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Despite advanced safety systems installed on ships, marine accidents still occurs at a more-or-less constant rate. 

This situation can be attributed to the fact that accidents occurred in a complex way and the role of humans into past 

accidents is not properly understood in this process. Furthermore, a number of factors are combined to result in a 

failure/accident but interrelations of these factors are not well understood. Therefore, shipping industry can benefit 

from a practical method, which is capable of considering the interrelations and identifying the importance 

weightings for each factor involved in an accident. Thus, in this paper, a new technique for Marine Accident 

Learning with Fuzzy Cognitive Maps (MALFCMs) is developed and demonstrated. The method utilises Fuzzy 

Cognitive Maps (FCMs) to model the relationships by also integrating information from an accident database. By 

applying accident data instead of expert judgement, MALFCMs may overcome the main disadvantage of FCMs by 

controlling the subjectivity in results attributed to expert opinion. Within this study, MALFCMs is applied to fishing 

vessels accident data, in order to compare the results with the findings of an existing report provided by the European 

Maritime Safety Agency (EMSA). In order to make this comparison, Collision and Fire/explosion accidents were 

selected and comparatively analysed in this paper. Our study shows that MALFCM can produce results, which are 

in line with the findings from aforementioned EMSA report. 
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1. Introduction  

Maritime transport has been characterized by ship 
accidents since its origins, incurring in significant 
economic consequences and social impact, as 
established by Eliopoulou, Papanikolaou et al. 
(2016). With the aim to prevent aforementioned 
accidents, the shipping industry has implemented 
numerous safety measures to improve overall 
maritime safety. Nevertheless, despite all the 
efforts accidents are still happening, remaining a 
major concern when considering that around 90% 
of world trading is carried out by the maritime 
sector according to Chauvin, Lardjane et al. 
(2013). 

When analysing statistics regarding industrial 
causalities, human factor are identified as the 
major cause in at least 66% of the accidents and 
more than 90% of the incidents in various 
industries such as aerospace or nuclear according 
to Azadeh and Zarrin (2016) findings. In addition, 
O'Hare, Wiggins et al. (1994) established than in 
aviation between 70% and 80% of the accidents 
were attributed to human errors. Furthermore, 
within the maritime context, an average of 80% of 

the accidents are attributed to some sort of human 
error (Rothblum 2000, Graziano, Teixeira et al. 
2016, Turan, Kurt et al. 2016). 

As it is clear from the literature than human 
actions have a high impact into accident, the 
purpose of this paper is first to identify all human 
factors that contributes to the development of an 
accident, and second, to obtain the weighting of 
aforementioned human factors. Hence, this paper 
applies a FCM based technique, Marine Accident 
Learning with Fuzzy Cognitive Maps 
(MALFCMs), and demonstrates it through a case 
study on fishing vessels. 

2. Methodology 

The objectives of this paper are first, to apply 
MALFCM method to identify and obtain the 
weighting of each accident contributing factor 
involved in collision and fire/explosion accidents 
in fishing vessels; and second, to compare the 
results obtained by applying MALFCM with the 
findings of an existing report provided by EMSA. 
In order to complete aforementioned aims, the 
following steps are followed:  
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First, the FCM basic theory is introduced. 
Second, MALFCM method is presented and 
explained. Third, the considerations and 
limitation of this study are highlighted. In 
addition, the accident contributing factors that are 
responsible for collision and fire/explosion 
accidents in fishing vessels are highlighted. 
Finally, the results and discussion section 
includes the final weight distribution of accident 
contributing factors in collision and fire/explosion 
categories, and the comparison with EMSA 
findings. 

2.1 Fuzzy cognitive maps (FCMs) basic theory 

When analysing a complex scenario (e.g. a 
maritime accident), the classification of the 
contributing factors involved appears to be one of 
the main issues according to Wolpert (1992). The 
problem associated with how to select the best 
classification technique has been previously 
addressed in the literature by Aggarwal (2014), 
who identified for instance Bayesian Networks 
(BNs), or decision trees methods. However, 
although these methods provide excellent 
performance, there is no technique that could be 
selected as the best method for all datasets as 
Fernández-Delgado, Cernadas et al. (2014) 
concluded.  

Other alternative for classification of new data 
is the application of the FCM method, which has 
been employed in the last years in different fields. 
Although it is not as well-known as other methods 
(Papakostas, Boutalis et al. 2008, Papakostas, 
Koulouriotis et al. 2012), it has been proved by 
Vergini and Groumpos (2016) that FCM are very 
promising and worth of further investigation and 
development. In addition, several studies have 
applied FCMs as a classification tool in different 
fields, e.g. in medicine (Kannappan, Tamilarasi et 
al. 2011, Papageorgiou and Kannappan 2012, 
Papageorgiou, Oikonomou et al. 2012) or 
information technology (Büyüközkan and 
Vardaloğlu 2012). 

Therefore, due to the vagueness and data 
unavailability regarding maritime accidents, and 
the fact that this study requires data collected from 
past experiences, a method that can deal with both 
requirements, as the FCMs method does, should 
be applied (Azadeh, Salehi et al. 2014). 

There are numerous definition regarding FCM 
in the literature. For instance, Eden (1988) defines 
FCMs as extensions of cognitive maps which aim 
to model complex chains of casual relationships. 
Cognitive maps were created by Axelrod (1976) 
in the 1970s, aiming to represent social scientific 
knowledge. Then, evolving from cognitive maps, 
Kosko (1986) developed fuzzified cognitive 
maps, mainly characterised by three components: 
the factors characterizing the system, and signed 

and weighted arcs indicating the strength of each 
interrelation. 

2.1.1 Composition and mathematical 
representation of an FCM 

Each FCM can be developed through three main 
components. First, an interaction matrix with 
dimension n x n, where n indicates the number of 
factors characterizing the system. A zero value in 
the matrix indicates that a relation does not exist 
between two particular factors, while non-zero 
factors show not only that there is a relation but 
also its strength. Second, an initial state vector, 
which shows the value of the factors in the 
scenario being modelled at any point in time (t). 
Finally, a threshold function. There are numerous 
threshold functions available, however, the 
sigmoid function gives any possible value within 
the interval [0,1] (Xiao, Chen et al. 2012, Azadeh, 
Salehi et al. 2014). Thus, the application of the 
sigmoid function provides greater benefits 
(Bueno and Salmeron 2009). Within a FCM, 
León, Rodriguez et al. (2010) establish that it is 
possible to identify three types of connections 
between each pair of factors, based on the nature 
of their relationship: 

 A positive value between the weights of 

factors Ci and Cj (Wij>0), which means that 

an increase in the first factor will lead to an 

increase in the second factor. Moreover, if the 

first factor is decreased the second factor will 

be also decreased. 

 A negative value between the weights of 

factors Ci and Cj (Wij<0), which means that 

an increase in the first factor will lead to a 

decrease in the second factor. Moreover, if 

the first factor is decreased the second factor 

will be increased. 
 No causality (Wij=0) which indicates that 

two factors are not interrelated. 

Thus, a traditional formula to calculate the values 
of the factors in an FCM is shown in Eq. (1) 
(Kosko 1986): 

𝐴𝑖
(𝑡+1)

=  𝑓 (𝐴𝑖
(𝑡)

+ ∑ 𝑊𝑗𝑖𝐴𝑗
(𝑡)

𝑛

𝑗=1,𝑗≠1

) (1) 

 
In which 𝐴𝑖

(𝑡+1) represents the value of the factor 
Ci at the step t+1, f symbolizes the threshold 
function, 𝑊𝑗𝑖 denotes the weight between both 
concepts Ci and Cj, and 𝐴𝑗

(𝑡) indicates the value of 
the concept Cj at step t. 

In order to create a FCM, Eq. (1) is applied as 
an iterative process for each time step (step 1, step 
2 etc.) until the process ends, which could happen 
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in three different scenarios (Kosko 1994, Khan, 
Quaddus et al. 2001, Xiao, Chen et al. 2012): 

 The FCM reaches equilibrium. After two 

consecutive steps repeating the process both 

state vectors obtained are identical. Hence, 

the simulation stop, and the FCM is 

considered steady. 

 The FCM does not produce a stable result. 

This situation occurs when the results keep 

cycling between a set of values without 

stabilizing. This condition is known as the 

“limit cycle”.  

 The FCM does not reach identical values. 

The FCM produces different state vectors 

each step (“chaos” situation) and it can 

appear in complex scenarios. 

The next section in this paper shares the details of 
the approach adopted, which utilizes a new 
methodology known as Marine Accident 
Learning with Fuzzy Cognitive Maps 
(MALFCMs). 

2.2 Marine accident learning with fuzzy 
cognitive maps (MALFCMs) 

As it was previously mentioned, FCM is a very 
promising method to classify new data. However, 
its main shortcoming is the likelihood to restrict 
the resulting outcome due to experts’ lack of 
knowledge. In order to overcome this 
disadvantage, MALFCMs method is proposed 
with the aim to establish weightings for human 
factors involved into accidents successfully. 
Therefore, the results from MALFCMs method 
can be considered more objective, as this new 
approach combines historical accident data and 
expert opinion, overcoming the main 
disadvantage of traditional fuzzy cognitive maps 
(i.e. the subjective results and knowledge 
deficiencies between experts). 

The construction of a MALFCM model might 
be achieved through the analysis of historical 
accident data, by reflecting expert judgement or 
as the combination of both. Nevertheless, it has 
been designed with the purpose to better capture 
the state of maritime safety from both past 
accidents and reliable experience. Then, a 
combination of historical occurrence data and 
expert judgement within MALFCM is strongly 
recommended. Thus, MALFCMs structure could 
be described in four main stages: 

 Stage 1: Historical Data  

 Stage 2: Expert Opinion  

 Stage 3: FCM  

 Stage 4: Consolidation of Results  

First, the Historical data stage collects data for 
accidents with a specific profile (e.g. same 
navigational accident), in order to identify which 
human factors were involved in the accident case 
study. Then, each pair of factors is compared to 
create an interaction matrix, which establishes the 
relative importance of concepts and the causal 
effects between nodes. For example, to obtain the 
relation between factors Ci and Cj, the historical 
accident database is filtered by the accidents 
caused by any of these two factors, in order to 
calculate how often these two factors have been 
recorded into past accidents. Then, the database is 
filtered by the accidents that register together Ci 
and Cj as a common accident cause. Following 
this process, the weight of Ci over Cj is established 
as the relation between the accidents with both 
factors in common and the accidents with Ci but 
not Cj. Moreover, the weight of Cj over Ci is 
defined as the relation between the accidents with 
Ci and Cj and the accidents with Cj but not Ci. This 
process is repeated in order to fill the interaction 
matrix. In addition, the state vector is defined as 
the statistical occurrence of each human factor. 
Second, in the Expert opinion stage, experts are 
requested to provide their knowledge by 
comparing each pair of factors identified from the 
historical accident database. Then, an interaction 
matrix and a state vector are created for each 
expert individually. Moreover, a generic 
interaction matrix and state vector are created by 
combining each individual interaction matrix and 
state vector. Third, in the FCM stage, the 
threshold function is selected, and two FCMs are 
created by following Eq. (1). The first FCM is 
created with the interaction matrix and the state 
vector obtained from the Historical data stage. In 
addition, the second FCM integrates the 
interaction matrix and the state vector obtained 
from the expert judgement. For both FCMs 
created, the results are analyzed, and the obtained 
weightings are ranked. Lastly, in the 
consolidation of result stage, final weightings are 
obtained as a combination from the historical data 
and expert judgement results. 

It is important to mention that for this study 
expert judgement was not included, as it was 
purely based on data collection. Therefore, from 
MALFCMs method, only the “historical data 
stage” and the “FCM stage” are applied to this 
case study. 

2.3 Considerations and limitations of this 
study 

For the completion of this study, the following 
considerations and limitation have been taken into 
account: 

 EMSA report was based on a European 

accident database. The data for this study was 
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obtained from MAIB, and it comprises 

maritime accidents involving UK vessels 

worldwide and all vessels operating in UK 

territorial waters. 

 EMSA report have a different accident 

outcome than MAIB database. Hence, only 

those categories that appears in both sources 

under the same name are considered within 

this study i.e. collision and fire/explosion.  

 The report provided by EMSA analyzed 

fishing vessels with LOA or LBP greater than 

or equal to 15 m. Therefore, the same 

consideration was taken for this study. 

 EMSA analyzed data between June 2011 and 

August 2017, while this study considers 

accidents between June 2011 and 2016 (last 

information obtained). 

2.4 Accident contributor factors involved in 
collision and fire/explosion accidents in 
fishing vessels 

The factors that are considered within this study 
are obtained from analysing a database provided 
by the Marine Accident Investigation Branch 
(MAIB). This data was selected as it includes 
information regarding human factors contribution 
into past accidents. Thus, the data obtained for 
this case study registers marine accidents 
involving UK vessels worldwide and all vessels 
operating in UK territorial waters for the period 
2011-2016.This period was selected for this study 
in order to compare the results with the report 
provided by EMSA. From all the ninety four 
accident contributor factors included in the 
database, only a total of fourteen were identified 
for collision accidents on fishing vessels, while 
just eleven were found responsible of 
fire/explosion accidents. Moreover, some of these 
factors, e.g. “Lack of knowledge” or “Lack of 
skills”, were found in both accidents outcomes.  

Table 3 below shows the factor numbers 
assigned to each accident contributor involved in 
collision and fire/explosion accidents on fishing 
vessels. In addition, Table 4 shown the weightings 
for each accident contributor obtained from the 
FCM (defined on the interval [0, 1]) and the 
weightings normalised (as the % contribution of 
each factor into accidents). 

3. Results and Discussions 

In order to create a FCM, it is required to obtain 
first an interaction matrix, and second a state 
vector by following the process explained in 
section 2.1.  
Due to the size of the interaction matrix, Table 1 
shows only a partial representation of the 

interaction matrix for collision accidents in 
fishing vessels for the period 2011-2016. Thus, 
for this case study, the state vector was defined as 
the statistical occurrence of each factor. Thus, 
Table 2 provides a partial representation of the 
initial state vector (St.0) for collision accidents in 
fishing vessels for the period 2011-2016. In 
addition, Table 2 also provides the dynamic 
evolution of the FCM until equilibrium is reached. 

Table 1. Partial interaction matrix for collision 

accidents in fishing vessels until equilibrium is 

reached. Period 2011-2016. 

 HF1 HF7 … HF48 HF50 

HF1 X 0.00 … 0.00 0.00 

HF7 0.00 X … 1.00 1.00 

… … … … … … 

HF48 0.00 0.50 … X 0.50 

HF50 0.00 1.00 … 1.00 X 

Table 2. Partial state vector and calculation of 

steady state for collision accidents in fishing vessels 
until equilibrium is reached. Period 2011-2016. 

 HF1 HF7 HF8 … HF50 

St.0 0.33333 0.33333 0.33333 … 0.33333 

St.1 0.58257 0.95257 0.66076 … 0.95257 

St.2 0.64166 0.99970 0.75920 … 0.99970 

St.3 0.65513 0.99980 0.77888 … 0.99980 

St.4 0.65817 0.99980 0.78226 … 0.99980 

St.5 0.65885 0.99980 0.78283 … 0.99980 

St.6 0.65900 0.99980 0.78293 … 0.99980 

St.7 0.65904 0.99980 0.78295 … 0.99980 

 
Once the interaction matrix and the state vector 
have been defined, the FCM is created by 
applying Eq. (1) until equilibrium is reached. 

 
Fig. 1. Values of FCM for collision accidents in fishing vessels 

until equilibrium is reached. Period 2011-2016. 
 

Figure 1 shows as an example the iteration 
process followed in the FCM created for collision 
accidents until equilibrium is reached, which 
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occurs before step 5 in this case. In addition, Table 
4 shows the final weightings obtained for all 
accident contributors, after the FCM reaches 
equilibrium and the simulation stops. 

Table 3. Factor numbers assigned to each accident 
contributor involved in collision and fire/explosion 

accidents on fishing vessels. 

Factor 

No 
Factor Name 

1 Anthropometric factors, dimensions 

3 Design error 

6 Emergency training program 

7 Expectations of supervisor is unclear 

8 Frequent change of watch schedule 

11 Improper performance of maintenance/repair 

15 

Inadequate procedures and check lists 

(ship/port, maintenance, company, emergency, 

other) 

16 Inadequate promotion of safety 

18 Inadequate training programme 

19 Inadequate work methods 

26 Lack of knowledge 

29 Lack of motivation/morale 

32 Lack of skills 

35 Long working periods, much overtime 

36 Low job satisfaction, monotony 

40 LTA mental and psychological state 

42 LTA planning 

46 Regulatory standards 

47 Resistance to change 

48 Safety awareness, cutting corners 

50 Too high work load/load work load 

51 Training ignored 

 
Moreover, according to Table 4, it is possible 

to observe that there is a steady distribution 
regarding human-factor weightings. Thus, there is 
a set of human factors with a weighting of 7.76%, 
which includes all human factors with the highest 
contribution into collision accidents in fishing 
vessels (e.g. Factor 48 – “Safety awareness, 
cutting corners”). Moreover, HF 1 and HF 32 
have the minimum contribution into collision 
accidents.  

Furthermore, regarding fire/explosion, Factor 
51 – “Training ignored” has the maximum impact, 
while Factor 46– “Regulatory standards” is the 
factor that contribute the least into fire/explosion 
accidents. 

 
 

 

Table 4. Weightings and normalised weightings for 

each accident contributors involved in collision and 

fire/explosion accidents on fishing vessels. 

Factor  

No 

Event  

Description 

Weight 

(FCM) 

Weight 

(%) 

1 Coll. 0.66 5.12 

7 Coll. 1.00 7.76 

8 Coll. 0.78 6.08 

16 Coll. 1.00 7.76 

18 Coll. 1.00 7.76 

19 Coll. 1.00 7.76 

26 Coll. 1.00 7.76 

32 Coll. 0.66 5.12 

35 Coll. 1.00 7.76 

36 Coll. 1.00 7.76 

40 Coll. 0.78 6.08 

47 Coll. 1.00 7.76 

48 Coll. 1.00 7.76 

50 Coll. 1.00 7.76 

3 F/E 0.77 9.34 

6 F/E 0.56 6.86 

11 F/E 0.83 10.03 

15 F/E 0.77 9.34 

26 F/E 0.70 8.54 

29 F/E 0.77 9.34 

32 F/E 0.83 10.03 

42 F/E 0.83 10.03 

46 F/E 0.50 6.08 

48 F/E 0.70 8.54 

51 F/E 0.98 11.87 

3.1 Findings from EMSA 

 
Fig. 2. Risk assessment table for casualties with ships provided 

by EMSA. Period 2011-2017. (EMSA 2018). 

 
As it can be observed by comparing the findings 
from this study and the report provided by EMSA, 
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a safety problem is identified as the major 
contributing factor into collision accidents. Also 
for collision, work methods and inadequate 
training are the second most contributing factor 
from the report, which obtained the second 
highest weighting from this study. For 
fire/explosion, for both reports the most 
contributing factor is training ignored. 

4. Conclusions 

In this paper, a model based on Fuzzy Cognitive 
Maps theory, MALFCM, was applied to a case 
study on fishing vessels. The final aim was to 
compare the results with an existing report that 
was released by EMSA. However, due to existing 
differences between both nomenclatures, just two 
accident categories (Collision and Fire/explosion) 
were compared within this paper. For collision 
accidents, a lack of safety was identified as the top 
contributing factor, while for Fire/explosion, a 
lack of training and skills was found the most 
contributing factor. 

The novelty of MALFCM lays in the 
application of FCMs theory to model the 
relationships of accident contributors by utilizing 
information obtained from an accident database, 
with the ability to combine expert opinion. Hence, 
since the initial information is derived from 
historical data, the results could be considered 
more objective, and MALFCM may overcome the 
main disadvantage of FCMs by eliminating or 
controlling the subjectivity in results attributed to 
experts uncertainty. 

Nevertheless, as it is possible to observe from 
this paper, there are some differences when 
comparing both studies regarding how data is 
collected, mainly due to taxonomy differences 
between MAIB and EMSA databases. Therefore, 
aforementioned differences make it difficult to 
compare both reports effectively. Moreover, the 
report from EMSA has identified thirteen Safety 
Issues (SI) based partially on professional 
judgement as shown in Figure 2. As EMSA 
criteria to define these SI was unknown, it was 
decided to maintain for this study each accident 
contributing factor as mentioned in MAIB 
accident database, identifying a total of fourteen 
accident contributing factors for collision 
accidents, and eleven factors for fire/explosion 
accidents, as shown in Table 4. 

In addition, human factor contribution into 
past accidents is a recent issue, and therefore 
available data is a concern, as accident 
investigators have just recently started to 
incorporate human factors into accident reports. 
Hence, there is an additional risk when studying 
specific cases (e.g. collision accidents in fishing 
vessels) as the data points might not be enough to 
ensure reliable results. Thus, an alternative 
solution would be to combine the results from 

historical accident data with expert knowledge 
(i.e. to apply MALFCM method completely) in 
order to provide more reliable results. 

Finally, as a future work recommendation, a 
more detailed study could include to group MAIB 
factors by following EMSA professional 
judgement, which would reduce the complexity 
when comparing the results obtained from both 
reports. Also the data analysed within this study 
differed from EMSA data, since EMSA has 
access to a European accident database, while 
data for this study was taken from MAIB, and 
limited to accidents with UK vessels or accidents 
within UK territorial waters. Hence, a more 
complex study could be perform at a European 
level. 
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