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Abstract 14 

This paper develops a new domain knowledge-based initial design method for optimization of water 15 

distribution network design. The new initial water distribution network design method, termed as 16 

Headloss-based Design Preconditioner (HDP), is based on headloss analysis in the supplying path 17 

from source to user. The new HDP-preconditioned search is compared with two algorithms: one 18 

preconditioned on a velocity-based initial design method and a simple genetic algorithm without 19 

preconditioning. The results show the HDP headloss-based method outperforms the Prescreened 20 

Heuristic Sampling Method (PHSM) in terms of the quality of the initial solutions and 21 
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computational efficiency on all three cases. HDP also outperforms stochastic initialization on two 22 

of the three cases. The results obtained imply that the proposed domain knowledge-based design 23 

method HDP would be able to also provide effective starting conditions for other optimization 24 

algorithms besides genetic algorithm for large water distribution systems since most optimization 25 

methods are greatly assisted by a good starting condition. 26 

Keywords:  27 

Water distribution network; preconditioning; optimization; design. 28 

Introduction 29 

The drinking water distribution network (WDN) is critical urban infrastructure that provides the 30 

essential service of safe and high-quality drinking water to consumers. Optimal design of the WDN 31 

is an important problem because it is a basis for decisions normally involving large investments and 32 

hence optimal design can potentially suggest substantial savings. Preconditioning WDN 33 

optimization is to provide “good information” for the initiation of the optimization process to 34 

improve accuracy and computational efficiency. 35 

Literature Review 36 

In the last several decades, various optimization approaches have been developed and applied 37 

to water distribution network optimal design. In particular population-based evolutionary 38 

algorithms (EAs) (Fu et al. 2012a, Tolson et al. 2009, Vairavamoorthy and Ali 2000, Wu and 39 

Simpson 2001, Zheng et al. 2011, Zheng et al. 2017) have been used. When applying these 40 

optimization approaches to real-world large-scale networks however, challenges exist because of 41 

the high dimensional decision space (that  can include  tens of thousands of pipes), potentially 42 
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high computational demands, and constraints related to engineering practicability (Walski 2015, 43 

Wang et al. 2018, Zhang et al. 2018).  44 

Expert knowledge plays a crucial role not only in informed decision making, such as computer-45 

aided decision support systems, but also at various stages of an optimization process, e.g., pre-46 

optimization (Bi et al. 2015, Kang and Lansey 2012), mid-optimization (Johns et al. 2014, Keedwell 47 

and Khu 2006, Montalvo et al. 2014) and post-optimization (Andrade et al. 2012). Prior to 48 

optimization, expert knowledge can be used to generate an initial population of solutions, and this 49 

can improve the efficiency of optimization algorithms (Bi et al. 2015, Kang and Lansey 2012). 50 

During the optimization process, domain knowledge can guide the search through establishing the 51 

governing rules of search (Keedwell and Khu 2006), strengthen operator behavior of genetic 52 

algorithms (Johns et al. 2014), and promote human-computer interactions in the development of 53 

computer-aided design by adding good, diverse solutions generated from expert knowledge into the 54 

desired search region (Montalvo et al. 2014). After optimization, a domain knowledge-based greedy 55 

search algorithm can refine the solutions obtained (Andrade et al. 2012). In general, previous 56 

research has proven that domain knowledge can increase the efficiency of optimization algorithms 57 

and effectively guide the search direction, thus improving the convergence of optimization 58 

algorithms. Thus, there is a critical need to develop efficient, automatic, heuristic approach using 59 

domain knowledge to improve the performance of optimization algorithms for complex 60 

optimization problems such as WDN design. 61 

Preconditioning, a technique that feeds high performing solutions to the initial population for 62 

optimization has been investigated to guide the search towards the global optimum. Preconditioning 63 

methods can provide Initial Network Configurations (INC) for the population-based optimization 64 
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algorithm. Different approaches have been developed to provide promising solutions in the field of 65 

WDN optimal design. For example, Fu et al. (2012b) employed a global sensitivity analysis method 66 

to decompose the original, complex WDN optimization problem into simple problems with a small 67 

set of sensitive design variables, whose solutions are used to precondition the search of the original 68 

problem. This method was tested on WDN. Zheng et al. (2011) used a nonlinear programming (NLP) 69 

optimization approach to derive solutions for decomposed branched networks, then the solutions 70 

are fed to EAs and concurrently the search space is tailored accordingly. Kang and Lansey (2012) 71 

and Bi et al. (2015) prescreened heuristic sampling for deriving good solutions based on a network 72 

flow velocity analysis. These knowledge-based heuristic methods are proven promising in 73 

improving the search efficiency, and thus motivate the current study to develop a more efficient 74 

preconditioning method. 75 

Headloss-based Design Preconditioner (HDP) for Finding Initial 76 

Network Configurations (INC)  77 

This paper aims to develop a new method (HDP) for WDN that provides high performing 78 

solutions to precondition for optimization. The heuristic method is based on physical domain 79 

knowledge on headloss. The reasoning behind the method is that, in the optimal network 80 

configuration, the minimum pressure head should be as close as possible to the pressure threshold 81 

required, and all energy (i.e. pressure head) should be adequately utilized along the supply path 82 

without any constraint violations (i.e., minimum pressure requirement). This approach can 83 

effectively identify a high performing network configuration for multi-source WDN design 84 

problems. 85 

 The new method HDP is compared with a flow velocity-based heuristic design approach by 86 
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Bi et al. (2015), i.e., Prescreened Heuristic Sampling Method (PHSM), with respect to the 87 

computational effort and the quality of solutions.  88 

For both the PHSM method and the HDP preconditioning method proposed here, the best 89 

solution can be input to an evolutionary algorithm by making it a member of the initial population 90 

in the algorithm (e.g. in a genetic algorithm). We consider three water distribution networks of 91 

increasing complexity (Two-reservoir, Modena, and Balerma networks) to demonstrate the 92 

efficiency and effectiveness of the proposed HDP method. In this paper we use HDP in conjunction 93 

with a genetic algorithm, but it could also be used with other optimization algorithms such as DDS 94 

(Tolson and Shoemaker 2007), Differential Evolution (Storn and Price 1997), and Particle Swarm 95 

Optimization (Kennedy and Eberhart 1995). 96 

Methods 97 

Headloss-based Design Preconditioner (HDP) 98 

For the optimal design problem of water distribution networks, the ideal optimal solution 99 

should, have the least cost solution that satisfies the required minimum pressure at each demand 100 

node and all other constraints. The symbols used in this section and the acronyms are listed in Table 101 

1.  102 

The schematic diagram of the HDP method is presented in Figure 1. In this method, three major 103 

steps are included: 1) each demand node needs to have a unique supply path, and the supply area 104 

from each source is determined first if the network includes multiple sources; 2) Calculating the 105 

headloss for each individual pipe based on the supply path; and 3) Calculating the pipe diameter 106 

with the headloss equation. The updated pipe diameters will change the flow and headloss of all 107 
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pipes, and thus the supply zones of water sources and supply paths will change subsequently. An 108 

iterative process is comprised by the above three steps, which is stopped when  the termination 109 

criterion is achieved. The detailed procedures of the HDP method are presented  below and 110 

summarized in Fig. 1. 111 

Step 0: Initializing parameters 112 

Prior to the first iteration, all pipes in the network are set to the largest diameter among the pipe 113 

diameters available, which is gradually reduced through iterations described in Step 3. The 114 

parameters ITmas and Preq are provided before computing, where the maximum number of iterations   115 

ITmas is used as a stop criterion and 
reqP  is the minimum pressure threshold that must be maintained 116 

at all nodes in the network 117 

Step 1: Grouping nodes in terms of water source supply zone 118 

In multi-source network systems, a demand node may be supplied by several possible water 119 

sources, which are primarily determined by the source heads. The traditional way of determining 120 

the supplier employs the shortest path method (Bi et al. 2015, Zheng et al. 2011), which only 121 

considers the spatial distance between source and node, without involving hydraulic conditions. 122 

Since water sources usually have different heads feeding water into the network, the source with the 123 

higher pressure head is capable of providing a larger area than that of the lower head. A node i 124 

belongs to a specific source k when the shortest paths between the node i and k has the smallest 125 

headloss in comparison with the path from node i to any other source. The number of subzones is 126 

equal to the number of water sources. Therefore, a new method is proposed here to determine the 127 

supply area (i.e. which source should supply water to a given node). The procedure of Step 1 is 128 

given as follows: 129 
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Step 1.1 Conduct a hydraulic simulation using the current diameter settings (i.e. the largest 130 

diameter for each pipe in the Step 0). The simulation results for source heads ( , 1,2, ,k sH k N ) 131 

and pipe flow rates (i.e. including the local demand and conveyance quantity) 132 

( , , 1,2, , ,ij nQ i j N i j  ) are recorded where sN  and nN  are the numbers of the sources 133 

and the nodes, respectively; 134 

Step 1.2 Calculate the length ( kiL ) of the shortest paths ( kiP ) from source k  to node i , 135 

 , ,ki k j iP    , using Dijkstra algorithm (Deo 1974) ( 1,2, , ni N ), and the total number 136 

of paths is s nN N ;  137 

Step 1.3 Calculate the potentially maximum headloss for each path 
ki k req iHL H P E   , 138 

where iE  represents the elevation at the i th node; 139 

Step 1.4 Calculate unit headloss for each path /ki ki kiUHL HL L , and the total number of 140 

unit headlosses is s nN N ; and 141 

Step 1.5 Node i  has multiple shortest paths corresponding to different sources. Node i  is 142 

assigned to a specific source if their shortest path poses the smallest unit head loss ( kiUHL ). 143 

Step 2: Calculate each pipe headloss based on the least headloss path 144 

This heuristic design approach is based on the headloss analysis. Usually, a smaller pipe 145 

diameter leads to the greater headloss under the same flow rate condition. This method examines 146 

the available largest headloss that could be dissipated in the pipeline. The headloss of a pipe (
ijHL ) 147 

is calculated by the unit headloss ( kiUHL ) (obtained by Step 1) in the path and the pipe length (
ijL ). 148 

When a pipe is a part of multiple different paths, there are several headloss values for the same pipe. 149 

In this situation, the smallest headloss is chosen to represent the headloss of the given pipe, since 150 

this guarantees there will be sufficient head preserved for the downstream pipes.  151 
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Step 3: Calculating pipe diameters using the headloss of each pipe segment  152 

Step 3.1 The diameter is calculated using the headloss equation (e.g. Hazen-Williams (HW) 153 

equation and Darcy-Weisbach (DW) equation (Ormsbee and Walski 2016)) with the known headloss 154 

(from Step 2) and flow rates (from Step 1). The specific headloss equation is chosen in terms of the 155 

parameters in the cases. The mathematical expression of the HW equation in SI units is given as, 156 

0.205 0.38

0.38 0.205

1.626 ij ij

n

ij

L Q
D

C HL
                              (1) 157 

where nD  is the diameter updated; C  is the Hazen-William coefficient. In addition, the DW 158 

equation is also an alternative headloss equation as below, 159 

1
2 5

2

8 ij ij

n

ij

Q L
D f

g HL

 
   
 

                              (2) 160 

where g  is the gravity acceleration and  f  is the Darcy friction factor that  can be calculated 161 

by the Hagen-Poiseuille formula, the Moody Diagram or the Colebrook-White equation. Because 162 

the Darcy-Weisbach equation takes different flow regimes into account, it is thought to be more 163 

accurate than the empirical Hazen-Williams equation. The headloss function is chosen in terms of 164 

the specific roughness parameter in this study.  165 

Step 3.2 The resulting diameter is rounded up to the closest discrete commercial diameters 166 

available. The fitness and constraints are calculated then.  167 

Step 4 The HDP method is an iterative process until the maximum iteration number ( maxIt ) is 168 

reached or the diameters have no change in a sequence of iterations. The new diameters obtained 169 

from Step 3 are used to update the network design and the algorithm goes back to Step 1. Steps 1-3 170 

are repeated until the stopping criteria are met.  171 

As shown in Figure 1, the core idea in the HDP algorithm is to find the least headloss for each 172 
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pipe in the supply path without violating constraints. We establish the supply zone for grouping 173 

nodes. Then, the least headloss per unit length is identified from the headloss paths. If one pipe 174 

appears in multiple paths, then the smallest headloss (i.e. the largest diameter) is taken. Third, the 175 

headloss of pipes can be translated into pipe diameter by the classical headloss equation (Walski et 176 

al. 2003). The HDP method includes an iterative process with three steps. The diameter and flow 177 

rate are varied in each iteration and gradually reach an equilibrium (i.e., diameters unchanged 178 

through multiple iterations). The headloss along the path is determined based on the optimality 179 

principle of the WDN design (i.e. the farthest node heads are at the minimum pressure requirement), 180 

which is essential to guarantee a good heuristic solution. The power of HDP is demonstrated by the 181 

network cases in the Results section.  182 

The HDP method is demonstrated using an illustrative case study, i.e., the multi-source network 183 

with different feeding heads (i.e. water surface elevation of the reservoir). The illustrative network 184 

consists of 13 pipes and 8 demand nodes and is symmetrical with pipes of equal length, as shown 185 

in Figure 2a. There are two elevated reservoirs feeding the users from east and west sides, 186 

respectively. The minimum pressure required is 30 m.   187 

The headloss-based heuristic design (HDP) method is tested in two scenarios of the illustrative 188 

network. Figure 2b shows the symmetric diameter configuration for Scenario 1 with the equal heads 189 

of the two reservoirs, while Figure 2c shows the Scenario 2 where the source with the higher head 190 

could provide a larger supply area. The results are in line with the fact that higher head will reach 191 

further demand nodes. This implies the new method is better than the traditional shortest path 192 

method (Dijkstra algorithm), which would evenly distribute supply areas in terms of the pipe length. 193 

The diameters obtained by HDP in Figure 2 gradually decrease from the source to the lowest 194 
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pressure node, which is what would be expected based on fluid dynamics. There is no pressure 195 

violation in the two configurations of diameters. Therefore, the HDP performs well in the pipe sizing 196 

problem and can be applied to a multi-source network.  197 

Comparison to Prescreened heuristic sampling method (PHSM) 198 

PHSM was developed to provide a promising prescreening solution using domain knowledge 199 

by Bi et al. (2015). The goal of a prescreening solution is to speed up the identification of an optimal 200 

distribution of pipe diameters by providing a good initial guess of what the best solution is, i.e., a 201 

set of good values for all the pipe diameters. In Bi et al (2015). PHSM performs well in comparison 202 

with Kang and Lansey’s heuristic method (KLHM) (Kang and Lansey 2012). Therefore, in this 203 

paper PHSM is chosen for comparison with the newly proposed method (HDP). The PHSM method 204 

has  three primary features : 1) a procedure for estimating a good initial diameter distribution 205 

across the network; 2) a velocity-based iterative heuristic design method; and 3) an initializing 206 

strategy for an evolutionary optimization algorithm. Following are the PHSM steps: 207 

Step 1 The shortest path method is used to divide the network into sub-zones along the path 208 

from source to the farthest nodes. The number of sub-zones is based on the number of the diameter 209 

options. In each sub-zone the same initial diameter is assigned to the pipes. The pipes near the source 210 

are allocated with a larger diameter, while farther pipes given a smaller diameter.  211 

Step 2 The procedure consists of two loops. The outer loop iterates for the velocity increase 212 

until the constraints are violated. The inner loop evolves to achieve an equilibrium between diameter 213 

and flows under a certain velocity condition until the diameters convergence (i.e., diameters have 214 

no improvement in a sequence of iterations). The velocity is an a priori condition in the outer loop, 215 
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and the flow rate is derived from the hydraulic simulation. The diameter is calculated using 216 

4
n

Q
D

v
 , where nD  is the updated diameter (m); Q  is the pipe flow rate (m3/s); and v  217 

is the velocity (m/s). The velocity is consistent in an inner loop.  218 

Step 3 The procedure is designed to  promote e the diversity of initial solutions, as well as to 219 

strengthen the good genes in the population.  A probability density function (PDF) is introduced 220 

based on the best known solution derived from Step 2. The initial population of an evolutionary 221 

algorithm is randomly sampled based on the established PDF. The new PDF replaces the normal 222 

distribution, which is widely used in the experimental design (e.g. Latin hypercube sampling). The 223 

new PDF is steeper in comparison with the bell shape of the normal distribution in order to 224 

significantly concentrate near  the best solution. The detailed description of the PHSM method can 225 

be found in the study by Bi et al. (2015).  226 

Problem Formulation and Optimization Algorithms 227 

The water distribution network (WDN) optimal design is formulated as a single objective least 228 

cost problem. The objective is penalized when design constraints are violated. The mathematical 229 

expression of the objective ( F ) is given below and is used as a fitness function in the genetic 230 

algorithm: 231 

   

 
1

max

,   0

,   >0

pn

i i

i

L f D if V D
F

C penalty if V D






 
 


                           (3) 232 

where  and i iL D  are the length and the diameter of pipe i , respectively. ( )if D  is the unit cost 233 

length function of pipe i  with diameter 
iD . pn  is the total number of pipes. Each pipe has a 234 

maximum cost (typically for the largest diameter). maxC  is the sum of these maximum costs over 235 
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all the pipes. If the design constraints are violated, the objective is greater than the maximum cost. 236 

The higher the violation, the larger the penalty. ( )V D  is the violation. The term penalty  is the 237 

sum of the constraint violations (i.e. the possible maximum cost). The constraint violation is 238 

calculated as the sum of pressure deficits,  239 

   
1

min ,0
nn

i req

i

V D H H


   
  .                         (4) 240 

where iH  is the pressure head at node i , 
reqH  is the pressure head requirement. nn  is the 241 

total number of nodes. The hydraulic equations that compute pressures and flows in each pipe are 242 

solved by EPANET 2 (Rossman 2000). 243 

We are comparing alternative methods for generating initial trial solutions (preconditioner) to 244 

help speed up the optimization search. For optimization we use a Genetic algorithm (GA) as a 245 

typical evolutionary algorithm. Genetic algorithms can find (near) optimal solutions in various 246 

complex nonlinear problems with integer variables (Fu et al. 2008, Meng et al. 2016, Reca and 247 

Martínez 2006, Sweetapple et al. 2014, Wu and Walski 2005). Nicklow et al. (2010) summarized 248 

four components of GA including: 1) generation of the initial population; 2) computation of the 249 

fitness function; 3) select parents and  reproduce offspring solutions; 4) mutation of each offspring 250 

solution to maintain the population diversity. This paper focuses on the first point so the initial 251 

population contains a good solution that  can enhance the gene pool and potentially lead to a better 252 

solution.    253 

Since we are comparing our HDP to an alternative initial starting solution computation method 254 

PHSM, we use both methods to start a simple GA (SGA) optimization. We choose GA as the 255 

optimization method since this was the method used in the PHSM (Bi et al. 2015).  Integer coding 256 

is used for the discrete pipe sizing problems. The operators chosen are roulette wheel selection, 257 
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uniform probability distribution for crossover point, and Gaussian mutation. The case study and the 258 

specific parameters for each case are provided in the next section.  259 

To integrate the HDP or PHSM with the GA, the initial population of GA is produced by Latin 260 

Hypercube sampling (LHS) method, and the best solution derived from either the PHSM or the HDP 261 

is added to the initial population before starting the optimization iterations. 262 

Case Study Networks 263 

Three distribution networks (called “Two reservoir”, “Modena”, and “Balerma” Networks) 264 

with an increasing number of variables and network complexity are used to test the newly proposed 265 

HDP approach. Three network cases and their optimization parameters are summarized in Table S1 266 

in the supplemental materials. Each network is explained in more detail below. 267 

Case #1 268 

The “Two-Reservoir” network (TRN) from Gessler (1985) has 14 pipes and 10 junctions, as 269 

shown in Figure S1 in the supplemental materials. The design problem has been modified in this 270 

study, and all pipes are considered as variables. Two reservoir heads are fixed at 365.76 m (left) and 271 

371.86 m (right). All pipes have the same Hazen-Williams roughness coefficient of 120. The 272 

available diameters are [152, 203, 254 ,305 ,356 ,407 ,458 ,509 mm]. The minimum pressure 273 

required at all nodes is 30 m. Only the normal demand scenario is used here.  274 

Case #2 275 

Modena network (MOD) (Bragalli et al. 2008), as shown in Figure S2 in the supplemental 276 

materials, is a real-world network in Italy, which includes 317 pipes, 268 nodes, and 4 reservoirs 277 
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with a fixed head in the range from 72.0 m to 74.5 m. A Hazen-Williams roughness coefficient of 278 

130 is applied to all pipes. The available pipe diameters are [100, 125, 150, 200, 250, 300, 350, 400, 279 

450, 500, 600, 700, 800 mm]. The minimum pressure head requirement of all the demand nodes is 280 

20 m. The maximum pressure thresholds are also considered as given in the studies (Bragalli et al. 281 

2008, Wang et al. 2015). The flow velocity in pipes should be less than 2.0 m/s.  282 

Case #3 283 

Balerma Network (BN) in Italy (Reca and Martínez 2006) includes 454 relatively short length 284 

pipes, 443 nodes, and 4 reservoirs with fixed heads within 112 m to 127 m, as shown in Figure S3 285 

in the supplemental materials. The material of pipes is polyvinyl chloride (PVC). The available 286 

diameters are [113, 126.6, 144.6, 162.8, 180.8, 226.2, 285, 361.8, 452.2, 581.8 mm]. The Darcy-287 

Weisbach fraction factor of 0.0025 mm is applied to all the pipes. The minimum pressure head above 288 

ground elevation is 20 m for all the demand nodes.  289 

For all three networks, the options of commercially available diameters, the corresponding unit 290 

pipe costs, and EPANET input files (.inp) can be found at the website of Exeter CWS 291 

(https://emps.exeter.ac.uk/engineering/research/cws/resources/benchmarks/design-resiliance-292 

pareto-fronts/summary-of-benchmark-problems/) and also refer to Wang et al. (2015). 293 

Results and Discussion  294 

Comparison of Heuristic Design Methods 295 

Tables 2-4 show the optimal design solutions for TRN, MOD, and BN, respectively, using the 296 

two initial approaches HDP and PHSM. With the HDP, each row in tables represents the results of 297 

https://emps.exeter.ac.uk/engineering/research/cws/resources/benchmarks/design-resiliance-pareto-fronts/summary-of-benchmark-problems/
https://emps.exeter.ac.uk/engineering/research/cws/resources/benchmarks/design-resiliance-pareto-fronts/summary-of-benchmark-problems/
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the network cost for each iteration. The PHSM has two iterative processes: 1) the outer loop of 298 

velocity increase and 2) the inner loop, which is associated with the iterative process for balancing 299 

flow and diameter in every velocity increment.  300 

The design solutions from HDP are better than those from PHSM for all three case studies, 301 

with a HDP cost saving of 20.7%, 16.6%, and 29.9% in Tables 2, 3 and 4, respectively. The 302 

simulation is executed once in each optimization iteration. So, the number of iterations (each doing 303 

one hydraulic simulation) represents the computational burden of the preconditioning methods since 304 

the computational time in each hydraulic simulation is consistent for a network. The PHSM  needs 305 

a larger number of iterations to achieve convergence than the HDP method. The number of hydraulic 306 

simulations in the HDP method is only 16.7%, 12.7%, and 6.1%, respectively, of the simulations 307 

required by PHSM in the three cases. In summary, the results show the HDP method greatly 308 

outperforms PSHM in terms of computational efficiency and solution quality.  309 

Recall that the PHSM method is based on velocity analysis of design networks, with a 310 

fundamental assumption of uniform velocity across the network. The method starts with the possible 311 

minimum velocity and increases the velocity until the constraints are violated. This assumption 312 

results in a deviation from the optimal solutions. The assumption that uniform velocity is distributed 313 

in the entire network represents a general understanding of network characteristics, which shows 314 

the lower capital cost network may have a higher average velocity. Thus, it is difficult to achieve a 315 

lower cost with uniform velocity as required by the PHSM method.  316 

In contrast, the new method (HDP) uses the headloss based analysis in which the possible 317 

maximum headloss (in a path) is the criterion  to determine the designed diameters. All available 318 

heads are effectively distributed along the pipe in order to obtain the cost-effective diameters. On 319 
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the basis of the given headloss for each pipe, the equilibrium relationship between flow and diameter 320 

is achieved within a sequence of iterations. Through the three case studies, the resulting diameters 321 

are able to converge quickly on the basis of the criterion of the improvement of the solution quality. 322 

PHSM attempts a wide range of velocities and starts from a relatively low one for ensuring the 323 

solution is feasible. For each velocity trial, PHSM requires an inner loop to balance flow and 324 

diameter. The computational effort for PHSM is therefore significantly increased compared to HDP. 325 

The MOD and BN cases are large-scale, real-world WDNs with hundreds of variables. However, 326 

the HDP can achieve the convergence in  only a few iterations, which demonstrates that the HDP  327 

design method based on domain knowledge is very efficient.  328 

According to Tables 2 and 3, the costs derived from HDP exhibit a decreasing trend in the 329 

iterative process. However two infeasible solutions are obtained in iterations 2 and 3 in Table 3, 330 

where the values in the brackets are the constraint violation values. The solutions after the third 331 

iteration are feasible ones including the final solution. Infeasible solutions are likely to appear at the 332 

beginning stage when diameters vary widely. That is because the flows would oscillate around the 333 

loop in the network when the diameters are being adjusted. In some cases, the flow direction also 334 

varies at times.  335 

Figure 3 shows that all the designed network satisfies the fundamental principle of network 336 

design, i.e., the allocated pipe diameters decrease from source to end users along the supply paths. 337 

This is an advantage over randomly selecting an initial design because it is using known information 338 

about the WDS. . In Figure 3, the pipes that link to sources with a higher head have larger diameters 339 

in all three cases. This implies that the source with a higher head can supply more water and cover 340 

a larger supply area. Further, the HDP method identifies smaller trunk mains compared with PHSM 341 
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without violating the head constraints. . These design solutions represent good solutions that can be 342 

used in practice if no optimization is going to be undertaken to determine pipe sizes. . However, the 343 

solutions could be improved further, with the aid of optimization technologies. This is demonstrated 344 

by adding the HDP solutions into the initial population of for the genetic algorithm search.   345 

Optimal Solutions 346 

We want to compare the impact of the different initial network configurations (INC) on the 347 

final solutions obtained from the optimization (here using GA as the optimization tool). We compare 348 

the INC solutions from HDP and PHSM to the simple GA method, in which all the solutions in the 349 

initial population are produced randomly using Latin Hypercube Sampling (LHS).  350 

For each of the three network case studies, ten trials were conducted considering the random 351 

nature of GAs. The search convergences of the GAs during the entire evolutionary process are 352 

shown in Figure 4. The shaded areas represent the maximum and minimum ranges from 10 random 353 

trials. The bold black lines are the average values of the multiple trials. The statistics of the 354 

optimization results are shown in Table 5. 355 

The results in Table 5 show the best solution, average value of solutions and worst solution 356 

found in multiple trial runs for each of the algorithms. From Column 3, all three initialization 357 

methods are able to achieve an optimal solution of US$3.521 million in the TRN case, since the 358 

TRN is a small case and easy to converge. However, the variation of the solutions of HDP is smaller 359 

than that of PHSM and LHS (see Figures 4a, 4b and 4c), which indicates HDP is more reliable at 360 

reaching a good solution.  361 

In the MOD problem, the LHS obtained the best final and average solutions but is the worst 362 
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on the other two problems. The final solution variation range of LHS is larger than the range of HDP 363 

in MOD. It indicates that LHS shows an unstable performance. It should be noted that the percentage 364 

difference between LHS and HDP in MOD is much smaller than the difference for TRN and BN 365 

cases. Moreover, the convergence of PHSM and HDP at the beginning is significantly better than 366 

LHS. If the computational resource is limited for the optimization problems, the preconditioning 367 

method is quite effective for accelerating the convergence within the limited computational budget. 368 

The reason why LHS can obtain better results occasionally will be explained in the discussion on 369 

Figure 5. 370 

More importantly, this study is to explore and compare the quality of the solutions and the 371 

speed of the convergence between the two preconditioning methods that are based on the domain 372 

knowledge. For all cases HDP outperforms PHSM methods regardless of whether the comparisons 373 

are based on the best solution, on the average solution or on the worst solution in Table 5. The 374 

variation range of the HDP solutions is smaller than PHSM as shown in Figure 4. It shows that HDP 375 

can save massive computational cost compared to PHSM when achieving the same quality solution. 376 

The results of TRN and BN cases demonstrate that the optimization started with a better initial 377 

solution may lead to the better optimized results. The results imply that the good solution that is fed 378 

into the initial population could effectively guide the search process and accelerate the search 379 

convergence. This preconditioning is effective for large networks with a high dimensional search 380 

space.   381 

As shown in Figure 5b and 5c, the sources 1 and 4 are the main sources (i.e. the sources are 382 

linked by the larger pipes) in the obtained optimization solutions. Consistently, the main sources are 383 

the same as the initialization solutions derived from the PHSM and HDP respectively (see Figures 384 
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3c and 3d). Compared to the optimal solution derived from LHS, the only main source is Source 3 385 

(Figure 5a). Therefore, the preconditioning methods of PHSM and HDP provide the starting points 386 

that guide the inferior search direction (i.e. not towards the optimal area), then result in the local 387 

optimum in the optimization. It may thus be inferred that the crossover operator of GAs can spread 388 

the superior genes of the solution in the population quickly, however the mutation operator is hard 389 

to assist the search to escape the local trap (preconditioning solutions). A potential reason is that the 390 

mutation probability in the large case is relatively low, for example the mutation probability in MOD 391 

is 0.003 in comparison with the TRN case of 0.07. Hence the initial network configuration (INC) 392 

design methods contribute more to the exploitation of EAs, while less to the exploration in the large 393 

WDNs. 394 

Comparing with the Literature Solutions 395 

Table 6 shows the comparison of optimal solutions from the literature using GA-related 396 

algorithms or mathematical programming for the MOD case. The best solution of the MOD network 397 

obtained in this paper is $2,531,934. SGA has a great potential for applying to the water network 398 

problems. The optimization solution combined with the HDP method performs well in comparison 399 

with other results from the literature (Table 6) Although the GA is used in this study, but the HDP 400 

method is easy to combine with other sophisticated optimization algorithms (e.g., Particle Swarm 401 

Optimization, Harmony Search, Differential Evolution, Dynamically Dimensioned Search).  402 

Similarly,, for the BN case, the best solutions that are associated with GA in the literature are 403 

summarized in Table 7. Table 7 shows that the HDP initial design (added to the initial SGA 404 

population) combined with SGA derives the best solution (€1,941,349) among all the algorithms 405 

when executing 10 million evaluations. The preconditioning method (HDP+SGA) is better than the 406 
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hybrid algorithms (Sadollah et al. 2015, Sheikholeslami et al. 2015, Tolson et al. 2009) in the BN 407 

(Balerma) case study.  408 

Here we show HDP enables the optimization to substantially reduce the number of objective 409 

function evaluations necessary to obtain accurate solutions for search with a simple GA. Future 410 

research can explore how to combine this technique with more sophisticated optimization methods. 411 

The improved solutions are highly expected.  412 

Conclusions  413 

In this paper, a new heuristic design method (HDP) based on domain knowledge is proposed 414 

to provide an initial network configuration (INC) that is used in the population in the first generation 415 

of the simple GA search for water distribution network design problems. The domain knowledge 416 

includes an understanding of the physical factors affecting the relationship between pipe sizes and 417 

heads in a network. The method employs headloss analysis to determine the pipe diameters in the 418 

network through an iterative process to get a good initial guess of what an efficient allocation of 419 

pipe sizes might be. Its performance is compared with another (INC) design method (PHSM), 420 

developed by Bi et al. (2015). The results from three networks show that the HDP method is 421 

significantly superior to PHSM in terms of the quality solution and the computational burden. When 422 

the solutions from the heuristic methods are fed to the population-based GA, the performance of the 423 

algorithm has been improved substantially. More importantly, the HDP based genetic algorithm 424 

search is more efficient and effective compared to those based on PHSM. 425 

Combining a deterministic heuristic network design method with the evolutionary algorithm is 426 

promising as it brings domain knowledge to the optimization algorithms in order to strengthen the 427 

algorithm’s search capability and convergence. This can effectively balance the global search 428 
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algorithm (exploration) and guided search (exploitation) by engineering judgment to solve the 429 

optimal design problems in real-world large-scale WDNs. The performance of HDP could be tested 430 

on more case studies and their use with other optimization algorithms.  431 
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Table 1 Notation for the symbols and acronym 

Symbol Definition Where discussed 

maxD  Maximum pipe diameter  Step 0 

IT  Current iteration number and  Step 0 

maxIT  maximum number of iterations Step 0 

reqP  Minimum pressure threshold Step 0 and Step 1.3 

kH  Water head of source k  ( 1,2, , sk N ) Step 1.1 

sN  Number of sources Step 1.1 

nN  Number of nodes Step 1.1 

ijQ  
Pipe flow rate (the pipe from node i  to node j , and 

i j ) 
Step 1.1 

kiL  Length of the shortest path from source k  to node i  Step 1.2 

kiP  Shortest path ( , ,k i  ) from source k  to node i  Step 1.2 

iE  Elevation at node i  Step 1.3 

kiHL  Maximum headloss for path kiP  Step 1.3 

kiUHL  Unit headloss for path kiP  Step 1.4 

ijHL  Headloss of pipe ij  Step 2 

nD  Updated Diameter Step 3 

oD  Diameter obtained in the last iteration Step 3 

ijL  Length of pipe ij  Equations 1 and 2 

g  Gravity acceleration Equation 2 

C  Roughness coefficient Equation 1 

f  Darcy friction factor Equation 2 

HDP Headloss-based Design Preconditioner   

PHSM Prescreened Heuristic Sampling Method  

INC Initial Network Configurations  

HW Hazen-Williams equation   

DW Darcy-Weisbach equation   

SGA Simple genetic algorithm  

LHS Latin hypercube sampling  
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Table 2 TRN network initial solution results of heuristic design methods 

 HDP PHSM 

 

Iteration 
Cost 

(m$) 

Velocity 

(m/s) 

for outer 

loop 

Iterations 

for inner 

loop 

Cost 

 (m$) 

 1 3.979 0.1 5 6.577 

 2 3.918 0.2 4 5.637 

   0.3 3 4.941 

Total 2 3.918 Total 12 4.941 

 

  



Table 3 MOD network initial solution results of heuristic design methods 

HDP PHSM 

Iteration 
Cost 

(m$) 
Iteration 

Cost 

(m$) 
Iteration 

Cost 

(m$) 

Velocity 

(m/s) 

for outer 

loop 

Iterations 

for inner 

loop 

Cost 

(m$) 

1 7.556 8 2.872 15 2.839 0.1 24 21.87 

2 
3.041 

(1.98)a 
9 2.881 16 2.829 0.2 39 14.63 

3 
2.945 

(0.34)a 
10 2.882 17 2.829 0.3 28 9.530 

4 2.869 11 2.862 18 2.831 0.4 12 4.311 

5 2.873 12 2.855 19 2.823 0.5 39 3.779 

6 2.844 13 2.846   0.6 8 3.385 

7 2.864 14 2.844      

Total    19 2.823 Total 150 3.385 

a The sum of pressure violations (unit: m).   

Note: The velocity constraint is not violated.  

  



Table 4 BN network results of heuristic design methods 

 HDP PHSM 

 

Iteration 
Cost 

(m€) 

Velocity 

(m/s) 

 for outer 

loop 

Iterations 

for inner 

loop 

Cost 

(m€) 

 1 4.004 0.1 9 13.38 

 2 2.687 0.2 19 10.83 

 3 2.604 0.3 16 8.982 

 4 2.504 0.4 20 8.160 

 5 2.503 0.5 27 7.295 

 6 2.461 0.6 20 6.255 

 7 2.447 0.7 14 5.094 

 8 2.426 0.8 19 4.476 

 9 2.428 0.9 16 3.958 

 10 2.427 1 11 3.716 

 11 2.429 1.1 9 3.466 

Total 11 2.429 Total 180 3.466 

 

  



Table 5 Optimization results for three network cases 

Problem 
Initialization 

method 

Number 

of 

different 

trial 

runs 

Best 

solution 

found 

($m) 

Average 

cost 

solution 

($m) 

Worst 

solution 

found 

($m) 

Average number of 

evaluations used by 

HDP to find 

equivalent best 

solution in PHSM  

 1 2 3 4 5 6 

TRN 

LHS 50 3.521 3.612 3.995 - 

PHSM 50 3.521 3.599 3.717 21,667 

HDP 50 3.521 3.571 3.642 7,500 

MOD 

LHS 10 2.532 2.557 2.576 - 

PHSM 10 2.617 2.672 2.723 9,550,000 

HDP 10 2.549 2.564 2.574 730,000 

BN 

LHS 10 2.151 2.189 2.2.13 - 

PHSM 10 1.986 1.999 2.014 9,500,000 

HDP 10 1.941 1.954 1.980 1,300,000 

 

  



Table 6 The best solutions of the MOD network in the literature 

MOD references Algorithm 

Best 

solution 

(m$) 

Computational 

budget 

(Evaluations) 

This study 
SGA 2.532 10,000,000 

HDP+SGA 2.549 10,000,000 

Bragalli et al. (2008) MINLP 2.565 7,200(s)a 

Bragalli et al. (2012) BONMIN 2.577 7,200(s) a 

a The time is used to obtain the solution.  

“+” represent two algorithms are conducted subsequently.  

 

 

 

  



Table 7 The best solutions of the BN networks in the literature 

BN references Algorithm 

Best 

solution 

(m€) 

Computational 

budget 

(Evaluations) 

This study 
SGA 2.151 10,000,000 

HDP+SGA 1.941 10,000,000 

Bi et al. (2015) PHSM+SGA 2.061 1,000,000 

Reca and Martínez (2006) GENOME 2.302 10,000,000 

Tolson et al.(2009) 
HDDDS 1.956 10,000,000 

HDDDS+Local 1.941 30,000,000 

Sadollah et al. (2015) IMBA 2.014 250,000 

Sheikholeslami et al. (2015) CSHS 1.988 3,000,000 

Sheikholeslami and Talatahari 

(2016) 
BB-BC-PSO 1.987 3,000,000 

“+” represent two algorithms are conducted subsequently.  
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Calculate pipe diameter ( ijD ) by pipe headloss formula and round up 
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Figure 1 Flowchart of Headloss-based Design Preconditioner (HDP) algorithm 

Figure 2 The illustrative case network: Pane a) is the topology of the network where the 

numbers represent pipe lengths (m). Panes b) and c) are the results (pipe diameters and 

flow directions) of HDP from equal (Scenario 1) and unequal (Scenario 2) heads of 

sources (m), respectively, where the numbers represent pipe diameters (mm).  

Figure 3 Comparison of the initial network configurations derived from PHSM and 

HDP methods. Panels a) and b) show the results of the initial solutions in Two Reservoir 

problem derived from PHSM and HDP, respectively. Panels c) and d) are for the MOD 

problem; Panels e) and f) are for the BN problem.  

Figure 4 Convergence of the GAs preconditioned on the solutions from PHSM and 

HDP for three WDNs. “LHS” refers to a GA with an initial population selected by Latin 

Hypercube sampling. The shaded areas represent the ranges (minimum to maximum) 

from 10 random trials. 

Figure 5 Network configurations of the optimal solutions in MOD 
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