
because it would allow for an observational estimate of the
energy dissipation rate from the observed amplitudes of
decayless waves (Anfinogentov et al. 2015), which are
accurately modeled with these driven loop simulations.
The recent study of Hillier & Arregui (2019) highlighted

how simple mean-field solutions could be developed for a
Kelvin–Helmholtz mixing layer, and then applied to impul-
sively excited oscillating prominence threads or coronal loops
to constrain the energy available for heating. In this Letter, we
adapt the solution of Hillier & Arregui (2019) to be applicable
to driven oscillations, and use this to predict the wave
amplitude dependence on injected energy flux for the case
where the turbulent dissipation balances with the injected
energy. We then compare these predictions with the simulation
results of Karampelas et al. (2019a, 2019b) for validation of
these results.
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2. Modeling

The philosophy we use to develop our model is very simple.
We determine the energy contained in the turbulence of a
mixing layer with fully developed KHi, and the timescales
associated with this turbulence (these are taken from Hillier &
Arregui 2019). This is then used to estimate the rate at which
energy is transferred between different spatial scales perpend-
icular to the magnetic field (εT), a parameter that is often called
“energy cascade/dissipation rate” in turbulence studies (e.g.,
van der Holst et al. 2014). In steady-state turbulence all the
energy injected into the system cascades down through spatial
scales (at the same rate it is injected), and then is dissipated
(again at the same rate it is injected; e.g., Yokoi 2020).
Therefore, if one of the energy rates of the system can be
determined, then they all can be determined. Once we have
used the results of Hillier & Arregui (2019) to develop the
model for εT this will then be used to investigate the following:

1. For a given wave amplitude, what corresponding heating
rate do we predict the loop produces?

2. For a given energy injection rate into a loop, what wave
amplitude does the loop need to show in order to balance
all the injected energy with turbulent dissipation?

The first step is to estimate the energy dissipation rate εD (i.e.,
the expected heating rate). As explained above, in a turbulent
layer that has reached a statistical steady state, this will be the
same as the energy transfer rate between scales (εT). To
approximate this from the results of Hillier & Arregui (2019)
we use the mean turbulent kinetic energy of the KHi layer

( )
( )

( )r
a a

a a
~

D
+

V
KE

1

4
, 1turb mixed

2
1 2

1 2

1 2
2

and the mixing timescale

( )
( )t

a a
a a

»
D

+
l

V

l

V

2 2
2 . 2mixing

turb, RMS

1 2

1 2
1 4

Here 1 and 2 are used to denote the values on either side of the
mixing layer, for instance, the density in the mixed layer ρmixed

is written in terms of the density on either side of the mixing
layer r r r=mixed 1 2 , the relative density is
α1,2=ρ1,2/(ρ1+ρ2). We take ΔV as the velocity difference
across the mixing layer, and l is the layer half-width that is used
to approximate the radius of the turbulent eddies. By dividing
KEturb by τmixing we approximate εT to be
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Equation (3) shows how, for a given wave amplitude (which
determines the velocity difference) and for given densities both
inside and out of the tube, the dissipation in a mixing layer of
width 2l can be estimated. Since the simulated flux tubes are
shown to be fully mixed (Karampelas & Van Doorsse-
laere 2018), the thickness of the mixing layer, and with that
the diameter of the turbulent eddies, can be estimated as the
radius of the flux tube R, and the dissipation rate can be
determined to be
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To use this to make any estimate of the heating rate in the
solar corona, we have to understand how ΔV used in
Equation (4) relates to the wave velocity amplitude VAMP.
We determine that the magnitude of ΔV behaves as

( )D =V V
2

2
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3 2 AMP

where the factor of 2 in the nominator signifies the peak
velocity shear is twice the velocity amplitude of the wave, and
the factor of 23/2 in the denominator relates to the fact we use
the rms velocity taking averages over one wave period, along
the length of the tube and azimuthally around the tube.
Taking a coronal density of 0.601×10−15 g cm−3 and a

loop density of 0.947×10−15 g cm−3, equal to the weighted
mean densities of stratified loops (Andries et al. 2005) from the
simulations of Karampelas et al. (2019a), a velocity amplitude
of VAMP=4×106 cm s−1 (consistent with a wave amplitude
of ∼108 cm and a period of 170 s), and a loop radius of 108 cm,
this gives us a predicted εD of εD≈3.7×10−6 erg cm−3 s−1.
The rate at which the energy would be lost through radiative
losses (εRL) from the mixing layer is given by
εRL=nmixed

2 Λ(T) with n the electron number density given
by mixing ( =n n nmixed 1 2 ) and Λ(T) the optical thin radiative
loss function. The numbers we use for our heating rate estimate
are approximately equivalent to nmixed=4.5×108 cm−3 and
Λ(106K)≈10−22 erg cm3 s−1 (Anzer & Heinzel 2008), which
give εRL≈2×10−5 erg cm−3 s−1. This is a factor of ∼5
larger than our predicted heating rate.
Our next question is, if a system is undergoing statistically

steady turbulence, what is the wave amplitude that is required
to give sufficiently strong turbulence so that all the injected
wave energy is dissipated by the turbulence? That is to say, for
a given set of loop parameters and energy injection rate, there
must be a ΔV that results in the wave-driven turbulence being
sufficiently vigorous for this to happen. Balancing the injected
wave energy flux EFLUX injected into the tube at both its
footpoints with the dissipation throughout the loop volume
leads to
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where L is the length of the loop and the factor of 2 on the left-
hand side is used to highlight that energy is injected via both
footpoints. This can be rearranged to solve for VAMP, giving
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Of note here is that the wave amplitude is expected to scale as
the cube-root of the injected energy flux.
The connection between the velocity amplitude and the

energy flux predicted here is fundamentally different from that
coming from the Wentzel–Kramers–Brillouin (WKB) approx-
imation where the energy flux would scale as

( )µE V V , 8FLUX AMP
2

KINK

where VKINK is the kink speed (e.g., Van Doorsselaere et al.
2014). However, as noted in Karampelas et al. (2019b), when a
loop is driven at its resonant frequency, the amplitude of the
wave can no longer be predicted by the WKB approximation.

2

The Astrophysical Journal Letters, 897:L13 (5pp), 2020 July 1 Hillier, Van Doorsselaere, & Karampelas



Even though WKB theory gives the energy flux into the loop
based on the velocity of the footpoint motions, the resonance in
the system results in energy getting trapped and the amplitude
of the wave increasing beyond the amplitude of the footpoint
motions. This continues until nonlinearities or dissipative
processes saturate its growth. Even when a magnetic field is
driven over a wide range of frequencies, for example, as a
result of being driven by convection, the tendency is for the
wave energy to accumulate in the system at resonant
frequencies (e.g., Matsumoto & Shibata 2010; Afanasyev
et al. 2020). Our model shows how you can connect the energy
flux to the velocity amplitude of the system when a kink wave
is driven at a resonant frequency and is nonlinearly saturated by
the development of turbulence created by the KHi.

3. Comparison with Simulation Results

To provide benchmarking of the estimates presented in
Section 2, it is important to compare them with simulations.
Here we use the results presented of simulations of driven
oscillations in Karampelas et al. (2019a) and Karampelas et al.
(2019b) as a way of benchmarking our model. We will focus
on two of the results from these studies:

1. From Karampelas et al. (2019a, Figure 12), the slope of
the internal energy increase as a result of the turbulent
heating.

2. From Karampelas et al. (2019b, Figure 6), the average
amplitudes of the kink oscillations for different energy
injection rates.

The main setup in both studies is a straight flux tube of radius
108 cm and length 2×1010 cm, consisting of gravitationally
stratified plasma. The coronal background density at the
footpoint is 0.836×10−15 g cm−3, three times lower than
the loop density at the footpoint. A straight magnetic field of
Bz=22.8 G is considered, while the temperature varies across
the tube axis (on the xy-plane), from 0.9 MK inside the loop to
2.7 MK outside. The models were allowed to reach a quasi-
equilibrium state before introducing the driver. All calculations
in the models considered here were performed in ideal MHD in
the presence of numerical dissipation. The excessive numerical
dissipation compared to the physical dissipation does not
greatly impact the results related to energy, because the energy
cascade rate is determined at the larger scales by the turbulence
properties. The power law dependence sets the flow of energy
from large scale to small scale, where it is dissipated by
dissipative processes. However, the specific dissipation process
does not influence the energy flow down the scales in the part
where ideal turbulence dominates.

The setups in Karampelas et al. (2019a) have a resolution of
[15.63, 15.63, 1563]×105 cm in the x, y, and z direction,
while a coarser grid of [40,40,1563]×105 cm was considered
in Karampelas et al. (2019b). An important point about these
simulations is that the wave driver period is set to that of the
fundamental kink mode of the loop, so the energy of the driver
can easily be trapped in the loop.

Looking at the slope of the internal energy increase in Figure
12 of Karampelas et al. (2019a), the rate of increase of internal
energy (i.e., εD) can be estimated to be ∼2.3×10−6

erg cm−3 s−1, when the whole box is taken into account, or
∼4.88×10−6 erg cm−3 s−1, when only a region of radius
3×108 cm containing the loop is considered. In conjunction

with this, the estimate of the heating rate using Equation (4)
(made using appropriate parameters to match with the model of
Karampelas et al. 2019a) we find a dissipation rate of
3.7×10−6 erg cm−3 s−1. Not only does this estimate give
the same order of magnitude, but it is within a factor of less
than 2 of the heating measured in the simulation. The heating in
the simulations was found to be only 67% efficient (Karampe-
las et al. 2019a), implying that our model underestimates the
100% efficiency heating rate by a factor of 2.
Now that we have shown we can provide a good

approximation of εD, we turn to understanding how the wave
amplitude could depend on the dissipation rate as a result of
KHi turbulence. Figure 1 shows the relation between the
injected energy flux and the wave amplitude, where the wave
amplitude d is given by d=VAMP/ω, with ω the wave
frequency and VAMP as given by Equation (7). The parameters
used were those applied in the simulations in Karampelas et al.
(2019b) including a weighted mean coronal density of
0.601×10−15 g cm−3 and a weighted mean loop density of
0.947×10−15 g cm−3 for our stratified loops (Andries et al.
2005). Also plotted are the results from simulations of kink
waves presented in Karampelas et al. (2019b). Here we show
the average center-of-mass displacement as a function of time,
from the respective models. The multiple points for a given
driving energy correspond to different times, which implies a
true steady state is never reached in the simulations presenting
a deviation from the assumptions made. We included a dashed
line that compensates the efficiency of the model to match to
the reduced efficiency of the heating from the simulations due
to the smaller wave amplitudes compared to those found in
Karampelas et al. (2019a). It is clear that the curve determined
by compensated Equation (7) acts as an upper limit of the wave
amplitudes measured from the simulations.

4. Summary and Discussion

There are two main conclusions from this work:

1. A good estimate for the energy dissipation as a result of
turbulence driven by MHD kink waves in the solar
corona can be calculated by extending the work of Hillier
& Arregui (2019).

Figure 1. Plot of wave amplitude against input energy flux for the simulations
presented in Karampelas et al. (2019b) (purple dots) and the predicted
amplitudes calculated using Equation (7) (solid line). The dashed line gives the
prediction assuming the heating is 36% efficient compared to the model.
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2. This implies that the wave amplitude is proportional to
the cube-root of the energy injection rate.

The corollary of all this is that the difference between
dissipating enough energy via turbulence to balance radiative
losses, and being an order of magnitude too small, becomes
only a difference in wave amplitude of ∼2.2.

Now we can also relate the results to the observational study
of Anfinogentov et al. (2015) by working under the assumption
that these are waves driven by noise with sufficient power at
the resonant frequency of the system making the model
presented here applicable. There, they find that the average
amplitude of the decayless oscillations is 0.17 Mm. Taking also
their average period of 258 s, an assumed coronal density of
109 cm−3, and a density contrast of 3, we can apply our formula
(6) to estimate the expected energy flux. We find this to be
7.5×10−9 erg cm−3 s−1, much lower than the 3×10−4

erg cm−3 s−1 that is expected for the optically thin radiative
losses for 106 K plasma for the number densities stated above.
Note that the big difference from the estimate in Section 2
comes from having a factor of ∼5 decrease in the oscillation
amplitude and a factor of ∼1.5 increase in the period, which
corresponds to a total ∼7.53 drop in heating rate.

In the above, we have always considered that the instability
is driven by the large-scale, observed velocity amplitude.
However, it was shown recently by Antolin & Van Door-
sselaere (2019) that resonant absorption plays a key role in the
startup phase of the KHi. The Alfvén resonance will generate
large, localized velocity gradients. So, our assumption that ΔV
is of the same order of magnitude as VAMP may be false if the
resonance plays a big role. In that case, the ΔV could be
increased by a factor that is much larger than 1. Along with this
the radius of the eddies would shrink due to the localization,
which will further enhance the dissipation rate. One caveat to
this is that even though the dissipation is faster, it happens in a
significantly smaller volume at the Reynolds numbers of the
solar corona, meaning that it is still necessary to transport this
thermal energy throughout the rest of the loop. Along the
magnetic field, field-aligned thermal conduction can perform
this role effectively, but across the field turbulent transport is
likely to play the dominant role, the timescales for which are
likely to be longer due to the large scales over which heat has to
be transported.

One point that is important to understand to give context to
the discussion of the previous paragraph is that the KHi
solution used here is one that is based on a discontinuous
velocity field but is applicable once a broad turbulent layer has
formed and is dynamically determined by the total energy
originally contained within the layer. Even with resonant
absorption occurring, the total energy contained over the broad
mixing layer is unlikely to be significantly larger than the value
we use in our model based on the wave amplitude (this
argument is borne out by the accurate prediction by our model
of the heating rate found in Karampelas et al. 2019a). Looking
at the simulations of Magyar & Van Doorsselaere (2016) for an
initially discontinuous tube boundary (close to the basis of our
model), and a smooth boundary where resonant absorption can
play a key role, larger amplitude perturbations only show small
qualitative and quantitative differences, meaning our model
will be applicable even when resonant absorption is playing an
important role in the initialization of the Kelvin–Helmholtz
dynamics. However, the larger differences found in that study
for much smaller amplitude waves mean that the role of

resonant absorption in the development of turbulence merits
further study in terms of understanding the turbulent heating
from decayless oscillations, though this is beyond the scope of
this study.
For the wave amplitude to increase until the dissipation rate

matches the injection rate, energy must be driven into the loop
at periods resonant with the fundamental or higher-order
harmonics of the kink mode of the loop. Otherwise energy
driven into the loop will be able to leak out instead of
increasing the oscillation amplitude, therefore making it
impossible for steady turbulence to develop.
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