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Abstract. The study of the three protagonists in malaria—the Plasmodium parasite, the Anopheles mosquito, and
the human host—is key to developing methods to control and eventually eliminate the disease. Genomic technologies,
including the recent development of next-generation sequencing, enable interrogation of this triangle to an unprece-
dented level of scrutiny, and promise exciting progress toward real-time epidemiology studies and the study of evolu-
tionary adaptation. We discuss the use of genomics by the International Centers of Excellence for Malaria Research, a
network of field sites and laboratories in malaria-endemic countries that undertake cutting-edge research, training, and
technology transfer in malarious countries of the world.

INTRODUCTION

Whereas the first reference genome sequences of species
of Plasmodium1–3 and Anopheles4 were generated by Sanger
sequencing methods, advances in how genetic material is
sequenced using so-called “deep sequencing” technology mean
that sequence data can now be generated faster, more cheaply,
and at much higher volume than before.5 The malaria commu-
nity has embraced this revolution, and studies using deep
sequencing methods have recently appeared that 1) probe the
population genetics of Plasmodium falciparum on local6 and
global7 scales, 2) enable comparative genomic studies between
closely related species, for example, Plasmodium vivax and its
sister taxon Plasmodium cynomolgi in the monkey malaria
clade,8 and 3) generate additional reference genomes for 16
species of Anopheles.9 With the development of novel host
deoxyribonucleic acid (DNA) depletion methods such as
“hybrid selection,”10 we now stand poised to move genomics
from the bench to the field.10

The rapid accumulation of new genome sequences of
malaria parasites collected worldwide has also been accom-
panied by an increasing interest in understanding the pat-
terns and mechanisms of genetic variation at the population
level. “Population genomics” provides the tools to examine,
for example, how new antigenic variants or drug-resistant
strains emerge and spread in field parasite populations. A
variety of DNA barcoding technologies are now available to
sample subsets of genetic variants, such as single-nucleotide
polymorphisms (SNPs), identified from whole genome sequenc-
ing (WGS). These genetic variants can collectively portray
evolutionary changes in a population over time. In particular,
changes in population structure can indicate changes in trans-
mission, an important variable in malaria epidemiology.

Tracking population structure signals to measure transmission
as successful interventions deployed over time is a form of
real-time epidemiology enabled by genomics technology.
Here we present some of the genomics, population genet-

ics, and molecular evolution projects that are ongoing as part
of several of the National Institutes of Health (NIH)-funded
International Centers of Excellence for Malaria Research
(ICEMR) initiatives. Our report is limited to projects involv-
ing genome-wide sampling and analyses, and encompasses
genomic studies of parasite species P. falciparum and P. vivax
as well as vector species of Anopheles (no human whole
genome studies are currently underway at any of the centers).

PLASMODIUM POPULATION GENETICS USING
GENOME-WIDE MARKERS

Barcode/SNP genotyping. Independent SNPs in a genome
with a high minor allele frequency (MAF; defined as the fre-
quency at which the least common allele occurs in a given pop-
ulation) can be used to assess the population structure of an
organism, and this approach is being used by several ICEMR
groups for assessing Plasmodium population structure. Popula-
tion structure is inferred from patterns that indicate that the
population is not undergoing random mating, such as the rela-
tive frequency of specific alleles in a population, linkage dis-
equilibrium across otherwise physically unlinked loci, and the
changes in those population parameters over time.11 Using
high MAF SNPs from genome-wide sequencing, one can
assess changes that a population may be undergoing due to
external pressures, such as changes in transmission or preva-
lence of infection in the human population. These data can
also be used to identify regions of the genome that are
responding to, or associated with, phenotypic changes such as
the acquisition of drug resistance. Finally, SNP genotyping
data can be used to follow or track the effect of interventions
on specific regions of the genome previously associated with,
for example, drug resistance. Here we focus on the several
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ways that ICEMR groups are utilizing independent, high
MAF SNPs to address changes in a parasite population over
time, as a possible proxy for changing transmission dynamics.
(SNP genotyping can be carried out using several different
platforms that vary in the chemistries used, and each with its
own advantages and disadvantages, but these are not dis-
cussed here.)
High MAF SNPs have been identified by screening available

genome sequence data from multiple geographic settings to
detect neutral, unlinked SNPs that are highly variable among
the global parasite population. One set of these markers is the
P. falciparum molecular barcode tool that surveys 24 unlinked
SNPs (“24 SNP barcode”).12 This barcode has been used to
demonstrate changes in parasite population structure coinci-
dent with a decline of malaria transmission in the west Africa
ICEMR. The basic principle is that under high-transmission
settings, there are a relatively large number of parasite geno-
types that are being transmitted by mosquitoes to the human
population, since cross-fertilization generates novel genotypes
in the mosquito. As control interventions are deployed that
successfully reduce transmission, the number of parasite geno-
types in the population will be reduced, increasing the chance
of self-fertilization. Eventually, as transmission decreases, the
parasites within infected individuals will become geneti-
cally more similar. In the most extreme case, where only self-
fertilization occurs, there will be evidence of clonal parasite
genotypes being transmitted. Thus, determining the relatedness
of parasites within a population can provide important data
about malaria transmission, as well as enable evaluation of the
success of interventions that reduce malaria transmission over
time. In west Africa, the tool has been applied to show emer-
gence of highly related parasites—including evidence of clonal
parasite population structures—with increased deployment of
malaria-reducing interventions.13

Several other ICEMR groups have also been deploying
genotyping methods, including Malawi, southern Africa, south-
west Pacific, and Latin America. For example, the southern
Africa ICEMR (Zambia and Zimbabwe) has used the 24 SNP
barcode to interrogate the impact of intervention strategies,
detecting a decrease in parasite population signals correspond-
ing with decreases in transmission (Sungano Mharakurwa and
others, unpublished). In the Latin American ICEMR, this tool
too has been used for outbreak investigation to show the
clonal expansion of parasite populations in Panama.14

Several groups have been working on the development of
a similar tool for P. vivax, distilling SNPs from P. vivax WGS
data. One of these tools is based on markers that have a high
MAF among a global parasite population and contains
approximately 40 informative markers that can distinguish
populations based on continental-level geography.15 A second
approach has been to use SNP markers that separate parasites
in close geographic proximity based on differences in allele
frequencies (Alyssa Barry and others, southwest Pacific
ICEMR, unpublished). Although these tools are still under
development, they promise to provide useful genome-wide
markers for asking important questions about P. vivax popula-
tion structure.
Microsatellite genotyping. Despite the continuous develop-

ment of novel molecular genotyping methods and high-
throughput platforms, microsatellites (tandem repeats of
motifs of two to six nucleotides) remain among the most pop-
ular and informative markers in population genetics.16 Several

ICEMRs are using them in their studies, and although more
details can be found in the accompanying Molecular Epidemi-
ology supplement, we briefly review their use here as well.
Microsatellite abundance seems to correlate positively with

genome adenine–thymine (AT) content, which is extremely
high in P. falciparum (the average AT content reaches 95% in
repetitive domains) but low in chromosome-internal regions
of P. vivax. As a consequence, only ∼160 short repetitive
sequences, many of them with features of classical micro-
satellites, have been characterized across the P. vivax genome.1

The extensive variation found in these genetic markers arises
mainly from strand-slippage events during DNA replication.
Observed microsatellite mutation rates (10−3 to 10−4 per locus
per generation) result from the interplay between strand-
slippage events and mismatch repair, which counteracts DNA
slippage during replication.17 Thus, the high mutation rates
of microsatellites allow their use whenever there is a need to
understand population genetic patterns that emerged relatively
recently and locally.18,19 On the other hand, SNPs and partial
or whole genome sequence data are more appropriate for
comparisons across the worldwide distribution of malaria para-
sites, since these patterns are the result of long-term processes
(e.g., global patterns of population structure). The combined
use of microsatellite markers with SNPs is a powerful popula-
tion genomics approach that has been used in genome-wide
association studies (GWAS), for example, to identify loci
linked to artemisinin resistance, or multiple origins of drug-
resistant haplotypes.20,21 Several ICEMRs are too using a com-
bination of both markers for their projects, for example, the
India ICEMR’s planned P. vivax and P. falciparum GWAS
studies use microsatellites to identify unrelated samples with-
out extreme population structuring that are suitable for WGS.

SEQUENCING APPROACHES TO EXAMINING
MALARIA INFECTIONS

Sanger sequencing (DNA sequencing based on incorpora-
tion of chain-terminating dideoxynucleotides during in vitro
replication of a DNA molecule) has long been the work-
horse of molecular biology efforts in malaria research.
Although the first reference genome sequences of species of
Plasmodium1–3 and Anopheles4 were generated by Sanger
sequencing, deep sequencing is now almost exclusively used
for whole genome studies, including probing the population
genetics of P. falciparum on local6 and global7 scales, and
comparative genomic studies between closely related species,
for example, P. vivax and its sister taxon P. cynomolgi in the
monkey malaria clade.8 Indeed, the use of deep sequencing
is now encroaching on areas where Sanger sequencing used
to rule, as exemplified below.
An example of deep sequencing methods providing extremely

high resolution and sensitivity over Sanger sequencing is
the use of the technology to examine within-host diversity of
Plasmodium infections by amplicon sequencing.22 Briefly, this
method uses targeted amplification of a polymorphic region in
the Plasmodium genome followed by next-generation sequenc-
ing (NGS) so that hundreds or thousands of sequence reads are
obtained that can be used to estimate the relative abundance of
different clones in a single infection. Amplicon sequencing has
been used to assess the genetic diversity in P. falciparum clinical
samples, for example, using 454 pyrosequencing (454 Life
Sciences, Branford, CT) to amplify the circumsporozoite (CS)
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gene locus, researchers could successfully identify 57 unique
parasite haplotypes in 100 patient samples.23 Another study
involving comparison of 454 amplicon sequencing and Sanger
sequencing data for the CS gene revealed that the former could
detect more variation than the latter and resolved the genetic
diversity in complex infections much more sensitively.24

Within the ICEMRs, the India group is using “selection
differential” amplicon sequencing to identify the change in
frequency of clones in P. vivax and P. falciparum samples from
its three field sites in Chennai, Raurkela, and Nadiad. Pre-
liminary experiments have used a Plasmodium chabaudi rodent
malaria model, previously used to study aspects of mixed geno-
type infections, such as the dynamics of multiple infection,25

within-host competition in genetically diverse infections,26 and
competitive release of drug resistance on drug treatment in
mixed infections.27 Plasmodium chabaudi has several geneti-
cally distinct laboratory clones that can be distinguished based
on sequence variation at the polymorphic antigen Pcmsp1.28 In
a proof-of-principle experiment, artificial mixtures of DNA
from several P. chabaudi clones grown in mice were gener-
ated, and the Pcmsp1 locus amplified and sequenced to high
coverage on an Ion Torrent sequencer (Life Technologies Cor-
poration, Carlsbad, CA). Sequencing reads could be aligned
uniquely to the Pcmsp1 sequence of each laboratory clone, and
were used to quantify the relative frequency of each clone in
the artificial mixtures. Technical and biological sequencing rep-
licates were found to be highly reproducible, and independent
estimates of the relative abundance of different clones obtained
using quantitative polymerase chain reaction (qPCR) con-
firmed the accuracy of the method (Figure 1).
The use of amplicon sequencing is well suited to interro-

gate field samples, as it requires much less DNA than WGS,
and can be obtained from filter paper blood spots. However,
the use of NGS is not without challenges. For example, as
sequence reads are prone to error, it can be difficult to accu-
rately quantify the genetic diversity in a heterogeneous sample.
A few computational methods are available for performing
global haplotype reconstruction by clustering deep sequencing
reads based on sequence variation in the presence or absence

of a reference genome (see References 29, 30). The India
ICEMR is also developing statistical methods to provide
estimates of the power of the approach in detection of low-
frequency variants and estimation of population structure,
while considering the various sources of errors.22

WGS PROJECTS

Human, Anopheles, and Plasmodium genome-scale studies
can present many challenges, from the retrieval of sufficient
high-quality biological material, to storage and manipulation
of large sequence data files, and data analysis and visualiza-
tion. In particular, low parasitemia and human DNA “contami-
nation” in clinical samples can complicate WGS of Plasmodium
field isolates. Most current protocols for Plasmodium clinical
sample processing include CF11 column filtration to remove
human leukocytes (the source of contaminating host DNA),
or for P. vivax, 48 hour schizont maturation ex vivo to
increase parasite DNA.31 The Amazonia ICEMR has found a
simple and efficient alternative for removing contaminating
host DNA from relatively small volumes (10–50 mL) of
venous blood, by adapting commercially available leukocyte
depletion filters (Fresenius Kabi BioR 01 Plus or Max) that
are commonly used in clinical hemotherapy. The simple filter-
ing procedure described in Figure 2 produces 88% red blood
cell recovery and ∼94% of the sequence reads mapping to the
P. vivax Salvador I reference genome. In contrast, the India
ICEMR is using “hybrid selection” to enrich parasite material
from P. falciparum10 and P. vivax32 samples used for whole
genome studies.
WGS of Plasmodium genomes is complicated by extreme

AT-rich regions, particularly in the case of P. falciparum
(80.6% AT), although the subtelomeric ends of P. vivax
chromosomes are also highly AT biased. This results in low
sequencing coverage of such regions, making genome assem-
bly and variant calling challenging, although in P. vivax both
of these processes are somewhat easier.33 Another difficulty
in sequencing Plasmodium clinical samples is posed by poly-
clonality, that is, mixed genotype infections. The presence of

FIGURE 1. Quantification of multiclonal Plasmodium chabaudi mixtures using Ion Torrent amplicon sequencing and quantitative polymerase
chain reaction (qPCR). Stacked plots representing proportion of P. chabaudi clones ER (black), BC (gray), and AT (white) obtained for two sets
of parasite mixtures, shown in panels (A) and (B), containing low concentrations of the ER and AT clones, respectively. qPCR replicates are
represented as qPCR_1 and qPCR_2, whereas sequencing replicates are grouped as Run1 and Run2 (biological replicates) and Lane1 and Lane2
(technical replicates).
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multiple genotypically distinct parasites in a single patient
sample can result in an overestimation of the level of genetic
diversity in a parasite genome, and potentially confound sub-
sequent population genetic analysis.7 It is important to
understand and consider these issues when analyzing WGS
of Plasmodium field isolates. A summary of the WGS pro-
jects being undertaken as part of the ICEMR network is
shown in Table 1 and described below.
Mosquito WGS. Anopheles gambiae 1000 Genomes

Project. The east Africa ICEMR has contributed specimens
to the An. gambiae 1000 Genomes Project, an international
consortium of northern and southern partners that uses
Illumina-based WGS to develop a detailed understanding of

genetic variation in wild-caught populations of the major
malaria vectors within the An. gambiae complex. The ini-
tiative is part of the MalariaGen Network (http://www
.malariagen.net/projects/vector/ag1000g) and sequencing is
performed at the Wellcome Trust Sanger Institute. Samples
have been obtained from across the species range of An.
gambiae and Anopheles coluzzii, with some collections also
including Anopheles arabiensis. The east Africa ICEMR
has contributed specimens from Tororo, eastern Uganda, a
region with a high entomological inoculation rate34 and
extensive insecticide resistance.35,36 Data from 103 female
An. gambiae mosquitoes are currently available (http://www
.malariagen.net/data/ag1000g-phase1-preview), and the data

FIGURE 2. A simple and efficient filtering procedure to remove leukocytes from small volumes of Plasmodium-infected venous blood. The
left panel (A) shows how to prepare commercially available leukocyte depletion filters (Fresenius Kabi BioR 01 Plus) for removing leukocytes.
Note that the tubing must be cut with a scissor as indicated, to remove the storage bag and the adaptor from the filtering device. The right panel
(B) shows how the adapted filters are used, in a laminar flow safety hood. A 10-mL syringe is used to apply acid citrate dextrose (ACD) treated
blood samples, whereas a second 10-mL syringe is adapted to the end of the tubing to recover the filtered (leukocyte-depleted) material. After
the filtering procedure, the leukocyte depletion filter is washed extensively with RPMI 1640 medium to recover red blood cells that have been
retained in the tubing.

TABLE 1
List of Anopheles and Plasmodium species being sequenced as part of the ICEMR initiative, and the main research questions being asked

Species ICEMR Country Sequencing approach Number of genomes Main research questions

Vector
Anopheles darlingi Amazonia Brazil ddRAD NK Population genetics with

regard to deforestation
Anopheles gambiae East Africa Uganda WGS 115 Population genetics
Anopheles arabiensis East Africa Uganda WGS 82 Interspecies introgression

Parasite
Plasmodium falciparum Southeast Asia China-Myanmar WGS > 150 Drug resistance
P. falciparum India India WGS 30 Genetic determinants of

cerebral malaria
Plasmodium vivax Latin America, southeast Asia,

Amazonia, southwest
Pacific, India

Brazil, Colombia, Papua
New Guinea, Peru,
India, China, Mexico,
Thailand

WGS ∼180 Global genetic diversity
map

P. vivax India India WGS > 30 Genetic diversity map,
GWAS of traits

P. vivax Amazonia Brazil WGS 9 Sympatric population
P. vivax Amazonia Peru WGS NK Methods for enriching

parasite-derived DNA
in field samples

ddRAD = double-digest restriction associated DNA; DNA = deoxyribonucleic acid; GWAS = genome-wide association studies; ICEMR = International Centers of Excellence for Malaria
Research; NK = not known; WGS = whole genome sequencing.
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may be explored using a purpose-built, highly interactive
web browser (http://www.malariagen.net/apps/ag1000g/phase1-
preview/static/main.html). In later phases of the project, WGS
data from sympatric An. arabiensis will be included to investi-
gate the phenomenon of interspecific introgression. Data
from a 1,536 SNP Goldengate microarray have demonstrated
that there is extensive contemporary gene flow between the
two species in this region,37 and it will be determined if there
is any evidence for the transfer of adaptively advantageous
alleles as has been observed between An. gambiae and An.
coluzzii.38 In due course, it is likely that other ICEMR part-
ners will join the consortium as the geographic and taxo-
nomic range of the sequencing effort is extended.
Population genomics of Anopheles darlingi in Brazil. Other

groups have used partial genome sequencing to sample the
diversity of Anopheles. For example, to characterize the
genetic diversity of An. darlingi populations collected in dif-
ferent rural settlements in Acre State in the Amazon Forest
in Brazil, researchers in the Amazonian ICEMR have used
ddRAD-Seq to generate a catalog of ∼150,000 genome-wide
100-bp tag sequences from 90 individual mosquitoes. ddRAD-
Seq (restriction-site associated DNA sequencing) uses a pair
of restriction enzymes to generate fragments of a genome that
are then sequenced to produce genetic markers for population
genomic surveys, and is a “reduced representation” method39

that enables sampling of large, complex genomes such as
Anopheles without sequencing the whole genome.40,41 Popula-
tion genetic analysis of different populations with this catalog
of sequences is beginning to reveal that 1) genetic diversity of
An. darling populations appears to be inversely proportional
to deforestation; and 2) populations separated by 100 km,
indistinguishable in terms of microsatellite diversity, can be
differentiated by the SNP polymorphisms identified in the
ddRAD-Seq tags.
P. falciparum WGS. WGS of drug-resistant P. falciparum

from patients at the China–Myanmar border. Genome-based
approaches to determine the molecular bases of antimalarial
drug resistance are a powerful tool. With the recent detec-
tion of artemisinin-resistant parasites in multiple countries of
the Greater Mekong subregion of southeast Asia,42,43 the
southeast Asia ICEMR is focusing its drug resistance moni-
toring and research efforts on parasite populations along
the China-Myanmar and Thailand-Myanmar borders, which
have unique antimalarial drug use histories. Using para-
sites procured from clinical cases of malaria from these
regions, they are using GWAS to identify genes or genomic
regions associated with altered sensitivities to artemisinin
and artemisinin combination therapy (ACT) partner drugs.
With an aim of obtaining complete genome sequences from
∼150 single parasite isolates, this study will provide an unprece-
dented opportunity to perform population genomic studies
and GWAS in the deciphering of artemisinin and ACT drug
resistance mechanisms.
WGS of P. falciparum from cerebral malaria patients in

India. The identification of parasite genetic determinants of
cerebral malaria (CM), the most severe complication of
P. falciparum infection, has been unsuccessful so far. This
has been mainly attributed to the highly diverse parasite
population in hyper-endemic areas where the analyses were
carried out, and to the variation in host susceptibility among
patients, which is likely to play an important role in the pro-
gression of the disease. In addition, the clinical diagnosis of

CM is not straightforward, exemplified by a study conducted
in Malawi that revealed ∼25% of pediatric patients with
World Health Organization-defined CM had a non-malaria
cause of death.44 This misdiagnosis may have represented an
important bias in the selection of “false” CM isolates of
P. falciparum in previous genetic studies. The India ICEMR
is evaluating the genetic basis of malaria disease phenotype
using WGS of clinical isolates collected from adult patients
as part of an ongoing study of CM pathology by magnetic
resonance imaging (MRI; see accompanying Pathogenicity
article). Since falciparum malaria is complex and results in a
broad spectrum of disease in adults, the project focuses on
comparing the genomes of P. falciparum isolates from CM
and uncomplicated malaria (UM) patients, at the opposite
ends of the disease severity spectrum. These patient catego-
ries are carefully defined as part of the MRI study, and the
occurrence of CM is assessed by combining the World Health
Organization criteria with a systematic ophthalmic examina-
tion for the presence of malaria-associated retinopathies, a
clinical feature associated with the severity of malaria, mor-
tality, and duration of coma.45,46 Collection of isolates during
the same malaria season in a mesoendemic transmission area in
combination with population genetics will reduce confounding
factors of population structure and reduce the sample selec-
tion biases to a minimum. Plasmodium falciparum DNA is
being extracted directly from venous blood samples and
hybrid selection used for parasite DNA enrichment, as
described above.10 WGS on the Illumina HiSeq2500 platform
(Illumina Inc., San Diego, CA) will yield up to 130× coverage
of the P. falciparum genome, and data processing will include
quality control, sequence alignment, and variant discovery
based on the P. falciparum 3D7 reference sequence.
P. vivax WGS. Although P. falciparum can be cultured

in vitro, so that laboratory-adapted clones can be generated
from patient infections and phenotyped for important traits
such as drug resistance, no such luxury is available to the
P. vivax researcher. Thus, genomics is a key methodology
that can provide an enormous amount of information about
P. vivax for relatively little input. Below we describe several
of the ICEMR efforts in this area.
Cross-ICEMR global genetic diversity map. One of the

largest cross-ICEMR efforts is being undertaken by the India
ICEMR as part of a collaboration with the Broad Institute
sequencing center. Approximately 180 clinical P. vivax iso-
lates collected from vivax-endemic regions under ICEMR
purview have been sequenced at New York University (NYU)
and the Broad (Table 2) as part of a project to develop a
global genetic diversity map of the species (see https://olive
.broadinstitute.org/projects/plasmodium_vivax_hybrid_selection).
Each isolate has been verified by species-specific PCR, as well
as genotyped at one or several loci to determine if infections
were multiclonal, and many isolates are also linked with meta-
data. As this project progresses, analysis will turn to bioinfor-
matic methods to assess mixed genotype infections that will
overlap with the molecular data to establish a firm under-
standing of each isolate’s history of infection. Additional goals
are to use the variant calls and sequence data to generate
phylogenetic histories and assess the impact of natural selec-
tion on this global population of P. vivax.
Whole genome studies of local populations. Although the

study described above will provide a global overview of diver-
sity and population genomics, several ICEMRs are undertaking
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more localized whole genome analyses. For example,
researchers in the India ICEMR are planning WGS of tens of
P. vivax isolates in their three field sites for a genetic diversity
map of the species in India, as well as identifying phenotypes
of interest such as severe vivax infections that could be inter-
rogated in a GWAS study. In the Amazonia ICEMR,
researchers are analyzing sympatric P. vivax from the ICEMR
field site of Remansinho (Acre, Brazil) where the species is
responsible for about 85% of malaria cases. In Remansinho
area, P. vivax transmission has declined substantially over the
last 3 years and P. falciparum has not been found since March
2011.47 The genomic study of sympatric isolates from an area
of low malaria endemicity is particularly interesting in this
case due to three factors. First, since these isolates are on the
whole more closely related, they are suitable for revealing
recent selective pressure events. Second, sympatric isolates are
less likely to present population substructure, whose genetic
effects (e.g., linkage disequilibrium or particular allele fre-
quency patterns) could be confused with the signature of natu-
ral selection. Third, as shown for P. falciparum isolates from
Amazonian Peru,48 sympatric parasite samples are likely to
comprise one or both parental genotypes and the recombinant
progeny of natural genetic crosses, allowing for a preliminary
evaluation of the relative role of mutations and recombination
to generate genome-wide diversity in local parasites. With that
in mind, the team has recently sequenced the complete
nuclear genomes of nine P. vivax genomes collected in a well-
defined area (radius, 100 km) around Remansinho, in the
western Amazon Basin of Brazil, close to the border with
Bolivia (Table 1).
Comparative genomics of P. vivax. The origin of P. vivax

as a species comprises a series of complex evolutionary
events.49–51 The lineage leading to P. vivax is part of a diverse
monophyletic group of nonhuman primate malaria parasites
that radiated in southeast Asia,51 and among them, the
macaque parasite P. cynomolgi seems to be the closest known

species to P. vivax in that clade. This species is being used in
the ICEMRs as part of comparative genomic studies to better
understand the polymorphism in P. vivax.8 The emerging pat-
terns indicate that there is extraordinary polymorphism in
P. vivaxmultigene families that emerged after the P. cynomolgi–
P. vivax split.52 These studies are allowing us to carefully
explore fissures in Plasmodium genomes such as the discovery
that the msp-3 gene family is not homologous between P. vivax
(and related species) and P. falciparum,52 and to describes how
natural selection acts on the P. vivax genome.53 The adaptive
value of such patterns is a matter that will be explored in
the context of P. vivax population genomics investigations,
and these studies are further stressing that discoveries in
P. falciparum do not immediately translate into P. vivax.

IMPLEMENTING GENOTYPING AND GENOMICS
TECHNOLOGY IN A FIELD SETTING

Three general challenges must be met to successfully
deploy and use genotyping or genomics technology in field-
based settings. First, the purchase of durable and practical
equipment is key, and this decision is based on a number of
factors including cost, equipment versatility (e.g., ability to
perform different types of assay), and flexibility of the tech-
nology for other purposes (e.g., the Luminex platform can
perform immunology-based assays). Once the major use has
been ascertained, other considerations including the cost per
assay, throughput capabilities, and the sensitivity of the assay
in terms of limits of detection, must be considered. Second,
there is the issue of purchasing reagents and sustainability
of the technology in-country. Reagent procurement can be
facilitated in one of two ways: either with collaborators
assisting the purchasing, or with the endemic country scientist
implementing their own procurement system. These require-
ments often come with an additional cost burden since ship-
ping such reagents directly can be extremely expensive; there
may be a cold chain requirement, and access to reagents may
be sporadic. Machine maintenance is another issue, since
repairs and preventative maintenance may also be limited.
One model that has been successful for several ICEMRs is
the utilization of collaborations for procurement and shipping
of reagents and supplies and even for swapping out machines
for repair. Leveraging these types of relationships also usually
has additional cost benefits for purchase of reagents. The third
challenge is training in the transfer of the technology, study
design, data analysis, and data interpretation, and here the
ICEMRs have been highly productive because of their “net-
work” of interactions. For example, workshops have been
held in concert with the annual ICEMR meeting (e.g., the
Workshop on Population Genetics in Lima, Perú held in
August 2014, and the Workshop Using Protein Array Data in
Guilin, China held in August 2013), or for those in close prox-
imity there have been joint ICEMR workshops (e.g., the
Zambia January 2013 genotyping workshop held jointly
between the southern and west African ICEMRs). In addition,
the eukaryotic pathogen database EuPathDB has focused on
including ICEMR members in its workshops held close to
ICEMR sites. These include workshops in Bogota, Colombia
(July 2013) and Singapore (February 2014). EuPathDB pro-
vides an online compendium of its workshops material (e.g.,
see here http://workshop.eupathdb.org/singapore/2014/ for the
2014 Singapore workshop material). Thus, the ICEMR

TABLE 2
Geographical location and number of Plasmodium vivax isolates

from ICEMR sites sequenced for generation of a global genetic
diversity map

Country ICEMR
No. of
isolates Comments

Brazil Amazonia 20 Sequenced at
Broad

China Southeast Asia 8 Sequenced at
Broad

Colombia Latin America 31 Sequenced at
Broad

India India 9 Sequenced at
NYU

Mexico NA 20 Sequenced at
Broad

Peru Amazonia 47 Sequenced at
Broad

Papua New Guinea Pacific 23 Sequenced at
Broad

Thailand NA 20 Sequenced at
Broad

Nicaragua, Panama,
Thailand, Vietnam

NA 4 Monkey-adapted
strains from
MR4

Total: 11 countries 5 ICEMRs 182 isolates –

Broad = Broad Institute of Harvard and MIT (Massachusetts Institute of Technology);
MR4 = Malaria Research and Reference Reagent Resource; NA = not applicable; NYU =
New York University.
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network has promoted training opportunities that move
malaria-endemic country scientists toward independence and
sustainability of these skills, so that they can better address
malaria control and elimination issues.
Developing small-scale field-based genotyping capability.

Several ICEMRs have invested in training in generation and
analysis of genotyping data—including SNPs, copy number
variants, and microsatellites—used to understand changes in
population structure of both parasite and mosquito. Many
genotyping technologies use PCR-based methods to amplify
a region surrounding the variant locus, and differ by the
marker type and the technology platform used to assay for it.
Examples of technologies that are being used by ICEMR
sites in the field include: 1) PCR amplification followed
by sequencing or restriction endonuclease digestion,54–56

2) TaqMan genotyping,12,57–59 3) high resolution melting,60,61

and (3) ligase detection reaction-fluorescent microsphere
assays (e.g., the Luminex platform62). Although the chemis-
try underpinning these technologies varies, and consequently
each has its own advantages and disadvantages, basically all

of these and other technologies may be used to identify
genetic variants.
Developing next-generation sequencing expertise in malaria-

endemic countries. Next generation sequencing has revo-
lutionized the field of biomedical research over the past
decade, and while the leading sequencing platforms were ini-
tially tailored toward large-scale applications, recent techni-
cal improvements have led to the development of modestly
priced benchtop instruments with fast turnover rates aimed
at small-scale laboratories. Three of the most widely used
benchtop instruments are the Roche 454 GS Junior (454 Life
Sciences, Branford, CT), Illumina MiSeq (Illumina Inc., San
Diego, CA), and the Ion Torrent Personal Genome Machine
(PGM) (Life Technologies Corporation, Carlsbad, CA). A per-
formance comparison of these sequencing platforms based
on technical specifications, data quality, and throughput, as
well as a review of their potential applications, setup, and
running costs has been described in detail elsewhere.63,64

Although there are advantages and disadvantages associated
with each platform, depending on the type of applications

FIGURE 3. Screen shots from PlasmoDB illustrating methods to access single-nucleotide polymorphism (SNP) data from International Centers
of Excellence for Malaria Research (ICEMR) projects. (A) PlasmoDB home page showing where SNP data can be accessed (red rectangles).
(B) Map of the geographic distribution of sequenced Plasmodium isolates from ICEMR locations. (C) Sequenced isolates can be compared in
PlasmoDB using the search “Identify SNPs based on differences between groups of isolates.” (D) Metadata characteristics such as geographical
location can be leveraged to identify SNPs that differentiate isolates from Peru and Colombia. (E) Results are returned in a table containing the
location of the SNP and various SNP statistics. (F) The sequence alignment around any SNP can be visualized in the PlasmoDB genome
browser.
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being considered, they are closely matched in terms of utility
and ease of workflow.65 Therefore, the choice of platform
often depends on other factors, such as existing infrastructure,
available finances, and personal experience of users.
A view from India. The India ICEMR chose to purchase

the Ion Torrent PGM platform (with the fastest throughput,
shortest run time, and least expense) for amplicon sequencing
and P. vivax whole genome re-sequencing of Indian samples in
Delhi, with a sister machine at NYU. Thus protocols can be
tested at NYU and directly transferred to the machine in
Delhi. The instrument comes with the Torrent Suite software
and browser, a web-based interface for planning, monitoring,
viewing, and processing results from a sequencing run, includ-
ing sequence alignment, coverage analysis, and variant detec-
tion, which can be used to create a custom analysis workflow.
The ease of use and minimum information technology exper-
tise required to operate the data analysis tools on the PGM
machine make it an attractive option for endemic country
scientists without advanced training in bioinformatics, and
without access to a high-performance compute cluster. Cur-
rently, the PGM in Delhi has been run successfully several
times using clinical samples, and will be running continuously
in 2015.
A view from Brazil. High-throughput sequencing facilities

are becoming more common in Brazil, and becoming more
efficient as they accrue experience. Nevertheless, due to local

bureaucratic, tariff/tax, and market issues, genome sequencing
can be significantly more expensive than in other countries,
and weeks or even months can pass before reagents are
available. For that reason, many researchers use the services
of foreign companies or facilities for high-throughput
sequencing—which solves some of the problems, but still suf-
fers from bureaucracy and is therefore impractical for larger
studies. Challenges related to the analysis of high-throughput
data are also present in Brazil, for example, incipient compu-
tational infrastructure for bioinformatics at universities, and
a relative scarcity of students, technicians, and researchers
possessing the required quantitative and computational skills
to deal with large-scale biological data.
Nonetheless, members of the Amazonia ICEMR have

used the Ion Torrent PGM and Ion Proton platforms in
Brazil and analyzed the resulting sequence at the National
Laboratory for Scientific Computing in Petrópolis, Rio de
Janeiro. Reads of ∼200 bases in length, and sequencing
depths of 50- to 80-fold coverage are being achieved, and
SNP analysis is being performed using GATK,66 and assem-
bly using Newbler (Roche 454), for comparison with the
P. vivax Salvador I reference genome and with other less
complete P. vivax genomes. Future analysis of the nine Brazilian
sympatric genomes will include investigations of genome struc-
ture and evolution, recombination, population structure, selec-
tive pressure, and phylogenetics.

FIGURE 4. Screen shots from PlasmoDB depicting a search for genes containing at least 20 non-synonymous SNPs based on data from
ICEMR isolates. (A) The search for genes based on SNP characteristics allows filtering of isolates based on metadata, such as geographic
location, and defining the type of SNPs of interest. (B) Results are returned in a table that shows which genes contain the SNPs of interest.
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GENOME DATABASES

The eukaryotic pathogen database EuPathDB (http://
eupathdb.org) is an NIH-funded bioinformatic resource cen-
ter.67 The goal of this free and widely available online resource
is to integrate a variety of large-scale datasets from eukaryotic
pathogens and their hosts, and facilitate data interrogation in
an easily accessible system. Data types already available in
these include genome sequence and annotation, proteomic
data (including quantitative), transcriptomic data (RNAseq,
microarray), epigenomic data (ChIP-Chip and ChIP-seq), pop-
ulation data based on high-throughput sequencing, and phylo-
genetic data. The ability to effectively integrate population data
necessitates the collection of useful metadata from the data pro-
vider that is interoperable between different providers, allowing
questions to be asked not only about a specific dataset but also
across datasets from diverse groups or projects. EuPathDB has
invested a significant effort in ensuring data integration by map-
ping metadata to already established ontologies such as the
Ontology of Biomedical Investigation (see accompanying man-
uscript describing data management of ICEMR projects).
PlasmoDB (http://plasmodb.org) and HostDB (http://

hostdb.org) are components of EuPathDB that focus on inte-
grating data from Plasmodium species and their host organisms.
Importantly, the ability of these databases to accommodate
high-throughput sequencing data from field studies along with
their associated metadata allows sophisticated filtering and
searching tools, making both databases suited for cross-ICEMR
data interrogation. High-throughput sequencing data from
ICEMR projects has been integrated into PlasmoDB and can
be searched using gene-specific searches that identify genes
with user-defined SNPs, or searches that identify SNPs regard-
less of their presence in genes (Figure 3). Genes may also be
searched based on SNP characteristics identified from ICEMR
sequencing data (Figure 4).
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