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Abstract

Herein, an experimental and Density Functional Theory (DFT) analysis of the composite g-

C3N4/BiVO4 microflower photocatalysts were comprehensively discussed. A remarkable 

photoelectrocatalytic solar hydrogen production has been observed for the as-developed 

photocatalysts, with different loading amounts of g-C3N4 (0.1, 0.4, 0.8, and 1.2 wt.%), using lake 

water without the addition of sacrificial reagents. The 0.8 wt.% g-C3N4/BiVO4 microflower 

photocatalyst evinced remarkable photoelectrocatalytic activity of 21.4 mmol/h of hydrogen 

generated in comparison to other samples with an AQE of 4.27% at 420 nm. In addition, the 

photocurrent density of 0.8 wt.% g-C3N4/BiVO4 microflower was two-fold higher than that of pure 

BiVO4. This was attributed to its better crystallinity and optical properties; confirmed from XRD 

and DR-UV-Vis analysis. The DFT analysis further corroborated that the efficient photocharge 

carrier separation and limited photocharge carrier recombination corresponded to the synergistic 

effect of the band offset and built-in electric field. 

 

Keyword: BiVO4, g-C3N4, photoelectrochemical cell, density functional theory, hydrogen, lake 

water.

Page 3 of 40

ACS Paragon Plus Environment

ACS Sustainable Chemistry & Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



3

Introduction

Over the past few decades, photoelectrochemical (PEC) solar water splitting has gained 

significant interest in the scientific community, as an alternative to current fossil fuel 

technologies.1–3 The PEC solar water splitting is highly dependent on the efficiency of 

photocatalyst materials. Nevertheless, the performances of conventional photocatalysts are greatly 

hampered due to several obstacles such as infinitesimal light conversion efficiency, 

photocorrosion, and recombination of the photocharge carriers.4,5 Considerable efforts have been 

dedicated to find and develop highly efficient photocatalytic materials that can alleviate these 

issues, facing by conventional photocatalysts. Ideally, a practical photocatalyst material must fulfil 

the following requirements (i) visible-light-driven material, (ii) proper band edge location for 

water splitting reaction, (iii) do not undergo photocorrosion and (iv) smooth photocharge carrier 

separation and migration.6–8

Up to date, photocatalysts which possess microstructure-dependent properties has gained 

much interest owing to the favourable structural properties that can significantly improve the 

photocatalytic performance.9,10 Specifically, the transformation of one-dimensional (1D) 

nanostructures into three-dimensional (3D) microstructures has been a recent focus of interest due 

to unique morphology and surface structure properties.11,12 Generally, the PEC reaction takes place 

at the surface of photocatalyst, where all the photocharge carriers reside and initiate the 

photocatalytic process. Thus, by tailoring the surface structure of the photocatalyst, it is anticipated 

that the overall PEC water splitting reaction could be significantly enhanced. 

Bismuth vanadate (BiVO4) is one of the many visible-light-driven photocatalysts which have 

been extensively explored for the PEC water splitting system.13,14 This is attributed to its peculiar 

merits such as visible-light active material with a bandgap energy of ~ 2.4 eV, suitable band edge 
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location for water splitting reaction, and highly stable against photocorrosion.15 Nevertheless, the 

existing limitations of single photocatalyst such as the fast recombination rate of photocharge 

carriers, sluggish water oxidation kinetics, and short holes diffusion length has circumscribed the 

aptness of this material.8,16 To address these issues, our group has performed various strategies 

including defect strategies, facet engineering, and formation of the heterostructure system.17–20 

Among them, the formation of the heterostructure system with other semiconductor 

materials shows a great promise in the enhancement of PEC performance.21–23 This enhancement 

is owing to the heterostructure system that facilitates the separation and migration of the 

photocharge carrier to a better degree where more available electrons and holes can participate in 

the photocatalytic reaction. Graphitic carbon nitride (g-C3N4) is an emerging semiconductor 

material with moderate bandgap energy possesses a fascinating property, particularly a well-

matched band structure that is suitable for the formation of a heterostructure system with BiVO4 

materials.22,24 The compatibility between g-C3N4 and BiVO4 to form the heterostructure system is 

anticipated to demonstrate a smooth transfer of the generated photocharge carries at the 

heterostructure interface. A smooth photocharge carrier transfer within the heterostructure system 

is possible due to the minimum resistance at the heterostructure interface, which results in 

minimizing the photocharge carrier recombination and thus enhancing the overall 

photoelectrocatalytic performance. 

Herein, a novel g-C3N4/BiVO4 microflower photocatalyst was prepared and its 

photoelectrocatalytic hydrogen evolution performance was evaluated. The effect of different 

amounts of g-C3N4 loading integrated onto 3D BiVO4 microflower photocatalyst was 

systematically studied. In addition, the reusability and stability analyses were performed to 

investigate the photocorrosion properties. Moreover, the study on the potential of hydrogen 
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evolution from lake water is hardly been found. Most of the previous literature is focussed on the 

development of composite photocatalyst for PEC hydrogen production, using a chemical-based 

electrolyte. Thus, the mobilization of natural lake water as an alternative for the conventional 

chemical-based electrolyte solution will embark on a new paradigm in the photocatalytic field and 

thus facilitate the readiness of this technology for practical usage. Finally, we also performed 

periodic density functional theory (DFT) for g-C3N4/BiVO4 heterostructure to determine their 

interaction and counter check our experimental data. 

Materials and Methods

Synthesis of g-C3N4/BiVO4 Microflower Photocatalyst

A modified hydrothermal method and thermal polycondensation of urea methods have been 

employed in order to prepare the pure 3D BiVO4 and g-C3N4 samples, respectively. Details on the 

synthesis protocols have been comprehensively discussed in our previous reports.13,25 Meanwhile, 

a wet-impregnation method was used to prepare a series of the composite g-C3N4/BiVO4 

microflower samples with particular amounts of g-C3N4 loading. Generally, 0.1, 0.4, 0.8, and 1.2 

wt.% of g-C3N4 were separately added into a beaker, containing 1g of BiVO4 microflower. Prior 

to the one hour stirring process, 40 mL of deionized water was added. Then, the suspension was 

heated until it becomes a thick orange-yellowish slurry. The collected slurry was then dried in an 

oven at 80 °C for 24 hours.

Physicochemical Characterization

The physicochemical properties of the photocatalyst samples were characterized using 

several characterization techniques. The crystallinity and morphology of the materials were 
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6

examined using XRD (X’Pert3 powder and Empyrean, PANlytical) and FESEM-EDX (Zeiss 

Supra 55VP). The chemical stability of the materials was investigated using FTIR (Shimadzu 

8400S). The optical properties of the materials were examined using DR-UV-Vis (Cary 100) 

spectrophotometer. The BET surface area and porosity of the materials were measured using 

Micromeritic ASAP 2000.

Photoelectrochemical (PEC) Measurement 

A standard three-electrode cell configuration system which composed of working electrode 

(the as-developed g-C3N4/BiVO4 photocatalyst), reference electrode (Ag/AgCl/saturated KCl) and 

counter electrode (Platinum rod) were employed. The measurement was performed using Autolab 

potentiostat PGSTAT302N (Methrom). A doctor blading technique was used in order to prepare 

the working electrode as shown in Figure 1. The details of the fabrication process can be found 

elsewhere.25 A 500 W halogen lamp and 0.5 M Na2SO4 solution were employed during the 

measurement. Details description of the procedure for measuring the photocurrent density versus 

applied potential (I-V) and electrochemical impedance spectroscopy (EIS) can be found in our 

previous work. 26,27
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7

Figure 1: The fabrication process of the g-C3N4/BiVO4 microflower photoanode via a modified 

doctor-blading technique.

Photoelectrocatalytic Hydrogen Production

Figure 2 depicts the schematic PEC-DSSC setup used in this photoelectrocatalytic hydrogen 

production study. A 200 mL of lake water solution was used without the addition of any chemical 

scavengers. The water with a pH of 7.2 was collected from local lake water. A 500 W halogen 

lamp was utilized, and the intensity was adjusted to 100 mW/cm2. A Multiple Gas Analyzer (SRI 

Instruments 8610-0071) was employed to analyze the hydrogen production. 
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Figure 2: The experimental setup used for measuring the photoelectrocatalytic performance.

Computational Methodology

The computational study, in the view of the density functional theory (DFT), were performed 

using Quantum-ATK. In addition, the computational results were deciphered using VESTA and 

Virtual NanoLab Version 2019.3. The details on the DFT analysis of the pure BiVO4 has been 

reported previously.19 In addition, the readers are directed towards our previous works for more 

detail’s description of the theoretical procedure in examining this DFT analysis.17,18,28 The 

structural and energy optimization were scrutinized using GGA-PBE and DZP. The Monkhorst-

Pack k-grid (7x7x3 for BiVO4 and 7x7x7 for monolayer g-C3N4) with an energy cut-off of 1200 

eV was used in this work. 

Results and Discussion 
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9

Crystallographic and Morphological Properties

Figure 3 delineates the XRD analysis of the g-C3N4/BiVO4 microflower photocatalysts 

prepared at the various amount of g-C3N4 loading. The peak splitting observed at 24.7 and 25.6° 

of 2θ corresponds to the tetragonal structure of BiVO4 (JCPDS card no. 14 – 0133). Meanwhile, 

the detection of peak splitting located at 30.6, 34.8, 39.5, and 48.5° of 2θ coincided well with the 

monoclinic scheelite structure of the BiVO4 (JCPDS card no. 14 – 0688).29,30 All these observed 

peaks indicate that the as-prepared BiVO4 was composed of two different types of structures; 

namely tetragonal and monoclinic scheelite-like structure. It is worthwhile to note that the intensity 

of the BiVO4 (121) crystal planes was weakened while that of (040) crystal planes was enhanced 

with respect to the increased in the amounts of g-C3N4 loadings. This phenomenon led us to 

conclude that the overloading of g-C3N4 photocatalyst could modulate the crystallinity of 

photocatalyst which preferably grow at a different orientation. 

Generally, the g-C3N4 photocatalysts are composed of (100) and (002) crystal planes which 

can be observed at 13.9 and 25.6° of the 2θ, respectively.31,32 The strong peak intensity of (002) 

crystal planes indicates a graphite-like interlayer stacking microstructures with an interlayer 

distance of d = 0.326 nm. This graphite-like interlayer stacking is tighter than the stacking of the 

graphene units with an interlayer distance of d = 0.353 nm.33 This observation indicates the well-

assimilated of the layers of the aromatic systems with the heteroatom substitution. Thus it leads to 

the localization of the electrons and stronger binding between the layers.24 Meanwhile, the 

detection of a weak (100) crystal planes based on the JCPDS card no. 01 – 0646 in the composite 

g-C3N4/BiVO4 microflower sample correspond to the tri-s-triazine unit in-planar ordering.28
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Magnified XRD patterns at 25.6° of the 2θ which corresponds to (002) crystal plane of the 

g-C3N4 photocatalyst, were shown in Figure 3 (b). It can be seen that the (002) crystal plane of all 

g-C3N4/BiVO4 sample were less broad and slightly blue-shifted in comparison to 0.8 wt.% g-

C3N4/BiVO4 sample. This was presumably due to the internal stress left of the crystallization of 

BiVO4 and g-C3N4 in the form of the composite.34 Meanwhile, the peak at 13.9° of 2θ which was 

attributed to the parental peak of the g-C3N4 sample was hardly visible in the composite sample. 

This might be due to the simultaneously decreased in the planar size and denser stacking of the g-

C3N4 layers.22 On the other hand, the change in peak intensity and peak shifting position was 

observed in the as-developed g-C3N4/BiVO4 microflower photocatalysts. This statement further 

confirmed the successful integration of the g-C3N4 and BiVO4 particles, to form a composite 

photocatalyst.35 Furthermore, there were no impurity peaks were detected except for the footprint 

of the parental photocatalysts. 
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Figure 3: XRD analysis of the g-C3N4/BiVO4 microflower samples.

Figure 4 illustrated the morphological properties of the as-developed microflower 

photocatalysts which were examined using FESEM analysis. The panoramic view of all these 

samples shows a combination of 3D microflower shape-like structure and wrinkled layered 

structure which corresponds to the BiVO4 and g-C3N4 samples, respectively. The 3D BiVO4 

exhibits a typical blooming flower-like morphology with relatively sharp facets and edges. In 

addition, the microflower structure possesses a high symmetry as can be seen from the axial lines 

of the petals. Similarly, Ou et al. 36 reported that they successfully developed a superstructure 

BiVO4 microflower via tailoring the pH of the solution. Meanwhile, the g-C3N4 particles were 

made up of the irregular folding with large particle size.37,38 The agglutinated g-C3N4 particles 

were uniformly distributed onto the (010) crystal facet of the 3D BiVO4 microflower, signifying 

the smooth photocharge carrier separation and migration. The reason behind this was the uniform 
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12

and intimate contact between these two photocatalysts. The intimate contact between g-C3N4 and 

BiVO4 particles is important as it can inhibit the rate of recombination of photocharge carriers and 

thus more available electron-hole pairs can participate in the photoelectrocatalytic reaction.30,39 

Nevertheless, the overloading of the g-C3N4 photocatalyst in 1.2 wt.% g-C3N4/BiVO4 results in 

the agglomeration of the particle. This further deteriorates the photoelectrocatalytic hydrogen 

performance due to the blockage of active site traits. Additionally, the EDX analysis further 

confirmed that the as-developed composite composed of two materials; namely g-C3N4 and BiVO4 

photocatalyst, without any impurity as shown in Figure 4(b). Comparative analysis of FESEM and 

EDX led us to conclude that g-C3N4/BiVO4 microflower photocatalysts were successfully 

developed from the integration of g-C3N4 and 3D BiVO4 photocatalyst via a wet-impregnation 

method. 

2 μm

2 μm 2 μm

2 μm0.1 wt.% g-C3N4/BiVO4 0.4 wt.% g-C3N4/BiVO4

0.8 wt.% g-C3N4/BiVO4 1.2 wt.% g-C3N4/BiVO4

(a)
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13

0.1 wt.% g-C3N4/BiVO4 0.4 wt.% g-C3N4/BiVO4

0.8 wt.% g-C3N4/BiVO4 1.2 wt.% g-C3N4/BiVO4

(b)

Figure 4: (a) FESEM micrograph images and (b) EDX spectrum survey of the g-C3N4/BiVO4 

microflower samples.

Optical Properties

Figure 5 (a) divulged that all samples possess strong visible-light absorption capacity, 

signifying the possibility of photocatalytic response up to 48% of solar energy. The bandgap 

energy of g-C3N4/BiVO4 samples was estimated from the Tauc plot calculation (see Figure 5 (b)). 

The typical bandgap energy of pure BiVO4 and g-C3N4 were 2.42 and 2.88 eV, respectively. This 

bandgap energy is within the range of the previously reported works.40,41 Additionally, the bandgap 

energy of composite 0.1, 0.4, 0.8 and 1.2 wt.% g-C3N4/BiVO4 samples were 2.67, 2.70, 2.72 and 

2.79 eV, respectively. Nevertheless, the overloading of the g-C3N4 sample has an adverse impact 

on the light absorption capacity of the sample. This adverse impact could significantly depreciate 

the overall photoelectrocatalytic performance due to the limited light absorption capacity.42 
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Figure 5: (a) DR-UV-Vis spectra and (b) Tauc plot of the g-C3N4/BiVO4 microflower samples.
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BET Analysis

The textural properties of the composite microflower photocatalysts were scrutinized and 

summarized in Table 1. The 0.8 wt.% g-C3N4/BiVO4 microflower photocatalyst has the highest 

BET surface area than the other samples which was consistent with the adsorption-desorption 

isotherm illustrated in Figure 6. Nevertheless, the overloading of the g-C3N4 which was portrayed 

by the 1.2 wt.% g-C3N4/BiVO4 sample had caused the surface area slightly decreased. This 

presumably due to the potential of the agglomeration of the particles which shielded the surface 

area as supported by the FESEM analysis as discussed previously (see Figure 4).

Table 1: BET analysis of the g-C3N4/BiVO4 microflower samples.

Sample SBET (m2g-1) Pore Volume 
(cm3g-1)

Pore Size
(nm)

0.1 wt.% g-C3N4/BiVO4 1.89 0.005 11.37
0.4 wt.% g-C3N4/BiVO4 3.25 0.019 23.37
0.8 wt.% g-C3N4/BiVO4 5.31 0.029 22.03
1.2 wt.% g-C3N4/BiVO4 4.09 0.022 22.10

According to the IUPAC classification, all of the composite g-C3N4/BiVO4 microflower 

photocatalysts possesses the type IV isotherms with H3-type hysteresis loop (P/P0 > 0.4).35 When 

the amount of g-C3N4 loading increases, the hysteresis loops area become larger and shift to the 

lower zone of P/P0 signifying the formation of enlarged mesopores.43 Gratifyingly, the pore size 

analysis of the composite samples results in the range of 11 – 23 nm, confirming the predominantly 

mesoporous structure (2 nm < IUPAC pore size < 50 nm) with aggregates of plate-like particles.22 

As summarized in Table 1, the 0.8 wt.% g-C3N4/BiVO4 sample possesses the highest BET surface 

area which was likely to result in higher active reaction sites and will be benefited for the 

photocatalytic activity. 
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Figure 6: N2 adsorption-desorption isotherms of the g-C3N4/BiVO4 microflower samples.

Chemical Stability Analysis

Figure 7 delineated the FTIR spectra of the composite microflower samples. The strong and 

small shoulder peaks at 760 and 620 cm-1, corresponding to the v3 and v4 asymmetric stretching 

vibration of the Bi-V and VO4
3-, respectively.25 Moreover, the wide and sharp peaks at 3042 and 

1623 cm-1 corresponding to the adsorbed water molecule and stretching vibration of the combined 

water molecule, respectively.44 Meanwhile, the multi-sharp peaks monitored at 1026, 1232, and 
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1454 cm-1 correspond to the typical stretching of C−N aromatic skeletal and C=N stretching 

vibration modes.45–47 The detection of these two peaks will be beneficial for the 

photoelectrocatalytic activity due to its π structure.48 Additionally, the presence of all BiVO4 and 

g-C3N4 FTIR peaks footprint signifies the successful synthesis of the as-developed composite, 

using the hydrothermal method. 

Figure 7: FTIR spectra of the g-C3N4/BiVO4 microflower samples.

Photoelectrochemical Hydrogen Production

Figure 8 disclosed the photoelectrochemical hydrogen production performance via the as-

developed composite g-C3N4/BiVO4 microflower photocatalysts which were evaluated using lake 

water without the addition of any sacrificial reagent. 
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Figure 8: Photoelectrocatalytic hydrogen performance of the g-C3N4/BiVO4 microflower 

samples.

The pure 3D BiVO4 sample possesses a limited hydrogen production performance (9.5 

mmol/h), whose hydrogen performance was the lowest compared to the other as-developed 

samples. Similarly, the pure g-C3N4 was only able to generate 11.9 mmol/h of hydrogen. The 

limited hydrogen performance monitored here was due to the natural limitation that exists within 

the individual pure samples such as short holes diffusion length and photocorrosion wherefore 

hampered the overall photoelectrocatalytic performance. On the other hand, the composite g-

C3N4/BiVO4 microflower photocatalysts show promising performance than the pure samples, 

signifying the smooth photocharge carrier transfer that occurred at the heterostructure interface 

between the couple photocatalyst due to minimum photocharge resistance. The 

photoelectrocatalytic hydrogen performance was gradually enhanced up to 0.8 wt.% amount of g-

C3N4 loading and then slightly decreased with further increase in the amount of g-C3N4 loading. 

Page 19 of 40

ACS Paragon Plus Environment

ACS Sustainable Chemistry & Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



19

This limited photoelectrocatalytic performance observed was presumably originated from the 

overloading and agglomeration of g-C3N4 particles which covered the BiVO4 photoactive sites, 

evidently from the FESEM micrograph images as shown in Figure 4. As the light absorption 

capacity was shielded (see Figure 5), the availability of the photocharge carriers to initiate the 

photoelectrocatalytic reaction was limited and thus deteriorates the overall photocatalytic 

performance. 

On the contrary, the 0.8 wt.% g-C3N4/BiVO4 sample yields the significant accumulated of 

hydrogen evolution with 21.4 mmol/h in comparison to the other samples. Therefore, it is safe to 

say that the optimum amount of g-C3N4 loading needed to construct a highly efficient composite 

microflower photocatalyst was 0.8 wt.%. This is due to the highest BET surface area obtained by 

0.8 wt.% g-C3N4/BiVO4 sample as shown in Figure 6 which provides more active site traits in the 

composite sample and thus more available photocharge carriers can partake in the photocatalytic 

reaction. In addition, the 0.8 wt.% g-C3N4/BiVO4 sample was further evaluated in 

photoelectrocatalytic hydrogen production using different sources of water, namely deionized 

water and a mixture of deionized water with 10 vol.% of Na2SO3 as a sacrificial reagent. The 0.8 

wt.% g-C3N4/BiVO4 sample shows a slightly higher accumulated hydrogen evolution in deionized 

water aqueous media in comparison to the lake water. Moreover, Figure S6 illustrated that the 

presence of sacrificial reagent in deionized water significantly enhanced the hydrogen evolution. 

Although the difference in pH between both water sources was insignificant, the slight 

enhancement in hydrogen production using deionized water was presumably due to the difference 

in the miscibility of the as-developed photocatalyst in different water media. In addition, the 

presence of higher content of organic matter in the lake water can slightly affect the 

photoelectrocatalytic reaction. The higher content of organic matter in lake water, instead of act as 

Page 20 of 40

ACS Paragon Plus Environment

ACS Sustainable Chemistry & Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



20

a hole scavenger, organic matter can be deposited on the surface of photocatalyst as it is hard to 

mineralize, consequently limits the overall performance. 

The AQE of the as-developed composite g-C3N4/BiVO4 microflower photocatalysts at 420 

nm was calculated and summarized in Table S2. The 0.8 wt.% g-C3N4/BiVO4 photocatalysts 

exhibit the highest AQE (4.27% at 420 nm). This calculated AQE can be regarded as one of the 

highest AQE in comparison to the current literature. For instance, Bhunia et al.32 performed the 

study on the PtAu-2/g-C3N4 sample in which they found that this sample attained an AQE of 0.45% 

at 420 nm. Meanwhile, an AQE of 1.8% at 420 nm was reported by Sun et al.49 through their 

Pt/Ni(OH)2-C3N4 sample. In addition, Liu et al.50 suggest that their NiO/CDs/BiVO4 samples 

obtained an AQE of 1.24% at 420 nm.

Photoelectrochemical (PEC) Behaviour Analysis 

The photocharge carrier transfer behavior of the as-developed photocatalysts was explored 

using EIS analysis. It is generally known that the arc radii at the higher frequency indicate the 

higher electron transport resistance while the arc radii at the lower frequency indicate a smaller 

resistance for the electron transport.51 Interestingly, the semicircle arc diameter of the 0.8 wt.% g-

C3N4/BiVO4 sample was the smallest than the other as-developed samples, indicating the smallest 

electron resistance possesses by this sample, results in the better photocharge carrier separation 

and migration (see Figure 9). Conversely, the 0.1 wt.% g-C3N4/BiVO4 sample shows the biggest 

semicircle arc diameter at a higher frequency, signifying that the rough electron transport mobility 

in which justifying the limited photoelectrocatalytic hydrogen production observed as shown in 

Figure 8. Additionally, this data demonstrated that the overloading of the g-C3N4 particles would 
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result in the blockage of the active site and upsurge the photocharge carrier resistance and thus 

deteriorating the photoelectrocatalytic activity as indicated by 1.2 wt.% g-C3N4/BiVO4 sample.

Figure 9: EIS analysis of the g-C3N4/BiVO4 microflower samples.

The current-potential (I-V) curve was plotted according to the Linear Sweep Voltammogram 

(LSV) which was recorded under visible light illumination. Figure 10 reveals that the 0.8 wt.% g-

C3N4/BiVO4 photocatalyst yields the highest photocurrent density of 9.68 mA/cm2 at 1.0 V vs 

Ag/AgCl while the 0.1 wt.% g-C3N4/BiVO4 sample shows the lowest photocurrent density of 1.01 

mA/cm2 at 1.0 V vs Ag/AgCl. The overloading of the g-C3N4 particle would result in the 

deteriorating performance as shown by the limited photocurrent density of 1.2 wt.% g-C3N4/BiVO4 

sample. The overloading of the particles might result in the blockage of the light absorption 

capacity and heightened the photocharge transfer resistance. Hence, a limited amount of the 
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photocharge carriers being generated for the reaction, consequently affect the overall 

photoelectrocatalytic performance.18

Figure 10: I-V curves of the g-C3N4/BiVO4 microflower samples.

The efficiencies of the as-developed photocatalysts were further analyzed using applied bias 

photon conversion efficiency. The details of this calculation have been reported previously.27 The 

maximum photoconversion efficiency obtained via 0.8 wt.% g-C3N4/BiVO4 sample was 0.29% at 

-0.02 V vs. Ag/AgCl electrode. Meanwhile, the 0.1 wt.% g-C3N4/BiVO4 sample shows the limited 

photoconversion efficiency of 0.17% at -0.02 V vs. Ag/AgCl electrode. Interestingly, the 

composite samples have better photoconversion efficiency than BiVO4 sample (see Figure 11).25 

This signifies the beneficial effect of the g-C3N4/BiVO4 heterostructure system which was capable 

of mitigating the existing limitation faced by the pure samples and yield better 
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photoelectrocatalytic activity. Concomitant with this, the decrease of the photoconversion 

efficiency was monitored for 1.2 wt.% g-C3N4/BiVO4 sample which presumably due to the large 

electron transport resistance and the agglomeration of the particle, as being discussed previously. 

Figure 11: Photoconversion efficiency of the g-C3N4/BiVO4 microflower samples.

Reusability and Recyclability Analysis

The best photocatalyst sample (0.8 wt.% g-C3N4/BiVO4 sample) was further investigated 

relative to its reusability and recyclability features by repeating the reaction for three cyclic 

activities. For each cycle, the sample was collected and washed prior to the photoelectrocatalytic 

reaction. 
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Figure 12: (a) recyclability and reusability study and (b) XRD analysis of the fresh and used 0.8 

wt.% g-C3N4/BiVO4
 sample. 
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Figure 12 (a) shows that the 0.8 wt.% g-C3N4/BiVO4 sample remains stable even after three 

cyclic activity with only minimal decreased in photoelectrocatalytic hydrogen production. The 

slight decrease observed can be due to the potential loss of the original amount of the sample 

during the restoration and washing process of the recyclability analysis. Correspondingly, there is 

a potential of slight deactivation and saturation of the active sites which slightly affect the 

hydrogen production.14,52 Additionally, the XRD analysis of the used 0.8 wt.% g-C3N4/BiVO4 

sample after three cyclic activity had almost no obvious discrepancy compared to the used sample, 

indicating good stability of the aforementioned sample. The obtained results suggest that the as-

developed composite microflower photocatalyst possesses a strong photostability against 

photocorrosion in which it will be a good feature for industrial practical application.

Density Functional Theory Analysis

In order to countercheck the obtained experimental results, periodic DFT analysis was 

executed. As discussed elsewhere,17–19 BiVO4 along (001) direction was very stable and nonpolar. 

This is stemming from its well-defined surface formation energy (1.95 J/m2). Figure S1 

demonstrated that the lattice mismatch of the designed g-C3N4/BiVO4 heterojunction was about 

0.02%. Moreover, an adequate vacuum region was imposed in this heterostructure DFT analysis 

to attenuate the systems contagious interaction. There were three non-covalent type interactions 

were found within the composite systems which were stemming from the Bi—N, O—C, and O—N 

bonding. The total inter-bonding energy of this heterojunction was about -0.68 eV. This adsorption 

energy reveals a strong electrostatic interaction between coupled photocatalyst in the composite 

heterojunction. The calculation details on the interaction energy (adsorption) can be found in the 

SI.
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The obtained experimental results were further compared with the computational band 

structure and the density of states of the composite microflower photocatalyst. The simulated band 

structures of parental photocatalyst and composite samples were depicted in Figure S2. An indirect 

bandgap of BiVO4 (2.46 eV) was simulated and it was found that the indirect bandgap possesses 

substantial correlation with the computational bandgap (vide supra). Similarly, an indirect bandgap 

of g-C3N4 (2.70 eV) was simulated and the VBM was positioned at Γ and CBM at C point as 

depicted in Figure S2. Finally, the composite microflower sample exhibited indirect bandgap 

energy of 2.46 eV with an observed position of VBM and CBM at -6.16 and -3.70 eV (vs. vacuum), 

respectively. The details on the VBM and CBM of each studied sample have been summarized in 

Table S1. Interestingly, there are some articulation of flat bands were observed at the VB of the 

composite microflower sample. The formations of these flat bands within the composite system 

are beneficial as they can act as hole trapping centres. Thus, this observation was well aligned with 

the experimental data in which an exceptional photoelectrocatalytic activity and high charge 

carrier mobilities were observed (refer Figure 8). Correspondingly, the C and N atoms of g-C3N4 

in C3N4/BiVO4 heterojunction were responsible for these flat bands as can be seen from the DOS 

(see Figure S3). This statement also validates and confirms the experimental results (vide supra). 

Moreover, a detailed discussion of the individual atom which forms the VB and CB of the studied 

photocatalyst can be found in the SI. Similarly, the details calculation of the band alignment and 

Fermi energy level as illustrated in Figure 13 were included in the SI. It can be concluded that the 

band edge position of the VBM and CBM for the composite microflower photocatalyst were lower 

and higher than the theoretical redox potential of water, respectively. 
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Figure 13: Simulated energy level illustration of the g-C3N4/BiVO4 microflower sample. All 

these energies are calculated at vacuum level, where the work functions are also shown.

Furthermore, the electrostatic potentials maps of each studied photocatalysts were shown in 

Figure S4. The correspondence work function for each sample was summarized in Table S1. Based 

on Figure S4, there is strong evidence of the inter-charge transferring phenomena occurring within 

the composite system. The work function of the BiVO4 was found to be above than its coupled 

photocatalyst, indicating that the inter-charge transferring pathway occurred from the g-C3N4 to 

BiVO4, until the Fermi energy of these species was coordinated. Additionally, the simulated 

analysis revealed that the VBM and CBM of the individual BiVO4 were -7.03 and -4.57 eV. 

Meanwhile, the VBM and CBM of the individual g-C3N4 were -5.47 and -3.07 eV, respectively. 

However, when the composite heterostructure system was formed, the VBM and CBM of the 

composite were found to be in between the band edge location of the pure samples. The band edge 
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position of the heterostructure system was shifted to an ideal position, results in a narrow bandgap 

as shown in Figure 13. This observation exemplifies the emerging of an internal electric field and 

band offset in the composite system which was responsible for enhancing the available 

photocharge carriers in the system. In addition, this effect will allow a smooth photocharge carrier 

transfer at the heterostructure interface and thus minimizing the recombination of the photocharge 

carrier. 

Figure 14: Top view of electron difference density of (a) g-C3N4, (b) BiVO4 and (c) g-

C3N4@BiVO4.

On the other hand, Figure 14 and Figure S5 epitomized the electron difference density of the 

photocatalysts based on the charge density difference (CDD) analysis. It can be seen that both of 

the pure photocatalysts uphold a delocalized charge distribution. However, in the composite 

system, the g-C3N4 loses its electronic cloud density toward BiVO4. Meanwhile, the observed 

charge transferring at the composite heterostructure interface was estimated to be 0.056 electrons. 

Moreover, the observation at the composite system charge redistribution manifests that the 

reduction and oxidation process occur at the CB of the g-C3N4 and VB of the BiVO4, respectively. 

Meanwhile, the available holes at the VB of the g-C3N4 will interact with the neighbouring 
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electrons stemming from the CB of the BiVO4. This pattern of the photocharge carrier pathways 

emblematized the potential of the Z-scheme system (See Figure S5). As a result, it can be assumed 

that the composite microflower photocatalyst subsumed a weak Vander Waal type interaction 

which is an archetype of the p-n junction.53 

Conclusion

The g-C3N4/BiVO4 microflower photocatalysts were synthesized and evaluated using lake 

water and without the addition of any sacrificial reagent. The composite microflower 

photocatalysts show an augmented enhancement in the photoelectrocatalytic performance. This 

enhancement was attributed to the emerging of an internal electric field and band offset which was 

responsible for heightened the available photocharge carriers in the system. In addition, this effect 

will allow a smooth photocharge carrier transfer at the heterostructure interface and thus 

minimizing the recombination of the photocharge carrier. The experimental results were well 

correlating with the computational density functional theory simulations, in which confirming and 

validating our data. Moreover, this work serves as a great approach to design highly efficient 

composite photocatalyst which can facilitate the readiness of this system toward industrialized 

hydrogen fuels. 
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A study on the Photoelectrocatalytic Hydrogen Production from Lake Water via a novel g-

C3N4/BiVO4 Microflower Photocatalyst. 
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