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Abstract

Optimization problems with uncertain black-box constraints, modeled by
warped Gaussian processes, have recently been considered in the Bayesian op-
timization setting. This work introduces a new class of constraints in which the
same black-box function occurs multiple times evaluated at different domain
points. Such constraints are important in applications where, e.g., safety-
critical measures are aggregated over multiple time periods. Our approach,
which uses robust optimization, reformulates these uncertain constraints into
deterministic constraints guaranteed to be satisfied with a specified probabil-
ity, i.e., deterministic approximations to a chance constraint. This approach
extends robust optimization methods from parametric uncertainty to uncer-
tain functions modeled by warped Gaussian processes. We analyze convexity
conditions and propose a custom global optimization strategy for non-convex
cases. A case study derived from production planning and an industrially rele-
vant example from oil well drilling show that the approach effectively mitigates
uncertainty in the learned curves. For the drill scheduling example, we develop
a custom strategy for globally optimizing integer decisions.

1 Introduction

In mathematical programming, optimization under uncertainty often focuses on para-
metric uncertainty [10, 13, 16, 51, 56]. But many application areas rely on uncertain,
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expensive to evaluate black-box functions, e.g., automatic chemical design, produc-
tion planning, scheduling with equipment degradation, adaptive vehicle routing, au-
tomatic control and robotics, and biological systems [15, 21, 23, 29, 36, 57, 60].

Bayesian optimization optimizes such functions by (i) fitting a Gaussian process
to a small number of collected data points and (ii) subsequently choosing new sam-
pling points using an acquisition function [41, 53, 55]. The Bayesian optimization
literature also considers problems with black-box constraints, e.g., by multiplying
the acquisition function with the probability of constraint satisfaction [25, 26, 47].
The global optimization community often handles black-box constraints by (i) gen-
erating a small data set from the black box function, (ii) fitting a surrogate model
to this data, and (iii) replacing the black box constraint by the surrogate model
[14, 18, 19, 30, 39, 42, 50]. This approach, however, rarely considers uncertainty in
the black box function.

One way of including uncertain black-box function into the optimization problem
is to consider the surrogate model’s parameters to be uncertain and use classical
parametric uncertainty methods. Hüllen et al. [33] recently demonstrated this ap-
proach for polynomial surrogates using robust optimization. This paper proposes a
more direct approach utilizing probabilistic surrogate models to model the uncertain
curves. We study optimization problems with constraints which aggregate black-box
functions: ∑

i

ãixi ≤ b (1a)

ãi = g(yi), (1b)

where xi is a decision variable and ãi depends on a vector of decision variables yi ∈
Rk through a black-box function g(·). Constraint (1) occurs in many highly relevant
applications. In production planning, one may limit the total allowed equipment
degradation

∑
i r(pi)∆ti ≤ b, where r(pi) is the black-box degradation rate depending

on production pi in time period i and ∆ti is equipment operation time in period i [60].
A second example is vehicle routing, where the total traveling time

∑
i ∆t(ti, si, di)γi

is the sum of traveling times ∆t(ti, si, di) for individual legs i, dependent on starting
time ti, source si, and destination di, and γi is a binary variable indicating whether
leg i is part of the route. A third example is project scheduling under uncertainty in
which duration uncertainty may be aggregated over multiple activities [58]. Lastly,
the drill scheduling case study described in detail later in this paper is an industrially
relevant example.

When black-box constraints are risk or safety-critical, hedging solutions against
uncertainty is essential. Evaluating black-box functions may require expensive com-

2



puter simulations or physical experiments, so available data is generally limited and
may be subject to model errors and measurement noise. We therefore consider the
function g(·) to be uncertain and aim to find solutions for which Constraint (1) holds
with confidence 1− α:

P

(∑
i

g(yi)xi ≤ b

)
≥ 1− α. (2)

To capture the uncertainty in g(·), we model it by stochastic surrogate models.
A common stochastic surrogate is the Gaussian process (GP) model. Depending on
the underlying data generating distribution, however, a GP may be an inadequate
model. Warped Gaussian processes, which map observations to a latent space using
a warping function, are an alternative, more flexible model [54]. This paper considers
both standard and warped GPs.

We note that other contributions have connected Bayesian optimization with
robust optimization [7, 11, 12, 17]. In this setting, an adversary can perturb the
input x by δ ∈ U . Robust solutions optimize performance under the worst-case
perturbation realization: min

x∈Rn
max
δ∈U

f(x+ δ).

Contributions. For the standard GP model, we show how chance constraint
Eq. (2) can be exactly reformulated as a deterministic constraint using existing ap-
proaches. For the warped case, we develop a robust optimization approach which con-
servatively approximates the chance constraint. By constructing decision-dependent
uncertainty sets from confidence ellipsoids based on the warped GP models, we ob-
tain probabilistic constraint violation bounds. We utilize Wolfe duality to reformulate
the resulting robust optimization problem and obtain explicit deterministic robust
counterparts. This reformulation expresses uncertain constraints, modeled by GPs,
as deterministic constraints with a guaranteed probability of constraint satisfaction,
i.e., deterministic approximations to a chance constraint. We analyze convexity con-
ditions of the warping function under which the Wolfe duality based reformulation
is applicable. For non-convex cases, we develop a global optimization strategy which
utilizes problem structure. To reduce solution conservatism, we furthermore pro-
pose an iterative a posteriori procedure of selecting the uncertainty set size which
complements the obtained a priori guarantee.

We show how the proposed approach hedges against uncertainty in learned curves
for two case studies: i) a production planning-inspired case study with an uncertain
price-supply curve and ii) an industrially relevant drill-scheduling case study with
uncertain motor degradation characteristics. For the drill-scheduling case study we
develop a custom strategy for dealing with discrete decisions.
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Notation. See Appendix A for a table of notation.

2 Method

Sections 2.1-2.3 review (warped) GPs, robust optimization, and chance constraint
reformulations for Gaussian distributions. Sections 2.4 and 2.5 outline our proposed
robust approximation approach.

2.1 Warped Gaussian processes

GPs are widely used for Bayesian optimization and non-parametric regression [49,
53, 61].

Definition 1 (Gaussian process). A continuous stochastic process G(x) for which
Gx1,...,xl

= (Gx1 , . . . , Gxl
) is a multivariate Gaussian random variable for every finite

set of points x1, . . . ,xl.

A GP defines a probability distribution over functions and it is fully specified
by its mean function m(·) and kernel function k(·, ·). Given a set of N data points
X = [x1, . . . ,xN ],y = [y1, . . . , yN ]ᵀ and using a zero mean function, we can predict
the mean µ and covariance matrix Σ of the multivariate Gaussian distribution defined
by a set of new test points X∗ = [x∗1, . . . ,x

∗
n]:

µ(X∗) = K(X∗, X)[K(X,X) + σ2
nI]−1y

Σ(X∗) = K(X∗, X∗)

−K(X∗, X)[K(X,X) + σ2
nI]−1K(X,X∗),

where σn is the standard deviation of noise in the data, K(X∗, X) = K(X,X∗)ᵀ is
the n×N covariance matrix between test and training points, K(X,X) the N ×N
covariance matrix between training points, K(X∗, X∗) the n × n covariance matrix
between test points, and I the identity matrix. We denote the ij-element of Σ as
σ2
ij = σ2(x∗i ,x

∗
j).

The standard GP approach assumes that the data follows a multivariate Gaussian.
While this assumption allows prediction using simple matrix multiplication, it can
be an unreasonable for non-Gaussian data [54]. A slightly more flexible model, which
still retains many of the benefits of GPs, is the warped GP model. The key idea is
to warp the observations y to a latent space ξ using a monotonic warping function
ξ = h(y,Ψ). A standard GP then models the data in the latent space ξ ∼ GP(x).

The Jacobian ∂h(y)
∂y

is included in the likelihood and the GP and warping parameters
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are learned simultaneously. A common warping functions is the neural net style
function:

ξi = h(yi) = yi +
n∑
j=1

aj tanh(bj(yi + cj)), (3)

where aj ≥ 0, bj ≥ 0,∀j to guarantee monotonicity [34, 38, 54]. Note that we use
h(·) to denote the vector version h : Rn → Rn,h(y) = [h(y1), . . . , h(yn)]ᵀ, which
warps each component individually.

2.2 Robust optimization

Robust optimization immunizes optimization problems against parametric uncer-
tainty by requiring constraints with uncertain parameters ãi to hold for all values
inside some uncertainty set U [27]. Application areas range from finance and engi-
neering to scheduling and compressed least squares [6, 27]. The uncertainty set U
can take many different geometries, e.g., box [56], ellipsoidal [9], and polyhedral sets
[13]. When U is convex and the constraint is concave, the semi-infinite constraint can
often be reformulated into a deterministic equivalent using duality [8]. The general
case can be solved using bilevel optimization [3, 40], but this requires solving the
inner maximization problem to global optimality, even to obtain feasible solutions.

2.3 Standard GPs: chance constrained optimization

When g(·) is modeled well by a standard GP, chance constraint Eq. (2) can be exactly
replaced by a deterministic equivalent [20]. Since {g(yi), i ∈ S} ∼ N (µ,Σ) is normal
distributed, the linear combination:

β =
∑
i∈S

g(yi)xi

is also normal distributed with distribution:

β ∼ N
(∑
i∈S

µixi,
∑
i,j∈S

xiσ
2
i,jxj

)
.

Note that we have surpressed the dependence of µ and Σ on yi for notational sim-
plicity. For a given confidence level α, we can therefore replace chance constraint
Eq. (2) by: ∑

i∈S
µixi + F (1− α) ·

√∑
i,j∈S

xiσ2
i,jxj ≤ b, (4)
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where F (·) is the cumulative distribution function of the standard normal distribu-
tion. If the GP models g(·) well, Eq. (4) is an exact deterministic reformulation of
chance constraint Eq. (2).

2.4 Warped GPs: robust approximation

If g(·) is insufficiently modeled by a standard GP, a warped GP may be a more
suitable model [54]. In this case, a direct reformulation of the chance constraint
as outlined above for the standard GP case is not known. Such chance constraints
are generally addressed by (i) sample approximation [37, 45, 46] or (ii) safe outer-
approximation [1, 35, 43, 44, 48, 62]. Instead, we develop a robust approxima-
tion. First consider an optimization problem containing a nominal version of Con-
straint (1):

min
(x,y)∈X

f(x,y) (5a)

s.t
∑
i

h−1(µ(yi))xi ≤ b, i ∈ [n] (5b)

where y is the vector containing all elements of yi,∀i. Here, the inversely warped
mean prediction of the GP h−1(µ(·)) replaces the black-box function g(·). Clearly, a
solution to Problem (5) is not guaranteed to be feasible in practice if the prediction
µ(yi) is uncertain. Using the full multivariate distribution generated by the sampling
points {yi}, we can construct an α–confidence ellipsoid in the latent space:

Eα(y) =
{
ξ : (ξ − µ(y))ᵀ Σ−1(y) (ξ − µ(y)) ≤ F 1−α

n

}
. (6)

Here, F 1−α
n is the cumulative distribution function of the χ2 distribution with n

degrees of freedom. Assuming that the warped GP models the black-box function
well, Eα(y) contains the true value h(g(yi)) with probability at least 1 − α. We
therefore construct the following robust optimization problem:

min
(x,y)∈X

f(x,y) (7a)

s.t. zᵀx ≤ b ∀h(z) ∈ Eα(y) (7b)

Any solution to Problem (7) is feasible with probability at least 1−α given that the
warped GP models the underlying data generating distribution well. Alternatively,
we can take the warping into the uncertainty set:

min
(x,y)∈X

f(x,y) (8a)

s.t. zᵀx ≤ b ∀z ∈ U(y) (8b)
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where U :

U(y) =
{
z ∈ Rl : (h(z)− µ(y))ᵀ Σ−1(y) (h(z)− µ(y)) ≤ F 1−α

n

}
. (9)

Note that Problem (8) can also be interpreted as approximating a robust problem

2
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Figure 1: Example of uncertainty sets Eα in latent and U in observation space.

with an uncertainty set over functions g̃ ∈ Ug (see Theorem (1), Appendix B).
Fig. (1) shows an example of the ellipsoidal and warped sets Eα and U for n = 2.
The warped set U (Eqn. 9) may or may not be convex, depending on the warping
function h(·).

2.4.1 Reformulation for convex warped sets U
In the following we surpress the dependence of µ and Σ on y for notational simplicity.
We first assume that the warped set U retains convexity. In this case the inner
maximization is convex:

max
z
zᵀx (10a)

s.t. (h(z)− µ)ᵀΣ−1(h(z)− µ) ≤ F 1−α
n , (10b)

Problem (10) generally doesn’t have a simple closed form solution. Instead, we
can use Wolfe duality to transform Problem (10) into an equivalent minimization
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problem, leading to a deterministic reformulation of Problem (8):

min
(x,y)∈X,z,u

f(x) (11a)

s.t zᵀx+ u ·
(
(h(z)− µ)ᵀΣ−1(h(z)− µ)− F 1−α

n

)
≤ b (11b)

x+ 2u · ∇h(z)Σ−1(h(z)− µ) = 0 (11c)

u ≥ 0, (11d)

where u is a dual variable, ∇h(z) = diag(h′(zi)), and Constraint (11c) is the Karush-
Kuhn-Tucker (KKT) stationarity condition. Note that, unless x = 0, the stationarity
condition means that u 6= 0 and, due to complementary slackness, w(z,y) = 0, i.e.:

(h(z)− µ)ᵀΣ−1(h(z)− µ) = F 1−α
n . (12)

Furthermore, we can reformulate Eq. (11c) to:

h(z)− µ = − 1

2u
Σ∇h−1(z)x

Substituting this in Eq. (12) yields:

1

4u2
xᵀ∇h−1(z)Σ∇h−1(z)x = F 1−α

n .

This leads to a slightly different formulation which has the advantage that it does
not depend on the inverse of the covariance matrix Σ−1:

min
(x,y)∈X ,z,u

f(x,y) (13a)

s.t zᵀx ≤ b (13b)

Σ∇h−1(z)x+ 2u · (h(z)− µ) = 0 (13c)

4u2F 1−α
l = xᵀ∇h−1(z)Σ∇h−1(z)x (13d)

u ≥ 0, (13e)

where ∇h−1(z) is a diagonal matrix containing the inverse elements of ∇h(z).

2.4.2 Convexity conditions

Section 2.4.1 relies on the convexity of the inner maximization problem. If U is non-
convex, Problem (13) is not necessarily equivalent to Problem (8) as there may be
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more than one KKT point.Since U is the confidence set of a multivariate distribution,
however, may often be convex, especially when the distribution is unimodal. The
following section analyzes conditions where the Wolfe duality approach is justified.

First consider the inner maximization Problem (10) transformed into the latent
space by substituting z = h−1(ξ):

max
ξ

xᵀh−1(ξ) (14a)

s.t. (ξ − µ)ᵀΣ−1(ξ − µ) ≤ F 1−α
n , (14b)

which depends on the generally not explicitly known inverse warping function h−1.
We further state the well known result on the derivative of inverse functions [4]:

Lemma 1. If f : R→ R is continuous, bijective, and differentiable and f ′(f−1(x)) 6=
0, then [f−1]′(x) = 1

f ′(f−1(x))
.

Using this, we can show the following proposition.

Theorem 1. Let the warping function h(·) be concave (convex) and let xi ≥ 0 (≤
0), ∀i, then the inner maximization Problem (10) has a unique KKT point.

Proof. Note that Problem (14) is convex when h−1 is concave (convex) and xi ≥
0 (xi ≤ 0),∀i. The KKT conditions for Problems (10) and (14) are:

x+ 2u∇h(z)Σ−1(h(z)− µ) = 0 (15a)

(h(z)− µ)ᵀΣ−1(h(z)− µ) = F 1−α
n (15b)

and:

∇h−1(ξ)x+ 2uΣ−1(ξ − µ) = 0 (16a)

(ξ − µ)ᵀΣ−1(ξ − µ) = F 1−α
n , (16b)

where:

[∇h−1(ξ)]i,j =

{
h−1(ξi), i = j

0, i 6= j
(17)

By Lemma (1):

[∇h−1(ξ)]i,j =

{
h−1(ξi), i = j

0, i 6= j
=

{
1

h′(h−1(ξi))
, i = j

0, i 6= j
= [∇h(h−1(ξ))]−1i,j . (18)
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So Problem 16 is equivalent to:

∇[h(h−1(ξ))]−1x+ 2uΣ−1(ξ − µ) = 0 (19a)

(ξ − µ)ᵀΣ−1(y − µ) = F 1−α
n . (19b)

Let z∗ be a KKT point for Problem (10), then y∗ = h(z∗) is clearly a solution to
Problem (19), and therefore a KKT point for Problem (14). Since Problem (14) is
convex, z∗ is unique.

2.4.3 Strategy for non-convex warped sets U
When U is non-convex, we need to globally optimize the inner maximization problem
efficiently. To this end we develop a custom divide and conquer strategy which makes
use of the problems special structure. We first note the following properties of the
inner maximization problem.

Lemma 2. Let z∗ be the solution of Problem 10, then z∗ is on the boundary of U ,
i.e., z∗ ∈ ∂U .

Proof. See Appendix C.

Lemma 3. The bounding box of an ellipsoid xᵀΣ−1x ≤ r2 is given by the extreme
points xi = µi ± rσii
Proof. See Appendix C.

Lemma 4. Consider a version of Problem (14) in which the ellipsoidal feasible region
is replaced by its bounding box:

max
ξ
xᵀh−1(ξ) (20a)

s.t. µi − rσii ≤ ξi ≤ µi + rσii ∀i. (20b)

If xi ≥ 0,∀i, the optimal solution ξ∗ to this problem is ξ∗i = µ+ rσii,∀i.
Proof. Let ξ∗ be the optimal solution to Problem (20). Note that ξ∗ lies on the
boundary of the feasible space (Lemma 6). Assume ∃i, s.t., ξ∗i < µ + rσii. Because
h−1 is strictly monotonically increasing and xi ≥ 0, xih

−1(ξi) > xih
−1(µ + rσii).

Therefore we can construct a new solution ξ̂:

ξ̂j =

{
ξ∗j j 6= i

µj + rσjj j = i,
(21)

for which xᵀξ̂ ≥ xᵀξ∗, which is a contradiction.
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Theorem 2. Let ξ̄ (
¯
ξ) be ξ̄i = µi + rσii (

¯
ξi = µi − rσii) and ξ∗ the optimal solution

to Problem (14). Then xᵀh−1(
¯
ξ) ≤ xᵀh−1(ξ∗) ≤ xᵀh−1(ξ̄).

Proof. The results follows immediately from Lemma (4) because Problem (20) is a
relaxation of Problem (14).

Using Lemma (6) and Theorem (2) we develop the spatial branching strategy
shown in Algorithm (1). It starts by outer-approximating the ellipsoid by its bound-
ing box and evaluating the objective xᵀh−1(ξ) at the two corner points (

¯
ξ, ξ̄), ob-

taining an upper and lower bound (Theorem 2). The algorithm then branches on the
dimension of largest width. Boxes can be pruned if they are fully inside or outside
the ellipsoid (Lemma 6).

Algorithm 1 Globally optimize inner maximization problem

lower bound, upper bound ← xᵀh−1(
¯
ξ), xᵀh−1(ξ̄)

nodes ← [(
¯
ξ, ξ̄)]

while (upper bound - lower bound)/upper bound ≤ ε do
(
¯
ξ, ξ̄)← choose element in nodes with largest xᵀh−1(ξ̄)

upper bound ← xᵀh−1(ξ̄)
children ← split (

¯
ξ, ξ̄) along single axis

for (
¯
ξ, ξ̄) in children do

if (
¯
ξ, ξ̄) contains boundary point of ellipsoid and lower bound ≤ xᵀh−1(ξ̄)

then
add (

¯
ξ, ξ̄) to nodes

lower bound ← min{xᵀh−1(
¯
ξ), lower bound}

end if
end for

end while

2.5 Iterative a posteriori approximation

The a priori probabilistic bound implied by Eα may be overly conservative. Alg. (2)
is an altnernative, less conservative strategy that iteratively determines the uncer-
tainty set size. Starting with the confidence level α equal to the target feasibility
ε0, Alg. (2) iteratively solves the robust optimization problem, evaluates the feasi-
bility of the obtained solution using the distribution of the warped GP to generate
random realizations, and consequently adjusts the confidence level α using bisection

11



Algorithm 2 Posteriori approximation
1: α← ε0
2: while ‖ε− ε0‖ ≥ δ do
3: x← solution of Problem (13) with α
4: ε← estimated feasibility of x
5: if ε− ε0 ≥ 0 then
6: αU ← α, εU ← ε
7: else
8: αL ← α, εL ← ε
9: end if

10: α← αL+αU

2
{Bisection search}

11: end while

search. The search terminates when a solution has been found that is sufficiently
close (tolerance δ) to the target feasibility ε0.

3 Case studies

3.1 Production planning

Our first case study is inspired by production planning. Assume that a company
wants to decide how much product xt to produce in a number of subsequent time
periods x = [x1, . . . , xt, . . . , xT ]. There is a known cost of production ct which may
vary from period to period. The company seeks to maximize its profit ψ, which
depends on the total production cost

∑
t

ctxt and revenue
∑
t

p̃txt. Here p̃t is the

price at which the product can be sold in period t. The company has to sell all its
product in the same time period, e.g., because the product is perishable. The sale
price depends on the amount the company produces in that period p̃t = p̃(xt), e.g.,
because the company has a very large market share.

The company uses GP regression to predict p̃(xt) based on limited historical data.
Additional features, e.g., season and general state of the economy, could be part of
this regression but are irrelevant for our purpose as they are not decision variables.
The prediction has to be considered uncertain and the company wants a production
plan guaranteeing a certain profit with some confidence. This decision problem can
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Figure 2: GP trained using 50 observations from the price-supply curve p(xt) =
exp(−xt) + ε with non-uniform Gaussian noise ε ∼ N (0, 4 · 0.3 · exp(−x/2)). The
confidence region is two standard deviations wide.

be formulated as a chance constrained optimization problem:

max
x∈RT ,ψ

ψ (22a)

s.t P

(
T∑
t=1

(p̃(xt)− ct)xt ≥ ψ
)
≥ 1− α (22b)

Choosing p(xt) = exp (−xt) as ground truth for the price-supply curve, we gen-
erate noisy data p̃(xt) = p(xt) + ε and fit a GP surrogate as shown in Fig. (2).
We consider uniform Gaussian noise (ε ∼ N (0, σnoise)) and non-uniform Gaussian
noise(ε ∼ N (0, 4 · σnoise · exp(−x/2))), where σnoise is a parameter determining the
amount of noise. We use a squared exponential kernel for this case study, but the
proposed method does not generally rely on a specific choice for k(·, ·).

3.2 Drill scheduling

The objective in drilling oil wells is generally minimizing total well completion time.
The aim of the drill scheduling problem, illustrated in Fig. (??), is to find a schedule
of the two decision variables, rotational speed Ṅ ∈ R and weight on bit W ∈ R, as
a function of depth x ∈ R. Current practice often consists of minimizing the total
drilling time, which depends on Ṅ and W through a non-linear bit-rock interaction
model [22] and the motor’s power-curves (see Appendix D). Total well completion
time, however, also depends on maintenance time. Current practice may increase
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Figure 3: Illustration of drill scheduling problem with two rock types. The rock type
changes at x1, maintenance is scheduled at x2, and the target depth is x3. The right
side shows an example schedule of the decision variables Ṅ and W .
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maintenance time because drilling quickly can detrimentally effect motor degrada-
tion. Furthermore, the motors degradation characteristics are subject to uncertainty
and are often obtained through a mixture of experiments and expensive numerical
simulations [2]. Other works have considered uncertain equipment degradation in
scheduling applications [60, 5], but not with predicted degradation rates.

To find the optimal trade off between drilling and maintenance time, we propose
a drill scheduling model which explicitly considers uncertainty in the motor degra-
dation characteristics. First consider a model which discretizes the drill trajectory
into n equidistant intervals:

min
W ,Ṅ ,z,y,V ,∆p,R

n∑
i=1

(
∆xi
Vi

+ zi∆t
maint
i

)
(23a)

s.t Vi = f(Ṅ top
i ,Wi,∆pi) ∀i ∈ [n] (23b)

0 ≤ Ri =
i∑

j=1

(
∆xj
Vj
· r(∆pj)− yj

)
≤ 1 ∀i ∈ [n] (23c)

zi ≥ yi, zi ∈ {0, 1} ∀i ∈ [n], (23d)

The rate of penetration Vi in each segment depends on the drill parameters (Ṅi and
Wi) through the non-linear model in Appendix D. The rate of degradation r(·) is a
black-box function of the differential pressure across the motor ∆p. We model r(·)
with a warped GP based on 10 data points from a curve obtained by Ba et al. [2]
through a combination of experiments and numerical simulation. The maintenance
indicator Ri keeps track of the total cumulative degradation of the motor. We assume
the motor fails when Ri reaches 1. Binary variable zi indicates whether maintenance
is scheduled in segment i. If maintenance is scheduled, the continuous variable yi
resets the total degradation indicator Ri to zero. Note that the bit-rock interaction
model depends on rock parameters which can change from segment to segment.

A major disadvantage of Model (23) is that it requires a large number of segments
in order to get a good resolution on the optimal maintenance depth. To avoid this
we propose, in analogy with continuous time formulations [52, 24], an alternative
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continuous depth scheduling formulation:

min
W ,Ṅ ,x,∆p,V ,R

∑
i∈N

(
xi − xi−1

Vi

)
+
∑
m∈M

∆tmaint(xm) (24a)

s.t Vi = f(Ṅi,Wi,∆pi) ∀i ∈ N = [n] (24b)

Rm =
m∑

j=m−

(
xj − xj−1

Vj
· r(∆pj)

)
≤ 1 ∀m ∈M ∪ {n} (24c)

Model (24) only considers geological segments (segments with constant rock param-
eters) and maintenance induced segments. The vector x is ordered and contains the
fixed rock formation depths as well as the variable maintenance depths. Fig. (??)
shows an example where x1 is the fixed depth at which the geology changes and x2 is
the variable depth of a maintenance event. The indices i ∈M of the variable mainte-
nance depths are determined a priori, i.e., we decide both the number of maintenance
events as well as the geological segment in which they occur a priori. m− is either
the index of the previous maintenance event or 1 if m is the first element in M .

While Problem (24) cannot decide the optimal number of maintenance events,
it is easier to solve than Problem (23) because it does not contain integer variables
and generally has a much smaller number of segments, i.e., fewer variables and con-
straints. The following discusses strategies for deciding the optimal number and
segment assignment of maintenance events.

3.2.1 Integer strategy

In drill scheduling, the number of maintenance events n is generally small (n ≤ 4).
The number of geological segments m can be large in practice but will not be known
a priori. We therefore consider groupings of segments into a small number (m ≤ 10)
of longer segments with average rock parameters which are known a priori. Given
n and m, the combinatorial complexity of enumerating the maintenance-segment
assignment problem is N ==

(
n+m−1

m

)
. However, the optimal number of maintenance

events m is a decision variable. Therefore, finding the globally optimal maintenance-
segment assignment also requires enumerating different values of m.

Alg. (3) derives upper bounds for the number of maintenance events m as well
as their location. It starts by solving Problem (24) without any maintenance events
and ignoring the upper bound on the degradation indicator Rn � 1. The floor of
the maintenance indicator at the target depth xn, bRnc is an upper bound for the
necessary number of maintenance events m. Alg. (3) then starts at the target depth
xn and inserts bRnc maintenance events at the earliest possible points that satisfy
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Algorithm 3 Deriving upper bounds for m and xm

1: x,R, V̂ ← solve Problem (24) without Constraint (24c), M = ∅
2: M̂ ← {1, . . . bRnc}
3: for m ∈ {bRnc, . . . , 0} do

4: x̂m ← arg min
xm

m+∑
j=m

(
xj−xj−1

Vj
· r(∆pj)

)
5: end for

the maintenance constraint. The locations x̂m are upper bounds for the maintenance
locations:

Lemma 5. Let (M∗,x∗) be the globally optimal maintenance-segment assignment.
Let (M̂, x̂) be determined by Alg. (3). If i∗ and ı̂ are the i-th last elements in M∗

and M̂ respectively, then x∗i∗ ≤ x̂ı̂.

Proof. Let j∗ and ̂ be the (i+1)-th last elements in M∗ and M̂ respectively. Assume
x∗i∗ ≤ x̂ı̂ but x∗j∗ > x̂̂. Construct a new solution (M ′,x′,V ′) by moving x∗j∗ to x̂̂

and drilling at maximum speed V̂̂ between x̂̂ and x∗i∗ :

M ′ = M∗, x′k =

{
x∗k k 6= j∗, k ∈M ′

x̂k k = j∗, k ∈M ′ ,

{
V ∗k k 6= j∗, k ∈M ′

V̂k k = j∗, k ∈M ′ .

(M ′,x′,V ′) has drilling and maintenance cost lower than (M∗,x∗,V ∗), which is a
contradiction. Therefore x∗i∗ ≤ x̂ı̂ =⇒ x∗j∗ ≤ x̂̂. Furthermore, note that x∗i∗ ≤ x̂ı̂
has to be true for the last maintenance event by the same logic as above. The
proposition follows by induction.

Lemma (5) reduces the number of maintenance-segment assignments to enumer-
ate:

Note 1. Let x̂ be the upper bounds on maintenance locations from Alg. (3). Let ni be
the segment containing x̂i. The complexity of enumerating the maintenance-segment
assignment problem using the upper bounds from Alg. (3) is:

N =

n1∑
i1=1

n2∑
i2=i1

. . .
nm∑

im=im−1

1 =

n1∑
i1=1

n2∑
i2=i1

. . .

nm−1∑
im−1=im−2

nm − im−1 + 1.
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3.2.2 Heuristics

Alg. (3) is equivalent to minimizing the drilling cost without considering degrada-
tion — a strategy often used in practice. It provides feasible but likely subopti-
mal solutions to Problem (24), i.e., it can be used as a heuristic. We call this the
no–degradation heuristic and propose a second, improved heuristic: the boundary
heuristic, outlined in Alg. (4). Alg. (4) starts with the solution of the no–degradation
heuristic (Alg. 3). It improves the solution by iteratively solving Problem (24) and
reassigning maintenance events occurring at geological boundaries to the adjacent
segment. It terminates after finding a solution with all maintenance events occurring
in the interior of their segment. Note that moving a maintenance event occuring at

Algorithm 4 Boundary heuristic

1: M̂ ← no–degradation heuristic (Alg. 3)
2: x← solve Problem (24) with M = M̂
3: while ∃m ∈M, s.t. xm at geological boundary do
4: M̂ ← reassign m to neighboring segment, drop maintenance event if at x0.
5: x← solve Problem (24) with M = M̂
6: end while

a geological boundary to the adjacent segment cannot lead to a worse solution, i.e.
Alg. (4) is an anytime algorithm.

While it does not guarantee global optimality of the maintenance-segment as-
signment, the boundary heuristic may be useful for very large instances when enu-
meration is prohibitive.

4 Results

The deterministic reformulations of both case studies were implemented in Pyomo
(Version 5.6.8) [32, 31], an algebraic modeling language for expressing optimization
problems. As part of this work, we developed a Python (Version 3.6.8) module
which takes a GP model trained using the Python library GPy (Version 1.9.6) [28]
and predicts µ(x) and Σ(x) as Pyomo expressions (will be available open source on
GitHub). This allows the easy incorporation of GP models into Pyomo optimiza-
tion models. We use the interior-point convex optimization solver Ipopt [59] with
a multistart strategy to solve the problem. Each instance was solved 30 times with
a random starting point. The multistart procedure ends prematurely if it finds the
same optimal solution (with a relative tolerance of 10−4) 5 times.
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Figure 4: Warping functions for the drilling and production planning case studies.
Input values are normalized to zero mean and σ = 1.

Fig. (4) shows the warping functions for both case studies. Since the production
planning warping function is concave and the production amounts xt are strictly
positive, Theorem (1) applies and the warped set U is convex. Theorem (1) cannot
be applied to the drill scheduling case, because its warping function is neither convex
nor concave. However, because the warping function is only slightly non-convex, the
warped set U may still be convex for many instances. To avoid solving the bilevel
problem directly we therefore use the following strategy: (i) solve the robust refor-
mulation (Eq. 13), (ii) check feasibility of the obtained solution using Algorithm (1)
(to a tolerance of 10−2), and (iii) only solve the bilevel problem (Eq. 8) directly if
the obtained solution is infeasible. For the instances considered in this work, the
obtained solution always turns out to be feasible.

4.1 Production planning

For the production planning case study, we consider 4 model instances with T =
1, 2, 3 and 6 time periods. Table (1) shows the cost of production c. We solve each
instance for 30 different confidence values 1 − α. The GP was trained based on 50
randomly generated data points using both uniform and non-uniform Gaussian noise
with σnoise = 0.01, 0.03, 0.05, and 0.08.
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Period 1 2 3 4 5 6
Cost 0.1 0.05 0.01 0.02 0.1 0.15
Period 7 8 9 10 11 12
Cost 0.04 0.03 0.1 0.11 0.25 0.1

Table 1: Production costs ct for each time period t.
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Figure 5: Fraction of feasible solutions as a function of confidence 1 − α for the
planning problem with three time periods. 1 − α = 0 corresponds to the nominal
case and 1 − α = 1 to 0% chance of constraint violation. The noise in the data is
uniform Gaussian with σnoise = 0.01, 0.03, 0.05 and 0.08 and a standard GP model
was used. The smaller the noise, the closer the actual feasibility is to the expected
confidence (dotted line).

Standard GP: Fig. (5) shows results for the chance constrained approach using
a standard GP model. We plot the fraction of feasible scenarios out of 1 million
random samples from the true underlying distribution. Fig. (5) shows results for four
different noise scenarios. By varying the confidence 1− α, we adjust the robustness
of the obtained solution. Clearly, the resulting feasibility does not exactly match
the expected feasibility (shown as a dotted line) determined by the confidence level
1− α. This is due to a mismatch between the true underlying distribution and the
normal distribution estimated by the GP. As the amount of noise increases, the GP
estimate deteriorates and the mismatch between feasibility and confidence increases.
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Figure 6: Fraction of feasible solutions as a function of confidence 1 − α for non-
uniform Gaussian noise with σnoise = 0.01, 0.03, 0.05, and 0.08. Results are shown for
four different numbers of time periods T = 1, 2, 3 and 6. The dotted line shows the
a priori bound. With increasing numbers of time periods, the robust approximation
becomes increasingly conservative.

Warped GP: Fig. (6) shows solution feasibility as a function of confidence 1− α
for non-uniform noise using a warped GP model and the proposed robust approach.
We show results for four different numbers of time periods. In the nominal case
(1−α = 0), the feasibility is always close to 50% because a solution which is valid for
the mean price-supply curve will also be valid for many scenarios with higher prices.
In the robust case, as expected, feasibility increases as the size of the uncertainty set,
i.e. 1−α, increases. Notice that the robust approach is almost always a conservative
approximation to the chance constraint, as the achieved feasibility is generally larger
than the confidence 1 − α. Small violations of the a priori bound (dotted line) can
still occur due to a mismatch between the GP model and the true underlying data
generating distribution. The solution conservatism also varies with the number of
time periods considered. The a priori bound relaxes as T increases.

21



T = 3 T = 6

T = 1 T = 2

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Confidence 1 − α

W
o
rs

t
ca

se
p

ro
fi

t
ψ

Noise 0.01 0.03 0.05 0.08

Figure 7: Profit, normalized with respect to nominal profit with σnoise = 0.01 (ob-
jective of Problem (5)), as a function of confidence 1 − α for four different noise
scenarios and time periods T = 1, 2, 3 and 6. As expected, the objective value de-
creases with increasing confidence 1−α, because more extreme worst case scenarios
are considered.

Fig. (7) shows the worst case profit, normalized with respect to the nominal profit
for σnoise = 0.01, achieved as a function of the confidence level 1 − α. As expected,
increasing the confidence 1 − α leads to a lower worst case profit, because a larger
confidence hedges against more uncertain price outcomes. Note that results are
shown for values of 1−α between 0.001 and 0.999. At 1−α = 1, the profit is always
zero, because the uncertainty set includes negative prices and the optimal solution
is to not produce anything. For a fixed confidence level, noisier data will generally
lead to a smaller objective value as there is more uncertainty to hedge against.

Iterative procedure: Finally, Fig. (8) shows solution feasibility for the iterative
a posteriori procedure (Alg. 2). We use confidence values between 0.55 and 0.999,
since smaller confidences can often not be achieved using the iterative approach
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Figure 8: Fraction of feasible solutions vs confidence 1−α for the iterative a posteriori
procedure (Alg. 2). If the noise is small, feasibility generally tracks the expected
confidence (dotted line) well. For larger noise, deviations can occur due to mismatch
between the warped GP model and the true data generating distribution.

(the smallest achievable confidence is the feasibility of the nominal solution, i.e.,
∼ 50%). The a posteriori approach is clearly less conservative than the a priori
approach, however, this comes at the cost of additional computational expense and
also potential bound violations when the warped GP does not model the underlying
distribution perfectly. The a posteriori approach could therefore be a viable less
conservative alternative in relatively low noise scenarios or when more training data
is available.

4.2 Drill scheduling

For the drill scheduling case study, we consider two different geologies with 2 and
6 geological segments. We consider a range of target depths and confidence values.
Fig. (9) shows the drilling, maintenance, and total cost for a target depth of 2200m as
a function of the confidence parameter 1−α. In the deterministic case (1−α = 0.5),
the optimal strategy is to not do maintenance at all and drill as fast as possible. As
we increase 1−α to obtain more robust solutions, we eventually reach a point where
the average rate of penetration is slightly lower in order to reduce degradation and
guarantee that the well can be completed without a motor failure. For the 2-segment
geology the increased cost of drilling outweighs the zero maintenance cost at aroun
1− α = 0.92. After this point the optimal strategy is to do maintenance once.
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Results are shown for both the no–degradation and boundary heuristics as well
as total enumeration. For this instance, the boundary heuristic leads to the same
solution as the globally optimal enumeration strategy. The no–degradation heuristic,
on the other hand, leads to suboptimal solutions when the optimal maintenance
number is lower than the upper bound bRnc.

n = 2 n = 6
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Figure 9: Cost of drilling to a depth of 2200 meters through a geologies with 2 and 6
segments for different values of confidence parameter α. Results are shown for three
different integer strategies. The boundary heuristic gives the same results as total
enumeration, while the no–degradation heuristic gives suboptimal solutions.

Fig. (10) shows the same cost components as Fig. (9) as a function of the target
depth xn. Results are shown for three different values of 1− α (0.5, 0.75, and 0.99).
A larger confidence always leads to a higher cost, as would be expected, but the
difference between the deterministic solution and a 99%–confidence robust solution
can be larger or small, depending on the target depth, e.g., for a target depth of
xn = 3000m hedging against uncertainty does not lead to significant cost increases.

Finally, Fig. (11) shows the total solution time for the three integer strategies
for the instance with 6 geological segments as a function of confidence parameter
1 − α. While the no–degradation heuristic often leads to suboptimal solutions, as
seen above, it is computationally very cheap. The boundary heuristic comprises a
good compromise: it frequently finds the global optimum while being much cheaper
computationally. Especially for instances with many geological segments and main-
tenance events, where the combinatorial complexity of the enumeration strategy
becomes prohibitive, it may therefore be a good alternative.
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Figure 10: Cost of drilling as a function of target depth for three different for a
geology with two rock types for and for three different values of confidence parameter
α. All results are obtained with the globally optimal enumeration strategy.

5 Conclusion

Our approach reformulates uncertain black-box constraints, modeled by warped
Gaussian processes, into deterministic constraints guaranteed to hold with a given
confidence. We achieve this deterministic reformulation of chance constraints by
constructing confidence ellipsoids and utilizing Wolfe duality. We show that this
approach allows the solution conservatism to be controlled by a sensible confidence
probability choice. This could be especially useful in safety-critical settings where
constraint violations should be avoided.
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[59] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter
line-search algorithm for large-scale nonlinear programming. Math. Program.
106(1), 25–57 (2006)
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A Table of notation

ãi uncertain parameter
F 1−α
n CDF of the χ2

u dual variable
x,y decision variable vectors
yi subset of decision variables y
z observation vector in original space
f(·) black-box objective function
g(·) black-box constraint
h(·) warping function
K(·, ·) kernel function of GP
w(·) constraint defining U
Eα α-confidence ellipsoid
U (warped) uncertainty set
X deterministic feasible set
α probability of constraint violation
δ disturbances vector
ε estimated feasibility
ε0 target feasibility
ξ observation vector in latent space
ψ = {aj, bj, cj} parameters of warping function
µ mean of GP at yi
σ2
ij ij-element of covariance matrix

Σ covariance matrix of GP at yi
Production planning

ct production cost in period t
p̃t uncertain price in period t
xt production amount in period t

Drill scheduling
W weight on bit

Ṅ rotational speed
V rate of penetration
∆p differential pressure
R degradation indicator
M set of maintenance depths
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B Connection to uncertain functions

Consider the following robust optimization problem:

min
(x,y)∈X

f(x,y) (25a)

s.t
n∑
i=1

g̃(yi)xi ≤ b ∀g̃ ∈ Ug (25b)

yi ∈ Rk, k ≤ n. (25c)

Instead of uncertain parameters, Problem (25) considers an uncertainty set Ug over
uncertain functions g̃(·). We are interested in defining Ug in a way that it contains
“likely” realizations of the GP.

Recall that for any finite set of points y1, . . . ,yl, l ∈ N:

Gy1,...,yl = [G(x1), . . . , G(xl)]
ᵀ (26)

is a multivariate Gaussian with mean µ(y1, . . . ,yl) and covariance Σ(y1, . . . ,yl). For
any such Gy1,...,yl , we can construct a confidence ellipsoid Eα(y1, . . . ,yl) containing
the true values [g(x1), . . . , g(xl)]

ᵀ with probability 1− α:

Eα(y1, . . . ,yl)l =


z ∈ Rl
s.t. (h(z)− µ)ᵀΣ−1(h(z)− µ)
≤ F 1−α

l

 ,

where F 1−α
l = Fl(1−α) is the cumulative distribution function of the χ2 distribution

with l degrees of freedom. We then construct a set Ug over functions g̃(·) for which
[g̃(x1), . . . , g̃(xl)] lies in the corresponding α-confidence ellipsoid Eα(y1, . . . ,yl)l for
any l ∈ N and y1, . . . ,yl with xi ∈ Rk:

UE =


g̃ : Rk → R s.t.

[g̃(x1), . . . , g̃(xl)]
ᵀ ∈ Eα(y1, . . . ,yl),

∀{y1, . . . ,yl},yi ∈ Rk, l ∈ N


Replacing Ug with UE transforms Problem (25) into a robust optimization prob-

lem with an uncertainty set over functions defined by an infinite number of confidence
ellipsoids which can have arbitrarily many dimensions. This set is not semialgebraic
and it is not clear how it could practically be used in optimization. In practice,
however, we are only interested in evaluating the GP at a finite number of points.
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Figure 12: Any l1-dimensional α-confidence ellipsoid Eαl1 is a strict subset of the
projection of higher order α-confidence ellipsoids Eαl2 , l2 > l1 onto the l1-dimensional
space.

Here, the number of evaluation points is the number of times |S| that the GP occurs
in the optimization problem. Consider the following robust optimization problem:

min
(x,y)∈X

f(x,y) (27a)

s.t zᵀx ≤ b ∀z ∈ Eα(y) (27b)

yi ∈ Rk, k ≤ n. (27c)

Theorem 1. A vector x∗ which is a feasible solution to Problem (27) is also a
feasible solution to Problem (25).

Proof. Assume x∗ is a solution to Problem (27) but not to Problem (25). Then ∃ĝ ∈
Ug s.t.

∑
i∈S

ĝ(x∗i )x
∗
i > 0. The definition of Ug implies that [ĝ(x∗i ) : i ∈ S]ᵀ ∈ Eα(x∗i :

i ∈ S). Choosing ẑ = [ĝ(x∗i ) : i ∈ S]ᵀ, it follows that
∑
i∈S

ẑix
∗
i =

∑
i∈S

ĝ(x∗i )x
∗
i > 0,

meaning that {x∗, ẑ} is not feasible in Problem (27). But ẑ ∈ Eα(y∗i : i ∈ [n]), which
is a contradiction.

Fig. (12) shows that the converse of Theorem (1) is not necessarily true. Because
all confidence ellipsoids are symmetric and centered at the mean of the distribution,
any lower dimensional ellipsoid Eαl = Eα(y1, . . . ,yl), l < n is a strict subset of the
projection of Eαn = Eα(y) onto the l-dimensional space (otherwise it would have to
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contain a larger probability mass). Problem (27) therefore conservatively approxi-
mates Problem (25). Furthermore, the α-confidence ellipsoid Eα(y) implies that a
solution to Problem (27) is a feasible solution to the black-box constrained problem
with a probability of at least 1− α (see Theorem 1).

C Globally optimizing non-convex inner

maximization problems

Lemma 6. Let z∗ be the solution of Problem ??, then z∗ ∈ ∂U .

Proof. For the sake of contradiction assume z∗ ∈ int(U), then ∃ ε > 0 s.t. z0 ∈
U ∀z0 ∈ {z0 | ‖z∗ − z0‖ < ε}. Let:

ẑ = z∗ +
x

‖x‖
ε

2
,

then:
‖z∗ − ẑ‖ = ‖z∗ − z∗ − x

‖x‖
ε

2
‖ =

ε

2
< ε,

and therefore ẑ ∈ U , but:

xᵀẑ = xᵀ

(
z∗ − x

‖x‖
ε

2

)
= xᵀz∗ +

xᵀx

‖x‖
ε

2
> xᵀz∗,

which is a contradiction.

Lemma 7. The bounding box of an ellipsoid xᵀΣ−1x is given by the extreme points
xi = ±rσii
Proof. Consider the optimization problem:

max
x

xi (28a)

s.t. xᵀΣ−1x = r2 (28b)

It’s stationarity condition is:

δ = 2λΣ−1x (29)

Pre-multiplying by xᵀ and substituting primal feasibility leads to the expression:

λ =
xi
2r2

. (30)

35



Substituting this back into the stationarity condition and rearranging gives:

x =
r2

xi
Σδ, (31)

which, substituted into the primal constraint leads to the desired results:

xi = ±rσii (32)

D Drill scheduling model

In order to connect the penetration rate V and degradation rate r to the drilling
parameters, weight-on-but W and rotational speed Ṅ , we require two models:

• A bit-rock interaction model [22] connecting W and Ṅ with V and differential
pressure across the mud motor ∆p

• A mud motor degradation model [2] connecting the degradation rate r with the
differential pressure ∆p.

D.1 Detournay’s bit-rock interaction model

To model the connection between W , Ṅ , V , and ∆p, we combine the bit-rock in-
teraction model by Detournay et al. [22] with the PDM’s powercurve. There are
three relevant rotational speeds in the drilling process: The drill-string speed Ṅtop,
the PDM speed (relative to the drill string) ṄPDM , and the drill-bit speed Ṅbit:

Ṅbit = Ṅtop + ṄPDM (33)

Based on Detournay et al. [22], the following drilling response model can be
formulated relating Nbit with the weight-on-bit W and the rate of penetration V :

V =d · Ṅbit [22, Eq. 4] (34a)

w =
W

a(1− ρ)
[22, Eq. 4] (34b)

d =

{
w
S∗

w∗

S∗
+ w−w∗

ξε

[22, Eqs. 24,37] (34c)

(34d)
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where d is the depth of cut per revolution, w is a scaled weight-on-bit, and a, ρ, S∗,
w∗, ξε, Nmax, and Wmax are rock and equipment parameters.

The relationship between torque T and weight-on-bit W is given by:

t =
2T

a2(1− ρ2) [22, Eqn. 4]

t =

{
µγ′w
1
ξ

(w − (1− β)w∗)
[22, Eqns. 29,38]

(35)

For the bit parameters a = 100.4 and ρ = 0.0 was used. Rock parameters are
available for Lower Jurassic shale and Sandstone in the open literature[22]:

Parameter Lower Jurassic shale Sandstone
S∗ [MPa] 278 315
w∗ [N/mm] 199 59
ξε [MPa] 125 50
µγ′ [-] 0.48 0.93
(1− β)wf∗ [N/mm] 157 33
ξ [-] 0.98 0.65

Using the PDM’s power curve (Fig. 13), the bit rotational speed Ṅbit can be
determined as a function of Ṅ , T , and ∆p. Fig. 13 shows the relationship between
T , ṄPDM , the differential pressure over the PDM ∆p, and the flow rate through the
PDM Q̇. Since torque T is specified through W (Eqn. 35), ∆p can be determined
from the power curve (Fig. 13). If additionally the flow Q̇(t) is given, ṄPDM is also
fully specified.
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Figure 13: Example of a PDM power curve. [2]

Putting this together, we obtain the following model relating V to W and Ṅ :

V = d
(
Ṅtop + ṄPDM

)
(36a)

w =
W

a(1− ρ)
(36b)

t =
2T

a2(1− ρ2) (36c)

t =

{
µγ′w
1
ξ

(w − (1− β)w∗)
(36d)

d =

{
w
S∗

w∗

S∗
+ w−w∗

ξε

(36e)

ṄPDM = f
(
T, Q̇

)
(from Fig. 13) (36f)

Ṅtop ≤ Ṅmax (36g)

W ≤ Wmax (36h)

(safety constraints), (36i)

Assuming that the flow rate Q̇(t) is treated as a parameter, the only decision vari-
ables are W (t), and Ṅtop(t). For the purpose of this work we model the above power
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Figure 14: Maximum lifetime of a PDM as a function of differential ∆p (for a given
PDM geometry and elastomer, mud, flow, and temperature).[2]

curves using quadratic equations. Notice that the variables w, t, d, and ṄPDM could
easily be eliminated, resulting in a more compact albeit less intuitive/physically
meaningful formulation.

D.2 Mud motor degradation model

For the mud motor degradation characteristics we use data obtained by Ba et al. [2],
determined through a combination of simulation and experiments, shown in Fig. 14.
[2].

39


	1 Introduction
	2 Method
	2.1 Warped Gaussian processes
	2.2 Robust optimization
	2.3 Standard GPs: chance constrained optimization
	2.4 Warped GPs: robust approximation
	2.4.1 Reformulation for convex warped sets U
	2.4.2 Convexity conditions
	2.4.3 Strategy for non-convex warped sets U

	2.5 Iterative a posteriori approximation

	3 Case studies
	3.1 Production planning
	3.2 Drill scheduling
	3.2.1 Integer strategy
	3.2.2 Heuristics


	4 Results
	4.1 Production planning
	4.2 Drill scheduling

	5 Conclusion
	A Table of notation
	B Connection to uncertain functions
	C Globally optimizing non-convex inner maximization problems
	D Drill scheduling model
	D.1 Detournay's bit-rock interaction model
	D.2 Mud motor degradation model


