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Abstract

Testing of materials in industry is very important to ensure product quality and safety. How-
ever, such tests are usually very time-consuming and expensive to perform. The motivation
for this thesis is to address these challenges by proposing the combination of techniques from
machine learning and fuzzy logic to the materials property prediction problem, to assist the
pursuit of producing materials with specific required properties.

The first part of the research aims at designing a modelling architecture to deal with the
imbalanced data relating to the production of rails. The modelling techniques are based on
Support Vector Machines (SVMs). Results show that SVMs are sensitive to class imbalance.
Subsequently, an internal class imbalance learning method (through a Biased Fuzzy SVM)
and an external class imbalance learning method (data under-sampling of the majority class)
are applied to the data. The performance of the techniques when implemented on the under-
sampled dataset is better, while in both cases the inclusion of a fuzzy membership improves
the performance of the SVM. Fuzzy C-Means (FCM) Clustering is analysed for reducing the
number of support vectors of the Fuzzy SVM model, concluding it is effective in reducing
model complexity without any significant performance deterioration.

The second part of the research deals with modelling Charpy impact data of heat-treated
steel to predict Charpy energy. This is a challenging modelling problem because although the
test is governed by a specific standard, several sources of disturbance give rise to uncertainty
in the data. The data are also multidimensional, sparsely distributed and the relation between
the variables and the output is highly nonlinear. A neuro-fuzzy modelling framework is
employed which uses a new type of membership function, the Quantum membership function.
Results are encouraging, with further investigation necessary to better understand Quantum
membership functions and the effect that Quantum intervals have when modelling highly
uncertain data. The framework is further improved using Interval Type-2 Fuzzy Sets and
optimised using a genetic algorithm. The prediction result is 0.72% better than the best result
found in the literature when modelling the same dataset.
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Chapter 1

Introduction

There are several manual experimental tests used in industry to verify that materials are
produced to the required standards. Such tests are usually very time-consuming and expensive
to perform. However, these tests are very important to ensure product quality and safety.

The testing of materials was greatly improved during the 19th century with the develop-
ment of new steelmaking technologies. It is also closely associated with the rapid expansion
of the global railway network and the accompanying areas of engineering science through
the need for locomotives and supporting structures [85]. During these early times, testing
provided a convenient and effective way of understanding the load-carrying capacity and
critical fracture stress of a component.

Materials testing was further improved with the increased use of metals for construction.
This required a better understanding of the characteristics and behaviour of the materials
operating under various conditions.

One of the tests employed to test materials is the Charpy impact test. It is used to evaluate
the toughness of a material and to measure the resistance of a material to brittle fracture.
The importance of the Charpy test is evident when one considers the extent to which brittle
fracture of metals can be dangerous for a structure.

A dramatic example of this happened during World War II when a large number of
Liberty ships developed fatigue cracks while some ships literally split in half. It was later
concluded that these failures were due to a number of factors including welding defects,
design flaws (such as square hatches that acted as points of stress concentration where cracks
could form), but also the embrittlement of steel due to the cold sea water and the effects of
the ductile-to-brittle transition (which is determined from the Charpy test) [65].

A fairly recent area of computer science is the application of Artificial Intelligence (AI) to
assist real life applications. In fact, technology has transformed our lives and AI has become
an integrated part of many things that we use every day, sometimes without us even noticing.
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Some of the areas using AI include: optimised supply chains, automatic fault detection,
customer experience models, smart products or appliances, self-driving cars, smart homes,
robotics, software assistants and games.

It is claimed that AI models are capable of predicting outcomes more accurately than hu-
mans while continuously learning. A question that the academic and industrial communities
tried to answer is: Could the application of artificial intelligence techniques to the material
property prediction and testing problem be a solution to assist the production of materials
with the required properties?

1.1 Research Aim and Objectives

The aim of this research is to study the applicability of novel machine learning algorithms to
the materials property prediction problem.

The main objectives of the project are:

• To build a model that classifies whether steel rails are good or bad. The model will be
based on techniques derived from Support Vector Machines (SVMs) and will need to
address the high data imbalance between the classes.

• To develop a modelling framework to predict the Charpy energy of heat-treated alloy
steel. The framework will be based on the Adaptive-Network-based Fuzzy Inference
System (ANFIS) architecture and make use of the Quantum function as a fuzzy
membership function.

• To enhance the developed modelling framework by integrating Interval Type-2 Fuzzy
Sets with the Quantum membership function.

1.2 Thesis Subject Area

In this respect, this research will focus on the intersection of three key subject areas as
illustrated in Figure 1.1.

Increasing computing power and growth in available data have enabled the application
of machine learning and data modelling techniques to complex systems [84, 19, 70, 34].
Machine learning is a subset of AI which uses algorithms to detect patterns in data. These
algorithms learn from the data and are then used to make predictions. The two most common
scenarios where machine learning is used are classification and regression. This ‘black box’
modelling can also assist in decision-making and to derive insights into complex systems.
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Many real-world problems include some level of uncertainty. Among other factors, such
uncertainty may arise from errors in measurement or due to the inherent complexity of the
system. Fuzzy models intrinsically account for these by using IF-THEN rules to represent
input-output relations. These linguistic rules and the use of fuzzy sets also increase the
interpretability of the model, making it more human-readable [15, 73].

This interdisciplinary approach to modelling can be applied to materials science. Data in
this domain are usually multi-variable, without explicit understanding of how the variables
interact with each other. Therefore, modelling can extract useful knowledge from data, and
be employed to predict complex material properties such as strength, toughness and fatigue.

1.3 Thesis Outline

The thesis is organised as follows:

• Chapter 2 provides an overview of the steelmaking process, heat treatment of steel and
property testing of materials. The Charpy impact dataset is also introduced along with
literature related to this dataset.

• Chapter 3 introduces the second dataset used in this thesis, the rail manufacturing
data. The SVM techniques used to classify this imbalanced dataset are detailed and
the results obtained are presented.

• Chapter 4 proposes the use of a new type of fuzzy membership function, the Quantum
membership function, in a fuzzy logic framework. A detailed description of the

Materials
Property

Prediction

Fuzzy
Logic
Based

Systems

Data
Modelling /

Machine
Learning

Figure 1.1 Research areas for thesis
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suggested modelling architecture is given, together with the results of the framework
when applied to the Charpy impact energy dataset.

• Chapter 5 extends the modelling framework discussed in Chapter 4 to include Type-2
Fuzzy Sets. This was done to investigate the uncertainty handling capabilities of the
model.

• Chapter 6 concludes the thesis and offers some recommendations for future work.

It should be noted that the modelling and analysis throughout this project were carried
out in MATLAB.

1.4 Key Contributions and Publications

• Created a novel learning machine by combining the properties of an SVM with a
fuzzy vector penalty term and further modifying the objective function to include a
Different Error Costs (DEC) class imbalance learning method. The novel DEC Fuzzy
Support Vector Machine (FSVM) was applied to the classification of good and rejected
rails from sample experimental data. The results obtained were compared with those
obtained from classical models (SVM and FSVM) with the DEC-FSVM demonstrating
better sensitivity.When the DEC-FSVM was compared to the models built using an
external imbalance learning method (under-sampling of the majority class), the latter
showed a better sensitivity.

• Successfully identified clustering as an effective way to facilitate the reduction of
support vectors in an SVM while maintaining satisfactory performance. The results
obtained by [10, 94] were also reconfirmed, where model training times were reduced.

• Successfully applied the Quantum membership function modelling framework to a
regression problem for the first time using the Charpy impact data.

• Compared the performances of the results obtained from the Quantum membership
function modelling framework with 5 other models whose results were published in the
literature. The results when applied to the Charpy impact data show that the best results
were obtained by the Genetic Algorithm Neural Network (GA-NN) Ensemble method
closely followed by the result obtained using the Quantum membership function
modelling framework.
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• The Quantum membership function modelling framework was enhanced using Type-2
Fuzzy Sets with the model being optimised using a genetic algorithm. The results were
again compared to those in the literature, this time the Type-2 Quantum membership
function fuzzy model demonstrating the best overall result.

This research work led to the following publications:

• Muscat, R., Mahfouf, M., Zughrat, A., Yang, Y., Thornton, S., Khondabi, A., and
Sortanos, S. (2014). Hierarchical Fuzzy Support Vector Machine (SVM) for Rail
Data Classification. IFAC Proceedings Volumes (19th IFAC World Congress), 47(3),
10652–10657.

• Muscat, R. and Mahfouf, M. (2016). Predicting Charpy Impact Energy for Heat-
Treated Steel using a Quantum-Membership-Function-based Fuzzy Model. IFAC-
PapersOnLine (17th IFAC Symposium on Control, Optimization and Automation in
Mining, Mineral and Metal Processing – MMM 2016), 49(20), 138–142.



Chapter 2

Background and Literature Review

2.1 The Steelmaking Process

While iron artefacts date back to around 2000 BC, there is evidence that iron was smelted
even earlier in various parts of the world. Apart from iron being the fourth most abundant
element on the earth’s crust, these early civilisations discovered the usefulness of this metal.
As an alloy of iron, steel is the most widely used and recycled material on earth. It continues
to transform our lives in sectors such as construction, transport and space travel, energy
generation and distribution, machinery in various industries, specialised instruments in the
health sector, and country infrastructure.

In Britain, iron making methods were improved during the 800 years of Roman occupation
which ended in 383 AD. During this period, natural draught for smelting was enhanced by
using foot-operated bellows. However, after the Romans, this technological knowledge was
lost, with evidence that only primitive methods were used until the 14th century [58].

During the 17th century, the cementation process was used to convert wrought iron into
stiffer blister steel, which could then be forged and hammered into various grades. In 1740
Benjamin Huntsman who worked as a clockmaker in Doncaster, used a crucible method to
produce steel for clock springs which was more consistent and had better properties. This
process contributed to the high reputation of Sheffield steels [58].

Charcoal was used to smelt iron until 1709 when Abraham Darby operated a blast furnace
in Coalbrookdale using coke. This resulted in ironworks being moved from woodlands to
coal mine sites over the next half a century. The next important improvement in blast furnace
operation was when James Neilson introduced the hot blast in Glasgow in 1828 [58].

Pig iron was converted to wrought iron by dry puddling, a process which Henry Cort
invented in 1783. In 1854, James Nasmyth patented the ‘wet puddling’ method which
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involved passing steam through molten iron. This led to Henry Bessemer inventing a similar
process in 1855 [58].

Further developments on the Bessemer process included the use of basic instead of acidic
furnace linings in the Basic Bessemer or Thomas Converter, and the use of pure oxygen
instead of air in the steelmaking process [58, 57].

2.1.1 Blast Furnace

The blast furnace remains an important part of the steel production route, and is usually the
main component of a complex plant. It is a tall vertical shaft of about 40 metres, made of
steel and lined with refractory bricks, which uses carbon, mainly in the form of coke, to
reduce iron from its oxide ores. A schematic view of such a furnace is illustrated in Figure 2.1
[67].

The first stage in the steelmaking process is the preparation of the charge for the blast
furnace which involves converting the ores to sinter. This is done by crushing the ores and
heating them using hot gases to remove moisture and other volatile impurities. Sintered iron
ore, coke and limestone are then charged in layers through the top of the furnace. Coke
serves two functions, as a fuel and providing carbon monoxide when burnt, which is the main
reducing agent. The main reduction equation for the iron oxides inside the furnace is:

Fe2O3 − 3 [O]−−→ 2Fe (2.1)

The blast furnace aims at producing molten iron and therefore the temperature is the
critical parameter of its operation. For tapping the iron and slag in their molten state,
the temperature in the hearth of the furnace must be higher than 1500 ◦C. Hot-blast air,
hydrocarbons, as well as natural gas and powdered coal, are blown through the tuyeres at the
bottom of the structure, reducing the iron ore and producing slag and pig iron, also called hot
metal, containing about 4% Carbon [51, 67].

2.1.2 Desulfurisation

Sulphur adversely affects the structure and mechanical properties of steel, unless good
machinability is required [71]. Lime, calcium carbide and magnesium are used to treat hot
metal from the blast furnace, where the sulphur chemically reacts with these reagents and is
then removed as slag [24].
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Figure 2.1 Representation of a blast furnace plant [67]
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2.1.3 Steelmaking

The hot metal is transferred to a Basic Oxygen Steelmaking (BOS) converter where high-
velocity pure oxygen is blown, oxidising the carbon and other impurities (Figure 2.2a). An
alternative production route involves scrap metal and directly reduced iron (also known as
sponge iron) being refined in an Electric Arc Furnace (EAF) (Figure 2.2b). According to
[92], in 2016, around 25% of the 1630 million tons of steel in the world was produced in
EAFs.

2.1.4 Secondary Steelmaking

The tight specifications of produced steel are adjusted during secondary steelmaking (or ladle
metallurgy). This might include stages in various ladles for deoxidation, alloying, heating
and degassing [49].

2.1.5 Continuous Casting

Traditionally, steel used to then be cast into ingots, before being milled into finished products.
To increase efficiency, it is nowadays more commonly poured directly from the ladles into a
tundish as illustrated in Figure 2.3, from which it flows into a mold and is continuously cast
while being cooled down and milled into several required products [49].

2.2 Heat Treatment

2.2.1 Metallic Structure

The structure of a substance affects its properties. In a gas, the kinetic energy of the particles
allows them to move in a random way, diffuse and fill the available space. Gases are poor
conductors of heat and electricity. The particles in a liquid also fill the container in which
they are placed but they form a surface. Their kinetic energy is less than the particles of a gas,
there are some forces between them but they are still able to move freely within the liquid.
Particles in a solid are closely bound together. This gives a solid its structure as the particles
are arranged in a regular pattern and not randomly [17].

Metals are held together by strong metallic bonding where positive ions are surrounded
by a ‘sea’ of electrons. These delocalised electrons come from the outer shell of the metal
atoms and their negative charge attracts the positively charged ions and binds the metal nuclei
together. Generally, metals have high melting points and they are good conductors of heat
and electricity [17].
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(a) Basic Oxygen Steelmaking

(b) Electric Arc Furnace Steelmaking

Figure 2.2 Steelmaking routes (adapted from [91])
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Figure 2.3 Continuous casting (adapted from [91])

Solid metals are said to be crystalline. During solidification from a liquid, nucleation
takes place where the crystal structure starts to form. The unit cell is the smallest unit that
retains the size, shape and atomic arrangement of the crystal lattice. The unit cell is therefore
geometrically repeated throughout the whole material. The nuclei form dendrites, eventually
continuing to grow into grains of the metal [9].

Although metals are strongly bonded they do not have directed bonds such that particle
layers can slide over each other. In the metallic lattice, this relative movement of layers is
called ‘slip’. This allows metals to be hammered or drawn, metallic properties that are called
malleability and ductility. Two important methods of preventing slip by strengthening metals
are reducing the crystal grain size and alloying. Alloying is the combination of two or more
metals, or a metal and a non-metal, changing the properties of the original material. This
changes a metal’s strength and its resistance to corrosion and wear and is very important
practically. To a large extent, the properties of an alloy depend on the packing arrangement
of the particles within it [31].

There are three packing arrangements for the unit cell of metals and their alloys. These
are: Face Centred Cubic (FCC), Body Centred Cubic (BCC) and Hexagonal Close Packed
(HCP). Apart from their geometrical shape, these arrangements differ from each other in
their coordination number, which is the number of particles touching a single particle, and
the atomic packing factor (APF), which is an approximation of the space occupied by the
particles [9]. These properties are shown in Table 2.1.
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Table 2.1 Properties of packing arrangements [78]

FCC BCC HCP

Coordination Number 12 8 12
Atomic Packing Factor 74% 68% 74%

2.2.2 Iron-Carbon Phase Diagram

Pure iron has a BCC structure below 912 ◦C. This form of iron is called α-iron or ferrite. This
changes to an FCC structure between 912 ◦C and 1394 ◦C and is called γ-iron or austenite.
Beyond 1394 ◦C the crystal structure changes back to BCC and δ -iron or δ -ferrite is formed.
The melting temperature of iron is 1538 ◦C.

These transformations are better explained through a phase diagram. A phase diagram,
also called an equilibrium diagram, shows the various phases of a system with respect to the
controllable variables temperature, pressure and composition, considering slow heating or
cooling.

Iron is usually presented as a binary phase diagram with carbon (Figure 2.4), which is its
most important alloying element. In a binary phase diagram, the temperature and composition
of the alloy are variable while the pressure is constant. When alloying, one element’s atoms
can either substitute the other element’s atoms, or stay between the atoms in the crystal lattice.

Figure 2.4 Iron-Carbon phase diagram [9]
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In the case of iron and carbon, carbon forms an interstitial solution in between the iron atoms.
The percentage weight of carbon soluble in iron also depends on the crystal structure. At low
temperatures, the α-ferrite BCC structure has relatively small interstitial positions (maximum
solubility of 0.022% carbon at 727 ◦C). At higher temperatures, FCC has larger interstitial
positions for austenite (maximum solubility of 2.14% carbon at 1147 ◦C) [9].

As shown in the diagram, carbon changes the arrest points (or transformation tempera-
tures) of the phases. At 4.3% carbon and 1147 ◦C, the liquid alloy solidifies to austenite and
cementite (Fe3C). This is called the eutectic point and the alloys formed below this point are
called cast irons. The point at 0.76% carbon and 727 ◦C is called the eutectoid and is very
important for engineering steels. During cooling austenite is transformed into α-iron and
cementite. Steels with less than 0.76% carbon are called hypoeutectoid while those with a
higher percentage of carbon are called hypereutectoid.

There may be other elements present in the steels apart from carbon. Some of them,
such as manganese, nickel, chromium and vanadium, are used to control the steel properties,
while others, such as sulphur and phosphorus, are classed as impurities and removed during
steelmaking and ladle metallurgy processes [18].

The microstructure of steel depends on the carbon content, composition and the rate of
cooling. Therefore phase diagrams, along with isothermal transformation diagrams (or tem-
perature, time, percentage transformation diagrams) and continuous cooling transformation
diagrams, are very important for the design of heat treating procedures. Phase transformations
of various structures, such as pearlite, bainite, spheroidite and martensite, occur depending on
nucleation, grain growth and diffusion rates. These structures are obtained using procedures
such as normalising, annealing, quenching and tempering.

2.3 Steel Properties and Testing

Mechanical properties of steel are physical properties which describe the material when
a load is applied. Some of the key properties in steel specification are stiffness, hardness,
strength, ductility, fatigue and toughness. This section will describe the standard tests that
are used to simulate loading of a material in a real application. These tests are performed by
varying a number of factors related to the load and the surrounding environment. The load
may be tensile, compressive or shear, and the magnitude of the force may vary constantly
with time or fluctuate. It can be applied over a short or long period of time. The temperature
can also be an important factor. The standardised methods in which the tests are performed
ensure reproducible and consistent interpretation of results.
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2.3.1 Tensile Test

One of the most common tests used to guarantee the quality of a product is the tensile test.
This determines how steel reacts when a force is applied to it in tension. Figure 2.5 shows a
diagram of the apparatus used. During the test a specimen of standard dimensions is stretched
apart at a constant rate while measuring the load and the extension. These are converted
to engineering stress (which is the force divided by the original cross-sectional area) and
engineering strain (which is taken as the ratio of the extension to the original length), and a
stress-strain curve is obtained.

As shown in Figure 2.6, the specimen exhibits a linear relationship between stress and
strain until the elastic limit is reached. The slope of the linear portion approximates Young’s
Modulus. Beyond the elastic limit, starting at the yield point, the specimen is plastically
deformed. During the phase of plastic deformation internal structural changes occur and
several bands, known as Luders bands, are formed at points of stress concentration. The
point of maximum stress is called the ultimate tensile strength, point at which the so-called
‘necking’ starts to form in the specimen. After the ultimate tensile strength the stress reduces
until the fracture point. The area under the nonlinear portion of the graph is related to the
energy absorbed during deformation and is therefore an indication of the toughness of the
material [30].

Figure 2.5 Schematic of the apparatus for the tensile test [9]



2.3 Steel Properties and Testing 15

Figure 2.6 An example of a Stress-Strain curve [59]

2.3.2 Hardness Test

Hardness is a property of the material that describes its resistance to being deformed. Early
hardness tests compared scratch resistance on a scale called the Mohs scale. More recently,
quantitative techniques were developed which analyse a material’s resistance to indentation.
There are several tests used to determine hardness such as the Brinell, Vickers and Rockwell
tests. The hardness is related to the ratio between a fixed load and the surface area of the
indentation formed on a flat surface of the material. The different tests differ mainly in the
type of indentor used [1].

2.3.3 Charpy Impact Test

The Charpy impact test is a standard test used to measure the impact energy (also referred to
as notch toughness) absorbed by a material during fracture. Figure 2.7 shows a schematic
diagram of the apparatus used in the test while Figure 2.8 depicts the notched test specimen
which is supported horizontally in the anvil. The notch provides a point of stress concentration
within the specimen and improves the reproducibility of the results. The absorbed energy
is computed by working out the potential energy lost by a pendulum through breaking the
specimen. Results from tests performed at different temperatures are used to determine
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the ductile-to-brittle transition temperature of materials. Figure 2.9 shows various impact
energy curves for steel for varying carbon content. At higher temperatures, the impact energy
absorbed is high, corresponding to a ductile fracture mode. Over a comparatively narrow
temperature range the impact energy reduces rapidly and the low impact energy values
correspond to a brittle fracture mode.

Although the test is governed by a standard test procedure, several variables influence the
test result repeatability [9, 56]. In fact, through convention, the test is performed on three
specimens at the same temperature and the results are averaged. However, the test is still
susceptible to a number of uncertainties as outlined in [47, 81], giving rise to erratically
distributed data. The sources of disturbance can be grouped as follows:

• Specimen (e.g. notch geometry, inhomogeneous distribution of atoms during the early
stages of nucleation, duplex grain structures including both coarse and fine grains lead
to inconsistent energy distribution, chemical composition)

• System (e.g. machine stiffness and friction, calibration settings)

• Environment (e.g. ambient and specimen temperatures)

• Procedure (e.g. human error)

When combined with a highly sparse data distribution, this suggests that modelling
Charpy impact test data is a challenging task.

2.4 The Impact Energy Data

The heat-treated steel Charpy impact dataset was provided by Tata Steel Europe. During
previous work [83], the data was cleaned and pre-processed with a metallurgist providing
expert knowledge throughout this process.

2.4.1 Data Collection

The data were collected from different sites which had process variations depending on
the steel product produced. The variables in the database had measurement tolerances as
indicated in Table 2.2 [83].
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Figure 2.7 Setup of the Charpy impact test [9]

Figure 2.8 Charpy impact test specimen [9]
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Figure 2.9 Impact energy curves for varying Carbon content [9]

2.4.2 Data Processing

Impact data in the database were available following both V-notch and U-notch test standards.
However, since it is not possible to relate results from the different types of test, it was
decided to retain the more numerous V-notch test samples.

The resulting dataset contains 1661 samples with each record consisting of 16 input
variables and the Charpy energy as output.

The input variables can be grouped in three categories, namely chemical composition,
heat treatment conditions and test parameters, as shown in Table 2.3. The variables’ sta-
tistical properties are listed in Table 2.4. Figure 2.10 displays the sparse modelling data
distribution, considering the distribution between the tempering and hardening temperatures
as an example.

Table 2.2 Accuracy of measured variables

Variable Tolerance

Composition 0.004×(wt)−0.5

Hardening Temperature ± 10 ◦C
Tempering Temperature ± 5 ◦C
Size ± 1 mm
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Table 2.3 Test variables

Chemical Composition Heat Treatment Conditions Test Parameters

Carbon
Silicon

Manganese
Sulphur

Chromium
Molybdenum

Nickel
Aluminium
Vanadium

Hardening Temperature
Cooling Medium

Tempering Temperature

Test Depth
Specimen Size

Test Site
Test Temperature

Table 2.4 Charpy impact data statistics

Variable Units Name Range Mean
Standard
Deviation

Test Depth mm x1 5.50 – 146.05 20.80 14.50
Size mm x2 11 – 381 172.49 80.84
Coded Site - x3 2 – 6 3.80 1.12
C % x4 0.13 – 0.52 0.39 0.06
Si % x5 0.11 – 0.38 0.25 0.03
Mn % x6 0.41 – 1.75 0.84 0.22
S % x7 (8.0e-4) – 0.05 0.02 8.9e-3
Cr % x8 0.11 – 3.25 1.08 0.24
Mo % x9 0.02 – 0.98 0.24 0.09
Ni % x10 0.03 – 4.21 0.37 0.52
Al % x11 (3.0e-3) – 0.05 0.03 4.8e-3
V % x12 (1.0e-3) – 0.26 7.7e-3 0.02
Hardening Temperature °C x13 810 – 980 864.02 15.47
Cooling Medium - x14 1 – 3 2.77 0.52
Tempering Temperature °C x15 190 – 730 647.19 49.92
Test Temperature °C x16 (-59) – 23 -5.79 26.45
Charpy Energy J y 3.47 – 245.33 89.64 32.97
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Figure 2.10 Sparse data distribution
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2.5 Review of Charpy Impact Data Modelling

This section reviews the various techniques that have been applied to model the dataset being
investigated. There are several reasons for which modelling may be useful. These include:

• Prediction of process or product parameters

• Process or product optimisation

• Model-based process control

• Fault detection and quality inspection

Tenner [83] employed an ensemble model made up of 10 Multilayer Perceptron (MLP)
neural networks, with each network consisting of 11 neurons in 1 hidden layer.

Panoutsos and Mahfouf [62] used granular computing as a basis for Gaussian membership
functions with the width being a function of granule cardinality and size. The neuro-fuzzy
structure based on centre of gravity defuzzification, product inference rule and singleton
fuzzy output space was optimised using an adaptive back-error-propagation algorithm.

Chen and Linkens [12] investigated neural-fuzzy modelling with knowledge-based modi-
fication through incorporation of fuzzy rules.

Panoutsos and Mahfouf [63] further analysed granular computing, using it for data pre-
processing. A granular neural-fuzzy ensemble network was elicited, consisting of 13 multiple
granularity models (of between 6 and 18 granules).

Mahfouf, Yang and Zhang [48] employed a Bayesian neural network to model the data,
with this work focusing of error modelling using a Gaussian Mixture Model (GMM). The
prediction confidence interval was further assessed in [95, 97].

Zhang and Mahfouf [102] analysed hierarchical fuzzy modelling for training data selec-
tion, modelling and optimisation. The multi-objective optimisation improved accuracy and
interpretability by removing redundant rules (using confidence and support measures) and
sets, and merging similar ones.

Yang, Mahfouf and Panoutsos [96] used a genetic algorithm to optimise a neural network
structure with parameters from the final population providing an ensemble model. The
genetic algorithm optimised the number of neurons, activation function, training algorithm
and data pre-processing/normalising method.

Rubio-Solis and Panoutsos investigated neutrosophic sets in [80, 74], in conjunction
with granular computing neural-fuzzy modelling in the former, and for fuzzy uncertainty
assessment of Radial Basis Function (RBF) networks in the latter. In [75], Interval Type-2
Fuzzy Sets were applied to RBF networks.
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In the ensuing chapters, modelling results will be compared to the results obtained in the
studies reviewed in this section.

2.6 Summary

Firstly, this chapter explained the various stages in the steelmaking process. The next section
discussed heat-treating procedures, which give steel the required microstructure properties.
Tests that are used to determine the mechanical properties of steel were then outlined. In the
final sections, the Charpy impact dataset was presented and research that makes use of this
dataset was reviewed.

The next chapter will present the second dataset used in this research, the rail quality
data, and then focus on classification techniques from SVMs to classify this binary dataset.



Chapter 3

Fuzzy Support Vector Machine
Modelling

3.1 Introduction

Cost management along with production efficiency have become very important at every
industry level. Investments in production lines allow companies to improve efficiency
and reduce manufacturing costs while quality control procedures improve process output.
Modelling techniques are increasingly being employed to understand the interaction and
influence of input variables on the process.

Advances in computer processing power, together with the vast amounts of available
data, have encouraged the application of machine learning techniques to different real world
problems in an attempt to extract useful knowledge from the available information. Pattern
classification is a supervised machine learning method in which a labelled set of data points is
used to train a model which is then used to classify new test examples. Classifier performance
is commonly evaluated by its accuracy. However, this metric does not correctly value the
minority class in an imbalanced data set and as a result the trained model tends to be biased
towards the majority class [89]. Many data sets from real world problems are inherently
imbalanced and therefore appropriate measures need to be taken to ensure that important
information due to the minority class is correctly represented by the classifier.

This chapter will discuss some techniques based on SVMs for modelling materials related
data [87]. Specifically, a modelling architecture will be applied to a dataset from the testing
of rails produced by Tata Steel Europe.
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3.2 Rail Manufacturing Data

At Tata Steel Europe, a precisely controlled rail production line, whose sub-processes are
indicated in Figure 3.1, produces high quality rails.

During steelmaking, the desired steel chemical composition is achieved. Continuous
casting produces steel blooms which are reheated in a furnace and rolled into rail sections.
Non-Destructive Testing (NDT) maintains steel integrity, avoids imperfections, and therefore
improves product safety such that the rails meet the required standards. Several techniques
are employed to inspect the rails for metallurgical and surface flaws, and also to ensure that
strict dimensional tolerances are met. Instrumentation systems measure, monitor and control
the process variables to improve productivity and product quality.

The dataset obtained from the Tata Steel Europe rail route extended over a two year
production period. A process expert provided knowledge about the data which approximated
65,000 records and up to 200 variables. The data was pre-processed with the variables
reduced to 70 to make it more manageable for use in modelling.

3.2.1 Variable Selection

Although development in processing power motivated data-driven modelling, data dimension-
ality still remains an important issue. Reducing the dimensionality improves the performance
of the predictor by improving generalisation, and provides faster and more cost-effective
predictors by simplifying models and reducing training times [27]. One of the ways to reduce
dimensionality is through variable selection. Therefore, variable selection was performed in
the work by Yang et al. [98], where 39 inputs were selected from the 70 input variables using

Figure 3.1 Railway production route
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an iterative forward selection algorithm. This employed a three-layer MLP neural network as
the performance evaluator.

3.2.2 Data Imbalance

The dataset consistsed of 3000 samples which were separated into 60% for training and 40%
testing data. The dataset is highly imbalanced with only 6.77% of the data corresponding to
rejected rails (Figure 3.2). Details regarding the nature of input variables in the dataset could
not be disclosed, so as to protect sensitive information about the rail manufacturing process.

3.3 Theory

3.3.1 Support Vector Machine

The SVM algorithm was proposed by Vapnik and Chervonenkis in the 1960s. It was further
developed in 1992 by Boser, Guyon and Vapnik [7] who applied the kernel trick to allow
the classification of linearly non-separable data. The soft margin classifier was proposed by
Cortes and Vapnik in 1995 [14], allowing some data misclassification when using an SVM.
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Figure 3.2 Rail quality showing data imbalance
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The theory for SVMs is discussed in this subsection [8, 16, 29, 23, 87]. The SVM is
a supervised machine learning algorithm. Its aim is to find the optimal hyperplane which
separates data from two classes with the maximum margin of separation.

Let the linearly separable training data be labelled {xxxi,yi}, yi ∈ {−1,1}, xxxi ∈ Rd , where
each input xxxi has d dimensions and is in one of two classes yi.

The hyperplane that separates the two classes can be described as follows:

wwwT xxx+b = 0 (3.1)

where www is normal to the hyperplane and b is a bias.
Suppose that all the training data satisfy the following constraints:

wwwT xxxi +b ≥+1 for yi =+1 (3.2)

wwwT xxxi +b ≤−1 for yi =−1 (3.3)

The inequalities can be combined into the following:

yi(wwwT xxxi +b)−1 ≥ 0 ∀i (3.4)

The points for which (3.2) holds with the equality lie on the hyperplane H1 : wwwT xxxi +b =+1.
Its perpendicular distance from the origin is |1−b|/∥www∥.

Similarly, the points for which (3.3) holds with the equality lie on the hyperplane
H2 : wwwT xxxi +b =−1, whose perpendicular distance from the origin is |−1−b|/∥www∥.

The points on these parallel hyperplanes on either side of the separating hyperplane are
called support vectors and the distance between them is called the margin, such that:

margin =
|(1−b)− (−1−b)|

∥www∥ =
2

∥www∥ (3.5)

Therefore, maximising the margin is equivalent to minimising the norm of www. The
problem is formulated as a convex optimisation as follows:

min 1
2∥www∥2 s.t. yi(wwwT xxxi +b)−1 ≥ 0 ∀i (3.6)

The problem is switched to a Lagrangian formulation. Thus, positive Lagrange multipli-
ers, αi, are introduced and the primal Lagrangian is as follows:

Lp =
1
2∥www∥2 −∑

i
αi
[
yi(wwwT xxxi +b)−1

]
(3.7)
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Taking the partial derivatives with respect to www and b and setting them equal to zero:

∂Lp

∂www
= 0 ⇒ www = ∑

i
αiyixxxi

∂Lp

∂b
= 0 ⇒ ∑

i
αiyi = 0

(3.8)

Substituting back into the primal form of the Lagrangian, the dual formulation can be
obtained:

Ld = ∑
i

αi −
1
2 ∑

i
∑

j
αiα jyiy jxxxi ··· xxx j (3.9)

This is maximised with respect to αi, subject to the constraints αi ≥ 0 ∀i and ∑i αiyi = 0.
An important property is that the training data only appears in the form of dot products
between vectors.

3.3.2 The Non-Separable Case

Since no feasible solution is found when classifying non-separable data, the constraints are
relaxed and a cost is introduced in the objective function. Positive slack variables, ξi ≥ 0 ∀i,
are included in the constraints (3.2) and (3.3) [14], such that:

wwwT xxxi +b ≥+1−ξi for yi =+1 (3.10)

wwwT xxxi +b ≤−1+ξi for yi =−1 (3.11)

The objective function is defined as follows:

min
(

1
2∥www∥2 +C∑

i
ξi

)
s.t. yi(wwwT xxxi +b)−1+ξi ≥ 0 ∀i (3.12)

where C is a positive penalty term to allow misclassification.
The dual form of the Lagrangian is the same as (3.9) with the constraints now being

0 ≤ αi ≤C and ∑i αiyi = 0.

3.3.3 Nonlinear Support Vector Machine

When the relationship between inputs and output is nonlinear, the data is mapped to a higher
dimensional space using the function ϕϕϕ(xxx) where a separating hyperplane can be found.
However, since the algorithm only depends on the data through dot products, Boser, Guyon
and Vapnik [7] proposed the kernel trick such that no computations are done explicitly with
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ϕϕϕ(xxx). Therfore, for a kernel function,

k(xxxi,xxx j) = ϕϕϕ(xxxi) ···ϕϕϕ(xxx j), (3.13)

only k(xxxi,xxx j) needs to be used in the training algorithm. An example of such a function is
the RBF kernel:

k(xxxi,xxx j) = exp
(
− 1

2σ2∥xxxi − xxx j∥2
)

(3.14)

The dual form of the Lagrangian is:

Ld = ∑
i

αi −
1
2 ∑

i
∑

j
αiα jyiy jk(xxxi,xxx j) (3.15)

s.t. ∑i αiyi = 0 and 0 ≤ αi ≤C ∀i (3.16)

The decision rule can also be expressed in terms of the kernel, such that:

f (xxx) = sign
(

∑
i

αiyiϕϕϕ(sssi) ···ϕϕϕ(xxx)+b
)
= sign

(
∑

i
αiyik(sssi,xxx)+b

)
(3.17)

where sssi are the support vectors.

3.3.4 Fuzzy Support Vector Machine

Apart from dealing with misclassification when the classes are not clearly defined, the SVM
might need to take care of noise and outlying samples, to which it is very sensitive [28]. This
can be done by providing a membership value, 0 < si ≤ 1, for each point in the training
dataset and including this membership in the SVM objective function [44]:

min
(

1
2∥www∥2 +C∑

i
siξi

)
s.t. yi(wwwT xxxi +b)−1+ξi ≥ 0 ∀i (3.18)

Thus, if misclassified, an important point with a high membership value will add more weight
to the objective function than a misclassified unimportant point.

The dual formulation of the Lagrangian is the same as in (3.15) with a change in the
constraints:

∑i αiyi = 0 and 0 ≤ αi ≤ siC ∀i (3.19)

As proposed by Lin and Wang [44], the FSVM can reduce the effect of outliers by using
a fuzzy membership which is a function of the distance between a point and its class centre.
Let the fuzzy membership be a function of the mean and radius of each class such that a
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point close to the centre has a high membership while a point far away from the centre has a
low membership:

si =





1−|xxx+− xxxi|/(r++δ ) if yi =+1

1−|xxx−− xxxi|/(r−+δ ) if yi =−1
(3.20)

where xxx+ is the mean and r+ is the radius of class y = +1, xxx− is the mean and r− is the
radius of class y =−1, δ > 0 to avoid si = 0.

3.3.5 Support Vector Machines for Class Imbalance

Preliminary results showed that SVMs are sensitive to class imbalance. Batuwita and Palade
[4] review methods in the literature used to reduce the problem that models are biased
towards the majority class and have low performance on the minority class. These cover
external methods such as data pre-processing and internal methods that make algorithmic
modifications to the SVM algorithm.

An internal imbalance learning method was applied by modifying the SVM objective
function and assigning two misclassification costs. This is referred to as DEC by Batuwita
and Palade [4] and was originally proposed by Veropoulos et al. [88]. Thus C+ is the
misclassification cost for the positive (minority) class while C− is the misclassification cost
for the negative (majority) class. When combined with the fuzzy membership defined earlier,
the following objective function is obtained:

min
(

1
2
∥www∥2 +C+C ∑

{i|yi=+1}
siξi +C−C ∑

{i|yi=−1}
siξi

)
(3.21)

s.t. yi(wwwT xxxi +b)−1+ξi ≥ 0 ∀i (3.22)

The dual Lagrangian form, Ld , of this function is the same as in (3.15) and is maximised
subject to the following constraints:

∑i αiyi = 0, 0 ≤ α
+
i ≤ siC+C, 0 ≤ α

−
i ≤ siC−C ∀i (3.23)

where α
+
i and α

−
i represent the Lagrange multipliers of positive and negative samples

respectively.
The ratio C−/C+ was set equal to the minority to majority class ratio as suggested in [2]

such that the penalty for misclassifying minority class examples is higher.
It was subsequently decided to apply an external imbalance learning method by balancing

the training data. The dataset obtained by Zughrat et al. [103] was used, where under-
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sampling of the majority class was performed to make the number of good rails equal to the
rejected rail training examples.

3.3.6 Fuzzy C-Means Clustering

The number of support vectors when applying SVMs and FSVMs on the balanced data
set was still very high leading to long training times and making parameter optimisation
impractical and inefficient. Therefore Fuzzy C-Means (FCM) clustering was proposed as a
way of reducing the number of support vectors, reducing training times and model complexity,
and improving generalisation [94, 10].

The FCM clustering algorithm is an optimisation problem whereby the coordinates of
the cluster centres need to be identified. The cost function to be minimised [5] is:

J(X ,U,V ) =
c

∑
i=1

N

∑
k=1

µ
m
ik∥xxxk − vvvi∥2 (3.24)

where V = [vvv1,vvv2, . . . ,vvvc] is the vector of cluster centres, X = [xxx1,xxx2, . . . ,xxxN ] represents the
data samples, U = [µik] is the fuzzy partition matrix of X , m is the weighting exponent,
Dik

2 = ∥xxxk − vvvi∥2 is the squared distance norm.
The minimisation of (3.24) is possible if and only if:

µik =
1

∑
c
j=1

(
Dik
D jk

) 2
m−1

1 ≤ i ≤ c 1 ≤ k ≤ N (3.25)

vvvi =
∑

N
k=1 µm

ik xxxk

∑
N
k=1 µik

m
1 ≤ i ≤ c (3.26)

The membership degree, µik, is inversely proportional to the squared distance from the
data points to the current cluster centres. Equation (3.26) gives vvvi as the weighted mean of
the data points, where the weights are the membership degrees. The FCM algorithm iterates
through (3.25) and (3.26) to optimise the fuzzy partition matrix and cluster centres.

3.3.7 The Confusion Matrix

In binary classification accuracy is usually the metric used to assess a classifier’s predictive
performance. Using the confusion matrix of Table 3.1, accuracy can be defined as follows:

Accuracy =
TP+TN

TP+TN+FP+FN
(3.27)
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Table 3.1 Confusion matrix

Actual Rail Quality

Rejected Good

Predicted Rail Quality
Rejected True Positive (TP) False Positive (FP)

Good False Negative (FN) True Negative (TN)

Accuracy is the number of correct classifications from both classes. However, for an
imbalanced dataset, a classifier may be skewed towards the majority class and therefore
sensitivity and specificity offer a better description of the classifier’s performance.

Considering the imbalanced rail dataset, the terms in Table 3.1 can be explained as:

• True Positive (TP): Rejected rails correctly classified as rejected rails

• True Negative (TN): Good rails correctly classified as good rails

• False Positive (FP): Good rails incorrectly classified as rejected rails

• False Negative (FN): Rejected rails incorrectly classified as good rails

Using these terms, sensitivity and specificity are defined as follows:

Sensitivity =
TP

TP+FN
=

TP
Number of Positives

(3.28)

Specificity =
TN

TN+FP
=

TN
Number of Negatives

(3.29)

3.4 Results

3.4.1 Modelling Imbalanced Dataset using the Support Vector Machine
Techniques

A grid search was performed to optimise the parameters of the SVM and FSVM models as
shown in Figure 3.3 and Figure 3.4 respectively. This was done to optimise the penalty term,
C, and RBF kernel spread, σ . The results obtained, with a sensitivity of approximately 24%
as indicated in Table 3.2, show that SVM techniques are sensitive to class imbalance with the
result being that the models overfit the training data leading to poor generalisation.
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3.4.2 Modelling using Class Imbalance Learning Methods

For the DEC-FSVM model, a grid search was performed for the parameters C and σ

(Figure 3.5). Considering a model with the best sensitivity (without degrading specificity)
using a C of 3,162 and σ of 251, an accuracy of 68.1%, sensitivity of 53.0% and specificity
of 69.2% were obtained (Table 3.3).

Figure 3.6 and Figure 3.7 show the grid search results for the SVM and FSVM when
applied on the balanced dataset. Models were chosen from the region with best sensitivity
with C equal to 11,776 and σ equal to 46.45 for both models. The results are tabulated in
Table 3.3 with the FSVM offering a 9.06% improvement in terms of sensitivity (Table 3.4).
However, the ratio of support vectors to the number of training points was still very high at
0.952.

3.4.3 Fuzzy C-Means Clustering, Fuzzy Support Vector Machine

Clustering was performed on the balanced dataset which had 2877 points. Random initial
cluster centres and a weighting exponent, m, of 2 were used for the FCM algorithm. Using the
same values for the parameters C and σ , the average performance of 10 FSVM models was
considered for every clustering level from 10% to 90% (with 10% having the least number
of cluster centres resulting in the minimum number of training points). The models where
tested on a separate unbalanced data set. Table 3.5 shows that the number of support vectors
was reduced since clustering reduces the number of training points (Rsv/max). However,
clustering grouped points with similar features and this allowed the SVM algorithm to further
reduce the number of support vectors in relation to the number of training points available
(Rsv/tr). Figure 3.8 indicates that classifier performance is generally a compromise between
sensitivity and specificity. Figure 3.9 shows that after clustering and fuzzification, the SVM
algorithm was able to build the model using 50% or less of the available training points
(Rsv/tr). This highly reduced the model training time which is especially important for
parameter optimisation procedures. Analysing performance, one has to keep in mind the data
dimensionality and the high nonlinearities in the input-output relationship.

3.5 Summary

This chapter aimed at designing a modelling architecture to deal with the imbalanced data
relating to the production of rails. The modelling techniques are based on SVMs which
are not affected by local minima as they are mathematically based on the solution of a
convex optimisation problem. Also, in some cases, SVM generalisation performance has
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Table 3.2 Performance of SVM and FSVM models on imbalanced dataset

SVM FSVM

Sensitivity [%] 24.10 24.10
Specificity [%] 93.30 93.10
Accuracy [%] 88.50 88.30

Support Vector Ratio (Rsv/tr) 0.24 0.25

Table 3.3 Model performance for class imbalance learning methods

Imbalance Learning Method Internal External

FSVM SVM FSVM

Sensitivity [%] 53.00 61.94 67.55
Specificity [%] 69.20 73.80 68.24
Accuracy [%] 68.10 73.06 68.20

Support Vector Ratio (Rsv/tr) 0.98 0.95 0.95

Table 3.4 Performance comparison of SVM and FSVM models

SVM FSVM Percentage Difference

Sensitivity [%] 61.94 67.55 + 9.06
Specificity [%] 73.80 68.24 – 7.53
Accuracy [%] 73.06 68.20 – 6.65

Support Vector Ratio (Rsv/tr) 0.948 0.952 + 0.42

Table 3.5 FCM-FSVM with different clustering levels

Clustering
[% of max. # pts.]

Sensitivity
[%]

Specificity
[%]

Accuracy
[%] Rsv/tr Rsv/max

10 71.31 50.60 51.89 0.43 0.04
20 69.46 57.08 57.80 0.50 0.10
30 69.73 57.71 57.44 0.51 0.15
40 68.30 60.10 60.61 0.48 0.19
50 68.21 60.78 61.25 0.49 0.24
60 68.75 60.71 61.21 0.47 0.28
70 66.09 63.31 63.48 0.46 0.32
80 66.08 63.37 63.54 0.42 0.34
90 66.37 63.75 63.91 0.43 0.39
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Figure 3.3 Grid search for SVM with RBF kernel

been shown to be better than that of other classification methods [8]. However, SVMs are
sensitive to class imbalance. Therefore, an internal (FSVM with DEC) and external (data
under-sampling) class imbalance learning methods were applied to the data. The performance
of the techniques when implemented on the under-sampled dataset was better, while in both
cases the inclusion of a fuzzy membership improved the performance of the SVM. Quadratic
optimisation scales poorly with the number of data samples and therefore FCM clustering
was proposed for reducing training time and model complexity, by reducing the number of
support vectors of the FSVM model, concluding it is effective in reducing model complexity
without any significant performance deterioration.

The following chapter will discuss the introduction of a new type of fuzzy membership
function for materials property prediction of steel.
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Chapter 4

Quantum-Membership-Function-based
Fuzzy Modelling with Application to
Charpy Energy

4.1 Introduction

Classification and recognition are intrinsic human abilities which we use extensively in
everyday life. The formal foundations of classification can be traced back to the ancient
world of Plato and Aristotle [20]. One of the first examples of mathematical predictions
can be accredited to Johann Carl Friedrich Gauss who in 1801 predicted the position of
Ceres based on previous observations of the asteroid by the astronomer Giuseppe Piazzi
[82]. In recent years, the use of computers helped to merge generally overlapping fields
such as pattern classification and machine learning, and develop areas within them such as
supervised, unsupervised and reinforcement learning into evolving research themes.

4.2 Artificial Neural Networks

One of the most popular machine learning algorithms are multilayer feed-forward neural
networks. The foundations of neural networks were laid in the 20th century, with noted
works being the propositions of nervous activity [50], and the development of a learning
procedure for the first hardware neural network [90]. The MLP neural network obtained its
name from Rosenblatt’s model [72]. In 1986, Rumelhart et al. [76] extended the learning
rule mentioned previously to multiple layers, thus developing the error back-propagation
algorithm, which still forms the basis to more advanced network learning techniques. The
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popularity of feed-forward neural networks increased as processing power became more
available and also because, as explained in [6], various studies show that given suitable
parameters they are universal function approximators. This means that neural networks can
approximate complex systems using simple topologies. In fact, the universal approximation
theorem [29, p. 167] states that, although maybe not in an optimum sense, a single hidden
layer of neurons is sufficient to approximate a given function.

4.3 Fuzzy Logic

Fuzzy logic was introduced by L.A. Zadeh in 1965 [99]. Two perspectives that offer an
insight to the advantages of fuzzy logic are: ‘to exploit the tolerance for imprecision’ and
‘the principle of incompatibility’. The former implies that there is no need for a model to
be more complex and precise than actually needed. The latter implies that a simpler model
leads to a more interpretable system, having more significance to the underlying process.

The principle of incompatibility states that:

“As the complexity of a system increases, our ability to make precise and yet
significant statements about its behaviour diminishes until a threshold is reached
beyond which precision and significance (or relevance) become almost mutually
exclusive characteristics.” [100]

Mathematical models may be ineffective on their own for processes which are charac-
terised by uncertainties, nonlinearities and unmodelled dynamics and therefore fuzzy logic
provides a more interpretable approach to uncertainty. For complex systems, the interpretabil-
ity of fuzzy logic also allows expert knowledge to be more easily incorporated in the system
since the inference mechanism comprises understandable and intuitive IF-THEN rules.

As noted in [41], it was proven in multiple works that a fuzzy system representation
can approximate functions to any degree of accuracy. Thus, fuzzy systems are universal
approximators.

4.3.1 Fuzzy Sets

A crisp or binary set, A, identifies elements as either part of it or not, such that their
membership is:

µA(x) =





1, x ∈ A

0, x /∈ A
(4.1)
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A fuzzy set generalises the idea of a crisp set such that elements, x, from the universe of
discourse, X , are mapped to the interval [0,1]. Mathematically, a fuzzy set can be represented
by a set of ordered pairs of elements and their degree of membership in the fuzzy set A:

A =
{(

x,µA(x)
)
| ∀x ∈ X ,0 ≤ µA(x)≤ 1

}
(4.2)

The membership value represents the degree of truth by which an element belongs to the
set. The mapping between the universe of discourse and the membership values forms the
membership function. For example, the fuzzy set ‘Warm Weather’ can be described by the
membership function in Figure 4.1.

4.3.2 Type-1 Fuzzy Logic System

Figure 4.2 shows the general architecture of a Fuzzy Logic System (FLS) which consists of
the following components [66]:
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Figure 4.1 Fuzzy set describing ‘Warm Weather’
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Fuzzy Sets
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Figure 4.2 Type-1 Fuzzy Logic System

• Fuzzifier - Converts the crisp inputs into fuzzy sets.

• Fuzzy Rules - A rule base of fuzzy IF-THEN rules which provide a linguistic descrip-
tion of the output in terms of the input variables. The IF part (associated with inputs)
is called the antecedent and the THEN part (associated with the output) is referred to
as the consequent.

• Inference Engine - Combines the input fuzzy sets with the fuzzy rules using fuzzy
reasoning to produce the output fuzzy sets.

• Defuzzifier - Converts the output fuzzy sets into a crisp output using one of various
defuzzification methods.

The two most common inference mechanisms which were successfully applied to a wide
range of applications are the Mamdani and Sugeno (or Takagi, Sugeno and Kang – TSK)
methods [73]. The main difference between these two methods is that in the Mamdani method
the consequent parts are fuzzy, while in the Sugeno type the consequents are mathematical
functions.

4.4 Adaptive-Network-based Fuzzy Inference System

The ANFIS combines a fuzzy inference system with adaptive networks for nonlinear mod-
elling [35].
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The ANFIS architecture is shown in Figure 4.3 and its layers, which will be explained in
Section 4.5.2, are as follows [36]:

Layer 1 - Membership Layer

Layer 2 - Intersection Layer

Layer 3 - Normalisation Layer

Layer 4 - Consequent Layer

Layer 5 - Output Layer

Regarding the notation used in the diagram, x and y are inputs, Ai and Bi are fuzzy sets, wi are
the multiplication layer outputs, wi are the normalisation layer outputs, fi are linear functions
of the inputs and f is the model output.
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Figure 4.3 ANFIS architecture

The main advantage of this hybrid architecture is that the fuzzy inference mechanism,
which allows human knowledge and reasoning to describe the system, is embedded into the
structure of neural networks, providing the supervised computational learning abilities of
adaptive networks.
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4.5 Quantum Neuro-Fuzzy Inference System

This section presents the components of the proposed modelling technique with the model
deriving its structure from the ANFIS architecture. The quantum membership function is
proposed as a means of improving the uncertainty handling capabilities of the model.

4.5.1 Quantum Membership Function

Quantum membership functions have been employed in modelling problems, obtaining good
classification accuracies [45, 46]. The quantum function was also considered as the activation
function in neural networks [69, 42]. These studies indicate that quantum neural networks
are able to model uncertainty by capturing the inherent structure of the data.

The quantum function is characterised by the sum of a number of sigmoid functions,
depending on the number of quantum levels. The sigmoid functions are shifted along
the universe of discourse by the quantum intervals, resulting in multileveled membership
functions. A quantum membership function is defined as [45]:

µA(x) =
1

nθ

nθ

∑
r=1

[(
1

1+ exp(−β (x− c+ |θ r|))

)
U(x;−∞,c)

+

(
exp(−β (x− c−|θ r|))

1+ exp(−β (x− c−|θ r|))

)
U(x;c,∞)

]
(4.3)

where x is the input, µA(x) is the membership degree of x for fuzzy set A, β is the slope
factor, θ r is the quantum interval, c is the membership function centre, nθ is the number of
quantum levels and

U(x;a,b) =





1 if a ≤ x < b,

0 otherwise.
(4.4)

Figure 4.4 illustrates the membership degree given by a three-level (nθ = 3) quantum
membership function with c = 0, β = 2, and θ r = [10,20,30]. Figure 4.5 shows a quantum
membership function extended to 2 input dimensions.

The advantages of employing the quantum membership function in highly uncertain
modelling scenarios are:

• A quantum set offers better generalisation through a different definition of subjectivity
which would normally require multiple sets.

• A quantum membership function captures and quantifies the structure of the input
space.
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Figure 4.4 3-level Quantum membership function

• The underlying data distribution can be represented by ‘packets’ (quanta) of similar
points by the same membership degree for the particular quantum interval (level).

• The nature of the membership function having layers with the same membership degree
helps to deal with outlying data points more effectively.

• Uncertainty in the data is detected and modelled by the quantum intervals which also
offer another degree of freedom that can be optimised along with the other parameters.

4.5.2 Modelling Architecture

The modelling structure is based on the ANFIS architecture and as shown in Figure 4.6, it
is similar to the type-3 ANFIS [35] with a TSK method of fuzzy rule inference. The fuzzy
IF-THEN rules are of the form:

R j : IF x1 is A1 j and x2 is A2 j . . . and xn is An j THEN y j is b j +
n

∑
i=1

ai jxi (4.5)

where xi is the input variable, y is the output, Ai j is the linguistic quantum fuzzy set of the
antecedent part with membership degree µAi j , b j and ai j are the consequent parameters, n is
the input dimensionality, and R j is the jth fuzzy rule.
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Figure 4.5 Quantum membership function with 2 input dimensions
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Let q represent the number of fuzzy rules and Ol denote the output of a node in the lth

layer. The operations performed in each of the layers are:

Layer 1 (Membership) - The membership degree of quantum membership sets defining the
linguistic variables. The number of linguistic variables for every input dimension is
equal to the number of fuzzy rules which is also equal to the number of clusters (the
clustering algorithm will be explained further on). The output of this layer is:

O1
i j = µAi j(xi) (4.6)

Layer 2 (Intersection) - Expresses the ‘AND’ between premises (antecedents) which is
performed through a multiplication. A firing strength for each rule is produced. An
output from this layer is qiven by:

O2
j = ∏

i
O1

i j (4.7)

Layer 3 (Normalisation) - The ratio of the jth rule firing strength to the sum of all rules’
firing strengths:

O3
j =

O2
j

O2
1 +O2

2 + . . .+O2
q

(4.8)

Layer 4 (Consequent) - The Sugeno processing rule:

O4
j = O3

j

(
b j +

n

∑
i=1

ai jxi

)
(4.9)

Layer 5 (Output) - Rule aggregation which is performed by summing the output from all
rules:

O5 =
q

∑
j=1

O4
j (4.10)

4.5.3 Clustering

Clustering is used to determine the number of quantum sets per input dimension and conse-
quently the number of fuzzy rules. It also provides an initial estimate for the membership
function centres and quantum intervals.

The algorithm employed performs one pass through the data and allocates the points to a
cluster based on the distance between the point and the cluster centres [46]. If the smallest
distance to a centre is larger than a certain threshold, a new cluster is formed. A flowchart of
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the clustering procedure is shown in Figure 4.7. The size of each cluster is monitored and
later used to define the quantum intervals using the formula:

θ
r
i j =

r ·D j(
nθi j +1

)
/2

(4.11)

where r = 1, . . . ,nθ , j = 1, . . . ,q, and D j is the diagonal distance of the cluster.

4.5.4 Parameter Optimisation

The parameters are updated by tuning the cost function along the negative gradient to achieve
supervised learning based on the error back-propagation algorithm. This is used to update
the consequent parameters, b j and ai j, the membership function centres, ci j, and the quantum
intervals, θ r

i j. Let the cost function (for the case of a single output) be defined as:

E =
1
2

eT · e (4.12)

where e = y− yt , y is the predicted output and yt is the target output value.
The error term to be back-propagated is described by:

δe =−∂E
∂y

= yt − y =−e (4.13)

The consequent parameter updates are:

∆b j =− ∂E
∂b j

=
δeO3

j

∑
q
j=1 O3

j

∆ai j =− ∂E
∂ai j

=
δeO3

jxi

∑
q
j=1 O3

j

(4.14)

The consequent parameters are updated using:

b j(k+1) = b j(k)+ηw∆b j

ai j(k+1) = ai j(k)+ηw∆ai j
(4.15)

where ηw is the network weight parameter learning rate and k is the time step.
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Figure 4.7 Flowchart of the clustering algorithm
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The centre and quantum interval updates are computed according to the chain rule, where
the output error is back-propagated to the membership function layer. The centre updates are:

∆ci j =− ∂E
∂ci j

=− ∂E
∂O5

j
·

∂O5
j

∂ci j

= δe ·
[
(b j +∑

n
i=1 ai jxi) ·∑q

j=1 O3
j −∑

q
j=1

(
O3

j(ao j +∑
n
i=1 ai jxi)

)
(
∑

q
j=1 O3

j
)2

]
q

∏
j=1
i ̸= j

Ai j

× 1
nθi j

nθi j

∑
r=1


−

β · exp
(
−β (xi − ci j + |θ r

i j|)
)

(
1+ exp

(
−β (xi − ci j + |θ r

i j|)
))2 ·U(xi;−∞,ci j)

+
β · exp(−β (xi − ci j + |θ r|))

(
1+ exp

(
−β (xi − ci j + |θ r

i j|)
))2 ·U(x;c,∞)


 (4.16)

The quantum interval updates are:
If θ r

i j ≥ 0, then

∆θ
r
i j =− ∂E

∂θ r
i j
=− ∂E

∂O5
j
·

∂O5
j

∂θ r
i j

= δe ·
[
(b j +∑

n
i=1 ai jxi) ·∑q

j=1 O3
j −∑

q
j=1

(
O3

j · (ao j +∑
n
i=1 ai jxi)

)
(
∑

q
j=1 O3

j
)2

]
q

∏
j=1
i ̸= j

Ai j

× 1
nθi j

·




β · exp
(
−β (xi − ci j +θ r

i j)
)

(
1+ exp

(
−β (xi − ci j +θ r

i j)
))2 ·U(xi;−∞,ci j)

− β · exp(−β (xi − ci j +θ r))
(

1+ exp
(
−β (xi − ci j +θ r

i j)
))2 ·U(xi;ci j,∞)


 (4.17)
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else θ r
i j < 0

∆θ
r
i j =− ∂E

∂θ r
i j
=− ∂E

∂O5
j
·

∂O5
j

∂θ r
i j

= δe ·
[
(b j +∑

n
i=1 ai jxi) ·∑q

j=1 O3
j −∑

q
j=1

(
O3

j · (ao j +∑
n
i=1 ai jxi)

)
(
∑

q
j=1 O3

j
)2

]
q

∏
j=1
i ̸= j

Ai j

× 1
nθi j

·


−

β · exp
(
−β (xi − ci j −θ r

i j)
)

(
1+ exp

(
−β (xi − ci j −θ r

i j)
))2 ·U(xi;−∞,ci j)

+
β · exp(−β (xi − ci j −θ r))

(
1+ exp

(
−β (xi − ci j −θ r

i j)
))2 ·U(xi;ci j,∞)


 (4.18)

These result in the membership function centres and quantum intervals being updated as
follows:

ci j(k+1) = ci j(k)+ηc∆ci j

θ
r
i j(k+1) = θ

r
i j(k)+ηθ ∆θ

r
i j

(4.19)

where ηc, ∆ci j and ηθ , ∆θ r
i j are learning rate and update for the centres and quantum intervals

respectively, and k is the time step.

4.5.5 Model Validation

The modelling architecture was successfully implemented for the three-class classification
of the iris flower dataset. The data are multivariate with variables corresponding to sepal
length, sepal width, petal length, petal width and the flower species. The dataset contains 50
instances of each of the three species, Iris Setosa, Iris Virginica and Iris Versicolor. It was
first used in 1936 [21, 3] and is a common choice of dataset for classification using machine
learning techniques.

The simulations resulted in very high classification accuracies, averaging 97.5% and
comparable to those documented in [46], whose membership functions for the optimized
model are shown in Figure 4.8.
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4.6 Clustering Analysis and Simulations Setup

When fitting the model to the Charpy impact data, which was presented in Chapter 2,
determining the appropriate distance threshold in the clustering algorithm proved difficult
due to the different variable ranges combined with the need to try different normalisation
methods. Moreover, the quantum intervals could not be optimised in the same way as in
[46], using an entropy-based algorithm, as this relied on the data belonging to classes. FCM
clustering was therefore used to provide an initial estimate for the centres of the quantum
sets while the number of quantum levels was fixed to 3 per membership function. The data
were partitioned into training, validation and testing sets using the ratios 0.55 : 0.15 : 0.30
respectively. The same partitioning ratios were adopted for fair comparison with previous
work.

It was noticed that when clustering is done across all variables, the centres are random
across the range of each variable (Figure 4.9a). However, clustering the variables individually
results in specific points being chosen as centres (Figure 4.9b). These figures were obtained
by plotting 100 iterations of FCM clustering with 3 centres each.

The effects of these clustering methods were analysed along with the different normalisa-
tion types, where data were either standardised using the mean and standard deviation of the
training data, or normalised. For the following settings, 20 simulations of 25 epochs each
(50 epochs in one case) were performed for each cluster setting between 3 and 10 clusters:

• Standardisation including the outputs (2 simulations with 25 epochs; 1 with 50 epochs)

• Standardisation excluding the outputs

• Normalisation (−0.5 . . .0.5) including the outputs

• Normalisation (−0.5 . . .0.5) excluding the outputs

• Normalisation (0 . . .1) including the outputs

• Standardisation including outputs and clustering across all variables

• Normalisation including outputs and clustering across all variables

Tables 4.1 and 4.2 indicate the number of times that the model did not converge (from
the 20 simulations) for every cluster value. Since for the simulation settings indicated in
Table 4.2 the number of divergences was too high, only the settings shown in Table 4.1 were
considered when choosing a suitable model.
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(a) Clustering across all variables

Figure 4.9 Cluster centres obtained using FCM clustering



4.6 Clustering Analysis and Simulations Setup 58

0 1 2
0

50

100

x
1

F
re

qu
en

cy

−0.5 0 0.5 1
0

50

100

x
2

F
re

qu
en

cy

−0.5 0 0.5 1 1.5
0

50

100

x
3

F
re

qu
en

cy

−2 −1 0 1
0

50

100

x
4

F
re

qu
en

cy

−1 0 1
0

50

100

x
5

F
re

qu
en

cy

−1 0 1 2 3
0

50

100

x
6

F
re

qu
en

cy

−1 0 1
0

50

100

x
7

F
re

qu
en

cy

−3 −2 −1 0 1
0

50

100

x
8

F
re

qu
en

cy

−0.5 0 0.5
0

50

100

x
9

F
re

qu
en

cy

0 2 4 6
0

50

100

x
10

F
re

qu
en

cy

−0.5 0 0.5 1
0

50

100

x
11

F
re

qu
en

cy

0 2 4 6 8
0

50

100

x
12

F
re

qu
en

cy

−1 0 1 2
0

50

100

x
13

F
re

qu
en

cy

−3 −2 −1 0
0

50

100

x
14

F
re

qu
en

cy

−1 0 1
0

50

100

x
15

F
re

qu
en

cy

−0.5 0 0.5 1
0

50

100

x
16

F
re

qu
en

cy

(b) Clustering on separate variables

Figure 4.9 Cluster centres obtained using FCM clustering (cont.)



4.6 Clustering Analysis and Simulations Setup 59

Table 4.1 Number of times when model did not converge

Simulation
No convergence per cluster value

3 4 5 6 7 8 9 10

Standardisation including output
(25 epochs) 1 2 2 5 4 4 8 8

Standardisation including output
(25 epochs) 1 1 4 4 4 10 8 6

Standardisation including output
(50 epochs) 1 0 6 6 7 6 9 7

Standardisation including output
(clustering across all variables) 0 0 0 0 0 0 0 0

Normalisation (0...1) including output
(clustering across all variables) 0 0 2 0 0 0 0 0

Table 4.2 Number of times when model did not converge (Results not analysed)

Simulation
No convergence per cluster value

3 4 5 6 7 8 9 10

Standardisation excluding output 10 12 13 13 13 14 13 13
Normalisation (-0.5...0.5) including output 10 14 16 17 15 18 14 13
Normalisation (-0.5...0.5) excluding output 18 17 16 17 12 17 19 18
Normalisation (0...1) including output 6 16 15 18 17 17 17 16
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For the simulations that were analysed, the results were averaged across all simulations
for each setting to allow comparison between the different architectures (Tables 4.3 to 4.6).
The best testing results from each simulation for every cluster are shown in Tables 4.7 to
4.11. These are based on the testing data performance, with the corresponding training and
validation results.

A higher number of epochs was also tested for some of the settings. However this resulted
in overfitting the training data or no noticeable performance improvement. To summarise,
results indicated that the following improve the modelling performance:

• Clustering done on the variables separately rather than across all variables.

• The data are standardised rather than normalised.

• The output is standardised or normalised as well.

Table 4.3 Standardisation including the outputs (25 epochs – average of the 2 simulations) (Average
results)

Clusters
Average RMSE

Training Validation Testing

3 20.08 21.85 21.46
4 19.39 21.91 21.16
5 19.07 21.11 21.10
6 18.80 21.02 20.63
7 18.68 21.25 20.53
8 18.67 21.32 19.79
9 18.60 21.07 20.08

10 18.63 21.18 20.18

4.7 Results for the Chosen Model

Considering both the performance and the times when the model optimisation diverged
(Tables 4.1 and 4.2), it was decided to use a model with 6 rules. Table 4.12 presents the
results for a model with 6 clusters, with a resulting correlation coefficient of 82% between the
real and predicted outputs for the testing data as shown in Figure 4.10. The low variation in
Root-Mean-Square Error (RMSE) across the three data sets indicates that the model performs
consistently on the data.
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Table 4.4 Standardisation including the outputs (50 epochs) (Average results)

Clusters
Average RMSE

Training Validation Testing

3 19.82 21.70 21.17
4 18.83 20.95 20.76
5 18.46 20.90 20.98
6 18.25 20.76 20.65
7 18.14 20.87 20.64
8 17.94 20.64 20.75
9 17.82 20.31 20.77

10 17.99 20.58 20.47

Table 4.5 Standardisation including the outputs and clusters across all variables (Average results)

Clusters
Average RMSE

Training Validation Testing

3 20.55 21.94 22.28
4 19.84 21.98 21.35
5 19.93 22.26 21.39
6 20.03 22.35 21.21
7 20.07 22.25 21.09
8 20.27 22.32 21.47
9 20.47 22.30 21.77

10 20.61 22.27 21.90

Table 4.6 Normalisation (0...1) including the outputs and clusters across all variables (Average results)

Clusters
Average RMSE

Training Validation Testing

3 21.82 23.07 22.65
4 21.81 23.26 22.42
5 21.96 23.41 22.56
6 22.23 23.55 22.65
7 22.33 23.74 22.53
8 22.72 24.07 22.97
9 23.45 24.49 23.57

10 24.23 25.05 24.27
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Table 4.7 Standardisation including the outputs (25 epochs) - 1st simulation (Best testing results)

Clusters
RMSE

Training Validation Testing

3 20.04 21.93 19.43
4 19.59 23.50 19.55
5 19.23 22.16 18.93
6 19.08 20.69 18.85
7 18.53 21.04 18.87
8 18.42 20.69 18.63
9 18.36 20.24 18.50

10 18.29 22.75 18.91

Table 4.8 Standardisation including the outputs (25 epochs) - 2nd simulation (Best testing results)

Clusters
RMSE

Training Validation Testing

3 20.86 22.09 20.23
4 19.71 20.63 19.85
5 19.36 21.02 19.45
6 19.10 21.11 19.09
7 19.04 21.07 18.79
8 18.39 20.61 18.02
9 18.62 22.16 18.40

10 18.27 22.62 18.53

Table 4.9 Standardisation including the outputs (50 epochs) (Best testing results)

Clusters
RMSE

Training Validation Testing

3 20.05 21.97 19.32
4 19.00 21.07 19.14
5 18.07 19.61 18.97
6 17.75 18.84 18.17
7 18.12 22.37 19.25
8 17.93 21.12 18.50
9 17.84 19.92 18.53

10 17.91 21.04 18.48
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Table 4.10 Standardisation including the outputs and clusters across all variables (Best testing results)

Clusters
RMSE

Training Validation Testing

3 19.94 22.05 20.86
4 19.68 22.26 20.59
5 19.72 22.02 20.73
6 19.95 22.25 20.78
7 19.87 22.28 20.83
8 20.06 22.29 21.06
9 20.22 22.27 21.50

10 20.54 22.24 21.74

Table 4.11 Normalisation (0...1) including the outputs and clusters across all variables (Best testing
results)

Clusters
RMSE

Training Validation Testing

3 21.68 22.96 22.24
4 21.39 23.88 21.60
5 21.31 22.52 21.86
6 21.71 22.63 21.63
7 21.90 24.43 21.85
8 22.33 23.52 22.45
9 22.93 24.08 23.05

10 23.62 24.48 23.58

Table 4.12 Model performance

Training data Validation data Testing data

Correlation coefficient 0.84 0.79 0.82
RMSE (Joules) 17.75 18.84 18.17



4.7 Results for the Chosen Model 64

0 50 100 150 200 250
0

50

100

150

200

250

Measured Charpy Energy [J]

P
re

di
ct

ed
 C

ha
rp

y 
E

ne
rg

y 
[J

] correlation       
coefficient = 0.84

(a) Training data

0 50 100 150 200
0

50

100

150

200

Measured Charpy Energy [J]

P
re

di
ct

ed
 C

ha
rp

y 
E

ne
rg

y 
[J

] correlation       
coefficient = 0.79

(b) Validation data

0 50 100 150 200

0

50

100

150

200

Measured Charpy Energy [J]

P
re

di
ct

ed
 C

ha
rp

y 
E

ne
rg

y 
[J

] correlation       
coefficient = 0.82

(c) Testing data

Figure 4.10 Charpy energy prediction
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These results are comparable with those obtained in previous publications using the same
dataset [83, 48, 64, 96, 75] which are summarised in Table 4.13. Figure 4.11 shows a plot of
the membership functions across the data variables.

Table 4.13 Past results of Charpy impact energy prediction

RMSE
Training data

RMSE
Validation data

RMSE
Testing data

Ensemble NN [83] 13.20 17.10 18.30
BNN [48] 17.31 20.77 19.49
GrC-NF [64] 14.66 21.24 20.42
GA-NN Ensemble [96] 13.12 17.25 18.13
IT2-GrC-NF [75] 16.27 18.20 19.87

4.8 Summary

This chapter showed that promising modelling results were obtained using a Quantum-
membership-function-based fuzzy model to predict Charpy energy for data obtained from
the Charpy impact test.

From Figure 4.11 it can be noticed that although the number of quantum levels was fixed
to 3 per membership function, few of them exhibit evident quantum levels. This indicates
that while the model was able to capture the uncertainty in the data, more research is required
to understand the effects of quantum levels in these membership functions. This can be
done by restricting the membership function widths and fixing some of the levels. Further
changes that can be made to the model stem from whether it has a smooth or coarse decision
surface with respect to the input variables. This is influenced by the shape of the membership
functions and has an effect on the performance of the model.

Different optimisation procedures can also be implemented such as optimising and then
fixing the parameters of the different sections of the model separately, and using an adaptive
optimisation algorithm. To better understand the membership functions, a simpler model
may also be used such as one based on a Mamdani-type fuzzy logic structure.

The next chapter attempts to improve the model by including Type-2 Fuzzy Sets into the
modelling framework.
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Figure 4.11 Membership functions for the Charpy impact data input variables



Chapter 5

Type-2 Quantum Membership
Function-based Fuzzy Modelling

5.1 Introduction

It was shown previously in Chapter 4 how fuzzy logic can prove useful when dealing
with uncertainty. However, although it seems paradoxical, Type-1 Fuzzy Sets have limited
capability in handling uncertainty, where handle means ‘to model and minimise the effect
of’[53]. This is because the membership degree of a Type-1 Fuzzy Set is a crisp value,
ignoring any uncertainty that might surround it. In his work on fuzzy sets, Zadeh had already
proposed the idea of higher-order forms of fuzzy logic [101]. This chapter will therefore
investigate the inclusion of Type-2 Fuzzy Sets to improve the uncertainty handling capability
of the modelling framework.

5.2 Fuzzy Logic and Type-2 Fuzzy Sets

As briefly indicated, a Type-1 fuzzy system does not capture uncertainty well enough because
the membership function of a Type-1 fuzzy set is certain (i.e. the membership degree being a
crisp value). As ‘words mean different things to different people’ [53], various persons can
form different fuzzy sets to represent a particular concept and thus the need for Type-2 Fuzzy
Sets arises when more levels of uncertainty need to be represented.
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5.2.1 Type-2 Fuzzy Sets

A type-2 fuzzy set can be defined as follows:

Ã =
{(

(x,u),µÃ(x,u)
)
| ∀x ∈ X ,∀u ∈ Jx ⊆ [0,1],0 ≤ µÃ(x,u)≤ 1

}
(5.1)

X is the primary domain of Ã and u is called the primary membership. Jx is called the
secondary domain and µÃ is called the secondary membership.

Referring to the example presented in Section 4.3.1, it was shown how ‘Warm Weather’
may be described by a fuzzy set. However, another person can form a different ‘Warm
Weather’ fuzzy set as indicated in Figure 5.1. This gives rise to interpersonal uncertainty as a
group of people have different views about the representative meaning of a word [93].

More fuzzy sets can be added and eventually a particular temperature can be mapped to
a range of membership degrees, having a minimum and a maximum. A Type-2 Fuzzy Set
has another membership function, the secondary membership function, on top of this range
with its own membership degrees. The membership degrees of the secondary membership
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function can be thought of as a normalised histogram made from the collection of different
primary memberships at each particular point as indicated in Figure 5.2. Because of this a
Type-2 Fuzzy Set can also be called a ‘fuzzy-fuzzy set’.

Although a Type-1 Fuzzy Set can be seen to represent intrapersonal uncertainty as it shows
the varying degree of membership a person assigns to a particular word, its membership
function is completely certain. For this reason, a Type-2 Fuzzy Set is more suited to represent
a linguistic variable and can model both interpersonal and intrapersonal uncertainties better
than a Type-1 Fuzzy Set [93].

There are two main representations for a Type-2 Fuzzy Set: vertical-slice representation
and wavy-slice representation. The vertical-slice representation (Figure 5.3b) is very useful
for computational purposes while the wavy-slice representation (Figure 5.3c), also known as
the Mendel-John Representation Theorem [53], is more utilised in theoretical derivations.
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5.2.2 Type-2 Fuzzy Logic System

As Type-2 Fuzzy Sets were proposed for more uncertain situations, a more elaborate account
of uncertainty is deemed to be necessary at this stage. Some questions that one might ask are:
What is uncertainty? Are there different types of uncertainty? What are the causes or sources
of uncertainty?

In [52], Mendel quotes Klir and Wierman [40], stating that the occurrence of uncertainty
is an unavoidable reality: at an empirical level in measurement, at the cognitive level in
language, and even at the social level. As to the nature of uncertainty they state that three
types can be identified: fuzziness (or vagueness), nonspecificity (or imprecision), and strife
(or discord), along with giving a number of synonyms for each type.

Although on its own ‘uncertainty’ may seem abstract, there are four practical sources of
uncertainty which can be identified with reference to the FLS of Figure 4.2 [52]:

i. Words used for the antecedent and consequent clauses may be different for different
people;

ii. Experts may not necessarily agree on the consequent and hence the logic of the rules;

iii. Noisy data are used to train the system;

iv. Noisy measurements activate the system.

Since Type-2 Fuzzy Sets are better suited to handle uncertainty than their Type-1 counter-
parts, a Type-2 FLS can be used to deal with some of these uncertainties. The general form of
a Type-2 FLS is shown in Figure 5.4. The inference engine in such a system processes Type-2
Fuzzy Sets and for this reason the output processing block is made up of a type-reducer and
defuzzifier. The type-reducer is necessary to transform a Type-2 Fuzzy Set into a Type-1
Fuzzy Set for defuzzification.

John and Coupland [37] reference Turksen [86] when noting that,

“the expressive power of Type-2 fuzzy reasoning lies in the ability to retain the
uncertainty throughout the inferencing process.”

5.2.3 Interval Type-2 Fuzzy Sets

Type reduction is a computationally intensive procedure while working with General Type-2
Fuzzy Sets requires complex computations. In fact, most of the research on the application
of Type-2 Fuzzy Sets has focused on Interval Type-2 Fuzzy Sets [55]. This was facilitated by
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the development of efficient type reduction techniques such as the Karnik-Mendel algorithms
[52, 39].

With reference to Equation 5.1, an Interval Type-2 Fuzzy Set is a Type-2 Fuzzy Set whose
secondary membership grades are all equal to one,

Ã =
{(

(x,u),1
)
| ∀x ∈ X ,∀u ∈ Jx ⊆ [0,1]

}
(5.2)

The Representation Theorem [54] makes it possible to express Interval Type-2 Fuzzy Set
operations using Type-1 Fuzzy Set mathematics [55]. The fuzzy set is represented by the
union of its embedded sets (or wavy slices):

Ã =
nA

∑
j=1

Ã j
e where j = 1, . . . ,nA (5.3)

Ã j
e =

N

∑
i=1

[1/u j
i ]/xi where u j

i ∈ Jxi ⊆ [0,1] (5.4)

nA =
N

∏
i=1

Mi (5.5)

where Mi is the number of discretisation levels of the primary membership u j
i for each of the

N xi.
Since the secondary memberships are all equivalent to unity, an Interval Type-2 Fuzzy

Set is completely described by the Footprint of Uncertainty (FOU) which is the union of all
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primary memberships.
FOU(Ã) =

⋃

x∈X

Jx (5.6)

The FOU is bounded by the Upper Membership Function (UMF) and the Lower Membership
Function (LMF), which are embedded Type-1 Fuzzy Sets (Figure 5.5).

µ Ã(x)≡ FOU(Ã) ∀x ∈ X

µ
Ã
(x)≡ FOU(Ã) ∀x ∈ X

(5.7)

As with Type-1 Fuzzy Sets, various membership function shapes can be used when
modelling using Interval Type-2 Fuzzy Sets. However, a common practice when initialising
membership functions is to vary either the centre or spread of the function [43]. This is
depicted in Figure 5.6 for a Gaussian membership function where one of the two moments
(i.e. mean or standard deviation) is fixed while the other is uncertain.
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5.3 Methodology for Eliciting the Type-2 FLS from the
Data

5.3.1 Clustering

As with Type-1 systems, one of the methods for initialising a Type-2 system is through
clustering [13]. A Type-2 fuzzy clustering algorithm, as described in [33] and employed in
[61], was implemented to obtain the initial structure of the Interval Type-2 fuzzy model. The
algorithm generalises FCM clustering as presented in Section 3.3.6. Two fuzzifier values, m1

and m2, are used to obtain a fuzzy region between clusters. The objective functions to be
minimised are now as follows:

Jm1(X ,U,V ) =
N

∑
i=1

C

∑
j=1

µ j(xxxi)
m1d2

ji

Jm2(X ,U,V ) =
N

∑
i=1

C

∑
j=1

µ j(xxxi)
m2d2

ji

(5.8)

where X = [xxx1,xxx2, . . . ,xxxN ] represents the data samples, U = [µ j(xxxi)] is the fuzzy partition
matrix, d2

ji = ∥xxxi − vvv j∥2, V = [vvv1,vvv2, . . . ,vvvC] is the vector of cluster centres, m1 and m2 are
the weighting exponents.

Since Interval Type-2 Fuzzy Sets are used for computational practicality, the primary
memberships can be expressed as an FOU and the lower and upper membership degrees of
every point to each cluster are:

µ
j
(xi) =





1
∑

C
k=1(di j/dik)

2/(m1−1) if 1
∑

C
k=1(di j/dik)

2/(m1−1) ≤ 1
∑

C
k=1(di j/dik)

2/(m2−1) ,

1
∑

C
k=1(di j/dik)

2/(m2−1) otherwise.

µ j(xi) =





1
∑

C
k=1(di j/dik)

2/(m1−1) if 1
∑

C
k=1(di j/dik)

2/(m1−1) >
1

∑
C
k=1(di j/dik)

2/(m2−1) ,

1
∑

C
k=1(di j/dik)

2/(m2−1) otherwise.

(5.9)

The cluster centres are also Interval Type-2 Fuzzy Sets and therefore type reduction is
necessary for the centres to be computed and used in the update equations. Generalised
Centroid (GC) type reduction for a discrete Type-2 FS, Ã, is given by:

vvvÃ = ∑u(x1)∈Jx1
· · ·∑u(xN)∈JxN

[ f (u(x1))∗ · · · ∗ f (u(xN))]

/
∑

N
i=1 xxxiu(xxxi)

∑
N
i=1 u(xxxi)

(5.10)
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When considering Interval Type-2 Fuzzy Sets and including the weighting exponent m, the
clustering centres can be represented as:

vvvÃ = [vL,vR] = ∑u(x1)∈Jx1
· · ·∑u(xN)∈JxN

1
/

∑
N
i=1 xxxiu(xxxi)

m

∑
N
i=1 u(xxxi)m

(5.11)

The interval [vL,vR] is computed using the iterative Karnik-Mendel (KM) algorithms [55]:

vL
j = v j(L) =

∑
L
i=1 xiu j(xi)+∑

N
i=L+1 xiu j(xi)

∑
L
i=1 u j(xi)+∑

N
i=L+1 u j(xi)

vR
j = v j(R) =

∑
R
i=1 xiu j(xi)+∑

N
i=R+1 xiu j(xi)

∑
R
i=1 u j(xi)+∑

N
i=R+1 u j(xi)

(5.12)

The centres are then defuzzified as follows:

v j =
vL

j + vR
j

2
(5.13)

Further details about the type reduction and hard-partitioning of the membership degrees
can be found in [33]. These are sometimes required to specifically assign points to clusters
such as in a classification context. A flowchart of the Interval Type-2 clustering algorithm is
shown in Figure 5.7.

5.3.2 Interval Type-2 Quantum Membership Function

Through the clustering algorithm, an Interval Type-2 fuzzy partition matrix was obtained,
consisting of the upper and lower membership degrees of every training point to each cluster.
Upper and lower fuzzy covariance matrices were created for every dimension of each cluster
using the fuzzy covariance defined as follows [26]:

Fi =
∑

N
k=1(µik)

m(zk − vi)(zk − vi)
T

∑
N
k=1(µik)m

(5.14)

These were then used to initialise Interval Type-2 Quantum membership functions with
cluster centres providing fixed centres and variable widths obtained by scaling the lower and
upper standard deviations for the respective dimension.

θ
r
i j =

√
Fi × r for r = 1,2, . . . ,nθ (5.15)
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Figure 5.7 Flowchart of the Interval Type-2 clustering algorithm
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An example of such a membership function is shown in Figure 5.8 while Figure 5.9
shows the Interval Type-2 membership functions with 3 clusters for all dimensions of the
Charpy impact data.

5.3.3 Interval Type-2 TSK FLS

The interval type-2 sets were used as antecedents in a first-order TSK fuzzy system with
rules:

R j : IF x1 is Ã1 j and x2 is Ã2 j . . . and xn is Ãn j THEN y j is b j +
n

∑
i=1

ai jxi (5.16)

The firing set for rule j can be represented by the interval set F j(x) = [ f j(xxx), f j
(xxx)], where

f j(xxx) = µ
Ã j

1
(x1) ∗ · · · ∗ µ

Ã j
16
(x16) and f j

(xxx) = µ Ã j
1
(x1) ∗ · · · ∗ µ Ã j

16
(x16). The output of the
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Figure 5.9 Interval Type-2 Quantum membership functions for the Charpy impact data input variables
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system is an Interval Type-2 Fuzzy Set:

Y (xxx) = [yl,yr] =
∫

f 1∈
[

f 1, f 1
] · · ·

∫

f M∈
[

f M , f M
] 1

/
∑

M
i=1 f iyi

∑
M
i=1 f i

(5.17)

This was type-reduced using the efficient Nie-Tan type reduction [60]:

y =
∑

N
n=1 yn( f n + f n)

∑
N
n=1

(
f n + f n) (5.18)

5.3.4 Parameter Optimisation

The parameters were updated using a genetic algorithm. Genetic algorithms are part of the
broader fields of evolutionary algorithms and evolutionary computation. They are modelled
after natural evolutionary mechanisms and use stochastic search strategies to optimise
nonlinear systems. They were developed during the 1970s by Holland [32] and further
improved by Goldberg [25].

Figure 5.10 shows a flowchart of the genetic algorithm. The algorithm starts by encoding
the optimisation parameters as a chromosome. For the current scenario, the chromosome
consisted of the following parameters:

• TSK biases;

• TSK weights;

• Membership function centres;

• LMF Quantum intervals;

• UMF Quantum intervals.

While Holland [32] first suggested the use of a binary encoded representation for the
chromosome, other studies have shown that alternative representations such as the direct use
of integers or real numbers are also possible, provided that genetic operators supporting the
representation are available [22].

The algorithm iterates through a number of steps, modifying a population of chromo-
somes. The population was set to 1000 chromosomes to allow for the necessary genetic
diversity, given the high number of parameters to be optimised.

The next step is to evaluate the fitness of each chromosome in the population. The fitness
function returns a measure of the suitability of a solution to the problem. The algorithm also
makes use an objective function, whose outputs are scaled through the fitness function. For
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the current problem the objective function returns the RMSE of the model on the training
data using the model parameters of a particular chromosome.

After checking the stopping criteria, the algorithm selects the parents based on their
fitness to create the next generation. The default selection algorithm in the MATLAB genetic
algorithm is stochastic uniform selection. This ranks parents on a line with the length of
their segment corresponding to their scaled fitness. Parents are then chosen at evenly spaced
intervals, with lower fitness individuals having a chance to be chosen as well.

Apart from the ‘elite’, a proportion of the population corresponding to the crossover
fraction is conceived by crossover between pairs of parents. The rest of the population are
children formed from parent chromosomes by mutation. Elitism is where the fittest members
of the population are directly propagated to the next generation. These genetic operators
were set as follows:

• Elite: 0.05×population size;

• Crossover: 0.8× (population size− elite);

• Mutation: 0.2× (population size− elite).

The algorithm then iterates through the outlined steps for each generation. The termina-
tion condition can be made of a number of options, including [77]:

• No significant improvement in successive generations;

• The objective function evaluation becomes equal to a certain value;

• An upper limit of the number of generations is reached.

The MATLAB parallel computing toolbox was used to run the simulations on 4 parallel
workers on the local machine. This allows the fitness function to be executed in parallel, thus
reducing the optimisation time.

5.4 Simulation Details

Simulations were run with a Type-2 TSK fuzzy system consisting of 3 or 4 rules and
optimised using a genetic algorithm with a generation limit between 500 and 2500.
Simulations 1 to 7 had the following common parameters:

• 3 fuzzy rules;

• 387 optimisation parameters;
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• population of 1000 chromosomes.

Simulations 8 to 16 had the following common parameters:

• 4 fuzzy rules;

• 516 optimisation parameters;

• population of 1000 chromosomes.

These are details for the simulations regarding the initialisation of the membership functions
and the objective function used for the optimisation:

• Simulation 1:

∗ 3 quantum levels per membership function initialised using the covariance from
Type-2 fuzzy clustering: wmin( j, i)× [1;2;3] and wmax( j, i)× [1;2;3].

• Simulation 2:

∗ Same as Simulation 1 but using the final population from the last generation of
Simulation 1 as the initial population.

• Simulation 3:

∗ 3 quantum levels per membership function initialised using the covariance from
Type-2 fuzzy clustering: sqrt(wmin( j, i))× [1;2;3] and sqrt(wmax( j, i))× [1;2;3].

• Simulation 4:

∗ Same as Simulation 3 but using validation dataset as well with cost function:
J = (J1×J2)/(J1+J2)+J2

1 +J2
2 where J1 = RMSE training data and J2 = RMSE

validation data.

∗ RMSE testing data = 21.23 after removal of erratic point (point 296 in testing
dataset).

• Simulation 5:

∗ Same as Simulation 4 but using the final population of Simulation 4 as the initial
population.

∗ RMSE testing data = 21.20 after removal of erratic point (point 296 in testing
dataset).
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• Simulation 6:

∗ Same as Simulation 4 but using the final population of Simulation 4 as the initial
population (1000 generations more not 500).

∗ RMSE testing data = 21.27 after removal of erratic point (point 296 in testing
dataset).

• Simulation 7:

∗ Same as Simulation 3.

• Simulation 8:

∗ 3 quantum levels per membership function initialised using the covariance from
Type-2 fuzzy clustering: sqrt(wmin( j, i))× [1;2;3] and sqrt(wmax( j, i))× [1;2;3].

• Simulation 9:

∗ Same as Simulation 8.

• Simulation 10:

∗ Same as Simulation 8.

• Simulation 11:

∗ Same as Simulation 8.

• Simulation 12:

∗ Same as Simulation 8.

• Simulation 13:

∗ Same as Simulation 8.

• Simulation 14:

∗ Same as Simulation 8 but using validation set as well with cost function: J =

(J1 × J2)/(J1 + J2)+ J2
1 + J2

2 where J1 = RMSE training data and J2 = RMSE
validation data.

• Simulation 15:

∗ Same as Simulation 14.



5.5 Modelling Results 85

• Simulation 16:

∗ Same as Simulation 8.

5.5 Modelling Results

The results of these simulations are shown in Tables 5.1 and 5.2 respectively. Figures 5.11 to
5.26 show the mean and best fitness plots for the optimisation procedures.

The chosen model has 4 rules with the results presented in Table 5.3. The results in this
table indicate that the model shows good generalisation performance across the datasets.
Apart from the RMSE, Table 5.3 also gives the Pearson correlation coefficients between the
measured and predicted outputs which are also shown in Figure 5.27.

As indicated in Table 5.4, the Interval Type-2 model provides a performance improvement
over the Type-1 model, where, in terms of the RMSE for the testing data, the Interval Type-2
model predicts the output 0.94% better than the Type-1 model.

5.6 Impact Transition Curve

To evaluate the models from a metallurgical perspective it was decided to plot the output of
the models while varying the impact test temperature to obtain the impact transition curve
according to the Type-1 and Type-2 fuzzy models.

For comparison, the graph obtained by Tenner [83] using a neural network ensemble
model is shown in Figure 5.28. Tenner used the ‘median’ steel for the fixed inputs as tabulated
in Table 5.5. These are the values for the most common type of steel in the dataset which is
1%CrMo steel.

Another set of model outputs were obtained by fixing the inputs to the mean value of the
variables which are indicated in Table 5.6. The test temperature was varied across its range,
this being -59°C to 23°C. The impact energy was obtained as the output of the models and
plotted against the impact test temperature.

Figure 5.29 shows the plots obtained from the Type-1 and Type-2 fuzzy models. It
was concluded that the plot in the dashed red line is the closest when compared to the plot
obtained by Tenner. The graph shows that although the curve is monotonically increasing,
its shape is not similar to that of an impact transition curve for steel which is displayed in
Figure 5.30 (for the corresponding Carbon content). The impact transition curve for steel has
a point of inflexion which represents the ductile-to-brittle transition temperature.



5.6 Impact Transition Curve 86

Table 5.1 Simulation results using 3 rules

Simulation Generations
Optimisation

Time
RMSE

Training Validation Testing

1 1000 ~24 hrs 19.58 22.50 20.99
2 500 ~12 hrs 18.67 22.41 23.99
3 1000 ~23 hrs 18.16 28.98 20.63
4 1000 ~28 hrs 21.20 19.41 469.30
5 500 ~14 hrs 20.95 19.34 415.81
6 1000 ~29 hrs 20.97 19.08 521.04
7 2000 ~42 hrs 18.91 22.58 19.64

Table 5.2 Simulation results using 4 rules

Simulation Generations
Optimisation

Time
RMSE

Training Validation Testing

8 1000 ~29 hrs 20.08 22.80 20.94
9 1500 ~41 hrs 18.65 20.70 18.90

10 2000 ~53 hrs 16.71 19.13 18.00
11 2000 ~54 hrs 16.71 19.13 18.00
12 2000 ~53 hrs 16.71 19.13 18.00
13 2500 ~67 hrs 18.64 20.97 19.92
14 2000 ~72 hrs 17.39 15.45 18.80
15 2000 ~72 hrs 17.39 15.45 18.80
16 2500 ~71 hrs 18.64 20.97 19.92

Table 5.3 Interval Type-2 fuzzy model performance

Training data Validation data Testing data

Correlation coefficient 0.861 0.813 0.842
RMSE (Joules) 16.71 19.13 18.00

Table 5.4 Type-1 and Interval Type-2 fuzzy model performance comparison

Type-1 Model Type-2 Model Percentage Difference

Training Data RMSE 17.75 16.71 -5.86
Validation Data RMSE 18.84 19.13 +1.54
Testing Data RMSE 18.17 18.00 -0.94
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Figure 5.11 Simulation 1
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Figure 5.12 Simulation 2
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Figure 5.13 Simulation 3
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Figure 5.14 Simulation 4
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Figure 5.15 Simulation 5
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Figure 5.16 Simulation 6
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Figure 5.17 Simulation 7
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Figure 5.18 Simulation 8
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Figure 5.19 Simulation 9
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Figure 5.21 Simulation 11
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(a) Training data
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(b) Validation data
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(c) Testing data

Figure 5.27 Charpy energy prediction using the Type-2 fuzzy model
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Figure 5.28 Impact transition curve obtained by Tenner [83, p. 237]

One possible reason is that the models average over the different steel types present in
the dataset. Another reason is that the shape of the impact transition curve may vary from the
ideal, depending on the various compositions of steel [68] and therefore the various values
set for the fixed inputs. This is because the shape also depends on the value of other alloys in
the steel [38].

5.7 Summary

This chapter has analysed the introduction of Type-2 Fuzzy Sets for the fuzzy model. This
formed Interval Type-2 Quantum membership functions which provided more degrees of
freedom for the optimisation to work with. The model was optimised using a genetic
algorithm and the results show an improvement over the Type-1 fuzzy model. The Type-2
fuzzy model is more generalising as the results were achieved using less rules (4 instead of
6) compared to the Type-1 fuzzy model. Finally, the models derived from the data have been
used to plot the effect of varying the impact test temperature on the impact energy.

The following chapter will provide general conclusions about the project together with
some recommendations for work that may expand the research undertaken here.
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Table 5.5 Input variables fixed at ‘median’ 1%CrMo steel values with varying test temperature

Variable Value

Test Depth [mm] 12.7
Size [mm] 180
Coded Site 3

C [%] 0.41
Si [%] 0.27

Mn [%] 0.78
S [%] 0.023
Cr [%] 1.08
Mo [%] 0.22
Ni [%] 0.19
Al [%] 0.027
V [%] 0.005

Hardening Temperature [°C] 860
Cooling Medium -

Tempering Temperature [°C] 630
Test Temperature [°C] (-59) – 23

Table 5.6 Mean input variables with varying impact test temperature

Variable Value

Test Depth [mm] 20.80
Size [mm] 172.49
Coded Site 3.80

C [%] 0.39
Si [%] 0.25

Mn [%] 0.84
S [%] 0.02
Cr [%] 1.08
Mo [%] 0.24
Ni [%] 0.37
Al [%] 0.03
V [%] 7.7e-3

Hardening Temperature [°C] 864.02
Cooling Medium 2.77

Tempering Temperature [°C] 647.19
Test Temperature [°C] (-59) – 23
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Figure 5.29 Impact energy against test temperature curves from the models

Figure 5.30 Impact energy against test temperature for steel for varying Carbon content [18]



Chapter 6

Conclusions and Future Work

6.1 Conclusions

The main aim of this research has been to apply machine learning techniques to materials
property prediction as outlined in Chapter 1.

Chapter 2 gave a deeper insight into the context of the research together with related
literature.

Chapter 3 evaluated techniques derived from SVMs for the classification of a dataset from
the testing of rails. Although the SVM does not suffer from the local minima problem since
its optimisation is formulated as a convex optimisation problem, its performance is severely
affected by class imbalance. For this reason, an internal (FSVM with DEC) and external
(data under-sampling) class imbalance learning methods were applied to the data. The best
performance, with a sensitivity of 67.55%, was obtained when the FSVM was applied to the
under-sampled dataset (for the majority class), thus effectively dealing with the imbalance
in the data. As quadratic optimisation scales poorly with increasing sample numbers, the
techniques were further developed by applying FCM clustering to reduce training time and
model complexity by lowering the number of support vectors in the model.

In Chapter 4, the Quantum membership function was proposed as part of a fuzzy mod-
elling framework based on the ANFIS. This was used to predict the Charpy impact energy of
steel samples, with promising results compared to those found in the literature. This chapter
demonstrated the advantages of a synergistic combination of modelling techniques from
various fields in terms of capturing uncertainty, learning ability and interpretability.

The uncertainty handling and generalising capabilities of the model were enhanced in
Chapter 5, where Interval Type-2 Fuzzy Sets were integrated with the Quantum membership
functions to improve the results obtained in Chapter 4. In fact, an RMSE of 18.0 Joules
was obtained when predicting the testing data. Comparing Table 5.3 with Table 4.12 shows
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that this is 0.72% better than the best result found in the literature when modelling the same
dataset.

It is important to note the relevance of fuzzy logic when implementing these modelling
techniques:

• FCM clustering (Type-1 and Type-2 fuzzy clustering) was used to identify the structure
of the models to efficiently model the data.

• The effect that the inclusion of the fuzzy membership vector has on the SVM techniques
is that the model becomes less sensitive to parameters C and σ . This can be observed
from the grid search plots in Section 3.4 when the corresponding plots of SVM and
FSVM are compared. This shows that the fuzzy membership captures some of the
noise in the data and therefore makes the model more robust and generalising by being
less sensitive to changes in model parameters.

• In the case of the Quantum membership function model, the Quantum function was
suitable as a fuzzy membership function not only because of the extra degrees of
freedom but also because it inherently deals with outlying data points. For example a
Quantum membership function may use the quantum levels to keep the membership
low for a number of outlying data points. This property is especially relevant when
modelling a complex dataset such as the Charpy impact dataset analysed in this
research.

• Type-2 fuzzy sets offer more parameters for optimisation and therefore more de-
grees of freedom. The Type-2 fuzzy model uses 4 rules compared to 6 rules for the
Type-1 model. This not only makes the model more compact, but also improves the
generalisation ability and transparency of the model.

• The combination of Quantum membership functions and Type-2 Fuzzy Sets worked
well, in the sense that Quantum functions were able to form feasible Interval Type-2
Fuzzy Sets.

6.2 Recommendations for Future Work

With a critical view of the work presented in this thesis, further research can be suggested:

• Extend the SVM external imbalance learning method by including data over-sampling
of the minority class. This could be done by combining both over-sampling, such as
using the Synthetic Minority Over-sampling Technique (SMOTE), and under-sampling,
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as suggested by Chawla et al. [11]. In this manner, loss of information due to under-
sampling is minimised, while also helping the classifier to learn the correct decision
boundary due to training on a balanced dataset.

• Modify the SVM techniques, developed in Chapter 3 for classification, to be applied to
the regression problem of Charpy impact energy prediction. Support Vector Regression
(SVR) follows the same basic principles as SVMs but the definition of the problem
takes into account that the error for each data point is within a certain threshold. One
of the methods to work with continuous values (instead of classification into classes) is
by using an ε-insensitive loss function when defining the problem [79].

• Include confidence bounds on the predictions either by characterisation of the mod-
elling error or by using the intervals from the non-reduced fuzzy sets of the Type-2
fuzzy model. This would assist the model in being more accurate in its predictions as
it would indicate the level of confidence with which predictions in certain areas are
being made.

• As opposed to Interval Type-2 Fuzzy Sets, General Type-2 Fuzzy Sets are better
at capturing uncertainty and therefore their use would be beneficial in dealing with
high problem uncertainty. However, research is still ongoing on how to reduce the
computational complexity necessary to perform calculations when working with these
Fuzzy Sets, i.e. type reduction and defuzzification.

• As noted in Section 5.6, more work is necessary to ensure that the model does not
overfit the data and to assess its metallurgical significance. Since the focus is on Charpy
energy prediction, this is especially relevant with regards to the impact transition curve.
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