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Abstract

There is a rapidly expanding literature on the in vitro antiviral activity of drugs that may be repurposed for 

therapy or chemoprophylaxis against SARS-CoV-2. However, this has not been accompanied by a 

comprehensive evaluation of the target plasma and lung concentrations of these drugs following 

approved dosing in humans. Accordingly, EC90 values recalculated from in vitro anti-SARS-CoV-2 activity 

data was expressed as a ratio to the achievable maximum plasma concentrations (Cmax) at an approved 

dose in humans (Cmax/EC90 ratio). Only 14 of the 56 analysed drugs achieved a Cmax/EC90 ratio above 1. A 

more in-depth assessment demonstrated that only nitazoxanide, nelfinavir, tipranavir (ritonavir-boosted) 

and sulfadoxine achieved plasma concentrations above their reported anti-SARS-CoV-2 activity across 

their entire approved dosing interval. An unbound lung to plasma tissue partition coefficient (KpUlung) was 

also simulated to derive a lung Cmax/EC50 as a better indicator of potential human efficacy. 

Hydroxychloroquine, chloroquine, mefloquine, atazanavir (ritonavir-boosted), tipranavir (ritonavir-

boosted), ivermectin, azithromycin and lopinavir (ritonavir-boosted) were all predicted to achieve lung 

concentrations over 10-fold higher than their reported EC50. Nitazoxanide and sulfadoxine also exceeded 

their reported EC50 by 7.8- and 1.5-fold in lung, respectively. This analysis may be used to select potential 

candidates for further clinical testing, while deprioritising compounds unlikely to attain target 

concentrations for antiviral activity. Future studies should focus on EC90 values and discuss findings in the 

context of achievable exposures in humans, especially within target compartments such as the lung, in 

order to maximise the potential for success of proposed human clinical trials.
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Introduction

Coronavirus 2019 (COVID-19) is a respiratory disease caused by severe acute respiratory syndrome 

coronavirus 2 (SARS-CoV-2) infection. Fever, a persistent cough and respiratory symptoms are common, 

with some patients reporting vomiting, nausea, abdominal pains and diarrhoea (1). To date, no specific 

treatment is available, and this has resulted in significant morbidity and mortality globally. According to 

the International Clinical Trials Registry Platform search portal, 927 clinical trials for COVID-19 have been 

registered (2). This rapidly expanding pandemic warrants the urgent development of strategies, 

particularly to protect people at high risk of infection. Repurposing currently available drugs that have 

been utilised clinically with a known safety profile, is the quickest way to address this serious unmet 

clinical need. Antiviral drugs are urgently required for treatment of patients with mild/moderate disease 

to prevent the worsening of symptoms and reduce the burden upon healthcare systems. However, a 

different approach is likely to be needed for patients that are already in a critical state, due to the 

immune dysregulation which is so apparent in severe cases (3). 

Previous investigations have shown that the entry by SARS-CoV-2 occurs via the angiotensin converting 

enzyme 2 (ACE2) receptor (4). A study on normal lung tissue showed that 83% of ACE2-expressing cells 

were alveolar epithelial type II cells (5), highlighting the lungs as the primary target organ that facilitate 

viral invasion and replication. Furthermore, the ACE2 receptor is also highly expressed in gastrointestinal 

epithelial cells, with SARS-CoV-2 RNA observed to be present in stool specimens of patients during 

infection (1, 6). A recent retrospective analysis of 85 patients with laboratory-confirmed COVID-19 also 

indicated that SARS-CoV-2 infects human kidney tubules and induces acute tubular damage in some 

patients (7). Furthermore, 2–11% of patients with COVID-19 exhibit liver comorbidities (8). Of note is an 

observation of SARS and Middle East respiratory syndrome (MERS) having a tropism to the 

gastrointestinal tract (9) and causing liver impairment in addition to respiratory disease. The genomic 

similarity between SARS-CoV-2 and SARS-CoV (79.6% sequence identity) would imply that the current 

virus would act in a similar manner and be present within the body systemically (10-12). Therefore, 

treatment options that provide therapeutic concentrations of drug(s) within the systemic circulation and 

other affected organs are likely to be required.

In the absence of a vaccine, antiviral drugs could also be deployed as chemoprophylaxis to protect against 

infection and would present an essential tool for protecting healthcare staff and other key workers, as 

well as household contacts of those already infected. For chemoprevention drugs will need to penetrate 

into the multiple sites where SARS-CoV-2 infection occurs, and do so in sufficient concentrations to inhibit 

viral replication (13). This may include the mucous membranes present in the nasal cavity and throat, the A
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ocular surface, tears and the upper respiratory tract/lungs (14, 15). However, therapeutic concentrations 

may not be needed in the systemic circulation for chemoprophylaxis, but this is yet to be determined. 

Although difficult and scarcely studied, work in animals has shown that the size of the inoculum of other 

respiratory viruses such as influenza is associated with the severity of the resultant disease (16, 17). 

Reports with SARS-CoV-2 indicate that higher viral loads are indicative of poorer prognosis and correlate 

with the severity of symptoms, with viral load in severe cases reported to be 60 times higher than that of 

mild cases (18, 19). In light of this, even if a chemoprophylactic drug reduced inoculum size without 

completely blocking transmission, major benefits for morbidity and mortality may still be achievable.

Many ongoing global research efforts are focussed on screening the activity of existing compounds in vitro 

in order to identify candidates to repurpose for SARS-CoV-2. However, current data have not yet been 

systematically analysed in the context of the plasma and target site exposures that are achievable after 

administration of the approved doses to humans. The purpose of this work was to evaluate the existing in 

vitro anti-SARS-CoV-2 data to determine and prioritise drugs capable of reaching antiviral concentrations 

within the blood plasma. Accepted physiologically based pharmacokinetic (PBPK) equation were also used 

to predict the expected concentration in lung (20-22), in order to assess the potential of these drugs for 

therapy in this key disease site and the potential for chemoprevention.

Methods

Candidate analysis

To identify compounds and their relevant potency and pharmacokinetic data, we performed a literature 

search on PubMed, Google Scholar, BioRxiv, MedRxiv, and ChemRxiv. The following search terms were 

used for in vitro activity data – (COVID-19 OR SARS-CoV-2) AND (EC50 OR IC50 OR antiviral). For 

pharmacokinetic data (Cmax OR pharmacokinetics) was used along with the drug name for drugs with 

reported anti-SARS-CoV-2 activity (up to 13th April 2020). Further clinical pharmacokinetic data were 

obtained from the Food and Drug Administration (FDA), the European Medicines Agency (EMA) and 

through publications available online. Inhaled medications were excluded from all analyses because the 

purpose was to assess systemically administered medicines.

Lung accumulation prediction 

An indication of the degree to which candidate drugs are expected to accumulate in lung (a presumed site 

of primary efficacy and for prevention of SARS-CoV-2 infection) was provided by calculation of unbound A
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lung to plasma tissue partition coefficient (KpUlung) according to the methodology of Rodgers and Rowland 

(20-22). Equations therein were implemented in the R programming environment (version 3.6.3) and are 

replicated in the supplementary methods. Briefly, the physicochemical properties of the drug (pKa, log P, 

classification as acid/base/neutral) and in vitro drug binding information (fraction unbound in plasma, 

blood to plasma ratio), in combination with tissue-specific data (lipid content, volumes of 

intra/extracellular water etc.) were used to predict tissue KpU values. Measured log P and pKa values were 

used where available but substituted with calculated values where necessary and all parameter values 

used for the calculations for each drug, and their references/sources, are provided in Supplementary 

Table 1. KpUlung values were converted to Kp_lung by multiplying by fraction unbound in plasma to allow 

estimation of lung exposure from in vivo measurements of plasma Cmax concentration. A similar analysis 

was conducted to assess the tissue distribution into other tissues. In the absence of observed tissue 

distribution data, the Rodgers and Rowland method is an accepted means to provide initial estimates of 

tissue partitioning for PBPK modelling. However, there are known limits on accuracy with predicted KpU 

by the Rodgers and Rowland method generally reported to be within 2-3 fold of observed tissue KpU 

values (20-22). This was confirmed for a limited number of drugs within the current dataset for which 

measure Kp values for lung were available from animal studies in the literature (see data analysis below).

Data analysis and interpretation

Since in the majority of papers only an EC50 value was available, concentration-response data were 

digitised using the Web Plot Digitizer® software. Graphs were then replotted in SigmaPlot 14.0 (Systat 

Software, Inc.) and curves were fitted to confirm EC50 values and determine EC90 values. A Cmax/EC50 and 

Cmax/EC90 ratio was then calculated for each drug for which previous evidence of clinical use in humans 

and availability of human pharmacokinetic data were available. Lung and other tissue KpU values were 

used in combination with reported Cmax values to derive an estimate of lung exposure at Cmax for each 

drug. For a subset of molecules, the absence of available physicochemical or plasma 

protein binding parameters prohibited derivation of a KpU estimate. For the remaining drugs, a lung (or 

other tissue) Cmax/EC50 and lung Cmax/EC90 was calculated. Published plasma concentration-time data 

for the most promising candidates were then digitised (where available) and replotted to visually 

represent human pharmacokinetics relative to the calculated EC50 and EC90 data. Equivalence between 

values for the predicted lung Kp and those observed in vivo was undertaken for drugs with available 

animal lung and plasma concentration data.  For this analysis, animal lung concentration data were 

available for anidulafungin (rat), bazedoxifene (rat), chloroquine (three albino rat studies), favipiravir 

(monkey), hydroxychloroquine (two albino rat studies), nitazoxanide (mouse), tamoxifen (rat), A
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cyclosporine (rat), ritonavir (rat), azithromycin (mouse), dolutegravir (mouse), gilteritinib (albino rat), and 

lopinavir (rat) (23-32). Agreement between the predicted and measured Kp was assessed by simple linear 

regression and by constructing Bland-Altman plots, the limits of agreement (mean ± 2 standard deviation) 

were included in these plots as previously described (33). 
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Results 

Identified papers and methods

We identified 14 key studies that detailed the antiviral activity of 71 compounds (34-48). The majority of 

the in vitro SARS-CoV-2 infection experiments were performed in Vero E6 cells (ATCC 1586) maintained in 

either DMEM or MEM. Other studies utilised Vero-hSLAM cells, Vero E6 cells expressing TMPRSS2 and the 

CACO-2 cell line to cultivate the virus. The following SARS-CoV-2 strains were used across studies; WA-1 

strain – BEI #NR-52281; Brazil/RJ-314/2020; C-Tan-nCoV Wuhan strain 01; Wuhan/WIV04/2019; USA-

WA1/2020; nCoV-2019BetaCoV/Wuhan/WIV04/2019; BetaCoV/Hong Kong/VM20001061/2020; 

Australia/VIC01/2020; βCoV/KOR/KCDC03/2020 and BavPat1/2020. Cells across all studies were infected 

with the virus with a multiplicity of infection (MOI) of 0.002, 0.01, 0.0125, 0.02, 0.05 and 0.1. Drugs were 

added at concentrations varying between 0.01μM - 500μM. A summary of the differences in 

methodologies between studies reporting SARS-CoV-2 antiviral 

activity is presented in Supplementary Table 2. A ranking of included drugs based just on their EC50 and 

recalculated EC90 is presented in Supplementary Figure 1.

Identification of candidates achieving plasma concentrations expected to exert antiviral activity 

(Cmax/EC50 ratio)

Seventeen molecules had a reported Cmax value greater than at least one of the reported EC50 values 

against SARS-CoV-2 and these were nelfinavir, chloroquine, remdesivir, lopinavir (ritonavir boosted), 

eltrombopag, hydroxychloroquine, atazanavir (ritonavir boosted), indomethacin, favipiravir, sulfadoxine, 

niclosamide, mefloquine, tipranavir (ritonavir boosted), ritonavir, merimepodib, anidulafungin and 

nitazoxanide. However, it should be noted that for amodiaquine, atazanavir, chloroquine, 

hydroxychloroquine, lopinavir, mefloquine, nelfinavir, remdesivir and toremifene, more than one EC50 

value had been reported across the available literature and these were not always in agreement (Figure 

1A). Moreover, this variability in reported EC50 values sometimes resulted in Cmax/EC50 ratios giving a 

different estimation of the likely value of the molecule. Meaning that for the same drug, the Cmax/EC50 

ratio could be above or below 1 (Figure 1B). For amodiaquine and toremifene, all reported EC50 values 

were below their reported Cmax and only for nelfinavir was the reported Cmax value expected to exceed 

both reported EC50 values. For atazanavir, chloroquine, hydroxychloroquine, lopinavir, mefloquine and 

remdesivir, some EC50 values were above the Cmax whereas others were below. This observation A
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dramatically highlights the sensitivity of the current analysis to the reported antiviral activity data, and 

this should be taken into account when interpreting the data presented hereafter.

Identification of candidates achieving plasma concentrations exceeding the SARS-CoV-2 EC90 (Cmax/EC90 

ratio)

For 56 of the reported antiviral activities, data covering a sufficient concentration range were available for 

digitisation and subsequent calculation of an EC90 value. For the remainder it was not possible to calculate 

an EC90. Drugs with an available EC90 were ranked according to their Cmax/EC90 ratio (Figure 2). Drugs with 

a value above 1.0 achieved plasma concentrations above the concentrations reported to inhibit 90% of 

SARS-CoV-2 replication. Only eltrombopag, favipiravir, remdesivir, nelfinavir, niclosamide, nitazoxanide 

and tipranavir were estimated to exceed at least one of their reported EC90 by 2-fold or more at Cmax 

concentrations. Anidulafungin, lopinavir, chloroquine and ritonavir were also reported to exceed at least 

one of their reported EC90 values at Cmax but by less than 2-fold. It was not possible to calculate an EC90 

value for sulfadoxine or indomethacin.

Detailed interrogation of the plasma pharmacokinetics in relation to reported anti-SARS-CoV-2 activity

For drugs with Cmax concentrations above at least one of their reported EC90 values that are not already 

in clinical trials for COVID-19, a detailed evaluation of concentrations across their approved dosing 

interval was undertaken. For this, published pharmacokinetics data were digitised and replotted relative 

to the calculated EC50 and EC90 data for SARS-CoV-2 (Figure 3). For tipranavir (ritonavir boosted), 

nelfinavir, sulfadoxine and nitazoxanide, plasma concentrations after administration of the approved dose 

remained above SARS-CoV-2 effective concentrations across the entire dosing interval. For anidulafungin, 

eltrombopag, lopinavir (ritonavir boosted), mefloquine and chloroquine, Cmax values were above EC90 at 

2, 6, 8 and 24 hours post dose, respectively, but concentrations would be expected to dip below the EC50 

at 3, 8, 10, 72 and 120 hours post dose, respectively, when given at approved doses and schedules. An 

overview of these drugs is presented in Table 1.
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Simulated exposure relative to reported anti-SARS-CoV-2 activity in lung and other tissues

Lung KpU was simulated for all molecules for which the necessary physicochemical properties and in vitro 

drug binding information were available. Regression and Bland–Altman plots were first used to assess the 

agreement between predicted lung Kp and that observed in previously published animal studies for drugs 

with available prior data. Good agreement was observed across the available drugs with the exception of 

choloroquine. An r2 = 0.86 was observed in linear regression when chloroquine was excluded, but 

decreased to r2 = 0.22 when included (Supplementary Figure 2A). Similarly, good agreement between 

measured and predicted Kp was observed by Bland-Altman analysis for all data points with the exception 

of one chloroquine measurement (Supplementary Figure 2B). KpUlung was then used along with fraction 

unbound in plasma (Fu) and plasma Cmax values to calculate a predicted Cmax/EC50 (Figure 4) and 

Cmax/EC90 in lung (data not shown). Tissue Cmax/EC50 ratios are also shown for other tissues in Figure 5. 

For 4 drugs, ebselen, merimepodib, niclosamide and remdesivir, the fraction unbound data were 

unavailable. For 6 other drugs, benztropine, indinavir, loperamide, nelfinavir, saquinavir and toremifene, 

the blood to plasma ratios were unavailable. For a further 4 drugs, camostat, emetine, fluspirilene and 

umifenovir, both fraction unbound and blood to plasma ratios were unavailable. Therefore, these drugs 

were excluded from the analysis. A total of 18 drugs with available data were predicted to give 

concentrations in lung above at least one of their reported EC50 against SARS-CoV-2 (Figure 4) and 8 of 

these were predicted to exceed their EC50 by more than 10-fold. The rank order of lung Cmax/EC90 ratio 

was chloroquine > atazanavir (ritonavir boosted) > tipranavir (ritonavir boosted) > hydroxychloroquine > 

mefloquine > ivermectin > lopinavir (ritonavir boosted) > azithromycin > nitazoxanide > ritonavir > 

gilteritinib > amodiaquine > imatinib > oxprenolol (data excluded due to this analysis only being possible 

for 33 of the 56 drugs).
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Discussion

The systematic development of mechanism-based inhibitors for key targets involved in viral replication or 

pathogenesis is likely to result in highly effective and safe medicines in the coming years. However, the 

repurposing of already approved medicines in antiviral treatment or chemoprevention strategies is 

undoubtedly the fastest way to bring forward therapeutic options against the urgent unmet need posed 

by SARS-CoV-2. A range of different drugs and drug classes have been demonstrated to display varying 

degrees of antiviral activity against SARS-CoV-2 in vitro, and many of these drugs are already licenced for 

use in humans for a range of indications. However, currently the data emerging from global screening 

efforts are not being routinely benchmarked and prioritised against achievable concentrations after 

administration of doses proven to have acceptable safety profiles in humans. 

The current analysis indicates that only 12 drugs with reported antiviral activity are likely to achieve 

plasma exposures above that required for antiviral activity for at least some of their dosing interval. 

Notably, neither chloroquine, hydroxychloroquine nor lopinavir/ritonavir exhibited a sustained plasma 

concentration above their reported SARS-CoV-2 EC90 across their reported dosing interval. Ultimately, the 

implications of this for therapy will depend upon whether systemic suppression is a prerequisite for a 

reduction in morbidity or mortality, but this does raise some concern for ongoing trials with these drugs 

(chloroquine: NCT04323527; NCT04333628, hydroxychloroquine: NCT04316377; NCT04333225; 

NCT04307693 and lopinavir/ritonavir: NCT04331834; NCT04255017; NCT04315948). However, the 

predicted lung accumulation rather than plasma exposure may provide some therapy advantage and/or 

give more reassurance for ongoing chemoprevention trials. 

At least 7 of the 13 candidates achieving Cmax above one of their reported EC50 and derived EC90 are 

already in clinical evaluation for treatment of SARS-CoV-2. These include remdesivir (NCT04292730; 

NCT04292899; NCT04257656; NCT04252664; NCT04315948), favipiravir (NCT04310228; NCT04319900), 

niclosamide (NCT04345419), mefloquine (NCT04347031), lopinavir/ritonavir and chloroquine. No robust 

antiviral activity data were found for galidesivir on which to conduct an analysis but it is also under clinical 

investigation (NCT03800173). A recent trial for favipiravir demonstrated some success with an 

improvement over arbidol from 56% to 71% (p = 0.02) in patients without risk factors (but not critical 

cases or patients with hypertension and/or diabetes) (49). The results of compassionate use of remdesivir 

in severely ill patients was also recently reported, and if confirmed in ongoing randomised, placebo-

controlled trials, will serve as a further validation of the other candidates presented here (50). Of 

particular interest, nitazoxanide, tipranavir, sulfadoxine and nelfinavir may be expected to sustain their A
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plasma pharmacokinetic exposure above their lowest reported EC50 and derived EC90 (where available) for 

the duration of their approved dose and dosing interval. 

Nitazoxanide is an antiprotozoal drug that has previously been demonstrated to display broad antiviral 

activity against human and animal coronaviruses (51) as well as various strains of influenza (52, 53). 

Importantly, nitazoxanide is rapidly metabolised to tizoxanide in humans and this active metabolite is 

being investigated against SARS-CoV-2 (NCT04341493 and NCT04343248). Tizoxanide has been reported 

to exhibit similar activities to nitazoxanide for other viruses as well as other pathogens (54-56). The 

mechanism of antiviral action is not fully understood for nitazoxanide, but it has been reported to affect 

viral genome synthesis, prevent viral entry and interfere with the N-glycosylation and maturation of the 

influenza hemagglutinin (57-60). Notably, the SARS-CoV-2 spike protein is also highly N-glycosylated (61). 

This drug has also been shown to elicit an innate immune response that potentiates the production of 

type 1 interferons (57, 62) and a phase 2b/3 clinical trial demonstrated a reduction in symptoms and viral 

shedding in patients with uncomplicated influenza (53). The safety of nitazoxanide is well understood, but 

it has not been fully investigated during renal or hepatic impairment. The antiviral activity of nitazoxanide 

for SARS-CoV-2 requires further study but the existing data for this drug are encouraging. Niclosamide is 

another antiprotozoal drug that exhibits broad antiviral activity due to its ability to perturb the pH-

dependent membrane fusion required for virus entry (63), but it was reported to have no impact upon the 

attachment and entry of SARS-CoV-2 (64). For MERS-CoV, niclosamide was observed to inhibit SKP2 

activity impairing viral replication (65). Niclosamide has been reported to be well tolerated and does not 

influence vital organ functions (66). However, it has low aqueous solubility and poor oral bioavailability 

(67) and, despite a higher reported SARS-CoV-2 potency (39) than nitazoxanide (38), the Cmax/EC90 ratio 

was slightly lower. There is a paucity of published pharmacokinetic data for niclosamide and this 

prohibited a thorough investigation of exposures in relation to activity over its entire dosing interval. Both 

nitazoxanide and niclosamide have also been reported to be potent antagonists of TMEM16A, calcium-

activated chloride channels that modulate bronchodilation (68). 

Tipranavir and nelfinavir are HIV protease inhibitors (69) and both drugs ranked highly in terms of their 

Cmax/EC90 ratio. Moreover, a more in-depth analysis demonstrated that the concentrations across the 

dosing interval for both these drugs remained above the calculated EC90 values at approved doses and 

schedules. Unlike nelfinavir, tipranavir has to be co-administered with a low dose of ritonavir to boost its 

pharmacokinetics via CYP3A4 inhibition (70). Since ritonavir itself has been reported to exert anti-SARS-

CoV-2 activity, this could be advantageous, but would need to be balanced against the much higher risk of 

drug-drug interactions that could negatively impact patient management. The implications of drug A
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interactions have already been raised for this reason with lopinavir/ritonavir use for COVID-19 (71) and 

are likely to be exacerbated with the higher ritonavir dose needed for tipranavir. Moreover, tipranavir has 

a black box warning from the FDA for fatal and nonfatal intracranial haemorrhage as well as severe 

hepatotoxicity (72-74). The major route of metabolic clearance for nelfinavir is via CYP2C19 and this 

pathway generates the M8 metabolite that retains activity against the HIV protease (75). No data are 

available for inhibition of SARS-CoV-2 replication by the M8 metabolite but if active, this could provide an 

advantage for nelfinavir over tipranavir for COVID-19. Conversely, while the analysis of pharmacokinetics 

relative to potency of these molecules against SARS-CoV-2 is encouraging, it should be noted that the 

reported in vitro activity for HIV (69, 76) is far higher than that against SARS-CoV-2 and both drugs are 

highly protein bound (77, 78). Given that tipranavir and nelfinavir are associated with long-term toxicities 

(69, 79-81), there will be concern over giving even short-term exposure for COVID-19.

Sulfadoxine is another antimalarial drug that is usually administered in combination with pyrimethamine 

as a folic acid antagonist combination (82). Sulfadoxine inhibits the activity of dihydropteroate synthase 

within the malaria parasite, but its mechanism of action for SARS-CoV-2 is unclear. It should also be noted 

that the authors can find no data describing antiviral activity of this drug against other viruses. Also, the 

concentrations used in the in vitro activity used in this analysis (37) were not high enough to reach or 

calculate an EC90 value. Therefore, like other molecules described in this manuscript, in vitro anti-SARS-

CoV-2 activity should be repeated. Notwithstanding, sulfadoxine plasma concentrations far above the 

reported EC50 are maintained in patients receiving a single 1500 mg dose (with 75 mg pyrimethamine) for 

over 40 days (83). Compared to some other reported molecules, sulfadoxine is not expected to have as 

high an accumulation in the lungs, but concentrations higher than its EC50 are estimated from the analysis 

of its lung KpU. Therefore, if the reported antiviral activity is confirmed, this drug may offer opportunities 

for therapy and/or chemoprophylaxis. 

Indomethacin is a nonsteroidal anti-inflammatory drug that is indicated for rheumatoid arthritis, 

ankylosing spondylitis, osteoarthritis, acute painful shoulder or acute gouty arthritis. The recommended 

dose for acute gouty arthritis is 50 mg three times a day and the pharmacokinetic exposure for this is 

shown in Figure 3 relative to the reported EC50. indomethacin mechanism of action for SARS-CoV-2 

remains elusive, but it was shown to inhibit translation of the vesicular stomatitis virus by activating 

protein kinase R leading to the phosphorylation of eukaryotic initiation factor-2 α-subunit (84). This 

abrogated viral protein translation, leading to a dramatic inhibition of viral replication and infectious viral 

particle production. The reported in vitro antiviral activity data for indomethacin were insufficient to 

calculate an EC90 and this activity requires confirmation in other studies (40). Furthermore, the drug has a A
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black box warning for serious cardiovascular and gastrointestinal events from FDA so its use should be 

managed with caution (85).  

Considering that most of the impact of severe disease occurs in the lung and that this tissue may be a key 

site for transmission, the potential of candidate drugs to accumulate in lung tissue was considered. The 

lung Kp predictions were validated across 13 drugs for which previously reported animal plasma and lung 

concentrations were available, and showed good agreement for all agents other than chloroquine. The 

poor fit for chloroquine does highlight that the predictions may not be accurate for all of the drugs listed 

and this should be considered in interpretation.  Notwithstanding, the analysis of predicted lung 

Cmax/EC50 ratio revealed more candidates expected to exceed the concentrations needed for antiviral 

activity in this tissue. Hydroxychloroquine, chloroquine, mefloquine, atazanavir (ritonavir boosted), 

tipranavir (ritonavir boosted), ivermectin and lopinavir were all predicted to achieve lung concentrations 

over 10-fold higher than their reported EC50. All of these drugs were also predicted to exceed their EC90 in 

lung by at least 3.4-fold (data not shown). The lung prediction was not possible for nelfinavir because 

insufficient data were available to calculate KpUlung, but nitazoxanide and sulfadoxine were also predicted 

to exceed their reported EC50 by 7.8- and 1.5-fold in lung, respectively. Nitazoxanide was predicted to 

exceed its EC90 by 3.6-fold in lung but an EC90 was not calculable from the available data for sulfadoxine. 

Predictions for Cmax/EC50 ratio were also made for other tissues, and were generally in agreement with 

observations in the lung with some important exceptions. Gliteritinib, amodiaquine, imatinib, 

indomethacin, oxprenolol, and sulfadoxine were predicted to be subtherapeutic in brain and bone, with 

indomethacin and sulfadoxine being predicted to be subtherapeutic across most of the tissues in which 

Cmax was estimated.

During inflammation or injury, changes to the vascular microenvironment could have a profound effect on 

the ability of these drugs to accumulate in lung cells. Due to the recruitment of neutrophils and leaky 

endothelial cells (86), the lung inflammatory microenvironment is characterised by increased body 

temperature, excessive enzymatic activity and, most importantly, by a low interstitial pH (87). In the case 

of chloroquine and hydroxychloroquine, these diprotic weak bases are exquisitely dependent on a pH 

gradient to drive lysosomal uptake as a mechanism of lung accumulation. It has been demonstrated that 

cellular chloroquine uptake is diminished 100-fold for every pH unit of external acidification (88). This 

situation is likely to deteriorate further on mechanical ventilation, which also induces acidification of the 

lung tissue, independently of inflammation (89, 90). Therefore, the benefits of lung accumulation for 

many of these drugs may be lost during treatment of severe SARS-CoV-2 infection. Conversely, 

mefloquine is monoprotic and more lipophilic than chloroquine, which may make it much less reliant on A
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the pH gradient to drive cellular accumulation in lung. It is likely that the charged form of the drug is 

sufficiently lipophilic to allow movement across biological membranes along a concentration gradient 

(91). Only two studies have described mefloquine uptake into cells, one study suggested that mefloquine 

uptake is not energy dependent and the other suggested that mefloquine uptake is mediated by 

secondary active transport, rather than passive proton trapping (92, 93). Mefloquine is known to cause 

severe psychiatric side effects in some patients and so use of this drug should be managed with care (94). 

Therefore, mefloquine may offer opportunities for treatment during severe disease that are not available 

with other drugs currently being tested for COVID-19 therapy. If the high lung exposures are proven 

empirically for the drugs on this list, then some may also prove to be valuable for chemoprevention 

strategies.

Limitations of this analysis

This study represents the first holistic view of drugs with reported activity against SARS-CoV-2 in the 

context of their achievable pharmacokinetic exposure in humans. While the analysis does provide a basis 

to rationally selected candidates for further analysis, there are some important limitations. Firstly, Cmax 

was the only pharmacokinetic parameter that was universally available for all of the candidate drugs, but 

Cmin values are generally accepted as a better marker of efficacy since they represent the lowest plasma 

concentration over the dosing interval. However, Cmax was only used to assess whether plasma 

concentration would exceed those required at any point in the dosing interval, and this was followed by a 

more in-depth analysis of the most promising candidates. 

Secondly, an EC50 value only equates to a concentration required to suppress 50% of the virus, and data 

were unavailable to calculate EC90 values for some of the drugs. EC90 values are a preferred marker of 

activity because the slope of the concentration-response curve can vary substantially between different 

molecules and between different mechanisms of action. Although EC90 values were not calculable for all 

drugs the authors deemed it appropriate to deprioritise molecules not achieving EC50 at Cmax in this 

analysis. Thirdly, the reported antiviral activities were conducted under different conditions 

(Supplementary Table 2) and in several cases varied between the same molecule assessed in different 

studies (Figure 1). Also, some of the studied drugs (e.g. nitazoxanide and amodiaquine) are rapidly 

metabolised such that the major species systemically is a metabolite that has not been investigated for 

anti-SARS-CoV-2 activity. No mitigation strategy was possible for these limitations and the data should be A
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interpreted in the context that the quality of the available data may profoundly impact the conclusions. In 

vitro activity should be confirmed for the promising candidates and/or relevant metabolites. 

Fourthly, plasma protein binding can be an important factor in determining whether sufficient free drug 

concentrations are available to exert antiviral activity (95) and insufficient data were available across the 

dataset to determine protein binding-adjusted EC90 values. This is important because for highly protein 

bound drugs the antiviral activity in plasma may be lower than reported in vitro activity because protein 

concentrations used in culture media are lower than those in plasma. Fifthly, robust pharmacokinetic data 

were not available for all the molecules and subtle differences have been reported in the 

pharmacokinetics in different studies. Where possible, this analysis utilised the pharmacokinetics 

described at the highest doses approved for other indications and checked them to ensure that profound 

differences were not evident between different studies. However, in some cases, higher doses and/or 

more frequent dosing has been investigated for some of the drugs mentioned so higher exposures may be 

available for some drugs with off-label dosing. Sixthly, the digitised pharmacokinetic plots presented in 

this manuscript represent the mean or median profiles depending on what was presented in the original 

manuscripts. Many of the drugs presented are known to exhibit high inter-individual variability that is not 

captured within the presented analysis and it is possible that even for promising candidates, a significant 

proportion of patients may have sub-therapeutic concentrations despite population mean/median being 

higher than the Cmax. Advanced pharmacokinetics modelling approaches will be needed to unpick the 

exposure-response relationship and these studies are currently underway by the authors. 

Seventhly, the presented predictions for lung accumulation may offer a basis for ranking molecules for 

expected accumulation in that organ, but ultimate effectiveness of a chemoprophylactic approach will 

likely depend upon penetration into other critical matrices in the upper airways, for which there are 

currently no robustly validated methods of prediction. Also, while a generally accepted method for 

assessing KpU was employed, the predictions were only validated for a subset of drugs for which previous 

animal lung accumulation data were available. In addition, the KpU method assumes all the processes are 

passive and perfusion limited, and the complexity of pulmonary tissue pharmacokinetics is not captured in 

this analysis. The lungs include different structures including airways, bronchioles and alveoli with 

different blood flow perfusion and more detailed modelling validated through animal experiments will be 

required to capture this complexity. 

Finally, this analysis assumes that drugs need to be active within the systemic compartment in order to 

have efficacy against SARS-CoV-2. Since current evidence suggests that the virus is widely disseminated A
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throughout the body this is a logical assumption. However, ultimate efficacy of any drug can only be 

demonstrated with robust clinical trial designs. 

Summary

The current analysis reveals that many putative agents are never likely to achieve target concentrations 

necessary to adequately suppress SARS-CoV-2 under normal dosing conditions. It is critical that candidate 

medicines emerging from in vitro antiviral screening programmes are considered in the context of their 

expected exposure in humans where possible. Clinical trials are extremely time consuming and expensive, 

and it is critical that only the best options are progressed for robust analysis as potential mono- or 

combination therapy or prevention options. Finally, it would be highly beneficial for activity data for SARS-

CoV-2 to be performed with standardised protocol and with activity reported as EC90 values as a better 

marker of the concentrations required to suppress the virus to therapeutically relevant levels. Based upon 

the currently reported data, atazanavir, chloroquine, favipiravir, hydroxychloroquine, indomethacin, 

lopinavir, mefloquine, nitazoxanide, ritonavir, sulfadoxine, and tipranavir are predicted to have 

mean/median Cmax concentrations above their reported EC50 in both plasma and lung. Anidulafungin, 

eltrombopag, merimepodib, nelfinavir, niclosamide and remdesivir also had mean/media Cmax above 

available EC50 in plasma but a lung prediction was not possible. Only atazanavir, indomethacin, nelfinavir, 

nitazoxanide, sulfadoxine, and tipranavir were predicted to have mean/median plasma Cmax 

concentrations above their reported EC50 for the duration of their dosing interval, but full concentration-

time profiles were not available to make this judgement for favipiravir, niclosamide, and remdesivir.
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Study Highlights

What is the current knowledge on the topic? 

COVID-19 is an acute infectious respiratory disease caused by infection with the coronavirus subtype 

SARS-CoV-2, first detected in Wuhan, China, in December 2019. There are currently no available 

treatments or chemopreventative options, but several are being explored preclinically and clinically. Most 

publications reporting in vitro activity have focussed on 50% maximum effective concentrations (EC50) and 

not considered the achievable concentrations in plasma or relevant compartments for COVID-19, which 

may be an insufficiently robust indicator of antiviral activity because of marked differences in the slope of 

the concentration-response curve between drugs.

What question did this study address? 

The manuscript describes a comprehensive analysis of literature reported anti-SARS-CoV-2 activity 

for approved medicines in the context of their known pharmacokinetic exposure. A combination of 

physiochemical and pharmacological parameters was used to predict the accumulation of these drugs 

within lung tissues using a widely accepted modelling approach. Plasma and lung pharmacokinetic 

parameters were then used to rank the reported molecules according to whether they would provide 

therapeutic or chemopreventative exposures with the plasma or lung tissue. 

What does this study add to our knowledge?

Of the identified molecules with reported anti-SARS-CoV-2 activity, the overwhelming majority are not 

expected to reach active concentrations within the key target compartments. However, a number of 

candidates were identified that are expected to exceed the concentrations necessary to provide viral 

suppression at doses approved for use in humans. 

How might this change clinical pharmacology or translational science?

The manuscript identifies key drug repurposing opportunities and dramatically highlights the 

importance of considering pharmacokinetic exposure when interpreting the emerging candidacy of 

drugs for COVID-19 treatment and prevention.
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Figure legends

Figure 1. Assessment of the variation in reported EC50 values for SARS-CoV-2 across the drugs for which 

more than one value was available in the literature (A). The consequences of this variability in reported 

EC50 in terms of the Cmax/EC50 ratio is also provided (B). Amodiaquine and toremifene were estimated to 

exhibit sub-therapeutic pharmacokinetics irrespective of which EC50 value was used. Similarly, nelfinavir 

was estimated to have Cmax value higher than its EC50 irrespective of which EC50 was used in the analysis. 

For the other drugs, interpretation was highly dependent upon which reported EC50 was utilised and this 

underscores the caution that should be taken in interpreting the available data.

Figure 2. A bar chart displaying Cmax/EC90 ratio for compounds studied for in vitro antiviral activity against 

SARS-CoV-2 for which data were available to recalculate an EC90. Drugs with a ratio below 1 were deemed 

not to provide plasma concentrations at their approved doses to exert sufficient systemic antiviral 

activity. Those drugs with a ratio above 1 (shown in orange) were deemed to have potential to provide 

plasma concentrations sufficient to exert at least some antiviral activity for at least some of their dosing 

interval at their approved dose. Drugs shown in green were predicted to exceed plasma concentrations 

over their EC90 by more than 2-fold.

Figure 3. Digitised pharmacokinetic interrogation of all drugs calculated to have a Cmax/EC50 ratio above 

1. The lowest reported SARS-CoV-2 EC50 (dashed orange lines) and associated recalculated EC90 (dashed 

green lines) are also highlighted. References for the utilised data are nitazoxanide 500 mg BID and 1000 

mg BID (96), tipranavir 500 mg BID with 200 mg ritonavir (97), sulfadoxine 1500 mg with 75 mg 

pyrimethamine (83), nelfinavir 1250 mg BID (98), indomethacin 50 mg TID (99), atazanavir 300 mg QD 

with 100 mg ritonavir (100), hydroxychloroquine 2000 mg hydroxychloroquine sulfate/1550 mg base 

administered over 3 days (101), eltrombopag 75 mg single dose (102), lopinavir 400 mg with 100 mg 

ritonavir (103), chloroquine 1500 mg administered over 3 days (104), mefloquine 1200 mg over 3 days 

(105), anidulafungin 100 mg QD (106). Robust pharmacokinetic data were unavailable for niclosamide 500 

mg, ritonavir 600 mg and merimepodib 300 mg in order to conduct this digitised interrogation of these 

molecules.

Figure 4. A bar chart displaying the simulated lung Cmax/EC50. Drugs with a ratio below 1 were deemed 

not to provide lung concentrations at their approved doses to exert sufficient pulmonary antiviral activity 

for treatment or prevention strategies. Those drugs with a ratio above 1 (shown in orange) were 

estimated to provide lung concentrations sufficient to exert at least some antiviral activity at their A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

approved dose. Drugs shown in green were predicted to exceed lung concentrations over their EC50 by 

more than 10-fold. 

Figure 5. A heatmap displaying the simulated tissue Cmax/EC50 values for all drugs with available data. 

Those drugs with a ratio above 1 (shown in orange) were estimated to provide tissue concentrations 

sufficient to exert at least some antiviral activity at their approved dose. Drugs shown in green were 

predicted to exceed tissue concentrations over their EC50 by more than 10-fold.
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Table 1. Summary of the top leads identified  

Drug Cmax:EC50 Cmax:EC90 Approval Indications Route of administration Dosage Ref 

Atazanavir & Ritonavir 

REYATAZ® 

(Bristol-Myers Squibb) 

3.643 0.728 
EMA 

FDA 
HIV-1 Oral 300/100 mg (107, 108) 

Anidulafungin 

Eraxis®/Ecalta® 

(Pfizer) 

1.323 1.192 
EMA 

FDA 
Invasive fungal infections Intravenous infusion 

200 mg QD + 

100 mg QD 
(109) 

Chloroquine 

Aralen® 

(Sanofi Aventis) 

2.318 1.261 FDA 
Malaria 

Extraintestinal amebiasis 
Oral 1500 mg (110) 

Eltrombopag 

Promacta® /Revolade® 

(Novartis) 

3.416 2.029 
EMA 

FDA 

Primary immune 

thrombocytopenia 

Acquired severe aplastic 

anaemia 

 

Oral 75 mg QD (111) 

Favipiravir 

Avigan® 

(Fujifilm Toyama 

Chemical Co) 

6.326 2.469 PMDA - Japan Influenza Oral 600 mg BID (112) 

Hydroxychloroquine 

Plaquenil® 

(Sanofi Aventis) 

3.598 0.101 
EMA 

FDA 
Malaria Oral 400 mg (113) 
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Indomethacin 

Indocin® 

(Merck & Co) 

5.366 - 
EMA 

FDA 
Rheumatoid arthritis Oral 50 mg TID (114) 

Lopinavir & Ritonavir 

Kaletra® 

(AbbVie) 

2.660 / 1.671 1.630 / 1.240 
EMA 

FDA 
HIV-1 Oral 

400/100 mg 

BID 
(115) 

Mefloquine 

Lariam® 

(Roche) 

1.350 1.284 
EMA 

FDA 
Malaria Oral 250 mg (116) 

Merimepodib 

(Vertex Pharmaceuticals) 
1.629 0.638 

Not clinically 

approved 
HCV Oral 300 mg TID (117) 

Nelfinavir 

VIRACEPT® 

(Roche) 

5.849 / 2.287 3.755 
EMA 

FDA 
HIV-1 Oral 1250 mg BID (118) 

Niclosamide 

Yomesan® 

(Bayer) 

8.286 4.936 
EMA 

FDA 
Infestation with tapeworms Oral 2000 mg  (119) 

Nitazoxanide  

Alinia® 

(Romark Pharmaceuticals) 

13.823 6.315 FDA 

Diarrhoea caused by Giardia 

lamblia or Cryptosporidium 

parvum 

Oral 
1000 –  

2000 mg BID 
(120) 

Remdesivir 

(Gilead) 
5.603 / 2.614 3.755 / 1.712 

*Not clinically 

approved 

Ebola 

 
Intravenous 

200 mg +  

100 mg 
(38) 

Ritonavir 

Norvir® 
1.800  

EMA 

FDA 
HIV-1 Oral 600 mg (121) A
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(AbbVie) 

Sulfadoxine & 

pyrimethamine 

Fansidar® 

(Roche) 

6.577  
FDA - 

discontinued 
Malaria Oral 1500/75 mg (122) 

Tipranavir & Ritonavir 

Aptivus® 

(Boehringer Ingelheim 

Pharmaceuticals, Inc.) 

9.647 6.559 
EMA 

FDA 
HIV-1 Oral 

500/200 mg 

BID 
(123) 

*compassionate use programme 
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