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Abstract

Background

Dyslipidemia and abnormal glycemic traits are leading causes of morbidity and mortality.

Although the association between the two traits is well established, there still exists a gap in

the evidence for the direction of causality.

Objective

This study aimed to examine the direction of the causal relationship between lipids and gly-

cemic traits in an Indian population using bidirectional Mendelian randomization (BMR).

Methods

The BMR analysis was conducted on 4900 individuals (2450 sib-pairs) from the Indian

Migration Study. Instrument variables were generated for each lipid and glycemic trait (fast-

ing insulin, fasting glucose, HOMA-IR, HOMA-β, LDL-cholesterol, HDL-cholesterol, total

cholesterol and triglycerides) to examine the causal relationship by applying two-stage least

squares (2SLS) regression in both directions.

Results

Lipid and glycemic traits were found to be associated observationally, however, results from

2SLS showed that only triglycerides, defined by weighted genetic risk score (wGRS) of 3

SNPs (rs662799 at APOAV, rs780094 at GCKR and rs4420638 at APOE/C1/C4), were

observed to be causally effecting 1.15% variation in HOMA-IR (SE = 0.22, P = 0.010),

1.53% in HOMA- β (SE = 0.21, P = 0.001) and 1.18% in fasting insulin (SE = 0.23, P =
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0.009). No evidence for a causal effect was observed in the reverse direction or between

any other lipid and glycemic traits.

Conclusion

The study findings suggest that triglycerides may causally impact various glycemic traits.

However, the findings need to be replicated in larger studies.

Introduction

Circulating lipids and glycemic traits are established risk factors for cardiometabolic disorders,

a leading cause of morbidity and mortality. Dyslipidemia refers to high levels of triglycerides,

total cholesterol, Low Density Lipoprotein-Cholesterol (LDL-C) and low levels of High Den-

sity Lipoprotein-Cholesterol (HDL-C). The prevalence of at least one of these conditions in

India is as high as 79% [1]. An abnormal glycemic profile can indicate an insulin resistant

state, pancreatic-β cell dysfunction, and imbalance in insulin and glucose levels. The preva-

lence of abnormal glycemic traits in India ranges from 11.2% to 12.8% [2, 3]. Both traits are

highly heritable, ranging from 28% to 78% for serum lipid traits [4] and 10% to 75% for glyce-

mic traits [5]. It has recently been hypothesized that the Homeostasis Model Assessment–Insu-

lin Resistance (HOMA-IR) level is an important risk factor for dyslipidemia based on a study

on 108 Turkish children [6]. Insulin plays an important role in altering lipids by inducing the

synthesis, activation of lipoprotein lipase (LPL) and lipogenic enzymes which regulate the

transport and metabolism of triglycerides [7–9]. On the contrary, there also exists evidence

that triglyceride synthesis is independent of insulin resistance, insulin action or the levels of

insulin [10].

The role of triglycerides in dysregulation of glucose metabolism and other glycemic traits

has been extensively examined recently [11]. Reduced HDL-C and increased triglycerides have

been reported to associated with an increase in fasting insulin secretion over 3.5 years in an

European cohort [12]. Similarly, stimulatory action of excess triglycerides on β-cell release of

insulin was observed in a multiethnic cohort of adolescents [13]. However, no such association

between triglycerides and β-cell activity was observed in a retrospective study in a study on

Italian growth data [14], however they did find HDL-C to be inversely associated with β-cell

insulin secretion. Similar findings from a Chinese adult cohort, strongly suggests that dyslipi-

demia leads to insulin resistance (IR) mediated through altered insulin levels [15]. Although,

dyslipidemia is known to be adversely associated with the mediators of T2D, the genetic risk of

elevated triglycerides has been reported to be protective for Type 2 Diabetes in some studies

[16–18]. Animal models support the role of inhibition of a key lipolytic enzyme, adipose tri-

glyceride lipase (ATGL) in affecting insulin resistance [19, 20]. Further, Lipid biomolecules

have demonstrated the potential to alter the activity of pancreatic-β cells, hence, insulin levels

and also insulin signaling pathways [21–28].

Though, the observational association between lipids and glycemic levels is inevitable [6,

11, 12], the direction of the causal relationship between the two is still debatable due to inher-

ent weaknesses of observational studies such as confounding and reverse causation. Moreover,

the evidences suggest mechanistic pathways also in both the directions [7, 9, 19, 20]. Establish-

ing the direction of causality is of global public health importance to improve the understand-

ing of the patho-physiology of the cardiometabolic diseases and provide a deeper clinical
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insight. This is further more required in the developing countries with huge unaddressed bur-

den of cardiometabolic disorders and unique manifestations.

Thus, with the aim of identifying the direction of causality between the lipid and glycemic

levels, a widely used approach akin to randomized controlled trials (RCTs), based on genetic

variants, was undertaken on sample from the Indian Migration Study (IMS). A bidirectional

Mendelian randomization (BMR) approach, based on natural randomization of genes at the

time of birth, independent of confounders and other environmental factors, employs instru-

ments derived from genetic variants as proxies for an exposure in the causal pathway, thereby

addressing the problems of reverse causality and confounding. Thus, the present study was

designed to understand the nature and direction of causality between lipids and glycemic traits

among Indians using BMR to assess if increase/decrease in lipids lead to imbalance in glycemic

traits or if alteration in lipid levels are a consequence of increase/decrease in glycemic traits.

Methods

Study population

The IMS is a cross-sectional population based sib-pair study [29, 30], with the participants

recruited during the year 2005–2007 from factories located in four Indian cities—Lucknow,

Nagpur, Hyderabad and Bangalore (S1 Appendix). The IMS was ethically approved by the All

India Institute of Medical Sciences (AIIMS), New Delhi (reference number A-60/4/8/2004).

All the all methods were performed in accordance with the national ICMR guidelines and reg-

ulations. Pre-informed written consent was obtained from each participant to use their de-

identified phenotypic and genotypic data for research purposes in the future. The genetic

study on which the current analyses is based, was ethically approved by London School of

Hygiene and Tropical Medicine, UK (Ref. No. 5276) and Centre for Cellular and Molecular

Biology, India (Ref. No. IEC/CCMB28/2008/6th Feb 2008). For the given analysis, a total of

4900 individuals (2450 sib-pairs) were included, from an initial 7067 participants, after exclud-

ing singletons, diabetics and CVD participants and those who had poor genotype data (Fig 1).

Study procedures & measurements

Phenotyping details are described in the S1 Appendix. Fasting serum samples were used for gen-

erating data on fasting insulin and lipid levels including HDL-C, total cholesterol and triglycerides

[30]. Fasting glucose was measured in fluoride plasma samples in local labs [30]. Estimation of

LDL-C was done using the Friedewald-Fredrickson formula [31]. HOMA scores (HOMA-IR and

HOMA-β, measures for insulin resistance and pancreatic β-cell activity respectively) were calcu-

lated using standard equations [32]. Data on diet, physical activity, alcohol consumption and

tobacco smoking were recorded using interviewer-administered questionnaires [30].

Genotyping and SNP selection

The candidate single nucleotide polymorphisms (SNPs) related to lipid and glycemic levels

were genotyped on IMS participants using Sequenom Mass ARRAY during 2009–2010, based

on the knowledge available at that time (see S1 Appendix for details). The detailed explanation

of the genotyping method has been described previously [33, 34].

For the given study, data for total of 44 SNPs were available; 35 for glycemic traits [33] and

9 for lipid traits [34] in the IMS sample. Deviation from Hardy-Weinberg equilibrium (HWE)

was tested using exact test on unrelated participants (only factory workers and spouses, sibs

were excluded), in the overall IMS sample, as well as stratified for study sites. Any SNP that

deviated from HWE (p<0.001 after Sidak correction) was excluded from the analysis.
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The study was >80%powered to detect a Quantitative Trait Loci (QTL) explaining upt o

1% variation of a trait as derived using the Genetic Power Calculator using the ‘‘QTL associa-

tion for sibships and singletons” [35], given the sample size of 2450 sib-pairs, α = 0.05 and

Minor Allele Frequency (MAF) ranging from 1% to 45% (Table C in S1 Appendix). Using the

mRnd Power calculator for MR analyses, the present study was65–68% powered to study

1–1.5% variation in the outcome trait, with instrument explaining 1% variation in the expo-

sure among 2450 sib-pairs at α = 0.05.

Statistical analyses

All of the analyses were performed in STATA v13.1. The quantitative traits were appropriately

transformed depending upon the distribution. HOMA-IR, HOMA-β, fasting insulin and tri-

glycerides, not being normally distributed, were log-transformed. All the variables were further

standardized to facilitate comparability between coefficients.

As a preliminary step, the observational association between the lipid and glycemic traits

was tested in both the directions using mixed linear model (to account for clustering due to

family-effects) adjusted for age, sex, study site location and BMI (forced confounders). Further,

the regression models were adjusted for dietary factors including daily energy intake, daily car-

bohydrate intake, daily fat intake; physical activity [Metabolic Equivalent of Task (MET)hrs/

day]; alcohol consumption and tobacco smoking.

The genetic variants for lipid and glycemic levels were validated using adjusted mixed linear

model, after accounting for family effects using an orthogonal family-based method described

by Fulker [36]. Efforts were made to robustly check the three MR assumptions– 1. Genetic var-

iants (SNPs) should be associated with the exposure of interest, 2. SNPs should be associated

with the outcome, conditional on the exposure only and 3. SNPs should not be associated with

Fig 1. Sampling strategy for present analyses from Indian Migration Study.

https://doi.org/10.1371/journal.pone.0228269.g001
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the confounders (see S1 Appendix for details). The SNPs that met all the assumptions were

used for generating weighted genetic score(wGRS) using the equation shown below (1), where

w and a represents the weight or the effect size and number of risk alleles respectively. The

wGRS were then tested for association with the traits using the orthogonal Fulker method [36]

and checked for all the MR assumptions.

Weighted Genetic Risk Score ðwGRSÞ ¼ ðw1 x a1Þ þ . . . . . . :þ ðwi x aiÞ ð1Þ

BMR was performed by Instrument Variable (IV) analysis using the generated instruments

(wGRS) wherein the 2 Stage Least Square (2SLS) method was employed (Fig 2). This was done

using xtivregress in Stata (xt was used to account for clustering due to family effects).

As in the association analyses, the mixed models were adjusted for age, sex, site and location

and BMI. Further, adjustments for daily fat intake, daily carbohydrate intake, daily energy

intake, physical activity (MET hrs/day), alcohol consumption and smoking were done in the

second model. Endogeneity of the instruments was tested using the Durbin-Hausman test in

which the estimates from the Ordinary Least Square (OLS) method were compared to that of

2SLS method using hausman command in Stata.

Finally, sensitivity analyses using different instruments as combinations of SNPs and indi-

vidual SNPs was performed between the exposures and outcomes that were observed to be

causally associated in IV analyses. Additionally, the SNPs showing a statistically significant

causal association were tested for exclusion restriction criteria using inverse-variance weighted

method of MR-Egger using the mregger command in Stata.

Results

The basic demographic and clinical characteristics of all the 4900 study participants (2450 sib-

pairs) are described in Table 1. The mean age of the participants is 39years. 43.04% individuals

were females and overall 62.35% were urban residents. Males reported a comparatively higher

mean for most of the risk-factors (Table 1). Tables A and B in S1 Appendix shows the observa-

tional association between lipid and glycemic traits in the IMS where associations were seen in

both directions.

Fig 2. Pictorial explanation of the application of Bidirectional Mendelian Randomization in the present analyses.

https://doi.org/10.1371/journal.pone.0228269.g002
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Out of 35 variants, five glycemic related SNPs deviated from HWE (Table C in S1 Appen-

dix) and were excluded from the analysis. Therefore, 30 SNPs for glycemic traits and all 9

SNPs for lipid traits were included in the causal analysis. We could validate 7 SNPs for lipid

levels (Table D in S1 Appendix) and 5 SNPs for glycemic traits (Table E in S1 Appendix).

These validated SNPs were used to generate wGRS after testing for MR assumptions for exclu-

sion restriction (Tables F—G in S1 Appendix) and association with confounders (Table H in

S1 Appendix).

Two separate instruments were generated for total cholesterol using variants at APOAV,

APOB and LDLR loci. As one of the variants for total cholesterol in APOAV was found to be

associated with HOMA-β (violating MR assumption of exclusion restriction), a separate

instrument using only APOB and LDLR variants was used for examining its causal effect of

total cholesterol on HOMA-β. The wGRS was generated for triglyceride using variants at

APOAV, GCKR and APOE/C1/C4 and for LDL-C using variants at APOB and LDLR loci. No

Table 1. Baseline characteristics of the IMS participants.

Characteristics Total (N = 4900) Male (N = 2791) Female (N = 2109) p-value�

Age (Years) $ 39.48 (10.26) 40.08 (10.55) 38.68 (9.80) 0.7212

Gender †

Male 2791 (56.96) - -

Female 2109 (43.04) - -

Location † <0.001

Urban 3055 (62.35) 1560 (55.89) 1495 (70.89)

Rural 1845 (37.65) 1231 (44.11) 614 (29.11)

Site † <0.001

Bangalore 844 (17.22) 450 (16.12) 394 (18.68)

Hyderabad 1290 (26.33) 643 (23.04) 647 (30.68)

Nagpur 1362 (27.80) 858 (30.74) 504 (23.90)

Lucknow 1404 (28.65) 840 (30.10) 564 (26.74)

Fasting Glucose (mmol/l)$ 4.99 (0.64) 5.013 (0.66) 4.97 (0.62) 0.0369

Fasting Insulin$ (mmol/l)‡ 1.66 (0.86) 1.63 (0.88) 1.70 (0.84) 0.0073

HOMA-IR$‡ 0.15 (0.89) 0.12 (0.90) 0.18 (0.86) 0.019

HOMA-β$‡ 4.36 (0.98) 4.32 (1.01) 4.40 (0.93) 0.0035

Total cholesterol (mmol/l)$ 4.67 (1.13) 4.63 (1.13) 4.73 (1.13) 0.0013

Triglycerides$(mmol/l) ‡ 0.25 (0.44) 0.28 (0.45) 0.20 (0.43) <0.001

HDL cholesterol (mmol/l)$ 1.17 (0.25) 1.15 (0.25) 1.20 (0.25) <0.001

LDL cholesterol (mmol/l)$ 2.86 (0.99) 2.81 (0.99) 2.92 (1.00) 0.0001

BMI (kg/m2)$ 23.45 (4.46) 22.88 (3.92) 24.20 (4.99) <0.001

Total Physical Activity/ day (MET h/day)$ 38.97 (4.65) 39.76 (4.89) 37.93 (4.07) <0.001

Average daily carbohydrate intake (g/day)$ 460.11 (155.93) 499.82 (164.11) 407.57 (126.55) <0.001

Average daily fat intake (g/day)$ 84.03 (36.36) 90.58 (38.86) 75.37 (30.70) <0.001

Average daily energy intake (kcal/day)$ 2929.18 (1005.81) 3182.74 (1055.15) 2593.617 (824.48) <0.001

Alcohol consumption (Yes)† 758 (15.47) 676 (24.22) 82 (3.89) <0.001

Smoker (Yes)† 490 (10) 485 (17.38) 5 (0.24) <0.001

$ All continuous variables are reported as Mean (SD) and †categorical as n (%)
�

Test of comparison (t-test and χ2 test depending upon variable) between groups, p<0.05 signifies the groups are different for the variable

‡Geometric Mean

The measures are adjusted for clustering due to sibling effect; there are missing values for variables except age, gender, site and location

https://doi.org/10.1371/journal.pone.0228269.t001
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valid instrument could be generated for HDL-C as none of the SNPs met all the assumptions.

For glycemic traits, wGRS combining variants at ADAM30 and CDKN2A was used as an

instrument for HOMA-IR and fasting insulin. wGRS generated by combining variants at

CDKAL1 and TCF7L2 were used as an instrument for fasting glucose. A single SNP at

ADAM30 associated with HOMA-β was used as its instrument.

The instruments generated were significantly associated with their respective traits, cumu-

latively showing greater effect (Table I in S1 Appendix). The instruments were also tested for

associations with their outcome and confounders to rule out pleiotropic effects (Table I in S1

Appendix). All the instruments followed all the 3 MR assumptions (Table I in S1 Appendix)

and were thus used for IV analyses.

The results of the 2SLS method of IV analysis are reported in Tables 2 and 3. Only triglycer-

ides showed positive causal effects on different glycemic traits, except fasting glucose (Table 2).

Every 1% increase in triglyceride levels were observed to be causally associated with 1.15% var-

iation in HOMA-IR score (β = 0.57, SE = 0.22, p = 0.010), 1.53% variation in HOMA-β score

(β = 0.69, SE = 0.21, p = 0.001) and 1.18% variation in fasting insulin level (β = 0.60, SE = 0.23,

p = 0.009). Even after additionally adjusting for lifestyle factors like diet, physical activity, alco-

hol consumption and smoking, significant causal associations were found (Table 2). Since

association between lipid and glycemic traits is evident in observational analyses, we did not

apply a multiple testing correction (MTC) in IV analyses. However, even after accounting for a

MTC (level of significance = 0.003), a causal effect was evident between triglycerides and

HOMA- β. The effect estimate from the 2SLS analysis was significantly less as compared to

estimate from associations between phenotypic traits as seen from Durbin-Hausman test

(Table J in S1 Appendix). However, since most of the p-values are less than 0.001 in 2SLS, it

signifies that results from MR analyses and observational analyses (Durbin-Hausman test) are

significantly different. No evidence could be generated favoring causal relationship between

any other lipid and glycemic traits (Table 2). Further, no significant evidence was observed

favoring causality in reverse direction with glycemic traits affecting lipid levels (Table 3).

Table 2. Association of lipid traits (explained by instruments) with glycemic traits: Mendelian Randomization Analyses.

HOMA-IR HOMA-β Fasting Insulin Fasting Glucose

Instruments β (SE) p-value β (SE) p-value β (SE) p-value β (SE) p-value

TC (rs662799 + rs562338# + rs6511720$) Model1 0.28 (0.23) 0.235 † † 0.30 (0.24) 0.21 -0.08 (0.20) 0.699

Model2 0.21 (0.27) 0.426 † † 0.23 (0.26) 0.382 -0.09 (0.22) 0.699

TC (rs562338# + rs6511720$) Model1 0.18 (0.27) 0.514 0.00 (0.28) 0.991 0.16 (0.28) 0.556 0.12 (0.25) 0.637

Model2 0.11 (0.31) 0.720 -0.01 (0.21) 0.955 0.10 (0.31) 0.751 0.09 (0.28) 0.750

TG (rs662799 + rs780094 + rs4420638) Model1 0.57 (0.22) 0.010� 0.69 (0.21) 0.001� 0.60 (0.23) 0.009� -0.08 (0.20) 0.710

Model2 0.56 (0.21) 0.006� 0.66 (0.22) 0.002� 0.58 (0.21) 0.005� -0.02 (0.17) 0.917

LDL-C(rs562338# + rs6511720$) Model1 0.17 (0.23) 0.468 0.00 (0.23) 0.997 0.15 (0.23) 0.516 0.12 (0.23) 0.604

Model2 0.11 (0.27) 0.677 -0.04 (0.26) 0.875 0.10 (0.27) 0.721 0.10 (0.26) 0.715

TC- Total Cholesterol, TG–Triglycerides

Model1—Adjusted for Age, sex, site, location and BMI

Model2—Adjusted for Age, sex, site, location, BMI, average daily fat intake, average daily energy intake, average daily carbohydrate intake, MET Score/day, alcohol

consumption and smoking

β (SE)–Standardized coefficients i.e SD unit change in outcome per SD unit increase in exposure (Standard Error)
†SNP/Instrument associated with the outcome, even after adjusting for exposure, thus excluded from analyses as it did not meet MR assumption
#rs562338$rs6511720 were associated with Daily Fat intake and physical activity respectively, which were used as confounders in Model 2

�Level of significance p<0.05

https://doi.org/10.1371/journal.pone.0228269.t002
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The 3 SNPs used for score generation of triglycerides at APOAV, GCKR and APOE/C1/C4,

that showed a causal effect on glycemic traits, were further exposed to sensitivity analysis. The

wGRS of 3 SNPs were additionally tested for pleiotropy using the MR–Egger test. The signifi-

cance level of p = 0.410, found in MR-Egger test, signifies zero-intercept using the ivw option

(i.e. no directional pleiotropy); hence supporting the exclusion restriction assumption tested

using the traditional method (Table F in S1 Appendix). IV analyses were performed using all

possible combinations of the 3 triglyceride SNPs (Table 4) after checking these instruments for

their independent association with outcomes and confounders (Table K in S1 Appendix).

rs662799 at APOAV was observed to be significantly causally associated only with HOMA-β,

individually (β = 0.56, SE = 0.18, p = 0.002) and also in combination with rs4420638 at APOE/
C1/C4 (β = 0.44, SE = 0.18, p = 0.015) (Table 4). Single SNP, rs4420638 at APOE/C1/C4did not

show any significant causal effect individually with any of the glycemic trait. rs780094 at

GCKR was associated with HOMA-IR (β = 0.90, SE = 0.43, p = 0.037), HOMA-β (β = 1.06,

SE = 0.49, p = 0.031) and fasting insulin (β = 0.93, SE = 0.44, p = 0.034). The wGRS of

rs780094 at GCKR and rs662799 at APOAV was found to be associated with HOMA-IR (β =

0.81, SE = 0.31, p = 0.010), but did not follow the assumption of exclusion restriction for

HOMA-β and Fasting Insulin as the outcome (Table K in S1 Appendix). According to the sen-

sitivity analyses, rs662799 at APOAV appears to be the most robust instrument for triglycerides

for MR analyses.

Discussion

It is extremely important to establish causality, independent of confounding and reverse causa-

tion, to fully understand the pathogenesis of cardiovascular disease and to inform effective

interventions to prevent disease onset. BMR was applied to examine the direction of causality

between lipid and glycemic traits in a general Indian population of mean age of ~40 yrs. Using

conventional epidemiological methods, it was found that glycemic levels and lipid levels were

observationally associated. However, owing to effect of confounders and reverse causation, no

conclusion with regard to the direction of causation could be made from these associations.

Table 3. Association of glycemic traits (explained by instruments) with lipids: Mendelian Randomization Analyses.

Total Cholesterol Triglycerides HDL-C LDL-C

Instruments β (SE) p-value β (SE) p-value β (SE) p-value β (SE) p-value

HOMA-IR (rs2641348 + rs10811661) Model1 -0.33 (0.34) 0.331 0.36 (0.32) 0.267 0.20 (0.29) 0.476 † †

Model2 -0.30 (0.28) 0.280 0.36 (0.31) 0.242 0.22 (0.30) 0.457 † †

HOMA-β (rs2641348) Model1 -0.56 (0.62) 0.376 -0.14 (0.52) 0.785 0.76 (0.57) 0.185 -0.86 (0.53) 0.108

Model2 -0.60 (0.60) 0.313 -0.16 (0.56) 0.772 0.83 (0.75) 0.263 -0.87 (0.57) 0.128

FI (rs2641348 + rs10811661) Model1 -0.32 (0.33) 0.326 0.33 (0.31) 0.280 0.20 (0.28) 0.462 † †

Model2 -0.29 (0.26) 0.264 0.34 (0.30) 0.252 0.22 (0.29) 0.437 † †

FG (rs7756992#+ rs7903146) Model1 -013 (0.35) 0.720 0.63 (0.43) 0.146 0.43 (0.39) 0.267 -0.52 (0.37) 0.160
#Model2 -0.17 (0.32) 0.587 0.57 (0.40) 0.160 0.42 (0.39) 0.280 -0.53 (0.45) 0.243

FI- Fasting Insulin, FG- Fasting Glucose

Model1—Adjusted for Age, sex, site, location and BMI

Model2—Adjusted for Age, sex, site, location, BMI, average daily fat intake, average daily energy intake, average daily carbohydrate intake, MET Score/day, alcohol

consumption and smoking

β (SE)–Standardized coefficients i.e SD unit change in outcome per SD unit increase in exposure (Standard Error)

†SNP/Instrument associated with the outcome, even after adjusting for exposure, thus excluded from analyses as it did not meet MR assumption

#rs7756992 was associated with smoking that was used as confounder in Model 2

https://doi.org/10.1371/journal.pone.0228269.t003
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Conversely, the results from IV analysis method provided evidence suggesting the causal role

of triglycerides in increasing the different glycemic levels. No other lipid trait showed causal

association with any of the glycemic trait, or in the reverse direction. Thus our findings suggest

that an increase in triglyceride levels, explained by the related genetic instruments, casually

impacts levels of HOMA-IR, HOMA-β and fasting insulin even after adjusting for all possible

confounders.

Although the association between the lipid and glycemic traits has been established in

India, not enough evidence has been generated to examine the causal relationship. Animal

models indicate the role of increased triglycerides to have implications on insulin resistance

(IR) through defective beta-oxidation and mitochondrial dysfunction [37]. Attempts from lon-

gitudinal studies worldwide have also been made to establish causality. Findings of the present

analysis accord with the results from a Chinese cohort study of 3325 participants which reports

that an increase in triglycerides precedes an increase in insulin and IR status [15]. Also, in a

European cohort with 1016 non-diabetic volunteers of the age range 30–60 years (the charac-

teristics of the cohort being similar to the sample in the present analysis), it was observed that

an increase in triglycerides was associated with an increase in fasting insulin secretion over a

period of 3.5 years, thereby indicating that triglycerides may play a causal role in changes in

fasting insulin [12]. It was also observed in the Danish Inter99 cohort, which included 3,474

non-diabetic individuals, that over a period of 5 years a wGRS comprised of 39 genetic variants

was associated with an increase in serum triglyceride levels and change in insulin resistance

acted as an effect modifier. Although the results indicated that increased insulin resistance

accentuated the effect of wGRS, no causality can be deduced from these findings [38].

Some European studies have showed inverse association between genetically explained tri-

glycerides and risk of T2D [16, 17]. Association of reduced incidence of T2D with genetic risk

Table 4. MR sensitivity analyses for different combination of triglyceride SNPs with glycemic variables.

HOMA-IR HOMA-β Fasting Insulin Fasting Glucose

Instruments (Loci) β (SE) p-value β (SE) p-value β (SE) p-value β (SE) p-value

rs662799 Model1 0.30 (0.18) 0.102 0.56 (0.18) 0.002� 0.35 (0.18) 0.060 -0.25 (0.22) 0.247

(APOAV) Model2 0.28 (0.23) 0.224 0.51 (0.24) 0.036� 0.33 (0.23) 0.151 -0.23 (0.20) 0.257

rs780094 Model1 0.90 (0.43) 0.037� 1.06 (0.49) 0.031� 0.93 (0.44) 0.034� -0.05 (0.32) 0.868

(GCKR) Model2 1.01 (0.82) 0.220 1.30 (0.933) 0.163 1.05 (0.84) 0.209 -0.09 (0.46) 0.840

rs4420638 Model1 -0.31 (0.50) 0.537 -0.53 (0.49) 0.286 -0.36 (0.51) 0.485 0.32 (0.46) 0.484

(APOE/C1/C4) Model2 -0.34 (0.52) 0.507 -0.63 (0.45) 0.160 -0.41 (0.50) 0.414 0.40 (0.35) 0.240

rs662799 + rs780094 Model1 0.81 (0.31) 0.010� † † † † -0.21 (0.24) 0.379

(APOAV + GCKR) Model2 0.86 (0.35) 0.013� † † † † -0.19 (0.26) 0.463

rs662799 + rs4420638 Model1 0.39 (0.19) 0.041� 0.44 (0.18) 0.015� 0.04 (0.19) 0.159 0.03 (0.21) 0.894

(APOAV + APOE/C1/C4) Model2 0.35 (0.19) 0.061 0.37 (0.24) 0.127 0.34 (0.19) 0.064 0.11 (0.16) 0.491

rs780094 + rs4420638 Model1 0.30 (0.26) 0.256 0.30 (0.27) 0.262 0.29 (0.26) 0.263 0.10 (0.29) 0.731

(GCKR + APOE/C1/C4) Model2 0.30 (0.32) 0.349 0.26 (0.26) 0.319 0.28 (0.29) 0.333 0.15 (0.24) 0.524

rs662799 + rs780094 + rs4420638 Model1 0.57 (0.22) 0.010� 0.69 (0.21) 0.001� 0.60 (0.23) 0.009� -0.08 (0.20) 0.710

(APOAV + GCKR + APOE/C1/C4) Model2 0.56 (0.21) 0.006� 0.66 (0.22) 0.002� 0.58 (0.21) 0.005� -0.02 (0.17) 0.917

Model1—Adjusted for Age, sex, site, location and BMI

Model2—Adjusted for Age, sex, site, location, BMI, average daily fat intake, average daily energy intake, average daily carbohydrate intake, MET Score/day, alcohol

consumption and smoking

β (SE)–Standardized coefficients i.e SD unit change in outcome per SD unit increase in exposure

†SNP/Instrument associated with the outcome, even after adjusting for exposure, thus excluded from analyses as it did not meet MR assumption
�

Level of significance p<0.05

https://doi.org/10.1371/journal.pone.0228269.t004
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for elevated triglycerides was found in a MR study as well [18]. On the other hand, another

MR Study conducted by De Silva et al among Europeans [39] did not report any association

between circulating triglyceride levels and diabetes risk, fasting glucose, or fasting insulin.

However, since the setting of the aforementioned European studies and the present study is

different, it is important to consider the role of different environments leading to different

gene-environment interaction. Moreover, the variants used for instrument generation are dif-

ferent and our primary outcomes were glycemic levels rather than type 2 diabetes.

Regarding other lipid traits, other than triglycerides, MR studies did not support the causal

role of HDL-C in increasing the glucose levels and the risk of diabetes [40]. This was partially

in line with the findings from the present study. The HMGCR gene, associated with lower

LDL-C encoding for the target of statin (HMG-CoA reductase), has been reported to be caus-

ally associated with increased Type 2 Diabetes risk, higher plasma insulin and glucose [41].

This is also in concordance with the results from a RCT study where statin treatment was simi-

larly associated with increased T2D risk hence supporting the causal role of lipids in contribut-

ing to an abnormal glycemic profile [41]. However, no causal role of LDL-C was observed in

the present MR analysis where we used 2 SNPs in the LPL as instrumental variables. A recent

review compiling the existing evidence from all the MR studies based on the same research

question also suggests the inconclusive nature of the findings [42]. However, most studies

aimed to study T2D as an outcome rather than studying the intermediate glycemic levels that

were examined in present analyses.

Our study findings do not support a causal effect of increased glycemic levels on lipid levels,

as seen in conventional observational methods. This could be due to the potential confound-

ers/reverse causation leading to spurious associations in observational association analyses.

This is supported by an animal study by Vatner et al showing that triglyceride synthesis and its

levels are independent of insulin resistance, insulin action or the levels of insulin [10]. In con-

trast, it has been found from some animal studies that insulin affects lipid levels via synthesis

and activation of LPL, an enzyme responsible for the removal of triglycerides from the plasma

[7], or reduced expression of a key lipolytic enzyme [19, 20] or altered activities of the lipo-

genic enzymes [8]. The effect of insulin on LPL explains the association between glycemic

traits and the variants at LPL after adjusting for triglycerides (Table 3), thereby leading to its

elimination at the instrument generation stage. In the present study, LPLSNPs were found to

be associated with glycemic trait independent of triglyceride and hence we removed it from

the instrument generation.

The main strengths of the study are the multi-centric population-based sib-pair study

design, and high quality genetic data. Despite the multiple advantages of MR, it also has certain

limitations and thus care has to be taken to address these. First, we applied BMR which has the

potential to give reliable evidence for causal directions since it employs instruments for both

the dependent and independent variables [43]. Secondly, our sib-pair design is resistant to

population stratification [43]. Thirdly, we generated wGRS using multiple SNPs that were

used as instruments, which tend to increase the percentage variation of each trait explained

thereby increasing the power of the study in comparison to use of a single SNP [43]. Even

though the issue of pleiotropy cannot be ruled out completely, efforts have been taken to mini-

mize its influence by including multiple variants as instrumental variables. Therefore, it is less

likely that all variants in a wGRS will exhibit pleiotropy. Moreover, it is unlikely that all the var-

iants of the wGRS will be in LD with the pleiotropic variant having association with the out-

come or confounders. Fourth, it can also be stated that attempts have been made to maximize

the validity of the instruments in the context of IV analysis. The validated SNPs used were

robustly associated with the exposure in the present study. Each significant SNP was consid-

ered for instrument generation only if it was not independently associated with confounders
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and/or the outcomes. MR Egger analysis was also performed to confirm the absence of direc-

tional pleiotropy in addition to routine methods. The generated wGRS instruments were fur-

ther tested for association with confounders and outcomes (when adjusted for their respective

exposure). The strength of the instruments could also be deduced from the F-statistics

obtained (F-statistics ranging from 36.71 to 70.92) and the strength of association between the

instrument and the trait is also very high. Fifth, the generalizability of the study is also

increased due to the fact that the sample was taken from the IMS, which involves participants

from north, south and central India. Also, to the best of our knowledge, this study is among

few that have examined the causal association between glycemic and lipid traits.

The study also has its own limitations. The weights used for risk score generation were

derived internally from the sample, which could produce biased estimates [44]. Secondly,

although being one of the few MR studies in India with the largest known sample size, the

study was still under-powered to detect more precise smaller estimates. Also, it is important to

consider the translational effects of the variants which might further have an impact on the

biological pathway.

Based on the study findings, it is evident that an increase in triglycerides may be causal in

increasing the HOMA-scores and insulin levels. Hence, it may be but cautiously inferred that

an increase in triglyceride levels can be a factor for impaired insulin activity and also affect the

pancreatic- β cell activity. However, considering the limitations of the study, there is a need for

a further larger study using more robust risk scores (generated using the more recently vali-

dated GWAS SNPs [45, 46–47] so that conclusions can be drawn reliably. Also, it is important

to understand the function, transcriptional and translational pathways of the identified vari-

ants, including through the use of computational techniques and animal models, so that the

findings can be biologically validated. Moreover, efforts can be taken to gather phenotypic and

genotypic data in the same context from other Indian studies and execute another well-pow-

ered, pooled MR study. Studies can also be designed for different age groups, genders and eth-

nicities to capture effect potential modification. This is necessary to generate reliable causal

evidence so that targeted clinical, and preventive interventions can be designed.
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