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Antibiotic resistant strains of Acinetobacter baumannii are responsible for a large and
increasing burden of nosocomial infections in Thailand and other countries of Southeast
Asia. New approaches to their control and treatment are urgently needed and an
attractive strategy is to remove the bacterial polysaccharide capsule, and thus the
protection from the host’s immune system. To examine phylogenetic relationships,
distribution of capsule chemotypes, acquired antibiotic resistance determinants,
susceptibility to complement and other traits associated with systemic infection, we
sequenced 191 isolates from three tertiary referral hospitals in Thailand and used
phenotypic assays to characterize key aspects of infectivity. Several distinct lineages
were circulating in three hospitals and the majority belonged to global clonal group 2
(GC2). Very high levels of resistance to carbapenems and other front-line antibiotics
were found, as were a number of widespread plasmid replicons. A high diversity
of capsule genotypes was encountered, with only three of these (KL6, KL10, and
KL47) showing more than 10% frequency. Almost 90% of GC2 isolates belonged
to the most common capsule genotypes and were fully resistant to the bactericidal
action of human serum complement, most likely protected by their polysaccharide
capsule, which represents a key determinant of virulence for systemic infection. Our
study further highlights the importance to develop therapeutic strategies to remove the
polysaccharide capsule from extensively drug-resistant A. baumanii during the course
of systemic infection.
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INTRODUCTION

A. baumannii is an opportunistic pathogen that can cause
potentially lethal nosocomial infections (Howard et al.,
2012). These are frequently a result of trauma, surgery,
catheterization or endotracheal intubation (Chopra et al., 2014),
and A. baumannii can escape the local immune reaction by
evading neutrophils, macrophages and complement (C') (Russo
et al., 2008; García-Patiño et al., 2017). This immune escape
therefore necessitates the use of antimicrobials, and the key
determinant of clinical outcome of A. baumannii infection is
treatment failure due to the high number of antibiotic resistant
strains (Wong et al., 2017).

Multidrug resistant (MDR) strains of A. baumannii have
spread rapidly over recent decades (Zarrilli et al., 2013; Hamidian
and Nigro, 2019). The high prevalence of strains resistant to
nearly all antibiotics, especially well-tolerated cephalosporins and
carbapenems, has led to the revival of drugs considered to be
of last resort such as polymyxins (Falagas and Kasiakou, 2005;
Sahbudak Bal et al., 2018) for systemic administration. However,
resistance to colistin is now more prevalent and polymyxins are
now used less widely due to serious side effects associated with
these agents (Sahbudak Bal et al., 2018). As a consequence, the
World Health Organization has identified carbapenem-resistant
A. baumannii (CRAB) as the greatest bacterial threat to global
human health and the top priority pathogen for development of
new antibiotics (Tacconelli et al., 2018).

Recent surveillance data indicates that A. baumannii causes
under 2% of healthcare associated infections in the United
States (Sievert et al., 2013; Bulens et al., 2018) but prevalence
is much higher in Southern and South Eastern Asia, where it
is frequently the major nosocomial infectious agent (Suwantarat
and Carroll, 2016). The burden of A. baumannii infection is
particularly severe in Thailand, with isolates accounting for 15–
16% of hospital-acquired bacteremia cases and displaying very
high levels (70–88%) of carbapenem resistance, and mortality
rates in excess of 60% due to MDR A. baumannii bacteremia
(Chaisathaphol and Chayakulkeeree, 2014; Hongsuwan et al.,
2014; Suwantarat and Carroll, 2016; Hsu et al., 2017; Sirijatuphat
et al., 2018). Presence of the over-expressed carbapenemase
blaOXA−23, or blaOXA−51 in combination with IS elements,
account for most of the CRAB phenotypes (Figueiredo et al.,
2009; Teo et al., 2015; Wong et al., 2017). Molecular typing
identified three European clones; two have spread globally
and are now identified as GC1 and GC2 (Higgins et al.,
2010; Hamidian and Nigro, 2019) and the majority of isolates
from Asia belong to global clone 2 (GC2) (Kim et al., 2013;
Kamolvit et al., 2015).

The large majority of A. baumannii strains produce a
substantial capsular polysaccharide that protects them from
external threats (Kenyon and Hall, 2013), and an attractive
treatment option is enzymatic removal of the protective
capsules (Mushtaq et al., 2004; Lin et al., 2014; Negus
et al., 2015); capsule-free mutants were highly susceptible
to C'-mediated attack (Lees-Miller et al., 2013), in marked
contrast to their encapsulated parent strains. A major advantage
of this approach is that it circumvents the accumulation

of antibiotic resistance determinants, but has the potential
disadvantage that variation of the capsular polysaccharide may
limit the utility of individual depolymerases as found in
bacteriophages or other organisms, which typically hydrolyze
only one or a limited number of capsular types (Oliveira
et al., 2017; Hernandez-Morales et al., 2018; Lin et al., 2018;
Singh et al., 2018).

We report a detailed characterization of 191 recent isolates
from three major hospitals in Thailand using whole-genome
sequencing and functional assays, with particular reference to
their surface properties and antibiotic resistance profiles. We also
sought to identify factors that contribute to the capacity of GC2
isolates to cause infection through increased virulence (Zarrilli
et al., 2013), using genomic data and bioassays, in relation to
the role of the capsule in the determination of resistance to
C'-mediated attack.

MATERIALS AND METHODS

Bacterial Isolates
A total of 191 A. baumannii isolates were cultured from wound
pus, sputum, urine, blood, and excised tissue at the clinical
microbiology laboratories of three tertiary referral hospitals
in Thailand (Figure 1A). Bacteria were initially identified by
routine biochemical tests implemented for identification of
Gram-negative bacteria. Species were further confirmed by
whole-genome sequencing and sequence typing as below. The
hospitals were Thammasat University Hospital, Pathum Thani
Province (47 isolates; April 2016), Siriraj Hospital, Bangkok (84
consecutive isolates; April 2016) and Songklanagarind Hospital,
Hat Yai, Songkhla Province (60 isolates; August 2016). Siriraj
is the largest hospital in Thailand with 2,300 beds, 1,000,000
outpatients per annum and 80,000 inpatients per annum;
equivalent figures for Songklanagarind are 846, 1,019,375, and
40,936 and for Thammasat 601, 384,088, and 40,745 (data from
2017). Details of these isolates are given in Supplementary
Table S1. Susceptibilities to clinically relevant antibiotics were
determined using the Vitek 2 system (Bosshard et al., 2006).

Genome Sequencing, Assembly, and
Annotation
Genomic DNA was extracted and sequenced using Illumina-
B HiSeq X paired-end sequencing. Annotated assemblies were
produced according to (Page et al., 2016a). Sequence reads
were assembled de novo with Velvet v1.2 (Zerbino and Birney,
2008) and VelvetOptimiser v2.2.5 (Gladman and Seemann,
2008). Reads were annotated using PROKKA v1.11 (Seemann,
2014). The stand-alone scaffolder SSPACE (Boetzer et al., 2011)
was used to refine contig assembly; sequence gaps were filled
using GapFiller (Boetzer and Pirovano, 2012). Genomes with
greater than 5% contamination levels as determined by Kraken
(Wood and Salzberg, 2014), fully assembled genomes of less
than 4.5 Mpb or comprising 500 or more contigs were removed.
Putative genomes with less than 60% sequence similarity with
the reference genome were assessed with CheckM (Parks et al.,
2015) for genome completeness and contamination; isolates with
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FIGURE 1 | The population structure of A. baumannii isolated from a variety of infections in April 2016 at three major Thai hospitals. (A) Samples were obtained from
geographically distinct regions of the country. (B) Core gene phylogeny showed that the bacterial populations were circulating amongst the three hospitals; no single
lineage dominated at any one location. (C) Our data in context with the global population structure based on published data. (D) A more detailed comparison of the
data structure of pairwise SNP distances shows a similar distribution between our samples and a recent study from one hospital in Vietnam (Schultz et al., 2016),
with a similarly high prevalence of ST2 (C), but also a considerable number of more distantly related isolates from other regions.

greater than 3% contamination levels were excluded from the
study. SNPs were called against the A. baumannii reference
genome to identify heterozygous SNPs, and isolates with more
than 2% were removed from further analysis (Page et al., 2016a),
resulting in the 191 genomes analyzed in this study. As we could

also observe several gdhB duplicate sequences, a known problem
of the Oxford MLST scheme (Bartual et al., 2005; Gaiarsa et al.,
2019), sequence types were assigned and are reported only based
on the Pasteur scheme (Diancourt et al., 2010; Page et al., 2016).
Novel sequence types were assigned for non-typeable isolates
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through the PubMLST (Supplementary Table S1), three isolates
could not be assigned as the assemblies were missing one allele.

Phylogenetic Analyses
The pan genome for the global and Thai isolate analyses was
determined with Roary (Page et al., 2015) using a Protein BLAST
identity of 95% and a core definition of 99%. SNPs were extracted
from the core gene alignment using SNP sites (Page et al.,
2016b) and the output used to run RAxML v8.2.8 (Stamatakis,
2014) to calculate the phylogenetic tree with 100 bootstraps
under the GTR time-reversible model. The resulting alignment
for the global dataset was also used to determine pairwise SNP
distances with the dist.gene function from the ape package in R
(Paradis et al., 2004). To place our isolates in a broader context,
we compared them with recently published sequence data of
A. baumannii causing ventilator-associated pneumonia in the
intensive care unit of a Vietnamese hospital, in addition to data
from several other published studies (Supplementary Table S2).

Antibiotic Resistance and Traits
Associated With Infection
Antibiotic resistance genes were detected with the curated version
of the ARG-ANNOT database available at the SRST2 site (Gupta
et al., 2014; Inouye et al., 2014), rpoB SNP mutations were
assessed comparing the sequences against described resistance
mutations (Giannouli et al., 2012; Pérez-Varela et al., 2017),
and virulence factors with VFDB (Chen et al., 2016), using the
read-based search program ARIBA (Hunt et al., 2017). Plasmid
replicons were detected with a custom database composed
of 30 genes involved in plasmid replication, stabilization and
mobilization from Acinetobacter plasmids (Bertini et al., 2010;
Salto et al., 2018); some additional plasmids (Gao et al., 2011;
Hamidian et al., 2012, 2016; Zhang et al., 2013; Jones et al.,
2014; Blackwell and Hall, 2017; Hamidian et al., 2017) were
also included (full database Supplementary Dataset S1); and
analyses were undertaken using ARIBA software v2.12.1 (Hunt
et al., 2017). To account for potential variation in surface
proteins or other virulence factors, a custom-made collection
of A. baumannii virulence factors (Supplementary Table S6)
was searched against our isolates using phmmer (Eddy, 2011;
Eijkelkamp et al., 2011, 2014; Harding et al., 2013; Scott et al.,
2014; Weber et al., 2015; Lee et al., 2017). Representations of
trees and metadata were performed using iTOL (Letunic and
Bork, 2016) and the ggplot2 and ggtree packages in R (Wickham,
2009; Yu et al., 2018). KL and OCL genotypes of our isolates were
identified using the capsule identification program kaptive, based
on a curated A. baumannii specific database (Wyres et al., 2019;
Supplementary Table S1).

C' Susceptibility
Commercial (MP Biomedicals, United Kingdom) pooled human
serum was stored and used to determine susceptibility to C',
essentially as previously described (Loraine et al., 2018). Early
mid-logarithmic-phase Luria-Bertani (LB) broth cultures of
A. baumannii were washed three times with 200 µl of gelatin-
veronal-buffered saline containing Mg2+ and Ca2+ (GVB++;

pH 7.35) and suspended in 400 µl of GVB++. The suspensions
(200?µl) were mixed with 390 µl of pre-warmed (37◦C) normal
human serum to give a final concentration of ∼1 × 106 CFU,
the mixtures incubated at 37◦C for 3 h and bacteria quantified
by serial dilution and overnight incubation on LB agar (see
Supplementary Table S3 for all raw data). The 45 GC2 isolates
were exposed to 66% normal human serum and enumerated
bacterial survivors over a 3 h incubation period (Malke, 1986).
Isolates were assigned to one of three categories: resistant (R),
showing no (or only transient) reduction in viable count during
the incubation period; delayed susceptible (DS), displaying
significant (∼90%) survival after 1 h and low survival (<10%)
after 3 h incubation; the inocula of rapidly susceptible (S) isolates
were reduced to below 10% after 1 h incubation. All experiments
were performed in duplicate and results expressed as percent
survival over this time period. Pre-warmed, heat-inactivated
human serum (56◦C, 30 min) served as control. All raw data is
given in Supplementary Table S3.

Capsule Measurements
The size of the capsule for each isolate was determined by
negative staining with India ink, microscopic imaging and
calculation of the area occupied by the capsule using CellProfiler
image analysis software (v3.1.9; Lamprecht et al., 2007). One
bacterial colony was resuspended in PBS and mixed in a 1:1 ratio
with India Ink stain (BD India Ink Reagent Dropper) and applied
to a microscope slide with a coverslip. Microscopic imaging
with a Zeiss Axiostar plus transmitted light microscope fitted
with an Olympus SC30 digital camera and using a 100× oil
immersion lens and embedded scale bar. All raw data is given in
Supplementary Table S4.

Motility
Swarming and twitching motility were assayed by the subsurface
agar method (Clemmer et al., 2011) using LB broth containing
either 0.4 or 0.8% agar. Briefly, freshly grown cultures of
A. baumannii were stabbed to enable spread of bacteria on
the surface of 0.4% agar plates for swarming motility and the
interphase between the bottom of the Petri dish and the 0.8% agar
layer for twitching motility. The plates were incubated at 37◦C
for 48 h: positive swarming motility was defined as a zone greater
than 10 mm around the site of inoculation. For twitching motility
at the interstitial surface between the agar and the petri dish, the
agar was discarded, and bacteria visualized by staining stained
with 0.2% crystal violet. Positive twitchers were defined as those
cultures that showed a zone diameter greater than 5 mm. Assays
were performed a minimum of three times for each isolate. All
raw data is provided in Supplementary Table S5.

RESULTS

Major Lineages Are Circulating in the
Region
Phylogenetic analysis identified several lineages circulating in
all the three hospitals (Figures 1A,B). The majority of isolates
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belong to GC2 (n = 106/191), represented exclusively by sequence
type 2 (ST2) of the Pasteur scheme. No isolates belonging to GC1
were identified, a key clonal group in the evolution of multi-
drug resistance in A. baumannii (Holt et al., 2016). Non-GC2
isolates belonged to ST164 (n = 14; 7.3%), ST215 (n = 13; 6.8%),
ST16 (n = 9; 4.7%), ST25 (n = 6; 3.1%), ST129 (n = 6; 3.1%),
ST374 (n = 4; 2.1%), and ST10 (n = 2; 1.0%); three isolates
could not be sequence-typed, most likely due to low-quality
genomes, and thus missing one of the MLST alleles. The high
prevalence of GC2 and lack of GC1 of our dataset from 2016
closely resembles the population structure from the Vietnamese
hospital outbreak (Schultz et al., 2016) over the period 2009-12
(Figure 1C); both datasets include a considerable number of deep
branching lineages. These similarities in population structure
are also mirrored when comparing the distribution of pairwise
single-nucleotide polymorphisms (SNPs) between the datasets
from Vietnam and Thailand (Figure 1D).

Antimicrobial Resistance
Phenotypic resistance profiles for 115 of the strains confirmed the
very high levels of antibiotic resistance encountered with clinical
isolates of A. baumannii, especially against β-lactam agents (e.g.,
ceftriaxone: 115/115, 100%), including carbapenems (Figure 2A;
98/115, 85.2%), but also against other major antibiotic classes:
fluoroquinolones [98/115, 85.2% resistant/intermediate (R/I)],
aminoglycosides (79/115, 68.7% R/I) and trimethoprim (76/115,
66.1% R/I), and multidrug resistance was, as expected, associated
with a high number of acquired resistance genes (Figures 2A,C
and Supplementary Figures S1, S2) indicating either gain
through larger elements carrying several genes as previously
described as a key driver for A. baumannii resistance (Bonomo
and Szabo, 2006; Post and Hall, 2009). blaOXA−23, the most
prominent carbapenem resistance gene, is present in 85.2% of
imipenem resistant strains (Figure 2C). Few isolates carried
the blaNDM−1 gene and a low number of acquired ampC
genes were detected (Figure 2C and Supplementary Figure
S2). We also note the presence of the arr gene, as well as
rpoB mutations, conferring rifampicin resistance, one of the
last line antimicrobials used against CRAB (Thapa et al., 2009;
Durante-Mangoni et al., 2014).

Mobile Elements
All but ten isolates contained at least one of the plasmid
replicons (Supplementary Dataset S1) and 121 contained two to
maximal five (Figure 2B). The three plasmid replicons detected
at highest frequency were RepAci1, RepAci6, and RepApAB49.
Each of these plasmid types were found across a number of
STs, although RepAci1 plasmids were present in almost all the
ST2 isolates (102/106) and RepApAB49 was found in 12/14
ST164 isolates. Recently, a RepAci1 plasmid was shown to
be mobilized by a co-residing conjugative RepAci6 plasmid
(Blackwell and Hall, 2019), and these two replicons co-occur in
the genomes of 56 isolates; RepAci6 only was detected in one
isolate, and RepAci1 only in 46. RepAci6 plasmids were the most
common self-transmissible plasmids detected. Plasmid replicons
detected frequently included those matching pRAY∗, which is
often associated with the aadB gene (Hamidian et al., 2012),

RepAci3, p3ABAYE, pABTJ2, and RepAci9. RepMAci9 was
detected in all thirteen ST215 isolates. Seven plasmid types were
present in low frequency (Figure 2B) and an additional fifteen
plasmid sequences were not detected in the Thai collection
(Supplementary Dataset S1).

Genes Associated With Capsules and
Outer Core
A. baumannii does not contain genes involved in
lipopolysaccharide (LPS) O-antigen ligase activity (Kenyon
and Hall, 2013; Weber et al., 2015), synthesizing instead
a lipooligosaccharide (LOS) consisting of an outer core
oligosaccharide (OCL) linked to Lipid A (Kenyon and Hall, 2013;
Kenyon et al., 2014a); at least twelve distinct OCL structures
have been inferred from genomic data (Kenyon et al., 2014b).
We mapped all Thai isolates against an A. baumannii specific
databases for capsular and LOS loci (KL and OCL, resp.;
Supplementary Figure S3; Wyres et al., 2019). In similar fashion
to the Vietnam study (Schultz et al., 2016), we noted a high
diversity of KL within both GC2 and non-GC2 isolates. KL6
(15.2%), KL10 (15.7%), KL47 (11.0%), KL2 (8.4%), KL52 (7.9%),
KL3 (7.3%), KL49 (6.3%), KL24 (5.8%), KL14 (3.1%), and KL28
(2.1%) were frequently encountered and KL32, KL63, KL57, KL8,
KL108, KL19, KL113, KL116, KL60, KL43, KL37, KL9, KL125,
and KL7 were represented in 2% or fewer isolates. KL could not
be determined in 15 isolates (7.9%). KL2 and KL49 were found
at least twice in the Vietnam isolates although we did not detect
KL58, strongly represented in Schultz et al. (2016). Eight distinct
capsule loci in our GC2 isolates were detected in isolates from
all three hospitals during April 2016 and provide a challenge for
novel therapies targeting bacterial cell surfaces. Furthermore,
seven distinct LOS loci were detected amongst the Thai isolates
(Supplementary Figure S3 and Supplementary Table S1). The
majority of GC2 isolates carried genes for OCL1 biosynthesis (91
isolates, 85.8% of all GC2 isolates, 61.8% total), whilst the other
types, OCL2 (6.8%), OCL3 (4.2%), OCL4 (1.6%), OCL5 (15.7%),
OCL6 (4.7%), and OCL7 (5.2%) were also widely distributed
amongst our isolates; there was, however, no clear association
between K- and LOS-types (Figure 3).

Linking Virulence-Associated Phenotype,
Site of Isolation, and Genotype in GC2
We examined 45 GC2 isolates belonging to the major capsule
types identified in the Thai collection: KL10 (eight isolates),
KL2 (4), KL3 (2), KL47 (2), KL49 (5), KL52 (2), and KL6 (22).
Although A. baumannii strains lack flagella, the species displays
type IV-mediated twitching motility that facilitates spreading on
abiotic surfaces (Vijayakumar et al., 2016), and it has been linked
to the capacity of strains to cause systemic infection (Harding
et al., 2018). Only six of our 45 GC2 isolates were derived
from blood samples but all displayed twitching motility (Table 1,
Supplementary Table S5, and Figure 3A). In contrast, none of
six tissue isolates and only a minority of sputum isolates (10/33)
were motile in this fashion. The capacity to swarm on semi-solid
agar (surface-associated motility; Harding et al., 2018) can also
be linked to a more virulent phenotype (Eijkelkamp et al., 2011;

Frontiers in Microbiology | www.frontiersin.org 5 April 2020 | Volume 11 | Article 548

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-11-00548 April 6, 2020 Time: 12:50 # 6

Loraine et al. Genomics of Acinetobacter baumannii Isolates

FIGURE 2 | Phenotypic resistance of A. baumannii at high levels for all antimicrobial classes. (A) Resistance phenotypes measured on site at time of isolation clearly
demonstrate the highly problematic levels of resistance in A. baumannii, with > 70% non-sensitive against all tested classes. TZP, piperacillin-tazobactam; CFZ,
cefazolin; CXMA, cefuroxime axetil; CRO, ceftriaxone; FEP, cefepime; DOR, doripenem; IPM, imipenem; MEM, meropenem; GEN, gentamicin; CIP, ciprofloxacin;
TET, tetracycline; SXT, trimethoprim-sulfamethoxazole. (B) Distribution of plasmids carried by A. baumannii in relation to sequence type (ST). (C) Distribution of
acquired antimicrobial resistance genes carried by A. baumannii in relation to sequence type (ST).

Tipton and Rather, 2017). 24/45 of the Thai GC2 isolates
displayed surface-associated (swarming) motility; 6/6 of these
were from tissue samples and 18/33 from sputum (Table 1
and Figure 3A). Three isolates from sputum exhibited both
forms of motility.

Many loci that have been linked to the capacity of
A. baumannii to colonize, invade and disseminate within
the host, such those encoding adhesins, capsules, quorum
sensors, iron sequestering systems and other nutrient scavengers
(Harding et al., 2018), are essential or advantageous for survival
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FIGURE 3 | Properties of 46 GC2 A. baumannii Thai isolates belonging to the common capsule genotypes encountered in this study. (A) Motility measurements,
capsule size, and C' susceptibility in phylogenetic context. (B) C' resistance profiles stratified by capsule type.
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TABLE 1 | Properties of GC2 A. baumannii clinical isolates.

Thai strain ID Hospital KL OCL ST Sample source Motility (mm) C' Susceptibilityb

Swarmingc Twitchingd

ABMYSP-109 Thamma KL10 OCL1 2 Sputum ≤10 15 R

ABMYH-1245 Thamm KL10 OCL1 2 Blood ≤10 10 R

ABAPSP-55 Thamm KL10 OCL1 2 Sputum ≤10 5 R

ABAPSP-64 Thamm KL10 OCL1 2 Sputum 12 12 R

ABMYSP-101 Thamm KL10 OCL1 2 Sputum ≤10 5 R

ABMYSP-182 Thamm KL10 OCL1 2 Sputum 14 <5 R

ABMYSP-187 Thamm KL10 OCL1 2 Sputum 14 <5 R

ABMYH-797 Thamm KL10 OCL1 2 Blood ≤10 10 R

AB1039 Songkla KL2 OCL1 2 Sputum 19 <5 S

AB1492-09 Songkla KL2 OCL1 2 Sputum 16 <5 R

AB3396 Songkla KL2 OCL1 2 Tissue 15 <5 R

AB4452-09 Songkla KL2 OCL1 2 Sputum ≤10 <5 DS

AB11 Siriraj KL3 OCL1 2 Sputum ≤10 <5 R

ABJNH-403 Thamm KL3 OCL1 2 Blood ≤10 10 R

AB15 Siriraj KL47 OCL1 2 Sputum 15 5 R

ABAPP-61 Thamm KL47 OCL1 2 Tissue 15 <5 R

AB8 Siriraj KL49 OCL1 2 Sputum 15 <5 R

AB14 Siriraj KL49 OCL1 2 Sputum 17 <5 R

AB724 Songkla KL49 OCL1 2 Sputum 14 <5 R

AB1719-09 Songkla KL49 OCL1 2 Tissue 15 <5 R

AB2792 Songkla KL49 OCL1 2 Blood ≤10 10 R

AB1 Siriraj KL52 OCL1 2 Tissue 14 <5 R

ABMYSP-444 Thamm KL52 OCL1 2 Sputum ≤10 5 R

AB6 Siriraj KL6 OCL1 2 Sputum 18 <5 R

AB7 Siriraj KL6 OCL1 2 Sputum 17 <5 R

AB9 Siriraj KL6 OCL1 2 Sputum 18 5 S

ABMYSP-185 Thamm KL6 OCL1 2 Sputum ≤10 5 R

ABMYSP-216 Thamm KL6 OCL1 2 Sputum 16 <5 R

ABMYH-1652 Thamm KL6 OCL1 2 Blood ≤10 5 R

ABMYSP-475 Thamm KL6 OCL1 2 Sputum 18 <5 R

ABMYSP-477 Thamm KL6 OCL1 2 Sputum 15 <5 R

ABMYSP-479 Thamm KL6 OCL1 2 Sputum 15 <5 R

ABMYSP-517 Thamm KL6 OCL1 2 Sputum ≤10 <5 R

ABMASP-366 Thamm KL6 OCL1 2 Sputum ≤10 5 R

ABMASP-379 Thamm KL6 OCL1 2 Sputum ≤10 13 R

ABMASP-491 Thamm KL6 OCL1 2 Sputum ≤10 <5 R

ABAPSP-195 Thamm KL6 OCL1 2 Sputum ≤10 <5 R

ABAPU-469 Thamm KL6 OCL1 2 Tissue 11 <5 R

ABAPU-722 Thamm KL6 OCL1 2 Tissue 16 <5 R

ABMYSP-494 Thamm KL6 OCL1 2 Sputum 16 <5 R

ABMYSP-6 Thamm KL6 OCL1 2 Sputum 16 <5 S

ABMYSP-207 Thamm KL6 OCL1 2 Sputum ≤10 <5 R

ABMYSP-210 Thamm KL6 OCL1 2 Sputum ≤10 <5 S

ABMYSP-245 Thamm KL6 OCL1 2 Sputum ≤10 <5 R

ABMYH-1033 Thamm KL6 OCL1 2 Blood ≤10 10 R

aThamm: Thammasat Hospital; Songkla: Songklaragarind Hospital; Siriraj: Siriraj Hospital. bComplement reactivity: R, Resistant; DS, Delayed susceptible; S, Rapidly
susceptible. cValues less than 10 mm are considered negative (Vijayakumar et al., 2016). dValues less than 5 mm are considered negative (Vijayakumar et al., 2016).

in its natural habitat, predominantly soil and water (Baumann
et al., 1968). The distribution of genes based on a publicly
available virulence factor database is shown in Supplementary
Figure S4, but whilst there are clear differences, no trend (for

example increased prevalence in GC2) could be observed. As
expected, siderophores, adhesins involved in biofilm formation
and maintenance, and a variety of genes determining capsule
biosynthesis are widely distributed among the isolates.
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GC2 Capsule Size Correlates With
Survival in Human Serum
A large proportion (40/45, 88.9%) were refractory to C'-
mediated killing; of the remainder, only four were categorized
as S (Table 1). All KL10, KL3, KL47, KL49, and KL52
isolates belonged to the R group, with only KL2 (2/4)
and KL6 (3/23) capsule types displaying any degree of C'
susceptibility (Figures 3A,B). All 45 GC2 isolates examined
were encapsulated. The C' susceptible isolates elaborated
significantly smaller capsules than R A. baumannii (R, mean
1.62 mm2; DS, 0.31 mm2; S, 0.81 mm2); all capsule locus
predictions however showed a perfect or almost perfect match,
emphasizing that the capsule biosynthesis locus is likely intact
(Figure 3A). Capsules containing sialic acids protect Gram-
negative bacteria from C' attack (Rautemaa and Meri, 1999),
and N-acetylneuramininc acid and related non-ulosonic and
sialic acid structures have recently been found as repeat-
unit constituents or as modifications of capsule structures
in hypermucoviscous K. pneumoniae (Lin et al., 2014) and
A. baumannii (Vinogradov et al., 2014; Kenyon et al., 2015;
Singh et al., 2018), and associated with increased infectivity.
Biosynthesis of sialic acids begins with the conversion of UDP-
N-acetylglucosamine to UDP and N-acetylmannosamine by
the hydrolyzing 2-epimerase NeuC; a homolog of this enzyme
has been described for A. baumannii and its crystal structure
determined (Ko et al., 2018). In our set of genomes, the neuC
homolog (A0A154EJU5_ACIBA) was found only in the genomes
of the five C' resistant isolates carrying genes for biosynthesis
of the K49 capsular polysaccharide and is indeed a component
of the KL49 locus and should thus correctly be annotated as lgaC;
the repeat unit of the K49 capsular polysaccharide is composed
of α-L-fucosamine, α-D-glucosamine and the non-ulosonic acid
α-8-epi-legionaminic acid (Vinogradov et al., 2014).

OmpA, one of most abundant porins, is also known to bind
factor H in human serum (Kim et al., 2009), and implicated to
prevent C' mediated killing; it is however present in all our GC2
strains (Supplementary Figure S4). A more detailed analysis
of putative factors explaining the phenotypes (type IV pili,
surface proteins, secretion systems, biofilm formation (Weber
et al., 2015; Lee et al., 2017; Supplementary Table S6) of the
47 GC2 isolates showed no differences that correlated with any
of the phenotypes tested. We also included sequence analyses
of PilA, which has been shown to influence twitching motility
(Ronish et al., 2019), however, the sequences from all phenotyped
isolates were identical.

DISCUSSION

Multi-drug resistant A. baumannii infections are rapidly
increasing and require the use of last-line treatments such as
colistin. An additional challenge further narrowing the spectrum
of available options for highly resistant A. baumannii infections is
that last-line treatments available often overlap with other highly
problematic infections. One example is the use of rifampicin in
combination with colistin against CRAB, which is also one of
the last options to treat the increasing number of multi-drug

resistant tuberculosis (MDR TB) cases, and use of rifampicin is
therefore restricted in use against organisms other than MDR
TB (Thapa et al., 2009; Durante-Mangoni et al., 2014; Leite et al.,
2016; Seijger et al., 2019). There is therefore a growing interest
in the potential of non-antibiotic therapeutic approaches
including bacteriophage-derived capsule depolymerases
as treatment alternative to antimicrobial chemotherapy
(Waldor et al., 2005; García-Quintanilla et al., 2013;
Seijger et al., 2019).

We present the analysis of a set of 191 A. baumannii clinical
isolates from three major hospitals in Thailand with very high
levels of drug resistance. The population structure is biased
toward the major clone GC2, as has been observed in other
studies in geographic proximity (Schultz et al., 2016). However,
the inter-mixed origins of closely related isolates from all three
hospitals clearly indicates that both GC2 as well as less dominant
sequence types are circulating in the region, and are frequently
(re)introduced into hospitals, as opposed to a clonal outbreak
within one hospital. In addition to the phylogenetic diversity
(almost 50% non-GC2 isolates) and the even spread across the
three hospitals, we show that there is a high degree of strain-
to-strain capsule variability, and development of depolymerase
therapeutics will need to account for the challenge of a wide range
of capsule types. Nevertheless, a recent study has demonstrated
the potential of capsule depolymerase against A. baumannii in
a Galleria mellonella (wax moth) larvae infection model and
protection of both normal and immunocompromised mice from
lethal peritoneal sepsis (Liu et al., 2019a).

The enzyme also sensitized the C'-resistant isolate to serum
(Liu et al., 2019b), which is highly relevant as the large majority of
our GC2 isolates (40/45) were C' resistant, in similar proportion
to other recent studies (Sanchez-Larrayoz et al., 2017; Skerniškytë
et al., 2019). LPS O-side chains prevent assembly of the C5b-
9 complex by steric hindrance; A. baumannii however does
not decorate its LOS with O-side chains but is able to modify
the lipid A moiety of LOS by acylation, resulting in increased
survival in blood (Bartholomew et al., 2019), which could prevent
C5b-9 intercalation into the bilayer. Alternatively, there is some
evidence that A. baumannii may prevent C' activation: resistant
clinical isolates bound fH, a key inhibitor of the alternative C'
pathway (Kim et al., 2009), preventing C5b-9 generation. King
et al. (2009) found that clinical isolates did not bind fH but
circumvented C3b deposition, again preventing C5b-9-mediated
bacterial killing. Cell surface-located sialic acids are potent
recruiters of fH and we therefore examined Thai GC2 isolates
for evidence of neuC-dependent sialyl biosynthesis. The neuC
homolog is part of the KL49 locus, however, non-ulosonic acid
sugars are also found in the K2 and K6 types (Kenyon and Hall,
2013), which have C' sensitive as well as resistant phenotypes.

Current evidence indicates that C' killing of susceptible
A. baumannii proceeds predominantly through the activation
of the alternative pathway (Kim et al., 2009; Jacobs et al., 2010;
Sanchez-Larrayoz et al., 2017). The lack of classical pathway
killing may be due to the absence of C'-activating IgG or IgM
directed against A. baumannii surface structures in normal
human serum, suggesting that the predominant means to avoid
bactericidal effects is prevention or subversion of activation of the
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alternative pathway. It is likely that the polysaccharide capsule
is the predominant macromolecule facilitating C' resistance
(Harding et al., 2018) and the four fully C' susceptible isolates in
the current study elaborated less capsule than the resistant group.
Capsule depolymerases as an alternative means of resolving
A. baumannii systemic infections would thus be worth exploring
but may be limited by the wide diversity of capsule types likely to
be encountered in current clinical isolates.

Whilst the current focus is placed on GC2, it is important to
point out that GC1 and GC2 seem to follow different strategies for
interacting with the immune system and hospital environment.
Whilst we report low motility and high C' resistance for GC2
and the associated genetic background, GC1 seems to follow
a very different route, with high motility profiles and different
adherence profiles than GC2 (Skerniškytë et al., 2019). It is
thus crucial to increase active surveillance of A. baumannii
epidemiology, as different high-risk lineages may need different
approaches to reduce their burden in the clinic.
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FIGURE S1 | Resistance genes and phenotypic resistance. The strains were
grouped according to the number of agents in the Vitek screen the respective
strains were resistant to, along the x-axis. The y-axis shows the number of strains
in the relevant class, the color of the bars shows resistance (dark purple),
intermediate (yellow), or sensitive (green) against the respective antimicrobial of the
subplot. This shows that almost all strains are resistant against 12 reagents,
sensitivity of the highly-resistant ones on the far end of the x-scale is only
occasionally in sulfonamides or tetracycline, but all are fully resistant against the
β-lactam class.

FIGURE S2 | Presence of genes encoding antibiotic resistance in Thai
A. baumannii isolates. The guidance tree is shown in Figure 3A. Bla,
β-lactamases; AGly, aminoglycosides; MLS, macrolides; Phe, chloramphenicol;
Rif, rifampin; Sul, sulfonamides; Tet, tetracycline; Tmt, trimethoprim. AMR genes
were sourced from the curated version of the ARG-ANNOT database available at
the SRST2 site. Isolates from Thammasat University Hospital, Siriraj Hospital, and
Songklanagarind Hospital are designated TU, Siriraj, and Songkla, respectively.
Sequence types are shown, as indicated in the legend. Chromosomal mutations
for RpoB are also shown, we could detect potential resistance-conferring changes
(Giannouli et al., 2012; Pérez-Varela et al., 2017) D525N, H535Q, and S540F.

FIGURE S3 | Cell surface polysaccharide diversity of A. baumannii Thai isolates.
Capsular (KL) and outer core loci (OCL) in silico typing of Thai isolates.
A. baumannii shows considerable variation in K-type and a more conserved
distribution of OCL-types.

FIGURE S4 | Virulence genes associated with Thai A. baumannii isolates. The
guidance tree is shown in Figure 3A. Antibiotic resistance genes were detected
with the curated version of the ARG-ANNOT database available at the SRST2 site
using ARIBA. Isolates from Thammasat University Hospital, Siriraj Hospital, and
Songklanagarind Hospital are designated TU, Siriraj, and Songkla, respectively.
Sequence types are shown, as indicated in the legend.

TABLES S1–S6 | Properties of A. baumannii isolates.

DATASET S1 | The custom-made plasmid replicon collection used to assign
plasmid types to A. baumannii.
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