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Transcript expression-aware annotation 
improves rare variant interpretation

Beryl B. Cummings1,2,3, Konrad J. Karczewski1,2, Jack A. Kosmicki1,2,4, Eleanor G. Seaby1,2,5, 
Nicholas A. Watts1,2, Moriel Singer-Berk1, Jonathan M. Mudge6, Juha Karjalainen1,2,7,  
F. Kyle Satterstrom1,2,7, Anne H. O’Donnell-Luria1,8,9, Timothy Poterba1,2,7, Cotton Seed2,7, 
Matthew Solomonson1,2, Jessica Alföldi1,2, Genome Aggregation Database Production Team*, 
Genome Aggregation Database Consortium*, Mark J. Daly1,2 & Daniel G. MacArthur1,2,145,146 ✉

The acceleration of DNA sequencing in samples from patients and population studies 
has resulted in extensive catalogues of human genetic variation, but the 
interpretation of rare genetic variants remains problematic. A notable example of this 
challenge is the existence of disruptive variants in dosage-sensitive disease genes, 
even in apparently healthy individuals. Here, by manual curation of putative 
loss-of-function (pLoF) variants in haploinsufficient disease genes in the Genome 
Aggregation Database (gnomAD)1, we show that one explanation for this paradox 
involves alternative splicing of mRNA, which allows exons of a gene to be expressed at 
varying levels across different cell types. Currently, no existing annotation tool 
systematically incorporates information about exon expression into the 
interpretation of variants. We develop a transcript-level annotation metric known as 
the ‘proportion expressed across transcripts’, which quantifies isoform expression for 
variants. We calculate this metric using 11,706 tissue samples from the Genotype 
Tissue Expression (GTEx) project2 and show that it can differentiate between weakly 
and highly evolutionarily conserved exons, a proxy for functional importance. We 
demonstrate that expression-based annotation selectively filters 22.8% of falsely 
annotated pLoF variants found in haploinsufficient disease genes in gnomAD, while 
removing less than 4% of high-confidence pathogenic variants in the same genes. 
Finally, we apply our expression filter to the analysis of de novo variants in patients 
with autism spectrum disorder and intellectual disability or developmental disorders 
to show that pLoF variants in weakly expressed regions have similar effect sizes to 
those of synonymous variants, whereas pLoF variants in highly expressed exons are 
most strongly enriched among cases. Our annotation is fast, flexible and 
generalizable, making it possible for any variant file to be annotated with any isoform 
expression dataset, and will be valuable for the genetic diagnosis of rare diseases, the 
analysis of rare variant burden in complex disorders, and the curation and 
prioritization of variants in recall-by-genotype studies.

A primary challenge in the use of genome and exome sequencing to 
predict human phenotypes is that our capacity to identify genetic 
variation exceeds our ability to interpret their functional impact3,4. 
One underappreciated source of variability for variant interpretation 
involves differences in alternative mRNA splicing, which enables exons 
to be expressed at different levels across tissues. These expression 
differences mean that variants in different regions of a gene can have 

different phenotypic outcomes depending on the isoforms they affect. 
For example, variants that occur in an exon differentially included in 
two isoforms of CACNA1C with diverse patterns of tissue expression 
result in distinct types of Timothy syndrome5. Pathogenic variants in the 
isoform that exhibits multi-tissue expression result in a multi-system 
disorder5–7, whereas those on the isoform predominantly expressed in 
the heart result in more severe and specific cardiac defects8. In addition, 
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Mendelian disease variants have been found on tissue-specific iso-
forms9,10 and isoform expression levels in TTN have been used to show 
that pLoF variants found in healthy controls occur in exons that are 
absent from dominantly expressed isoforms, whereas those in patients 
with dilated cardiomyopathy occur on constitutive exons11, emphasiz-
ing the utility of exon expression information for variant interpretation.

Isoform diversity and variant interpretation
We find that isoform diversity is a contributor to the paradoxical find-
ing of disruptive variants in dosage-sensitive disease genes in osten-
sibly healthy individuals. In the gnomAD database, we identify 401 
high-quality pLoF variants that pass both sequencing and annotation 
quality filters in 61 haploinsufficient disease genes in which heterozy-
gous pLoF variants are established to cause severe developmental 
delay phenotypes with high penetrance (Methods). Given the severity 
of these phenotypes and their extremely low prevalence worldwide, 
ranging from 1 in 10,000 to less than 1 in a million, very few, if any true 
pLoF variants would be expected to be found in the gnomAD popula-
tion. As such, most or all of these observed pLoF variants are likely to 
be sequencing or annotation errors12. Manual curation of these variants 
reveals common error modes that result in probable misannotation of 
pLoFs, with diversity of transcript structure, mediated by variants fall-
ing on low-confidence transcripts, emerging as a major consideration 
(Fig. 1, Supplementary Fig. 1, Supplementary Tables 1–3). However, no 
existing tools systematically incorporate information on transcript 
expression into variant interpretation.

pext score summarizes isoform expression
The advent of large-scale transcriptome sequencing datasets, such 
as GTEx2, provides an opportunity to incorporate cross-tissue exon 
expression into variant interpretation. However, the current formats 
of these databases do not readily allow for unbiased estimation of exon 
expression. The GTEx web browser offers information on exon-level 
read pileup across tissues, but this approach is confounded by technical 
artefacts such as 3′ bias13 (preferential coverage of bases close to the 3′ 
end of a transcript) (Supplementary Fig. 2a). Such systematic biases 

mean that simple exon-level coverage in a transcriptome dataset can-
not be used as a reliable proxy for exon expression, especially in longer 
genes (Fig. 2a, Supplementary Fig. 2b).

Isoform quantification tools provide estimates of isoform expression 
levels that correct, albeit imperfectly13,14, for confounding by 3′ bias as 
well as other technical artefacts such as isoform length, isoform GC con-
tent, and transcript sequence complexity15–17. Here, we use isoform-level 
quantifications from 11,706 tissue samples from the GTEx v7 dataset to 
derive an annotation-specific expression metric. For each tissue, we 
annotate each variant with the expression of every possible consequence 
across all transcripts, which can be used to summarize expression in any 
combination of tissues of interest. We first compute the median expres-
sion of a transcript across tissue samples, and define the expression of 
a given variant as the sum of the expression of all transcripts for which 
the variant has the same annotation (Fig. 2a, Supplementary Fig. 3a). By 
normalizing the expression of the annotation to the total gene expres-
sion, we define a metric (proportion expression across transcripts, or 
‘pext’), which can be interpreted as a measure of the proportion of the 
total transcriptional output from a gene that would be affected by the 
variant annotation in question (Supplementary Fig. 3b).

The pext metric allows for quick visualization of the expression of 
exons across a gene. In Fig. 2b, transcript-expression based annotation 
is shown for TCF4, a haploinsufficient gene in which heterozygous 
variants result in Pitt–Hopkins syndrome18, a highly penetrant disor-
der associated with severe developmental delay. This gene contains 
20 unique high-quality pLoF mutations across 56 individuals in the 
gnomAD database. All 20 variants lie on exons with no evidence of 
expression across the GTEx dataset (Fig. 2b, Supplementary Fig. 4), 
which indicates that functional TCF4 protein can be made in the pres-
ence of these variants. This visualization is now available for all genes 
in the gnomAD browser (https://gnomad.broadinstitute.org), and can 
aid in the rapid identification of variants occurring on exons with little 
to no evidence of expression in GTEx.

Functional validation of pext
To explore whether expression-based annotation marks functionally 
important regions, we compared the distribution of the pext metric in 
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Fig. 1 | Curation of pLoF variants in haploinsufficient disease genes found 
in gnomAD reveals transcript errors as a major confounding error mode in 
variant annotation. We identified and manually curated 401 pLoF variants in 
the gnomAD dataset in 61 haploinsufficient severe developmental delay genes 
and flagged any reason the pLoF may not be a true LoF variant. Top, the 
frequency of each error mode present in the 306 variants classified as unlikely 

to be a true LoF. Transcript errors emerge as a major putative error mode in the 
annotation of these pLoF variants. Bottom, bee swarm plot shows the average 
pext score across GTEx tissues for each variant in the error categories. This 
shows that pext values are discriminately lower for variants that are annotated 
as possible transcript errors (P = 4.1 × 10−38, two-sided Wilcoxon test between 
transcript errors and other error modes).

https://gnomad.broadinstitute.org
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evolutionarily conserved and unconserved regions using phyloCSF19. 
Exons with patterns of multi-species conservation consistent with 
coding regions have higher phyloCSF scores, and should exhibit detect-
able expression patterns, whereas regions with lower scores will be 
enriched for incorrect exon annotations, which are expected to have 
little evidence of expression in a population transcriptome dataset. 
As expected, we observe significantly lower expression for uncon-
served regions, and near-constitutive expression in highly conserved 
regions (Fig. 3a, Supplementary Fig. 5a). This difference remains statis-
tically significant after correcting for exon length (logistic regression 
P < 1.0 × 10−100), which can influence both phyloCSF scores and isoform 
quantifications, indicating that transcript expression-aware annotation 
marks functionally relevant exonic regions.

Although the metrics are associated, we find that pext provides 
orthogonal information to conservation for variant interpretation. 
For example, regions with low evidence of conservation but high 
expression (Fig. 3a) are enriched for genes in immune-related path-
ways (Methods), which are selected for diversity but represent true 
coding regions. In addition, the pext value is higher for pLoF vari-
ants annotated as high confidence by the loss-of-function transcript 
effect estimator (LOFTEE) package1, with no additional flags than 
those flagged as having found on unlikely open-reading frames or 
weakly conserved regions (Fig. 3b, Supplementary Fig. 5b). How-
ever, high-confidence LOFTEE variants with no flags can also have 
low pext values, which suggests that transcript-expression-aware 
annotation adds additional information to the currently available 
interpretation toolkit.

We undertook manual evaluation of 128 regions marked as unex-
pressed (mean pext < 0.1 in all tissues and in GTEx brain) in 61 haploin-
sufficient genes following the GENCODE manual annotation workflow20 
to evaluate the annotation quality in these coding sequence (CDS) 
regions. One-third of flagged regions were associated with low-quality 
models that have been removed or switched to non-coding biotypes 
in subsequent GENCODE releases (Supplementary Fig. 6), and 70% of 
the remaining regions correspond to models that satisfy only mini-
mum criteria for inclusion in the gene set, corresponding to ‘putative’ 
annotations that lack markers for CDS functionality (Supplementary 
Table 4). Nonetheless, we find support for some highly conserved CDS 
regions, several of which show evidence of transcription in fetal tissues, 
underlining the importance of incorporating several isoform expres-
sion datasets for interpretation (Supplementary Fig. 6d).

Non-synonymous variants found on constitutively expressed regions 
would be expected to be more deleterious than those on regions with 
no evidence of expression. To test this, we defined expression bins 
based on the average pext value across GTEx tissues, in which an aver-
age pext value less than 0.1 was defined as low (or unexpressed), above 
0.9 as high (or near-constitutive) and intermediate values as medium 
expression. We compared the mutability-adjusted proportion sin-
gleton (MAPS), a measure of negative selection on variant classes21, 
partitioned on the loss-of-function observed/expected upper-bound 
fraction (LOEUF) decile, a measure of constraint against pLoF variants in 
the gnomAD dataset1 in each of these expression bins. MAPS scores dif-
fered substantially between pLoF variants found on low-expressed and 
high-expressed regions in genes intolerant to pLoF variation (Fig. 3c, 
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Fig. 2 | Summary of transcript-expression based annotation method.  
a, Overview of transcript-aware annotation. Most genes have many annotated 
isoforms, which can have varying expression patterns across tissues. Using the 
number of reads aligning to exonic regions in transcriptome datasets as a 
proxy for exon expression (top, black) has confounding effects, due to 3′ bias. 
In this example, although exons 3 and 8 have markedly different expression 
levels in brain cortex, the number of reads aligning to the two exons is similar, 
and this masks the differences in exon usage. Transcript-aware annotation 

defines the expression of every variant as the sum of transcripts that have the 
same annotation. The resulting transcript-level expression plots do not exhibit 
3′ bias, and reveal differences in exon usage, such as those in exons 3 and 8, 
across tissues. b, Example of utility of transcript-expression based annotation. 
There are 20 high-quality pLoF variants in the haploinsufficient developmental 
delay gene TCF4 in gnomAD, annotated as dashed lines and arrows. All 20 
variants have no evidence of expression in the GTEx dataset, which suggests 
that functional TCF4 protein can be made in the presence of these variants.
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Supplementary Fig. 5c, Supplementary Table 5a, b). This informa-
tion is complementary to existing variant prioritization tools such as 
PolyPhen-222 (Supplementary Fig. 5d, Supplementary Table 5c). This 
skew of non-synonymous variation in high-expressed regions suggests 
that variation arising in such exons tends be more deleterious, whereas 
non-synonymous variants on regions with low expression are similar 
to missense variants in their inferred deleteriousness.

Use of pext in variant interpretation
To evaluate the utility of transcript expression-based annotation in 
Mendelian variant interpretation, we assessed the number of variants 
that would be filtered based on a pext cut-off value of less than 0.1 (low 
expression) across GTEx tissues for three gene sets. First, we evaluated 
high-quality pLoF variants in the 61 manually curated haploinsufficient 
genes in gnomAD and ClinVar23. The low pext expression bin resulted in 
filtering of 22.8% of pLoF variants in haploinsufficient developmental 
delay genes in gnomAD, but only 3.8% of high-quality pathogenic vari-
ants in ClinVar (P = 4.7 × 10−35) (Fig. 4a, Methods). We next compared 
pLoF variants in autosomal recessive disease genes found in a homozy-
gous state in at least one individual in gnomAD and any pLoF variant in 
these genes in ClinVar and observed similar results: expression-based 
annotation filters 30.0% of variants in gnomAD while only filtering 3.2% 
of variants in ClinVar (Fig. 4b) (P = 3.5 × 10−61).

Finally, we evaluated gnomAD pLoF variants in genes that are con-
strained against pLoF variation1 (LOEUF score < 0.35). Given that 
these genes are depleted for loss-of-function variation in the general 
population, we expect the observed pLoF variants in these genes to 

be enriched for annotation errors. We compared the proportion fil-
tered to synonymous variants in the same genes, which we expect to 
be randomly distributed. Our metric removes 16.8% of pLoF variants 
in constrained genes, but only 5.2% of synonymous variants (Fig. 4c) 
(P < 1.0 × 10−100). In all cases, the vast majority of filtered variants were 
otherwise high-confidence with no LOFTEE annotation flags, which 
suggests again that pext provided additional information to existing 
variant prioritization tools in removing annotation errors (Supple-
mentary Fig. 7).

Use of pext in burden testing
To explore the benefits of this approach for rare variant analysis, we 
applied pext binning to burden testing of de novo variants in patients 
with developmental delay/intellectual disability (DD/ID) or autism spec-
trum disorder (ASD) using a set of 23,970 de novo variants collated from 
several studies including the Deciphering Developmental Disorders 
(DDD) project and the Autism Sequencing Consortium (ASC)24–29. We 
find that de novo pLoF variants in patients with DD/ID in low-expressed 
regions have similar effect sizes to those of synonymous variants (rate 
ratio of low-expressed pLoFs = 1.08, P = 0.90), whereas pLoF variants in 
highly expressed regions have much larger effect sizes (rate ratio = 4.64, 
P = 3.74 × 10−38) (Fig. 5a). This observation is consistent for de novo 
variants in autism (rate ratio for low-expressed pLoFs = 0.80, P = 0.47; 
rate ratio for high-expressed pLoFs = 2.11, P = 8.2 × 10−8) (Fig. 5b) and 
congenital heart disease with co-morbid neurodevelopmental delay 
(Supplementary Fig. 8a) as well as rare variants (allele count ≤ 10) identi-
fied in highly constrained genes in the large iPSYCH case–control study 
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Fig. 3 | Functional validation of transcript-expression based annotation.  
a, We define highly conserved and unconserved regions as phyloCSF > 1,000 
(n = 9,817) and phyloCSF < −100 (n = 11,860), respectively, and compare the 
expression status of these regions across GTEx. Regions with high phyloCSF 
scores are enriched for near-constitutive expression, whereas unconserved 
regions are enriched for little to no usage across GTEx. This difference is 
significant after correcting for gene length (logistic regression P < 1 × 10−100). 
We note that unconserved regions with high levels of expression (pext > 0.9) 
are enriched for immune-related genes, which are selected for diversity  
and thus have low conservation, but represent true coding regions.  
b, Transcript-expression based annotation recapitulates, and adds information 
to, existing interpretation tools. High-confidence pLoF LOFTEE variants in 
gnomAD with no flags (n = 458,880) are enriched for higher pext values, 
whereas high-confidence pLoF variants falling on low phyloCSF (n = 44,373) or 

unlikely open-reading frame regions (n = 2,437) are enriched for low 
expression. However, high-confidence pLoF variants can also have a low pext 
score. Variants flagged falling on regions that are unlikely open-reading frame 
or have weak conservation are enriched for lower pext values. Red dots denote 
the median pext value across GTEx, c, Non-synonymous variants found on 
near-constitutive regions tend to be more deleterious. We compared the MAPS 
score for variants with low (<0.1), medium (0.1 ≤ pext ≤ 0.9) and high (pext > 0.9) 
expression. Variants with near-constitutive expression have a higher MAPS 
score, which indicates higher deleteriousness than those with little to no 
evidence of expression. Points represent MAPS values and error bars denote 
the 95% confidence interval. Dashed grey and orange lines represent MAPS 
values for all gnomAD missense and synonymous variants, respectively. The 
number of variants evaluated per category and unadjusted proportion 
singleton values can be found in Supplementary Table 5a.
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of Danish patients with autism spectrum disorder and attention-deficit/
hyperactivity disorder (Supplementary Fig. 8b). Overall, we consist-
ently observe low-expressed pLoFs to have effect sizes similar to those 
of synonymous variants, with pLoF variants in constitutive regions 
having larger effect sizes, which suggests that incorporating transcript 
expression-aware annotation in rare variant studies can boost power 
for gene discovery.

Discussion
We have described the development and validation of a transcript 
expression-based annotation framework to integrate results from 
transcriptome sequencing experiments into clinical variant interpre-
tation. Although our initial analysis uses GTEx, our method can be 
used with any isoform expression dataset to annotate any variant file 
rapidly in the scalable software framework Hail (https://hail.is). For 
example, annotation of more than 120,000 gnomAD individuals with 
GTEx takes under an hour using 60 cores, at a cost of about US$5 on 
public cloud compute, which can be further scaled to larger datasets. 
In addition, the annotations we provide are flexible: although we have 
described the use of average transcript-level expression across many 

tissues, alternative approaches such as using maximum expression 
across any tissue may prove useful depending on variant interpretation 
goals (Supplementary Figs. 9, 10).

We note that although this metric successfully discriminates between 
near-constitutive and low expression levels, which are useful for pri-
oritizing and filtering variants, respectively, regions with interme-
diate expression levels are more challenging to interpret. However, 
we hypothesize directed analyses of intermediate expression levels 
may help to determine the role of alternative splicing in phenotypic 
diversity30,31. In addition, although we have binned average pext scores 
across GTEx tissues into low, medium and high expression, different 
genes will probably have varying optimal tissues and thresholds for 
variant interpretation. Regions tagged as low expression are often cor-
roborated by expert opinion of CDS curation, but domain knowledge 
of a gene will outperform this summary metric.

An important caveat in our approach is the imprecision of isoform 
quantification methods using short-read transcriptome data. However, 
we note that repeating key analyses in the manuscript with a different 
isoform quantification tool showed consistent results (Methods, Sup-
plementary Fig. 11, Supplementary Table 6), suggesting robustness to 
the precise pipeline used. The utility of this framework will increase 
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as our ability to quantify isoform expression across tissues improves, 
including refinement of methods and gene models, as well as availability 
of long-read RNA-sequencing data from human tissues. In addition, the 
improvement of single-cell RNA-seq technologies and the generation 
of data across human tissues will provide insight into cell type-specific 
exon usage for incorporation into variant interpretation32.

The code used to generate pext is available as open source software 
(https://github.com/macarthur-lab/tx_annotation). In addition, we 
provide a precomputed file of the transcript expression value for every 
possible single nucleotide variant in the human genome. This metric 
has already proven useful in variant curation for the identification of 
drug targets33 and for filtering variants for the identification of human 
knockouts1. Overall, our metric can be incorporated into variant inter-
pretation in Mendelian disease pipelines, analyses of rare variant bur-
den, and the prioritization of variants for recall-by-genotype studies.

Online content
Any methods, additional references, Nature Research reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code 
availability are available at https://doi.org/10.1038/s41586-020-2329-2.
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Methods

Data reporting
No statistical methods were used to predetermine sample size. The 
experiments were not randomized, and investigators were not blinded 
to allocation during experiments and outcome assessment.

Curation of pLoF variants in haploinsufficient developmental 
disease genes
To identify haploinsufficient developmental delay genes, we selected 
genes curated by the ClinGen Dosage Sensitivity Working Group34 
58 of the 61 genes had a score of 3 with sufficient evidence for patho-
genicity, whereas two genes (CHAMP1, CTCF) had a score of 2 (some 
evidence) and one gene (RERE) was not yet scored. The penetrance of 
pathogenic variants in each gene was reviewed in the literature, and 
only genes with more than 75% reported penetrance were included. 
These conditions are those too severe to expect to see an individual 
in gnomAD (probably unable to consent for a study without guardian-
ship). The 61 genes include 50 autosomal genes of high severity and high 
penetrance and 11 genes on chromosome X in which the phenotype 
is expected to be severe or lethal in males and moderate to severe in 
females. The resulting gene list is available at gs://gnomad-public/
papers/2019-tx-annotation/data/gene_lists/HI_genes_100417.tsv.

We extracted pLoF variants, defined as essential splice acceptor, 
essential splice donor, stop-gained, and frameshift variants, identified 
in the 61 haploinsufficient disease genes from the gnomAD v2.1.1 exome 
and genome sites tables, and considered only those pLoF variants that 
passed random forest filtering in the gnomAD dataset, and were anno-
tated as high confidence by LOFTEE v1.0. Of 61 genes, 55 had at least one 
high-quality pLoF available in gnomAD. We performed manual curation 
of 401 pLoF variants using a web-based curation portal to identify any 
reason a pLoF may have been a variant calling or annotation error, and 
categorized the likelihood of each variant being a true LoF.

Evidence for classifying an LoF variant as artefactual was categorized 
into the following groups: mapping error, strand bias, reference error, 
genotyping error, homopolymer sequence, in-frame multi-nucleotide 
variant or frame-restoring indel, essential splice site rescue, minority 
of transcripts, weak exon conservation, last exon, and other annota-
tion error. All possible reasons also to reject a LoF consequence were 
flagged, even when a single criterion would categorize the variant as not 
LoF. Variants were then categorized as LoF, probable LoF, probably not 
LoF, and not LoF based on criteria outlined in Supplementary Table 2. 
Supplementary Fig. 1a shows the distribution of the LoF verdicts for 
the 401 pLoF variants.

Technical errors comprised genotyping errors, strand biases, refer-
ence errors, and repetitive regions that could be detected by visual 
inspection of reads in the Integrative Genomics Viewer35 (IGV) and 
from the UCSC genome browser36. Genotyping errors comprised 
skewed allele balances (conservative cutoff of ≤ 35%), low complex-
ity sequences, GC-rich regions, homopolymer tracts (≥6 base pairs 
or ≥ 6 trinucleotide repeats) and low quality metrics (genotype quality 
< 20). Strand bias was flagged when a variant was skewed preferen-
tially on the forward or reverse strand, or when the majority (>90%) 
of a given strand covered a region; this was often observed around 
intron–exon boundaries. Strand biases despite balanced coverage 
of the forward and reverse strands were weighted towards prob-
ably not LoF, whereas a strand bias due to skewed strand coverage 
was weighted alongside other genotyping errors. Reference errors 
were uncommon, but identified by a small deletion in a given exon, 
posing as a <5-base-pair intron. Most genotyping errors and strand 
biases in isolation were not deemed critical in deciding whether a 
variant was probably not LoF or not LoF, with the exception of allele 
balance ≤25%. Mapping errors were often identified by an enrichment 
of complex variation surrounding a variant of interest. Furthermore, 
the UCSC browser was used to highlight mapping discrepancies, such 

as self-chain alignments, segmental duplications, simple tandem 
repeats, and microsatellite regions.

In-frame multi-nucleotide variants (MNVs), essential splice site 
rescue, and frame-restoring insertion-deletions are rescue events 
that are predicted to restore gene function. MNVs were visualized 
in IGV and cross checked with codons from the UCSC browser; in 
frame MNVs that rescued stop codons were scored as not LoF. Essen-
tial splice site rescue occurs when an in frame alternative donor or 
acceptor site is present, which probably has a minimal effect on the 
transcript. A total of 36 base pairs upstream and downstream of the 
splice variant were assessed for splice site rescue. Cryptic splice sites 
within 6 base pairs of the splice variant were considered a complete 
rescue, rendering the variant not LoF. Rescue sites >6 base pairs 
away but within ±20 base pairs were weighted with less confidence, 
scoring as probably not LoF. All potential splice site rescues were 
validated using Alamut v.2.11 (https://www.interactive-biosoftware.
com/alamut-visual/). Frame-restoring indels were identified by 
scanning approximately ±80 base pairs from the annotated indel 
and counting any insertions/deletions to assess if the frame would 
be restored.

Transcript errors encompass issues surrounding alternative tran-
scripts, variants within a terminal coding exon, poorly conserved 
exons, and re-initiation events. Coding variants that occupied the 
minority (<50%) of NCBI coding RefSeq transcripts for a given gene 
were considered not LoF. These variants often affected poorly con-
served exons, as determined by PhyloP37, PhyloCSF19 and visualiza-
tion in the UCSC browser36. The only exceptions to the minority of 
transcript criteria were cases where the exon was well conserved, 
which relegated the categorization to probably not LoF. Variants 
within the last coding exon, or within 50 base pairs of the penultimate 
coding exon were also considered not LoF, unless 25% < x < 50% of the 
coding sequence was affected, in which case the variant was deemed 
probably not LoF. If >50% of the coding sequence was disrupted by a 
variant in the last exon, this was deemed probably LoF. Other tran-
script errors included: re-initiation errors; upstream stop codons of 
a given LoF variant; variants that fell on exactly 50% of coding RefSeq 
transcripts; and/or partial exon conservation. Re-initiation events 
were flagged when a methionine downstream of the variant in the 
first coding exon was predicted to restart transcription, and were pre-
dicted to be probably not LoF. Variants occurring after a stop codon 
in the last coding exon were considered not LoF, particularly across 
the region of the exon or transcript in question. Error categories 
were grouped for Fig. 1 as follows: Minority of transcripts and weak 
exon conservation were grouped as transcript errors, genotyping 
errors and homopolymers as sequencing errors, essential splice 
rescue and MNV grouped as rescue and strand bias was included in 
other annotation errors.

The criteria above were strictly adhered throughout and manual cura-
tion was performed by two independent reviewers to ensure maximum 
consistency and minimize human error. Any discordance in curation 
was re-curated by both curators together and resolved. Full results of 
manual curation are available in Supplementary Table 3.

Calculation of transcript-expression aware annotation
We first imported the GTEx v7 isoform quantifications into Hail and 
calculated the median expression of every transcript per tissue. This 
precomputed summary isoform expression matrix is available for GTEx 
v7 in gs://gnomad-public/papers/2019-tx-annotation/data/GRCH37_
hg19/. We also import and annotate a variant file with the Variant Effect 
Predictor (VEP) version 8538 against Gencode v1920, implemented in 
Hail with the LOFTEE v1.0 plugin.

We use the transcript consequences VEP field to calculate the sum of 
isoform expression for variant annotations, that is, the annotation-level 
expression across transcripts (ext). For variants that have multiple con-
sequences for one transcript (for example, a single nucleotide variant 
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that is both a missense and a splice region variant on one transcript) we 
use the worst consequence, ordered by VEP (in this example, missense 
takes precedence over splice region). We filter the consequences to 
those only occurring on protein coding transcripts. Full ordering of the 
VEP consequences is available at: useast.ensembl.org/info/genome/
variation/prediction/predicted_data.html

We then sum the expression of every transcript per variant, for every 
combination of consequence, LOFTEE filter, and LOFTEE flag for every 
tissue (Supplementary Fig. 3a). For example, if a single nucleotide vari-
ant is synonymous on ENST1, a high-confidence LOFTEE stop-gained 
variant on ENST3 and ENST4, and low-confidence LOFTEE stop-gained 
variant on ENST5 and ENST6, the ext values will be synonymous: 
ENST1, stop-gained high-confidence: ENST3 + ENST4, and stop-gained 
low-confidence: ENST5 + ENST6 per tissue. This can be computed with 
the tx_annotate() function by setting the tx_annotation_type to ‘expres-
sion’. We foresee the non-normalized ext values to be useful when only 
considering one tissue of interest.

To allow for taking average expression values across tissues of inter-
est, we normalize the expression value for a given value to the total 
expression of the gene on which the variant is found. This is carried out 
by dividing the ext value with the sum of the expression of all transcripts 
per tissue in transcripts per million (TPM) (Supplementary Fig. 3b). 
The resulting pext value can be interpreted as the proportion of the 
total transcriptional output from a gene that would be affected by the 
given variant annotation in question. If the gene expression value (and 
thus the denominator) in a given tissue is 0, the pext value will not be 
available (NA) for that tissue.

When taking averages across tissues, such unavailable pext values 
are not considered (that is, when taking the mean across tissues, we 
remove NA values). This value can be computed with the tx_annotate() 
function by setting the tx_annotation_type to ‘proportion’. For the 
analyses in this manuscript, we remove reproduction-associated GTEx 
tissues (endocervix, ectocervix, fallopian tube, prostate, uterus, ovary, 
testes and vagina), cell lines (transformed fibroblasts and transformed 
lymphocytes) and any tissue with less than 100 samples (bladder, brain 
Cervicalc-1 spinal cord, brain substantia nigra, kidney cortex and minor 
salivary gland), resulting in the use of 38 GTEx tissues.

We note that for a minority of genes, when RSEM15 assigns higher 
relative expression to non-coding transcripts, the sum of the value 
of coding transcripts can be much smaller than the gene expression 
value for the transcript, resulting in low pext scores for all coding 
variants in the gene, and thus resulting in possible filtering of all 
variants for a given gene. In many cases this seems to be the result of 
spurious non-coding transcripts with a high degree of exon overlap 
with true coding transcripts. To prevent this artefact from affecting 
our analyses, we first calculated the maximum pext score for all vari-
ants across all protein-coding genes, and removed any gene where 
the maximum pext score was below 0.2. This resulted in the filtering 
of 668 genes, representing 3.3% of all genes analysed. We note that 
there is no overlap with the 668 genes and the haploinsufficient gene 
list, 97 of the filtered genes are present in OMIM (representing 1.5% 
of the OMIM gene list) and 42 filtered genes are considered con-
strained (representing 1.4% of LOEUF <0.35, or constrained, genes) 
thus having low effect on variant interpretation in the context of 
disease associations.

The full transcript-expression aware annotation pipeline, 
implemented in Hail 0.2, is fully available at https://github.com/
macarthur-lab/tx_annotation with commands laid out for analyses in 
the manuscript. Passing a Hail table through the tx_annotate() func-
tion returns the same table with a new field entitled ‘tx_annotation’ 
which provides either the ext or pext value per variant-annotation 
pair, depending on parameter choice. We provide a helper function to 
extract the worst consequence and the associated expression values 
for these annotations. All analyses in the manuscript are based on the 
worst consequence of variant, ordered by VEP38.

Functional validation of transcript-expression aware 
annotation
Conservation analysis was performed using phyloCSF scores using 
the same file used for the LOFTEE plugin, available publicly in gs://
gnomad-public/papers/2019-tx-annotation/data/other_data/phylocsf_
data.tsv.bgz . We denoted exons with a phyloCSF max open-reading 
frame score >1,000 as highly conserved and those with phyloCSF max 
open-reading frame score <−100 as lowly conserved (Supplementary 
Fig. 5a) and evaluated their average usage in GTEx.

Using the base-level pext values that are used in the gnomAD browser, 
we filtered to intervals with high or low conservation, and calculated 
the average pext value in the interval. To evaluate regions with low 
conservation but high expression, we identified genes harbouring 
unconserved regions with the pext value >0.9 for pathway enrichment 
analysis and used the web browser for FUMA GENE2FUNC feature39, 
which incorporates Reactome40, KEGG41, Gene Ontology42 (GO) as well 
as other ontologies. Default parameters were used for FUMA, with all 
protein coding genes as the background list. Results from FUMA path-
way analysis are available in Supplementary Fig. 12, and full results are 
available in Supplementary Table 7.

Analysis of pext values for LOFTEE flags and the MAPS calculation 
were performed using the gnomAD v2.1.1 exome dataset. Calculation 
of MAPS scores was previously described21 and is implemented as a Hail 
module, as also described previously1. MAPS is a relative metric, and 
cannot be compared across datasets, but is a useful summary metric 
for the frequency spectrum, indicating deleteriousness as inferred 
from rarity of variation (high values of MAPS correspond to lower fre-
quency, suggesting the action of negative selection at more deleterious 
sites). The MAPS scores were calculated on the gnomAD v.2.1.1 dataset 
partitioning upon the LOEUF score and expression bin. The script for 
generating MAPs scores is available in the tx-annotation Github reposi-
tory under /analyses/maps/maps_submit_per_class.py

Manual evaluation of unexpressed regions in haploinsufficient 
developmental delay genes using the GENCODE workflow
As an orthogonal evaluation of regions flagged as unexpressed with 
the pext metric, we identified any region in 61 haploinsufficient disease 
genes with a mean pext value <0.1 in all GTEx tissues and in GTEx brain 
samples, owing to the relevance of brain tissues for these disorders, 
regardless of mutational burden in gnomAD. The resulting list of 128 
regions was evaluated by the HAVANA manual annotation group of 
the GENCODE project20.

The manual evaluation first established whether the transcript model 
corresponding to the region in question was correct in terms of struc-
ture, comparing exon–intron combinations, and the accuracy of splice 
sites against the RNA evidence supporting the model. Second, the func-
tional biotype of each model was reassessed; in particular, whether the 
decision to annotate the model as protein-coding in GENCODE v19 was 
appropriate. Note that GENCODE models that incorporate alternative 
exons or exon combinations in comparison to the ‘canonical’ isoform 
are likely to be annotated as coding if they contain a prospective CDS 
that is considered biologically plausible, based on a mechanistic view 
of translation. These re-annotations are summarized in Supplementary 
Table 5.

We binned cases into three main categories, according to confi-
dence in both the accuracy and potential functional relevance of the 
overlapping models: (1) ‘error’, in which the model was seen to have 
an incorrect transcript structure and/or a CDS that conflicted with 
updated GENCODE annotation criteria (these annotations had been 
or will be changed in future GENCODE releases based on this evalu-
ation); (2) ‘putative’, in which the model structure and CDS satisfied 
our current annotation criteria, although we judged the potential 
of the transcript represented to encode a protein with a functional 
role in cellular physiology to be nonetheless speculative (these have 
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been maintained as putative protein-coding transcripts in GENCODE);  
(3) ‘validated’, in which we believe it is highly probable that the model 
represents a true protein-coding isoform. High confidence in the 
validity of the CDS was based on comparative annotation, that is, the 
observation of CDS conservation and also the existence of equivalent 
transcript models in other species. GENCODE also annotates transcript 
models as ‘nonsense-mediated decay’ and ‘non-stop decay’, in which a 
translation is found that is predicted to direct the RNA molecule into 
cellular degradation programs. Although it has been established that 
such ‘non-productive’ transcription events can have a role in gene 
regulation and thus disease, the interpretation of variants within 
nonsense-mediated decay and non-stop decay CDS regions remains 
challenging43. These models were therefore classed in a separate cat-
egory.

Gene list comparisons
To evaluate the filtering power of the pext metric for Mendelian vari-
ants, we evaluated the number of variants that would be filtered with 
an average GTEx pext cutoff of 0.1 (low expression) in the ClinVar and 
gnomAD datasets. We downloaded the ClinVar VCF from the ClinVar 
FTP (version dated 10/28/2018), imported it into Hail, annotated it with 
VEP v85 against Gencode v19, and added pext annotations with the 
tx_annotate() function. All evaluated variants were annotated as HC 
by LOFTEE v1.0, and ClinVar variants were filtered to those marked as 
pathogenic, with no conflicts, and reviewed with at least one star status.

For variants in 61 haploinsufficient genes, we identified any variant 
identified in at least one individual with any zygosity in both datasets. 
For variants identified in autosomal recessive disease genes, we used a 
list of 1,183 OMIM disease genes deemed to follow a recessive inherit-
ance pattern by Blekhman et al.44 and Berg et al.45 (available as https://
github.com/macarthur-lab/gene_lists/blob/master/lists/all_ar.tsv). We  
compared the pext value for all pLoF variants identified in ClinVar versus  
any variant in a homozygous state in at least one individual in the gnomAD  
exome or genome datasets. Finally, we used a LOEUF cutoff of 0.35 to 
denote constrained genes, and compared any synonymous or pLoF 
variant in these genes in the gnomAD exome or genome datasets.

De novo and rare variant analysis
De novo variants were collated from previously published studies. We 
collected de novo variants identified in 5,305 probands from trio stud-
ies of intellectual disability/developmental disorders (Hamdam et al.27: 
n = 41, de Ligt et al.28: N = 100, Rauch et al.29: N = 51, DDD24: n = 4,293, 
Lelieveld et al.26: n = 820), 1,073 probands with congenital heart dis-
ease with co-morbid developmental delay (Sifrim et al.46: n = 512, Chih 
Jin et al.47: 561), 6,430 ASD probands, and 2,179 unaffected controls 
from the Autism Sequencing Consortium25. We also used a previ-
ously published dataset of variants in 8,437 cases with ASD and/or 
attention-deficit/hyperactivity disorder and 5,214 controls from the 
Danish Neonatal Screening Biobank48. In this analysis, we analysed pLoF 
variants identified in highly constrained genes (first LOEUF decile) with 
a combined total allele count of ≤ 10 in cases and controls.

We annotated both de novo and rare variants with VEP v85 against 
Gencode v19 and added pext annotations with the tx_annotate() func-
tion. We then calculated the average pext metric across 11 GTEx brain 
samples and binned them as low (pext < 0.1), medium (0.1 ≤ pext ≤ 0.9) 
or high (pext > 0.9) expression. We then calculated the number of pLoF, 
missense, and synonymous variants per pext expression bin. To obtain 
case-control rate ratios and the 95% confidence intervals for de novo 
variant analyses, we used a two-sided Poisson exact test on counts. To 
obtain the odds ratio for the rare variant analysis in ASD/ADHD, we 
used the Fisher’s exact test for count data.

Isoform quantifications via salmon
To evaluate whether use of a different isoform quantification tool 
would affect results, we compared results of TCF4 base-level expression 

(shown in Fig. 2b), MAPS (Fig. 3c) and comparison of the number of 
variants filtered in haploinsufficient developmental disease genes in 
ClinVar vs gnomAD (Fig. 4a) using RSEM quantifications used in this 
study with quantifications using salmon v.0.1217. Due to the intracta-
bility of re-quantifying the entire GTEx dataset, we downloaded and 
requantified 151 GTEx brain cortex CRAM files from the V7 dataset. 
We first converted CRAMs to fastq files using Picard 2.18.20 and ran 
salmon with the ‘salmon quant –i index -fastq1 – fastq2 –minAssigned-
Frag1 –validateMappings’ command. The index was created with the 
‘salmon index –t transcript.fa –type quasi –k 31’ command using the 
GENCODE v19 protein-coding and lncRNA transcripts FASTA files. The 
existing GTEx RSEM isoform quantifications were filtered to the same 
GTEx brain cortex samples. For the analyses to remain consistent with 
the remainder of the manuscript, we calculated the maximum brain 
cortex pext score for all variants across all protein-coding genes for 
both the RSEM and salmon quantifications, and removed any gene in 
which the maximum pext score was below 0.2. This resulted in filtering 
325 genes from the salmon quantification of the brain cortex samples 
and 691 genes from the RSEM quantification, corresponding to 3.4 and 
1.6% of quantified genes, respectively. We filtered these genes in both 
the MAPs and gene list comparison analysis seen in Supplementary 
Fig. 11. The WDL script for the quantification pipeline is available at: 
gs://gnomad-public/papers/2019-tx-annotation/results/salmon_rsem/
salmon.wdl and the commands to obtain results for each individual 
analysis in the tx-annotation Github repository under /analyses/rsem_
salmon/.

Transcript expression aware annotation with fetal isoform 
expression dataset
Although our analyses were based on transcript expression aware 
annotation from the GTEx v7 dataset, we provide necessary files for 
pext annotation with the Human Brain Development Resource (HBDR) 
fetal brain dataset49 in gs://gnomad-public/papers/2019-tx-annotation/
data/HBDR_fetal_RNaseq. HBDR includes 558 samples from varying 
brain subregions across developmental time points. We downloaded 
HDBR sample fastq files from European Nucleotide Archive (study 
accession PRJEB14594) and obtained RSEM isoform quantification 
on HBDR fastqs using the GTEx v7 quantification pipeline, publicly 
available at https://github.com/broadinstitute/gtex-pipeline/) which 
briefly involves two-pass alignment with STAR v2.4.2a50 and isoform 
quantification with RSEM v1.2.22. Here, we also removed genes where 
the average pext across HBDR was below 0.2, resulting in the removal 
of 712 genes (3.5% of all analysed genes). The dataset was also used for 
the analysis of baselevel expression values in SCN2A shown in Sup-
plementary Fig. 7d.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
We used the gnomAD v.2.1.1 sites Hail 0.2 (https://hail.is) table that is 
accessible publicly at gs://gnomad-public/release/2.1.1 and at https://
gnomad.broadinstitute.org. The GTEx v7 gene and isoform expression 
data were downloaded from the GTEx portal (gtexportal.org). The 
LOEUF constraint file was downloaded from gs://gnomad-resources/
lof_paper/. All files used in the analyses in the manuscript are available 
in gs://gnomad-public/papers/2019-tx-annotation/.

Code availability
The GTEx pipeline for isoform quantification is available publicly 
(https://github.com/broadinstitute/gtex-pipeline/) and briefly involves 
two-pass alignment with STAR v2.4.2a50, gene expression quantification 
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with RNA-SeQC v1.1.851, and isoform quantification with RSEM v1.2.22. 
Variants used in all gnomAD analyses in the manuscript passed random 
forest filtering, and all pLoF variants were annotated as high-confidence 
by LOFTEE v.1.0, which is described in an accompanying manuscript1. 
Scripts to quality control the gnomAD dataset are available at https://
github.com/macarthur-lab/gnomad_qc and the scripts to generate files 
for the analyses are available at https://github.com/macarthur-lab/
tx_annotation.
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All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

All datasets are described in the manuscript or Supplementary Information, including deposition of the full dataset at https://gnomad.broadinstitute.org. Data for 
specific analyses are available publicly at gs://gnomad-public/papers/2019-tx-annotation/ and the specific folders therein for analyses are referenced in the 
manuscript for ease of recreating analyses with the data provided. There are no restrictions on the aggregate data released.
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size This study provides a framework and tool to improve variant interpretation in datasets of any size, no matter how small or large. As a proof of 
principle, we use one of the largest datasets of human genetic variation, gnomAD and the largest functional genomics dataset GTEx. In other 
words, this study is opportunistic, and involves secondary use of available genome, exome and transcriptome data. No sample size was 
predetermined. 

Data exclusions Sample QC and variant QC for gnomAD are described extensively in the supplementary methods of the main manuscript. Notably, individuals 
with severe pediatric disease, and known first disease relatives of those with severe pediatric disease were excluded. For the analyses in the 
manuscript, we removed GTEx tissues with low sample numbers, reproductive tissue and non-tissues (ie. cell lines). For the purpose of our 
manuscript, we did not define pre-exclusion criteria for calculation of pext. However for the analyses in the manuscript, we defined pre-
exclusion tissues : we removed reproduction-associated GTEx tissues (endocervix, ectocervix, fallopian tube, prostate, uterus, ovary, testes, 
vagina), cell lines (transformed fibroblasts, transformed lymphocytes) and any tissue with less than one hundred samples (bladder, brain 
Cervicalc-1 spinal cord, brain substantia nigra, kidney cortex, minor salivary gland) . This is explained in the Methods section of the manuscript. 

Replication We did not attempt to reproduce any findings in a separate but identical dataset, as no other data set of comparable size exists. However we 
replicate key findings with a seperate isoform quantification tool. We successfully replicate the MAPS results, shown in Supplementary Figure 
11. We also use an external fetal dataset to provide additional data.

Randomization As this was a population-based study, and not a case-control study, no randomization was performed.

Blinding As this was a population-based study, and not a case-control study, blinding was not relevant.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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Human research participants
Policy information about studies involving human research participants

Population characteristics As an opportunistic collection of data, the participants in this study were not selected based on age, gender, or genotypic 
information. As described above, individuals with severe pediatric disease, and known first disease relatives of those with severe 
pediatric disease were excluded from gnomAD. As an opportunistic collection of data, the participants in gnomAD were not 
selected based on age, gender, or genotypic information.  The populations are provided in Supplementary Table 7 of the 
accompanying Karczewski et al., and there are 64,754 females and 76,702 males. These data were obtained primarily from case-
control studies of adult-onset common diseases, including cardiovascular disease, type 2 diabetes, and psychiatric disorders. 
 
GTEx v7 collection was similarly opportunistic and has been previously extensively published and reported on. Population 
characteristics of the data can be found in Reference 2 : GTEx Consortium et al., Genetic effects on gene expression across 
human tissues. Nature 550, 204 (2017).

Recruitment As this was an opportunistic secondary use study, we did not recruit any participants.

Ethics oversight This study was overseen by the Broad Institute’s Office of Research Subject Protection and the Partners Human Research 
Committee, and was given a determination of Not Human Subjects Research.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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