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Abstract—Speeded-Up Robust Features (SURF) is a state-of-
the-art, scale- and rotation-invariant feature extraction 
technique with the potential for real-time execution. Although 
SURF has been extensively employed for multi-scale computer 
vision applications since its inception, there are still some areas 
of this computationally complex algorithm that have not been 
fully explored and require detailed analysis to enable 
algorithm-level optimization of SURF for real-time execution. 
In particular, the distribution of interest points in SURF 
octaves is a topic that requires thorough investigation. 
Contrary to the present perception, this paper demonstrates 
that there is a possibility of higher octaves being more 
significant than the lower octaves in terms of detected interest 
points for real-life images. The paper also shows that variation 
of blob response threshold has a significant effect on interest 
point distribution. The results presented highlight the need of 
developing a systematic approach to SURF octave selection. 

Keywords- Image analysis, feature extraction, SURF, interest 
point distribution. 

I.  INTRODUCTION 
Speeded-Up Robust Features (SURF) is a state-of-the-art 

computer vision technique which is focused on fast detection, 
description and matching of scale- and rotation-invariant 
image features [1]. Although incapable of achieving real-
time performance with software-only implementations on 
modern desktop computers due to its high computational 
complexity, SURF is still attractive in terms of execution 
speed, and with comparable results, when contrasted with 
other contemporary algorithms for feature extraction, such as 
the Scale Invariant Feature Transform (SIFT) and Harris-
Laplace feature detector [1, 2]. This speed advantage has 
been the real factor behind its popularity and has led to 
exciting SURF-based vision applications like an interactive 
museum guide, retina mosaicing and mobile augmented 
reality on a handheld platform [3, 4, 5]. 

It is interesting that, despite this popularity, there are still 
some areas of this computationally complex algorithm that 
have not been fully explored and require a more detailed 
analysis and understanding. Since algorithm analysis is the 
first step towards algorithm optimization, investigation of 
these unexplored areas is vital for algorithm-level 
optimization of SURF, in an effort to reduce its 
computational complexity and improve its performance both 
in terms of execution speed and accuracy. As the range of 
embedded vision applications is becoming broader and 

boarder, algorithm-level optimization is gaining more 
significance for a computationally complex algorithm like 
SURF to handle critical issue of power consumption in 
battery powered systems. SIFT, the main competitor of 
SURF, has undergone extensive algorithm-level 
optimizations to enhance its performance, and this has led to 
a number of variants, including PCA-SIFT, GLOH and RIFT 
[6, 7, 8]. In fact, SURF itself can be considered a descendant 
of SIFT. Thus, critical analysis of every stage of SURF is 
required to identify areas that can be optimized further, not 
only to improve its performance in terms of execution speed 
and accuracy but also to make it more suitable for low-power, 
embedded vision applications.   

This paper is a step forward in this direction. It attempts 
to carry out an in-depth study of interest point distribution in 
SURF octaves – a topic that needs thorough investigation 
due to its significance for finding the optimal number of 
octaves required for any particular SURF-based vision 
application. The intention here is firstly to examine the 
general trend of interest point distribution in SURF octaves 
across a wide range of images which includes standard 
image data sets and images captured from real-life 
applications. The contribution of each octave is analyzed to 
identify octaves that are essential to the output of the 
algorithm in terms of detected interest points. The second 
part of this paper explores the relation between blob response 
threshold and interest point distribution as it is vital for 
determining the consistency of the distribution. To our 
knowledge, this is the first attempt to study the effect of 
variation of blob response threshold on interest point 
distribution.  

The remainder of this paper is structured as follows. 
Section II provides a review of SURF and analyzes the 
general trend of the interest point distribution in SURF 
octaves. The effect of variation of blob response threshold on 
interest point distribution is investigated in Section III.  
Finally, conclusions are presented in Section IV. 

II. ANALYSIS OF INTEREST POINT DISTRIBUTION 
This section provides a brief overview of the SURF 

algorithm and then analyzes the general trend of interest 
point distribution in SURF octaves. The key stages of SURF 
are shown in Fig.1. Since SURF aims to extract scale-
invariant image features, it pursues this objective by 
calculation  of   blob   response  maps  at  different  scales  to  
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Fig. 1  The key stages of SURF 

implement an image pyramid for scale-space analysis. The 
scale space is divided into number of octaves, formed by 
grouping blob response maps for adjacent scales. 3-D non-
maximum suppression is then carried out to determine local 
maxima. In order to achieve sub-pixel, sub-scale accuracy, 3-
D quadratic interpolation is done to provide interest points. A 
blob response threshold is normally applied to select high-
contrast interest points. The descriptors for the detected 
interest points are calculated after orientation assignment to 
achieve rotation invariance. 

SURF calculates a series of blob response maps at 
different scales by convolving the same input image with a 
filter of increasing size, as opposed to sub-sampling the input 
image. The creation of scale space starts by applying a 9 x 9 
filter and then the size of the filter is increased with every 
increment in scale. Specifically, 9 x 9, 15 x 15, 21 x 21 and 
27 x 27 filters are used to calculate blob response maps for 
the first octave. However, the filter size can only be 
increased as long as it is smaller than the input image size. 
Since each octave consists of a fixed number of scales, the 
total number of SURF octaves that may be processed is 
limited by the size of the input image. For example, a 
maximum of 6 octaves can be processed for an input image 
of resolution 640 x 480 pixels if the number of scales in each 
octave is 4.  

According to [1], as we move from lower to higher 
octaves, the number of detected interest points per octave 
decays quickly. It is important to note here that this 
conclusion is based upon experiments performed on standard 
data sets [9] only, which are more suitable for performance 
evaluation of SURF under viewpoint, illumination, rotation 
and scale changes. A detailed analysis has not been carried 
out and there are some important questions which are 
unanswered: 

a) Is this behavior of octaves consistent for all types of 
images? 

b) Is a lower octave always more dominant in terms of 
detected interest points than higher octaves? More 
specifically, does octave 1 always detect more 
interest points than octaves 2, 3 and 4? 

c) Assuming that the contribution of higher octaves 
becomes more and more negligible with increasing 
octaves, is it always justified to reject the higher 
octaves in favor of lower octaves when ever 
improvements in the execution speed is required? 

d) Is there any effect of blob response threshold on 
interest point distribution? 

These questions are significant for finding the optimal 
number of octaves for any SURF-based vision application. 
Therefore, a thorough investigation is required to determine 
the general trend of interest point distribution across a wide 
range of images. 

This paper seeks to answer the above questions. For this 
particular analysis, more than 20,000 real-life images of 
different resolutions were tested using a MATLAB 
implementation of SURF to gain insight into the general 
trend of interest point distribution. The test images included 
images from standard data sets [9], Google image database 
[10] and images captured specifically for this work; some of 
them are shown in Fig. 2. The number of octaves and the 
number of scales per octave were set to four for this analysis 
where octave 1 was the lowest octave and octave 4 was the 
highest octave. 

 

 
 

Fig. 2   Sample test images. Top left is image 1 which is followed by 
images 2, 3, 4 and 5 to the right. Bottom left is image 6 which is followed 

by images 7, 8 , 9 and 10 to the right. 
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TABLE I  INTEREST POINT DISTRIBUTION WITHOUT APPLYING BLOB RESPONSE THRESHOLD 
Image Resolution Octave 1 Octave 2 Octave 3 Octave 4 

1. 640 x 480 3400 2326 991 224 
2. 800 x 640 6172 3188 1124 322 
3. 1000 x 700 7774 3604 1388 394 
4. 1280 x 960 14854 7278 2696 785 
5. 1280 x 960 15944 7609 3136 1040 
6. 640 x 480 4061 2645 1300 432 
7. 640 x 480 3082 2101 779 184 
8. 640 x 480 2225 1867 646 84 
9. 640 x 480 4107 2598 1021 229 

10. 640 x 480 3851 2693 1008 234 
 

TABLE II  INTEREST POINT DISTRIBUTION WITH BLOB RESPONSE THRESHOLD OF 50,000 
Image Resolution Octave 1 Octave 2 Octave 3 Octave 4 

1. 640 x 480 217 126 90 49 
2. 800 x 640 590 517 238 76 
3. 1000 x 700 43 75 47 22 
4. 1280 x 960 29 40 69 61 
5. 1280 x 960 49 57 61 45 
6. 640 x 480 29 19 22 10 
7. 640 x 480 55 192 128 84 
8. 640 x 480 0 23 15 18 
9. 640 x 480 22 25 72 22 

10. 640 x 480 9 17 20 19 
 
The results for the test images shown in Fig. 2 are listed 

in Tables I and II. Table I provides information about interest 
point distribution without a blob response threshold applied, 
whereas Table II presents results with a blob response 
threshold of 50,000. A general trend of interest point 
distribution can easily be identified from Table I for the case 
when no blob response threshold is applied. The lowest 
octave, octave 1, appears to be the most dominant in terms of 
detected interest points, followed by octave 2; whereas 
octave 4 detects the least number of interest points. 

The situation, however, does not remain the same when a 
threshold of 50,000 is applied to reject low-contrast interest 
points. In Table II, the interest point distribution for images 1 
and 2 follows the same pattern as in the case of no threshold. 
However, for image 3 it can be seen that octaves 2 and 3 
detect more interest points than octave 1. The distribution is 
more interesting for images 4, 8, 9 and 10, as the higher 
octaves (3 and 4) dominate the lower octaves 1 and 2. For 
image 4, more than 65% of the interest points are detected in 
octaves 3 and 4. Hence, rejecting octaves 3 and 4 in favor of 
octaves 1 and 2 for image 4 is certainly not justified. This 
particular case indicates that selecting the lower octaves only 
for enhancing execution speed is not always a good option 
and highlights the need for a more systematic procedure for 
selecting SURF octaves. Fig. 3 shows the interest point 
distribution for images 2, 4, 7 and 9. From these results, it 
can be concluded that there is a strong possibility of higher 
octaves dominating  the  lower octaves in  terms  of  detected 
interest points when blob response threshold is applied to 
reject the low contrast interest points. 

III. EFFECT OF BLOB RESPONSE THRESHOLD 
This section investigates the relationship between blob 

response threshold and interest point distribution. From the 
results presented in Section II, it is evident that, when blob 
response threshold is applied, any octave can dominate in 
terms of detected interest points. However, it is important to 
probe whether interest point distribution is affected by any 
variation in blob response threshold or not. 

For this particular analysis, the blob response threshold 
was varied from 0 to 60,000 with a step size of 5,000 and the 
resulting interest point distribution examined for every 
threshold value. For the purpose of discussion, the results for 
images 1 and 9 are utilized as they represent two dominant 
trends with respect to blob response threshold variation. Fig. 
4 shows the break-up of interest point distribution for image 
1 at different blob response thresholds. It can be observed 
that more than 70% of the interest points are detected in 
octaves 1 and 2 at every threshold value. The contribution of 
octaves 3 and 4 increases with increasing threshold values 
but the interest point distribution is largely consistent across 
threshold values. 

Fig. 5 shows the break-up of the interest point 
distribution for image 9 at different blob response thresholds. 
This case is interesting: with a threshold value of 5,000, 
85.42% of all detected interest points are in octaves 1 and 2. 
However as the threshold value increases, the contribution of 
octaves 3 and 4 becomes more and more significant and less 
than 40% of the interest points are detected in octaves 1 and 
2 at threshold values beyond 30,000. This is a sharp contrast 
to the trend observed in the case of image 1. It can be 
concluded  that  for any image, lower  octaves  always detect  
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Fig. 3  Interest Point distribution with threshold of 50,000 for images 2, 4, 7 and 9 

 

Fig. 4  Effect of variation of blob response threshold on interest point distribution for image 1 

 

 Fig. 5  Effect of variation of blob response threshold on interest point distribution for image 9

 

 
more interest points than higher octaves at lower thresholds 
and may continue their dominance at high threshold values 
too. However, there is also a possibility of higher octaves 
becoming more critical than lower octaves at high threshold 
values. 
 

IV. CONCLUSIONS 
This paper has examined the general trend of interest 

point distribution in SURF octaves by analyzing a wide 
range of real-life images. It has demonstrated that a lower 
octave always dominates a higher octave in terms of detected 
interest points if no blob response threshold is applied. 
However, the pattern is not the same when a threshold is 
applied for the  rejection of low  contrast interest points as 
there is a strong possibility of higher octaves dominating 
lower ones, contrary to current perception. The effect of 

2010 The 3rd   International Conference on Machine Vision (ICMV 2010)

414



variation of blob response threshold on interest point 
distribution has also been investigated by this paper, and it 
has been found that lower octaves always dominate higher 
ones at lower thresholds, a dominance that may continue at 
high thresholds. However, there is a strong possibility of the 
converse happening at high thresholds. The results presented 
highlight the need for a more systematic approach to SURF 
octave selection in order to improve performance, both in 
terms of accuracy and execution speed.    
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