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Abstract  

The recent rapid expansion of oil palm (OP, Elaeis guineensis) plantations into tropical 

forest peatlands has resulted in net ecosystem carbon emissions. However, 

quantifications of the net carbon flux from biomass changes require accurate estimates 

of the above ground biomass (AGB) accumulation rate of OP on peat in working 

plantations. Current efforts that aim to reduce the emissions from OP expansion would 

also benefit from the development of economically viable remote sensing approaches 

that enable the detection of OP plantation expansion and monitoring of AGB stocks 

across at a fine spatial and temporal resolution. 

Here, destructive harvest and non-destructive plot inventories are conducted across a 

chronosequence of OP planting blocks (3 to 12 years after planting (YAP)) in plantations 

on drained peat in Sarawak, Malaysia. The effectiveness of using a timeseries of L-band 

synthetic aperture radar (SAR) scenes (ALOS PALSAR-1/2) and a novel ‘biomass 

matching’ approach to detect, quantify and map the AGB stock changes associated with 

OP establishment and growth was then assessed. 

Peat specific allometric equations for palm (9 palms, R2 = 0.92) and frond biomass are 

developed and upscaled to estimate AGB at the plantation block-level (902 palms). 

Aboveground biomass stocks on peat accumulated at ~6.39 ± 1.12 Mg ha-1 per year in 

the first 12 years after planting. However, high inter-palm and inter-block AGB variability 

was observed in mature classes as a result of variations in palm leaning and mortality. 

The ‘biomass matching’ approach detected statistically significant deforestation 

associated with OP establishment. OP growth was well estimated between 4 and 10 

YAP, however sensitivity to increases in AGB was lost at ~ 45 - 60 Mg ha.  

Validation of the allometric equations defined and expansion of non-destructive 

inventories across alternative plantations and age classes on peat would further 

strengthen our understanding of OP AGB accumulation rates. With further investigation 

into the relationship between OP structural characteristics and L-band radar cross 

section (RCS) in the HV and HH polarisations, ‘biomass matching’ could be a feasible 

tool for monitoring AGB stock changes to inform carbon emission mitigation strategies.  
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Chapter 1: Scientific Context 

 

1.1) Anthropogenic climate change and the carbon cycle 

The global atmospheric CO2 concentration has risen by approximately 20 ppm per 

decade since 2000, ~10 times faster than any sustained rise in CO2 during the past 

800,000 years (Lüthi et al., 2008; Bereiter et al., 2015). Accompanied by rises in 

emissions of other greenhouse gasses (CH4 and N2O) this has resulted in a human-

induced climate warming of 1°C (±0.2°C) above pre-industrial levels (period 1850–1900) 

(IPCC, 2018). This temperature rise has resulted in profound alterations to human and 

natural systems including increases in the frequency and severity of droughts, floods and 

other extreme weather events, sea level rise and biodiversity loss (IPCC, 2018, Mysiak 

et al. 2016). To avoid worsening impacts on global populations and ecosystems the 

United Nations Framework Convention on Climate Change (UNFCCC) Paris Agreement 

encourages governments to “pursue efforts to limit the temperature increase to 1.5°C 

above pre-industrial levels” (UNFCCC, 2015). 

Fossil fuel combustion is the largest source of global CO2 emissions, these emissions 

are absorbed by the Earth’s atmosphere, oceans and the terrestrial land carbon sink 

(Pan et al. 2011, IPCC, 2013). Despite significant carbon storage and uptake by 

terrestrial vegetation and soils, land use changes (LUC) whereby intact or secondary 

vegetation is converted to alternative land cover types is increasingly resulting in carbon 

emissions (Le Quéré et al. 2018). Recently tropical ecosystems have been the global 

epicentre of land use change (Mitchard et al. 2018). 

1.2) Tropical land use change and the terrestrial carbon store 

Tropical forest trees store between 200 - 300 Pg of carbon (Mitchard et al, 2018). Living 

biomass stocks; all living biomass above the soil (aboveground biomass, AGB) and root 

biomass below the soil (below ground biomass, BGB) made up a large proportion of the 

overall tropical carbon stocks (FAO, 2007, Pan et al. 2011). Soil organic matter (SOM); 

all organic matter in mineral and organic soils, also makes a large contribution to the 

tropical land carbon sink (FAO, 2007, Pan et al. 2011) Especially when deep, carbon 

dense tropical peatlands are considered (Page et al. 2011a, Dargie et al. 2017, Draper 

et al. 2014).  

Recent studies suggest that intact and re-growing tropical forests have been a net carbon 

sink of ~2 Pg C per year between 1900 and 2009 owing to increases in net primary 

production (NPP) as a result of CO2 fertilisation (Pan et al. 2011, Sitch et al. 2015, 

Schimel et al. 2015). However, this is subject to high inter-annual variability with intact 

tropical forests switching to net carbon sources in high temperature or low precipitation 
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years, typically associated with El Niño events (Liu et al. 2017, Wang et al. 2013, Petra 

et al. 2017). Observations from long term monitoring plots also suggest the historical 

increases in NPP appear to be levelling off, coupled with increases in mortality, thus the 

strength of these carbon sinks may have reduced in recent years (Brienen et al. 2015). 

Despite variation, increases in NPP observed across intact and re-growing tropical forest 

ecosystems appear to have offset emissions from tropical land use change (LUC), 

leaving the system approximately carbon neutral over this period (Mitchard et al. 2018). 

However, this is likely to change if the current trajectory of tropical deforestation and 

degradation continues, especially when coupled with uncertain tropical forest responses 

to climate change (IPCC, 2013). As a result of this dynamism, the tropical land carbon 

sink is still the most uncertain major component of the global carbon cycle (LeQuéré et 

al. 2018).  

Globally deforestation reduced tropical forest area by ~ 2.3 million km2 between 2000 

and 2012 (Hansen et al. 2013). Deforestation is broadly defined as the long-term 

reduction of tree canopy cover to below 10-30% and is usually associated with 

conversion of forest to other types of land use, such as cropland or pasture (van der Werf 

et al. 2009). However, deforestation can be succeeded by the establishment of 

monoculture woody plantations resembling forests (Houghton, 2005). In addition to 

deforestation, forest degradation, where the ecological processes that underlie forest 

dynamics are diminished or severely constrained, but canopy cover remains high enough 

to be classified as forest (more than 10-30% canopy cover), also results in net carbon 

emissions (Ghazoul et al. 2015, van der Wef et al. 2009). Estimates of annual emissions 

from tropical deforestation and degradation range between 0.5 and 3.5 Pg C yr−1 

(Mitchard et al. 2018). This wide range is attributed to differing definitions, differences in 

methodologies, including what processes are accounted for, and large uncertainties in 

the resultant quantifications of individual studies (Mitchard et al. 2018).  

1.3) Tropical peatlands: carbon sinks and carbon sources  

Tropical peat swamps cover an area of ~ 577,000 km2 globally with recent discoveries 

of tropical peatlands in the Congo and Amazonian basins raising tropical peatland carbon 

stock estimates to ~ 104.7 Pg C (min 69.6 to max 129.8 Pg C) (Page et al. 2011, Dargie 

et al. 2017, Draper et al. 2014). Despite their obvious importance as carbon stores this 

estimate remains highly uncertain as the true extent and carbon content of peatlands in 

the tropics is unknown (Lawson et al. 2015, Gumbricht et al. 2017, Leifeld & L. Menichetti, 

2018). Global estimates of peatland area are often the result of modelling attempts based 

on abiotic and environmental parameters (Gumbricht et al. 2017). Tropical peatlands are 

heterogeneous and often remote, hence, accurately sampling tropical peatland area, 
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depth, bulk density and carbon content is both challenging, time consuming and 

expensive (Lawson et al. 2015, Leifeld & L. Menichetti, 2018).  

These organic rich deposits form due to the build-up of partially decomposed organic 

debris in waterlogged, anoxic conditions contained within low topographic relief zones 

(Page et al. 2004, Page et al. 2010). Contemporary Southeast Asian (SEA) peat deposits 

were initiated ~26,000 cal. yr BP accumulating most rapidly in the early Holocene to 

thicknesses of between 5 and 7m (Page et al. 2004, Page et al. 2011). Lowland tropical 

peatlands in South East Asia consist of slightly or partially decomposed woody debris 

containing well preserved tree trunks, branches, twigs and coarse roots within a matrix 

of humified amorphous organic material (Page et al. 2006). Across inland peat domes 

vegetation is dominated by trees and mirrors the species composition of Southeast Asian 

lowland Dipterocarp forests, although Dipterocarp trees are typically lower in stature than 

when found on mineral soils (Whitmore. 1984). Distinct forest subzones are formed 

across the peat domes coinciding with changes in peat thickness and hydrology 

(Whitmore, 1984, Page et al. 1999). This vegetation cover then provides the organic 

matter input for further peatland accumulation (~1.5 ± 0.5 mm y−1) (Page et al. 2004, 

Murdiyarso et al. 2010).  

In Southeast Asia, tropical peatlands are increasingly being subjected to extensive 

degradation and land cover change, largely due to the expansion of industrial plantation 

and smallholder agriculture (Miettinen et al. 2016, 2017). Prior to the establishment of 

industrial plantations or any other agricultural land use, established peat swamp forest 

aboveground biomass is cleared and the peat soils are then drained and compacted, 

halting peat accumulation processes (Miettinen et al. 2017, Page et al. 2011b). This 

drainage, when combined with changes in vegetation cover and the addition of fertilisers 

results in the oxidation of the upper peat profile and the release of CO2 to the atmosphere 

(Couwenberg et al. 2010, Hoojer et al. 2012, Hergoualc'h and Verchot, 2011). In addition 

to this, peatland drainage also leads to an increased flux of fluvial dissolved organic 

carbon, CH4 and NO2 (Cook et al. 2018, Jauhiainen and Silvennoinen, 2012). 

Undisturbed, primary peat swamp forests are naturally fire resilient as a result of their 

moist microclimate and the low-flammability of pristine wet peat soils (Turetsky et al. 

2014). Clearance and drainage significantly diminishes this resilience and drained 

tropical peat soils can burn to depths of 50cm, particularly in El Niño years resulting in 

large CO2 emissions (Page et al. 2002, Ballhorn et al. 2009).  

1.4) Oil palm growth, usage and harvest 

Oil palm (Elaeis guineensis, OP) is a tropical palm species native to West and Central 

Africa (Sheil et al. 2009). Since its domestication oil palm has been cultivated as a 
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perennial crop throughout the humid tropics (Sheil et al. 2009, Corley and Tinker, 2016). 

Commercial planting for palm oil production was initiated in SEA in 1917 (Corley and 

Tinker, 2016). Palm oil is used largely in food products (71 %), with smaller fractions 

used in cosmetics (24 %) and as an energy source (5 %) (Byerlee et al. 2017). Oil can 

be acquired from the kernel and mesocarp of individual OP fruits, in fruit bunches which 

develop in the axil of each frond (Corely et al. 1976, Figure 1.1). During harvesting rounds 

fruit bunches are removed by hand, fronds are also progressively pruned before being 

piled on the plantation floor (Corely et al. 1976, Corley and Tinker, 2016). 

 

Figure 1.1: Oil palm AGB components. Panel A: An upright Young Mature oil palm 

with OP fruit bunches and other AGB components indicated. Panel B: Labelled frond 

diagram, i) indicates frond rank numbering and crown phyllotaxis (after Aholoukpè et al. 

2013). 

1.5) Contemporary oil palm expansion  

Oil crop production has increased rapidly in recent decades and has shifted towards 

tropical areas. Global demand for palm oil has risen. The land area supporting oil palm 

plantations has increased to ~25 Mha globally; making oil palm the 12 th largest edible 

crop by land area (FAO, 2019). Indonesia and Malaysia are the largest producers of 

palm-oil in the global market; between 1990 and 2017 their combined land area 

supporting oil palm (OP, Elaeis guineensis) plantations increased by almost 600 % to 

cover ~14.4 Mha (FAO, 2019). The majority of this increase has been attributed to the 

expansion of industrial oil palm plantations (IOPPs) with smallholders (land areas up to 

~5 ha) making a much smaller contribution (Sayer et al. 2012). Expansion of both 

industrial and smallholder plantations have been linked to economic growth and 

development, particularly in poor rural areas (Sayer et al. 2012, Gatto et al. 2017, Rist et 

al. 2010). Oil palm plantations in the tropics can produce 4 tonnes of oil per hectare 

annually, approximately 4 times the yield of other oil crops in temperate regions 
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(rapeseed, sunflowers, or soybeans) (Rochmyaningsih, 2019). Taking into account the 

high productivity of oil palms and their carbon accumulation over the cropping cycle some 

studies conclude that the plantations are a reasonable use of already degraded land on 

mineral soils (Sayer et al. 2012, de Vries et al. 2010). 

However, in addition to the replacement of logged and degraded forests with oil palm 

plantations, a large proportion of expansion has occurred at the expense of old growth, 

primary forests in lowland areas (Gaveau et al. 2016, Vijay et al. 2016). Malaysia, 

Sumatra and Kalimantan are dominated by tall dense lowland Dipterocarp forest species 

on mineral soils (Koh et al. 2015). Aboveground biomass stocks of undisturbed forests 

are therefore high (503.8 ± 35.0 Mg ha-1) and often remain high subsequent to selective 

logging relative to other forest cover types (258.2 ± 20.6 Mg ha -1) (Koh et al. 2015, Silk 

et al. 2010). The rapid expansion of oil palm plantations across lowland Dipterocarp 

forests in Malaysia and Indonesia has therefore resulted in large scale carbon emissions 

in addition to biodiversity losses (Koh and Wilcove, 2008, Koh et al. 2015, Gaveau et al. 

2016, Carlson et al. 2012, Carlson et al. 2013). 

1.6) Contemporary oil palm expansion on tropical peats and quantification of 

emissions  

The demand for oil palm has led to the expansion of this crop onto tropical peatlands, 

with approximately 3.1 Mha of oil palm (OP) plantations now situated on managed peat 

soils (Miettinen et al. 2016). In 2015, industrial plantations covered ~27% of the total 

peatland area in Insular Southeast Asia, the vast majority of which are oil palm 

plantations (72.5 %) with the remainder mostly pulp wood plantations (26%, Acacia and 

Eucalyptus) (Miettinen et al. 2016). Despite the considerable carbon losses from 

biomass replacement and land clearance, large and sustained CO2 emissions from peat 

oxidation make up the most significant part of the emissions from this land use change 

(Page et al. 2011b). 

Miettinen et al (2017) estimate an annual emission of 64.3 Mt C from peat oxidation in 

drained industrial OP plantations across Malaysia, Sumatra and Kalimantan; based on 

peat OP land cover areas and IPCC peat oxidation emissions factors (IPCC, 2014). An 

additional 49.2 Mt C has been calculated to be emitted from smallholder areas (Miettinen 

et al. 2017). However, the IPCC emissions factors for peat oxidation following the 

drainage of industrial plantations (15 Mg C ha-1 yr-1, [95% CI, 10 to 21]) do not take into 

account the variation in emissions across the lifecycle of a plantation (IPCC, 2014, 

Miettinen et al. 2017). Peat surface emissions are much higher immediately following 

conversion and drainage; hence these estimates are likely conservative (Hooijer et al. 

2012, Page and Hooijer, 2014). Net carbon loss is related to water table depth (WTD), 

which also fluctuates across the planting cycle (Hooijer et al. 2012, Carlson et al. 2015). 
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When calculating these emissions, only those from peat oxidation are accounted for with 

no consideration of CO2 loss or uptake from changes in aboveground biomass (Miettinen 

et al. 2017). Few studies comprehensively consider CO2 emissions across a full planting 

cycle for oil palm on peat (Page et al. 2011b).  

In addition to the uncertainties associated with peat oxidation emissions, the rate and 

magnitude of peat OP aboveground biomass accumulation is also unclear, and therefore 

the limited extent to which the plantation growth may offset peat oxidation emissions 

remains unknown (Page et al. 2011b, Murdiyarso et al. 2010, Germer and Sauerborn, 

2008, Koh and Jepsen, 2015). Few studies directly compare the aboveground biomass 

stocks of oil palm plantations to that of their prior land covers, especially for oil palm 

situated on peatlands (Koh et al. 2011, Carlson et al. 2013, Murdiyarso et al. 2010).  

Drainage associated with agricultural practice causes subsidence; the irreversible 

lowering of the surface as a consequence of peat oxidation, mechanical compaction and 

shrinkage (Hoojier et al. 2012). When combined with the poor anchorage of palms in the 

low bulk density peat soils, this often results in palm leaning, root exposure and 

desiccation and eventual mortality of oil palms on peat soils (Lim et al. 2012). This has 

become a major limiting factor for peat OP performance and planting cycles are typically 

limited to ~20 years, shorter than on mineral soils (~25 years) (Lim et al. 2012, Othman 

et al. 2012). In response to higher rates of OP failure on peat soils, higher planting 

densities are adopted for OP on peat compared to OP planted on mineral soils (Woittiez 

et al. 2017). As a result, peat OP AGB accumulation rates are likely different to those 

reported for OP on mineral soils. Hence, peat OP AGB stocks at various points in the 

planting cycle need to be accurately quantified in order to realistically evaluate peat OP 

emissions and greenhouse gas lifecycle assessments for OP on peat (Kho and Jepsen, 

2015, Page et al. 2011b).  

A large proportion of peat OP plantations are approaching the end of their first planting 

cycle, the AGB stocks of these plantations are soon to be redundant (Miettinen et al. 

2012). Given the vast area of peat OP plantations across Insular Southeast Asia it is 

important to quantify the potential carbon emission from first generation peat OP 

plantation AGB clearance (Miettinen et al. 2012, Miettinen et al. 2017, Carlson et al. 

2012). Optimally utilizing oil palm biomass residues may offset some of these emissions. 

Multiple studies highlight their potential as inputs either for bioenergy production or for 

the production of biochar for fertiliser or solid fuel applications (Liew et al. 2018, Hamzah 

et al. 2019, Abnisa et al. 2013). Developing methodologies that allow the accurate 

measurement of OP biomass residues and stocks through the planting cycle are 

therefore important. 
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1.7) Efforts to reduce emissions from peat oil palm expansion  

Improving our current understanding of the carbon fluxes associated with oil palm 

expansion into tropical peat swamp forests across the lifecycle of a plantation would 

inform current and future efforts to reduce emissions from peat oil palm expansion 

(Miettinen et al. 2017). 

The carbon-based mechanism REDD+ (reducing emissions from forest degradation) 

provides financial compensation from developed to developing nations who agree to 

decrease their deforestation and forest degradation rates by forgoing other land uses 

(den Besten, 2014). However, in Southeast Asian lowland forests, the high profitability 

of forest logging and converting land to high yield oil palm plantation agriculture often 

outweighs the potential revenues from conserving forests under REDD+ and other 

voluntary carbon credit schemes (Fisher et al. 2011, Butler et al. 2009, Abram et al. 

2016). Despite this, the recent inclusion of peatland soil organic carbon in REDD+ 

schemes will hopefully improve the available incentives for landowners (Murdiyarso et 

al. 2010, Murdiyarso et al. 2019, Joosten et al. 2016). Effective implementation of 

REDD+ is however reliant on the accurate quantification of potential emissions from land 

use changes combined with effective land cover and carbon stock monitoring (Angelsen  

et a, 2009, Gibbs et al. 2007, Birdsey et al. 2013, Murdiyarso et al. 2019).  

In Indonesia a moratorium on new oil palm concessions in primary forests and peatlands 

was issued in 2011 and enforced in 2018 in an attempt to limit deforestation, but so far 

has had limited success so far (Murdiyarso et al. 2011, Austin et al. 2017, Busch et al. 

2015, PRI, 2018). In addition to interventions from governments, increasing pressures 

from consumers and commodity markets has led to an increase in palm oil certification; 

third-party audits that ensure producers follow a set of social and environmental practices 

to improve the ‘sustainability’ of oil palm production (Milder et al. 2015). The Roundtable 

on Sustainable Palm Oil (RSPO) certified ~2,246,763 ha of oil palm plantations across 

Indonesia and Malaysia in 2014 (Garrett et al. 2016). Certified growers agree to comply 

with the RSPO Principles and Criteria standards, which, amongst other criteria, limit the 

land covers that can be developed for oil palm (RSPO, 2018). Whilst certification has 

effectively reduced deforestation when compared to non-certified plantations, 

deforestation rates in these certified plantations still remained high, including primary 

and peat swamp forest clearance (Carlson et al. 2018). Commencing in 2018, the new 

standard aims to prevent new planting on peat soils regardless of peat depth in existing 

and new development areas (RSPO, 2018). However, a large proportion of palm oil 

production currently remains un-certified (80%) (Garrett et al. 2016).  

 



16 
 

1.8) Monitoring oil palm expansion using remote sensing techniques  

Remote sensing techniques allow the mapping and monitoring of OP expansion. These 

maps, when produced at fine spatial and temporal resolutions assist in enforcing OP 

certification efforts and minoring the success of attempts to reduce deforestation 

(Carlson et al. 2018, Angelsen et al. 2009, Gibbs et al. 2007).  

Land cover classifications of different vegetation types across a timeseries of satellite 

images have been used to track the establishment of industrial oil palm plantations 

(IOPP) at regional scales (Gaveau et al. 2016, Gaveau et al. 2014, Miettinen et al. 2011). 

The establishment of OP plantations on tropical peatlands has been monitored by 

combining IOPP maps with existing maps of tropical peatland extent (Koh et al. 2011, 

Miettinen et al. 2016). In addition to industry and government records of expansion the 

distinctive geometric planting associated with the establishment of plantations make 

them easily identifiable in optical remotely sensed datasets at high resolutions (Wicke et 

al. 2011, Gaveau et al. 2016, Nomura and Mitchard, 2018). Optical imagers from passive 

sensors record reflected and emitted electromagnetic radiation from the earth’s surface 

and overlying atmosphere in the visible to thermal infrared spectrum (λ = 380 nm – 8000 

nm). Vegetation characteristics can be discriminated by their optical spectral signatures, 

however, in the tropics, dataset availability is often hindered by cloud (Gibbs et al. 2007). 

In addition to using spectral datasets, information about vegetation structural 

characteristics can been inferred using active remote sensing techniques (Xie et al. 

2008). L-band synthetic aperture radar (SAR) datasets have frequently been used in 

combination with spectral data to monitor oil palm plantation extent and establishment, 

in many instances producing a more reliable classification when compared to 

methodologies using only optical products (Cheng et al. 2018, Cheng et al. 2016, Morel 

et al. 2012, Miettinen et al. 2012, Gaveau et al. 2016). The changes in AGB stocks that 

accompany forest clearance and OP plantation establishment can then estimated by 

upscaling forest AGB estimates and OP AGB accumulation models to match land cover 

maps at provincial and regional scales (Carlson et al. 2013).  

Multiple studies have mapped oil palm extent and expansion over time, however, few 

attempt to directly quantify the in-situ carbon stock changes associated with this land use 

change. Several well cited maps of woody aboveground biomass density (AGBD) at 

coarse spatial resolutions (0.5 – 1 km) are available across the tropics (Saatchi et al. 

2011, Baccini et al. 2012, Avitabile et al. 2016). These could potentially be used as 

benchmarks from which to calculate in-situ emissions from conversion to OP if they pre-

date plantation establishment. However, the accuracy of these maps have been widely 

criticised (Mitchard et al. 2013, Hill et al. 2013, Hansen et al. 2019). Several studies have 

attempted to produce continuous maps of AGBD which include both forest and IOPP 
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land covers using airborne LiDAR and SAR datasets (Nunes et al. 2017, Morel et al. 

2011). Airborne LiDAR point cloud data (0.4m footprint) produced good estimates of 

aboveground biomass density for oil palm of various ages (8 and 14 years after planting) 

on mineral soils across 27 1-ha plots (Nunes et al. 2017). Despite positive results, 

airborne LiDAR datasets are expensive to produce and time consuming to process, the 

frequent re-visitation of sites to monitor OP AGB accumulation across the scale required 

is not currently feasible. Morel et al (2011) attempted to directly quantify the AGB stocks 

of intact and degraded forests and OP plantations of various ages in Sabah, Malaysia, 

using L-band SAR. Despite reliably classifying forest and OP land covers (97.0% 

accuracy), the AGB stocks of OP plantations were not reliably predicted as the AGB/RCS 

relationship derived solely from forest plots did not accurately estimate the AGB stocks 

of OP palm plantations (Morel et al. 2011).  

1.9) Synthetic aperture radar sensors for vegetation monitoring 

Synthetic aperture radars (SAR) are active sensors which transmit microwave signals 

and measure the backscattered portion of this signal returned to the sensor, the radar 

cross section (RCS), in order to analyse features on the earth surface.  

SAR Acquisition and polarisation  

Imaging radar is an active remote sensing system, a sensor transmits a radar signal in 

a side looking direction towards the Earth’s surface. The return signal received by the 

sensor is reflected from within the ground swath footprint at the earth’s surface (Figure 

1.2a). SAR sensors mounted on moving objects use the motion of the radar antenna 

over a target region to provide a finer azimuth resolution product than conventional 

beam-scanning radars with a similar antenna size (Woodhouse, 2006, JAXA, 2019a, 

Figure 1.2a).  
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Figure 1.2: Geometry of Synthetic Aperture Radar systems. Panel A: Simplified 

geometry of a SAR system (Adapted from Lauknes (2010)), Panel B: Geometry of RCS 

in the Sigma Nought (σ0) plane (Adapted from ASF, 2019). 

The polarisation of SAR sensors can also be specified.  Polarization refers to the 

orientation of the electric field of an electromagnetic wave transmitted or measured by 

the sensor (ESA, 2009, Figure 1.3). Reflectivity and scattering of microwaves from an 

object depends on the relationship between the polarization state and the geometric 

structure of the object (ESA, 2009, Woodhouse, 2006). Common notation refers to radar 

co-polarization: HH (horizontal transmit, horizontal receive) and VV and cross-

polarisation: HV and HV (Woodhouse, 2006, CEOS, 2018). 

 

Figure 1.3: SAR Polarisation. Horizontal (red) and vertical (blue) orientation of the 

electric field of an electromagnetic wave along the direction of propagation (Adapted 

from JAXA, 1997 and Dabboor and Brisco, 2018). 
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Radiometric calibration and terrain correction  

Upon acquisition SAR images are typically provided in digital number (DN) format (ASF, 

2019, JAXA, 2009). Radiometric calibration coefficients specific to SAR sensors and 

acquisition modes are then applied to the DN to produce a radiometrically calibrated 

power image. Sigma Nought (σ0), is the conventional measure of the radar cross section. 

Often expressed in in decibels (σ0dB), the RCS is a is a normalized dimensionless 

number, which compares the strength of backscatter observed to that expected from an 

area of one square metre (m2/m2) (ESA, 2009, ASF, 2019, Ryan et al, 2012). Sigma 

Nought RCS is defined with respect to the nominally horizontal plane and therefore has 

significant variation with incidence angle, wavelength and polarization (ESA, 2009, 

Woodhouse, 2006, Figure 1.2b). 

 

 

Figure 1.4: Geometric distortions in SAR imagery. Panel A: Foreshortening, Panel B: 

Layover and Panel C: Shadow. (Adapted from ASF, 2013). Letters A – D in black 

represent feature position and relative distances between features on the ground, letters 

A’ – D’ in blue represent the position and relative distances between features in the image 

plane. 

As SAR images are acquired in a side looking geometry, this can lead to multiple 

distortions in the imagery, particularly in sloped areas. In figure 1.4a foreshortening 

occurs when the time difference of two signals backscattered at the bottom and the top 

of a steep slope (B’-A’, Figure 1.4a) is shorter than from the top to the back-side flat area 

(C’–B’, Figure 1.4a). The first two points are mapped with a shorter difference between 

them in the image plane, compressing the backscattered signal coming from the 

foreshortened areas (Figure 1.4a). Image layover occurs when the signal received from 

the peak of a slope is received earlier than the signal from the slopes base (Figure 1.4b). 

Pixel information from various location is superimposed. The shadow effect in radar 

imagery occurs when no information is received from the back of a slope (Figure 1.4c). 
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Terrain corrections, successfully applied, can remove geometry induced distortions in 

SAR images by making use of height information derived from digital elevation models 

(DEM) (ASF, 2019, ESA, 2009).  

Radar scattering biomass estimation    

SAR images represent an estimate of the radar backscatter for the corresponding area 

at the surface. Darker areas represent surfaces with low backscattering characteristics 

while brighter areas represent high backscatter backscattering characteristics. 

Backscatter for a target area at a particular radar wavelength varies depending on 

conditions such as the physical size of the scatterers in the target area their dielectric 

properties (Woodhouse, 2006). Therefore, radar sensors are sensitive to changes in 

moisture with wetter objects appearing brighter (with the exception of flat water bodies, 

which appear dark) (Woodhouse, 2006).  

Radar Frequency Band 

(IEEE standard) 

Frequency (GHz) Wavelength (cm) 

P-band 0.2 to 0.5 65 

L-band 1 to 2 23 

C-band 4 to 8 5 

X-band 8 to 12 3 

 

Table 1.1: Radar Frequency Bands according to the IEEE standard and 

corresponding wavelengths.  

SAR wavelength and polarisation will also effect affect backscatter. Table 1.1 presents 

the IEEE standard frequency bands for radar sensors. Incident microwaves are scattered 

by structures that correspond to their wavelength (ESA, 2009). When monitoring 

vegetation, P-band and L-band SAR sensors are most sensitive to woody vegetation 

characteristics (tree trunks and branches) (ESA, 2009). While C-band and X-band 

sensors are sensitive to leafy vegetation surface characteristics, like leaves and grasses 

and cannot penetrate the canopy of woody vegetation (ESA, 2009).  

For low frequency SAR systems (L and P-band), the observed RCS of SAR images 

integrates multiple scattering mechanisms (Figure 1.5, Brolly and Woodhouse, 2012, 

Brolly and Woodhouse, 2014). Diffuse scattering occurs from rough surfaces (relative to 

the radar wavelength), results in the signal being scattered in different directions, the 

rougher the surface the higher the co-polarisation (HH or VV) backscatter (Figure 1.5a, 

CEOS, 2018). Direct backscatter occurs when the transmitted signal is reflected directly 

back to the sensor by a single reflection, usually by a surface oriented perpendicular to 

the radar illumination direction (Figure 1.5b and c). This results in a strong co-polarisation 

reflection and appears bright in the SAR image. Double bounce scattering occurs when 
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vegetation/ground structures act as corner reflectors, as waves remain coherent double 

bounce scattering only occurs at co-polarisation (Figure 1.5d, CEOS, 2018). Volume 

scattering occurs when the radar signal is subject to multiple reflections within 3-

dimensional matter. Since the orientation of scatterers in the canopy is typically random, 

return signal polarisation is also random, backscatter is therefore equal in co- or cross-

polarisation (Figure 1.5e, CEOS, 2018). 

L-band spaceborne sensors are frequently used for woody vegetation and forest 

monitoring as increases in RCS have been correlated increases in woody AGB up until 

a saturation point (Yu and Saatchi, 2016). The mechanisms that determine RCS 

sensitivity to woody biomass and saturation are poorly understood however, it is likely 

due to transitions between scattering mechanisms (Figure 1.5, Woodhouse, 2006, ESA, 

2009, Brolly and Woodhouse, 2012, Brolly and Woodhouse, 2014). When using L-band 

radar the strength of the correlation between AGB and RCS is frequently found to be 

stronger when using the HV polarisation when compared to the co-polarised sensors 

(HH) (Yu and Saatchi, 2016, Morel et al, 2011, Ryan et al, 2012). This is likely because 

HV signals are more relatively dominated by radar volume scattering within the forest 

canopy when compared to the HH (CEOS, 2018). 

 

Figure 1.5: Scattering mechanisms for SAR interactions with surface vegetation. 

A: Diffuse scattering from the ground, B: Direct scattering from grass, C: Direct 

scattering from the canopy (high frequency radar), D: Double bounce scattering from 

the ground-vegetation, E: Volume scattering from within the forest canopy (low 

frequency radar). (Adapted from Piwowar (1997)). 

Multiple studies have used the relationship between RCS and forest structural 

characteristics to estimate and map biomass stocks (Supplementary Table S4.1).  Some 

produce timeseries maps of AGBD with enough sensitivity to directly monitor 

deforestation, degradation and growth (Ryan et al. 2012, Joshi et al. 2015, Mitchard et 

al. 2011). In order to achieve this, SAR radar cross section is typically calibrated to co-
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located field inventory plots where AGB stocks have been measured using a regression 

model (Supplementary Table S4.1).  The coefficients of these regression models are 

then used to estimate AGB stocks using the RCS over a wider area (Ryan et al. 2012, 

Mitchard et al. 2011, Morel et al. 2011). 

1.10) SAR vegetation monitoring – challenges and uncertainties  

Radar backscatter is not a direct measure of forest biomass (Woodhouse et al. 2012). 

The sensitivity of L-band SAR sensors to AGB saturates at between 80 to 250 Mg C ha-

1 depending on forest structure and surface characteristics (Yu and Saatchi, 2016). SAR 

radar cross section is also influenced by topography; effective terrain correction of SAR 

scenes is therefore important as topographic artefacts can result in inaccuracies, 

particularly in mountainous areas or areas of variable slope (Figure 1.4, Atwood et al. 

2014). The speckle observable in synthetic aperture radar due to the coherent 

interference of waves reflected by scatterers also complicates image interpretation and 

both reduces the accuracy of image classification and the legitimacy of detected changes 

between sequential SAR observations (Lee et al. 1999, Joshi et al. 2015). In addition, 

radar sensors are sensitive to changes in soil, canopy and vegetation moisture, 

characteristics that frequently change over time (Balenzano, et al. 2010, Morel et al. 

2011). This noise in L-band SAR datasets is problematic particularly when attempting to 

detect forest disturbance or growth (Joshi et al. 2015).  

Despite this, L-band radar datasets such as ALOS PALSAR-1/2 feature multiple 

observations of the same area over time, some products having multiple scenes per year 

(JAXA, 2019a). Time-series analysis allows the same RCS pixel to be observed multiple 

times across the duration of a LUC allowing more confidence in determining the condition 

of the vegetation and AGB stocks at the pixel location (Joshi et al. 2015). Despite this, 

inter-scene variability in the surface characteristics that influence radar scattering mean 

that the relationship between AGB and RCS must ideally be calibrated independently for 

each SAR scene acquired (Ryan et al. 2012). Successful timeseries analysis would 

therefore typically require a large number of calibration plots monitored frequently across 

the timeseries, a time consuming and potentially limiting process (Supplementary Table 

S4.1, Picard et al. 2012, Chave et al. 2005).  

New methodologies have however been developed which reduce the need for in-situ 

calibration plots when using L-band SAR for AGB mapping (Hill et al. in prep). The 

iterative ‘Biomass Matching’ algorithm identifies areas where no perceived AGB change 

has occurred across a timeseries of SAR scenes to derive the scene specific calibration 

coefficients needed to map gains and losses in AGB stocks (Hill et al. in prep). This 

requires an initial relationship between AGB and in-situ RCS to be defined by the user 
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for a single SAR scene (Hill et al. in prep). These recent methodological developments 

may allow the utilization of publicly accessible L-band radar datasets (like the ALOS 

PALSAR-1/2 global mosaic product) to accurately estimate peat OP AGB accumulation 

over time, without the need for extensive inventory plots over multiple years. Firstly 

though, the relationship between peat OP AGB and in-situ RCS must be defined (Hill et 

al. in prep, Ryan et al. 2012, Morel et al. 2011). 
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1.11) Project Rationale 

The rapid contemporary expansion of OP across tropical peatlands has resulted in net 

ecosystem emissions (Miettinen et al. 2017, Couwenberg et al. 2010, Hoojer et al. 2012, 

Hergoualc'h and Verchot, 2011). In order to address key uncertainties, there is an 

ongoing effort to quantify the emissions from peat oxidation in drained OP plantations 

over time (Miettinen et al. 2017). OP plantations on peat are typically cleared ~20 years 

after planting (Lim et al. 2012, Corley &Tinker, 2016). Despite this, the rapidly growing 

oil palms are a temporary carbon sink, potentially offsetting a small proportion of these 

emissions. There is a scarcity of studies measuring AGB stocks and accumulation of 

working OP plantations on peat, potentially due to the comparatively recent expansion 

of OP across peatlands compared to mineral soils (Koh & Jepsen, 2015, Carlson et al. 

Murdiyarso et al. 2010, Page et al. 2011b). Even fewer studies consider the OP 

plantation AGB accumulation within the context the AGB stocks of the previous land 

cover (Koh & Jepsen, 2015). 

Direct monitoring of peat OP AGB stocks which assess the variation of stocks over time 

and within age classes is needed and could potentially inform GHG lifecycle 

assessments for oil palm on peat. Most peat OP plantations are currently in the middle 

of or approaching the end of their first planting cycle (Lim et al. 2012, Kho et al. 2011, 

Miettinen et al. 2016). Given the time scale over with we must act if we wish to ensure 

global temperature increases are limited to 1.5°C above pre-industrial levels, and the 

extent of this land cover type, increasing our understanding of this temporary carbon 

store is important to inform decisions concerning the next planting cycle and land 

management over the next 20 years (IPCC, 2013, IPCC, 2018, Kho et al. 2011).  

Remote sensing approaches that enable the detection of OP plantation expansion and 

AGB stock monitoring across a broad scale may be an economically viable monitoring 

tool. Despite efforts to map OP plantation expansion (Wicke et al. 2011, Gaveau et al. 

2016), studies are yet to attempt to directly quantify the in-situ carbon stock changes 

associated with this land use change using remote sensing techniques. Course 

resolution maps of AGBD across the tropics are available (Saatchi et al. 2011, Baccini 

et al. 2012, Avitabile et al. 2016), however the accuracy and reliability of these maps has 

been challenged (Mitchard et al. 2013, Hill et al. 2013).  

L-band SAR sensors have frequently been used to estimate and map vegetation AGB 

stocks and are in some instances used to detect AGB accumulation and degradation 

(Ryan et al. 2012 Joshi et al. 2015 Mitchard et al. 2011). However, saturation of the 

AGB/RCS relationship at high AGBs across many vegetation types is a significant 

challenge (Yu and Saatchi, 2016, Joshi et al. 2017).  
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The large number of calibration plots required to be monitored across the timeseries is 

also potentially limiting when mapping changes in AGB using SAR over time 

(Supplementary Table S4.1, Picard et al. 2012, Chave et al. 2005). Using the novel 

‘Biomass Matching’ technique, which reduces the need for calibration plots, may make 

using L-band SAR to monitor small scale changes in peat OP AGB stocks more feasible. 

For this technique to be viable, some plot based AGB stock assessments for working 

industrial oil palm plantations on peat are required. 

This study aims to address the lack of available plot based estimated of AGB and AGB 

accumulation for oil palm on drained tropical peats. By using the a timeseries of L-band 

SAR images and the ‘Biomass Matching’ technique, this study aims to map changes in 

AGB across a peat OP plantation over time from initial establishment to 12 years after 

planting. 

1.12) Research Aims  

Chapter 3: ‘An assessment of oil palm plantation aboveground biomass stocks on 

tropical peat using destructive and non-destructive methods’ 

- Develop allometric relationships for assessing oil palm and frond biomass 

specifically for oil palm plantations on drained tropical peat. 

 

- Evaluate how AGB is distributed within various parts of the oil palms when 

grown on peat.   

 

- Use developed allometric relationships to quantify per hectare AGB stocks for 

oil palm on drained tropical peat at various points in the planting cycle. 

 

- Quantify AGB stock variation within age classes and AGB accumulation with 

plantation age for an industrial OP plantation on peat.  

Chapter 4: ‘Monitoring the aboveground biomass accumulation of oil palm on peat 

using L-band radar’ 

- Define the relationship between the radar cross section and AGB stocks of oil 

palm on peat at varying stages in the oil palm planting cycle.  

 

- Use the ‘biomass matching’ approach to detect changes in AGB across a 

timeseries of L-band SAR scenes and map the AGB losses and gains 

accompanying OP establishment.  

 

- Assess the sensitivity of OP biomass stock estimation using this approach by 

validating oil palm AGB maps against plot inventories and an oil palm AGB 

accumulation model (Chapter 3).  

 

- Identify the potential point of saturation of L-band SAR sensitivity to increases in 

AGB. 

 

- Compare the resulting biomass maps with existing maps of aboveground 

biomass density. 
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Chapter 2: Study site 

 

2.1) Location, soil and climate 

The Sebungan Estate and Sabaju Estate Complex were established and converted to 

oil palm in Sarawak, Malaysian Borneo between 2007 and 2016 and are currently in their 

first planting cycle (3.19˚N 113.43˚E) (Figure 2.1). In 2018, the plantations had an area 

of ~10,200 ha. The Estates are surrounded by oil palm plantations on both peat and 

mineral soils (Figure 2.1).  

 

Figure 2.1: The Sebungan Estate and Sabaju Estate Complex (Panel A), located in 

Sarawak, Malaysian Borneo (Panel B). Survey plots (blue circles) are indicated across 

the plantations (dark grey). Industrial oil palm plantations (IOPPs) as outlined by 

Gaveau et al. 2016 are indicated (light grey), peatland extent across Borneo is also 

indicated (light purple) (GFW, 2019a, GFW, 2019b). Land cover types in Panel A are 

taken from Gaveau et al. 2016 and indicate land covers in 2015. 

The plantation is low lying (~23.0 ± 7.6 m above sea level), with soil surveys indicating a 

majority composition of lowland organic deposits with an underlying marine clay mineral 

layer (84.8%). Very deep peat (> 3m thick) covers the majority of the plantation; 42.2% 

has highly decomposed sapric surface (0 – 0.5 m) and subsurface (0.5 – 1.5 m) tiers. A 

further 42.6% is comprised of a partially decomposed sapric surface tier (0 – 0.6 m) and 

hemic subsurface tier (0.5 – 1 m). Both deposit types contain partially decomposed wood 
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between 0.5 – 1m (Supplementary Figure S2.1, Environmental Impact Assessment, 

2006). The Sebungan Estate plantation is situated on a peat dome between two rivers, 

the Sebungan estate consists of 4 plantations on an irregular peat dome with patches of 

mineral soils and hills (Cook et al. 2018, Supplementary Figure S2.1).  

The site receives ~ 3075 mm rainfall per year (typically ranging from 3000 to 3200 mm, 

Cook et al, 2018) with an average annual temperature of 27.2 °C. Annual rainfall patterns 

are dominated by two monsoons; October-January and May-August, with the former 

contributing most to the annual precipitation at the site.   

2.2) Conversion, OP plantation establishment and management  

Prior to conversion, large trees at the study site were selectively logged. During 

conversion, drainage ditches were dug, and water tables have since been maintained at 

an optimal depth of ~0.4 – 0.6 m from the peat surface to allow cultivation (Cook et al. 

2018, Lim et al. 2012, Othman et al. 2010). Woody debris at various stages of 

decomposition were removed from the peat and piled up on the land surface, often 

parallel to drains. Burning was not used for land cover clearance at the site, vegetation 

was felled and debris was piled up on the land surface and left to decompose, oxidizing 

to CO2 over time as is typical for peat OP plantations. After clearance, the peat was 

compacted using heavy machinery to increase bulk density (Lim et al. 2012).  

Planting bocks were established gradually, the Sebungan Estate (West, Figure 2.1) was 

converted and planted between 2007 and 2008 and the Sabaju Estate Complex (East, 

Figure 2.1) between 2007 and 2016. Blocking maps can be observed in Appendices 1 

(Supplementary Figures S2.2 and S2.3). Oil palm seedlings were then planted at a 

density of 160 palms per hectare (Figure 2.2).  

The estates appear managed, in 2017 at the Sebungan Estate water tables were kept at 

a mean depth of 0.54 ± 0.14 m (WTD measured at 30-minute intervals at single location 

in the Sebungan Estate, McCalmont, 2020, pers. comm, 04 Apr). In the same year fresh 

fruit bunch (FFB) harvest was 26.6 Mg FFB ha-1 in the Sebungan Estate (Koh 2020, pers. 

comm, 04 Apr). Yields appear high when compared to available yield data from other 

mature OP plantations on peat and the Malaysian (19.9 Mg FFB ha-1 yr-1) and Indonesian 

(17.1 Mg FFB ha-1 yr-1) average FFB yields for the same year (FAOSTAT, 2019, Woittiez 

et al. 2017, Veloo et al. 2015, MPOB, 2013, Latif et al. 2002). However, yield data should 

be interpreted with some caution. Leaning and fallen palms as a result of poor palm 

anchorage and peat subsidence are present within mature plantation plots. However, the 

severity and frequency of palm leaning and mortality varies across the various 

plantations making up the Estates. Leaning is most common in mature plots in Sabaju 
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Plantations 1 and 3 and on patches of peat in Sabaju Plantation 2 (Supplementary Figure 

S2.3). Severe leaning and palm failure is rare across the Sebungan plantations.  

The Sebungan Estate and Sabaju Estate Complex have been the subject of multiple 

environmental surveys and carbon balance studies. These include high resolution 

ecosystem scale measurements of land-atmosphere fluxes of CO2 (McCalmont et al. in 

prep), monthly soil, root, stem and frond pile respiration (Manning et al. 2019), drain 

dissolved organic carbon content (Cook et al. 2018) and young palm root biomass 

(Rumpang et al. unpublished). Studies have yet to address the AGB stocks across a 

range of OP ages at the site, quantification of these stocks would improve GHG life cycle 

assessments and carbon balance estimates at the sites. 
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Figure 2.2: Vegetation and planting at the Sebungan Estate and Sabaju Estate 

Complex. 

A) Upright oil palms on peat (Sebungan, 11 years after planting (YAP)) – trunks 

highlighted using white lines.  

B) Leaning oil palms (while lines) and replanted palms (white box) on peat 

(Sabaju, 10 YAP) 

C) Oil palm, 12 years after planting (Sebungan) 

D) Oil palm 3 years after planting (Sabaju) 

E) Industrial oil palm plantation planting pattern (peat soils, planting density of 160 

m). Adapted from Chong et al. 2017. 

F) Peat swamp forest fragment on the Sabaju Estate, some large trees removed 

(Source: McCalmont, 2019). 
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3.1) Abstract  

The recent expansion of oil palm (OP, Elaeis guineensis) plantations into tropical forest 

peatlands has resulted in ecosystem carbon emissions. However, estimates of net 

carbon flux from biomass changes require accurate estimates of the above ground 

biomass (AGB) accumulation rate of OP on peat.  

We quantify the AGB stocks of an OP plantation on drained peat in Malaysia from 3 to 

12 years after planting using destructive harvests supported by non-destructive surveys 

of a further 902 palms. Peat specific allometric equations for palm (R2 = 0.92) and frond 

biomass are developed and contrasted to existing allometries for OP on mineral soils. 

Allometries are used to upscale AGB estimates to the plantation block-level. 

Aboveground biomass stocks on peat accumulated at ~6.39 ± 1.12 Mg ha-1 per year in 

the first 12 years after planting, increasing to ~7.99 ± 0.95 Mg ha-1 yr-1 when a ‘perfect’ 

plantation was modelled. High inter-palm and inter-block AGB variability was observed 

in mature classes as a result of variations in palm leaning and mortality. Validation of the 

allometries defined and expansion of non-destructive inventories across alternative 

plantations and age classes on peat would further strengthen our understanding of peat 

OP AGB accumulation rates.   
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3.2) Introduction 

Global demand for palm oil has risen such that the land area supporting oil palm (OP, 

Elaeis guineensis) plantations has increased to ~25 Mha globally; making OP the 12 th 

largest edible crop by land area [1]. The rapid expansion of OP in Insular Southeast Asia 

during the last quarter decade has resulted in the conversion of 3.1 Mha of tropical 

peatlands [2]. The carbon emissions from the oxidation of soil organic matter following 

the conversion of peat swamp forest to OP are relatively well known, yet the net carbon 

emission of peat swamp forest conversion to OP across the life of a plantation remains 

poorly constrained [3-6]. In part, uncertainty is attributed to a scarcity of literature which 

addresses the rate at which OP on peat accumulates carbon in biomass over time [6-10]. 

The majority of OP standing biomass is stored as aboveground biomass (AGB) 

constituting 84% of biomass stocks, with the reminder (16%) stored as belowground 

biomass (BGB); consequently, efforts here focus primarily on AGB quantification [11-13]. 

Recent efforts to quantify the AGB stocks of forests and plantations have increasingly 

used remote sensing techniques [14,15]. However, remote sensing estimates ultimately 

rely on direct ground-based measurement of AGB stocks either for calibration or 

validation [15,16]. Forest and plantation vegetation is destructively harvested to obtain the 

vegetation dry-weight (DW) and infer biomass carbon stocks (~47.4% of dry biomass) 

[17,18]. These destructive measurements are essential but are costly in terms both of time 

and resources; allometric equations which relate AGB stocks to non-destructive or semi-

destructive measurements of vegetation structural characteristics are therefore 

invaluable [18,19]. Destructive and non-destructive AGB stock estimates are common for 

OP on mineral soils but are almost entirely absent for OP on peat [6,8]. Furthermore, much 

of the literature and allometries are contained within ‘grey’ literature. The lack of 

published direct ground-based estimates of AGB for OP on peat is also a major limitation 

for remotely sensed estimates of OP AGB and in carbon bookkeeping models [6,21,22]. 

OPs are typically managed for a planting cycle of ~25 years after which profitability 

reduces and the next cropping rotation is initiated [23]. However, during each growing 

cycle only a proportion of the biomass produced is retained by the palm to augment its 

existing biomass, the remainder is lost as a result of the natural and managed turnover 

of fruit, inflorescences, fronds and frond bases (Figure 3.1a) [10,23,24]. Fruit bunches 

develop in the axil of each frond and are harvested cyclically. Fronds emerge at a rate 

of 20-25 fronds per year and are progressively pruned before being piled on the 

plantation floor during harvesting rounds [23,25. Frond bases; which are left adhering to 

the trunk subsequent to pruning accumulate during the early to middle years of the 

planting cycle and are typically shed ~12 years after planting [23]. The single growing apex 

of OPs, absence of secondary stem thickening once mature and regular phyllotaxis of 
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fronds within the palm crown mean they are well suited to dry weight quantification and 

allometric development (Figure 3.1b, 3.1c) [26,27]. On mineral soils allometric equations 

have been produced to monitor each palm AGB component in order to accurately equate 

biomass stocks and turnover spatially and over time (Table 3.1). However, many OP 

AGB assessments state biomass values without information pertaining to planting 

density and local environment and are subject to uncertainties associated with a lack of 

standardised methods (Supplementary Table S3.1) [8,9]. Models of OP biomass stock 

accumulation on mineral soils have also been developed and have been incorporated 

into large scale LUC carbon flux and bookkeeping models [8,21,28,29,30]. 

 

 

 

 

Figure 3.1: Oil palm AGB 

components, turnover and 

measurement. (a) Biomass turnover 

and stocks across a 25-year planting 

cycle. (b) An upright Young Mature oil 

palm with DBH (measured at 1.3m 

excluding frond bases) and trunk 

length to the frond ranked 33 (L33) 

indicated. (c) Labelled frond diagram, 

(ci) indicates frond rank numbering 

and crown phyllotaxis (after 

Aholoukpè et al, 2013), (cii) 

demonstrates PCS (petiole cross 

sectional area) measurement where 

𝑃𝐶𝑆 = 𝑈 × 𝑉, a rachis fragment is 

taken from the rachis midpoint.    
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OP plantations on peat are markedly different to those on mineral soils with potential 

impacts on AGB stock estimations. Following the clearance of forest biomass, peatlands 

are drained to an optimum water table depth 0.4 – 0.6 m from the peat surface to allow 

cultivation [31-33]. Peat bulk density is increased to ~ 0.20 g cm-1 by mechanical 

compaction using heavy machinery, often including the compaction of residual forest 

material into the peat [31,34,35]. This increases the load-bearing capacity of peat soils and 

improves the anchorage of OPs which allocate a relatively small proportion of total 

biomass to belowground root systems [11,32,33,34]. Following this initial compaction further 

peat subsidence occurs as a result of peat shrinkage, consolidation and decomposition 

following drainage [36]. This subsidence, when combined with poor root anchorage, 

frequently results in individual palms leaning at an angle to the ground. As leaning 

becomes more severe roots become exposed and vulnerable to desiccation and 

breakage which can result in the palms falling over entirely, the likelihood of this 

increases as palms mature with associated gains in trunk and crown biomass  [32]. This 

has become a serious limiting factor for OP performance on peat and will likely have 

detrimental effects on AGB stocks as plant density per area is reduced due to palm 

mortality (Figure 3.1a) [10,32,33]. Initial palm planting densities are optimised for maximum 

fresh fruit bunch (FFB) yield across the life of the plantation; higher densities are 

therefore adopted for less favourable soils [24]. In contrast to OP on mineral soils, optimal 

planting densities on peat range from 160 to 200 palms per hectare (110 – 148 palms 

per hectare on mineral soils) [10,24,33].  

In this study, we quantify the AGB (dry-weight) of OPs on deep peat in Sarawak, 

Malaysia. Destructive harvests of nine palms split amongst three age classes (IM: 

immature, YM: young-mature and M: mature) are supported with non-destructive 

measurements and surveys of a further 902 palms. Harvest data is used to develop new 

allometric equations for palm and component AGB. Non-destructive measurements are 

then used to upscale the destructive harvests to the plantation block level. We develop 

models of AGB accumulation rates on peat to inform existing OP AGB growth and carbon 

balance models. Finally, a meta-analysis of existing OP allometries for palms on both 

peat and mineral soils is performed and the results contrasted with data and allometries 

developed as part of this study. 

 

 

 

 



34 
 

 

Table 3.1: Existing allometric equations for the estimation of OP component dry 

weight (kg) and OP AGB accumulation models for OP on mineral soils. Where 

DWFrond is frond dry weight (kg), PCS is the petiole cross sectional area (cm), DWRachis 

is rachis dry weight (kg), DWFrag is rachis fragment dry weight (kg), LFrag is rachis 

fragment length (m), LRachis is rachis length (m), DWTrunk is trunk dry weight, THeight is 

trunk height (m) , DWPalm is palm dry weight (kg), TVol is trunk volume (m3), DBH is the 

diameter at breast height (m) and YAP is years after planting. 

 

3.3) Results 

3.3.1)  OP biomass distribution in immature, young-mature and mature palms     

Of the palms destructively harvested, one mature palm was mildly leaning 

(Supplementary Table S3.2). As expected, the palm trunk makes the largest contribution 

(33 to 46 %) to the total palm dry weight (DWpalm), particularly in the YM and M classes 

(Figure 3.2). Frond base biomass also constitutes a large proportion of the overall 

biomass (13 to 32 %), again particularly in the older age classes (Figure 3.2, Table 3.2). 

Palm trunks retained all frond bases in all palms harvested. In immature palms, fronds 

make up a larger proportion of overall biomass.  

No Component  Equation  Source  Note 

Allometries Tested 

3.1 Frond DW 𝐷𝑊𝐹𝑟𝑜𝑛𝑑 = 0.102 × 𝑃𝐶𝑆 + 0.21 Corley et al, 1971 - 

3.2 Frond DW 𝐷𝑊𝐹𝑟𝑜𝑛𝑑 = 𝛼 +  𝛽 × 𝑃𝐶𝑆 

𝛼 = −0.0076 + 0.0394 × 𝑌𝐴𝑃 

𝛽 = 0.0284 + 0.0101 × 𝑌𝐴𝑃 

Henson (1993): in 

Henson and 

Dolmat 2003 

Palms YAP 

≤ 6 

3.3 Rachis DW 
𝐷𝑊𝑅𝑎𝑐ℎ𝑖𝑠 = 1.133 ×

𝐷𝑊𝐹𝑟𝑎𝑔

𝐿𝐹𝑟𝑎𝑔

× 𝐿𝑅𝑎𝑐ℎ𝑖𝑠 

Aholoukpè et al, 
2013 

- 

 Frond DW 𝐷𝑊𝐹𝑟𝑜𝑛𝑑 = 1.147
+ 2.135
× 𝐷𝑊𝑅𝑎𝑐ℎ𝑖𝑠 

  

3.4 Trunk DW 𝐷𝑊𝑇𝑟𝑢𝑛𝑘 = 𝑇𝑉𝑜𝑙  × 𝜌
= 𝜌(𝜋𝑟2 × 𝐿𝑇𝑟𝑢𝑛𝑘)  

Corley et al, 1971 Trunk 

biomass 

without 

frond bases  
 Trunk Density 𝜌 = 0.0076 × 𝑌𝐴𝑃 + 0.083  

Biomass Accumulation Models  

M1 Standing 
Biomass 

(Mg ha-1) 

𝑆𝐵 =  −0.00020823 × 𝑌𝐴𝑃4

× 0.000153744
× 𝑌𝐴𝑃3

− 0.011636
× 𝑌𝐴𝑃2

+ 7.3219 × 𝑌𝐴𝑃
− 6.3934 

Henson, 2003 Standing 
biomass, 

adjusted to 

AGB (Morel 

et al, 2011). 

M2 Aboveground 

Biomass (Mg 

ha-1) 

𝐴𝐺𝐵 = 18.95 × 𝑌𝐴𝑃0.5 

 

Germer and 

Sauerborn, 2006 

- 

M3 Aboveground 

Biomass (Mg 

ha-1) 

𝐴𝐺𝐵 = 1.526(5.97 × 𝑌𝐴𝑃0.62) 

 

Carlson et al, 

2012 

Model 

adjusted 

from carbon 

to AGB 
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Contrasting palm trunk and total frond dry weight for each age class to those on mineral 

soils revealed no differences (Figure 3.3). However, accessible data was scarce on both 

mineral and peat soils.  

 

Figure 3.2: Mean AGB component dry weights (kg) for immature, young mature 

and mature OPs. Error bars indicate standard error. Frond Base (Crown) is the 

remaining frond base left in the crown subsequent to live frond removal (see methods).  

 

Table 3.2: Mean AGB component dry weights (kg) for immature, young mature 

and mature OPs (standard error indicated). 

YAP Stem Frond Spear Cabbage Total 

(All) 
Trunk Frond 

Base  

Total Rachis Petiole Leaflet  Total 

3 7.0 ± 

1.8 

3.9 ± 

0.5 

11.0 2.8 ± 

0.2 

2.0 ± 

0.9 

4.9 ± 

0.5 

9.7 0.3 ± 

0.1 

0.3 ± 0.1 21.3 ± 

5.9 

8 111.8 ± 

19.3 

42.5 ± 

10.2 

154.3 30.2 ± 

4.9 

21.3 ± 

2.6 

32.3 ± 

5.1 

83.8 1.2 ± 

0.1 

1.3 ± 0.6 240.6 ± 

15.3 

12 182.4 ± 

17.6 

138.8 ± 

25.2 

321.2 45.7 ± 

8.1 

25.0 ± 

1.4 

36.1 ± 

5.7 

106.9 2.4 ± 

0.4 

1.3 ± 0.5 431.8 ± 

90.1 
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Figure 3.3: Dry weights of OP components (kg). Dry weights where quantified using 

destructive harvests including total frond biomass per palm (a), palm trunk biomass (b) 

and palm biomass (excluding fruit and epiphytes) (c). Per palm DWs of OP AGB 

components on mineral soils are taken from Corley et al (1971), Khalid et al, (1999), 

Rees and Tinker (1963) and Syahrinudin (2005). Frond base biomass is included in 

palm (total) where reported ((c) - grey open circle). 

 

3.3.2) Allometric estimation of palm and frond component biomass 

Harvest data was used to validate existing allometric equations and develop equations 

for Malaysian OP on deep peat (Table 3.1, Table 3.3). 

3.3.2.1) Frond DW Estimation 

Existing allometric equations estimating frond dry weight (DWfrond) using the petiole cross 

sectional area (PCS) (Equation (3.1) and (3.2)) and rachis linear density (RLD) (Equation 

(3.3)) were tested. The petiole cross sectional area is the sectional area at the junction 

of the petiole and rachis (at the point of insertion of the lowest leaflet) (Figure 3.1 c). The 

rachis linear density is derived from the dry weight of a rachis fragment and is used to 

predict rachis dry weight (DWRachis) and infer DWFrond.  

All existing allometric equations tested overestimated frond dry weight (Supplementary 

Figure S3.1). Frond DW estimation using the petiole cross sectional area (Equation (3.1)) 

overestimated DWfrond by ~56% for young mature and mature palms and ~119% for 

immature palms. However, using Equation 3.2 to estimate DWfrond from the PCS for 

palms < 6 years after planting improved estimation in the immature age class, 

overestimating frond dry weight by only 21%. Estimation using rachis linear density 

(Equation (3.3)) resulted in an overestimation of ~61% for young mature and mature 

palms and ~300% for immature palms. Rachis dry weight was however well predicted 

from rachis linear density (Equation (3.3), Supplementary Figure S3.2). Further 

allometries referred to in Corley and Tinker (2016) both over and underestimated DWFrond 

(Supplementary Figure S3.3).   
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Allometric relationships for DWfrond estimation on deep peat were then defined. Frond dry 

weight in each age class was lower than reported for palms on mineral soils but was 

more consistent with those sampled by Henson and Dolmat (2003) from OPs on peat 

(Supplementary Figure S3.4). Leaflets in immature palms made a larger contribution to 

overall frond dry weight when compared to the mature age classes (Supplementary 

Figure S3.5), equations were adjusted to include all palm ages sampled. Rachis linear 

density was a marginally better predictor of DWFrond (R2 = 0.83), when compared to the 

petiole cross section (R2 = 0.76) once adjusted to harvested fronds (Figure 3.4). 

However, estimation of DWFrond using the petiole cross sectional area was considered 

more practical in the field. Rachis length was also used to predict DWFrond to a similar 

degree of accuracy (R2 = 0.81). 

 

Figure 3.4: Linear relationship between frond structural characteristics and 

Frond DW (DWFrond). DWFrond is compared to the petiole cross sectional area (PCS) 

((a) - equation (3.5)), rachis dry weight (DWRachis) derived from rachis linear density ((b) 

– equation (3.6)) and rachis length ((c) – equation (3.7)). A total of 45 fronds were 

sampled, fronds ranked 1, 9, 17, 25 and 33 were sampled for each of the nine 

destructively harvested palms. 95% confidence interval of fit indicated in grey; 

consistent outliers indicated as a black closed circle.  
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Table 3.3: Allometric equations for the estimation of OP component dry weight 

(kg) and OP AGB accumulation models for OP on peat soils. Allometric equations 

are derived from destructive harvest data at the study site. Where DWFrond is frond dry 

weight (kg), PCS is the petiole cross sectional area (cm), DWRachis is rachis dry weight 

(kg), DWFrag is rachis fragment dry weight (kg), LFrag is rachis fragment length (m), 

LRachis is rachis length (m), DWTrunk is trunk dry weight, FITHeight is trunk height (m), 

DWPalm is palm dry weight (kg), TVol is trunk volume (m3), DBH is the diameter at breast 

height (m) and YAP is years after planting.  

3.3.2.2) Palm DW Estimation  

The palm trunk makes the greatest proportional contribution to overall palm biomass 

(Figure 3.2). Equation (3.4) underestimated trunk dry weight by 32% in YM and M palms 

(frond bases not included). Total palm DW (DWpalm) is estimated using trunk height 

(height to frond 33) in existing allometries (Supplementary Table S3.3). Whilst trunk 

length was found to be a good estimator of DWpalm (R2 = 0.88), the use of trunk volume 

was marginally more effective for the palms sampled (R2 = 0.92) (Equation (3.8)) (Figure 

3.5). A model was developed to predict DWpalm excluding frond bases to simulate frond 

No Component  Equation  Note  

Derived Allometries  

3.5 Frond DW 𝐷𝑊𝐹𝑟𝑜𝑛𝑑 = 0.060 × 𝑃𝐶𝑆 + 0.217 Frond DW estimation using the 

petiole cross sectional area of a 

pruned frond.   

3.6 Rachis DW 
𝐷𝑊𝑅𝑎𝑐ℎ𝑖𝑠 = 1.126 ×

𝐷𝑊𝐹𝑟𝑎𝑔

𝐿𝐹𝑟𝑎𝑔

× 𝐿𝑅𝑎𝑐ℎ𝑖𝑠 
 

Frond DW estimation using the 

DW of a rachis fragment taken 

from a pruned frond.  

 Frond DW 𝐷𝑊𝐹𝑟𝑜𝑛𝑑 = 0.176

+ 2.267 × 𝐷𝑊𝑅𝑎𝑐ℎ𝑖𝑠 

 

3.7 Frond DW 𝐷𝑊𝐹𝑟𝑜𝑛𝑑 = 0.562 × 𝐿𝑅𝑎𝑐ℎ𝑖𝑠 − 0.767 Frond DW estimation using 

rachis length.  

3.8 Palm DW 𝐷𝑊𝑃𝑎𝑙𝑚 = 12.87 + 560.8 × 𝑇𝑉𝑜𝑙 

𝑇𝑉𝑜𝑙 = (𝜋 × 0.5 × 𝐷𝐵𝐻)2 × 𝐿𝑇𝑟𝑢𝑛𝑘  

Palm DW estimation derived 

from non-destructive trunk 

volume measurement.  

DBH measured excluding frond 

bases 

Derived Biomass Accumulation Models  

P1 Aboveground 

Biomass (Mg 

ha-1)  

𝐴𝐺𝐵 = 6.389 × 𝑌𝐴𝑃 − 17.59 AGB accumulation on peat – 

observed plantation biomass. 

P2 Aboveground 

Biomass (Mg 

ha-1)  

𝐴𝐺𝐵 = 7.992 × 𝑌𝐴𝑃 − 26.29 AGB accumulation on peat - 

‘perfect plantation’ model. All 

palms are modelled as live and 

standing.  
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base shedding, however R2 = 0.52, potentially due to a small sample size (n = 6) and the 

highly variable contribution of frond bases to the overall DWpalm of palms sampled. 

 

Figure 3.5: Linear relationship between palm trunk volume (TVol) and palm dry 

weight (DWPalm) for the nine destructively sampled OPs. 95% confidence interval of 

fit indicated in grey (Table 2, equation (3.8)).  

 

3.3.3) Upscaling biomass to the plantation block scale  

Non-destructive measurements were combined with the allometric equations defined for 

OP on peat to assess biomass stocks at the plantation block level. Equation (3.8) was 

used to estimate the biomass stock of live palms in 22 0.25 ha plots in plantation blocks 

at various stages of maturity (Figure 3.6). This confirmed a large variation in biomass 

stocks in the more mature plots with a mean AGB of 65.9 ± 8.7 Mg ha -1 11 years after 

planting and 56.04 ± 12.0 Mg ha-1 after 12 years at the study site (Figure 3.6). A ‘perfect’ 

plantation on peat was then modelled, this included only healthy upright palms, upscaled 

to a planting density of 160 palms per hectare, simulating a plantation where there was 

no occurrence of palm leaning or mortality. Once all fallen, missing and re-planted palms 

(which represented 13% of palms in plots > 8 YAP in this study) had been disregarded 

aboveground biomass stocks accumulated at ~7.99 ± 0.95 Mg ha-1 yr-1 in the first 12 

years after planting. However, this is reduced to ~6.39 ± 1.12 Mg ha -1 per year 

considering all 22 assessed plantation blocks when palm mortality and replacement is 

taken into account. Mild (Leaning at < 45o from the vertical) and severely leaning palms 

(Leaning at > 45o from the vertical) made up 17% of live palms in plots > 8 YAP, however, 

inter-plot variation within age classes across the plantation was high.  

Aboveground biomass stocks at the study site were compared to assessments of OP 

AGB on mineral soils in addition to comparison with AGB accumulation models (Figure 
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3.6). Only 3 accessible assessments of OP AGB stocks on peat soils were available 

(Figure 3.6). At the time of survey there were no planting blocks aged > 12 YAP at the 

study site. Henson (2003), Model M1, assumes an AGB reduction ~18 years after 

planting due to frond base shedding. In contrast, Models M2 and M3 do not indicate this 

reduction (Figure 3.7). Peat OP AGB at the Sabaju and Sebungan Estates appears 

consistent with OP on mineral soils. However, in mature blocks where palm falling and 

missing palms were common AGB stocks were notably lower than modelled OP growth 

(Figure 3.6, Figure 3.7). 

 

Figure 3.6: Oil palm block-level cumulative AGB stock (Mg ha-1) for peat (blue 

markers) and mineral soils (grey markers). OP aboveground biomass stocks on 

mineral soils (Table S3.1) were obtained using destructive (D) and non-destructive 

(ND) methods and are presented in addition to existing values for OP on peat. Existing 

data for non-destructive mineral estimates (+) and destructive mineral (   ) and non-

destructive peat (+). Block AGB stocks at the study site are included (   ) and the 

plantation mean for each YAP plotted (   ), standard deviation indicated (Black error 

bars).  
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Figure 3.7: AGB accumulation models (Mg ha-1) for oil palm on deep peat from 3 

to 12 YAP. (a)models observed OP accumulation at the Sabaju and Sebungan OP 

estate complex (Model P1). (b) models a ‘perfect’ plantation on peat modelling all 

palms as live, present and standing (Model P2).  95% confidence intervals of both fits 

indicated in grey. Existing AGB accumulation models for OP on mineral soils (YAP 0 – 

30) are plotted (Models 1, 2 and 3, Table 1). 

3.4) Discussion  

3.4.1) Dry weight distribution of OP on peat  

The dry weight of OPs in three age classes was quantified using destructive harvests. 

As palms transitioned from youth to maturity trunk length and dry weight increased; this 

was also accompanied by an increase in frond base biomass relative to the total palm 

dry weight. Studies that destructively harvest frond bases to quantify biomass are few 

when compared with other AGB components [12,30,37,38]. This is likely due to the practical 

difficulties associated with frond base removal [37]. It is often also unclear whether non-

destructive OP biomass assessments that quantify plantation biomass stocks using 

allometries have included the dry weight contribution of adhering frond bases  [8,9]. Henson 

et al (2012) found total frond base dry biomass per palm to be 10.8, 62.8 and 56.0 kg, 3, 

10 and 13 years after planting in Papua New Guinea (with 94.6% of frond bases adhering 

to the trunk 13 YAP). Frond bases made an even greater contribution to overall palm 

biomass in this study, particularly in mature palms (Table 3.2).  A review of studies 

quantifying frond base biomass highlights the high variation in palm frond base dry 

weight when compared to both palm age and trunk biomass [37]. Despite this variation, 

frond bases make a large contribution to the overall AGB of OP plantations in the young 

mature and mature age classes (~17.5 and 32.1% of total AGB respectively). This will 

become a large carbon source following shedding before the end of the plantation 

planting cycle as frond base litter decomposes [37,39].  

The biomass of a single mature frond grown on peat was consistently lower than on 

mineral soils in all age classes when compared to pooled frond DWs for palms on mineral 
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soils (Supplementary Figure S3.4) [40]. Studies have also found the rate of frond 

emergence reduces significantly as planting density is increased [10,42]. Taking into 

account the higher planting density of OP on peat, it is therefore surprising that there 

was no observable difference between total per palm frond biomass on mineral and peat 

soils (Figure 3.3a). The acidity, low nutrient content and poor fertiliser retention of 

managed tropical peat soils is likely to result in reduced vegetative dry matter production 

and biomass accumulation when compared to OP on mineral soils [42]. In addition to this, 

palms at higher densities are subjected to increased competition for light thus reducing 

the dry matter production per palm [23]. Despite these expectations, our study revealed 

no notable differences in palm, trunk or frond biomass between mineral and peatland 

plantations. However, the lack of available literature which documents DWPalm, DWTrunk 

and the total frond biomass for individual palms on mineral soils and the small sample (n 

= 9) of palms on peat in this study makes it difficult to identify significant differences in 

palm and component biomass. Differences may however be detectable with a larger 

sample size. To confound this, palms on mineral soils have been sampled using non-

standardized methodologies and are influenced by differences in genotype, eco-region 

and plantation management [8, 11,12,26,30]. 

3.4.2) Allometric equations for OP component DW on peat   

This study defined allometric relationships for OP and OP component dry biomass on 

drained tropical peats. Allometries produced here for the estimation of frond dry weight 

incorporate fronds of various ranks from multiple age classes. Here, the frond rachis 

linear density and petiole cross sectional area were both effective predictors of DWFrond 

(R2 = 0.82, R2 = 0.76). In contrast to Corley and Tinker (1971) (Equation (3.1)), 

Aholoukpè et al (2013) found frond biomass to be poorly predicted using the PCS in YM 

and M palms (R2 = 0.22) but found rachis linear density to be a better predictor (R2 = 

0.62). However, the increased effort required to measure rachis linear density from the 

dry weight of a rachis fragment in the field is perhaps not justified by the marginally 

stronger relationship between rachis linear density and DWFrond when compared to using 

the petiole cross sectional area in this study. An allometry was defined relating trunk 

volume to the total palm biomass (Equation (3.8)). To take into account the structural 

variation of OP on peat TVol was modelled as a cylinder the length of the trunk to F33, 

measuring along the inner curve of the trunk for leaning palms [32].  

3.4.3) Application of existing allometries to peat OP 

Frond biomass for palms on peat was overestimated by the majority of existing allometric 

equations tested (derived using palms on mineral soils), most notably in the immature 

age class. This overestimation of young palm DWFrond is also acknowledged by Henson 
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(1993) and a large improvement was observed when applying Equation (3.2), which is 

adjusted for use on young palm fronds. Equation (3.3) has yet to be validated for young 

palm fronds and whilst DWrachis was well estimated for all age classes, adjustment is 

needed before it can be used for young palm DWFrond prediction on peatlands [43].   

In the mature age classes, trunk biomass was underestimated by ~32% when using 

Equation (3.4), much greater than the underestimation of ~10% acknowledged by Morel 

et al (2011) when using this allometry. Corley et al (1971) model the trunk (without frond 

bases) as a cylinder with a constant diameter with wood density estimated according to 

palm age. Aholoukpè et al (2018) attempted reduce the uncertainty introduced though 

these assumptions by modelling the true inverted cone shape of the stem and 

incorporating the changes in trunk wood density as a function of trunk height. However, 

this assumes an upright palm and hence is often not applicable to OP on peat due to 

high incidence of palm leaning [32]. 

Here palm dry weight was best predicted using trunk volume. Thenkabail et al (2004) 

relate DWPalm to trunk height in Benin; the resulting allometry greatly underestimated 

DWPalm in mature and young mature palms in this study resulting in a mean 

underestimation of 72%. However, no palms with a trunk height > 1.95m were 

incorporated into the initial model. Dewi et al (2009) produced a similar allometry for OP 

on mineral soils in Indonesia which can be used more successfully with a mean 

underestimation of only 16% when applied here to OP on peat (Supplementary Table 

S3.3).  

3.4.4) Plantation block-level AGB 

The allometries developed using destructive sampling were combined with non-

destructive palm structural measurements and frond pruning to upscale biomass stock 

estimates to the plantation block level. Trunk DBH remained consistent across the age 

classes (YAP > 8) whilst trunk length increased with age in standing palms 

(Supplementary Figure S3.6). In ‘successful’ blocks, per hectare AGB was similar to that 

observed on mineral soils (Figure 3.6). Vegetative dry matter production and standing 

biomass per hectare increases with planting density as observed in studies on both peat 

and mineral soils, disregarding fruit bunch biomass [10,48]. The higher planting density of 

palms on unfavourable peat soils likely contributes to the high per hectare AGB stocks 

in plots where leaning is infrequent or mild with relatively few fallen palms [24,33]. However, 

there is a large variation in plot per hectare AGB within age classes and in plots with a 

high incidence of leaning and fallen palms AGB was greatly reduced. Here, mild and 

severely leaning palms made up 17% of live palms in plots > 8 YAP with an additional 

13% of OPs fallen, missing or replaced. However, inter-plot variation within age classes 
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across the plantation was high (Figure 3.6). Census of the incidence of palm leaning 

were carried out at 6-month intervals in an experimental OP block on deep peat in 

Sarawak [49]. After 12 years 50.3% of palms were mildly leaning and 2.8% had fallen or 

were severely leaning, this worsened to 55.5 and 6.9% in uncompacted plots [49]. Dolmat 

et al (1995) found leaning incidences of 44.2 % (compacted) and 71.9% (uncompacted) 

in Perak.  

As a result of the recent rise in OP expansion across tropical peats combined with efforts 

to increase peat OP sustainability, research increasingly focuses on the optimisation of 

peat OP growth and fruit bunch yields [23,32,33]. Prior to conversion, site and soil surveys 

are of high importance as the position on the peat dome, peat composition, maturity and 

depth have all been found to have an impact on conversion success, palm growth and 

yield potential [20,35]. Peat compaction to increase bulk density prior to conversion and the 

thorough removal of woody debris from forest clearance is important to improve palm 

anchorage, whilst maintenance of a consistent water table increases palm rooting depth 

potential [32,33,35,50,51]. Maintenance of drainage systems once installed will aid in 

prevention of flooding, an additional prerequisite to peat oil palm failure [32]. Once palms 

have reached maturity and leaning has commenced regular pruning to reduce canopy 

biomass and prevent toppling in addition to soil mounding of roots after exposure both 

aid in reducing palm falling and limit AGB and yield reductions [52].  

3.4.5) Limitations and further work 

In addition to the limitations highlighted, further uncertainties arise from the focus of this 

study on a single plantation. We observed a high variation in palm structural 

characteristics and plot biomass stocks within mature age classes in a single well 

managed industrial OP estate. Therefore, the actual variation of monoculture OP 

plantation AGB stocks on peat across Sarawak, Malaysia and Insular Southeast Asia is 

likely to be greater considering differences in plantation management and leaning, peat 

properties and ecoregions. 

The sample size of destructively harvested palms is small (n = 9), with few mature palms 

and no palms > 12 YAP harvested. Similar studies which destructively harvest palms on 

mineral soils to quantify DWPalm include between 3 to 10 palms sampled for each palm 

age and span from 1.5 to 33 years after planting (Supplementary Table S3.3)  [11,12,26,30,46]. 

Small sample sizes are common in destructive biomass assessments due to costly 

sampling procedures (particularly in older, larger palms) and results are therefore 

vulnerable to the influence of variation between individual palms [9]. We acknowledge the 

need to extend the temporal scope of the chronosequence here to include mature palms 

> 12 YAP as AGB stocks after this point are uncertain. This could inform growth models 
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for OP on peat beyond ~18 YAP where existing models of OP AGB accumulation vary 

(Figure 3.7) [3,21,28,53]. Continuing the chronosequence would also permit the averaging of 

biomass stocks across the life of a plantation on peat, aiding in the comparison of 

biomass stocks with alternative land cover types for LUC flux modelling and carbon 

accounting [6,54]. Here all palm mortality and replacement has been attributed to palm 

leaning in the plots considered, however the spread of pests (particularly termites on 

peat soils) and diseases such as G. boninense basal stem or trunk rot are also frequently 

the cause of palm failure and replanting [55,56]. Despite this, the plantation studied here is 

in its first planting cycle and with no instances of Ganoderma boninense observed [23].   

Finally, all allometric relationships defined here would benefit from validation to test their 

success on OP on drained peats, including mature palms as well as their possible 

application in alternative ecoregions and at different planting densities [17].  

3.5) Conclusion 

The recent rapid expansion of OP plantations across managed tropical peatlands is 

known to result in net carbon emissions. However, the emissions associated with this 

land use change across the life of a plantation remain poorly constrained as 

aboveground biomass accumulation rates on peat are uncertain due to a lack of both 

destructive and non-destructive AGB quantifications.  

Here, we produce peat OP specific allometries for the estimation of both palm and frond 

dry weight and use these allometries to upscale AGB estimates to the plantation block 

level. This revealed a high variability in aboveground biomass stocks across a plantation 

in the mature age classes. Increasing non-destructive inventories on peat will not only 

improve AGB accumulation models but could also inform remote sensing efforts which 

aim to quantify AGB stocks over a wider spatial scale. Validating the allometries 

produced by expanding destructive harvests across different plantations on peat in 

addition to including older palms in harvests and plot inventories would further strengthen 

our understanding of peat OP AGB stock changes over time. 

3.6) Methodology  

3.6.1) Study site  

Measurements were carried out at the Sebungan and Sabaju Oil Palm Estate Complex, 

Sarawak, Malaysia (3.19˚N 113.43˚E). The industrial OP plantation has an area of 

~10,200 ha. The site receives ~ 3075 mm rainfall per year with an average temperature 

of 27.2 °C. Meteorology was recorded at 1-minute intervals on a Sutron XLite 9210B 

datalogger (Sterling, Virginia, US). Air Temperature was measured at 1 m using a 
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Vaisala HMP155 (Vaisala, Helsinki, Finland). Precipitation was measured at 6 m, i.e. 

above the canopy, using a Texas Electronics TR525M (Dallas, Texas, US). 

The plantation is low lying, soil surveys indicate a majority composition of lowland organic 

deposits with an underlying marine clay mineral layer (84.8%). Very deep peat (> 3m 

thick) covers the majority of the plantation; 42.2% has highly decomposed sapric surface 

(0 – 0.5 m) and subsurface (0.5 – 1.5 m) tiers. A further 42.6% is comprised of a partially 

decomposed sapric surface tier (0 – 0.6 m) and hemic subsurface tier (0.5 – 1 m). Both 

deposit types contain partially decomposed wood between 0.5 – 1m.  

Prior to conversion the site was covered in logged mixed peat swamp forest (PSF). Land 

preparation included the removal of remaining large trees and vegetation, the 

establishment of a drainage system and peat compaction using heavy machinery31. OPs 

are planted at a density of 160 palms per hectare and at the time of measurement ranged 

from 3 to 12 years after planting (YAP).  

3.6.2) Destructive harvests 

Palm selection and sampling 

Three palms were destructively harvested from each age class: 3 (Immature – I), 8 

(Young Mature – YM) and 12 (Mature - M) years after planting. Palms were selected at 

random at least 50 m from the block edge, all were selected in different planting blocks, 

GPS coordinates were recorded (Supplementary Table S3.5). Severely leaning or 

recovered palms were not considered for destructive harvests. Prior to felling, non-

destructive measurements of palm structural characteristics were taken. 

Destructive measurements    

All fresh weights (FW) (kg) were measured and recorded at the felling site as close to 

the time of felling as possible, with particular attention paid to leaflets. Samples were 

promptly transferred to the lab oven to avoid capturing decomposition in DW 

measurements.  

Fronds 

Fronds were removed from the palm crown as close as possible to the base of the frond 

using a harvesting sickle (Figure 3.1c). Fronds were counted and any petiole remaining 

in the crown subsequent to frond removal was harvested and classified as ‘crown frond 

base’.  

Using the frond rankings of Thomas et al (1969), fronds 1, 9, 17, 25 and 33 were 

subsampled for allometric validation and development (Figure 3.1ci). The petiole cross 

sectional area, rachis length and the fresh weights of the frond rachis, petiole and leaflets 
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were recorded (Figure 3.1c). Petiole cross sectional area was measured using callipers 

at the junction of rachis and petiole (the point of insertion of the lowest leaflet) and was 

modelled as a rectangle (𝑃𝐶𝑆 = 𝑈 × 𝑉, Figure 3.1cii)11. A 0.15 m fragment was removed 

from the midpoint of the rachis and petiole, a subsample of leaflets was also removed. 

All remaining fronds were split into components (rachis, petiole and leaflets) and their 

total fresh weight recorded. 

Trunk and frond bases 

All epiphytes were removed from the palm trunk, the FW of epiphytes was recorded, and 

a subsample taken. All frond bases were removed from the palm trunk and a disk ~0.2m 

thick was removed from the trunk midpoint. This disk was weighed, and two 

perpendicular disk diameters recorded, a sector (~1/8th of the disk) was removed and 

the fresh weight recorded, and the sector returned to the labs for DW analysis. The palm 

trunk (without frond bases) was then weighed using suspended scales at the felling site 

or at the plantation weighbridge. Subsequent to removal, the total FW of all frond bases 

was recorded, a subsample of 3 frond bases was then returned to the labs. 

Inflorescences, fruit, spear and cabbage 

The total FW of all inflorescences and fruit bunches and the palm spear and cabbage 

(growing apex) was recorded at the felling site before removing 3 subsamples per 

component for DW analysis. Fruit bunch fresh and dry weights where not included in any 

further analysis due to variation in palm harvesting cycles. 

Laboratory analysis  

Palm component subsamples were dried at 105°c until a constant, non-changing mass 

was reached, component moisture contents were then calculated for each sample.  

3.6.3) Non-destructive surveys and frond pruning  

Plot selection and sampling 

Non-destructive survey plots were selected at random across the plantation complex 

(with a minimum of 3 plots selected for each age class). 22 plots with an area of 0.25 ha 

were surveyed. Plots were 3, 8, 9, 10, 11 and 12 YAP and were in independent planting 

blocks, GPS coordinates were recorded at plot corners. The YAP of each plot was 

checked against planting blocking maps, plots were established away from block edges 

(Supplementary Table S3.5). 
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Leaning categorisation 

The condition of each palm with the 0.25 ha plot was recorded. Palms were categorised 

as upright, mildly leaning, severely leaning, recovered, fallen (dead/alive), missing or 

replanted (see Supplementary Table S3.4). The direction of lean was also recorded.  

Non-destructive measurement and pruning 

Each 0.25 ha plot contained approximately 40 palms, palms were numbered, and 

structural measurements taken for 10 randomly selected palms. The canopy height was 

recorded. Trunk length was measured along the trunk to frond 33 or the most mature 

frond, for leaning palms the trunk length was measured along the trunk inner curve 

(Figure 3.1b, Supplementary Figure S3.7). Trunk diameter at breast height (DBH, 1.3m) 

was measured using callipers so as not to include frond bases, for palms < 1.3m in height 

the diameter was taken at the trunk midpoint. Frond 33 was pruned from the canopy of 

the corresponding palm; rachis length was recorded, and petiole cross sectional area 

was measured using callipers.   

3.6.4) Meta-analysis and allometry validation   

OP Biomass stock estimates  

All accessible literature publishing per hectare standing biomass (SB) and AGB stocks 

for OP on both peat and mineral soils using destructive and non-destructive methods 

was collected. Values were adjusted to AGB (Mg ha-1), carbon contents were assumed 

to be 47.4% of dry biomass18. Where SB was reported AGB was assumed to be 84% of 

total SB based on assessments of belowground biomass (BGB) on mineral soils 

conducted by Corley and Tinker, 1971 and Khalid et al, 199912,13(Root biomass = 16.1 

+/- 5.3 % of overall SB in palms 1.5- 27.5 YAP).  

Allometric equations  

Allometries for estimating palm component biomass derived using the destructive 

harvest of OP on mineral soils were collected and validated. Existing equations in the 

main section of the text (Table 3.1) are defined in peer reviewed literature, additional 

allometries are listed in the supplementary material.  
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Chapter 4: Monitoring the aboveground biomass accumulation of oil palm on 

peat using L-band radar 

4.1) Introduction  

The United Nations Framework Convention on Climate Change (UNFCCC) Paris 

Agreement encourages governments to “pursue efforts to limit the temperature increase 

to 1.5°C above pre-industrial levels” (UNFCCC, 2015). Land-based climate mitigation 

strategies rely on increases in biomass energy production with carbon capture and 

storage (BECCS) balanced with avoided deforestation and reforestation efforts whilst 

meeting the growing food demand of an increasing population (Harper et al. 2018, 

Griscom et al. 2017). Despite this, tropical deforestation and land use change (LUC) 

currently result in emissions of between 0.5 and 3.5 Pg C yr−1 (Mitchard, 2018). 

Increased efforts to reduce emissions from deforestation and degradation (REDD+) and 

find nature-based climate solutions (NBS) have resulted in an enhanced focus on 

accurately quantifying the carbon stocks of forest and agricultural systems and the 

carbon fluxes associated with land use changes (Baccini et al. 2018, Angelsen et al. 

2009). 

The current understanding of the global land carbon sink is limited by a lack of spatially 

explicit observations of changes in carbon stocks in vegetation biomass and soils (Le 

Quere et al. 2018, Arneth et al. 2017). As a result, remote sensing techniques are 

increasingly being employed to quantify changes in aboveground biomass (AGB) stocks 

over time (Gibbs et al. 2007, Mitchard et al. 2018). The spatial extent and rate of 

deforestation can be quantified using a timeseries of optical satellite data (Hansen et al. 

2010, Hansen and Loveland, 2012). Changes in AGB stocks can then be estimated by 

upscaling standardized AGB density estimates specific to ecoregions or land cover types 

(Angelsen et al. 2009, Hill et al. 2013).  

Continuous benchmark maps of AGB density (AGBD) inferred by upscaling plot 

inventory measurements of AGB using active and optical remote sensing techniques are 

increasingly available at pantropical scales (Table 4.1). Similar methodologies are 

followed for each map; plot-based inventory measurement of vegetation AGB stocks and 

canopy height are geolocated within the 70-meter footprint of the ICESat GLAS LiDAR 

sensor (Saatchi et al. 2011, Baccini et al, 2012). GLAS is a spaceborne waveform LiDAR 

sensor, vegetation characteristics are calibrated to in-situ waveforms derived from 

measurements of returned energy intensity (Baccini et al, 2012). This relationship allows 

the estimation of forest AGB in the remaining GLAS LiDAR footprints without in-situ plot 

data (Saatchi et al. 2011, Baccini et al, 2012). Vegetation indices derived from spectral 

remote sensing approaches; the normalized difference vegetation index (NDVI) and leaf 

area index (LAI) are then used to produce continuous maps of AGBD from GLAS LiDAR 
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samples of estimated AGB at a coarse resolution (Saatchi et al. 2011, Baccini et al, 2012, 

Table 4.1). Recent studies have combined these continuous maps of AGB density with 

in-situ deforestation area estimates to quantify emissions from deforestation (Hansen et 

al. 2013, Tyukayina et al. 2015, Baccini et al. 2017). However, the spatiotemporal 

mismatch of source datasets can give rise to biased estimates of carbon pools at regional 

and national scales (Hill et al. 2013, Mitchard et al. 2014, Hansen et al. 2019). The subtler 

changes in AGB stocks associated with forest degradation or growth are more 

challenging to quantify due to the coarse spatial and temporal resolutions of many of 

these satellite products (Mitchard et al. 2018). 

Table 4.1: Continuous Pantropical aboveground biomass density maps 

Source Product  Validation Extent Resolution Period 

  

Benchmark Maps 

Saatchi 
et al. 
2011 

Field Plot Inventories, 
ICESat GLAS LiDAR, 
MODIS (NDVI, LAI), 
QSCAT HH backscatter 

Comparison to Amazon 
AGBD map – Saatchi 
et al. 2007 

Tropical 
Regions  

~1 km 
(0.00833 
degrees)  

Early 
2000s 

Baccini 
et al. 
2012 

Field Plot Inventories, 
ICESat GLAS LiDAR, 
MODIS NBAR 

GLAS LiDAR derived 
biomass estimates – 
testing data  
Multiple AGB maps  

23.4378°N 
-23.4378°S 

463 m ~ 2007-
08 

Avitabile 
et al. 
2016 

Saachi et al. 2011, 
Baccini et al. 2012, 
Field Plot Inventories, 
High resolution local or 
national AGB maps 

Field Plot Inventories, 
High resolution local or 
national AGB maps – 
testing data  

23.4378°N 
-23.4378°S 

~1 km 
(0.00833 
degrees) 

~ 2000- 
2010 

Timeseries Maps 

Baccini 
et al. 
2017 

Baccini et al. 2012, 
MODIS NBAR 

Comparison to other 
AGBD maps (national 
and regional scale) 

23.4378°N 
-23.4378°S 
(Excluding 
Australia) 

463 m Annual 
Scenes
: 2003 - 
2014 

 

Multiple studies map the large-scale plantation expansion of OP plantations over time 

across both mineral and peat soils (Wicke et al. 2011, Gaveau et al. 2016, Koh et al. 

2011, Miettinen et al. 2016). However, studies are yet to attempt to directly quantify the 

in-situ carbon stock changes associated with this land use change using remote sensing 

techniques across a broad scale for OP on peat or mineral soils. 

As discussed in Sections 1.9 and 1.10 L-band synthetic aperture radar  sensors are 

increasingly being used to quantify and map woody vegetation biomass stocks 

(Supplementary table 4.1). However, in order to reliably monitor changes in AGB stocks 

over time using L-band SAR a large number of in-situ AGB inventory plots monitored 

over an extended period are required (Ryan et al, 2012). Using the novel ‘Biomass 

Matching’ technique, which reduces the need for calibration plots, may make using L-

band SAR to monitor small scale changes in peat OP AGB stocks more feasible (Hill et 

al. in prep). 
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In order to address the aims outlined in Chapter 1 we ask the following research 

questions:  

- How effective is the ‘biomass matching’ approach for detecting and mapping 

the losses and gains in AGB that accompany OP establishment on peat across 

a timeseries of SAR scenes? 

- When validated using plot inventories and an oil palm AGB accumulation model 

(developed in chapter 3), how successful is this approach when attempting to 

accurately quantify AGB stock accumulation?   

- In this study, when does the relationship between increasing AGB and 

increasing RCS saturate? 

- How accurate are existing maps of aboveground biomass density at the study 

sites and how do these maps compare to each other? 

 

4.2) Methods  

4.2.1) ALOS PALSAR-1/2 scene selection and JAXA Global Mosaic Product pre-

processing 

The ALOS PALSAR-1/2 Global mosaic product (GMP) was chosen for this analysis as it 

is a freely available multi-temporal dual polarisation L-band product with scenes 

temporally matching plantation establishment and growth at the study sites.  

 All SAR scenes were acquired from the PALSAR-1/2 sensor onboard the ALOS-1/2 

satellites (JAXA, 2019b, Acquired Jan 2018). PALSAR-1 and PALSAR-2 are L-band 

SAR sensors, ALOS-1 was operational between 2007-2011 whilst ALOS-2 has been 

operational since 2014, coinciding with forest clearance and plantation establishment at 

the study sites (See Section 2.2). The JAXA Global 25m Resolution PALSAR-2/PALSAR 

Mosaic product (GMP) is produced using SAR scenes observed in the sensor’s fine 

beam dual (FBD) mode in ascending pass, tiles are orthorectified with terrain corrections 

applied on acquisition. Pixels are multilocked to a resolution 25 m upon acquisition (16 

looks) (JAXA, 2017). All available scenes that covered the study site extent were 

acquired in the horizontal transmit/vertical receive (HV) polarisation stored as digital 

number. The HV polarisation was chosen for this analysis as the relationship between 

the AGB and RCS is frequently observed to be strongest in this polarisation and hence 

is usually used for biomass stock estimations (Supplementary Table S4.2, Morel et al. 

2011, Yu and Saatchi, 2016). The corresponding ALOS PALSAR-1/2 GMP scenes in the 

horizontal transmit/horizontal receive (HH) polarisation were also acquired, to confirm 

whether this was the case at the study sites, see Appendixes 3.2.  
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Following JAXA specifications ALOS PALSAR-1/2 GMP scenes were obtained in DN 

format and converted to sigma naught (σ0) radar cross section using Equation 4.1b, 

derived from Shimada et al. 2009 (Equation 4.1a):  

 

Equation 4.1a:                            𝜎0 = 10 log10〈𝐷𝑁2〉 − 𝐶𝐹 

 

Taken from Shimada et al. 2009 where CF is the calibration factor (-83.0 for the ALOS 

PALSAR-1/2 GMP (JAXA, 2017).  

 

Equation 4.1b:                        𝜎0 = 0.0000000050119 ∗ 𝐷𝑁2   

 

Tiles were merged to produce a continual SAR scene, the continual mosaic was then 

clipped to a final SAR scene extent. This extent was informed by image observation 

tracks (Figure 1.2a) to ensure the entirety of each scene was observed within a single 

observation day and reduce intra-scene variance in environmental conditions (Figure 

4.1). SAR scenes were aggregated to a resolution of 100m (Esri, 2019). Seven scenes 

were produced spanning the ten-year study period (2007 – 2017). 

4.2.2) DEM acquisition and slope masking 

The Shuttle Radar Topography Mission (STRM) digital elevation model was used to 

calculate the topographic slope across the scene extent using the planar method (USGS, 

2019, Burrough, 1998, Figure 4.2). The topography within the SAR scene is largely flat; 

72.7% has a slope < 10˚ and 94.8% has a slope < 20˚. Within the plantation boundaries 

topography is extremely flat (98.1% has a slope < 10˚), as expected for a lowland tropical 

peatland (Page et al. 2006). The SAR scenes were then clipped to remove all areas with 

a slope > 20˚ in an attempt to reduce the potential influence of shadowing, foreshortening 

and layover in the calibrated SAR scenes (Atwood et al. 2014, Supplementary Figure 

S4.1). 



57 
 

 

Figure 4.1: Example of SAR radar cross section scene (σ0
HV, 15-Aug-2010), 

Sebungan and Sabaju oil palm plantations are located within the green rectangle.  

 

           

Figure 4.2: Topographic slopes (degrees) across the scene extent, derived from 

the SRTM digital elevation model (resolution: 30m), Sebungan and Sabaju oil palm 

plantation limits shown in black. 

 

4.2.3) Oil palm blocking map digitisation 

Oil palm planting blocking maps were digitised and the date of conversion recorded. A 

total of 171 planting blocks were digitised, block size was fairly consistent with mean 

area of 20.1 ± 6.2 ha (containing approximately 20 SAR pixels at 100m resolution). In 

order to inform block digitisation, planting blocking maps and semi-detailed soil maps 

were visually compared to Landsat 5 Thematic Mapper (TM) images, plantation blocks 

and establishment are clearly visible in cloud free scenes (Supplementary Figures S2.1, 
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S2.2 and S2.2, Supplementary Table 4.3). Blocks were not digitised in Sabaju 2, Sabaju 

Estate Complex, due to a higher coverage of mineral soils when compared to the rest of 

the plantations (See Supplementary Figures S2.1). 

4.2.4) AGB mapping using ‘biomass matching’  

The ‘biomass matching’ approach reduces the need for in-situ calibration plots by 

identifying areas where no statistically significant AGB change has occurred across the 

timeseries of SAR scenes to derive the scene specific calibration coefficients needed to 

map AGB (Hill et al. in prep). 

This approach uses a linear regression between AGB (mg ha-1) and RCS (σ0
HV) defining 

gain (g) and offset (o) regression coefficients for each scene (Equation 4.2, Ryan et al, 

2012). 

Equation 4.2:                                       𝐴𝐺𝐵 = 𝑔𝜎𝐻𝑉
0 + 𝑜 

 

The initialisation of the ‘Biomass Matching’ approach requires the fixing of these 

regression coefficients for a single SAR scene (S1) (see section 4.4.5). Here, regression 

coefficients are fixed for the most recent scene in the timeseries (S1 = 07-Sep-2017) 

(step 2). An iterative loop then identifies areas (pixels) where no statistically significant 

change has occurred across the timeseries. Using the assumption of unchanging AGB 

within these areas, the regression coefficients of the remaining scenes can then be 

optimised.   

Step 1: Pre-process and input scenes (see section 4.2.1 - 4.2.2) 

Step 2: Fix the regression coefficients of one initial scene  

The gain and offset for an initial scene (S1) is fixed (see section 4.2.5). 

Step 3: Initialise remaining scenes’ regressions coefficients 

The regression coefficients for the remaining scenes are then initialised. For the initial 

‘biomass matching’ iteration the gain and offset derived for the fixed scene (S1) are 

applied to the remaining scenes (S2 to S7) to predict the biomass of each pixel in each 

scene (Figure 4.3, Table 4.2). 

 



59 
 

Figure 4.3: Diagram illustrating the timeseries of SAR scenes including just 4 RCS 

pixels, corresponding pixels have the same geographic extent within each scene.  

 

 

 

 

 

Table 4.2: ‘Biomass matching’ scene ID across the timeseries of SAR scenes, the 

regression coefficients of scene S1 (the initial scene) are fixed throughout the biomass 

matching routine whilst the coefficients for scenes S2 to S7 are free to be optimised. 

Observation dates for each scene are indicated, a total of 7 scenes are used in this 

study, t =7.  

Step 4: Optimise the regression coefficients of the remaining scenes  

The predicted pixel biomass for each of the scenes is then sorted into ascending pixel 

AGB. The optimisation routine then estimates the gain and offset for the unfixed scenes 

(S2 to S7) by simultaneously minimizing the sum of the square differences between the 

biomass predictions for all possible radar scene pair combinations (c, Eg. 2.3) (Hill et al. 

in prep). In this study, the number of possible scene pair combinations is 21 (Equation 

4.3).  

Equation 4.3: 

𝑐 =
𝑡(𝑡 − 1)

2
 

Where c is the total number of unique radar scene pair combinations and t is the total 

number of radar scenes.  

Step 5: Calculate pixel precision 

The accuracy of the AGB estimates cannot be determined as the true AGB for the area 

is not known (Hill et al. 2013). The pixel precision is therefore evaluated as a function of 

mean pixel AGB. 

For each individual pixel the mean corresponding pixel AGB across all scenes (S1 to S7) 

is calculated, the deviation of each pixel from this mean is then calculated (Figure 4.3). 

These deviations are sorted into 1 Mg ha-1 bins according to the pixels’ mean AGB. The 

pixel precision can be added/subtracted from the pixel AGB value to estimate the upper 

and lower AGB confidence limits for the pixel. 

Step 6: Identify pixels with statistically significant AGB change 

Significant biomass loss is defined when the lower AGB confidence limit of a pixel is 

greater than the upper AGB confidence limit of the same pixel at a later observation date. 

Similarly, significant biomass gain is defined when the upper AGB confidence limit of a 

Scene  Observation Date  

S1 07-Sep-2017 

S2 28-Jan-2016 

S3 10-Sep-2015 

S4 15-Aug-2010 

S5 27-Jun-2009 

S6 09-May-2008 

S7 22-Jun-2007 
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pixel is lower than the lower AGB confidence limit of the same pixel at a later time. Pixels 

that do not meet either of these two criteria are considered to remain with no statistically 

significant change in AGB. 

(See Hill et al. in prep) 

Step 7: Pixel masking of statistically significant change 

Biomass Matching optimisation (step 4) assumes that the AGB of all pixels remains the 

same between scenes. All corresponding pixels that have been shown to gain or lose 

biomass at any point in the timeseries in step 6 are therefore masked out and are ignored 

in the next optimisation iteration. Aside from the first iteration this masking is performed 

in all subsequent loops.  

Step 8: Iterative convergence 

Steps 4 to 7 are repeated until convergence is achieved. Here, convergence is reached 

when the fraction of pixels with a change status (loss, gain, no change) differs from the 

previous iteration by < 0.02%.  

Step 9: Save output and exit Biomass Matching iterative loop 

 

The ‘Biomass Matching’ approach relies on the assumption that the AGBD of some 

pixels remains the same throughout the SAR timeseries in order to optimise the 

regression coefficients of the relationship between RCS and AGB for each SAR scene 

(Equation 4.2). The true AGB of these pixels is not known. However, despite the likely 

absence of intensive degradation or high growth rates in these areas, their AGB stocks 

will not truly be constant thought the timeseries. Some AGB accumulation and turnover 

across all vegetated areas will occur. 

It must be acknowledged that properties aside from vegetation structure (and by 

extension AGB) affect SAR backscatter (Section 1.9 and 1.10). 

The determination of areas where no statistically significant AGB change has occurred 

across the timeseries requires confidence limits to be set to set (upper and lower 

quantiles), these thresholds ultimately determine the definition of AGB change and the 

‘Biomass Matching’ performance. 

4.4.5) Calibration of the initial RCS/AGB relationship   

Despite the reduced need for in-situ calibration plots when using the ‘Biomass Matching’ 

approach the calibration coefficients for a single initial scene must still be defined. Half 

of the digitised oil palm planting blocks were randomly selected to be used for calibration 

whilst the other half were used for result validation. Following the methodology of Ryan 

et al. 2012, the mean block RCS for each ‘calibration block’ was extracted from each 
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SAR scene. Where the blocks had been converted for > 3 years at the time of scene 

observation, the mean RCS was plotted against the estimated block AGB. 

Block aboveground biomass was estimated using the AGB accumulation model derived 

from the results of non-destructive plot inventories in Chapter 3; Model P1 (Section 

3.3.3), hereafter the model will be referred to as Accumulation Model P1 (AMP1). Oil 

palm age is assumed to to be the difference between the time of block establishment 

and the time of scene observation. A Type II Reduced Major Axis Regression (RMA) was 

then used to fit a regression line between the in-situ mean plot RCS and AGB (Ryan et 

al. 2012). An RMA regression was used to minimise the sum of associated errors in both 

the X (RCS) and Y (AGB (Mg C ha-1)) component (Friedman et al. 2013, Harper, 2014). 

The regression was fit using the MATLAB script ‘gmregress’ published by Trujillo-Ortiz 

and Hernandez-Walls (2010).  

4.4.6) Validation of AGBD timeseries maps  

Comparison to non-destructive OP AGB inventories and accumulation 

models  

The mean block AGB for each scene was extracted from each of the digitised blocks 

retained for AGB map validation, this was compared to the estimated block AGB (AMP1) 

corresponding to the map timestamp (Model P1, Section 3.3.3). 

Non-destructive OP AGB survey plot locations were digitised, plot GPS co-ordinates 

were used to place a polygon of ~4 ha at the plot location (Chapter 3, Supplementary 

Table S3.5). The mean plot AGB was then extracted from the AGBD map corresponding 

to 07th Sep 2017 (non-destructive AGB inventories were conducted between February 

and March 2019).   

Comparison to existing AGBD maps  

All aboveground biomass density maps recorded in Table 4.1 were downloaded from 

supplementary databases (Saatchi et al. 2011, Baccini et al. 2012, Avitabile et al. 2016) 

and transformed to a consistent geographic coordinate system (GCS WGS 1984). AGBD 

maps were resampled to a resolution and spatial extent matching that of the Avitabile et 

al (2016) map product (Resolution: 1km, Esri, 2019). A net matching this pixel resolution 

and extent was produced, and the mean AGB was extracted for each grid square for all 

AGBD maps.  

Comparison to PSF plot inventory data  

Census data from a permanent 1 ha plot on the Sabaju estate was used to determine 

PSF AGB stocks (Koh 2019, pers. comm, 25 February). The plot is located on the Sabaju 

estate in a secondary peat swamp forest fragment. The plot is logged with the majority 

of large trees removed (3.162˚N, 113.429˚E). For the purposes of this study the plot is 
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considered representative of the AGB stocks and vegetation cover present at the 

plantation sites prior to conversion (Kho 2019, pers. comm, 25 February).  

All standing trees with a diameter at breast height (DBH, 1.3 m) > 10 cm were included, 

tree height and DBH measured for each of these trees, and the family and species names 

recorded. Wood densities accurate to the family level, or species where possible, were 

used (Supplementary Table 4.4) together with the allometric equations of Chave et al. 

(2005) for tropical moist forests to estimate the AGB of the 1 ha plot.  

 

4.3) Results  

4.3.1) Radar cross section change across the timeseries in the OP blocks  

Oil palm planting blocking maps were digitised and the date of conversion from PSF to 

OP was recorded. The mean radar cross section from each block was then extracted 

from each SAR scene. When the mean block RCS was pooled for each of the ALOS 

PALSAR-1/2 satellites the reduction in mean block RCS following OP plantation 

establishment is clear. The bimodal distribution of pooled block RCS when considering 

blocks observed using ALOS-1 (684 blocks), reflects the RCS of both pre-conversion 

PSF and post conversion OP land covers (Figure 4.4). By 2015 the majority of blocks 

have been converted to OP, and the distribution of the mean block RCS across the 

scenes observed by ALOS-2 (533 blocks) mirrors the low RCS of OP blocks observed 

using ALOS-1. However, oil palm blocks with a higher RCS within this range appear 

more frequently in the later scenes (Figure 4.4). 

When considered as a chronosequence, there is a clear reduction in RCS accompanying 

forest clearance. The block RCS remains consistent before conversion (-10 to 0 YAP) 

before reducing significantly following deforestation at the time of plantation 

establishment (YAP > 0) (Figure 4.5). The RCS of OP planting blocks increases gradually 

between 4 to 10 years after planting (Figure 4.5, ALOS-2). The RCS at YAP = 0 is 

variable with overlap between PSF, cleared and newly planted OP blocks all grouped 

into the same age class (Figure 4.5). The planting blocking maps used to inform block 

digitisation were accurate to the nearest planting year and hence determining the exact 

land cover status in each block at the time of block SAR scene observation was difficult. 

However, the RCS of peat swamp forests, which are assumed to have a constant RCS, 

is higher when observed using ALOS-2. Peat swamp forest had a mean RCS of 0.091 ± 

0.001 when observed using ALOS-2 compared to an RCS of 0.067 ± 0.006 in ALOS-1 

scenes, this is likely due to differences in satellite specifications (Figure 4.5).   
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Figure 4.4: Distribution of the mean block radar cross section (RCS), the RCS of 

each block in each scene is pooled for the ALOS-1 and ALOS-2 satellites. ALOS-1 

scenes span plantation establishment (2007 to early 2011) whereas ALOS-2 scenes 

observe the plantation post-establishment (4 OP plots are converted in late 2016). 

Points at which the distributions overlap indicated in purple.  

 

Figure 4.5: Mean block RCS (σ0
HV) prior to and after oil palm plantation 

establishment (0 years after planting – indicated as a dashed line). A chronosequence 

approach is used, mean block RCS is plotted against the years before/after planting at 

the time of observation (standard error indicated). All blocks as observed in all scenes 

for each satellite are pooled (ALOS-1 left, ALOS-2 right). 

 

4.3.2) Calibration of the initial RCS/AGB relationship   

The ‘biomass matching’ approach requires the relationship between the in-situ RCS and 

AGB to be fixed for an initial SAR scene (S1) (where 167 blocks had been converted to 

OP at the time of observation aged between 6 to 10 YAP). In order to establish this 

relationship for the OP blocks in S1 the mean RCS of calibration blocks was plotted 

against block AGB as estimated using AMP1. The estimated AGB of oil palms using 

AMP1 is positive for palms > 2.75 years after planting (Chapter 3, Figure 3.6). The RCS 



64 
 

of calibration and validation blocks before ‘biomass matching’ was consistent 

(Supplementary Figure S4.2). A reduced major axis regression was fitted to establish the 

gain and offset coefficients for scene S1 (g = 1949.22, o = -60.86) (Figure 4.6). For 

indicative purposes a least squares regression resulted in an adjusted R2 of 0.43.  

 

Figure 4.6: RMA Regression of ALOS PALSAR-2 radar cross section and 

estimated AGB for oil palm ‘calibration blocks’ (black dashed line), AGB is 

estimated using AMP1. The 95% confidence interval of the fit indicated is indicated 

(black dotted lines).  

4.3.3) ‘Biomass Matching’ and SAR scene calibration coefficients  

Biomass matching routine  

The ‘biomass matching’ optimisation routine was performed with lower and upper 

quantiles set to 0.21 and 0.79 respectively (step 5 and 6, Section 4.2.4). All pixels within 

the scene were used in the optimisation (subsampling step = 1). When using a difference 

threshold of 0.002 (0.02%), iterative convergence was reached after 5 iterations (Figure 

4.7).  

By the final iteration, the area of the scene where no statistically significant change had 

been detected covered 264,167 ha (~61.4 %). Statistically significant gains and losses 

in AGB had been detected across 83,935 ha (~19.5%) and 81,804 ha (19.0%) of the 

scene (pixel resolution of 1 ha) (Figure 4.8).   

The final uncertainty of estimated pixel AGB ranged from ±11.3 to ±21.7 Mg ha-1 for 

estimated AGB pixels of less than 100 Mg ha-1, but this rises to ± 34.0 Mg ha-1 for AGB 

estimates of 200 Mg ha-1 (Supplementary Figure S4.3). This uncertainty increases to ± 

46.7 Mg ha-1 for estimated AGBs of less than 200 Mg ha-1 when areas with a slope > 20˚ 

are included in the SAR scenes.  
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Scene specific calibration coefficients  

Calibration coefficients are optimised for each SAR scene (Table 4.3). For the 7 SAR 

scenes the offset coefficients ranged from -91.3 to -48.2 Mg ha-1 while gain coefficients 

ranged from 1849.6 to 2808.5 Mg ha-1. Despite similar offsets (o), the gain (g) is ~41% 

lower for scenes observed using the ALOS-2 satellite, when compared to ALOS-1 

(Figure 4.9).  

Figure 4.7: ‘Biomass matching’ plots for the 

Initialization step (step 3, left), after the first 

iteration (middle) and after the final iteration 

(right). Scene combinations are indicated (a total of 

21 combinations), the sorted ascending pixel AGB of 

scene ‘x’ (first listed in legend, Mg ha-1) is plotted 

against the sorted ascending pixel AGB of scene ‘y’ 

(second listed in legend, Mg ha-1). To indicate pixel 

AGB distribution the 5 and 95% quantiles are 

indicated in grey for each combination.  

 

Figure 4.8: Pixel 

condition after final 

‘biomass matching’ 

iteration. Pixels that 

have not undergone 

a statistically 

significant change in 

AGB across the 

timeseries (May 

2008 to Sept 2017) 

are indicated (‘No-

change’).  
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Figure 4.9: Final models fit to define the in-situ relationship between pixel RCS 

and pixel AGB for each SAR scene. Scene data and observation satellite indicated, 

ALOS-1: scenes between 2007 – 2010, ALOS-2: scenes between 2015 and 2017. 

Observation Date  Gain (g) Offset (o) 

07-Sep-2017 1949.22 * -60.86 * 

28-Jan-2016 1849.60 -48.20 

10-Sep-2015 1925.32 -52.41 

15-Aug-2010 2754.95 -79.59 

27-Jun-2009 2485.61 -60.06 

09-May-2008 2672.70 -83.60 

22-Jun-2007 2808.53 -91.25 

 

Table 4.3: Final gain and offset coefficients to define the in-situ linear 

relationship between pixel RCS and pixel AGB for each SAR scene. Scene data 

and observation satellite indicated, ALOS-1: scenes between 2007 – 2010, ALOS-2: 

scenes between 2015 and 2017. 

4.3.4) Aboveground biomass maps and timeseries monitoring  

A timeseries of AGB maps was produced using the specific calibration coefficients 

derived for each SAR scene (Figure 4.10). A significant reduction in AGB can be seen 

following plantation establishment, with the plantation outline clearly observable in the 

AGBD maps (Figure 4.10). The maps are grainy, with variation in AGB observed with 

similar land uses potentially due to SAR speckle noise.  

Using the timeseries of AGBD maps; the total AGB of the Sebungan oil palm plantation 

has reduced by ~99,188 Mg between 2007 and 2017, whilst the Sabaju Estate total AGB 

has reduced by ~524,517 Mg over the same period. The mean pixel AGB reduced by 

~46.6 Mg ha-1 in Sebungan and 58.0 Mg ha-1 in Sabaju. This suggests that considering 

both the clearance of peat swamp forest AGB and accumulation of oil palm AGB across 
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the plantations this LUC has resulted in a total AGB stock reduction of ~623,705 Mg ha-

1 between 2007 and 2017.  

 

Figure 4.10: A timeseries of AGBD maps at the study site derived from SAR 

scenes using the ‘biomass matching’ approach. All panels have the same 

geographic situation showing the Sebungan and Sabaju OP plantations. The 

observation year is indicated (a further 4 scenes have been produced), maps have a 

resolution of 1-ha. 

The mean AGB was then extracted for each planting block. Example blocks were then 

randomly selected where complete block conversion had occurred between two SAR 

observations, and then monitored across the timeseries (Figure 4.11). Randomly 

selected blocks converted between June-2007 and May-2008 show a reduction in AGB 

following conversion (Sebungan and Sabaju). However, block AGB does not approach 

zero for any of the sample blocks immediately following conversion and block AGB 

remains constant for the remainder of the timeseries. In comparison, the estimated 

aboveground biomass of blocks converted between June-2009 and August-2010 

reaches or approaches zero, with perhaps some AGB accumulation observable (Sabaju 

only) (Figure 4.11). Considering the AGB estimates before and after conversion and 

taking into account the uncertainties associated with the estimated pixel AGB values, the 

results suggest deforestation has taken place. Estimated pixel AGB uncertainties are 

less than 22 Mg ha-1 for all AGB estimates < 150 Mg ha-1, see Supplementary Figure 

S4.3. Our study suggests the variation of estimated AGB within a single block 3 years 

prior to conversion, despite AGB likely remaining relatively constant, or potentially 

reducing as a result of logging (Figure 4.11 (lower panel)). 

The chronosequence of mean block AGB plotted against block age (Figure 4.12) reveals 

the overestimation of AGB for young oil palm blocks in addition to a large variation in 

AGB estimates for blocks of similar ages (0 to 3 YAP). The range of estimated AGB 

values within an age class reduces later in the chronosequence when monitoring young 

mature and mature OP using the second satellite (ALOS-2). The AGB of OP between 4 

and 10 YAP does appear to increase with age in agreement with AMP1, however this 
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agreement is not observed after 10 YAP when AGB appears underestimated (Figure 

4.12).   

 

Figure 4.11: Example timeseries for an OP planting block prior to conversion and 

after oil palm establishment. Mean block AGB at the time of observation for blocks 

completely cleared between SAR scenes, standard error indicated. The approximate 

time of block establishment is indicated as dotted line.  

 

Figure 4.12: Mean block AGB prior to and after oil palm plantation establishment. 

A chronosequence approach is used, mean block AGB is plotted against the years 

before/after planting at the time of observation (AGB = 0 Mg ha-1 indicated as a dashed 

line). All blocks as observed in all scenes for each satellite are pooled (ALOS-1: 2007-

2010, ALOS-2: 2015-2017). The aboveground biomass accumulation model AMP1, 

derived using plot inventories (chapter 3), is plotted as a black line for illustrative 

purposes. 
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4.3.5) Aboveground biomass density map validation  

Oil palm AGB: Comparison to OP AGB accumulation models and non-

destructive plot inventories 

The expected AGB of each ‘validation block’ based on the age of the block at the time of 

observation using AMP1 was compared to the estimated block AGB using the ‘biomass 

matching’ approach (Figure 4.13) in order to assess the success of using the ‘biomass 

matching’. In general, the ‘biomass matching’ routine overestimated the plot AGB (Figure 

4.13). This overestimation was again most evident in low AGB estimates (younger age 

classes). The estimated AGB (biomass matching) typically mirrors the AMP1 for blocks 

with an average AGB of between ~15 and 40 Mg ha-1. However, the predicted AGB of 

older blocks is underestimated using the ‘biomass matching’ approach and all age 

classes have a large range of predicted AGB values (±15 Mg ha-1) (Figure 4.13).  

Calibration of the initial RCS/AGB relationship for scene S1 and much of the analysis of 

the resulting AGBD timeseries map success has been done by using AMP1 to estimate 

the AGB of multiple OP planting blocks. This is largely due to the relatively small sample 

size of non-destructive/semi-destructive surveys conducted in OP inventory plots across 

the plantations (22 plots), in addition to the lack of in-situ AGB structural surveys for any 

other scene observation date. However, the mean estimated AGB of a 4-ha plot co-

located with each inventory plot was extracted from the most recent SAR scene (07-Sep-

2017) and compared to the results of the structural surveys (conducted between 

February and March 2019) (Chapter 3, Table S3.5). However, it must be noted that ~1.5 

years of OP growth has occurred between the time of SAR observation and completion 

of the non-destructive surveys. The AGB accumulation model (AMP1) used to calibrate 

the SAR data is also derived from the results of these in-situ inventories. In addition to 

this, the 07-Sep-2017 scene had fixed gain and offset coefficients throughout the 

biomass matching routine and hence has not been optimised by the approach.  

Again, the estimated AGB of inventory plots appears close to that quantified using non-

destructive inventories for plots with an AGB < 60 Mg ha-1 (Figure 4.14). When only 

young mature and mature plots (YAP > 3, within the calibration range) with an AGB less 

than 60 Mg ha-1 are considered (14 plots) the ‘biomass matching’ approach 

over/underestimates the observed plot AGB by an average of 22.7%. When plots with 

an observed AGB > 60 Mg ha-1 are considered this error increases to an average 

over/under estimation of 34.2%, with a mean underestimation of 62.9% in these higher 

biomass plots. The young plots < 3 YAP have a mean observed AGB of 3.5 Mg ha -1 and 
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are on greatly over/underestimated by an average of 352.0%. The variation in 

aboveground biomass stocks observed in the older plots, 11 and 12 years after planting, 

is not reflected in the aboveground biomass density maps, despite the observed AGB 

variation within these age classes their estimated AGB remains consistent (see section 

3.4.4, Chapter 3, Figure 3.7, Figure 4.14).  

Initially SAR RCS appears sensitive to increases in in-situ AGB, however this sensitivity 

is lost at high AGB values > ~60 Mg ha-1 after which RCS appears to remain constant 

(or even reduce) (Figure 4.14). In most instances the mean RCS of the OP planting block 

is similar to the mean RCS of the 4-ha plot located within that block at the non-destructive 

inventory site. As expected, the S.E. of the mean block RCS is reduced when compared 

to the 4-ha plot (Figure 4.14). 

 

 

Figure 4.13: Success of AGB estimation in ‘Validation Blocks’. Oil palm AGB 

estimated using AMP1 against the AGB of ‘validation blocks’ after the final 

‘biomass matching iteration’ (85 blocks). 1:1 line indicated. 
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destructive inventory plots using GPS coordinates and are taken from the 07-Sep-2017 

SAR scene and corresponding AGB map. 

 

Peat swamp forest AGB: Comparison to PSF inventories and existing 

AGBD maps 

The relationship between the aboveground biomass of peat swamp forest and the in-situ 

radar cross section in the SAR scenes was not defined at the study site. Despite this, a 

single AGB inventory estimate representative of the site, AGB estimates from other 

Malaysian PSFs and the AGBD maps of Avitabile et al (2016) are compared to AGB 

estimates of PSF biomass in the maps produced here. 

The 1-ha plot in a fragment of logged peat swamp forest at the Sabaju Estate site had 

an AGB of 92.5 Mg ha-1. This was lower than the mean AGB of logged Malaysian PSFs 

reported in Kho and Jepsen (2015) (117.4 ± 21.4 Mg ha-1), however the majority of the 

large trees have been removed from the site (Table 4.4, Koh 2019, pers. comm, 25 

February).  

Figure 4.14: Estimation of AGB in 

non-destructive OP inventory plots. A: 

Observed plot AGB against the mean in-

situ AGB of the AGBD maps (4-ha plot), 

year of planting (YAP), S.E. and 1:1 line 

indicated. B: Plot AGB as estimated 

using the AGB accumulation model 

(AMP1), against the mean in-situ AGB of 

the AGBD maps, S.E and 1:1 line 

indicated. C: Observed plot AGB against 

the in-situ mean plot and block (~20 ha) 

radar cross section (RCS), S.E. 

indicated. All map AGBD estimates and 

RCS values are co-located with non- 
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The mean AGB was extracted from all OP planting blocks that remained completely 

covered by PSF in the first SAR observation (22-Jun-2007), and the corresponding mean 

AGB was also extracted from the Avitabile et el (2016) AGBD map (Figure 4.15). A mean 

aboveground biomass of 203.3 ± 39.3 Mg ha-1 was estimated across the plantation prior 

to conversion in the Avitabile map. The AGB of planting blocks prior to conversion as a 

result of the biomass matching is more consistent with both the AGB of the inventory plot 

at the study site and values for logged PSF reported in the literature (Figure 4.15, Table 

4.4) 

 

Figure 4.15: Comparison of estimated aboveground biomass stocks in 

logged/secondary peat swamp forest at the study site. AGBD estimates of Avitabile 

et al (2016) are compared with the 2007 AGBD map produced using the ‘biomass 

matching’ approach (black open circle), 1:1 line indicated. The AGB of logged and 

primary peat swamp forest (PSF) and logged lowland Dipterocarp forest (LDF) taken 

from Kho and Jepsen (2015) are included for comparison. The AGB stock of the 

inventory plot at the Sabaju Estate is indicated as a red line.   

  

  Mean AGB  

(Mg ha
-1

) 

Standard 

Error 

Peat Swamp Forest 

Primary Forest 323.8 ± 25.8 

Logged/Secondary Forest 117.4 ± 21.4 

Lowland Dipterocarp Forest 

Primary Forest 503.8 ± 35.0 

Logged/Secondary Forest 258.2 ± 20.6 

 

Table 4.4: Review of 

aboveground biomass stocks 

of Malaysian peat swamp and 

lowland Dipterocarp forests 

(primary and logged/secondary) 

as reported in Kho and Jepsen, 

2015.  



73 
 

 

Scene AGB: Comparison to existing AGBD maps  

The mean estimated aboveground biomass was extracted for each 1km x 1km grid cell 

within the 2007 SAR scene (~418,000 ha). This was then compared to the in-situ AGB 

estimated from existing AGBD maps matching this spatial extent (Table 4.1, resolution 

aggregated to 1km).  

There were few AGB estimates greater than 150 Mg ha-1 across the AGB map derived 

from the 2007 SAR scene at a 1 km resolution. Despite this, AGB estimates as high as 

500 Mg ha-1 are observable in the AGBD map produced by Avitabile et al (2016), 

suggesting forest cover including primary peat swamp and lowland Dipterocarp forests 

across the scene (Figure 4.16). The AGB of pixels in the 2007 map produced using the 

‘matching’ routine again shows a distribution of biomass estimates grouped into distinct 

high and low AGB groups (Figure 4.16).  

The Avitabile et al (2016) map is produced by fusing the pantropical AGBD maps of 

Baccini et al (2012) and Saatchi et al (2011). These map products combine data from 

inventory plots and satellite LiDAR samples of forest structure upscaled using optical 

datasets and are multi-date products with input layers ranging from 2000 to 2008 

(Section 4.1, Table 4.1). When these AGBD maps are compared across the study scene 

extent there is broad disagreement between AGB estimates (Figure 4.17). When 

histograms of predicted biomass distribution are compared, the Saatchi et al. (2011) map 

appears to estimate a much higher AGB than the Baccini et al. (2012) map across the 

scene, with the majority of pixels estimated to be between 300 and 350 Mg AGB ha -1 by 

Saatchi et al. (2011). In contrast the Baccini map has a high distribution of pixels with a 

predicted aboveground biomass between approximately 150 and 300 Mg ha-1 

(Supplementary Figure S4.4). There are very few pixels with low estimated AGB (<100 

Mg ha-1) in any of the AGBD maps either suggesting a lack of large scale deforestation, 

degradation or logging or the poor prediction of low AGB values in the map products 

(Figure 4.17, Supplementary Figure S4.4).  
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Figure 4.16: Comparison of estimated aboveground biomass stocks across the 

study scene extent. AGBD estimates of Avitabile et al (2016) are compared with the 

2007 AGBD map produced using the ‘biomass matching’ approach at a 1-km 

resolution. The AGB of logged and primary peat swamp forest (PSF) and lowland 

Dipterocarp forest (LDF) taken from Kho and Jepsen (2015) are included for 

comparison. The AGB stock of the inventory plot at the Sabaju Estate is indicated as a 

red line.    

 

 

 

 

 

 

Figure 4.17: Comparison of AGBD 

maps for the study scene extent. 

The in-situ pixel AGB of the Baccini 

et al and Saatchi et al pan-topical 

AGBD maps are compared (top left). 

The AGB of these maps is also 

compared to the fused AGBD map 

produced by Avitabile et al (top right 

and bottom left). Pixel resolutions of 

1km, 1:1 lines indicated.  
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4.4) Discussion  

 

An initial relationship between the L-band SAR radar cross section and AGB was 

calibrated, the ‘biomass matching’ approach was then used to calibrate this relationship 

for multiple SAR scenes and detect statistically significant deforestation at the time of 

plantation establishment. Degraded PSF AGB was easily distinguishable from mature 

OP plantations. The accumulation of OP AGB was well predicted for young mature palms 

between 4 and 9 YAP, however the relationship between increasing AGB and the RCS 

saturated at ~45 - 60 Mg ha-1. Existing maps of AGBD were highly divergent across the 

study area and none captured OP establishment. In the following section the these 

results will be discussed with regard to the research questions outlined in Section 4.1.  

4.4.1) How effective is the ‘biomass matching’ approach for detecting and 

mapping the losses and gains in AGB that accompany OP establishment on peat 

across a timeseries of SAR scenes?  

 

The availability of the ALOS PALSAR-1/2 global mosaic product temporally matches the 

establishment of the oil palm plantations at the study site and more broadly the 

expansion of industrial oil palm plantations (IOPP) across tropical peat swamp forests in 

Malaysian Borneo and Insular South East Asia (Miettinen et al. 2017, Kho et al. 2011, 

Gaveau et al. 2016). In addition to this, the consistently flat topography at the study site, 

typical of lowland tropical peatlands is advantageous when using SAR datasets to 

monitor aboveground biomass stocks (Page et al. 2006, Atwood et al. 2014). Here, the 

‘biomass matching’ approach has used the freely available Global Mosaic SAR product 

to detect statistically significant deforestation at a high resolution (1ha) and annual 

frequency (Figure 4.8, Figure 4.11, Supplementary Figure S4.3).  

As peat oil palm plantations mature, the AGB stocks of these plantations approaches the 

AGB stock of degraded peat swamp forests. However, it should be kept in mind that this 

OP biomass is temporary and will be removed at the end of the OP planting cycle and 

that ecosystem services and biodiversity are greatly diminished (Lim et al. 2012, Koh 

and Wilcove. 2008). Logged or secondary Malaysian peat swamp forests have an AGB 

of 117.4 ± 21.4 Mg ha-1 whilst old growth/primary Malaysian peat swamp forests are 

reported to have AGB stocks of 323.8 ± 25.8 Mg ha-1 (Morel et al. 2011, Brunig and 

Klinge, 1977, Ipor et al. 2006, Verwer and van der Meer, 2010, Miettinen and Liew, 2009). 

However, historically logged over or degraded forests are more likely to be converted to 

industrial oil palm plantations (IOPPs) in the region (Gaveau et al. 2014). AGB stocks in 

oil palm plantations on mineral soils can reach ~94.8 Mg ha-1 25 years after planting 

(Germer and Sauerborn, 2008). The peat OP AGB accumulation model established here 

(Chapter 3, AMP1) only extends to 12 years after planting, however, successful plots 

reached high AGB stocks of up to 87.8 Mg ha-1. Despite this, the radar cross section of 
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both land cover types remains distinctly different throughout the timeseries, allowing OP 

plantation establishment to be detected and highlighting the potential to identify even 

mature oil palm plantations using the ‘biomass matching’ technique.  

Synthetic aperture radar datasets are not a direct measure of aboveground biomass but 

are sensitive to the volume of woody vegetation structures (Woodhouse et al. 2012). In 

multiple studies oil palm plantations have been distinguished from forests and various 

other types of woody plantation species using the ALOS PALSAR global mosaic product, 

with some issues encountered when attempting to distinguish between oil palms and 

other palm plantation species (coconut, Cocos nucifera and oil palm) (Miettinen and 

Liew, 2011, Miettinen et al. 2016, Cheng et al. 2016). However, the analysis of optical 

remotely sensed datasets in conjunction with the automated ‘biomass matching’ 

technique is still likely to be necessary in order to reliably distinguish oil palm plantations 

from other land cover types if the technique were to be used for land over change 

detection (Miettinen et al. 2019). In addition to this, the approach would need to be 

combined with a mechanism to detect peat soils, or combined with existing peatland 

maps if it is to be applied specifically to detect and monitor oil palm on peat (Miettinen et 

al. 2016, Gumbricht et al.2017, Dargie et al. 2017, Draper et al. 2014).  

4.4.2) When validated using plot inventories and an oil palm AGB accumulation 

model, how successful is this approach when attempting to accurately quantify 

AGB stock accumulation?   

 

Validation of oil palm AGB accumulation estimates   

L-band radar datasets at the HV polarisation are sensitive to increases in aboveground 

biomass stocks up to an average of approximately 100 Mg ha-1 dependent on surface 

and vegetation structural characteristics (Supplementary Table S4.1, Yu and Saatchi, 

2016). The AGB of the OP plantations at the study site accumulated at ~6.39 ± 1.12 Mg 

ha-1 per year in the first 12 years after planting (Chapter 3). However, this accumulation 

was highly variable within age classes as a result of palm leaning and eventual palm 

mortality, a serious limiting factor for oil palm performance on peat (Lim et al. 2012).  

An initial RMA regression was fitted to relate the estimated OP block AGB (based on 

block age using AMP1) to the in-situ block RCS. Several studies attempt to define the 

relationship between OP age and in-situ RCS. Tan et al. (2013) find this relationship to 

be stronger, although still weak, using the HH polarisation (R2 = 0.49) when compared 

to the HV (R2 = 0.27) using ALOS PALSAR-1 RCS for palms 1 to 25 years after planting 

on a mineral soil. Again, Darmawan et al (2016) find a stronger relationship when using 

the HH polarisation (R2 = 0.63, 2 to 21 years after planting (see Appendices 4). Here, 

horizontal transmit/vertical receive (HV) is used as the RCS is typically most sensitive to 

increases in AGB in this polarisation (Yu and Saatchi, 2016, CEOS, 2018). After the 
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biomass matching routine, AGB accumulation is detected for young mature and mature 

age classes (YAP 4 to 10) relatively successfully (Figure 4.13). However, the AGB of 

successful mature plots; with minimal palm leaning and replacement, appears 

underestimated due to a reduced sensitivity of the radar cross section to increases in 

AGB at the high end of the aboveground biomass range (Figure 4.12, Figure 4.13, Figure 

4.14). It must also be noted that the routine appears to successfully adjust gain and offset 

coefficients to take into account differences between the ALOS-1 and ALOS-2 satellites 

when estimating AGB, which exist despite efforts to minimise these differences in the 

image pre-processing steps (JAXA, 2019b, Mitchard et al. 2011). 

The AGB of oil palms less than 3 YAP is poorly predicted (Figure 4.12). The ‘biomass 

matching’ routine  is not calibrated to the AGB of palms less than 3 YAP, this is in part 

due to AMP1 yielding negative biomass values for palms less than 3 YAP but also due 

to the low woody biomass volume of the palms within this age range (Chapter 3, Corley 

and Tinker, 2016, Corley et al. 1971, Thenkabail et al. 2004). As a result, the young oil 

palms are likely not the dominant feature contributing to scattering at this point in the 

timeseries as double-bounce and volume scattering from newly planted young OPs is 

potentially low (Alemohammad et al. 2019). Scattering of the L-band SAR could be 

dominated by SAR interactions with the ground surface with particular sensitivity to soil 

moisture in the recently drained peatlands (Izumi et al. 2019, Ponnurangam and Rao, 

2011, Morel et al. 2011, Dargie et al. 2017). Across the drained peatland water table 

depth is likely to fluctuate spatially and temporally (Hooijer et al. 2012). SAR Interactions 

with large piles of coarse woody debris remaining on the site floor following forest 

clearance may also contribute to the return signal. 

Here, the relationship between AGB and the radar cross section was calibrated using 

AMP1 to increase the number of observations across the plantation. However, the 

variability in AGB stocks and OP structural characteristics observed within age classes 

at the site was high, as is typical for oil palms on peat (Othman et al. 2009, Dolmat et al. 

1995).  This suggests that calibrating the AGB/RCS relationship using direct in-situ 

observations, as observed in the majority of studies that attempt to map AGB stocks 

using L-band SAR, may be a more robust approach (Mitchard et al. 2011, Morel et al. 

2011, Ryan et al. 2012, Hamdan et al. 2015). However, using an accumulation model 

may be more appropriate for a more structurally consistent plantation monoculture, for 

example oil palm on mineral soils. The advantage of using an accumulation model to 

calibrate this relationship is that the model can then be used to validate the results of the 

‘biomass matching’ output (Figure 4.13). The biomass matching approach reduces the 

dependency of calibration on field plots across the timeseries with obvious advantages 

(Picard et al. 2012, Chave et al. 2005, Kho and Jepsen, 2015). However, the true in-situ 
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aboveground biomass of pixels or blocks is not known and hence output accuracy cannot 

be determined (Hill et al. 2013). Comparing the AGBD output map for each scene to the 

expected AGB as estimated by the accumulation model provides some indication of the 

success of the routine (assuming the model is a good representation of oil palm AGB 

accumulation).  

Validation of peat swamp forest AGB estimates  

The AGB stocks of the peat swamp forest fragment were similar to those reported in the 

literature for degraded or logged PSFs (Morel et al. 2011). The AGB of 92.5 Mg ha-1 in 

the 1-ha plot is low, however the majority of the large trees, which typically constitute 

around 50% of primary forest AGB (largest 1% DBH within a plot), had been removed 

(Lutz et al. 2018). The AGBD maps produced in this study appear to accurately quantify 

this AGB stock, with pre-conversion AGB estimated to be ~104.2 ± 19.2 Mg ha-1, 

however, the AGB/RCS relationship for peat swamp forest land cover was not defined. 

Generic relationships should not be applied across forest biomes owing to their structural 

differences, so perceived success when predicting PSF AGB stocks here should be 

considered with great caution (Woodhouse et al. 2012, Brolly and Woodhouse, 2012, 

Brolly and Woodhouse, 2014, Dobson et al. 1996).  

4.4.3) In this study, when does the relationship between increasing AGB and 

increasing RCS saturate? 

 

The ‘saturation’ or loss of sensitivity to increases in AGB in high biomass plantations and 

forests remains poorly understood and is commonly attributed to increasing forest 

canopy opacity (Woodhouse, 2006). However, radar backscatter is increasingly being 

thought of as a measure of structural trends in forest volume that are correlated with 

biomass in different ways and further research into the dependency of the aboveground 

volume/RCS relationship on forest and plantation structure is recommended in a number 

of studies (Brolly and Woodhouse, 2011, Joshi et al. 2017).  

Saturation in oil palm plantations   

In ‘successful’ plots where AGB stocks are high, OP stems were typically upright and 

consistent (Chapter 3), and in these blocks the sensitivity of RCS and AGB seems to 

have saturated at ~AGB > 45 Mg ha-1. Oil palms have a single growing apex; lateral 

growth occurs until ~4 years after planting after which the trunk grows vertically with no 

change in trunk diameter until frond bases are shed approximately 12 YAP (Rees and 

Tinker, 1963, Henson et al. 2012). Oil palm fronds are produced at a rate of ~18-24 per 

palm per year from 4 YAP onwards and are pruned according to pruning and harvesting 

cycles. Frond length is limited by the OP planting density, and as a result the volume of 

the palm crown remains constant (de Berchoux et al. 1986, Henson and Dolmat, 2003). 
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Several empirical and theoretical studies have linked increasing basal area to an 

increased RSC with eventual saturation as stems and branches become larger when 

using low frequency radar sensors (L-band and P-band) (Joshi et al., 2017, Brolly and 

Woodhouse, 2012, Brolly and Woodhouse, 2014). However, in successful plots, basal 

area remains constant in monoculture OP plantations from 4 YAP onwards, with 

increases in trunk height associated with trunk biomass gain (Rees and Tinker, 1963). 

Multiple studies report a reduction in RCS with increasing stand height for various woody 

land cover types including oil palm plantations (Joshi et al. 2017, Joshi et al. 2015, 

Mermoz et al. 2015, Dobson et al. 1992, Rosenvist et al. 1996). The crown of forest and 

plantation species is typically associated with radar volume scattering (Woodhouse, 

2006). Increases in crown related parameters such as LAI and frond length were found 

to correlate more strongly with RCS for oil palm than trunk height or biomass (Rosenvist 

et al. 1996). However, the crown canopy remains constant in volume once the canopy 

has closed (Rosenvist et al. 1996). The dense canopy of oil palm fronds in mature 

plantations may prevent signal penetration below the top of the canopy even at the L-

band (CEOS, 2018). Multiple interacting factors may therefore contribute to this 

saturation, with further complication added for oil palms on peat in plots where palm 

leaning and falling is high. Studies have applied airborne LiDAR to predict AGB increases 

with more success, however this is a more costly route (Nunes et al. 2017). Further 

testing of the relationship between the RCS and OP structure across the planting cycle 

would be valuable. 

Saturation in peat swamp forests  

The in-situ relationship between peat swamp forest RCS and AGB was not defined and 

hence the true point of saturation cannot be determined. Both Englhart et al (2011) and 

Morel et al (2011) attempt to define the relationship between tropical peat swamp forest 

AGB and RCS (ALOS PALSAR-1 and TerraSAR-X, X-band radar), however both studies 

define a single relationship that includes PSF alongside multiple regional land cover and 

types. By exploring the relationship between GLAS LiDAR derived AGB estimates and 

the ALOS PALSAR global mosaic product, sensitivity of ALOS PALSAR to swamp forest 

biomass saturated at ~40 Mg ha-1 (Yu and Saatchi, 2016). Swamp forests and other 

partially or fully waterlogged forest types showed a strong scattering component from the 

vegetation-surface specular reflection due to inundation (Yu and Saatchi, 2016, Dargie 

et al. 2017, Draper et al. 2014).  

 

 



80 
 

4.4.4) How accurate are existing maps of aboveground biomass density at the 

study sites and how do these maps compare to each other? 

 

AGB Benchmark maps  

Existing aboveground biomass density maps are highly divergent across the study scene 

extent despite using largely the same input datasets and similar processing chains 

(Baccini et al. 2012, Saatchi et al. 2011). This divergence has been attributed to a 

number of differences, including parameters used in allometric equations, GLAS LiDAR 

processing methodologies and the datasets used to extrapolate estimates of AGBD 

(Mitchard et al. 2013, Avitabile et al. 2016). Neither map is truly a single date product 

due to mixed input layers, so these maps are potentially capturing the area at different 

stages of forest degradation (Mitchard et al. 2013). Avitabile et al (2016) fuse the AGBD 

maps and although the product date cannot be defined, the map appears to capture the 

scene extent pre-oil palm expansion with very few pixels in the OP AGB range at the 

study site or across the scene extent (Chapter 3, Henson et al. 2005). The map could 

therefore feasibly be used as a benchmark map from which to monitor the changes in 

AGB associated with OP establishment on peat and mineral soil in the study area and 

associated emissions from AGB stock changes. However, the divergence observed 

between two input maps suggest care would be required when interpreting results and 

associated uncertainties (Mitchard et al. 2013, Hill et al. 2013).  

AGB Change maps  

Baccini et al (2017) attempted to quantify biomass losses and gains at annual increments 

across the pan-tropics between 2003 and 2014 by using the Baccini et al (2012) 

benchmark map and extending the timeseries of optical datasets used. The resultant 

losses and gains in AGB across the study scene extent appear to match the spatial 

extent of changes detected through the biomass matching routine in some locations, 

however the magnitude of AGB stock change cannot be compared (Supplementary 

Figure S4.5).  Despite this, Hansen et al (2019) found that 43% of estimated carbon 

losses detected for Southeast Asia were not co-located with Landsat-derived maps of 

tree cover loss and 72% of the loss-dominant cells in these tree cover maps were not 

associated with AGB carbon losses in the Baccini maps. In addition to other issues, 

Hansen et al (2019) attribute this to the tenuous relationship between passive optical 

reflectance and changes in forest carbon.  Given the current rate and scale of oil palm 

expansion in addition to other land cover changes in the region, current maps of AGB 

stocks are required at a fine (at least annual) temporal resolution (Gaveau et al. 2016, 

Miettinen et al. 2019). 
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4.4.5) Applications and further research 

In line with critiques of existing pantropical AGBD benchmark maps, this study found 

existing AGBD maps to be highly divergent in the study region (Mitchard et al. 2013). 

With an increased focus on reliable land cover classification the ‘biomass matching’ 

approach and ALOS PALSAR-1/2 GMP could inform ongoing efforts to accurately map 

plantation extent and establishment at a high spatial and temporal resolution (annual), 

supporting efforts to monitor the success of OP plantations certified as sustainable and 

track illegal plantation establishment and expansion (Carlson et al. 2018, Ivancic and 

Koh, 2016, Miettinen et al. 2019). The temporal resolution of change detection could also 

be improved by using the ALOS PALSAR-1/2 Level 1.1/1.5 product which features ~3 

annual observations (JAXA, 2009, JAXA, 2019). Despite a more demanding pre-

processing chain for the user and the reduced accessibility of ALOS PALSAR-2 scenes 

this would also potentially further improve the reliability of detected changes (Hill et al. in 

prep, ESA, 2016, JAXA, 2009). The accurate prediction of young mature oil palm AGB 

on peat is promising, however the mechanism causing the saturation of the RCS/AGB 

relationship as oil palms mature needs to be further explored. This would potentially 

include extending the timeseries of SAR scenes used here to confirm the saturation of 

the AGB/RCS relationship and the inclusion of older oil palm blocks. Further evaluation 

of the relationship between palm stand structural metrics (such as LAI and frond length) 

and in-situ RCS would also be very valuable (Rosenvist et al. 1996, Joshi et al. 2015). 

Establishing the relationship between peat swamp forest AGB stocks and the RCS (σHV
0) 

and incorporating this into ‘biomass matching’ calibration steps would potentially improve 

and update current AGBD timeseries maps and supporting efforts to reduce emissions 

from deforestation and degradation.   

4.5 Conclusion  

Prior to plantation establishment, the aboveground biomass stocks of the degraded peat 

swamp forest at our study site were felled and left to decompose. The deforestation that 

precedes OP plantation establishment is easily detectable when using the ALOS 

PALSAR-1/2 GMP in the HV polarisation and the ‘biomass matching’ approach. This is 

most likely due to the structural differences between peat swamp forest and oil palm 

wood biomass and the land cover types remain distinguishable across the timeseries of 

OP growth. ALOS PALSAR-1/2 SAR data should increasingly be used to inform efforts 

to monitor plantation establishment. ‘Biomass matching’ is an automated approach that 

can detect this specific land cover change using an accessible remotely sensed dataset. 

However, in order to accurately predict peat OP AGB accumulation, further research into 

the saturation of RCS sensitivity to increases in AGB in high AGB ranges is needed. This 

would involve assessing the relationship between OP structural traits and the radar cross 
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section, research that could initially be conducted in OP plantations on mineral soils. 

Further investigation using the ‘biomass matching’ approach and the ALOS PALSAR-

1/2 GMP in the HH polarisation and ALOS PALSAR-1/2 Level 1.1 product as input 

datasets may also be valuable. For OP on peat increasing our understanding of the 

relationship between water table depth and the SAR return immediately following 

conversion is also advised.  

In this study, the success of prediction of PSF biomass cannot be determined, further 

work to determine the PSF aboveground biomass/RCS relationship is needed. However, 

the biomass maps produced here offer some improvements on existing AGBD maps in 

the study area as they more accurately capture low AGB densities which show stark 

disagreement and pre-date OP expansion and degradation in the region.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



83 
 

Chapter 5: Synthesis and Conclusions 

The recent rapid expansion of OP plantations across tropical peatlands has resulted in 

net ecosystem emissions. In contrast to plantations on mineral soils, the AGB stocks of 

oil palm plantations on peat and their accumulation over time is rarely addressed in the 

literature. Here, the accumulation of above ground biomass stocks in a peat OP 

plantation is quantified and methods to improve AGB stock monitoring at various scales 

are developed.  

In this study, the temporary AGB stocks of successful plantation plots 12 years after 

planting is similar to the AGB stocks of the highly degraded peat swamp forest the 

plantations replaced. However, as expected, the annual increases in carbon stocks 

stored in oil palm AGB (3.07 ± 0.54 Mg C ha-1 yr-1) far from offset emissions from peat 

oxidation even when considering the current conservative IPCC emission factors (15 Mg 

C ha-1 yr-1, [95% CI, 10 to 21]).  

The ALOS PALSAR-1/2 global mosaic dataset is free with scenes available from 2007 

to present. This allows the observation of the recent OP expansion across tropical 

peatlands in the study region, unhindered by tropical cloud cover. Testing a novel 

‘biomass matching’ approach, this study aimed to use this L-band SAR product, 

combined with information derived from plot inventories, to monitor AGB stocks at the 

study sites. Reliably quantifying annual increases in peat OP AGB stocks across the 

plantations in is not yet possible using this approach. However, the automated detection 

of statistically significant increases and decreases in AGB observed here is extremely 

promising. 

Limitations and further research  

The aboveground biomass estimates in this study focus on a single oil palm plantation 

on peat. The representativeness of this plantation compared to other OP plantations on 

peat across Insular South East Asia (ISEA) must therefore be investigated. The planting 

density at the site is typical of peat OP plantations. The Sebungan Oil Palm Estate is 

well managed and high yielding, however, this varies across the Sebungan and Sabaju 

Estates (see section 2.2). Differences in plantation management, planting density and 

peat characteristics across ISEA will result in variations in AGB stocks, future studies 

would ideally compare multiple sites.    

The allometric relationships defined here focus on a small sample at a single plantation. 

Further research is needed to test these allometric relationships and extend the 

timeseries further to incorporate palms between 12 and 20 years after planting. Following 

this study, the next steps to improve our understanding of these relationships should 
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include a variety of peat OP AGB stocks across the region in addition to eventually 

assessing the AGB stocks of second rotation plantations. 

Using the ‘biomass matching’ approach involves making some potentially unrealistic 

assumptions about areas of unchanging AGB. Other factors aside from changes in living 

vegetation structure cause intra-scene variation in the RCS. For instance, changes in 

precipitation, standing water, soil and vegetation moisture characteristics. In addition to 

this, the AGB of all living vegetated systems changes over time, even if these changes 

are small relative to rapid growth or intense degradation.    

Further investigation into relationship between OP structure and the in-situ RCS is 

required. Increasing our current understanding of the interactions between changes in 

OP structure over time and transitions between dominant scattering mechanisms in the 

L-band in both the HV and HH polarisation would be beneficial. These studies could be 

empirical or theoretical and could potentially explain the saturation of the AGB/RCS 

relationship for oil palm structures compared to surrounding forest systems.  

Wider implications for stakeholders  

This study presents methodologies for assessing oil palm and frond biomass stocks 

specifically developed for oil palm on peat, this will hopefully allow plantation managers 

to accurately quantify and monitor the AGB stocks of oil palms and plantation residues. 

This may encourage the utilization of a proportion of biomass residues (for instance 

pruned fronds) in bioenergy production on site and for neighbouring oil mills and 

communities. Empty fresh fruit bunches are often already utilized for this purpose.  

Oil palm mortality as a result of poor palm anchorage and leaning limits plantation fresh 

fruit bunch production in addition to impacts on biomass stocks. The impact of palm 

leaning on peat is acknowledged but rarely quantified, this study begins to evaluate the 

impact of palm leaning and failure on biomass stocks and carbon storage in mature 

plantations. Hopefully, this will support existing and prompt further efforts to improve our 

understanding of the mechanisms behind the peat oil palm leaning issue and the 

development of preventative strategies in existing and second cycle plantations. This will 

be beneficial not for carbon stocks but also for FFB yield in existing peat OP plantations. 

For the RSPO the insights into mapping peat OP expansion and growth gained here may 

inform attempts to detect current and historical deforestation in certified plantations. The 

enforcement of the sustainable practices will hopefully improve consumer faith in existing 

OP products certified as sustainable. 

The quantifications of AGB stocks presented here, when coupled with extensive ongoing 

research focused on micro and ecosystem scale fluxes of carbon at the same site will 
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eventually provide a full lifecycle assessment of the carbon emissions from oil palm on 

peat. This will inform IPCC land use change emission factors. In addition, the accurate 

quantification of emissions from this land use change will help to inform the valuing of 

carbon credit schemes like REDD+ with implications for landowners.  

With some development the biomass mapping approaches presented here will improve 

our ability to detect changes in OP plantation extent and provide an indication of 

plantation age and planting cycle over a large area. This study highlights the potentially 

large carbon stock stored in successful mature OP plantations on peat, many of which 

are nearing the end of their planting cycle. Estimates of future emissions from LUC must 

consider the eventual clearance of mature peat OP plantations when determining our 

ability to meet UNFCCC emissions targets.  

For the scientific community, this study highlights the potential of new techniques for 

quantifying changes in biomass stocks using L-band radar. Despite limitations in this 

ecological context, the ‘Biomass Matching’ approach may allow the quantification of 

small-scale increases and decreases in AGB stocks over time in other woody land cover 

types. Despite the obvious value of course resolution tropical maps of AGBD, this study 

highlights the limitations of these map products and it is suggested that for some 

applications they are used with caution.  
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Appendices 1:  

Chapter 2 - Supplementary Material 

 

Figure S2.1: Semi-detailed soil map for the Sabaju Estate Complex and Sebungan 
Estate, Sarawak Oil Palms Berhard (SOP) (SOP, personal communication, 2017). 

 

Figure S2.2: Sarawak Oil Palms Berhard (SOP) planting blocking map for the 
Sebungan Oil Palm Plantation (SOP, personal communication, 2017). 
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Figure S2.3: Sarawak Oil Palms Berhard (SOP) planting blocking map for the Sabaju 
Oil Palm Estate (SOP, personal communication, 2017). 
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Appendices 2:  

Chapter 3 - Supplementary Material 

Table S3.1: Oil palm plot AGB per hectare.   

Source Method Location/Region  Planting 

Density  

Soil  Note 

Henson and 

Dolmat 

(2003)
10

 

ND Peninsular Malaysia 160 Peat  

Melling et al 
(2007)

57
 

ND Sarawak, Malaysia  - Peat  

Breure (1982)
58

 ND Papua New Guinea - Mineral  

Breure (1988)
59

 ND Papua New Guinea - Mineral  

Dufrene 
(1989)60

 
ND Ivory Coast - Mineral  

Henson 

(unpublished, 

1993-95)
40

 

ND Selangor, Malaysia - Mineral  

Kwan (1994)
41

 ND Sabah, Malaysia 143 Mineral  

Henson 

(1995)
61

 

ND Selangor, Malaysia - Mineral  

Lamade and 
Setiyo (1996)

62
 

ND Sumatra, Indonesia - Mineral  

Henson 

(1998)
63

 

ND Selangor, Malaysia - Mineral  

Palm et al 
(1999)

64
 

ND Cameroon  - Mineral  

Tjitrosemito 

and Mawardi 
(2000)65

 

ND Indonesia     

Banabas 

(2002)
66

 

ND Papua New Guinea 130 Mineral  

Henson 
(2007)

67
 

ND Kedah, Malaysia - Mineral  

Morel et al 

(2011)
44

 

ND Sabah, Malaysia  - Mineral  

Rees and 
Tinker (1963)

26
 

D Nigeria -  Destructive 
harvest: 7 to 22 

YAP, 3 repetitions 

per age class  

Ng et al. 
(1968)

68
 

D Peninsular Malaysia - Mineral   

Corley et al 

(1971)
11

 

D Peninsular Malaysia 148 Mineral Destructive 

harvest: 1.5 to 

27.5 YAP, 
38repetitions per 

age class 

Khalid et al. 
(1999)

12,13
 

D Peninsular Malaysia - Mineral Destructive 
harvest: 23 YAP, 

10 repetitions  

Thenkabail et 

al. (2004)
46

 

D Benin - Mineral Destructive 

harvest: Trunk 
heights of 0.28 to 
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1.95 m, 7 palms 

samples (YAP 
unknown)  

Syahrinudin 

(2005)
30

 

D Sumatra, Indonesia 

  

- Mineral Destructive 

harvest: 3 to 33 

YAP, 3 repetitions 
per age class 

Legros et al. 

(2006)
69

 

D East Kalimantan, 

Indonesia 

- Mineral  

Koh et al. 
(2019)70 

D, ND Sarawak, Malaysia  - Mineral Destructive 
harvest: 21 YAP, 

10 repetitions 

Source material for Figure 6. Outline of studies assessing OP aboveground biomass 

stocks on mineral soils and peat soils using destructive (D) and non-destructive (ND) 

methods, planting densities included where possible.  

 

 

Table S3.2: Characteristics oil palms destructively harvested 

Sample No YAP No of 

Fronds 

Trunk DBH 

(m) * 

Trunk 

Length 

(m)** 

Lean 

Category***  

1 12 49 0.50 4.53 M 

2 12 40 0.48 3.60 U 

3 12 35 0.50 3.70 U 

4 8 40 0.69 1.62 U 

5 8 34 0.63 1.13 U 

6 8 40 0.64 1.45 U 

7 3 35 0.45 0.23 - 

8 3 38 0.27 0.22 - 

9 3 41 0.37 0.18 - 

 

* Trunk DBH measured at breast height (1.30m) using callipers to exclude frond bases, 

trunk diameter was measured at the trunk midpoint where trunk heights were < 1.3m. 

** Trunk length was measured to the frond ranked 33 (L33). Where palms were 

leaning, the trunk length along the inner curve of the palm trunk was recorded. 

*** Leaning categories: M = Mildly leaning, U = Upright. 
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Figure S3.1: Frond DW predicted using existing equations vs observed frond DW 

(1:1 line indicated). The equations tested use the petiole cross section (Equation1, 

Corley et al, 197111 and Equation 2, Henson, 199310) and the rachis linear density 

(Equation 3, Aholoukpè et al, 201343) to estimate the DW of a single frond.  

 

 

 

Figure S3.2: Rachis dry weight (DWRachis) is estimated from the dry linear density 

of a rachis fragment. Rachis DW predicted using an existing equation (Equation 3) 

and an equation derived for peat (Equation P3) are plotted against the observed rachis 

DW (1:1 line indicated). The distribution of coefficients accounting for the non-constant 

sectional area of the rachis for each frond are shown (Equation P3, top left). 
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Figure S3.3: Frond DW predicted using existing equations vs the observed frond 

DW (1:1 line indicated). Equations tested use the petiole cross section (PCS) and the 

petiole cross section when combined with frond length (PCS + L) to estimate the DW of 

a single frond. Allometries recorded in Corley and Tinker, 201671,72. 

 

 

 
 

Figure S3.4: Single frond dry weights on mineral and peat soils. Dry weight of 

fronds sampled in the non-destructive plot survey (Peat (Non-destructive)) are 

calculated using Equation P1, destructively harvested fronds are also included. 

Adapted from Henson 200529, including fronds on peat soils (Henson and Dolmat, 

2003). 
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Figure S3.5: Frond component dry weight distribution in immature, young-

mature and mature palms. Frond component dry with distribution of single fronds 

ranked 1, 9,17, 25 and 33 (rachis, petiole and leaflet) in immature (3 YAP), young-

mature (8 YAP) and mature (12 YAP) palms. Outliers indicated in red.  

 

No Component  

 

Equation  Reference  Note 

S1 Palm DW  𝐷𝑊𝑃𝑎𝑙𝑚 = (0.0976 × 𝑇𝐻𝑒𝑖𝑔ℎ𝑡

+ 0.0706)
× 1000 

Dewi et al, 

2009
47

 

~0.5 > Theight > 9 (m) 

Derived from semi-

destructive methods 
(R2 = 0.7342) 

Location: Indonesia 

S2 Palm DW 𝐷𝑊𝑃𝑎𝑙𝑚 = 37.47𝑇𝐻𝑒𝑖𝑔ℎ𝑡

+ 3.6334 

Thenkabail 

et al, 
2004

46
 

N = 8  

0.28 > Theight > 1.95 
(m) 

Location: Benin 

 

Table S3.3: Existing allometric equations for estimating total oil palm dry weight 

(kg). Where DWPalm is palm dry weight and THeight is trunk height to frond 33 (m). 

 

 

Figure S3.6: Trunk length (left) and DBH (right) (m) as measured in non-

destructive surveys. Data pooled for all plots of the same age. Outliers indicated in 

red.  
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Figure S3.7: Oil palm leaning and length measurement. Diagram A shows a mildly 

leaning palm mature palm, Diagram B an upright palm. Trunk length (L33) is measured 

along the inner curve of the trunk parallel to the lean direction in mildly leaning palms.  

 

Table S3.4: Categorisation of Oil Palm Leaning on Tropical Peats 

Leaning Category 

Upright Upright  

Mild Leaning at < 45o from the vertical  

Severe  Leaning at > 45o from the vertical 

Recovered Leaning palms returning upright state 

Fallen (Alive) Fallen live palm (parallel to the peat), partially rooted 

Fallen (Dead) Fallen dead palm (parallel to the peat), uprooted 

Replanted Immature palm, notably younger than the block age (refill palm 

following palm mortality) 

Missing Missing palm in planting grid  
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Table S3.5: Plot locations, Sarawak, Malaysia. 

Plot Id Lat (N) Long (E) YAP Measurement  

 1 3.1773 113.3729 12 D, ND 

 2 3.1744 113.3697 12 D, ND 

 3 3.1705 113.3711 12 D, ND 

 4 3.1640 113.4187 8 D, ND 

 5 3.1622 113.4180 8 D, ND 

 6 3.1628 113.4162 8 D, ND 

 7 3.1609 113.4207 3 D, ND 

 8 3.1594 113.4207 3 D, ND 

 9 3.1604 113.4179 3 D, ND 

 10 3.1658 113.3524 9 ND 

 11 3.1884 113.4631 9 ND 

 12 3.1879 113.4612 9 ND 

 13 3.1846 113.4593 9 ND 

 14 3.2333 113.4792 10 ND 

 15 3.2328 113.4803 10 ND 

 16 3.2267 113.4723 10 ND 

 17 3.2267 113.5069 11 ND 

 18 3.2121 113.5007 11 ND 

 19 3.2142 113.5035 12 ND 

 20 3.1559 113.3360 11 ND 

 21 3.1524 113.3277 11 ND 

 22 3.1661 113.3467 12 ND 

 

Table S3.5: Plot locations, Sarawak, Malaysia. Coordinates of OPs destructively 

harvested (D) and non-destructive plot surveys (ND), decimal degrees. Years after 

planting (YAP) at the time of measurement recorded (February 2019).  
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Appendices 3:  

Chapter 4 - Supplementary Material 

 

 

 

 

 

 

 

 

 

 

Figure S4.1: Areas included an excluded from ‘biomass matching’ and AGB 

estimation. Exclusion based on a slope > 20˚ calculated using the SRTM DEM (30m 

resolution). Sebungan and Sabaju oil palm plantations indicated in black. 

 

Figure S4.2: RMA Regression of ALOS PALSAR-2 radar cross section and 

modelled AGB for oil palm ‘calibration blocks’ and ‘validation blocks’.  
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Figure S4.3: Final pixel AGB uncertainty. Mean pixel AGB of all pixels (left) and 

pixels with an AGB < 200 Mg ha-1 (right) against estimated pixel AGB uncertainty after 

the final iteration  

 

Figure S4.4: Distribution of pixel AGB estimates across the study scene for the 

Avitabile (top), Baccini (middle) and Saatchi (bottom) Pantropical AGBD maps (1 km 

resolution). 
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Figure S4.5: Aboveground biomass loss and gain (MgC ha-1) between 2003 and 

2014 at the study site, taken from Baccini et al, 2017 (Left). Detected AGB losses and 

gains, final ‘Biomass Matching’ iteration – this study (Right).  
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Supplementary Table S4.1: Aboveground biomass estimation using radar datasets (spaceborne SAR products only)  

 
Source Location  Vegetation   Annual 

rainfall 

Extent Period 

(Single*) 

(Timeseries**) 

Product 

 

Band 

(Polarisation) 

Calibration 

dataset   

Model 

Saturtion  

  Type Condition        

Englhart 

et al, 

2011 

Central 
Kalimantan, 

Indonesian 

Borneo 

Tropical Peat 
swamp 

forest, Heath, 

Riparian 
forest and 

seasonally 

flooded 

wetlands  

Heavily 
degraded 

following 

recurrent fire 
episodes 

~2000 to 
3000 

mm 

280,062 ha May 2007 to 
October 2008   

(Dry season only)* 

ALOS 
PALSAR-1  

L-Band  140 forest plots 
in various forest 

types and 

disturbance 
levels  

LiDAR 

measurement 

producing a 
continual spatial 

dataset (3970 

points) 

126 Mg 
Ha-1 

      2008 and 2009  

(Dry season only)* 

TerraSAR-

X 

X-Band (VV)  80 Mg 

Ha-1 

        Combined L- 

and X-Bands 

 307 Mg 

Ha-1 

Mitchard 

et al, 

2011 

Central 

Africa  

Tropical 

forest – 

Savanah 

transition  

Protected 

national park 

and 

settlement 

~1720 

mm 

1,500,000 

ha 

July – August 

2007 

(Dry season only) 

ALOS 

PALSAR-1 

L-band (HH 

and HV)  

 

4 1-ha  Savanna 

plots, 4 1-ha 

forest plots, a 

0.4-ha 
transitional plot 

ha and 8 20 × 

200 m transects  

150–200 

Mg Ha-1 

      November – 

March 1996 

(Dry season 

only)** 

JERS-1 L-Band (HH) 

 

 - 

Morel et 

al, 2011 

Sabah, 

Malaysian 

Borneo 

Tropical 

Lowland 

Forest, Peat 
swamp 

Secondary 

tropical 

lowland 
forest types 

~2000 to 

3000 

mm 

330,000 ha September – 

October 2008 

(Dry season only)* 

ALOS 

PALSAR-1 

L-Band (HV) 127 ha of plot 

inventories 

distributed 
throughout 

100 Mg 

Ha-1 
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forest, Oil 

Plantation 

and Timber 
Plantation  

and 

Plantations  

Sabah in various 

forest types and 

disturbance 
levels  

Ryan et 

al, 2012 

Central 

Mozambique 
 

Miombo 

woodland, 
Scattered 

Savanah  

Deforested 

and 
degraded 

(Small scale 

agriculture 

and charcoal 
production) 

~900 

mm year 

116,000 ha June 2007 – 

October 2010** 

ALOS 

PALSAR-1 

L-Band (HV)  96 Inventory 

plots (0.1 to 2.2 
ha) 

 

 

- 

Atwood 

et al, 

2014 

Tanana 

Valley, 
Alaska 

Boreal Forest Stand 

structure and 
composition 

largely 

determined 

by past 
wildfires – 

majority 

burned in the 
past 25 years 

  January 2006 and 

May 2011* 
(Dry season – post 

snowmelt) 

ALOS 

PALSAR 

L-band (HV) 79 field plots 

have been 
measured and 

27 coincident 

lidar flight lines 

- 

Baghdadi 

et al, 

2015 

 

São Paulo, 

Brazil 

Eucalyptus 

plantation  

0 to 7 years 

after 

planting 
(planting to 

harvest) 

- - August 2009* ALOS 

PALSAR-1 

L-Band (HV) 695 Eucalyptus 

stands  

50 Mg 

Ha-1 

Hamdan, 

2015 

Peninsular 

Malaysia  

Tropical Hill 

Dipterocarp 
Forest and 

Lowland 

Dipterocarp 
Forest 

(Well 

drained) 

Reserve 

Forest and 
National 

Parks  

 5,257,395 

ha 

May to December 

2010* 

ALOS 

PALSAR-1 

L-Band (HV) 352 30*30m 

sample plots 
(2011 and 2012) 

200 Mg 

Ha-1 

Joshi et 

al, 2015 

Denmark,  Species trial 
plots (even 

age), Conifer 

Species trial 
plots (even 

age), Conifer 

 - October/November 
2007 * 

ALOS 
PALSAR-1 

L-Band (HV) 113 plots of an 
area of 0.07 ha 

to 0.23 ha 

130 Mg 
Ha-1 
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and 

Broadleaf 

and 

Broadleaf 

Airborne 

LiDAR scans 

Omar et 

al, 2017 

Peninsular 
Malaysia  

Tropical Hill 
Dipterocarp 

Forest and 

Lowland 
Dipterocarp 

Forest 

(Well 

drained) 

Reserve 
Forest and 

National 

Parks  

- 5,257,395 
ha 

March to June 
2016* 

ALOS 
PALSAR-2 

L-Band (HV) 332 Sample 
Nests (20m 

Radius)  

200 Mg 
Ha-1 

      November 2016* Sentinel-

1A 

C-Band (VV, 

VH) 

 100 Mg 

Ha-1 
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Table S4.2: Global 25m Resolution PALSAR-2/PALSAR Mosaic product tiles 

acquired  

Tile ID Satellite Scene Date  Incidence 

Angle  

Polarisation  Orbit 

(pass) 

N03E113_07 ALOS-1 22-Jun-2007 34.3˚ HV Ascending  

N04E113_07 ALOS-1 22-Jun-2007 34.3˚ HV Ascending 

N03E113_08 ALOS-1 09-May-2008 34.3˚ HV Ascending 

N04E113_08 ALOS-1 09-May-2008 34.3˚ HV Ascending 

N03E113_09 ALOS-1 27-Jun-2009 34.3˚ HV Ascending 

N04E113_09 ALOS-1 27-Jun-2009 34.3˚ HV Ascending 

N03E113_10 ALOS-1 15-Aug-2010 34.3˚ HV Ascending 

N04E113_10 ALOS-1 15-Aug-2010 34.3˚ HV Ascending 

N03E113_15 ALOS-2 10-Sep-2015 36.7˚ HV Ascending 

N04E113_15 ALOS-2 10-Sep-2015 36.7˚ HV Ascending 

N03E113_16 ALOS-2 28-Jan-2016 36.6˚ HV Ascending 

N04E113_16 ALOS-2 28-Jan-2016 36.6˚ HV Ascending 

N03E113_17 ALOS-2 07-Sep-2017 36.6˚ HV Ascending 

N04E113_17 ALOS-2 07-Sep-2017 36.6˚ HV Ascending 

 

ALOS GMP tile ID and observation characteristics, scene dates correspond the 

observation date of the track matching the study site scene extent, tiles with the same 

observation dates are merged. The SRTM3 (2007-2010) and SRTM1 (2015-) DEMs 

are used by JAXA to terrain correct scenes (JAXA, 2017).  

 

Table S4.3: Landsat-5 scenes used to inform OP planting block digitisation   

Tile ID Satellite Scene Date  

LT05_L1TP_119058_20060614_20161121_01_T1 Landsat-5 (TM) 14-Jun-2006 

LT05_L1TP_119058_20070329_20161116_01_T1 Landsat-5 (TM) 29-Mar-2007 

LT05_L1TP_119058_20070703_20161113_01_T1 Landsat-5 (TM) 03-Jul-2007 

LT05_L1TP_119058_20070804_20161111_01_T1 Landsat-5 (TM) 04-Aug-2007 

LT05_L1TP_119058_20080502_20161101_01_T1 Landsat-5 (TM) 02-May-2008 

LT05_L1TP_119058_20081228_20170111_01_T1 Landsat-5 (TM) 28-Dec-2008 

LT05_L1TP_119058_20090318_20161027_01_T1 Landsat-5 (TM) 18-Mar-2009 

LT05_L1TP_119058_20090419_20161026_01_T1 Landsat-5 (TM) 19-Apr-2009 

LT05_L1TP_119058_20090809_20161022_01_T1 Landsat-5 (TM) 09-Aug-2009 

LT05_L1TP_119058_20100812_20161014_01_T1 Landsat-5 (TM) 12-Aug-2010 

LT05_L1TP_119058_20110815_20161007_01_T1 Landsat-5 (TM) 15-Aug-2011 

 

The majority of the visual analysis of Landsat images was undertaken using visible and 

near infrared bands (RGB composite: Band 3: Visible (0.63 - 0.69 µm), Band 4: Near-

Infrared (0.76 - 0.90 µm), Band 5: Near-Infrared (1.55 - 1.75 µm)).  
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Table S4.4: Wood density sources (Peat Swamp Forest) 

Source No  Reference 
1 Oey Djoen Seng. 1951. in Soewarsono, P.H. (1990) Specific gravity of 

Indonesian Woods and Its Significance for Practical Use FRPDC Forestry 

Department, Bogor, Indonesia. 

2 Ginoga, B., Hadjib, N. and Karnasudirdja, S. (1980) Sifat Fisis dan Mekanis 

beberapa Jenis Kayu. Indonesia Bagian, Laporan BPHH No. 153. 

4 Lemmens, R.H.M.J., Soerjanegara, I. and Wong, W.C. (1995) PROSEA 5: 
Timber trees: Minor commercial timbers, Backhuys Publishers, The 

Netherlands 

5 Desch, H.E. 1996. Timber: structure, properties, conversion and use. 7th 

Edition. Palgrave Macmillan, New York. 

7 Desch, H.E. 1996. Timber: structure, properties, conversion and use. 7th 

Edition. Palgrave Macmillan, New York. 

8 World Agroforestry, ‘Tree functional attributes and ecological database – 

wood density’. Website Accessed: 9th December 2019:   
http://db.worldagroforestry.org//wd 

 

Sources for wood densities used to estimate the AGB of logged peat swamp forest 

(PSF) at the Sabaju Estate. Census data from a 1 ha permanent plot in the logged 

secondary PSF identified all trees with a DBH > 10 cm (20 families, 33 species) (Koh 

2019, pers. comm, 25 February). Wood density data was obtained from various 

sources (1-8) and allometric equations (Chave et al, 2005) where used to estimate 

AGB.   
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Appendices 4:  

Chapter 4 - Oil Palm age/RCS (σ0
HH) 

ALOS PALSAR-2 GMP scenes in the HH horizontal transmit/horizontal receive (HH) 

polarisation where also acquired for 2015, 2016 and 2017 (10-Sep-2015, 28-Jan-2016, 

07-Sep-2017). Following acquisition, the pre-processing steps in outlined Section 4.2.1. 

were undertaken to convert the DN to the RCS (σ0
HH). The mean RCS of each oil palm 

block was then extracted for both the HV and HH polarisation and compared to the block 

age at the time of observation (Appendix Figure S4.6). The relationship between block 

age and the in-situ mean RCS was stronger in the HH polarisation (R2 = 0.514) when 

compared to the HV (R2 = 0.345). 

 

Figure S4.6: Mean block RCS σ0 in the HV (left) and HH (right) polarisations 

between 4 to 10 years after planting (ALOS-2). A chronosequence approach is used, 

mean block RCS is plotted against the years before/after planting at the time of 

observation. Linear regression models and R2 values indicated. 
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