

The Human Centric Lighting Approach for the Design of Age-Friendly Products

Journal:	Theoretical Issues in Ergonomics Science
Manuscript ID	TTIE-2019-0004.R3
Manuscript Type:	Research Paper
Keywords:	Human centric lighting, ergonomic design, new product development, old age, domestic lighting system

SCHOLARONE[™] Manuscripts

The Human Centric Lighting Approach for the Design of Age-Friendly Products

As world's societal wellbeing is growing, in the near future the 'seniors condition' will force designers and companies to rethink the way they conceive, produce and sell products. This condition is fundamental for some strategic markets like the lighting domain. In this scenario, Human Centric Lighting (HCL) approach considers both seniors' biological aspects and technological advances to develop eco-efficient solutions that consider visual and non-visual aspects of light. This paper show the use of HCL as a new design approach able to help designers in the development of a wide range of lighting solutions; from the analysis of human conditions, this paper describes the research process used to design a HCL-Based System that perfectly meets seniors' needs.

Keywords: Human centric lighting; ergonomic design; new product development; old age, domestic lighting system

Relevance for Human Factors and Ergonomics

In the near future, the aging of the world population will influence Human Factors and Ergonomics (HF/E) studies. This paper introduces the Human Centric Lighting (HCL) as a new design approach useful to meet both biological aspects of seniors and technological advances related to the design of eco-efficient lighting solutions. This study is therefore in line with HF/E tradition, facing contemporary human's issues with traditional ergonomic studies and recent holistic design approaches, which are in line with the notions of Human Centred Design (HCD).

1. Lighting Design in Elderly Sectors: Between Human Wellbeing and Product Innovation

The relationship between light and human wellbeing has been widely documented in many studies (i.e. Veitch *et al.*, 1993; Veitch and Gifford, 1996; Wirz-Justice, 1996; van Bommel and van den Beld, 2004; Brainard and Provencio, 2008; Wirz-Justice and Fournier, 2010; Christoffersen, 2011; Pechacek *et al.*, 2013) and concerns medical,

anthropological, social and psychological factors. But only recently the artificial light's comfort increased in importance for design and HF/E domains (i.e. Ticleanu *et al.*, 2015) supporting the people's interaction processes with products and environments.

Aging of people is highlighting new design challenges; new holistic and inclusive wellbeing-oriented design strategies are needed. Accordingly the rising class of *'seniors'* will be one of the most important categories of customers that will use domestic products (Moschis *et al.*, 1997), including lighting ones.

Human Centric Lighting (HCL) is a new design approach aimed to satisfy the psychophysiological and emotional needs of people (Srivastava, *et al.*, 2012). Seeing the seniors' condition, HCL approaches the study of artificial light aiming to improve the life of people in every aspect where light, as designable element, can be an essential factor. HCL considers both visual and non-visual effects of light that are less considered by design literature, producing higher controls on intrinsic lighting characteristics. HCL can be a useful approach to review seniors' psychophysical and social difficulties in an inclusive way, supporting the idea of seniors as a new group able to address the research and development of new highly-usable solutions for all.

2. Aims and Methodology

This work proposes a proactive convergence between the socio-psychophysical conditions of seniors with the new positive vision introduced by recent technological advances in lighting industry. It recognises the role of Design Research and Human Factors in connecting the social needs expressed by seniors (market demand), with the new enabling power offered by current industry advances (market offering). Accordingly, the HCL is a valid alternative to develop enabling age-friendly solutions, with the idea that products easily usable by seniors are also highly usable by youngers.

The aim of this work is to introduce the HCL as useful design approach usable to face the complex issues connected to the seniors' interaction with lighting products – i.e. dimensioning of elements, estimation of light flux, etc. – as well as to create ergonomically performing products that boost personal dignity and independence. This work is divided into two phases: analytical and design, described as follow:

• The analytical phase defines the scientific structure of this work; it aims to understand all biological, design and technical elements on seniors' condition.

• The design phase aims to develop a new HCL-oriented age-friendly lighting system for seniors. Notions belonging to Ergonomic Design, Engineering and Industrial Design domains are combined with HCL approach.

3. Seniors and Design Opportunities

The concept of old age has been repeatedly reviewed over years and, in principle, it is used to describe someone aged 65, or more, having some generic physical age-related difficulties like: physical disabilities, difficulties in interacting with technologies, etc. People live better and longer than past and, in the scenario of *'active aging'*, seniors are active, both physically and professionally, playing active roles in the social, cultural and politic life.

In 2017 the world population reached 7.6 billion and over 13% are people aged 60, or more. UN's estimations expects that between 2017 and 2050, half of the world's population growth will occur in only nine countries, including: Nigeria, Democratic Republic of Congo, Pakistan, Ethiopia, Tanzania, United States of America, Uganda and Indonesia (UN, 2017). By 2050 the number of people aged 80 or more will triple (425 million); this number will be seven times higher by 2100 (909 million). Finally, the average age will continue to rise from 29.6 years in 2015 to 36.1 in 2050 (UN 2017).

From the design point of view, the previous data allow to anticipate what kind of actions companies should do in the near future to maintain their marker competitiveness and, then, what kind of strategies they could adopt in order to meet the seniors' needs. The simplistic design approach used till now must be re-discussed; traditional approach conceives *'exclusive'* – not inclusive – solutions that do not meet people's real needs, being out of markets demand and not in line with end-users' real psychophysical and social condition. Companies still have an idea of senior as *'weak old person'* needing of simplified, elementary or extremely easy-to-use solutions. On this human-centered design idea, Gretchen Anderson (2006) stated:

Even as technology has gotten smaller, more powerful and cheaper, the design aesthetic for the pre-Boomer generation is still exemplified by orthopedic shoes. [...] As our society matures, and Baby Boomers start swelling the ranks of the 'elderly', we will have to start coming up with better-looking, more useful products for seniors.

[...] Boomers will bring their great influence and purchasing power to bear on businesses and demand experiences that are more elegant and agile. [...]. We need exercise equipment for the mind and body, not just products that treat the inevitable decline. [...] Our challenge is to make their lives meaningful.

The thesis expressed by Anderson follows, in some way, a part of the recent Design literature focused in the area of Universal Design and Inclusive Design (i.e. Seidel *et al.*, 2010; Mieczakowski and Clarkson, 2013); these works demonstrated that seniors have a own dignity, they want to be considered as active people and, mostly, they have quantifiable needs and wishes like younger demographic groups. If turned to the production domain, seniors expect to use *'inclusive solutions'*, which are solutions suitable for all, not *'solutions designed for'* (Rossi and Barcarolo, 2019).

Although this social change is evolving the demand for new products, many companies do not recognize the value expressed by the senior class; at the moment, they only recognize that it will be essential to correctly intercept this issue in the future (Gassmann and Reepmeyer, 2011). Concentrating the strategic development of products only on young customers is wrong, as well as it is wrong to conceive and sell products that are exclusive for elders. In fact, seniors do not want to feel themselves belonging to a *'special category'*.

4. Synthetic Overview on Biological Factors of Lighting Stimuli and Seniors' Perception of Wellbeing

A fundamental factor connecting the human reactions to light stimuli is the circadian rhythm, which is defined in chronobiology as the *'internal clock of the human body'* (Lemmer, 2010). The circadian rhythm regulates physiological and behavioural rhythms like: sleep-wake cycle, vigilance, daily performance, hormone production, body temperature and metabolism. Environmental light is therefore the most powerful factor for its stabilization.

Light signals arrive at the brain following two ways: the first one is the optic nerve (POT), through signals coming from photoreceptors, and leads to the visual cortex and the retinohypothalamic tract; the second one is via the signals of the

 intrinsically photosensitive Retinal Ganglion Cells (ipRGC), which are a third family of photoreceptor cells leading the signals to the suprachiasmatic nucleus (SCN). SCN can be considered as the real internal clock of mammals and it is responsible for various physiological processes (Bernanrd *et al.*, 2007). In terms of production, four hormones are fundamental: melatonin, which regulates wakefulness (Hardeland *et al.*, 2006); cortisol, which influences the stress level (de Weerth *et al.*, 2003); dopamine, which regulates human's pleasure, vigilance and muscle coordination (Hirsh *et al.*, 2010); serotonin, which regulates, for example, the need of carbohydrates (Pontes *et al.*, 2010).

Studies have also confirmed that both illumination and duration of light exposure are relevant for the circadian rhythm (Warman *et al.*, 2003). Assuming long exposures, domestic lights can condition people's circadian rhythm. Consequently, night light exposure could negatively affect on the production of melatonin.

The perception of light influences the life of people; it stimulates their awareness on the time of day and, mostly, on how much energy they should have in that exact moment (energy need – i.e. hunger). In 2012, the American Medical Association (AMA) documented the need to develop modern technologies to minimise the interruption of circadian rhythm (Blask *et al.*, 2012).

A recent study (Scheuermaier *et al.*, 2011) has shown that seniors spend roughly 38% of their waking hours in moderate room light intensity (<100 lux) and more than the 15% with brighter light levels (\geq 1000 lux), which is equivalent to sunlight. Accordingly, traditional artificial lights are inadequate for seniors' specific needs. Moreover, for elderly people, the ability to focus objects tends to decrease, as well as the ability to compensate the lower levels of brightness and the detection of colours. Diffused light acts on the chromatic perception reducing the differences of colours at the edges of silhouettes. Thus, to have an appropriate visual acuity, a person aged 60, or more, needs of a 2-5 time higher level of light than a person aged 20 (van de Kraats and van Norren, 2007).

Circadian rhythm is also influenced by the quantity, the time, the duration of light exposure and its spectrum. In elderly people, high levels of natural light increase the level of melatonin.

Finally, ageing implies eyes-related diseases and disorders, such as loss of vision and blindness. In particular, loss of vision is the intermediate condition between normal vision (20/20) and blindness (3/60) (WHO, 2011).

5. The Human Centric Lighting Approach: Definition, Design Opportunities and Potential Limitations

A 2013 joint study of LightingEurope and the German Electrical and Electronic Manufacturers' Association (ZVEI) promoted the Human Centric Lighting (HCL) as a design-oriented approach useful to improve the human wellbeing, people's concentration, safety and efficiency in workplaces (Kearney, 2013). This study affirms that HCL can support healing processes and prevention of chronic diseases among persons with irregular daily routines or in elderly care. As reported by Heller (2016), HCL centers on the relationship between light and levels of wellbeing, where the effects on circadian rhythms can be correlated to specific light conditions.

Compared to traditional design approach, HCL considers both visual and nonvisual effects of light – i.e. biological and emotive factors – rarely taken into account; this allows to have a quasi-total control on lighting sources, including: direction, intensity, chromatic gradients and exposure time. Therefore, HCL is not a productcentered design approach; it holistically considers people in their environments, taking into account their activities, tasks, wishes and human conditions, to generate smart solutions that meet human's physiological aspects and new technological advances.

Even though HCL is still less used in Design discipline, it offers a large number of benefits. A recent study (de Kluizenaar *et al.*, 2016) has shown strengths and main difficulties for the development and the diffusion of HCL; study's results are synthetically discussed below.

A first chance concerns the creation of customized systems of smart lighting solutions. Stakeholders have expressed the desire to have functional solutions, but also upgradable and implementable over time. This factor could improve, for example, the 'smart applications' sector (i.e. using Bluetooth and Wi-Fi, lighting systems can be controlled via smartphones and home automation systems) and, then, the sector of green buildings using systems for energy efficiency that mitigate the economic and environmental impacts.

A second promising chance concerns the development of biologically effective lighting solutions for human health and wellbeing. HCL could improve the wellbeing of patients in hospitals, humanizing the quality of sleep and preventing chronic diseases. For this reason, the personal care sector could probably be the most promising field of

 application for short-term experimentations. Personal care sector can best benefit from wellbeing-oriented lighting solutions aimed to support the active aging.

The extension of the HCL into work environments – i.e. offices, schools, etc. – introduces a third chance, which concerns biologically effective lighting solutions for improving cognitive performances. In these contexts, full control of light can improve people's mood, satisfaction and productivity. For example, in schools light plays an important pedagogical role; it increases concentration and reduces errors.

Finally, light plays a strategic role in the creation of aesthetically pleasing and suggestive environments (i.e. architectural lighting). This fourth chance concerns the design and the development of pleasant spaces; for example: rooms with comfortable lights increase productivity; pleasant classrooms increase students' performance, etc.

On the other hand, the study conducted by de Kluizenaar *et al.* (2016) identified four main limitations related to the diffusion of HCL, which mainly concern: the lack of information and lack of awareness in the lighting industry, the lack of precise and quantified economic returns in the use of HCL-based products, the lack of standards and rules to support the technological spreading, and finally the lack of market insights, guidelines and evidences on the technological pros.

6. Design and Development of an Age-Friendly Lighting System

The design process used to develop a HCL-oriented age-friendly lighting system followed four different phases; moving from the analysis of end-users' abilities and needs, useful to know all user-centered aspects, to the design and implementation (i.e. ISO, 2010). The solution here presented, and referred to an academic trial, has been also verified using specific HF/E tests (anthropometric measurements and Universal Design checklist) in order to have the best solution possible (Deli, 2018).

6.1. Analysis of Seniors' Abilities and Design Correlations

The analysis of seniors' psychophysical conditions allowed to define a descriptive framework connecting human conditions with design implications and senior-centred needs. Such conditions (Table 1) have been used to describe the quality of seniors'

interaction with products, in order to understand their needs and, from the design point of view, the nature of design requirements to be developed. The framework has been therefore developed using existing literature, standardization references (Denno *et al.*, 1992; ISO, 2001; Farage *et al.*, 2012) and participative research sessions with a sample of 12 potential stakeholders (co-design on lighting domain). Stakeholders' data have been later summarized and screened to detect harmonized needs for lighting domain.

Table 1 about here.

6.2. Analysis of End-Users' Needs and Development of Product's Design Requirements

From the previous analysis, and from the review of potential design implications related to their conditions, a meta-projectual analysis has been developed to connect the medical domain with the design one. Specifically, the '*Effects/Implication of Age*' shown in Table 1 has been used to understand the end-users' needs and to develop a new class of design information (Table 2), composed by: '*Classes of Design Requirements*' (left column) and '*Detailed HCL-Oriented Design Requirements and Recommendations for Lighting Companies/Designers*' (right column). This analysis allowed to have a clear and detailed framework of design information useful to develop, in the next design phases, the design concept and the HCL-oriented design solutions. '*Recommendations for Lighting Companies/Designers*' have been developed to be as scalable data for industry-related developments. Moreover, in this phase, relevant data belonging to Universal Design (Connell *et al.*, 1997) and Design for Sustainability (Manzini and Vezzoli, 1998) domains have been used to have accurate information about end-users.

Table 2 about here.

6.3. Development of the HCL-Based System

The development of the HCL-Based System started considering the seniors' fundamental needs and, then, how to apply the list of '*Detaild HCL-Oriented Design*

Requirements'. In this early design phase, the attention was addressed to the development of a set of basic elements to be refined later. This process has defined the five main elements of the lighting system: a base, a spotlight, a light diffusor, a lighting system and a set of controls (Deli, 2018).

As shown in Figures 1 and 2, the HCL-Based System is composed by only four main elements: a reflective surface, a base, a rod and, finally, a lighting source linked to the rod. The reflective surface is a 13 mm thick composite sandwich composed by: painted anodized aluminium, PMMA (Polymethyl methacrylate) and aluminium framed MCPET (highly reflective PET foamed sheet). The base is made in black-painted anodized aluminium and contains an integrate solution to connect the rod and all electrical components like: power transformer, COB (Chip on Board used for the dynamic regulation of LEDs) ventilation slots, etc. The rod, made in black-painted anodized aluminium, is 25 mm diameter and contains two light sources: the first one is a vertical 750 mm light diffusor and the second one is a 90 mm horizontal light diffusor. All controls can be regulated in height – between 950 e 1110 mm – to meet all anthropometric conditions, and in depth – 350 mm – using an electric rail. The overall height – 1800 mm – has been chosen both to meet all anthropometric conditions and to create an elegant solution for any domestic environment. In general, the idea was to create a low thickness senior-friendly solution.

Figure 1 about here.

Figure 2 about here.

6.4. Anthropometric Measurements and Age-Friendly Design Constrains

The early concept design has been verified for anthropometry standards using one of the most used reference for Industrial Design discipline (Pheasant, 1996), which has allowed to perfect the dimensions of all components with which seniors will directly interact (i.e. knobs, connectors, etc.) (Figure 3). In terms of anthropometric verification, the populations – percentile (%ile) – used as for references were:

• 99 %ile American elderly men aged 65 to 79, used for the product's sizing (min. size).

- 1 %ile American elderly women aged 65 to 79, used for the product's sizing (max. size).
- 99 %ile American elderly men aged 65 to 79 and 1 %ile American elderly women aged 65 to 79 used for the control sizing (max. and min. size).
- 99 %ile American elderly men aged 65 to 79 and 1 %ile American elderly women aged 65 to 79 used for the sizing of all surfaces, lighting systems and handling objects (i.e. knobs, connectors, rods, etc.) (max. and min. size).

Figure 3 about here.

Later, the measurements refined through anthropometric tests have been combined with the original lighting system to obtain a coherent solution that meet both human insights (i.e. HCD) and technological components (technology-push approach). As last verification, we used the Universal Design checklist (CUD NCSU, 2002) to validate the HCL-Based System even with critical end-users' conditions. This confirmed the coherence of the solution even for the Universal Design principles.

6.5. Technological Implementation and Full Simulations

In the last design phase, some simulations have been developed to tests the different lighting qualities and conditions of use of the HCL-Based System. Such simulations were addressed to understand the visual pleasantness of lighting sources in all potential domestic uses. The aim of this phase was to verify the lighting effects with the HCL approach in order to confirm the design approach used or, at least, to implement specific elements if needed. From the technological implementation of all system's elements, some provisional conditions – scenarios of use – have been created to show the qualitative and quantitative performance of all lighting sources. In particular four main simulations have been developed for:

 Standby/Activation lights: an integrated twilight sensor detects the amount of light and, when needed, automatically activates the product – it reveals the presence of the lighting system through the activation of the controls on the PMMA shell.

- Side light (5 lm ca.): it provides night lighting in case end-users need to move in the dark. The lighting system illuminates the floor and adjacent furniture to show the safest way or the nearest switch, reducing the risk of falls.
- Diffused light sources: spotlights vary from 800 lm to 1600 lm. The colour temperature used is D65 daylight 6500 equivalent to a solar light simulation of 6500 °K. The controls contained in the lighting system allow to vary the colour temperature from 4000 °K to 2700 °K.
- Direct light sources: from 400 lm to 600 lm.

Some full simulations have been used to set the overall product's aesthetics, as well as to have early feedbacks from potential customers in relation to potential domestic contexts of use (Figure 4).

Figure 4 about here.

7. Conclusions and Discussion

Ageing of world population is producing remarkable effects in the design and development of personal products; as reported by many studies, it is currently forcing designers and companies to rethink and approach the social issues with new tools and design approaches. As the need of lighting solutions is a basic factor for the everyday life of people, the *'seniors condition'* is producing a new approach to market with new and proactive solutions based on inclusive-oriented approach.

HCL is a fast-growing approach that considers both visual and non-visual aspects of light, allowing to conceive new products able to meet all psychophysiological conditions of all end-users. Compared to the seniors' condition, HCL can play a crucial role in the design and in the selling of smart human-centred products.

This paper has shown that the HCL approach can be used in the design of highly usable and eco-efficient domestic lighting solutions that meet the seniors' needs and abilities. As it has been discussed in the first part of this paper, the seniors' psychophysiological conditions are strongly influenced by light condition, involving visual, non-visual, ergonomic and design aspects. So, the research here presented demonstrates that the development of lighting solution for people aged 65, or more, is a complex issue, but the use of recent design approaches, the investigation of current advances in medical and technological fields, and the use of the HCL approach can help all designers in the design of elegant eco-efficient and effective age-friendly solutions able to meet both human needs and industrial production.

Finally, evidences have shown that HCL can be considered in line with traditional aims of HF/E discipline, while it has been possible to use and adapt traditional tests and design approaches with new socio-demographic issues.

Acknowledgements

This paper shows the results of the M.Arch. Thesis entitled *'Human Centric Lighting Approach: Design of a Lighting System for the Elderly Sector'*, developed in the Department of Architecture of the University of Chieti-Pescara in Italy, by Aldo Deli (Student), under the supervision of Professor Massimo Di Nicolantonio (Advisor). While all authors have contributed to the development of this research, the writing of various paragraphs can be attributed to Massimo Di Nicolantonio for Paragraphs 5 and 6; to Emilio Rossi for Abstract, Paragraphs 3 and 7; to Aldo Deli for Paragraphs 2 and 4; and to Antonio Marano for Paragraph 1.

References

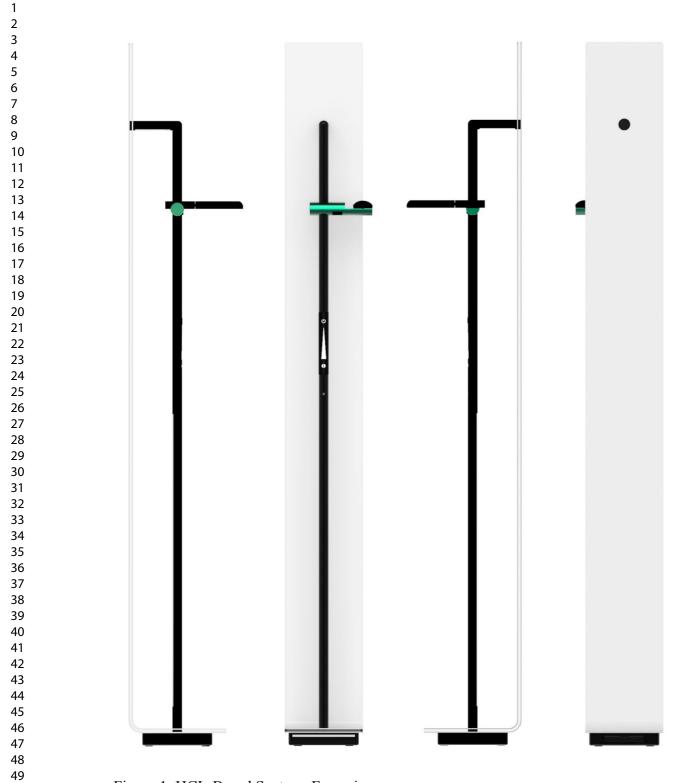
- Anderson, G. 2006. *Product Design for the Elderly*. Retrived from: https://gizmodo.com/169097/frog-design-mind.
- Bernanrd, S., D. Gonze, B. Čajavec, H. Herzel and H. Kramer. 2007. Synchronization-Induced Rhythmicity of Circadian Oscillators in the Suprachiasmatic Nucleus. *PLoS Computational Biology*. 3(4): e68 DOI: https://dx.doi.org/10.1371/journal.pcbi.0030068.
- Blask, D., G. Brainard, R. Gibbons, S. Lockley, R. Stevens, and M. Motta. 2012. *Light Pollution: Adverse Health Effects of Nighttime Lighting* (Report 4 of the Council on Science and Public Health (A-12)). Retrieved from: <u>http://circadianlight.com/images/pdfs/newscience/American-Medical-Association-2012-Adverse-Health-Effects-of-Light-at-Night.pdf</u>.

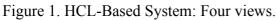
Brain	ard, G.C. and I. Provencio. 2008. Photoreception for the Neurobehavioral Effects
	of Light in Humans. Light and Engineering 16(1): 5-18.
Christ	offersen, J. 2011. The Importance of Light to Health and Well-Being.
	Proceedings of the 4 th VELUX Daylight Symposium: 'Daylight in a Human
	Perspective'.
Collir	s, M.J., B. Brown and K.J. Bowman. 1989. Peripheral Visual Acuity and Age.
	Ophthalmic and Physiological Optics 9: 314-316.
Conne	ell, B., M. Jones, R. Mace, J. Mueller, A. Mullick, E. Ostroff, J. Sanford, E.
	Steinfeld, M. Story and G. Vanderheiden. 1997. The Principles of Universal
	Design: Version 2.0. Raleigh, NC: The Center for Universal Design.
Davis	, A.C., B. Ostri and Parving, A. 1990. Longitudinal Study of Hearing. Acta Oto-
	Laryngologica 111(476): 12-22. DOI:
	https://doi.org/10.3109/00016489109127251.
le Kl	uizenaar, Y., R. Fazakas, L. Del Viva and C. Villegas Sanchez. 2016.
	Recommendations and Opportunities for Implementation of Human Centric
	Lighting: Accelerate SSL Innovation for Europe (Deliverable D3.6, part 1). s.l.:
	SSL-erate Consortium.
le We	eerth, C., R.H. Zijl and J.K. Buitelaar. 2003. Development of Cortisol Circadian
	Rhythm in Infancy. Early Human Development 73(1-2): 39-52. DOI:
	https://doi.org/10.1016/S0378-3782(03)00074-4.
Deli,	A. 2018. Human Centric Lighting Approach: Design of a Lighting System for the
	Elderly Sector. M.Arch. Dissertation, University of Chieti-Pescara, Italy.
Denno	o, S., B.A. Isle, G. Ju, C.G. Koch, S.V. Metz, R. Penner, L. Wang and J. Ward.
	1992. Human Factors Design Guidelines for the Elderly and People with
	Disabilities (Revision 3 Draft, SSDC-SYS/AI-C92-009). Minneapolis, MN:
	Honeywell SSDC.
Farag	e, M.A., K.W. Miller, F. Ajayi and D. Hutchins. 2012. Design Principles to
	Accommodate Older Adults. Global Journal of Health Science 2012 Mar 4(2):
	2-25. DOI: https://doi.org/10.5539/gjhs.v4n2p2.
Gassr	nann, O. and G. Reepmeyer. 2011. Universal Design: Innovations for All Ages.
	In: Kohlbacher, F. and C. Herstatt (eds.). The Silver Market Phenomenon.
	Berlin, Heidelberg: Springer. DOI: https://doi.org/10.1007/978-3-642-14338-
	<u>0_8</u> .

3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
23 24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

1

Hardeland, R., S.R. Pandi-Perumalb and D.P. Cardinali. 2006. Melatonin. The
International Journal of Biochemistry & Cell Biology 35(3): 313-316. DOI:
https://doi.org/10.1016/j.biocel.2005.08.020.


- Heller, M. 2016. Innovations in Lighting Technology Impact More Than Efficiency. Retrived from: <u>https://www.aia.org/articles/20866-innovations-in-lighting-</u> technology-impact-mo:36.
- Hilz, M.J., B. Stemper, F.B. Axelrod, E.H. Kolodny and B. Neundorfer. 1999.
 Quantitative Thermal Perception Testing in Adults. *Journal of Clinical Neurophysiology* 16(5): 462-471. DOI: <u>https://doi.org/10.1097/00004691-199909000-00008</u>.
- Hirsh, J., T. Riemensperger, H. Coulom, M. Iche, J. Coupar, and S. Birman. 2010. Roles of Dopamine in Circadian Rhythmicity and Extreme Light Sensitivity of Circadian Entrainment. *Current Biology* 20(3): 209-2014. DOI: <u>https://dx.doi.org/10.1016%2Fj.cub.2009.11.037</u>.
- Hornor, T. 2013. *10 Troublesome Colors to Avoid In Your Advertising*. Retrived from: https://www.sitepoint.com/10-troublesome-colors-to-avoid-in-your-advertising/
- ISO (International Organization for Standardization). 2001. *Guidelines for Standards* Developers to Address the Needs of Older Persons and Persons with Disabilities (ISO/IEC Guide 71:2001). Geneva: Switzerland.
- ISO (International Organization for Standardization). 2010. Ergonomics of Human– System Interaction – Part 210: Human-Centred Design for Interactive Systems (ISO 9241-210). Geneva: Switzerland.
- Kearney, A.T. 2013. *Human Centric Lighting: Going Beyond Energy Efficiency* (July 2013). Brussels: LightingEurope.
- Lemmer, B. 2010. Circadian Rhythms. In: Stolerman I.P. (eds.) Encyclopedia of Psychopharmacology. Berlin, Heidelberg: Springer. DOI: <u>https://doi.org/10.1007/978-3-540-68706-1</u>.


Manzini, E. and C. Vezzoli. 1998. Lo Sviluppo di Prodotti Sostenibili: I Requisiti Ambientali dei Prodotti Industriali. Rimini: Maggioli Editore.

Mieczakowski, A.K. and P.J. Clarkson (eds.). 2013. Ageing, Adaption and Accessibility: Time for the Inclusive Revolution!. University of Cambridge: Engineering Design Centre.

1	
2	
3 4	Moschis, G.P., E. Lee and A. Mathur. 1997. Targeting the Mature Market:
5	Opportunities and Challenges. Journal of Consumer Marketing 14(4): 282-293.
6 7	DOI: https://doi.org/10.1108/07363769710188536.
8 9	Pechacek, C., M. Andersen, and S.W. Lockley. 2013. Preliminary Method for
10	Prospective Analysis of the Circadian Efficacy of (Day) Light with Applications
11 12	to Healthcare Architecture. LEUKOS The Journal of the Illuminating
13 14	Engineering Society 5(1): 1-26. DOI:
15	https://doi.org/10.1080/15502724.2008.10747625.
16 17	Pheasant, S. 1996. Bodyspace: Anthropometry, Ergonomics and the Design of Work.
18	London: Taylor & Francis.
19 20	
21	Pirkl, J.J. 1994. Transgenerational Desin: Products for an Aging Population. New
22 23	York, NY: Van Nostrand Reinhold.
24	Pontes, A.L.B.d., R.C.G.J. Engelberth, E.d.S.Jr. Nascimento, J.C. Cavalcante,
25 26	M.S.M.d.O. Costa, L. Pinato, C.A.B.d. Toledo and J.d.S. Cavalcante. 2010.
27	Serotonin and Circadian Rhythms. Psychology & Neuroscience 3(2): 217-228.
28 29	DOI: http://dx.doi.org/10.3922/j.psns.2010.2.011.
30 31	Rossi, E. and P. Barcarolo. 2019. Design for the Mediterranean Social Inclusion: PAD.
32	Pages on Arts and Design 16(Towards a New Agenda for Design in the
33 34	Mediterranean Region): 13-34.
35 36	Seidel, D., K. Richardson, N. Crilly, F. E. Matthews, P.J. Clarkson and C. Brayne.
37	
38 39	2010. Design for Independent Living: Activity Demands and Capabilities of
40	Older People. Ageing & Society 30(7): 1239-1255. DOI:
41 42	https://doi.org/10.1017/S0144686X10000310
43	Scheuermaier, K., A.M. Laffan and J.F. Duffy. 2011. Light Exposure Patterns in
44 45	Healthy Older and Young Adults. Journal of Biological Rhythms 25(2): 113-
46	122. DOI: https://doi.org/10.1177%2F0748730410361916.
47 48	Srivastava, M., T. Abdelzaher and B. Szymanski. 2012. Human-Centric Sensing.
49	Philosophical Transactions of The Royal Society A Mathematical Physical and
50 51	
52	Engineering Sciences 370(1958): 176-97. DOI:
53 54	https://doi.org/10.1098/rsta.2011.0244.
55	CUD NCSU (The Center for Universal Design at the North Carolina State University).
56 57	2002. Guidelines for Use of the Principles of Universal Design (January 29,
58 59	1999. Revised September 9, 2002). Raleigh, NC: North Carolina State
60	University.

- Ticleanu, C., S. King, P. Littlefair and G. Howlett. 2015. *Lighting and Health*. Bracknell: IHS BRE Press.
- UN (United Nations). 2017. World Population Prospects: Key Findings and Advanced Tables (2017 Revision). New York, NY: United Nations
- van Bommel, W. and G.J. van den Beld. 2004. Lighting for Work: A Review of Visual and Biological Effects. *Lighting Research and Technology* 36(4): 255-269. DOI: <u>https://doi.org/10.1191/1365782804li122oa</u>.
- van de Kraats, J. and D. van Norren. 2007. Optical Density of the Aging Human Ocular Media in the Visible and the UV. *Journal of the Optical Society of America A* 24(7): 1842-1857. DOI: <u>https://doi.org/10.1364/JOSAA.24.001842</u>.
- Veitch, J.A., D.W. Hine and R. Gifford. 1993. End Users' Knowledge, Beliefs, and Preferences for Lighting. *Journal of Interior Design* 19(2): 15-26. DOI: <u>https://doi.org/10.1111/j.1939-1668.1993.tb00159.x</u>.
- Veitch, J.A. and R. Gifford. 1996. Assessing Beliefs About Lighting Effects on Health, Performance, Mood, and Social Behavior. *Environment and Behavior* 28(4): 446-470. DOI: <u>https://doi.org/10.1177/0013916596284002</u>.
- Vezzoli, C. and Manizini, E. 2008. *Design for Environmental Sustainability*. London: Springer.
- Warman, V.L., D.-J. Dijk, G.R. Warman, J. Arendt and D.J. Skene. 2003. Phase Advancing Human Circadian Rhythms with Short Wavelength Light. *Neuroscience Letters* 342(1-2): 37-40. <u>https://doi.org/10.1016/S0304-3940(03)00223-4</u>.
- WHO (World Health Organization). 2011. International Statistical Classification of Diseases and Related Health Problems (ICD-10) (10th Revision, edition 2010).
 Geneva: World Health Organization.
- Wirz-Justice, A., P. Graw, K. Kräuchi, A. Sarrafzadeh, J. English, J. Arendt J and L. Sand. 1996. 'Natural' Light Treatment of Seasonal Affective Disorder. *Journal* of Affective Disorders 37(2-3): 109-20.
- Wirz-Justice, A. and C. Fournier. 2010. Light, Health and Wellbeing: Implications From Chronobiology for Architectural Design. *World Health Design* (January 2010): 44-49.

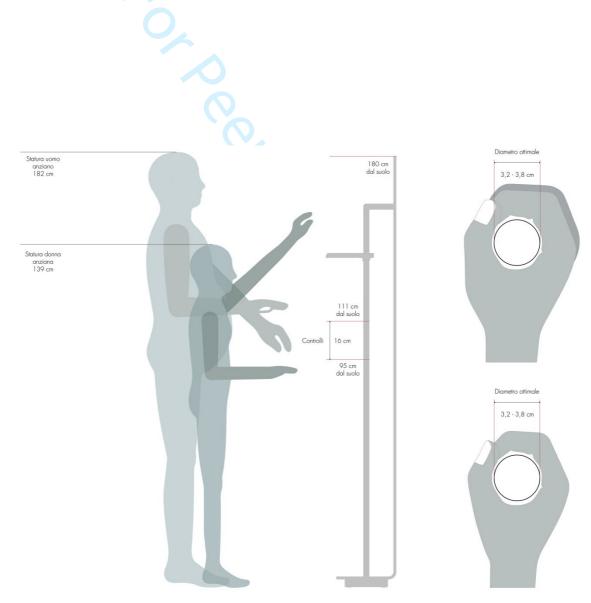


Figure 3. HCL-Based System: Anthropometric tests.

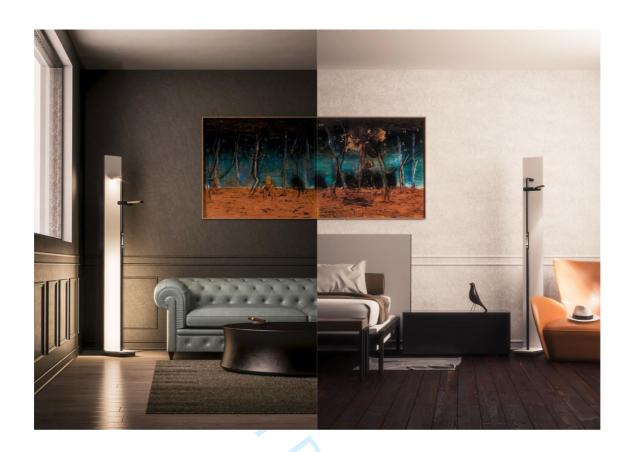


Figure 4. HCL-Based System: Full simulations in domestic contexts of use.

Table 1. Analysis of senior	rs' abilities.
-----------------------------	----------------

Skills	Literature-based UCD	Harmonized Senior-	
	Effects of Age	Risks and Design	Centred Needs (Co-
		Implications	Design Research) –
			Need of:
Eyesight	Changes in the	People are more	• Have a semantic
(Sensorial	physical structure of	exposed to risks, such	concentration of
Skills)	eyes affect visual	as:	functions.
	functions, for	• Low recognition of	• Visual reduction in
	example:	sharped elements to	the number of
	• Loss of visual	grab.	controllers, and
	acuity.	• Low perception of	their need.
	• Loss of vision at	unstable objects.	• A decreasing in the
	short/long distance.	• Low recognition of	visual efforts.
	• Reduced field of	discontinued	• Use of solutions
	view.	surfaces and	having qualitative
	Colours perception.	obstacles.	and quantitative
	• Depth of view	• Low recognition of	'semantic
	perception.	flames and hot	coherence'.
	• Speed of adaptation	surfaces.	• Use 'visually
	to different levels of	• Low recognition of	characterized'
	lights.	corrosive elements	elements.
	• Sensibility to light	(unless evidenced).	5
	(Pirkl, 1994).	• Low recognition of	
	• Reduction of	chromatic stimuli.	
	peripheral vision		
	(Collins et al.,		
	1989).		
Hearing	Decreased perception	People could not be	• Have combined
(Sensorial	of pure tones and low	able to hear	communications
Skills)	sounds (circa –2,5 dB	emergency sounds,	(i.e.
	each ten years up to	including high	acoustic+visual).
	the age of 55; circa –	frequency tones.	• Differentiate

	8,5 dB each ten years		artificial stimuli
	after the age of 55		(i.e. regular
	(Davis et al., 1990)).		warnings) from
			natural ones
			(random sounds).
Touch	Seniors have lower	Seniors having haptic	• Have 'confortable'
(Sensorial	tactile sensitivity, so	hypersensitivity could	surfaces to
Skills)	they are more sensible	get hurt; such stimuli	grab/handle (i.e.
	to cold temperature	can get can hurt people	soft, textured, etc.).
	and have a slower	with reduced haptic	• Limit the time of
	reaction to high	sensitivity, if exposed	physical efforts.
	temperatures. The	to long haptic	• Limit the need to
	haptic perception, the	stimulation. Some	move objects.
	reaction on pressures	conditions decrease	• Have 'enabling'
	and the responses on	the ability in grabbing	surfaces.
	vibrations decrease	and handling.	
	(Hilz et al., 1999).	0	
Taste and	In principle, the ability	Taste and smell losses	• N/A*.
Smell	to recognise smells	affect, for example,	
(Sensorial	decreases with age.	the detection of toxic	
Skills)		materials and smells	
		from electrical	
		malfunctions.	
Balance	Attention deficits and	Discontinued surfaces,	• Have time to move
(Sensorial	sight limitations	obstacles and	from point A to
Skills)	reduce the ability to	protrusions can	point B., even using
	prevent hazards and to	generate falls; seniors	'enabling' surfaces
	react in case of	are more exposed to	and/or solutions to
	instability. The	domestic fall down.	walk.
	muscular weakness	Equilibrium issues	• Use surfaces and
	contributes to the loss	increase the fear to fall	paths that minimize
	of equilibrium. People	down and affect the	the physical efforts
	with vestibular and/or	personal	

2 3	
4 5 6	
7 8	
9 10	
11 12	
13 14 15	
16 17	
18 19	
20 21 22	
23 24	
25 26	
27 28 29	
30	
31 32 33	
34 35 36	
37 38	
39 40	
41 42 43	
44 45	
46 47	
48 49 50	
51 52	
53 54	
55 56 57	
58 59	
60	

	with proprioception	independence.	confortable from
	problems are used to		the synesthetic
	compensate these		point of view.
	conditions with sight.		• Safety, dignity and
			autonomy during
			movements.
Dexterity	The inability to	This condition	• Use of 'enabling'
(Physical	conjoin thumbs and	influences the	controllers that
Skills)	other fingers together,	dimension, the shape	support imprecise
	or move them away.	and the position of	activities.
	Complex tasks like	commands. People	• Have an improved
	push-on and rotate	with lower dexterity	relation between: a)
	may be painful, or	can hurt themselves or	dimension of
	impossible. Seniors	they could accidentally	controllers and b)
	suffering by	activate commands.	time needed for
	involuntary muscle		their use.
	spasms can have		
	problems in the		Dexterity is relevant
	pursuing of precision		for seniors, while
	tasks.		stakeholders have
			reported that generally
			it is not a serious
			issue.
Handling	Handling may be	People with reduced	• Use of 'enabling'
(Physical	affected by the	handling ability can	controllers that
Skills)	inability to	have accidents (i.e.	support imprecise
	simultaneously use	unboxing, fixing, etc.).	activities.
	both hands, or they	The solutions should	• Have an improved
	have to be moved in	minimize such risks	relation between: a)
	confined spaces. A	and prevent wrong	dimension of
	lower level of	actions.	controllers and b)
	manipulations		time needed for
	generates slower times		their use.
	1		

	of reactions and risks.		• Have 'confortable'
			surfaces to
			grab/handle (i.e.
			soft, textured, etc.).
			• Limit the time of
			physical efforts.
			• Limit the need to
			move objects.
			• Have 'enabling'
			surfaces.
			• Perform tasks that
			improve the human
			coordination.
			• Perform tasks
			minimize the errors
		P	and their effects.
Movement	Movement limitations	Seniors having	• N/A*.
(Physical	affect the daily	physical problems are	
Skills)	activities, for example:	more exposed to	Movement is relevant
	• Inability to move	properly act in critical,	for seniors, while
	masses on legs.	emergency or	stakeholders have
	• Reduced speed of	unexpected situations.	reported that generall
	walk and stride.		it is not a serious issue
	• Lower range of		since they perform the
	knuckle		actions according to
	movements.		their confidence in
	• Inability to perform		doing movements.
	coordinated		
	movements.		
Power and	Limitations of muscle	Limitation of all	• N/A*.
Resistance	force generate physical	activities where the	
(Physical	fatigue during the	physical strengths is	
-	extended use of	needed, including the	

1	
2	
3 4	
5	
6 7	
8	
9	
10 11	
12	
13 14	
15	
16 17	
18	
19 20	
20 21	
22	
23 24	
25	
26 27	
27 28	
29	
30 31	
32	
33 34	
35	
36 37	
37 38	
39	
40 41	
42	
43 44	
45	
46	
47 48	
49	
50 51	
52	
53 54	
54 55	
56	
57 58	
59	
60	

	products. The control	light handling for long	
	of passive movements	time.	
	(i.e. gravity-related		
	actions) is affected.		
Intellect	Seniors can have	Several problems	• Use of rhetorical
(Cognitive	difficulties to focus,	related to:	elements to recall
Skills)	perform specific tasks	Comprehension of	functions and
	and move the attention	products.	understandable
	on various tasks.	• Understanding of	step-by-step
	Disorders of the	tasks.	functions.
	circadian rhythm make	• Feedbacks	• Have hierarchical
	people less vigilant.	recognition.	functional
		• Understanding of	categories.
	Ó,	functioning.	• Use of
		• Perception of	comprehensive
		product's effected	semantics to
		on personal level of	support the tasks'
		wellbeing.	recognition.
			• Have 'enabling'
		4	feedbacks.
		1	• Have multiple
			choice to
			recall/understand
			tasks.
Memory	Lower cognitive skills	Problems related to	• Use of rhetorical
(Cognitive	can generate mental	memory can generate	elements to recall
Skills)	confusions. This	severe risks when	functions and
	condition affects both	tasks to be performed	understandable
	Short- and Long-Term	are incomplete or	step-by-step
	Memories.	when there is a	functions.
		dangerous situation.	• Have hierarchical
		The solution must	functional
		always guarantee a	categories.

		use.		
				comprehensive
				semantics to
				support the tasks'
				recognition.
			•	Have multiple
				choice to
				recall/understand
				tasks.
Language	Aging and speech are	People having	•	Have/use visually
and	directly connected;	difficulty in linguistic		enhanced control
Literacy	seniors show	expressions are more	•	Clearly understar
Rate	difficulties in	exposed to risks, if		complex function
(Cognitive	communicate what	unable to understand		in relations to tas
Skills)	they think.	relevant instructions of		to be performed.
		alert signals.	•	Know the utility
				unusual comman
		· L.		and their benefits
* N/A is used	to show contradictory, in	nconsistent and generalist	dat	a, when the samp
of stakeholde	ers was not able to provide	e meaningful insights to b	e ha	armonized.

1	
2	
3	
4	
5	
6	
7	
8	
ð	
9	
10	
11	
12	
13	
13 14	
15	
16	
15 16 17 18 19	
17	
18	
19	
20	
21	
22	
23	
24	
24 25	
26 27	
27	
28	
29	
30	
31	
32	
33	
24	
34	
35	
36 37	
57	
38	
39	
40	
41	
42	
42 43	
44	
45	
46	
47	
48	
49	
50	
50	
52	
53	
54	
55	
56	
57	
58	
59	
60	

1

Table 2. Design requirements and related detailed HCL-oriented design requirements.

Recommendations for Lighting Companies / Lighting
Designers
• Distinctive shapes allow to recognise the product, its
parts and the functioning (self-explanation of use), for
example:
• Distinctive shapes help the recognition of
product's parts and, indirectly, their functions.
• Distinctive shapes increase the level of security
preventing misuses.
 O Distinctive shapes support the maintenance
processes and the overall product's functioning.
O Distinctive shapes have to be coherent with
semantic properties (i.e. visual dimensions and
weight).
• If composed by complex structures, or families of
elements, the overall shape must be self-explicative.
• Self-explicative shapes improve the processes of
autonomous assembling, even by non-trained
people.
• Self-explicative shapes support the recognisability
of parts in relation to their functions.
• To strengthen communicative messages, self-
explicative shapes can work in combination with
synesthetic media (i.e. visive+sound effects,
visive+haptic effects, visive+mass effects, etc.)
• The product must not appear like 'designed for seniors'
(prevention of social stigmas and coherence with all
markets); as a general rule:
• Products ' <i>designed for</i> ' have a low market impact.
• Products 'designed for' generate inhibition in their
use, even if their use is fundamental for everyday

	life.
	and generates a poor user engagement.
Aesthetical/Morpholo	
al Design Requirement	ts (i.e. Hornor, 2013), for example:
(Colours and Contrast	s) o Blue-purple combination.
	• Green-brown combination.
Def.: Make easy the	• Green-yellow combination.
chromatic recognition	• Green, yellow or purple on a green background.
and the psycho-	• Light colours on a white background.
perceptive comfort.	• Coloured/textured background with coloured text.
	\circ Red, blue, or purple on black background.
	• White gradient with white text.
	• Yellow, blue, and magenta on red background.
	 Bright blue or pale yellow background.
	• Improve contrasts of colours, for example:
	• Use grey with fuchsia, red, violet, pink and blue.
	• Use beige with blue, brown, emerald, black, red
	and white.
	• Use white with everything, especially blue, red and
	black.
	• Provide information using other senses, and their
	combination.
	• Balance the quality and the quantity of synesthetic
	communications in order to prevent cognitive
	overloads.
	• Hierarchical communication are strongly preferred
	and, in general, they have to be based on this
	communicative path:
	 Visual communications are preferred for First insights and immediate system's
	first insights and immediate system's
	reactions.
	 Hearing stimuli and/or vibrations can be

2	
3 4	
4 5	
6	
7 8	
9	
10	
11	
13	
14 15	
11 12 13 14 15 16	
17	
18 19	
20	
21 22	
22 23	
24	
24 25 26	
27	
28	
29 30	
31	
32 33	
34	
34 35 36	
36 37	
38	
39 40	
40 41	
42	
43 44	
45	
46 47	
48	
49	
50 51	
52	
53 54	
55	
56	
57 58	
59	
60	

	used to give consistency to visual massages
	used to give consistency to visual messages
	(i.e. feedbacks).
	 Complementary stimuli can be used to give
	completeness to previous stimuli.
	 Olfactory stimuli can be used pay a strong
	attention to the system's coherence, in order
	to prevent misunderstandings and warnings.
	• Prefer short wavelengths colours:
	\circ Prefer colour range from violet (~ 450–400 nm) to
0	cyan (~ 520–490 nm).
	• In general, prefer blue-related colour tones.
	• Foreground elements must be clearly perceptible from
	background.
Technological Design	• Product's dimension and weight must allow the handling,
Requirements	reducing the physical effort needed, for example:
(Dimension and Weight)	• Product's dimension has to be consistent with the
	lighting functioning (i.e. actuation, transportation,
Def.: Product's lightness	moving, maintenance, etc.).
and physical	• Product's dimension has to be consistent with the
compactness. Materials	effects generated by the lighting source.
suitable for all uses.	• Product's dimension has to be coherent with the
	'no-redundancy' design criterion.
	• Product's weight has to be coherent with the
	'movability' criterion (i.e. the more the product
	needs to be moved, the less it must weight).
	• Product's actuation has to be physically calibrated
	to seniors' physical capability.
	• The product must be compact.
	• As a general rule, compact products are perceived
	as more user-friendly than large products;
	especially for seniors, this design requirement is
	important to establish first insights for <i>'autonomy</i>
	of use' and 'usability'.
	<i>. . .</i>

	Circilante (Accelerite 1/Menul elected Destan
	• Similar to 'Aesthetical/Morphological Design
	Requirements'.
	• The product must be composed by easy-to-use
	components.
	• Prefer safe and wear-resistant materials.
	• According to the technological capability of
	lighting companies/designers, this design
	requirement implies to pay more attention on the
	technological quality of the product, which will
	generate a more competitive ROI.
Technological Design	Prefer antiskid surfaces to give a more efficient
Requirements (Materials	handling/grip.
and Surface Finishes)	The 'antiskid quality' can be generated/improved
	using many design strategies, including:
Def.: Choice of safe	 Concentration of textured elements.
surfaces, differentiated	 Rationalization of masses.
according to the use and	 Rationalised shapes and smooth
the tactile perception.	connections.
ine iucilie perception.	
	 Use of layered parts using materials that
	improve the grip.
	• Differentiate surfaces' textures to improve the
	identification of parts and controls, for example:
	• Use colours – if/when possible – as communicative
	solution to provide immediate information on
	parts, functions and control elements.
	• Use concentration/differentiation of textures and
	masses to support direct/indirect communications.
	• Provide discontinuity in surfaces' texture in order
	to provide semantic and haptic feedbacks.
	• Lighting surfaces should be opaque or translucent.
	• Carefully consider the haptic feelings caused by the use
	of different materials, and their combinations (i.e. wood-
	metal).

1 2 3 4 5	
6 7 8 9 10 11	
12 13 14 15 16	
17 18 19 20 21 22	
23 24 25 26 27 28	
29 30 31 32 33	
34 35 36 37 38 39	
40 41 42 43 44 45	
46 47 48 49 50	
51 52 53 54 55 56	
57 58 59 60	

	• Haptic feeling is a powerful communicative
	element that can be used to support
	explicit/implicit messages (i.e. hard, soft, hot, cold,
	regular, discontinue, large, big, etc.).
Functional Design	Provide a clear representation of the product (self-
Requirements	explanation and presentation) to allow the understanding
(Alternative Shapes)	of functions and the sensorial abilities needed.
	\circ Similar to what has been described for
Def.: Possibility to	'Aesthetical/Morphological Design Requirements'.
differentiate the	• Provide coherent informative inputs on the accessibility
informative and	of components (useful for people with disabilities).
functional product's	 Inputs have to be consistent, however:
outputs.	 Avoid redundant informative inputs.
	Avoid random informative inputs (develop
	and support coherent messages).
	Balance time and intensity of informative
	inputs.
Functional Design	• Improve end-users' problem-solving skills (useful for
Requirements (Logical	people with disabilities) (i.e. set the design on end-users'
Processes)	real abilities, develop the design of the lighting solution
	involving stakeholders in the design process, use co-
Def.: Simplicity of uses,	design approach, etc.).
processes and feedbacks.	• Provide feedbacks (output) after all correct actions
	(input).
	• Promote the self-learning of tasks to be performed (i.e.
	learning-by-doing).
	• Self-learning can be improved using semantic and
	cognitive 'rewards' that produce engagement and
	happiness.
	• Self-learning of tasks can be easily supported
	developing expectation-based routines
	(improvement of cause-effect process).
	• Self-learning has not to be redundant, or perceived

	as such.
Functional Design	• Avoid and prevent multitasking activities. In general
Requirement	multitasking is not a bad design strategy; however the
(Multitasking)	senior condition imposes to reflect on the density of
	multitasking activities to be performed by end-users
Def.: Minimum cognitive	(amount of tasks per time needed for their fulfilment).
efforts needed focused	
on functioning of	
product.	
Usability-related Design	• Develop coherent shapes to make easier the handling, for
Requirements	example:
(Effectiveness)	• Increase the prehensility of product and product
	parts in order to give autonomy and satisfaction
Def.: Make easy the	during the use.
grab, the handling and	• Concentrate weights and masses in order to
the control of the	balance the stability of the product, as well as its
product.	morphological coherence.
	• Controls should allow a comfortable grip, avoiding the
	torsions of wrists, for example:
	• Levers and buttons are preferred.
	• Textured surfaces are preferred to increase the gr
	and help to modulate the force needed.
	• Controls should be distant to avoid mutual
	interference and their actuation must be revealed
	by multisensory feedbacks.
	• The solution must prevent the repetition of unnecessary
	tasks.
Usability-related Design	• Make the product usable, movable and manageable eve
Requirements	by people with physical impairments.
(Efficiency)	• Create recognizable and accessible controls.
	• Controls must be easy-to-grab, flexible, adaptable
Def.: Make easy the use	and usable with one hand.
of unmovable and	• Where possible, organise all controls in thematic

cinematic parts (and	groups.
their caught).	
Perception-related	• Lights have to highlight relevant details to reveal
Design Requirements	potential obstacles/barriers.
(Illumination)	\circ If needed, lights can be used to highlight obstacles
	and that could affect the human safety, as well as
Def.: Give the chance to	the overall functioning stability.
have normal and/or	• Lights can be used as indirect elements to support
optimal light condition	and strengthen the 'safety level' in any operationa
in any circumstance, and	context.
for all activities. Use of	• Instructions and controls have to be always readable.
correct surfaces for	• Balance the lighting effects and avoid the use of
direct/indirect lights.	reflective surfaces in order to prevent glares and sharp
	shadows, for example:
	• Prefer distributed low intensity light sources.
	\circ Prevent sudden changes in light levels, to give eye
	the right time of adaption.
Perception-related	• All touchable surfaces must not be too hot or too cold.
Design Requirements	• Use high thermal dissipation materials.
(Temperature)	• Make evident the parts where temperature is hot or cold.
	• Too hot or too cold surfaces must not be reachable by
Def.: Protection from	hands and body parts, neither accidentally.
excessively hot or cold	
components.	
Perception-related	• Sounds have to be clearly perceived and ambient noise
Design Requirements	must be reduced (frequencies between 500 Hz and 2000
(Sounds)	Hz are preferred).
	○ When needed/possible, the use \geq 60 dB sounds is
Def.: Use of proper	highly preferred.
sounds to guarantee	 Avoid unexpected and high frequencies.
comfortable acoustic	• Each action must be linked to an acoustic feedback in
levels.	order to give semantic consistency to any action, both
	positive (expected feedback) and negative (unwanted).

1 2	
3 4 5	
5 6 7	
8 9	
10 11	
12 13	
12 13 14 15 16 17	
18	
19 20	
21 22 23	
24	
25 26 27	
28 29 30	
30 31 32	
33 34	
35 36 37	
37 38 39	
40 41	
42 43	
44 45 46	
47 48	
49 50	
51 52 53	
54 55	
56 57	
58 59 60	
00	

	• Where possible, integration with multisensory stimuli	
	(i.e. vibrations) is preferred.	
Safety-related Design	• The product must have a mechanical and electrical	
Requirement (Stability)	stability during the use.	
Def.: Integrity and safety in the assembly of		
products.		
Safety-related Design	• The product should be always restored in its original	
Requirement	condition, even when it is improperly used/assembled.	
(Assembly/Wrong Use)	• Provide alternatives in the use and clear restore	
	processes that can be used to reset the overall	
Def.: Protection against	lighting system.	
failures.	• Use of semantic functions in order to support the	
	return to previous functioning status (i.e. use of	
	morphological incompatibilities, use of aesthetical	
	incompatibilities, etc.).	
Safety-related Design	• The packaging should use forms, dimensions and	
Requirements	materials coherent to allow the easy opening and the fast	
(Packaging)	closing.	
	• Avoid sharp edges and surfaces.	
Def.: Make easy the	• Limit the number of containers.	
understanding of	• Make clear the identification of product's parts and	
packaging. Choice of	components, especially if the lighting solution has	
proper materials.	to be assembled by customers.	
	• Use different materials that support the products'	
	characteristics (i.e. shockproof containers for	
	fragile components).	
	• Avoid packaging having reflective surfaces.	
	• Reduce the physical efforts needed to open packaging	
	(i.e. pop-up boxes are preferred).	
Design Requirements for	• Design and use of standardized and interchangeable	
	elements, for example:	

and Extraordinary)	• Facilitate the access to all parts; prevent the use of
	holes and discontinuous surfaces (i.e. accumulation
Def.: Make easy the	of dirt).
maintenance of products	• Improve the substitution of elements.
(i.e. cleaning, assembly,	• Make easier the ordinary maintenance.
reparability, etc.).	• Allow the daily/ordinary maintenance.
	• Use consistent and consolidated design guidelines
	for lighting domain to support the processes for
	daily/ordinary maintenance.
Environmental Design	• Use Life Cycle Design strategies and Design for
Requirements (Resurces	Sustainability insights to support the rationalization of
and (Dis-)Assembly)	resources and (dis-)assembly (i.e. Vezzoli and Manzini,
	2008), for example:
Def.: Minimization of the	• Use only the strictly necessary amount of material.
resources needed to	• Avoid the use of oversized elements.
produce the solution.	 Prefer certified materials and manufacturing
Use of a limited number	processes.
of parts. Use of eco-	\circ Where possible, integrate functions and minimize
efficient and eco-	the number of elements.
compatible materials.	 Select homogeneous materials (monomateric
Promotion of	approach) obtained from coherent manufacturing
disassembly and	processes.
recycling of components.	• Make easier the disassembly of all elements and
	their disposal.
	 Avoid unnecessary finishing.