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Abstract 

The triumph of the Gaia hypothesis was to spot the extraordinary influence of Life on the 

Earth. “Life” is the clade including all extant living beings, as distinct from “life” the class of 

properties common to all living beings. “Gaia” is Life plus its effects on habitability. Life’s 

influence on the Earth was hard to spot for several reasons: Biologists missed it because they 

focused on life not Life; Climatologists missed it because Life is hard to see in the Earth’s 

energy balance; Earth system scientists opted instead for abiotic or human-centred 

approaches to the Earth system; Scientists in general were repelled by teleological arguments 

that Life acts to maintain habitable conditions. Instead we reason from organisms’ 

metabolisms outwards, showing how Life’s coupling to its environment has led to profound 

effects on Earth’s habitability. Recognising Life’s impact on Earth and learning from it could be 

critical to understanding and successfully navigating the Anthropocene.  
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1. Introduction 

Before being the name of a hypothesis, Gaia was the name of a new entity (Lovelock, 1972), 

defined as “the biosphere and all of those parts of the Earth with which it actively interacts” 

(Lovelock and Margulis, 1974) – where the “biosphere” meant “the total ensemble of living 

organisms” and “the Earth” refers to the entire planet as an object in the solar system. The 

Gaia hypothesis proposed that living beings could collectively regulate aspects of their global 
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abiotic environment: the chemical composition of the atmosphere and oceans, and potentially 

also the climate (Lovelock and Margulis, 1974; Lovelock and Margulis, 1974b; Margulis and 

Lovelock, 1974). The idea of “regulation” often led Lovelock to compare Gaia with an 

organism, and sometimes with a thermostat, since both are common examples of regulated 

phenomena.  

Gaia fed into the emergence of Earth system science (Lenton, 2016; Steffen et al., 2020) – 

where “the Earth system” has been defined in different ways that we outline below. It is often 

taken to refer to the life-supporting entity at the surface of the planet as distinct from much of 

the inner Earth and its heat source (Lenton, 2016). Subsequently, Lovelock has often said “the 

Earth system” is just an alternative, scientifically-correct name for Gaia – suggesting there is a 

single global entity that should be a focus of scientific attention. Many Earth system scientists 

have followed suit, treating Gaia and the Earth system as synonymous. Biologists on the other 

hand seem to recognise that Gaia is a distinctly biological proposition, but tend to dismiss it as 

unworkable in theory (Doolittle, 1981; Dawkins, 1983). Here we argue that Gaia and the Earth 

system are distinct, and that we are still in the process of discovering Gaia – not least because 

different scientific disciplines have persistently missed the extraordinary and variable influence 

of Life on the Earth.  

In the following, we examine four key historical reasons why Gaia was hard to spot, or hard to 

appreciate for many scientists. First we examine the failure of biology to spot the largest living 

entity – which following recent work we label “Life” (with a capital L) to denote the clade of all 

living beings stemming from the last universal common ancestor (Dutreuil, 2016; Dutreuil, 

2018; Mariscal and Doolittle, 2018). Second we highlight the paradox that Life is hard to spot in 

the Earth’s energy balance, yet in terms of information and order (negative entropy) it is 

everywhere and radically changing things. Third we examine the failure of Earth system 



science to study Gaia, highlighting how Gaia is distinct from various definitions of the Earth 

system (that were in part inspired by the Gaia concept).  

As well as seeking to explain why Life was hard to spot and Gaia hard to appreciate, we aim to 

show a path forwards. Rather than asserting Gaia as an entity, we reason from a different 

starting point: We review the varying influences of Life on the Earth. When combined with the 

constraints that non-living conditions impose on Life, this inevitably leads to feedback between 

Life and its environment, which includes Life’s habitability requirements. A range of resulting 

‘complex system’ dynamics are possible, including stabilisation, destabilisation and regulation 

of habitable conditions.  

This leads us to the fourth and scientifically most challenging aspect of Gaia; that a global scale 

entity was invoked exhibiting goal-directed behaviour – self-regulation of habitable conditions. 

This seemingly required an engineer or designer where none exists. Such teleological 

reasoning immediately repelled many scientists (although some began to research feedbacks 

involving life). For biologists, it was compounded by the absence of a workable evolutionary 

mechanism to account for it. But as we review, theoretical progress is showing that there is an 

effective filtering mechanism whereby stabilising feedback regimes tend to persist, increasing 

the chance of acquiring further stabilising mechanisms. This can explain how Life has become 

involved in the regulation of habitable conditions – i.e. how Gaia has come about.  

Such a filtering mechanism necessarily involves making errors – and current human activities, 

which are globally destabilising, appear to be a case in point. Thus, the occurrence of the 

Anthropocene does not disprove the existence of Gaia. However, “Gaia” and the 

“Anthropocene” represent different frameworks for understanding global changes, from 

contrasting perspectives. It is no coincidence that Paul Crutzen – who has known Lovelock 

since the 1970s – chose to critique Gaia only after introducing the Anthropocene (Crutzen, 



2002; Crutzen, 2004). As such, Gaia offers something distinct from the Anthropocene version 

of Earth system science – it provides a different understanding of the world and our place in it, 

and something that we could usefully learn from (Lenton and Latour, 2018). 

2. From life to Life – the failure of biology to see the largest living entity 

To understand Gaia, one needs to see that Lovelock was interested in a biological entity that 

was not studied before by biologists: the biota or “Life” (capital L). “Life” designates a new 

biological entity, localized in space and time comprising the total ensemble of all the living 

beings stemming from their last common ancestor, which biologists designate as a “clade”1 

(Dutreuil, 2016; Dutreuil, 2018; Mariscal and Doolittle, 2018; Doolittle, 2019). This is distinct 

from “life” (small l), the class designating the properties common to all living beings. Whilst 

biologists study organisms, populations, species, etc., until very recently they had never 

considered the long-lived entity Life as a phenomenon to be studied. Whilst the environment 

of living things includes other organisms as well as abiotic aspects, Life’s environment is purely 

abiotic because Life includes all living things.  

Gaia is more than just Life in that it includes the effects of Life on habitability. Indeed the Gaia 

hypothesis proposed that Life would not have survived without affecting its own habitability 

conditions. Biologists lack of interest in Life, in its large scale effects, and in what allows it to 

persist in the long run, is visible for instance in the parallel development of Gaia and “niche 

construction theory” (Laland et al., 2016). This theory, developed after Lewontin (1983), also 

emphasized the importance of the effects living beings have on their environment – and the 

potential adaptive effects which can ensue – but the empirical examples worked upon are 

mostly local (beaver dams, bird’s nests, etc) (Dutreuil and Pocheville, 2015). 



Alongside failing to spot Life and Gaia, evolutionary biologists misread and misunderstood the 

idea of “regulation” or “homeostasis” in Gaia as something akin to a common good. In their 

vocabulary, it was seen as something increasing the fitness of all individual living beings – 

which ought to be explained by altruism – i.e. behaviours which are costly (in fitness) for the 

individuals performing them but beneficial for the collective (Kerr et al., 2004). Yet the entire 

absence of the vocabulary and theoretical framework of evolutionary biologists (e.g. fitness, 

cost-benefit analysis, cheater, altruist) – in favour of cybernetic language in Lovelock’s (1979) 

prose – along with Margulis having strongly criticized the cost-benefit analysis underlying all 

the discussions about cooperation in biology – should have alerted biologists to the fact that 

Lovelock and Margulis were after something else than explaining a putative global altruism.  

These two discrepancies – regarding the scale of the living entities considered and the 

theoretical apparatus to study regulation – are neatly encapsulated in this quote from Doolittle 

(1981) (p. 61):  

“…the rewards for good (Gaian) behaviors are as remote as penalties for bad behaviour. 

It is difficult to accept that behaviors whose effects on atmospheric or oceanic 

composition or global temperature will not be felt for thousands of generations can be 

selected for, especially when the first beneficiaries of those effects may be organisms 

which are not themselves responsible for them.” 

Clearly Lovelock (Life) and Doolittle (life) were not concerned with the same entities – at least 

not at the time – Doolittle is now keenly interested in Life (Mariscal and Doolittle, 2018; 

Doolittle, 2019).  



3. The paradox of invisible Gaia  

Life on Earth was hard to spot for a simple reason: it is nearly invisible in the energy balance of 

the Earth system. Life is powered by only a tiny fraction of the total absorbed solar energy. Yet 

in terms of negative entropy and information Life is everywhere and radically changing things. 

With that tiny fraction of available energy, Life has profoundly altered atmospheric 

composition and hence the Earth’s longwave energy fluxes, and has significantly changed 

planetary albedo and hence the Earth’s shortwave energy fluxes, thus exerting considerable 

leverage on the overall energy balance. This agency must come from the informational quality 

of Life. Thus, the energetic and entropic views of Life are very different.  

Photosynthetic organisms manage to convert on average only ~0.5 W m-2 or ~0.3% of the ~180 

W m-2 solar radiation incident on the Earth’s surface into the chemical energy of sugars in 

gross primary production. This total free energy input of ~264 TW (Dyke et al., 2011) is the 

power supply for Life. Around half of it is respired by the photosynthesising organisms, the 

other half providing net primary production (food supply) to the rest of Life. This power supply 

is tiny compared to the radiative energy balance of the planet (which absorbs ~120,000 TW, 

~80,000 TW at the surface), and modest compared to the ~900 TW power supply available 

from atmospheric circulation alone (Dyke et al., 2011). However, it is considerably larger than 

the surface power supply from Earth’s internal heat source (Rosing et al., 2006; Dyke et al., 

2011).  

Life has a somewhat larger hand in altering the Earth’s surface albedo and hence the total 

~160 W m-2 of solar radiation absorbed at the surface. Only a small fraction of the photons 

absorbed by photosynthetic organisms are successfully converted to chemical energy, hence 

the total absorption of sunlight used to fix carbon in photosynthesis is larger at ~1.8 W m-2  

(Dyke et al., 2011). Correspondingly, vegetation generally lowers land surface albedo, 



particularly in the boreal high latitudes (Betts, 2000), although grasslands can increase albedo 

relative to bare soil. Phytoplankton also generally lower ocean surface albedo resulting in an 

extra ~0.25 W m-2 absorption (Frouin and Iacobellis, 2002), although coccolithophore blooms 

with their calcareous liths increase surface albedo. These biological effects on surface albedo 

can clearly be seen in the visible spectrum, including from space (Sagan et al., 1993), and some 

were very familiar long before the Gaia hypothesis, but their modest magnitude barely hinted 

at Life’s existence. 

Life on land increases evapotranspiration, cooling the surface and affecting cloud cover. This 

has long been appreciated, but largely viewed as a local or regional effect. The majority of the 

~80 W m-2 lost from the Earth’s surface in evaporating water comes from the ocean.  

We now know that Life has increased both atmospheric and cloud albedo through the 

production of aerosols and cloud condensation nuclei (CCN) that scatter solar radiation, 

affecting the ~80 W m-2 of incident solar radiation absorbed by the atmosphere and ~80 W m-2 

reflected by clouds. However, the discovery of these effects largely postdates (and was 

inspired by) the Gaia hypothesis. When simply viewing the physics of atmosphere and cloud 

albedo (and even the aerosol chemistry leading to it), underlying biological drivers (where 

present) are well hidden.  

The largest effects of Life on the Earth’s energy balance come via altering atmospheric 

composition and hence longwave fluxes. The atmosphere absorbs ~360 W m-2 of the ~400 W 

m-2 radiated by Earth’s surface and re-radiates ~330 W m-2 back to the surface – a 

phenomenon commonly termed the ‘greenhouse effect’. Life has had a major impact on the 

‘greenhouse effect’ by altering atmospheric composition – but this is well hidden when just 

viewing the energy balance. Its discovery marked the start of the Gaia hypothesis. 



The fact that Life is hard to spot in the energy balance of the Earth system – both in terms of 

the small direct power supply to Life and the largely indirect and thus invisible nature of 

biological influences on radiative fluxes – may be a key reason why climatologists have often 

ignored the Gaia hypothesis. There are notable exceptions (McGuffie and Henderson-Sellers, 

2014). However many prefer to see the climate system as a gigantic ‘heat engine’ that just 

redistributes and degrades the free energy (low entropy, shortwave radiation) coming from 

the Sun, using that to do work such as the movement of the atmosphere, oceans and 

hydrological cycle.   

4. From Gaia to the Earth systems – losing sight of Life 

Gaia started off with the recognition of the new biological object – Life – and its effects on 

atmospheric composition and hence its own conditions of habitability. It studied Life’s 

expansion and connections with its surroundings, crystallising new scientific problems – such 

as understanding its maintenance through time. The focus of Gaia on the long-lived entity Life 

also marks out the difference between Gaia and various conceptions and definitions of “the” 

Earth system – particularly what we will term the “NASA” and “IGBP” Earth systems. From a 

historical point of view, Gaia influenced these conceptions of the Earth system, but despite a 

shared recognition of the interactions between living things and their environment, what 

constitutes the fascinating core of the Gaia idea – the centrality of Life – was never adopted by 

them. Here we contrast the different conceptions of Gaia and the Earth system, touching on 

their historical context and focusing on the normative framework from which their definitions 

followed. Table 1 summarises the different way in which their boundaries are delineated.  



Gaia 

The recognition and definition of Gaia stemmed from two different sources. The first one, 

emphasised by Lovelock, was the detection of life on other planets. Thinking about this issue, 

Lovelock (1965) came to recognize, and then strongly emphasize (Lovelock, 1972), that Life’s 

imprint on the Earth is visible in the constitution of the atmosphere, maintained in chemical 

disequilibrium by living beings’ metabolism producing oxygen and methane (and other 

reduced gases). The second source of reflection for Lovelock stemmed from his daily activities 

as a consultant both for major scientific institution of the Earth sciences (such as NOAA or 

NCAR) and for chemical and petroleum industries. Armed with his Electron Capture Detector, 

Lovelock crossed the oceans and atmosphere and found chemical entities produced by living 

beings, e.g. dimethyl sulphide (DMS) (Lovelock et al., 1972), and by human activities, e.g. 

chlorofluorocarbons (CFCs) (Lovelock et al., 1973).  

Thinking about Life viewed from space on the one hand and tracing the delicate chemical 

connections between Life (including humans) and its environment on the other hand, led to 

the recognition of a new entity and to the tracing of its boundaries, redefining our conceptions 

of Life and the environment. If living beings produce aspects of their environment, then their 

material boundaries no longer stop at their membranes and epidermis, they expand as far as 

their influence on the environment can reach. Thus what was beforehand thought of as 

“abiotic” such as the atmosphere, can now be seen as a living part “like the fur of a mink or the 

shell of a snail” (Lovelock, 1972).  

To trace Gaia’s boundaries thus requires: (i) identifying all living beings (bacteria, horses, etc.) 

on Earth; (ii) tracing carefully the chemical and material interactions and connections between 

these living beings and what is outside their membranes; (iii) establishing which of those 

connections are relevant to habitability (or to Life’s persistence); and (iv) recognising Gaia as 



the entity isolated by the resulting network of connections. Recognizing and measuring living 

beings’ massive influence on their environment on the one hand, and thinking about the 

puzzle of Earth’s long-term stability on the other hand, led to the hypothesis that it is precisely 

the former which accounts for the latter.  

NASA 

NASA’s definition of the Earth system was guided by other imperatives during the 1980s. NASA 

needed a bold and ambitious research programme to prevent the massive cuts in funding 

promised by the Reagan administration arguing that we’ve already visited the solar system 

(Goldstein, 2009). Hence the space agency turned toward the Earth by developing a billion 

dollars programme of new satellites (Conway, 2008). The global changes (climate change and 

the ozone hole) and the recent emergence of plate tectonics gave a new vision of the Earth, 

more dynamic and interconnected than recognised beforehand. The two massive outcomes of 

Cold War geophysics – plate tectonics and climatology – along with its programmes and 

institutions (Doel, 2003; Edwards, 2010; Hamblin, 2013; Turchetti and Roberts, 2014), thus 

paved the way for the realization that the Earth system is a real object comprising “physical, 

chemical, biological and human components” and seen as “a related set of interacting 

processes operating on a wide range of spatial and temporal scales, rather than as a collection 

of individual components” (NASA, 1986). If studied in its entirety, it thus ought to be studied in 

an interdisciplinary manner, linking biogeochemistry, climatology, oceanography, solid Earth 

geophysics, etc. NASA’s Earth system science (ESS) programme needed the support of both the 

fluid Earth community and of solid Earth geophysics: thus it included all the timescales of 

Earth’s history (NASA, 1986). In order to organize the scientific work in an interdisciplinary 

fashion, NASA proposed to structure the programme according to the timescales of the 



processes studied (rather than according to their material nature – biological, physical, 

chemical – as traditionally done by disciplines).  

To delineate the boundaries of NASA’s Earth system thus requires identifying all processes 

occurring on Earth and the way they interact. Notice here the main difference with Gaia; one 

does not start with Life. Consequently, there can be a Mars system just as there can be an 

Earth system (and a study of Mars’ climatology, past tectonics, etc.) even if there was no life 

on Mars. Whereas in the absence of life, a “Martian Gaia” would be meaningless. 

Correspondingly, NASA’s ESS focuses on the presence of liquid water as the sine qua non of 

habitability – which is really an abiotic definition of the potential for life. This leads to the 

definition of a ‘habitable zone’ (around a given star) in terms of the range of surface 

temperatures that a planet can retain liquid water. Thus NASA chose an abiotic definition of 

habitability and lost sight of Life in the Earth system. 

IGBP 

IGBP was the institution that did the most to put forward the idea of “global change” and to 

expand it beyond a pure physics of climate to include biogeochemical cycles as well as human 

aspects (Kwa, 2005a; Kwa, 2005b; Kwa, 2006; Kwa and Rector 2010; Uhrqvist, 2014; Dutreuil, 

2016). At the inception of the IGBP, there was internal tension between the proponents of a 

research programme which would aim at understanding and predicting the future “guided by 

socioeconomic motivation”, and those advocating for IGBP’s research programme to be an 

“intellectual challenge, guided by the scientific need to enhance the understanding of the total 

earth system and its biota and the response of this system to external inputs and 

anthropogenic influences” (Roederer, 1986). This tension disappeared at the end of the 

1990’s, during the great synthesis of the IGBP (Steffen et al., 2004), when the “Earth system” 

expression was put to the forefront. Now it was clear that the imperative was to study the 



global changes affecting human existence. Schellnhuber proposed a formalization of the idea 

of a sustainable development maintaining Earth’s habitability (Schellnhuber, 1999; 

Schellnhuber and Wenzel, 1998). Crutzen and Stoermer (2000) then introduced the 

Anthropocene concept, before the elaboration of other key concepts such as “tipping 

elements” (Lenton et al., 2008) and “planetary boundaries” (Rockström et al., 2009).  

Whereas habitability in Gaia meant conditions sufficient for Life to persist, habitability within 

the IGBP context meant habitability for human beings. To identify IGBP’s Earth system and its 

boundaries thus requires: (i) identifying human conditions of existence; (ii) connecting these 

conditions of existence to all known material and processes affecting it. IGBP’s research 

programme was guided by the imperative to understand how global changes will affect human 

conditions of existence in the future. For instance, the study of the past of the Earth system 

(championed by the PAGES project) is largely restricted to recent Earth history, because it can 

give us quantitative data useful to informing future projections. Thus IGBP lost sight of Life by 

focusing more narrowly on what is required for human life. 

Other contexts 

The “Earth system” label has spread in other contexts, but none of these have put Life at its 

centre. The Intergovernmental Panel on Climate Change (IPCC) eventually included the “Earth 

system” label after IGBP’s important lobby within the World Climate Research Programme 

(WCRP). Here, “Earth system model” is used to designate models including a dynamic carbon 

cycle (Dahan, 2010; Heymann and Dahan Dalmedico, 2019). This is far from representing the 

complexity and richness of what the Earth system is for IGBP, NASA or Gaia. In other fields, 

also connected to Gaia and Lovelock, “Earth system” gets sporadic re-use either simply to 

change the label of a discipline or to highlight a slight inflection of what is going on in a 

discipline. For example, “Earth system” is sometimes used to describe long-term geosphere-



biosphere interactions (Lenton et al., 2004). In geochemistry “Earth system” was used to stress 

the importance of feedback vis-à-vis a simpler model of circulation of matter (fluxes and 

reservoirs) first elaborated by Bob Garrels (Lovelock, 1986; Berner, 1999; Kump, 1988; Lenton 

and Watson, 2011). Solid Earth physics also sometimes uses the “Earth system” label to stress 

the important dynamic character of the Earth (Condie, 2005; Rollinson, 2007). 

Similarities and distinctions 

One important novelty, common to all the Earth systems here, is the interdisciplinary study of 

a global object (crossing biological, chemical and physical entities), from a particular 

perspective. A “perspective” (Wimsatt, 1994) is what constrains one decomposition of an 

object into parts or processes and the scientific problems to be solved within this perspective. 

This perspective differs for each “system” (Table 1): Gaia starts with Life and follows its 

material connections with the environment and the way in which they affect Earth’s 

habitability during the whole of Earth’s history; NASA tries to identify all the processes linked 

together at a given timescale; IGBP strives to disentangle the processes affecting humans 

thriving in the future. These differences have consequences for how a particular aspect of 

“the” Earth system is treated: e.g. the IPCC conception usually treats humans as if they were 

outside the Earth system (in that scenarios of human activity act as an external forcing factor 

to Earth system models, the output of which then drives impacts models of the consequences), 

whereas IGBP recognised that humans are clearly inside the Earth system.  

The different Earth systems carry different notions of habitability. In particular, NASA sees the 

planetary frame (the Earth system) as ‘habitable’, whereas Gaia sees Life profoundly affecting 

its own conditions for survival and flourishing, and IGBP focuses on what is habitable for 

humans and how humans are affecting that.   



Cybernetic concepts – which would now be called complex systems concepts – whilst widely 

used by Lovelock in his formulation of Gaia, are largely absent from the formulation of ESS by 

NASA (1986), which only stressed the interactions between components of the Earth system, 

although it actually showed many feedback loops in the famous ‘Bretherton diagram’. 

Subsequent incarnations of ESS have placed more emphasis on feedback, and the IGBP’s 

Amsterdam Declaration 2001 has gone as far as to suggest that “the Earth System behaves as a 

single self-regulating system”. However, it stopped short of saying what it regulates towards – 

i.e. it stopped short of assigning the system a goal – which would be habitable conditions in 

the cybernetic Gaia formulation – i.e. homeostasis. This is arguably a consequence of not 

having centred the definition of the system on Life. This imputing of a goal function is one of 

the central objections to Gaia, which we return to in section 7. 

5. The varying influences of Life on its material environment 

Having highlighted why Life was hard to spot or side-lined from the perspectives of biology, 

climatology and Earth system science, we now briefly review the influence of Life on the Earth. 

This retains the procedural spirit apparent in the heydays of Gaia’s elaboration – captured by 

Latour (2017): We strive to render Gaia visible by tracking down the influence of Life on its 

environment.  

Atmospheric composition 

Lovelock originally noted the profound impact of Life on the balance of gases in Earth’s 

atmosphere, creating an extraordinary state of thermodynamic disequilibrium (Lovelock, 1965; 

Lovelock and Giffin, 1969; Hitchcock and Lovelock, 1967).  

Oxygen at ~21% of today’s atmosphere is almost entirely a biological product (of oxygenic 

photosynthesis by cyanobacteria, algae and plants), which would have a surface concentration 



of only ~10-12 atm in the absence of Life (Haqq-Misra et al., 2011). The concentration of 

methane in this oxygen-rich atmosphere is a factor of ~1030 greater than expected at 

equilibrium, as are the concentrations of hydrogen and ammonia (Lovelock, 1975b). This 

extraordinary order (negative entropy) in atmospheric composition can only be explained by 

an input of free energy via photosynthetic Life. An estimated ~0.7 TW is required just to 

maintain the O2-CH4 coexistence (Simoncini et al., 2013).  

Carbon dioxide (CO2) is extraordinarily scarce in the Earth’s atmosphere when compared to 

Mars and Venus (which have atmospheres dominated by CO2) (Lovelock, 1972). Current 

human activities notwithstanding, Life has turned CO2 from a dominant component of the 

atmosphere to a trace gas, by locking up organic carbon in sedimentary rocks and by 

accelerating the weathering of continental silicate rocks and the resultant deposition of 

carbonate sediments. In the absence of Life, atmospheric CO2 would be up to ~10 to 100-fold 

higher producing a radiative forcing of ~10-20 W m-2 (Schwartzman and Volk, 1989).  

Recent work suggests that Life has also lowered atmospheric pressure by transferring nitrogen 

(the largest constituent of the atmosphere) to the crust, by fixing atmospheric N2 and 

sequestering some of the resulting organic nitrogen in sedimentary rocks (Johnson and 

Goldblatt, 2018). This weakens the greenhouse effect by reducing the ‘pressure broadening’ of 

longwave absorption lines of other gases, an effect which outweighs the reduced Rayleigh 

scattering of solar radiation by N2 (Goldblatt et al., 2009).  

Other biogenic gases generate aerosols and sometimes cloud condensation nuclei (CCN), 

principally affecting Earth’s shortwave radiation balance. Biogenic dimethyl sulphide (DMS) 

(Lovelock et al., 1972) produced by a range of marine phytoplankton, oxidises to form biogenic 

cloud condensation nuclei (CCN), an increased density of which increases the albedo of marine 

stratocumulus clouds (Charlson et al., 1987), generating a radiative forcing of around -1 W m-2 



(Boucher et al., 2003). Nearshore macro-algae also produce a range of aerosol and CCN 

precursors, including methyl iodide (Lovelock, 1975a). Vegetation emits large amounts of 

isoprene, terpenes and other biogenic volatile organic carbon compounds (BVOCs) that can 

also be a source of aerosols and CCN (Kesselmeier and Staudt, 1999).  

Biogeochemical cycling 

Living organisms are made out of a range of elements in stoichiometric proportions that 

contrast sometimes significantly from their natural abundance at Earth’s surface. Importantly, 

the inputs of those essential elements in bio-available form to the Earth’s surface are generally 

meagre compared to the total requirements of Life. Thus for Life to flourish it must increase 

the inputs and/or (re)cycle the essential elements it needs (Volk, 1998). Furthermore, input 

and/or recycling needs to be greater for elements that are scarcer relative to their biological 

requirements than those that are less scarce relative to biological requirements. Table 2 

summarises some of the effects of Life on the cycling of materials. 

Carbon is the backbone of organic chemistry and photosynthetic and respiratory fluxes of 

carbon exceed inputs to the surface Earth from the mantle and the tectonic recycling of 

sedimentary rocks by a global ‘cycling ratio’ of around 400. Carbon input to the surface from 

tectonic recycling of sediments is also increased somewhat by Life, because the sedimentary 

organic carbon reservoir is entirely due to Life and its oxidation depends on a biogenic oxygen-

rich atmosphere (Lenton et al., 2018b). Furthermore, plankton have shifted the locus of 

carbonate deposition somewhat from shelf seas to the deep ocean, increasing the tectonic 

recycling of carbonate carbon (Volk, 1989). Even the supposedly ‘mantle’ input of carbon is 

partly from what was once subducted organic carbon (Foley and Fischer, 2017).  

Nitrogen has an essentially biological cycle in which organisms are responsible for all the key 

transformations. The input of bio-available nitrogen (NO3
- and NH4

+), has been increased by a 



factor of ~40 by biotic nitrogen fixation (prior to human activities) relative to the small abiotic 

source from lightning strikes (Fowler et al., 2013). Nitrogen uptake in net primary production is 

~100 fold larger still, indicating a global nitrogen cycling ratio of ~100. 

Phosphorus has no significant gaseous form and all ultimately derives from continental 

chemical weathering. Phosphorus weathering is amplified by Life, by an uncertain factor, 

through innovations including organic acid production and selective dissolution of P-rich 

apatite inclusions in rocks. Also, around 20% of the P weathering flux derives from 

sedimentary rocks whose deposition depended on Life (Lenton et al., 2018b). Phosphorus 

uptake in net primary production exceeds weathering by a global cycling ratio of ~1250, higher 

than nitrogen or carbon, consistent with phosphorus being the ‘ultimate limiting nutrient’.  

Sulphur is widely used by Life in varying (and remarkably poorly known) proportions (Matrai 

and Keller, 1994; Linzon et al., 1979). Life amplifies sulphur input by a factor of ~30 in that 

inputs of sulphur are dominated by sediment recycling (Lenton et al., 2018b) rather than 

mantle input (Kagoshima et al., 2015) and the two major forms of sedimentary sulphur are 

both attributable to Life: pyrite is a biogenic product and gypsum required biogenic oxygen to 

produce the sulphate it contains. Sulphur uptake in net primary production further exceeds 

sulphur input by a global cycling ratio of ~10-40.  

Silicon is required by plants and diatoms (although not all primary producers) with a 

weathering input that is biologically enhanced by an uncertain amount (Struyf et al., 2009). 

Plants take up ~10 times the weathering input and immobilise Si in organic matter, reducing 

the river input to the ocean, where diatoms take up ~40 times the river input, indicating 

marine recycling exceeds the global cycling ratio of ~10. 

A wide range of micro-nutrients are necessary for primary production, or for other key 

metabolisms, such as nitrogen fixation. The abundance of trace metals, relative to Life’s 



requirements, varies and has changed with the changing oxidation state of the Earth’s surface 

environments (Whitfield, 1981; Williams and Fraústo da Silva, 2006; Saito et al., 2003). Life 

correspondingly exerts varying influence on the cycling of trace metals today, particularly 

through the production of organic ligands of varying strength (Benner, 2011; Sunda, 2012).  

Despite iodine being the heaviest element commonly used by Life, volatile organic iodine 

compounds, notably methyl iodide are made in abundance by marine organisms, play an 

important role in atmospheric chemistry and aerosol formation, and cycle some iodine back 

from the ocean to the land (Lovelock et al., 1973). There is also considerably terrestrial iodine 

cycling by Life (Amachi, 2008). 

Some elements are not biologically required hence there is no incentive for Life to alter their 

cycling. However, cycling may happen as an accidental consequence of chemical incorporation 

into biological products, or the chemical consequences of a biological product. A famous 

example of the latter is the natural nuclear fission reactors from Oklo in Gabon dating to ~1.7 

Ga, which required the prior rise of atmospheric oxygen in the Great Oxidation to concentrate 

fissionable 235U (Gauthier-Lafaye et al., 1996). 

Rock cycling, continent formation and water retention 

A large fraction of the diversity of Earth’s minerals are either biologically precipitated or 

require oxygen (a biological product) in their creation and hence would not exist without Life 

(Hazen et al., 2008). More fundamentally, it has been proposed that Life has altered the 

planet’s rock cycle and played a role in continent formation. Life clearly has the energetic 

potential to do so – its current power supply (264 TW) exceeds the power driving mantle 

convection (~12 TW) by a factor >20, and that driving crust cycling (26 TW) by a factor of ~10 

(Dyke et al., 2011). It also exceeds the work done by the atmospheric heat engine in physical 

weathering (<50 TW) and sediment transport (<13 TW) (Dyke et al., 2011).  



The production of continental crust as granites requires hydration of the oceanic crust 

(Campbell and Taylor, 1983). Recently it has been hypothesised that early Life by permeating 

the seafloor crust, hydrated it and thus started the formation of micro-continents ~4.0-3.5 Ga 

(Grosch and Hazen, 2015). Conceivably granite formation was energetically limited prior to the 

evolution of oxygenic photosynthesis, which greatly increased the power supply to Life (Rosing 

et al., 2006). The timing of onset of modern-style plate tectonics ~3.0 Ga is at least consistent 

with current evidence for the timing of origin of oxygenic photosynthesis. If a link to continent 

formation is corroborated this would represent an extraordinary consequence of Life. 

Whether Earth would have lost its water in the absence of Life, making the planet 

uninhabitable, is an open question. In the absence of Life, without biotic enhancement of 

weathering and possibly without continents, atmospheric CO2 and temperature would be 

much higher, risking passing the runaway threshold to a ‘moist greenhouse’ atmosphere that 

supports higher rates of hydrogen loss to space (Popp et al., 2016). Furthermore, by producing 

an oxygen-rich atmosphere, an ozone layer, and the strong thermal stratification of the 

stratosphere, Life has created an effective ‘cold trap’ at the tropopause that prevents water 

reaching the upper atmosphere where it can be split apart and hydrogen lost to space. That 

said, before causing the rise of atmospheric oxygen, early methanogens likely enhanced 

hydrogen loss to space by increasing atmospheric methane concentration (Catling et al., 2001). 

Distinguishing Earth system and Gaia perspectives 

Biologists have had little interest in Life’s influence on the global environment – which is 

understandable given that climate or ocean composition are not their major object of inquiry. 

Earth system scientists have increasingly been studying the influence of living beings on the 

environment – partly thanks to Gaia. But these “Earth system” studies, important as their 

discoveries have been, have tended to consider biological influences on earthly processes on a 



par with other abiotic processes. Gaia scientists in contrast have stubbornly tracked down 

Life’s influence to make it more visible. To render Gaia visible, an important counterfactual – 

or what-if – question has been asked: how would Earth look had Life had not influenced its 

environment? (Lovelock, 1965; Dietrich and Perron, 2006; Dutreuil, 2014). 

6. From effects on to regulation of the environment  

Lovelock’s (1965) realisation that Life massively alters its environment soon led him to suggest 

that a new entity is formed by the interactions between Life and its environment – Gaia – and 

that this “influence” may not be “for nothing”: it can account for the very survival and thriving 

of Life itself.  

Blurring the boundaries between Life and its environment 

Organisms can only survive under particular conditions. As well as liquid water, a source of 

free energy, and all the materials they need to build their bodies, organisms also require 

particular physical conditions of temperature, pH, pressure, redox state, etc. More complex 

organisms typically have more stringent habitability requirements than simpler ones.  

Studying the mechanisms by which organisms deal with their material environments has led 

ecologists and physiologists – and occasionally evolutionary biologists – to realise how fuzzy 

the boundaries are between organisms and their environment. Hence the notion of 

ecosystem, or more recently, that of “extended phenotype”, “niche construction”, or 

“extended organism”. For example, if one is interested in how a single termite deals with its 

vital requirement in terms of oxygen, CO2 and temperature, one has to follow all the material 

links involved in these processes. In so doing, one will cross the termite’s cuticles so many 

times that the relevant biological entity to be studied – and so, in a sense, the material 

boundary of this single termite – will be the whole termitary (Turner, 2002). 



Early on, Lovelock and Margulis scaled up these two arguments. If organisms have conditions 

of existence, then aggregating them all together necessary leads to the conclusion that Life 

also has habitability bounds. Below a given minima and above a given maxima – which may 

change with evolution – Life would cease to exist. Also, given Life massively influences its 

environment, then, just as the argument goes for the termite (or for any ecosystem), the 

boundaries between Life and its environment are blurred and their interactions constitute a 

complicated entity: Gaia. 

Recognizing the existence of this entity, Lovelock and Margulis scaled up familiar biological 

questions, and in so doing, introduced new biological puzzles. In particular: Has Life 

maintained Earth’s habitability?  

Habitability 

The habitability discussion has focused on climate, after Lovelock and Margulis (1974) 

proposed that the long term stability of climate in spite of the Sun’s rising luminosity (the ‘faint 

young Sun paradox’), may be explained by Life’s influence on the climate. More concrete 

mechanisms were suggested after the proposal of an abiotic climate regulator (Walker et al., 

1981) in the form of a negative feedback involving silicate weathering and the associated 

uptake of CO2 that can buffer variations in planetary surface temperature and thus maintain 

liquid water over a wider range of solar luminosity than in the absence of the feedback. This 

abiotic feedback can broaden the habitable zone bounded by 0°C at which runaway freezing 

occurs, and ~70°C (rather than the boiling point of 100°C) at which a ‘moist greenhouse’ occurs 

(the oceans evaporate to create a pressure-cooker atmosphere). 

The crucial difference with Life becoming intertwined in feedback loops is that it brings, by 

definition, habitability constraints (as well as biotic effects) into those feedbacks loops: Life 

affects environmental variables, just like other abiotic processes; but Life is sensitive to what it 



does within habitable conditions, whereas abiotic processes are not. This can make negative 

feedback stronger (a more effective regulator) than in the abiotic case. For example, Life 

strongly amplifies the silicate weathering feedback on Earth today (Lovelock and Watson, 

1982; Lovelock and Whitfield, 1982), and by having organisms such as plants with narrower 

habitability bounds than 0-70°C entwined in the feedback loop, gives rise to narrower 

stabilising ranges. Furthermore, the biogenic weathering effect with plants may now be so 

strong (Schwartzman and Volk, 1989) that it could be maintaining Earth in a habitable state for 

plants, when without them it would by now have become (or could soon become) 

uninhabitably hot for them (Lenton and von Bloh, 2001). This is supported by recent modelling 

capturing the interacting effects of water vapour, CO2, and N2, which suggests the ‘habitable 

zone’ would be disappearing in the absence of Life, which has broadened it considerably 

(Goldblatt, 2016). 

Regulation 

Alongside the habitability issue, Gaia scientists looked for examples where the activity of 

certain living beings (certain parts of Life) regulate an environmental variable and thus produce 

and maintain their own (and sometimes others’) condition of existence at a regional or global 

scale2.   

Climate, at various timescales, has again been an important focus of study. For example, the 

famous CLAW hypothesis highlighted the possibility for climate regulation via biogenic DMS 

production (Charlson et al., 1987). This drew widespread attention from climatologists, 

biogeochemists and Earth system scientists. Another important example is the large-scale 

effects of land plants on the hydrological cycle: for instance, the increase of precipitation 

enabled by the evapotranspiration of the Amazon rainforest is necessary for the rainforest to 

persist (Betts, 1999). More generally, evapotranspiration by plants increases the latent heat 



flux over land up to 3-fold relative to a desert world (Kleidon et al., 2000). The resulting cooling 

effect is generally strongest in the tropics, where it outweighs the effect of vegetation lowering 

surface albedo (Betts, 1999). On longer timescales, it has also been argued that planktonic 

calcifying organisms, by buffering carbonate-ion concentration in the oceans and thus 

stabilizing the carbon cycle, may have prevented the return of catastrophic ‘snowball Earth’ 

events during the Phanerozoic (Ridgwell et al., 2003). 

The regulation of chemical components has also been scrutinized, such as the long-term 

regulation of atmospheric oxygen, constrained within bounds not too high to allow sustained 

vegetation and not too low to enable multicellular animal life using respiration. Atmospheric 

O2 regulation mechanisms were originally proposed to involve biogenic methane production 

and fires (Watson et al., 1978). Subsequent suggestions hinge on excess O2 causing fires that 

suppress land vegetation and make plant photosynthesis less efficient. In one feedback, fires 

transfer phosphorus from the land to the ocean where less oxygen is produced per unit of 

phosphorus (Kump, 1988). In another, suppressing vegetation suppresses phosphorus 

weathering thus limiting oxygen production (Lenton and Watson, 2000b). Both contribute to 

the long-term stabilisation of atmospheric oxygen (Lenton et al., 2018b). 

Proposals for what regulates bio-available nitrogen in the ocean actually predate the Gaia 

hypothesis (Redfield, 1934; Redfield, 1958) and are understood to involve a negative feedback 

on the abundance of nitrogen fixers (that supply available nitrogen): Nitrogen fixation is highly 

energy-intensive and only advantageous to perform where nitrogen is scarce, but it increases 

nitrogen levels – limiting its own activity (Lenton and Watson, 2000a). This regulator results in 

available nitrogen levels in the ocean tracking fluctuations in phosphorus levels – which may 

be driven by varying input from the continents. Phosphorus levels in the ocean in turn are 

regulated by the dependence of its biogenic burial (removal) flux on its concentration. For 



example, an increase in phosphorus levels (and corresponding increase in nitrogen fixation and 

nitrogen levels) is counteracted by greater productivity driving increased burial of phosphorus 

(Lenton and Watson, 2000a). 

Gaia, Earth system and biology  

The empirical description of mechanisms by which Life can maintain habitable conditions or 

certain living beings can regulate global/regional environmental variables have been the 

hallmark of Gaia research. This research has fallen through the cracks between Earth system 

science and biology: Earth system scientists had little interest in (non-human) living entities 

maintaining their own conditions of existence; biologists had little interest in empirical 

material on climate and the global environment and thought the theoretical issues had long 

been dismissed.  

7. From the assertion of goal functions to a workable theory  

Now we turn to the final – and most often quoted – reason why many scientists rejected Gaia: 

Lovelock’s invocation of goal functions and the apparent purposiveness that comes with that. 

This was initially compounded by a lack of theoretical mechanisms that could provide an 

explanation of how “global adaptation” – especially a predominance of regulation – could 

come about. 

The teleology provocation 

At the very moment Lovelock discovered Gaia, he attributed it functions, goals and norms. 

Lovelock was looking for the “role” of the various influences of Life on the environment: What 

is the function of methanogens within Gaia? Of the Amazonian rainforest?  



Lovelock introduced the ideas of feedback, self-regulation, homeostasis and goal-seeking 

behaviour from cybernetics. Functional talk has not generally hurt engineers or scientists 

trained in cybernetics: it is very common in systems analysis – where the function of an entity 

within a larger system studied by the scientist is reduced to the causal effects this entity has on 

other parts of the system (Cummins, 1975). This type of functional talk does not imply norms: 

it does not specify what the entity should do in this particular system. But Lovelock, even 

though appealing to this cybernetic tradition, meant something more when he talked about 

the “function” of living parts of Gaia. He was also using a biological meaning of function. 

Lovelock attributed function to Gaian parts just as we do spontaneously with any other living 

forms when we speak about (for example) the function of organs within a body. In this 

context, attributing a function to an entity is normative: when we say that it is the function of 

the heart to pump blood, we mean that the heart is supposed to pump blood. This triggered 

Dawkins’ (1983) principal objection to Gaia: functional talk is only scientifically sound when it 

applies to entities subject to natural selection – and in his view, being a population of one with 

little sign of reproduction, Gaia was not subject to natural selection.  

But of course the issue of teleology, even for organisms (i.e. life) – is a very difficult one. It is 

embedded within discussions from 18th century natural theology, where the functions of 

organs within organisms or of species at the surface of the Earth were designed by God; or 

where the apparent design of a biological entity was used to prove the existence of God. It is 

also linked with the recognition of the specificity of life (small l) as a particular class of entity 

radically different from inorganic entities. Reflections about the specificity and status of 

organisms led to the constitution of biology as a discipline and were accompanied by broader 

reflections about the order of nature – most famously deployed by Kant (Huneman, 2008). 

Even though Darwin is often said to have solved the biological issue of organisms’ design, 



philosophers were, at the time Dawkins was writing, still struggling hard to make sense of 

biological teleology, even for supposedly “easy” cases where natural selection occurs (Wright, 

1973; Millikan, 1989; Neander, 1991). Hence the dismissal of this issue when an entirely new 

biological entity had been discovered was at best premature.  

Biologists plead for mechanism, Earth system scientists miss the need for theory 

The teleological critique was linked to a theoretical one: biologists argued that a mechanism 

producing global regulation was lacking. Such a mechanism would need to do the same 

explanatory work as natural selection does in explaining the adaptation of organisms and 

legitimising functional talk in biology. But they could not see what such a mechanism be, if 

natural selection cannot operate on Gaia because Gaia is not part of a population and does not 

reproduce (Dawkins, 1983). Instead one or two, such as W. D. Hamilton, realised there might 

be something somewhat akin to natural selection (Lenton, 2005) – i.e. a filtering of variation in 

which regulatory variants came to persist and therefore predominate (as opposed to members 

of a population that leave the most descendants coming to predominate). 

Over in Earth system science there was never this recognition of the need for an ‘evolutionary’ 

mechanism to explain Gaia. Instead critics of the Gaia hypothesis within Earth system science 

put forward examples of “destabilisation” by Life (Kirchner, 1989; Tyrrell, 2013), for example: 

oxygenic photosynthesis introduced a poison for most of the biosphere at the time; the spread 

of oxygenic photosynthesis has initiated glaciations, possibly including ‘Snowball Earth’ events 

(Kopp et al., 2005); disruption of the biological sulphur cycle may have been responsible for 

the largest Phanerozoic extinction (Ward, 2009) – and so on. But one need not wait for 

Kirchner (1989) or Tyrrell (2013) to find examples refuting the idea that living beings always 

regulate their environment – the originators of Gaia had already provided them (Margulis and 

Lovelock, 1974).  



As Lovelock was well aware from the start, presenting cases of destabilisation as a refutation 

of Gaia misses a basic understanding both of biology and of cybernetics. In biology, just 

because we can suffer cancer does not mean we are not self-regulating organisms (Doolittle, 

2019). In cybernetics, any ‘hat function’ (e.g. inverted parabola) response of Life to an 

environmental variable coupled with an effect of Life on that variable can give rise to both 

positive feedback and negative feedback regimes. Lovelock enshrined this in the formulation 

of the Daisyworld model (Watson and Lovelock, 1983) and has subsequently emphasised, for 

example, that the DMS feedback can be positive or negative depending on the circumstances 

(Lovelock and Kump, 1994). Lovelock’s second book ‘The Ages of Gaia’ (Lovelock, 1988) hinges 

on this recognition – intervals where destabilisation predominate mark the boundaries 

between the ‘Ages’ in which regulation predominates  

“If Gaia stabilizes and destabilises, is there any possible behaviour that is not Gaian” asked 

Kirchner (1989), in response. Others have suggested that Gaia’s validity could be resolved by 

simply tallying up stabilising and destabilising feedback mechanisms (Ward, 2009). This 

recurring argument highlights the fact that the majority of Earth system scientists discussed 

Gaia at an empirical level and not a theoretical one. Of course there was theoretical work on 

other aspects of the Earth system – including how humans could maintain their own conditions 

of planetary habitability (Schellnhuber, 1999; Schellnhuber and Wenzel, 1998) – but little 

theoretical engagement with Gaia. Meanwhile empirical examples of global regulation were 

never going to be sufficient to answer biologists – because their true interest lay in abstract 

properties of living entities. The only way out of this impasse was to theorise about Gaia.  

Models and theory in response 

After biologists had abandoned the stage, and Earth system scientists had largely declined to 

enter it, a small band took up the challenge of theorising about Gaia.  



The Daisyworld model (or ‘parable’) was formulated to demonstrate an abstract mechanism by 

which living entities, could, in principle regulate the global environment without any teleology 

or inconsistency with natural selection (Watson and Lovelock 1983). This model rapidly 

became the centre of theoretical discussion about Gaia (Watson and Lovelock, 1983; Lenton 

and Lovelock, 2001; Volk, 2002; Betts and Lenton, 2007; McDonald-Gibson et al., 2008; Lenton 

et al., 2018a). After it was pointed out that the first version of the model represented a special 

case of coupling between life and its environment (Kirchner, 1989), theoreticians focused their 

efforts on understanding the conditions under which a mechanism is regulatory or 

destabilising. Hence they analysed the diversity of dynamic behaviours in a Gaia system 

(oscillations, catastrophes, tipping points between regimes of stability, etc.), how to shift from 

one behaviour to another, how frequent and likely is such behaviour, etc. (Wood et al., 2008; 

Lenton et al., 2018a). This could now be described as a complex systems approach (Scheffer, 

2009) – although Daisyworld significantly predates the rise of ‘complexity science’. 

Answering the persistent confusion of Gaia with altruism, it was recognised that large-scale 

and long timescale effects of Life ought to be based on by-products of selection (e.g. the 

production of oxygen is a by-product of oxygenic photosynthesis, which is not selected for 

oxygen production but for energy capture) (Lenton, 1998; Volk, 1998; Wilkinson, 1999).  

Constraints were also put on the conditions for regulation to emerge: for example, the 

evolutionary dynamics of the trait responsible for the modification of the environment ought 

to be faster than that of the environmental preferences of the living entities (Robertson and 

Robinson, 1998; Lenton and Lovelock, 2001; Wood et al., 2006; McDonald-Gibson et al., 2008). 

At smaller space scales and shorter timescales, elements of a Gaia theory at least “compatible” 

with natural selection were sought. This meant either extending or hinging on standard 

selection mechanisms such as group selection (Williams and Lenton, 2008); introducing 



concepts foreign to evolutionary thought such as “feedback on growth” (a trait benefiting 

indifferently to all living entities without any differential – i.e. selective – effects) (Lenton, 

1998; Williams and Lenton, 2008); or extending the conditions of application of selection 

mechanisms.  

Recognising that critics of Gaia may have presumed too narrow a definition of how evolution 

can occur – requiring variation within populations and replication with heritability – two 

independent arguments have been made for cruder filtering mechanism not requiring 

reproduction: the idea of ‘sequential selection’ (Betts and Lenton, 2007; Lenton et al., 2018a); 

and that of ‘selection by survival alone’ i.e. based on persistence through time alone – which 

marked the return of Doolittle (2014), hinging on Bouchard (2014). In the sequential selection 

mechanism the central idea is that through a series of trials/experiments over time, Life’s 

effects on its environment could have stumbled upon stable attractors, which by definition 

then tend to persist. Selection based on persistence alone (Doolittle, 2014) then gives the 

opportunity for the resulting Gaia phenomenon to acquire further persistence-enhancing 

(stabilising) mechanisms. Subsequently, Doolittle has offered either biogeochemical cycles 

(Doolittle, 2017) or clades including Life (Doolittle, 2019) as relevant units of selection based 

on differential persistence – noting that both form populations of a sort. 

Following a tradition of theoretical biology, all these researches put forward some specific 

properties of life, which are both proper to living entities and necessary for regulatory 

mechanisms to emerge: (i) the peaked response of growth to the variation of the environment; 

(ii) the inevitable effect of metabolism on the environment; (iii) the capacity for death 

(extinction) and the ability to restart. 



The ongoing need for synthesis 

Retrospectively, one can look at these modelling and theoretical endeavours as descriptions of 

the abstract properties of Life and of Gaia – i.e. Life plus its effects on habitability. The decades 

encompassing the constitution of biology at the turn of the late 18th century were a time of 

active reflection about the abstract properties of life (from the specificity of “organisms” to the 

nature of causality at stake in biology) and a time of intense empirical observations and 

experiments (e.g. the advent of comparative and experimental embryology; of comparative 

anatomy and palaeontology; of physiology and modern medicine). Similarly, here, the 

recognition of the existence of Life and of Gaia required and still requires both empirical, 

theoretical and philosophical efforts. 

8. Summary 

Gaia has been famously criticized by biologists and by Earth system scientists. Biologists 

pointed out the lack of theoretical mechanisms for regulation, tied in with a critique of 

Lovelock’s teleological language when he took too seriously the idea that Gaia is living. 

Empirical examples of global regulation were of little interest to them, and having missed the 

novelty of the entities Life and Gaia, they were perhaps too prompt to dismiss the theoretical 

issues as unsolvable. By contrast, Earth system scientists, having granted that living beings are 

part of the Earth system, largely missed the theoretical and philosophical challenges raised by 

the centrality of Life in Gaia. In so doing they largely restricted themselves to empirical 

discussions about how the Earth system actually works. If they deployed theoretical efforts at 

all – of the kind at stake in Daisyworld, i.e. playing with toy models to explore the possible 

space of behaviours – these efforts, even though influenced in some way by Gaian research, 

were tied to the understanding of the Earth system humans inhabit and to consequences of 

this understanding for future global changes (Schellnhuber and Wenzel, 1998).   



The response to these critiques has generally been: (i) to repent from teleological language; 

and (ii) to point out to one important success of Gaia with the constitution of Earth system 

science. This article has taken these two arguments backwards: (i) the teleological dimension 

of Gaia must be confronted directly, rather than being avoided to please biologists; (ii) Earth 

system science, though influenced by Gaia in many ways, has lost sight of the central position 

of Life. 

Lovelock’s central contribution, aided by Margulis, was to discover a new living entity; Life. Too 

big and too foreign to be studied by biologists (§2); too hard to spot in the energy balance to 

be detected and taken into account by early climatologists (§3); too living to be fully embraced 

by Earth system scientists (§4). Yet Life massively alters its global environment (§5). So much 

so that it becomes hard to separate Life’s boundaries from its environment, hence the name 

given to the complicated entity which results from these interactions: Gaia (§6). Studying the 

physiological and ecological behaviour of this entity has been the central Gaia research 

programme: could Life maintain its own condition of existence (§6)? What are the general 

properties and behaviour of a global entity constituted by the interaction of Life and its 

environment (§7)?  

The genius of Lovelock and Margulis was to detect the hard to spot Gaia amidst the Earth 

system. Two issues merit further discussion which we leave for further papers: a more detailed 

history of Earth system science and its relationship with Gaia; and a serious discussion of Gaia’s 

teleology, linking the theoretical efforts developed by the Gaian scientific community with 

philosophical debates on causality and on the way Gaia has changed what we mean by “life”. 

 

End notes 



1 There must have been other living beings belonging to other clades that stemmed from the origin of 
life (and were present at the time of the last universal common ancestor), all members of which have 
now gone extinct. Hence ‘Life’ does not include everything that has ever lived on Earth. 
2 These studies can be read either as part of the habitability discussion – for certain parts of Life to 
maintain their conditions of existence at a sufficiently large scale is a fortiori to maintain habitable 
conditions – or as new research programmes – since the large spatial scales involved were neglected by 
biologists working on life-environment interaction at smaller scales. 
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