
 

 
 

 
 

warwick.ac.uk/lib-publications 
 

 
 
 
 
Manuscript version: Author’s Accepted Manuscript 
The version presented in WRAP is the author’s accepted manuscript and may differ from the 
published version or Version of Record. 
 
Persistent WRAP URL: 
http://wrap.warwick.ac.uk/138234                                       
 
How to cite: 
Please refer to published version for the most recent bibliographic citation information.  
If a published version is known of, the repository item page linked to above, will contain 
details on accessing it. 
 
Copyright and reuse: 
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the 
University of Warwick available open access under the following conditions.  
 
Copyright © and all moral rights to the version of the paper presented here belong to the 
individual author(s) and/or other copyright owners. To the extent reasonable and 
practicable the material made available in WRAP has been checked for eligibility before 
being made available. 
 
Copies of full items can be used for personal research or study, educational, or not-for-profit 
purposes without prior permission or charge. Provided that the authors, title and full 
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata 
page and the content is not changed in any way. 
 
Publisher’s statement: 
Please refer to the repository item page, publisher’s statement section, for further 
information. 
 
For more information, please contact the WRAP Team at: wrap@warwick.ac.uk. 
 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/326246699?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/138234
mailto:wrap@warwick.ac.uk


 Volume #(#) (2020)                              

2475-1472 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. 
See http://www.ieee.org/publications/rights/index.html for more information. 

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LSENS.2020.2996428, IEEE Sensors 
Letters 

 Sensor Applications ________________________________________________________  
 
A Framework to Analyze Noise Factors of Automotive Perception Sensors 
 

Pak Hung Chan (陳柏鴻)1, Gunwant Dhadyalla1, and Valentina Donzella1 
1 WMG, The University of Warwick, Coventry, CV4 7AL, United Kingdom 

 
Manuscript received March 11, 2020; revised April 30, 2020; accepted May 16, 2020. 

 
Abstract— Automated vehicles (AVs) are one of the breakthroughs of this century. The main argument to support 
their development is increased safety and reduction of human and economic losses; however, to demonstrate that AVs 
are safer than human drivers billions of miles of testing are required. Thus, realistic simulation and virtual testing of AV 
systems and sensors are crucial to accelerate the technological readiness. In particular, perception sensor 
measurements are affected by uncertainties due to noise factors; these uncertainties need to be included in 
simulations. This work presents a framework to exhaustively analyze and simulate the effect of the combination of 
noise factors on sensor data. We applied the framework to analyze one sensor, the LiDAR (Light Detection and 
Ranging), but it can be easily adapted to study other sensors. Results demonstrate that single noise factor analysis 
gives an incomplete knowledge of measurement degradation and perception is dramatically hindered when more 
noises are combined. The proposed framework is a powerful tool to predict the degradation of AV sensor performance. 
 
Index Terms— LiDAR, perception sensor, noise, simulation, rain, occlusion, intelligent vehicles, autonomous and automated vehicles. 

 

I.  INTRODUCTION 

The current role and use of vehicles is expected to dramatically 
change in the next decade due to the introduction of conditional and 
full automation [1]. In fact, the Society of Automotive Engineers 
(SAE) has defined 6 levels of vehicle automation (L0-L5) in their 
standard [2]. To achieve higher levels of automation (L3-L5, [2]), 
automotive systems will need to be fault tolerant or fault operational, 
therefore increased robustness to noise factors will be required by 
the electronics systems and the sensors. 

In order to navigate the complex road environment, vehicles will 
need to be able to create their own world model, and this model will 
rely on the information gathered by a plethora of sensors, above all 
the environmental perception sensors (ultrasonic, vision, RADAR 
and LiDAR) [3-4]. Currently, no one of the mentioned sensors is 
able to give reliable and robust detection independently under all 
environmental and road conditions, consequently a combination of 
different sensor technologies will be required for L3-L5.  

RAND Corporation calculated that roughly 5 billion miles are 
required to be driven by a fleet of automated vehicles (AVs) to 
demonstrate a 20% lower fatality rate than the human driver with 
95% confidence [5]. Therefore, it is key to use simulations to 
accelerate AV development. There are different approaches to test 
AVs, and several research groups, automotive suppliers and 
manufacturers believe that the generation of simulation scenarios 
can uncover some of the system and sensor failure modes and can 
support the safety analysis [6-7].  In AVs, sensors will provide the 
link between the real world and the autonomous control systems 
(ACSs). Sensor information quality is fundamental to support the 
ACS to evaluate the scene and swiftly plan the next action. However, 
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the continuous presence of different noise factors causes fluctuations 
in the sensor data quality. Furthermore, different sensor technologies 
are affected by the noise factors in different ways and with outcomes 
that will depend on the specific technology, e.g., low light condition 
can hinder obstacle detection using vision sensors.  

From a simulation perspective, undertaking the same driving 
scenario with different environmental conditions can provide critical 
information on how different noise factors would affect the 
perception sensors and as a consequence the ACS decision. Many 
commercial simulation suites for automated vehicles currently only 
provide a partial means to implement effects of noise sources on the 
sensor output. This study presents a framework to identify the noise 
factors affecting a sensor technology. This information can then be 
used to analyze the identified noise factors, and to model the effect 
of single or multiple noises on sensor response. Here, the proposed 
framework is used for the first time to model the effect of multiple 
noise factors on automotive LiDAR response, building on the single 
noise model proposed in Goodin et al. [8]. Our approach can be 
applied to other perception sensors with few ad hoc modifications.  

II. FRAMEWORK FOR NOISE ANALYSIS  

 There are manifold factors that can affect sensor performance; 
recent works have focused on the modeling of noise on perception 
sensors [9-10]. Accurate models of automotive sensors and noise 
factors are required if simulations are to be used to prove that an 
ACS is safe in the scenario under test, particularly when 
environmental conditions are challenging for the sensors (e.g. rain 
for LiDAR, fog for camera, etc.). As mentioned, the ACS bases its 
actions on sensor perception. With an inaccurate sensor model, the 
ACS will have inaccurate data to work with and hence the fidelity 
and validity of these simulations will be limited. 

Here we used a well-established system analysis technique, the 
parameter diagram, or p-diagram (inset in Fig.1), to identify all of 
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the possible noise sources that can affect the performance and 
behavior of a sensor, nominally a LiDAR. P-diagram is used in 
reliability engineering to analyze a complex system/subsystem, to 
understand its interactions, and also to separate different noise 
factors that will deviate the system from its ideal behavior [11]. We 
hereby propose to use it as a tool to support a thorough analysis of 
noises and variations that have an impact on automotive sensor 
performance. The standard five noise factor types of a p-diagram are 
listed in Table 1, first column. Based on these factor types, we have 
classified different noise sources (second column in Table 1) and 
analyzed which sensor output/reading they will affect. Based on this 
understanding, the noise factors can be modeled, and included in 
simulation or emulation tools. To the best of our knowledge, we 
have considered the noise factors that will affect LiDAR response. 

In the case of the LiDAR, we have analyzed how noise factors 
will affect the parameters used to build the pointcloud, a 3D point 
collection representing the detected environment. There are three 
main parameters used to generate the pointcloud: intensity, I, time of 
flight, ToF, and emission angle, Ψ,Θ [12]. Intensity can be used to 
identify material properties of the target, and to assist in clustering 
(combined with spatial information). Noise affects the detected 
intensity, to the point that some points can have intensity below the 
detection threshold. ToF principle is used to calculate the distance to 
an object. This value is sensitive to the optical flight path, which 
changes depending on ambient permeability and permittivity 
(affected by weather and environmental conditions such as humidity, 
rain, etc.). The emission angle is the direction the light is emitted at 
from the sensor light source. If this is different to what the LiDAR is 
programmed to believe, it will cause an incorrect location of the 
point. An additional parameter, point coordinates (x, y, z), 

determines the location in the 3D space where the light have been 
reflected. Noise on coordinates arises from reflections and 
refractions that divert the beam away from its original path. The 
coordinates can be affected also by malicious attacks and 
interference with other LiDAR units.  

For the LiDAR to detect a reflection, the return signal must be 
above a certain intensity threshold (that will depend on the LiDAR 
receiver). There is also a minimum detection range, nominally 
between 0.2 m and 1 m [12-13]. By applying noises to the LiDAR 
simulation, datapoints can artificially fall outside these limits, but 
they cannot be physically detected by the sensor and they have to be 
removed in our model. Fig. 1 shows the suggested process through a 
flow diagram, modified from Goodin et al.; the cylindrical blocks 
and blocks with bold font represent our additions [8].   

III. LiDAR AND NOISE MODELS 

Fig.1 shows the flow to simulate a LiDAR sensor, and to add the 
noise factors identified via the p-diagram analysis to the simulation. 
Noise types are identified by numbers corresponding to noise factors, 
summarized in Table 1. In fact, we propose to extend the model in 
[8], to take into account several different noise sources and the 
LiDAR parameters they will affect. Rain is just one of the many 
noise factors that need to be modeled. Furthermore, we considered 
that the noise sources will not affect only ToF and intensity, but also 
the pointcloud point coordinates and angle (dotted box in Fig.1). 

Depending on the sensor to be simulated, multiple noise factors 
may have to be modeled and suitably combined, and this will change 
based on their independence or dependence. 

 

Table 1.  P-diagram noise factors and the LiDAR parameters affected by these factors, namely: Intensity, I, Time of Flight, ToF, emission angle 
(Ψ,Θ), and point coordinates (x, y, z).  

Factor 
Type 

ID/ Noise 
Factor I ToF Ψ ,Θ  

x,
y,z	 Description 

Piece to 
Piece 

01. Laser Diode ✓ ✓   Light emission is affected by the variability of fabrication parameters [14]. 
02. Mounting    ✓  Can affect the emission direction [12]. 

Change 
over 
Time 

03. Emitter ✓ ✓   Fluctuation/degradation of emitter power, bias, wavelength shift [15]. 
04. Mechanics   ✓  Wear in mechanical parts resulting in offsets and misplacement  

05. Receiver ✓ ✓   Degradation could result in a responsivity wavelength shift and could result in 
lower or higher intensity recorded for a specific wavelength 

06. Circuits ✓ ✓   Electronic circuit components degradation/aging over time 

Usage 

07. Multiple 
Returns ✓   ✓ From multiple objects in beam path, ground, beam divergence [12]	

08. Motion   ✓  Vehicle vibration, speed, acceleration, ground holes, etc.  
09. Clock Speed  ✓   The clock is used as reference for the ToF (instability, errors) [16] 
10. Lens 
Damage ✓   ✓ Dispersion effects reducing intensity and refraction may result in a return from 

a location that is not expected from the beam path 

Envi-
ronment 

11. Weather ✓ ✓   LiDAR is affected by weather conditions, such as rain, snow, fog, etc. [8, 10]. 

12. Obstruction  ✓   ✓ Lens can be obstructed by objects, rain, mud, etc. Water drops can result in 
lensing effect, reduce intensity, etc. Mud can occlude the laser beam. 

13. Ambient 
Conditions ✓ ✓   These conditions can affect light propagation. Temperature affects optical, 

electronic, mechanical components. Luminosity affects detector performance. 

System 
Interac-

tions 

14. Malicious 
Attacks  ✓   ✓ External systems can disrupt the emissions and/or reception, e.g. by absorbing 

and reemitting at altered times or other methods [17]. 
15. LiDARs    ✓ Other LiDAR units can cause interference, false detection, etc. 
16. EMI ✓ ✓  ✓ Internal and external electrical components interactions	
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Fig. 1. LiDAR simulation flow with addition of noise factor sources 
(cylindrical blocks) from p-diagram (inset). The noise numbers in 
figure correspond to numbers in Table 1.  

 
As the focus of this paper is to demonstrate a process to analyze 

and combine noise models and their effect on automotive 
environmental sensors, we have implemented a LiDAR model that 
includes two noise sources: a rain model, modified from Goodin et 
al. [8], and partial occlusion of the lens, blocking the emission of 
some LiDAR laser beams. These two noise factors are independent 
and can be applied as two separate noise models acting on ideal 
power and range, Pi and Ri. The proposed model considers first 
which points are removed due to the occlusion, fOcc (the light beam 
will not be emitted by the unit) and then adds the rain noise model, 
fRain, to the residual points, as shown in the Eqs.1-2. Rain will affect 
the range and power accordingly to Eqs. 7 and 9 from Goodin et al. 
[8]. The mentioned model is based on experimental data valid only 
up to 7 mm/h (heavy rain [18]), therefore we used this value to 
maximize the effect of rain in our model [19]. 

𝑃𝑛! = 𝑓!"#$ 𝑓!"" 𝑃!                                   (1) 
𝑅𝑛! = 𝑓!"#$ 𝑓!"" 𝑅!                                   (2) 

The described model can be adapted to work and to combine 
several noise models, with different levels of fidelity.  

IV. SIMULATION OF NOISY LiDAR 

The proposed process (p-diagram and simulated noise models) 
can be applied to any LiDAR pointcloud datasets. Therefore, to 
demonstrate the deployment of this process, we used an open access 
MATLAB dataset (lidarData_ConstructionRoad.pcap) [20]. This 
dataset contains a multitude of LiDAR scans from a vehicle driving 
along a road; one of the scans (the 100th) is shown in Fig. 2. The 
used dataset was generated using a HDL-32E Velodyne LiDAR, 
with 32 vertical channels and a 360° horizontal field of view. In 
Fig. 2, points corresponding to the ego-vehicle (i.e. the vehicle with 
the scanning LiDAR) have been removed, and a grey box has been 
added to represent it. The ego-vehicle has just passed a crossroad; 
three vehicles are passing on the left and there is one vehicle in the 
front. To the right, there are three vehicles stationary waiting to 
cross the junction, and around the ego vehicle, there are some traffic 

objects (black circles).   
Each point in the pointcloud has its spherical coordinates, ToF, 

emission angle and intensity data. We added to the pointcloud data 
the modeled noise factors: a rainfall of 7 mm/h, and an occlusion of 
lasers 13 to 17 in the pointcloud. These parameters were chosen to 
maximize the effects of each noise factor on the selected LiDAR 
scan (Fig. 2); however, the effects of the noise factors will vary 
depending on the considered road scenario. After adding the noise 
factors, we filtered the points with power too low and with range too 
short to be detected by the LiDAR (we have used 0.1% of emitted 
power and 0.9 m respectively, but these values will depend on the 
used LiDAR); this process is represented by the diamond blocks in 
Fig.1. In Fig. 2-3 we have removed ground points for visualization 
using an available Matlab function [20]. 

 
Fig. 2. Visualization of the 100th scan of the LiDAR pointcloud, with 
vehicles circled in grey and infrastructure objects in black. 

V. RESULTS AND DISCUSSION 

Clustering is one of the techniques used to gain a better 
understanding of the key elements in sensor data. We have post-
processes our noisy pointcloud data using MATLAB “clusterdata” 
function to cluster the points belonging to different objects; this 
function employs a hierarchical clustering algorithm [21]. Fig. 3 
shows the clustered noisy data for laser occlusion (a), for the 
modeled rainfall (b), and for the combined noise factors (c); each 
cluster is represented by a different color in the figures. 

A. Occlusion Noise 

In this model, Fig. 3a, the points emitted by occluded lasers were 
removed. As a consequence, there is a loss of data; several points 
belonging to the vehicle in the front and the three vehicles on the left 
are not in the pointcloud anymore. There are still some clustered 
points in the vehicle positions (see ovals), but their classification 
would be hindered, if not impossible. The occlusion had little effect 
on other objects, demonstrating that this noise factor impacts only 
specific areas of the pointcloud, depending on their positions. 

B. Rain Noise 

This model, Fig. 3b, changes the range and intensity of LiDAR 
points, causing distortion of data and making object identification 
harder. To the left of the ego vehicle, the three vehicles are more 
similar to random cluster of points than a smooth surface. To the 
right of the vehicle, the shift in the detected point locations due to 
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rain noise prohibits the function (from [20]) from identifying some 
of them as ground points, thus preventing removal. The three 
vehicles on the right are also clustered together with no resemblance 
of their original shapes. 

 
Fig. 3. Visualizations of LiDAR pointcloud 100th scan with noises 
added to the points: a) LiDAR lasers 13-17 occlusion; b) rainfall of 
7 mm/h; c) the combination of the two noises. Vehicles are circled 
in grey and infrastructure objects in black.  
 

C. Combined Occlusion and Rain Noise 

The final step in our process, Fig. 3c, is to apply the two noises 
simultaneously, as per Eqs. 1-2. With data loss (due to occlusion, 
Fig. 3a) and distortion (due to rain, Fig. 3b) acting separately, 
obstacles are still clustered and detected. However, with the 
compound noise (Fig. 3c) most of the targets, even in close 
proximity, are missing or not discernable (grey circles). The 
combination of the noise models further emphasizes data 
degradation and impaired object detection. Particularly, of the three 

vehicles on the left side, only two of them are identified as clusters, 
but do not resemble the profile of a vehicle, the vehicle in the front 
is also no longer a cluster.  

VI. CONCLUSION 

We have proposed a flexible framework to analyze automotive 
environmental perception sensors weaknesses and noises. The 
process starts with the sensor p-diagram to break down all the 
possible noise factors, then the outcome is used to understand and 
model the effects of each noise on sensor data. In this manuscript, 
we used the process to combine the effects of two independent noise 
factors on LiDAR data, and demonstrated that their combination 
completely impairs object detection even in the short range (5-10m). 
Finally, the proposed process can be easily applied to other 
perception sensors, e.g. ultrasound, vision, thermal and RADAR.  
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