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Abstract

Background: There is much interest in the use of prognostic and diagnostic prediction models in all areas of
clinical medicine. The use of machine learning to improve prognostic and diagnostic accuracy in this area has been
increasing at the expense of classic statistical models. Previous studies have compared performance between these
two approaches but their findings are inconsistent and many have limitations. We aimed to compare the
discrimination and calibration of seven models built using logistic regression and optimised machine learning
algorithms in a clinical setting, where the number of potential predictors is often limited, and externally validate the
models.

Methods: We trained models using logistic regression and six commonly used machine learing algorithms to
predict if a patient diagnosed with diabetes has type 1 diabetes (versus type 2 diabetes). We used seven predictor
variables (age, BMI, GADA islet-autoantibodies, sex, total cholesterol, HDL cholesterol and triglyceride) using a UK
cohort of adult participants (aged 18-50 years) with clinically diagnosed diabetes recruited from primary and
secondary care (n = 960, 14% with type 1 diabetes). Discrimination performance (ROC AUC), calibration and
decision curve analysis of each approach was compared in a separate external validation dataset (n = 504, 21% with
type 1 diabetes).

Results: Average performance obtained in internal validation was similar in all models (ROC AUC 2 0.94). In
external validation, there were very modest reductions in discrimination with AUC ROC remaining = 0.93 for all
methods. Logistic regression had the numerically highest value in external validation (ROC AUC 0.95). Logistic
regression had good performance in terms of calibration and decision curve analysis. Neural network and gradient
boosting machine had the best calibration performance. Both logistic regression and support vector machine had
good decision curve analysis for clinical useful threshold probabilities.
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Conclusion: Logistic regression performed as well as optimised machine algorithms to classify patients with type 1
and type 2 diabetes. This study highlights the utility of comparing traditional regression modelling to machine
learning, particularly when using a small number of well understood, strong predictor variables.

Keywords: Machine learning, Logistic regression, Model selection

Background

There is much interest in the use of prognostic and
diagnostic prediction models in all areas of clinical
medicine including cancers [1, 2], cardiovascular disease
[3, 4] and diabetes [5, 6]. These models are increasingly
being used as web-calculators [7-9] and medical apps
for smartphones [10—12], and many have been incorpo-
rated into clinical guidelines [13-17].

There are many different approaches that can be used
for developing these models. Classic statistical models
such as logistic regression are commonly applied but
there is increasing interest in the application of machine
learning to improve prognostic and diagnostic accuracy
in clinical research ([18-21] with many examples of their
use [22]. Machine learning (ML) is a data science field
dealing with algorithms in which computers (the ma-
chines) adapt and learn from experience (data), these al-
gorithms have the ability to process the vast amounts of
data such as medical images, biobank and electronic
health care records. Supervised learning is the most
widely employed category of machine learning. In super-
vised learning, the machine predicts the value of an out-
come (either binary or continuous) trained on a set of
predictor variables.

There are many applied studies comparing the per-
formance of classic models to different machine
learning algorithms [23-34] but their findings are in-
consistent. Many such comparison studies have limi-
tations; not all use non-default parameter settings
(hyperparameter tuning) or have validated perform-
ance on external data [35]. Discrimination, as mea-
sured by area wunder the receiver operating
characteristic curve, is almost always provided but
studies have rarely assessed whether risk predictions
are reliable (calibration) [35].

We aimed to use a methodological approach to ex-
plore and compare the performance of machine learn-
ing and a classic statistical modelling approach using
an example of a diabetes classification model. Classifi-
cation of diabetes offers an interesting case study as
it is an area where there is considerable misclassifica-
tion in clinical practice. Type 1 diabetes and type 2
diabetes can be hard to distinguish between, particu-
larly in adults. Correct classification is really import-
ant for the patient, particularly in terms of treatment.

People with type 1 require insulin injections to pre-
vent life-threatening diabetic ketoacidosis, whereas
people with type 2 diabetes can treat their high blood
glucose with diet or tablets.

Methods

We selected a classic model, logistic regression (LR) with
linear effects only, and six supervised machine learning
algorithms that (1) were appropriate for classification
problems and (2) had been used previously in medical
applications: gradient boosting machine (GBM), multi-
variate adaptive regression spline (MARS), neural net-
work (NN), k-nearest neighbours (KNN), random forest
(RF) and support vector machine (SVM). We trained
models using each algorithm, incorporating hyperpara-
meter tuning, and compared the performance of the
optimised models on a separate external validation
dataset.

Study population—training dataset

The Exeter cohort includes 1378 participants, with
known diabetes (identified from the clinical record and
confirmed by the participant on recruitment) from Exe-
ter, UK [36—39]. Participants with gestational diabetes,
known secondary or monogenic diabetes or a known
disorder of the exocrine pancreas were excluded. Sum-
maries of the cohorts including recruitment and data
collection methods are shown in Supplementary Table 1
and Figure S1 (see Additional file 1).

Study population—external validation dataset
Five hundred sixty-six participants were identified from
the Young Diabetes in Oxford (YDX) study [40]. Partici-
pants were recruited in the Thames Valley region, UK,
and diagnosed with diabetes up to the age of 50 years.
The same eligibility criteria were applied to this cohort.
All participants included in this study (internal and ex-
ternal validation datasets) were of white European origin.
Summaries of the cohort including recruitment and data
collection methods are shown in Supplementary Table 1
(see Additional file 1).

Model outcome: type 1 and type 2 diabetes definition
We used a binary outcome of type 1 or type 2 diabetes.
Type 1 diabetes was defined as having insulin treatment
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within < 3years of diabetes diagnosis and severe insulin
deficiency (non-fasting C peptide < 200 pmol/L). Type 2
diabetes was defined as either (1) no insulin requirement
for 3years from diabetes diagnosis or (2) where insulin
was started within 3years of diagnosis, substantial
retained endogenous insulin secretion (C-peptide > 600
pmol/L) at > 5years diabetes duration. Participants not
meeting the above criteria or with insufficient informa-
tion were excluded from analysis, as the type of diabetes
and rapid insulin requirement could not be robustly de-
fined (n = 342 in the training dataset). These exclusions
are unavoidable and in our opinion are unlikely to intro-
duce systemic bias or affect the main question being ad-
dressed which is comparative performance of the
different modelling approaches. The major reason for
exclusion from analysis was short diabetes duration (223
of 342 excluded), and this is because the outcome (based
on that the development of severe insulin deficiency is
often absent at diagnosis in T1D) cannot be defined in
recent onset disease. A tiny number of participants are
excluded due to intermediate C-peptide which means
outcome cannot be robustly defined (n = 37). In 87 par-
ticipants, a saved serum sample for C-peptide measure-
ment was not available, because serum was not stored in
the very early stages of the DARE study. C-peptide was
measured in all other participants in these cohorts that
required measurement for the outcome.

Predictor variables

We used seven pre-specified predictor variables, age at
diagnosis, BMI, GADA islet-autoantibodies, sex, total
cholesterol, HDL cholesterol and triglycerides. Age at
diagnosis and sex were self-reported by the participant.
Height and weight were measured at study recruit-
ment by a research nurse to calculate BMI. Total
cholesterol, HDL cholesterol and triglycerides were
extracted from the closest NHS record. Continuous
variables were standardised [41]. GADA islet-
autoantibodies were dichotomized into negative or
positive based on clinically defined cut-offs, in accord-
ance with clinical guidelines [42].

We removed all observations with missing predictor
values (complete-case analysis), respectively: 74 for the
training cohort (74 HDL cholesterol and 68 triglycerides
values missing) and 61 for the external validation cohort
(53 sex value missing, 8 total cholesterol missing). We fi-
nally removed any observation with clinically impossible
values (z score > 50): 2 for the training cohort and 1 for
the external validation cohort. Nine hundred sixty par-
ticipants met inclusion criteria and were included in the
training dataset, of whom 135 (14%) were classified as
having type 1 diabetes. Five hundred four participants
(type 1 diabetes, n = 105 (21%)) in the YDX cohort met
criteria and were included in the external validation
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dataset. Compared to the participants in Exeter cohort,
the participants in the YDX cohort were younger at
diagnosis (median 37 years vs 43 years, p < 0.001), had a
lower BMI (median 31kg/m2 vs 33kg/m? p < 0.001),
had a higher percentage of GADA (20% versus 13%,
p < 0.001) and a higher prevalence of type 1 diabetes
(as defined by our model outcome definition in the
‘Study population—external validation dataset’ section)
(21% vs 14%, p < 0.001) (Supplementary Table 2 (see
Additional file 1) for participant characteristics).

Model training

All models were trained using the entire training dataset.
We evaluated seven classification algorithms: gradient
boosting machine (GBM), logistic regression (LR), multi-
variate adaptive regression spline (MARS), neural net-
work (NN), k-nearest neighbours (KNN), random forest
(RF) and support vector machine (SVM). For SVM, we
used the radial basis function kernel parameter [41], and
for NN, we used the most commonly used single-
hidden-layer neural network [41] trained using quasi-
Newton back propagation (BFGS) [43] optimisation
method. There are no clear guidelines regarding either
the choice of algorithms or the advantages and disadvan-
tages of each in specific clinical settings. A brief sum-
mary of each algorithm is shown in Table 1.

We used a grid search to tune the model parameters
(hyperparameter tuning) [60], i.e. optimise the perform-
ance of the machine learning algorithm. The hyperpara-
meter metrics applied in the grid searches are shown in
Supplementary Table 3 (see Additional file 1). To fit the
models over the whole training dataset, we first esti-
mated the hyperparameters with 5-fold cross-validation
and fit the models with the estimated algorithms. In-
ternal validation was performed using nested cross-
validation. The nested cross-validation consists of an
inner loop cross-validation nested in an outer cross-
validation. The inner loop is responsible for model selec-
tion/hyperparameter tuning (similar to validation set),
while the outer loop is for error estimation (test set). For
each loop, we used 5 folds. Nested cross-validation is
only used to estimate the performance measures, and
the final model is fitted on the whole training dataset.

Optimal models were selected using the maximum
mean area under the receiver operating characteristic
curve (ROC AUC) calculated in the cross-validation.
Supplementary Table 3 (see Additional file 1) includes
the final model tuning parameters selected for the opti-
mal models in the cross-validation resampling. We com-
puted the 95% CI by assuming that the variation around
the mean is normally distributed and computed a stand-
ard normalised interval using the different values esti-
mated on each fold computed by the cross-validation.
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Algorithm

Description

References

Logistic regression

Random forest

Gradient boosting
machine

Multivariate adaptive
regression spline

Neural network

K-nearest neighbours

A classic statistical algorithm for binary outcomes that use maximum likelihood estimation. It is fully
parametric. There are no model hyperparameters to be set. Coefficients are adjusted to allow for
dependence between the characteristics. It is useful for inference, estimation, interpretation and prediction.

An algorithm that grows a large ensemble of classification trees on bootstrapped samples using a random
selection of the predictor variables and performs bagging for class selection; after all the trees have been
grown, the predicted class is determined from the average estimated class probability calculated over the
ensemble of trees.

An ensemble learning technique similar to random forest in the sense they average a large number of
decision trees to make prediction. The difference between the two is the application of gradient boosting.
In gradient boosting, the decision trees are trained sequentially with the weights of each successive model
adjusted based on reducing the errors of the previous model. The predicted class is determined from the
average estimated class probability (or majority vote of predicted class) calculated over the ensemble of
trees.

MARS and logistic regression share similarities. For the logistic regression model, the logarithm of the odds
is fitted with a linear combination of the predictors. For the MARS model, the logarithm of the odds is
fitted with splines to cover non-linear and interactions terms. The hinge function (sometimes called rectifier)
is used to model the splines.

A method using an adaptive and non-sequential approach to learning that mimics a biological neural
network. It is a non-parametric technique where signals travel from the first layer (the input layer), to the
last layer (the output layer). Each layer is made of a set of neurons. The output of each neuron is computed
by some non-linear function of the sum of its weighted inputs from neurons from the previous layer. The
weight increases or decreases the strength of the signal at a connection.

A model-free method; it is a type of instance-based learning or lazy learning in which there is no training
phase, instead the algorithm memorises the training data. Based on the principle that observations located

[41, 44—
46]

[41, 47,
48]

[41, 49,
50]

[41, 52—
55]

[41, 53, 56,
57]

close together in n-dimensional space will have the same outcome, the classification process involves a
search the entire dataset for the k training points closest in Euclidean distance (k-neighbours), the
probability predicted class is determined based on the average vote of the actual class among these

k-neighbours.

Support vector machine

It is a quadratic optimisation problem involving minimising penalties and maximising margin width, and

[41, 58,

the two classes are separated by constructing nonlinear decision boundaries (hyperplanes) using a kernel 59]
trick that maximises the margin between them. The produced posterior estimates are a rescaled version of
the original classifiers scores through a logistic transformation.

Model performance measures

We used ROC AUC [61] as the summary metrics to
evaluate model discrimination. The ROC AUC quantifies
the probability that the risk scores from a randomly se-
lected pair of individuals with and without this condition
are correctly ordered. A value of 1 indicates a perfect
test.

We assessed calibration visually using calibration plots,
computing calibration performance measure, i.e. calibra-
tion slope (the closer to 1 the better) and the calibration
in the large (the closer to zeros the better). The slope
coefficient beta of the linear predictors reflects the devia-
tions from the ideal slope of 1.

We compared the performance of the model to sup-
port decision-making with decision curve analysis [62].
In decision curve analysis, a clinical judgement of the
relative value of benefits (treating a true-positive case)
and harms (treating a false-positive case) associated with
prediction models is made for different threshold prob-
ability [63]. The net benefit is computed by subtracting
the proportion of all patients who are false-positive from
the proportion who are true-positive, weighting by the
relative harm of a false-positive and a false-negative
result.

External testing

For each optimal model developed in the training data-
set, external performance was evaluated in the YDX
study cohort and compared to the internal (cross-valid-
ation resampling) performance. Calibration was investi-
gated using calibration curves. We also checked for
Pearson’s correlation in the predictions from each
model.

Software

All analyses were performed using R software (version
3.5.2). Model training was performed using the Caret R
package [64—68].

Code

In the supplementary material, we share the code to
allow reproduction of similar comparisons of machine
learning algorithms with any number of predictor vari-
ables (see Additional file 2).

Results
The average (mean) performance ROC AUC for the op-
timal models obtained in the resampling was high in all
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models (ROC AUC > 0.93) (Table 2) with small differ-
ence in performance between models.

There was a decrease in the ROC AUC of all models
when they were applied to the external validation dataset
(Table 2), but all still showed high levels of performance
(ROC AUC = 0.92, Figure S3) for all model. Model pre-
dictions were highly correlated across models (Figure S2
(see Additional file 1)). ROC AUC performance was
similar when fitting the model with or without
resampling.

In the calibration tests performed on the external val-
idation dataset, GBM and NN shows very good calibra-
tion performance with a calibration in the large close to
0 and a calibration slope close to 1. Logistic regression
and support vector machine have a satisfactory calibra-
tion results but the likelihood to predict type 1 diabetes
is on average slightly underestimated. All other models
have unsatisfactory calibration performance (Fig. 1 and
Table 3 (calibration in the large values < 0 indicate over-
estimating risk)) and there was evidence of visual misca-
libration in these models (often due to an underestima-
tion of type 1).

Figure S3 highlights that the most performing machine
learning algorithms give similar predictions. In this fig-
ure, the prediction for each algorithm is plotted for each
observation in XYD. SVM, NN and LR predictions are
strongly correlated (LR-NN, 0.992; LR-SVM, 0.99; NN-
SVM, 0.983). For all models, the majority of predicted
probability is below 0.3 (as expected, 79% of people do
not have type 1 diabetes). Excepted for the KNN model,
few predictions lie between 0.3 and 0.7.

Figure 2 is the decision curve analysis where the net
benefit is plotted against the threshold probability. The
LR model is superior or similar to the other models
across a wide range of threshold probabilities but be-
comes worse than the other models for higher threshold
probabilities. In practice, it is likely clinicians would be
cautious and treat patients with insulin at much lower
probabilities threshold, as not receiving correct

Table 2 ROC AUC [95% CI] performance comparison of the
seven models applied to the internal and external validation
datasets. Internal validation was estimated with 5-fold-nested
cross-validation while external validation was performed on the
YDX dataset

Model

Internal validation External validation

Gradient boosting machine 0.96 [0.94, 0.98] 0.93 [0.90, 0.96]
K-nearest neighbours 0.93 [0.90, 0.97] 0.92 [0.89, 0.95]
Logistic regression 0.96 [0.93, 0.98] 0.95 [0.92, 0.97]
MARS 0.96 [0.90, 0.99] 0.94 [0.92, 0.97]
Neural network 0.96 [0.93, 0.99] 0.94 [0.92, 0.97]
Random forest 0.95 [0.92, 0.98] 0.94 [0.91, 0.96]
Support vector machine 0.96 [0.93, 0.98] 0.94 [0.92, 0.97]
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treatment for a type 1 diabetes can be life-threatening
while giving insulin to a patient with type 2 diabetes is
inconvenient and expensive but not life-threatening.

The poor performance at high threshold probabilities
is due to the fact that the LR model, like the SVM
model, tends to overestimate the risk of having type 1
diabetes for people with the highest risk (risk above
85%), see Fig. 1.

Discussion

Summary of main findings

We found similar performance when applying logistic
regression and six optimised machine learning algo-
rithms to classify type 1 and type 2 diabetes, in both in-
ternal and external validation datasets. Discrimination
was high for all models, while logistic regression showed
the numerically highest discrimination in external valid-
ation differences in discrimination were small. Neural net-
work and gradient boosting machine had the best
calibration performance, with logistic regression and sup-
port vector machine also showing satisfactory calibration.

Strengths and limitations

Strengths of our study include the use of a systematic
approach to model comparison dealing with limitations
from previous studies [35, 70] including (1) use of differ-
ent datasets to train and test models, (2) optimisation of
tuning parameters [24, 30], (3) calibration [18] and (4)
decision curve analysis. We have used the same dataset
to train all our models; since model performance will
differ between settings, the use of the same dataset is
crucial for valid model comparisons. The choice of tun-
ing parameters will affect the performance of the model
[60], and we have optimised our models by applying
hyperparameter tuning using a recognised grid search
approach. We have increased the validity of our results
by using an external validation dataset.

We have compared several machine learning algo-
rithms that have been selected for their suitability to our
setting. The use of only seven predictor variables means
that we have a very low risk of over-fitting; for machine
learning algorithms, it has been suggested that over ten
times as many events per variable is required to achieve
stable results compared to traditional statistical model-
ling [69]. The use of only seven predictors may also be
considered as a limitation of our study since these ma-
chine learning algorithms are designed to deal with lar-
ger datasets and more variables. However, working with
a few meaningful predictors is common in clinical set-
tings. Knowing the performance of machine learning
models using low numbers of predictors is important. It
is possible that with more variables or more observa-
tions, machine learning approaches may prove more dis-
criminative. However, we have achieved excellent
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Fig. 1 Calibration plots with 95% confidence interval obtained using external validation dataset for prediction models. a Gradient boosting
machine. b K-nearest neighbours. ¢ Logistic regression. d MARS. e Neural network. f Random forest. g Support vector machine. Legend: Dashed

performance using just these seven predictors. Another
limitation of our study is that we judge the model only
on its performance. In real practice, we would want to
consider ease of implementation and interpretation
when selecting the ‘best’ model.

LR, SVM and NN are the models with the highest
ROC AUC. If accuracy of estimated probability were an
importance factor, NN, LR, GBM and SVM would be
best approaches. Overall, the notion of best model is
context-dependent, but in this study, the models
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Table 3 Calibration test results on external validation dataset.
Calibration-in-the-large indicates whether predicted probabilities
are, on average, too high (value below 0) or too low (value
above 0). Conversely, the calibration slope quantifies whether
predicted risks are, on average, too extreme (value below 1) or
too invariant (value above 1)

Model Calibration Calibration-in-the-large
slope (by) (ab,=1)

Gradient boosting machine 0.979 — 0.005

K-nearest neighbours 1.495 0.046

Logistic regression 0.903 - 0.039

MARS 0.799 0.081

Neural network 0.995 —0.031

Random forest 1412 0.065

Support vector machine 0914 - 0.028

perform similarly. In terms of clinical utility, LR and
SVM appeared to perform slightly better than other
models.

The observed decrease in ROC AUC when assessed in
the external validation data highlights the importance of
external validation to test the transportability of models.
Indeed, all of the algorithms slightly underperformed in
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the external validation set. The model fit on the training
data set might be over-fitted and their performance
could be overestimated despite a rigorous internal valid-
ation (see the difference between internal and external
performance in Table 2). However, the most likely rea-
son is that the YDX population has a smaller range in
age and BMI, and GADA is less discriminative in YDX
compared to the Exeter cohort. This may diminish per-
formance and does not necessarily mean over-fitting.
The performance of LR on both internal and external
validation datasets shows that classic algorithms can per-
form as well as more advanced algorithms even when
disadvantaged by assuming linearity in the predictors.
LR models are relatively easy to use and understand
compared to machine learning algorithms where usage
is limited by the difficultly of interpreting the model,
often referred to as a ‘black boxes’. LR models also have
a strong theoretical background which leads to the pos-
sibility of using well-defined statistical tests to explore
the statistical significance of the variables. There is an
increasing number of studies demonstrating that LR can
perform as well if not better, in a large number of set-
tings [35]. However, we could not find a study that com-
pared machine learning algorithms with optimised
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Fig. 2 Decision curve analysis obtained using external validation dataset for prediction models. The graph gives the expected net benefit per
patient relative to treat all patients as type 2 diabetes. The unit is the benefit associated with one patient with type 1 diabetes receiving the
correct treatment. ‘all: assume all patients have type 1 diabetes. ‘none”: assume no patients have type 1 diabetes
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hyperparameters versus LR on an external dataset as we
have done in this study which shows again that LR per-
forms as well as more complex approaches.

While real-world data medical applications are likely
to be unbalanced, the use of sampling methods such as
Synthetic Minority Over-Sampling Technique (SMOTE)
might improve model prediction performance [70]. We
compared the use of SMOTE to the classic approach
without resampling. Nevertheless, we only present the
results without SMOTE as similar ROC AUC, but better
result calibration and decision curve analysis perform-
ance were achieved without it.

We have shown through this study that machine
learning performs similarly for this prediction problem;
however, some differences subsist. As previously de-
scribed [71], each database is unique and there is no
‘free lunch’, i.e. if an algorithm performs well on a cer-
tain class of problems, then it necessarily pays for that
with degraded performance on the set of other problems
[35, 72]. It is thus important to test different algorithms
benchmarked against logistic regression to identify if
one algorithm outperforms the other; if performance is
similar, then the simplest and most interpretable model
can be used.

Conclusion

In a diabetes classification setting with three strongly
predictive variables, a classic logistic regression algo-
rithm performed as well as more advanced machine al-
gorithms. This study highlights the utility of comparing
traditional regression modelling to machine learning,
particularly when using a small number of well under-
stood, strong predictor variables. Furthermore, this art-
icle highlights once again the need to perform external
validation when selecting models as we demonstrate that
all algorithms can underperform on external data.
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Supplementary information accompanies this paper at https://doi.org/10.
1186/541512-020-00075-2.

Additional file 1: Figure S1. Flow diagram of participants through the
model development stages. T1D: type 1 diabetes, T2D: type 2 diabetes.
Figure S2. ROC AUC plots obtained using external validation dataset for
seven prediction models. Legend: Solid lines: black = Support Vector
Machine, dark grey = Logistic Regression, light grey = Random Forest.
Dotted lines: black = Neural Network, dark grey = K-Nearest Neighbours,
light grey = Gradient Boosting Machine. Figure S3. Correlation coeffi-
cient matrix and scatter plot of model predictions obtained from external
test validation data.

Additional file 2. R script.

Abbreviations

GADA: Glutamic acid decarboxylase antibodies; YDX: Young Diabetes in
Oxford; LR: Logistic regression; SYM: Support vector machine; GBM: Gradient
boosting machine; NN: Neural network; KNN: K-nearest neighbours;

Page 8 of 10

RF: Random forest; SMOTE: Synthetic Minority Over-Sampling Technique;
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