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Abstract: Optimal vaccine dosing is important to ensure the greatest protection and safety. Analysis of
dose-response data, from previous studies, may inform future studies to determine the optimal dose.
Implementing more quantitative modelling approaches in vaccine dose finding have been recently
suggested to accelerate vaccine development. Adenoviral vectored vaccines are in advanced stage
of development for a variety of prophylactic and therapeutic indications, however dose-response
has not yet been systematically determined. To further inform adenoviral vectored vaccines dose
identification, historical dose-response data should be systematically reviewed. A systematic literature
review was conducted to collate and describe the available dose-response studies for adenovirus
vectored vaccines. Of 2787 papers identified by Medline search strategy, 35 were found to conform to
pre-defined criteria. The majority of studies were in mice or humans and studied adenovirus serotype
5. Dose-response data were available for 12 different immunological responses. The majority of
papers evaluated three dose levels, only two evaluated more than five dose levels. The most common
dosing range was 107–1010 viral particles in mouse studies and 108–1011 viral particles in human
studies. Data were available on adenovirus vaccine dose-response, primarily on adenovirus serotype
5 backbones and in mice and humans. These data could be used for quantitative adenoviral vectored
vaccine dose optimisation analysis.

Keywords: dosing; dose-response; adenovirus-vectored vaccines; immunogenicity; clinical;
pre-clinical

1. Introduction

The methods of finding doses for optimal vaccine delivery in humans is an empirical science.
Frequently, vaccine developers have relied on historic information to conduct small dose-ranging
studies in animal models, and then used these data to design further studies in humans, despite
the relationship between animal and human dose being unproven [1]. Unlike allometric analysis
used in pharmacokinetic/pharmacodynamic assessments in small molecule drug development [2],
there are no published or widely accepted allometric scaling factors to easily translate animal vaccine
dose-responses to human vaccination. Thus, each vaccine development group collates the relevant
literature, and their own data, to determine how to design initial animal or human dose-response
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studies. Unfortunately, recent evidence suggests that this empirical method of dose selection has, in
part, led to suboptimal dose identification in humans for diseases, such as yellow fever, meningitis and
malaria [3–6].

Recently developed mathematical modelling methods, referred to as
immunostimulation/immunodynamic (IS/ID) modelling, attempts to address these issues [7–10]. IS/ID
modelling was developed to address the lack of quantitative methods in vaccine development [11].
The aim of IS/ID is to translate pharmacokinetic/pharmacodynamic (PK/PD) methodology to vaccine
development, and preliminary IS/ID modelling has shown promise in accelerating vaccine dosing
decisions. Modelling of the dose-response curve and cross-species translation of tuberculosis vaccine
dosing data have predicted a lower human dose than previously tested [7,9], and showed that
antibody response against human parainfluenza virus may be maximised by an intermediate dose [12].
To inform future IS/ID modelling, dose-response data must be collated. However, these data can also
provide valuable insight into study designs that are currently used to explore vaccine dose-response,
as understanding the scope of previous dose-ranging trials may be of use in determining the cause of
suboptimal dosing.

Adenovirus vectored vaccines have been widely investigated for their ability to induce antibody
and T cell responses against infectious diseases and cancers [13]. However, the dose-response for
adenoviral vectored vaccines has not yet been systematically investigated. In this systematic review,
we aim to explore and collate available adenoviral dose-response data for the purpose of informing
adenoviral dosing towards safer and more effective vaccination. Our objectives were to:

1. Assess the number of available papers, including adenoviral dose-response studies, and the
distribution of host species and adenoviral serotypes within these papers.

2. Assess which immunological responses dose-response data were available.
3. Assess the dosing strategies used in adenoviral dose-ranging studies, including number and

magnitude of dose levels.

This systematic review should help inform adenoviral vaccine developers in choosing dose amounts
for first-in-human trials. The collated data on dose-response, and replicating incompetent adenovirus-based
vaccines, will also be used to inform IS/ID modelling studies for vaccine dose optimisation.

2. Materials and Methods

The study protocol was registered in PROSPERO (CRD42017080183).

2.1. Study Types, Study Design, Population, Intervention and Outcome Measures

Papers on clinical trials and in-vivo pre-clinical studies, that presented data from adenovirus
vector-induced immunogenicity, were included in the review. These could include data from humans
and animals of any age, sex and genetic background who received adenoviral vectored vaccines
administered intramuscularly or subcutaneously. We did not assess study design aspects, such as
methods of randomisation or use of control groups. The primary outcome measures were humoral
and cellular immunity.

2.2. Search Strategy

The MEDLINE (PubMed) database was searched from inception to 27 November 2018. The search
was limited to papers published in English and included terms relating to the following concepts:
Adenovirus-vectored vaccines, immunogenicity, and dose-response (Appendix A, Criteria A1).

2.3. Paper Selection (Inclusion/Exclusion Criteria)

A three-stage screening process was used to systematically screen retrieved references and assess
whether they met the inclusion criteria. Papers were first screened by title then by abstract before a
full-text screen was conducted (Appendix A, Figure A1).
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We included papers that presented data from studies with immunological response at three or more
dose levels of an adenoviral vectored vaccine. We included papers that captured CD4+/CD8+ T-cell
response, as measured by cytokine release using either ELISPOT or multiparameter flow cytometry
and/or humoral responses, including binding and neutralising antibody titres against the vector
and antigen. Exclusion criteria were chosen to minimize the probability of response being altered
by a non-dosal effect, for example excluding cancer models and prime-boost paradigm vaccination
(Appendix A, Figure A2).

2.4. Data Extraction

Using a pre-designed data extraction spreadsheet, information relating to study characteristics
were extracted from studies that met the inclusion criteria. Numerical data from figures were extracted
using GraphClick version 2.9.2 (Arizona Software, Los Angeles, CA, USA). Papers could contain data
from multiple dose-response studies, and these studies may vary in adenoviral serotype, route of
administration, host species, or disease.

2.5. Assessment of Methodological Quality

Bias was controlled for by having two individuals participate in the original search, and on
abstract review. A review of 10 articles known to be relevant was conducted, to evaluate the degree of
completeness. No statistical methods were performed to assess publication bias.

2.6. Comparing Doses

Three different units of measurement of dose were used in the extracted studies; viral particles
(VPs), particle units (PUs), or plaque forming units (PFUs). Doses measured in VPs and PUs were
considered equivalent as they both measure the number of physical viral particles [14]. PFUs were
considered a separate outcome, as the ratio of VPs/PUs to PFUs were not constant in adenoviral
vaccines studies [15].

3. Results

3.1. Objective 1: Assess the Number of Available Papers Including Adenoviral Dose-Response Studies, and the
Distribution of Host Species and Adenoviral Serotypes within These Papers

Following removal of duplicate entries, 2787 references remained and were screened by title.
581 references were screened by abstract and 300 were screened by full text. After evaluation of the
full text, 265 of the papers were excluded. Therefore, 35 papers were included in this review [16–50].
The majority of papers contained studies conducted in mice (60%), followed by humans (26%) (Table 1).
Although, it is likely that many studies may have been carried out by industry using the same construct
in mice and humans, the number of published studies using the same adenoviral strain, route and
antigen insert across different species was limited.

Table 1. The number of papers that included dose-response studies for each host species identified in
the review.

Number of Papers (%) Host Paper References

21 (60%) Mouse [18,22,24–26,29,32–36,39–41,43–45,47–50]
9 (26%) Human [16,17,19–21,23,27,28,30]
2 (6%) Monkey [38,42]
2 (6%) Rat [37,45]
1 (3%) Rabbit [31]
1 (3%) Cattle [46]
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Out of all the adenoviral serotypes, the most common was human adenovirus 5 (46%), followed by
human adenovirus 35 (26%) (Table 2). The route of administration was more frequently intramuscular
(84%) than subcutaneous (16%).

Table 2. The number and percentage of papers that included dose-response data for each
adenovirus serotype.

Human Non-Human Primates

Ad5 (16, 46%) [22,24,25,29,31,33,34,38,39,42–46,49,50] ChAd63 (3, 9%) [24,30,43]
Ad35 (9, 26%) [19,21,23,24,26,28,35,36,39] ChAd3 (3, 9%) [16,17,24]
Ad26 (4, 11%) [26,27,32,37] AdC6 (1, 3%) [41]
Ad6 (2, 6%) [38,47] AdC7 (1, 3%) [40]
Ad28 (1, 3%) [24] sAd11 (1, 3%) [24]

sAd16 (1, 3%) [24]
sAdv-36 (1, 3%) [48]
ChAdOx1 (1, 3%) [20]

3.2. Objective 2: Assess for Which Immunological Responses Dose-Response Data Were Available

The immunogenicity data recorded also varied widely among the published studies, including
antibody responses (both binding and neutralizing), T cell ELISpot data, and CD4+ and CD8+ T cell
responses by intracellular cytokine staining. The majority of papers (51%) included studies of antibody
dose-response. (Table 3).

Table 3. The number and percentage of papers that included dose-response data for each immunological
response type.

Number of Papers (%) Response Type Paper References

18 (51%) Antibody [16,17,20–23,25–28,31,33,36,39,40,42,45,48]
12 (34%) T cell count [16,20,21,26–28,30,32,36,38,42,47]
12 (34%) CD8+ T cell count [19,22,24,32,34–36,38,39,48–50]
11 (31%) Virus Neutralisation Titre [22,25,27,29,30,34,36,37,43,44,46]
4 (12%) CD4+ T cell count [19,32,35,38]
3 (9%) CD8+ T Cell, IFN-y+ Percentage [19,21,41]
3 (9%) CD4+ T Cell, IFN-y+ Percentage [19,21]
2 (6%) CD4+ T Cell, TNF-a+ Percentage [19,21]
2 (6%) CD8+ T Cell, TNF-a+ Percentage [21]
2 (6%) CD4+ T Cell, IL-2+ Percentage [19,21]
2 (6%) CD8+ T Cell, Il-2+ Percentage [21]
1 (3%) CD4+ T Cell, Il-17+ Percentage [19]

3.3. Objective 3: Assess the Dosing Strategies Used in Adenoviral Dose-Ranging Studies, Including Number
and Magnitude of Dose Levels

3.3.1. Number of Dose Levels

The majority of papers (60%) included studies with three dose levels, which was the minimum
number of dose levels for a study to be included; 23% included four dose levels, and 20% included five
or more levels (Table 4).

Table 4. The number and percentage of papers containing studies at each number of dosing levels.

Number of Papers (%) Number of Dose Levels Paper References

21 (60%) 3 [17,19,22,24,25,27–30,32,34,35,37,38,40,42,44,46,48,49]
8 (23%) 4 [16,20,21,23,26,36,40,43]
5 (14%) 5 [18,33,39,41,45]
1 (3%) 6 [31]
1 (3%) 7 [47]
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3.3.2. Magnitude of Dose Levels

For VP/PU, the geometric mean human dose was 1.6 × 1010 (range 5 × 108–2 × 1011) (Figure 1a).
No human dose-response studies were measured in PFU. In VP, the geometric mean mouse dose was
4.9 × 107, (range 5 × 101–5 × 1011) (Figure 1b). The mean human dose was therefore approximately
3.2 × 102 times larger than the mean mouse dose. Four mouse dose-response studies measured dose in
PFU, with doses ranging between 1 × 104 and 1 × 109 PFU. Details on the magnitude of dose levels are
found in Appendix A, Figure A2.
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4. Discussion

In this review we aimed to collate data on adenovirus-based vaccines in preparation for
mathematical modelling to characterize the dose-response curve by host species, serogroup of
the adenovirus or route of administration. After screening, 35 papers were extracted that provided
dose-response immunogenicity data following intramuscularly or subcutaneously administered
adenovirus vectors in animals and humans. Data were primarily from mouse and human studies, and
included multiple different response types. From the adenoviral dose-response papers considered,
studies typically used three dose levels, with the average human dose being two orders of magnitude
larger than the average mouse dose. There were unfortunately very few comparator trials in which the
same vaccine was used in human and animal models, and much of the pre-clinical data from larger
industry companies are unlikely to have been published.

This review represents the first attempt to collate vaccine dose-response data, which has not
yet been done for adenoviral vectored or non-adenovirus vectored vaccines. The review found that
dose-response data existed for a wide range of immunological responses, both humoral and cellular.
This suggests that published dose-response data may exist for many important correlates of protection.
The broad spectrum of available data will be used to inform an IS/ID modelling study on adenoviral
dose-response curve shape. However, the majority of studies used too few doses to allow for true dose
response relationships to be clearly established, and thus, the majority of studies conducted are not
sufficient to allow the authors to clearly justify their dose selection. To establish a true sigmoidal curve
fit, at least five data points are needed to accurately model the response.

Whilst this review was able to identify 35 papers that may be useful in understanding adenoviral
vectored vaccine dose-response behaviour, there are factors that may limit the utility of the collated
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data. Firstly, it is likely that there exist vaccine dose-response studies that have not been published [51].
In order to predict dose-response in humans from animals for future vaccines, dose-response data
from an existing vaccine in multiple species is required. The unavailability of these data may hinder
attempts to develop an allometric scaling approach, therefore publishing of both clinical and pre-clinical
dose-response studies is of great importance. Secondly, most of the doses were measured in viral
particles, which may be a sub-optimal measure [52] as the infectious ratio, the number of viral particles
per infectious unit, can vary between vaccines [15]. Therefore, the use of VP in measuring vaccine dose
limits the comparisons in dose between different vaccines. Finally, when applying IS/ID modelling to
define the dose-response curve, it is also possible that, whilst three dosing levels may be sufficient to
theoretically define simple curves like a sigmoid function, this may not be a large enough number of
doses to determine dose-response behaviour with an appropriate degree of certainty.

The strategies used to optimise vaccine dosing are likely to be suboptimal. There might exist
mathematical descriptions of dose-response that are informative when choosing the various doses to
use for a given construct in a given species which have not yet been identified. Indeed, both Darrah
and Belovsky have shown that the highest dose was not the most effective dose for adenoviral vectored
vaccination against Leishmania and non-adenovirus vectored vaccination against HIV [53,54], and yet
the bias to choose the maximum safe dose remains among most vaccine developers.

New methods of vaccine dose optimisation need to be developed. Understanding adenoviral
vaccine dose-response may be able to be achieved through reviewing and comparing historical
dose-response data and combining these with mathematical modelling methods. This may aid in
ensuring that the optimal dose for protection and safety is identified, while minimising the number of
human and animal participants required to decide that dose.
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Appendix A

Criteria A1. Search Terms, PubMed

Strategy PUBMED Search #

Concept 1 Adenovirus adenovirus OR adenoviral OR adenovector OR adenovectors OR adenoviridae 1

Concept 2 Dose
dose OR doses OR dosage OR dosages OR dosing OR dosed OR dose response
OR dose-response OR dose responses OR dose-responses OR dose response
relationship OR dose-response relationship

2

Concept 3 Immune
response

immunity OR immune OR immune-response OR immune response OR
immune responses OR immune-responses OR immunostimulation OR
immunodynamic OR immunodynamics OR immunisation OR immunisations
OR immunization OR immunizations OR immunise OR immunises OR
immunize OR immunizes OR immunised OR immunized OR immunising OR
immunizing OR immunogenecity OR immunogenic OR immunology

3

Combine with AND #1 AND #2 AND #3
Add filter: Humans, Other Animals, English
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Criteria A2. Exclusion Criteria

A study was excluded if it; (a) was a gene transfer study, (b) was conducted in cancer models,
(c) presented no immunological readouts, (d) used replication-competent adenovirus, (e) did not
administer adenovirus via an intramuscular or subcutaneous route, (f) used adenovirus as a boost in
a heterologous prime-boost vaccination regimen, (g) used adenovirus as a prime, in a heterologous
prime-boost regimen, and did not report on immunological parameters post-prime and pre-boost,
(h) presented a homologous dosing regimen with no reported immunological parameters after the
initial dose, (i) only reported on immune parameters following a disease challenge, (j) co-administered
an adjuvant, administered an adjuvant prior to adenovirus delivery or used an ad-juvant-encoded
adenovirus vector, (k) only reported on pulmonary immunity to the adenovirus (l) presented only
data on gene expression, (m) used a sample size of less than five mice per group, or less than
three for non-human primates, (n) presented in-vitro derived data, or (o) was a systematic review
or meta-analysis.
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