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A multi-stable memristor and its application in a
neural network
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Abstract—Nowadays, there is a lot of study on memristor-
based systems with multistability. However, there is no study
on memristor with multistability. This brief constructs a math-
ematical memristor model with multistability. The origin of
the multi-stable dynamics is revealed using standard nonlinear
theory as well as circuit and system theory. Moreover, the
multi-stable memristor is applied to simulate a synaptic con-
nection in a Hopfield neural network. The memristive neural
network successfully generates infinitely many coexisting chaotic
attractors unobserved in previous Hopfield-type neural networks.
The results are also confirmed in analog circuits based on
commercially available electronic elements.

Index Terms—Multistability, memristor, circuit theory, neural
networks, nonlinear circuits.

I. INTRODUCTION

MEMRISTOR with nonlinearity and nonvolatility is con-
sidered as the fourth basic electronic element [1]. It has

become a research hotspot in academia and industry since the
discovery of the Hewlett-Packard (HP) memristor nano-device
in 2008 [2]. Driven by engineering applications, scholars and
technologists have devoted great enthusiasm to memristor
models and their applications. Up to now, numerous differ-
ent types of memristor models including theoretical models,
circuit models and material models have been developed [3-6].

Recently, the study of pure mathematical memristor models
has been of interest. The mathematical memristors provide
several prominent features like excellent memristive character-
istic, strong nonlinearity, low cost, and easy circuit implemen-
tation as compared with other memristors. Furthermore, the
mathematical memristors can be widely applied in many fields
due to their simple and flexible mathematical expression. Chua
proposed many important theories on mathematical memristors
and classified them into ideal memristor, generic memristor
and extended memristor [7, 8], which provides a sufficient
theoretical basis for further research of mathematical memris-
tors. Bao et al. created some simple mathematical memristors
by using different nonlinear functions such as absolute value
function [9], quadratic function [10] and hyperbolic tangent
function [11], and these memristors have been widely used
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in various chaotic circuits [12] and artificial neural networks
[13]. Wang et al. designed a generic memristor with local
activity, and proposed a simplest chaotic circuit by employing
this memristor [14]. In addition, Ascoli et al. constructed
an extended bistable memristor with two coexisting pinched
hysteresis loops under different initial states [15]. Meanwhile,
many important achievements based on the mathematical
memristors have been made constantly, especially the in-
vestigation of memristor-based multi-stable systems [16-19].
Although many memristive multi-stable systems have been
developed by using existing memristors, the generation of
their multi-stable behavior is stochastic and uncontrolled. That
is, the memristor-based multi-stable systems can only be
achieved under some special initial conditions. In particular,
it is difficult to observe the clear multi-stable behavior in
physical experiments since these special initial conditions
are basically impossible to obtain in hardware circuits. It is
therefore of great significance to provide a memristor model
that accurately and effectively maps multi-stable behavior in
memristive multi-stable systems.

In this brief, we propose a memristor with multistability. To
the best of our knowledge, there is no multi-stable memristor
until now. The key mechanism underlying the emergence of
multistability in this memristor are elucidated. The multi-stable
memristor can exhibit infinitely many coexisting pinched hys-
teresis loops under different tunable initial states. Compared
with the other memristors, the multi-stable memristor is more
suitable for the development of memristive multi-stable sys-
tems due to its multistability and initial condition tunability.
Besides, we establish a memristive Hopfield neural network by
utilizing the multi-stable memristor as a memristor synapse.
The memristive neural network generates infinitely many co-
existing chaotic attractors that enjoy the same structure, which
is different from the multistability in the existed memristive
systems. And their generation is attributed to the duplication
of the original attractor, which is predictable and tunable.

II. MULTI-STABLE MEMRISTOR MODEL

According to the memristor theory [8], a voltage-controlled
generic memristor model can be defined as

State-dependent Ohm’s law:

i = G(x)v, (1)

State equation:
dx/dt = g(x, v), (2)

where G(x) is memductance, and v, i, x denote voltage,
current, and memristor state, respectively. Now, we propose
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a generic memristor model based on Equations (1) and (2),
namely

i = G(x)v = xv, (3)

dx/dt = g(x, v)= sin(x) + v. (4)

Consider an external sinusoidal stimulus imposed on the
memristor, namely,

v = A sin(Ft), (5)

where A and F denote amplitude and frequency, respectively.
Consequently, the solution of the state equation (4) can be
calculated by

x =
∫ t

−∞ (sin(x) + v)dτ

= x0 − cos(x) + (A/F )(1− cos(Ft))
, (6)

where x0 is the initial state of the memristor. Substituting
Equations (5) and (6) into Equation (3), then have

i = (x0 − cos(x) + (A/F )(1− cos(Ft)))(A sin(Ft))
= (x0 − cos(x) +A/F )(A sin(Ft))
−
(
A2/2F

)
sin(2Ft)

.

(7)
Obviously, the resulting output is composed of a fundamental
component and a harmonic component, which depends on
both initial state and transient state of the memristor and
both amplitude and frequency of the applied input. More
deep analysis is given in the next text, where all numerical
simulations are completed by the Matlab 2017a tool with the
ODE45 algorithm.

A. Volt-ampere Characteristics

Equations (3) and (4) are studied under different frequencies
and amplitudes, when the stimulus v=Asin(Ft) is selected as
the driving source. When x0=0, F=0.8 are fixed with different
values of the amplitude A, and x0=0, A=1.4 are fixed with
different values of the frequency F , the pinched hysteresis
loops of the memristor are numerically simulated and plotted
in Fig.1(a) and Fig.1(b), respectively. Obviously, in Fig.1, six
pinched hysteresis loops pass through the origin in the voltage-
current (v-i) plane when driven by sinusoidal signal with
different amplitudes and frequencies. And in Fig.1(b), as the
excitation frequency increases from 0.8 to 4.8, the hysteresis
lobe area is gradually decreased. Furthermore, it is evident that
when the frequency increases to infinity the pinched hysteresis
loop will tend to a single-valued function. Consequently, the
proposed model is a memristor device because it exhibits three
fingerprints of memristor [7].
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Fig. 1. Pinched hysteresis loops of the multi-stable memristor under
v=Asin(Ft) with x0=0.(a)F=0.8 and different A. (b)A=1.4 and different F .

B. Multistability Analysis

Here, power-off plot (POP) is used to disclose the mul-
tistability of the memristor. Usually, POP is a curve in the
dx/dt(v=0) versus x plane [8]. It should be stressed that
each intersection of POP with the x-axis is defined as an
equilibrium point of the memristor due to dx/dt=0. Let v=0,
the memristor state equation (4) reduces to

dx/dt = g(x, 0)= sin(x). (8)

The dynamic route of the dynamical equation (8), namely
POP, is shown in Fig.2. In Fig.2, when dx/dt=0, there are in-
finitely many intersections, namely equilibrium points located
at x=kπ(k∈Z). According to the judgment method of [8], the
equilibrium points marked by polka dots are asymptotically
stable, while the equilibrium points marked by square dots are
unstable. Evidently, when k is even number, the equilibrium
point Sk is unstable, and the equilibrium point Sk+1 is stable.
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Fig. 2. POP of the multi-stable mem-
ristor, where k denotes even number.
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Fig. 3. Time evolution of the multi-
stable memristor state toward different
stable states for different initial states.

Thus, for initial state x0∈(kπ, (k+2)π), the memristor state
tends to the stable equilibrium point x(Sk+1), namely

x = x(Sk+1) = (k+1)π, if kπ < x0 < (k + 2)π). (9)

Equation (9) directly illustrates two important results: (i) for
different initial states with different k, the dynamical trajectory
of the multi-stable memristor will tend different stable equi-
librium points, which means multistability. (ii) for different
initial states with the same k, the dynamical trajectory of the
multi-stable memristor will tend the same stable equilibrium
point, which means tunability. Numerical simulation results
from Equations (3) and (4) under v=Asin(Ft) with A=1 and
F=0.8 verify the above two conclusions, as shown in Fig.3.
For example, when k=-4, -2, 0 and 2, for initial states in four
ranges (-4π, -2π), (-2π, 0), (0, 2π) and (2π, 4π), the dynamical
trajectory x tends to four stable equilibrium points x=-3π, -
1π, 1π and 3π, respectively. While for different initial state
in the same range such as x0=2.2π, 2.8π, 3π, 3.4π, 3.7π,
the dynamical trajectory tends to the same stable equilibrium
point x=3π. Therefore, infinitely many stable equilibrium
states exist in the multi-stable memristor for infinite adjustable
initial state ranges. These stable states generate the following
infinitely many corresponding memductances

G(x(S(k+1))) = (k + 1)π, if kπ < x0 < (k + 2)π. (10)

where k is even number. In other words, for different k, the
memristor gives rise to different memductances. As shown in
Fig.4(a), under eight initial states x0=7π, 5π, 3π, 1π, -1π, -3π,
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-5π and -7π, corresponding eight different memductances can
be induced on the multi-stable memristor under v=Asin(Ft)
with A=1, F=0.8. Obviously, such multi-stable memristor is
also non-volatile because the infinitely many memductance G
can be used to represent countless memory states. Meanwhile,
the multi-stable memristor produces eight different pinched
hysteresis loops on v-i plane, as shown in Fig.4(b). It can thus
be inferred that the multi-stable memristor can yield coexisting
infinitely many pinched hysteresis loops for different initial
state ranges x0∈(kπ, (k+2)π), where k is any even number.
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Fig. 4. Numerical simulation results of the multi-stable memristor in (3)-(4)
under different initial states x0=-7π, -5π, -3π, -1π, 1π, 3π, 5π and 7π. (a)
Memductances. (b) coexisting Pinched hysteresis loops.

Let us gain a deeper insight into this aspect by using the
circuit theoretic technique direct current voltage-current (DC
Vm-Im) loci [8, 15]. The DC Vm-Im loci of the multi-stable
memristor can be derived by considering Equations (3) and (4)
with the input DC Vm value varying from -1V to 1V and the
memristor state x value varying within (-8π, 8π), as shown in
Fig.5. The DC Vm-Im loci of the memristor are composed
of eight stable branches, which implies that the memristor
exhibits multiple stable state behavior under direct current
stimulus. It is obvious that for different memristor state ranges
x∈(kπ, (k+2)π) where k is even number, the multi-stable
memristor will generate different stable branches. Indeed,
we can verify that more coexisting stable branches will be
observed by selecting more variable intervals, which strongly
illustrates the multistability of the multi-stable memristor.
Furthermore, in Fig.5, for the branches of state x<0, their
slope at origin are negative, which means that the multi-stable
memristor is also locally active.
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C. Circuit Implementation

We design and implement the hardware circuit of the
multi-stable memristor by adopting resistors, capacitors, oper-
ational amplifiers TL082CP, analog multipliers AD633JN and
trigonometric function converters AD639AD all powered by
±18V symmetric voltages. Fig.6 gives the circuit schematic

diagram of the multi-stable memristor. The memristor state x
is simulated by the output voltage of integrator, namely vz .
According to the basic electrical circuit’s law, the circuital
equations of the multi-stable memristor can be rewritten as

i = G(vz)v =
vz
RL

v, (11)

RC
dvz
dt

= sin(vz) + v. (12)

Let C=10nF, R=RL=10kΩ, v=Hsin(Wt) with H=1 and
W=8000, coexisting six pinched hysteresis loops can be
obtained from the multi-stable memristor circuit in PSIM
simulation with respect to the initial values of the voltages
of capacitor C fixed as -5πV, -3πV, -1πV, 1πV, 3πV, 5πV,
as shown in Fig.7a. Moreover, the corresponding simulated
memristor states vz are shown as in Fig.7b. It is clear that
the memristor state tends to different stable state under differ-
ent initial capacitor voltages in the memristor circuit, which
further verifies the above theoretical analysis and numerical
simulation results.
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Fig. 7. Circuit simulation results of the multi-stable memristor under different
initial capacitor voltages -5πV, -3πV, -1πV, 1πV, 3πV, 5πV. (a) Six coexisting
pinched hysteresis loops. (b) memristor state vz .

III. APPLICATION IN A HOPFIELD NEURAL NETWORK

Hopfield neural network is often used to imitate the dynam-
ical behavior of brain activities [20]. The neural network with
n neurons can be described by

Ci
.
xi = −xi/Ri +

n∑
j=1

wij tanh(xi) + Ii (i, j ∈ N∗), (13)

where Ci, Ri, and xi are the membrane capacitance, mem-
brane resistance, and membrane voltage between the outside
and inside of the neuron i, respectively. tanh(xi) is the neuron
activation function, and Ii is external bias current. wij is de-
fined as synaptic weight describing the strength of connection
from neuron j to neuron i. From the electronic point of view,
wij is the admittance of the resistor connecting the neuron j
and neuron i. According to the theory of memristors, both
memductance and wij are in the units of Siemens, which
means that the connection resistor can be replaced by a
memristor. As a result, the synaptic weight can be described
by the memductance of a memristor. Under this strategy,
some memristor-based Hopfield neural network were, thereby,
presented and complex dynamical behaviors of hyperchaos,
chimera and coexisting attractors were discovered [21-23].
Here we propose a memristive Hopfield neural network with
four neurons based on this strategy, as shown in Fig.8. It is
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Fig. 8. Connection topology of the memristive neural network with four
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noting that the proposed multi-stable memristor plays the role
of the synaptic weight w41 in this neural network. Combining
Equations (3), (4) and (13), let Ci=1, Ri=1 and Ii=0, the
dynamical equations of the memristive neural network in Fig.8
are derived as

.
x1=−x1+tanh(x1)+0.5 tanh(x2)−3.5 tanh(x3)−tanh(x4)
.
x2=−x2+2.3 tanh(x2)+3 tanh(x3)
.
x3=−x3+3 tanh(x1)−3 tanh(x2)+tanh(x3)−0.7 tanh(x4)
.
x4=−x4+ρG tanh(x1)+3 tanh(x2)+tanh(x3)+0.3 tanh(x4)
.
z=sin(z)+tanh(x1)

(14)

where memductance G=z stands for the synaptic weight w41

connecting the neuron 1 and neuron 4, and system parameter ρ
is the coupling strength of the memristor. By letting the right of
neural network (14) equal to zero, we find that the memristive
neural network has infinitely discrete equilibria which can be
expressed as

E={(x∗1, x∗2, x∗3, x∗4, z∗)|x∗1=x∗2=x∗3=x∗4=0, z∗=kπ} , (15)

where k∈Z. We can see that the memristive neural net-
work generates infinitely many equilibria along the axis-z by
changing phase space. Obviously, the multi-stable memristor
synapse plays a key role for the generation of the infinite equi-
libria. Unique behavior in neural network (14) is investigated
in the following content.
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Supposing that the initial states (x10, x20, x30, x40, z0)=(1,
1, 1, 1, 1), we can plot the bifurcation diagram and Lyapunov
exponents of the memristive neural network with respect to
the parameter ρ∈(0, 5) as shown in Fig. 9. It can be seen
from Fig.9 that the memristive neural network appears forward
period doubling bifurcation with the increase of ρ. And when ρ
increases to 2.8, the neural network enters stable chaotic states.
The phase portraits of the attractors of the neural network
with different values of ρ are given to illustrate its dynamical
evolution with the coupling strength of the memristor, as
shown in Fig.10. It is evident that the memristive neural
network successively generates periodic attractor with different
period and chaotic attractor with the increase of ρ under initial
states (1, 1, 1, 1, 1).
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Fig. 10. Numerically simulated phase portraits for different ρ. (a) Period-1
attractor at ρ=0.7. (b) Period-3 attractor at ρ=1.5. (c) Period-6 attractor at
ρ=2.2. (d) Chaotic attractor at ρ=4.

It is more interesting that the memristive neural network
can generate infinitely many coexisting chaotic attractors under
different initial states for fixed coupling strength of the multi-
stable memristor. Let ρ=4, infinitely many attractors can be
observed from the following initial states (x10, x20, x30, x40,
z0)=(1, 1, 1, 1, mπ) where m=1, 3, 5. . . . For instance, by
selecting eight initial states (1, 1, 1, 1, π), (1, 1, 1, 1, 3π),
(1, 1, 1, 1, 5π), (1, 1, 1, 1, 7π), (1, 1, 1, 1, 9π), (1, 1, 1, 1,
11π), (1, 1, 1, 1, 13π) and (1, 1, 1, 1, 15π), eight coexisting
chaotic attractors can be generated from the memristive neural
network, as shown in Fig.11. And we can confirm that more
coexisting chaotic attractors will be found via selecting more
initial states.
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Furthermore, when x10, x20, x30, x40 are kept as 1, the bi-
furcation diagram and Lyapunov exponents of the memristive
neural network with respect to z0∈[1π, 19π] are plotted for
further illustrating the coexistence of infinitely many chaotic
attractors in Fig.12. Fig.12 directly shows two important
phenomena: (i) memristive neural network (14) generates
infinitely many chaotic attractors with different position with
the increase of z0; (ii) each attractor has an independent initial
state range z0∈(kπ, (k+2)π) where k is even number. Clearly,
the position and initial state of each attractor are tunable,
which means that the multi-stable dynamics in neural network
(14) is controllable.
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To further confirm the observed coexisting attractors, we
design the circuit of the memristive neural network, as shown
in Fig.13. Four membrane potentials x1, x2, x3, x4 are emu-
lated by the four output voltages v1, v2, v3, v4, respectively.
The synaptic weight w41 is simulated by the memductance
G of the multi-stable memristor, other fixed synaptic weights
are replaced by using resistors R1-R13, and the neural active
function tanh is realized using a hyperbolic tangent function
circuit designed by [11]. The circuit equations are given by

C dv1
dt

=−v1
R
+ tanh(v1)

R1
+ tanh(v2)

R2
− tanh(v3)

R3
− tanh(v4)

R4

C dv2
dt

=−v2
R
+ tanh(v2)

R5
+ tanh(v3)

R6

C dv3
dt

=−v3
R
+ tanh(v1)

R7
− tanh(v2)

R8
+ tanh(v3)

R9
− tanh(v4)

R10

C dv4
dt

=−v4
R
+vz tanh(v1)

RL
+tanh(v2)

R11
+tanh(v3)

R12
+tanh(v4)

R13

C dvz
dt

= sin(vz)
R

+ tanh(v1)
R

. (16)

Considering C=10nF, R=10kΩ, we have the resistances
RL=R/ρ, R1=R4=R9=R12=R/1=10kΩ, R2=R/0.5=20kΩ, R3

=R/3.5=2.85kΩ, R5=R/2.3=4.35kΩ, R6=R7=R8=R11=R/3=
3.33kΩ, R10=R/0.7=14.28kΩ, R13=R/0.3=33.33kΩ. When
RL=2.5kΩ, the initial values of the four capacitor voltages
fixed as (1V, 1V, 1V, 1V, 1πV), (1V, 1V, 1V, 1V, 3πV), (1V, 1V,
1V, 1V, 5πV), (1V, 1V, 1V, 1V, 7πV), (1V, 1V, 1V, 1V, 9πV),
(1V, 1V, 1V, 1V, 11πV), six coexisting chaotic attractors are
obtained from the neural network circuit in PSIM simulations,
as shown in Fig. 14. Evidently, the results well verified the
numerical simulation results.
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Fig. 14. Six coexisting chaotic attractors obtained from the memristive neural
network circuit in PSIM simulation. (a) vz-v3. (b) v1-v4.

IV. CONCLUSION

This brief presented a multi-stable memristor model. The
memristor can exhibit infinitely many coexisting pinched hys-
teresis loops under different initial state ranges. Various char-
acteristics of this memristor has been demonstrated via theoret-
ical analysis, numerical simulation and circuit implementation.
Besides, the multi-stable memristor was applied to construct
a memristive neural network which can generate controllable

multi-stable behavior with infinitely many coexisting chaotic
attractors. Such multi-stable memristor has more important
consequences in memristor-based multi-stable systems due to
its multistability and initial state tunability.
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