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Abstract

The linear stability and nonlinear dynamics of viscoelastic liquid films flowing down inclined

surfaces with sinusoidal topography are investigated. The Oldroyd-B constitutive model is used, and

numerical solutions of a long-wave nonlinear evolution equation for the film thickness (introduced

by Davalos-Orozco[1]) provide insight into the influence of elasticity and wall topography on the

nonlinear film dynamics, while Floquet analysis of the linearized evolution equation is used to study

the onset of linear instability. Focusing initially on inertialess films (with zero Reynolds number),

linear stability results are organized into three regimes based on the wall wavelength. For su�ciently

short and su�ciently long wall wavelengths, the onset of instability is not tangibly a↵ected by the

topography. There is, however, an intermediate range of wavelengths where, as the wall wavelength

is increased, the critical Deborah number for the onset of instability first decreases (topography is

destabilizing) and then increases su�ciently for topography to be stabilizing (relative to the flat

wall). Solutions to a perturbation amplitude equation indicate that the character of the instability

changes substantially within this intermediate range; topography induces streamwise variations

in the base-state velocity at the free surface which couple with perturbations and substantially

influence the instability growth rate. Very similar trends are observed for Newtonian films and

variations in the critical Reynolds number. Simulations of the full nonlinear evolution equation

produce a broad range of nonlinear states including traveling waves, time-periodic waves, and

chaos. Perturbations to the film generally saturate at higher amplitudes for cases with larger

linear growth rates (e.g. with increasing Deborah number or for a destabilizing wall wavelength),

and topography introduces finer temporal scales in the dynamics. The qualitative influences of

inclination and inertia on the nonlinear dynamics are shown to be simply related to the influence

of elasticity using analytical linear stability results for the flat-wall case.
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I. INTRODUCTION

Gravity–driven liquid film flows are relevant to a number of important industrial appli-

cations and coating processes. These processes generally require careful control of the film

thickness, process speed, and final material properties[2]. Accordingly, the dynamics of films

on flat surfaces have been extensively studied. Early investigators found that gravity–driven

Newtonian films become linearly unstable if the Reynolds number is su�ciently large[3],

and the subsequent development of nonlinear waves from this inertial instability has also

been a topic of substantial interest (see the monograph by [4] and the reviews by [5] and

[6]). There has been a specific focus on the dynamics of long nonlinear waves in flows with

large surface tension where the governing equations can be substantially simplified using the

Benney, integral boundary–layer (IBL), and weighted–residual approximations.

In many practical applications, the film is viscoelastic, and early studies investigated

the linear stability of viscoelastic gravity-driven films using second-order fluid models for

the stress[7–9]. These studies found that elasticity enhanced inertial instability, however

second-order models assume that a representative fluid relaxation time is small relative to

a characteristic time scale of the flow (i.e. a Deborah number, De, should satisfy De ⌧ 1)

and are best-suited for steady or quasi-steady (‘slow’) flows[10]. The Oldroyd-B constitu-

tive model is better-suited for unsteady shear flows with substantial viscoelastic e↵ects, and

subsequent linear stability studies using this model (or the closely-related Upper-convected

Maxwell model) confirmed the destabilizing influence of viscoelasticity and also revealed

that an elastic instability may be present if the Deborah number is su�ciently large (even

when the Reynolds number is zero)[11–15]. Viscoelastic analogues to the Benney[16–18]

and IBL[19] equations have also been derived and analyzed, and numerical simulations of

both the Newtonian and viscoelastic Benney equations indicate that a variety of nonlinear

states including travelling waves and chaos may be excited (see [20] and section V). Danda-

pat & Gupta[16] and Joo[17] utilized second-order fluid and 4-constant Oldroyd constitutive

models, respectively (the latter produces weak shear-thinning unlike the second-order and

Oldroyd-B models), and focused on the modification of nonlinear inertial waves by viscoelas-

ticity. Kang & Chen[18] noted that viscoelastic e↵ects are likely to be dominant in very

thin films and focused on the dynamics associated with elastic instability. They used the
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Oldroyd-B model, carried out an asymptotic expansion to 2nd order, and then investigated

the weakly-nonlinear dynamics generated by their evolution equation and the corresponding

bifurcation structure. Here, we also use the Oldroyd-B model and focus on elastic instability

(results with finite Re are also included) though we truncate our expansion at 1st order. The

Oldroyd-B model has been widely used in studies of shear flows of dilute polymeric solutions

and can be derived from a kinetic theory in which the polymer molecules are modeled as non-

interacting Hookean elastic dumbbells[21]. It is a simple model that reasonably describes

significant viscoelastic e↵ects in shear flows of dilute highly-elastic liquids at moderate shear

rates (e.g. memory e↵ects and a finite streamwise normal stress). At higher shear rates, a

few important weaknesses emerge. The Oldroyd-B model produces a shear-independent vis-

cosity and a constant first normal-stress coe�cient and does not capture the shear-thinning

behavior exhibited by most fluids of interest. Other general weaknesses include the develop-

ment of unphysically large tensile stresses in extensional flows (since linear Hookean springs

can stretch indefinitely), zero transverse normal stress components in simple shear flow, and

the assumption of a single representative fluid relaxation time. Despite these shortcomings,

the model’s relative simplicity and analytical tractability make it well-suited for theoreti-

cal studies of elastic instabilities in viscoelastic shear flows with small or moderate shear

rates[22].

Protective coatings are often required on devices with uneven surfaces, and even nom-

inally flat walls often have surface imperfections which introduce perturbations into films

and influence the quality of the final polymer coating[23]. Thus it is important to con-

sider film flow on walls with topography, and in this work, we investigate the stability and

dynamics of gravity–driven viscoelastic films on sinusoidally-varying surfaces (figure 1). A

number of studies have investigated the influence of sinusoidal topography on film stability

and dynamics for Newtonian films[e.g. 24–29] while power-law[30] and weakly-viscoelastic

(Walters-B)[31] films have also been considered. The power-law model produces a shear-

dependent viscosity which is relevant for concentrated polymeric solutions and melts which

are both typically strongly shear-thinning. The power-law model does not, however, include

memory e↵ects or generate normal stresses in simple shear flows. In contrast, Oldroyd-B

fluids do exhibit these important viscoelastic e↵ects but do not exhibit shear thinning (or

thickening). The Walters-B model is an example of a second-order model and as noted above,
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is best-suited for quasi-steady flows where viscoelastic e↵ects are weak. Taken together, these

studies of Newtonian and Non-Newtonian films utilize a variety of approaches and a broad

range of parameters, and stabilization due to topography was observed by [25, 28, 30], while

[29] and [26] found that destabilization could also occur for some wall wavelengths. Of par-

ticular relevance to the present work is Dávalos–Orozco[1] where an Oldroyd–B fluid was

considered, and the viscoelastic Benney equation (VBE) introduced by [18] was modified to

account for the wall deformation. Numerical simulations of this nonlinear evolution equation

with spatially–localized time–harmonic forcing were used to show that topography could be

stabilizing for appropriately chosen wall deformations. Here, we use this modified VBE as

a starting point and: 1) use Floquet analysis to systematically analyze its linear stability

while also exploring the detailed elastic instability mechanism and 2) use extensive numerical

simulations of the full evolution equation to investigate the nonlinear states which develop

from the linear instability. These new linear stability results provide a clear picture of the

influence of sinusoidal wall topography on long–wave elastic instability and provide a frame-

work for designing optimal wall deformations for a given application. Along similar lines,

the nonlinear simulation results provide qualitative guidance for interpreting laboratory ob-

servations of unsteady viscoelastic film flows over topography. This paper is organized as

follows. In section II we discuss the mathematical formulation of the nonlinear partial dif-

ferential equation governing the evolution of the film thickness for viscoelastic film flow on

walls with topography. In section III, we show the construction of the steady state both nu-

merically and analytically (for the case where the wall deformation amplitude is small) and

then present linear stability results obtained using Floquet analysis in section IV. Finally,

in section V we use numerical simulations of the full nonlinear evolution equation to explore

the unsteady dynamics of this flow.

II. FORMULATION

In this section, we outline the derivation of the modified VBE introduced in [1]. A few

intermediate steps are omitted as the basic approach is very similar to the derivation of the

well–known Benney equation[32]. We consider the evolution of long waves on a film with

thickness h(x
1

, t) overlying a wall with surface, s(x
1

, t), inclined at an angle ✓ as shown
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FIG. 1: Schematic of Oldroyd–B liquid film flowing down an inclined topography

in figure 1. We start from the dimensionless Navier–Stokes equations for two–dimensional

incompressible flow modified with a polymer stress term to account for the influence of

viscoelasticity,
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is velocity, p is pressure, (1� �)a
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/Re is the polymer stress, F
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where De = �u
N

/h
N

is the Deborah number, � is a characteristic polymer relaxation time,

and the Deborah number will be restricted to be O(1). This constraint leads to simplifications

to the upper–convected derivative in (2) which are necessary for analytical progress. As
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noted in the introduction, the Oldroyd–B model has a few well–known limitations (e.g. [33])

which are more pronounced at larger values of De, and with De ⇠ O(1), we expect the

model to capture important qualitative trends associated with streamwise normal stresses

and memory e↵ects. We require u
i

= 0 at the wall and enforce continuity of tangential and

normal stress at the free surface (see the appendix). Using the no–slip condition and the

continuity equation, the kinematic condition for the free surface can be written as,
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. (3)

The normal stress condition introduces a surface tension parameter (an inverse Bond num-

ber), S = �/(µu
N

). This parameter is assumed to be large, S ⇠ O(1/✏2), and we also assume

that the wall deformation varies slowly such that

h
typical

/L = ✏⌧ 1, (4)

where h
typical

is a ‘typical’ film thickness and L is the deformation wavelength. These as-

sumptions lead to a focus on waves varying slowly in both the streamwise direction and time.

Introducing the slow variables t̃ = ✏t and x̃
1

= ✏x
1

, the dependent variables are expanded in

powers of ✏ (see the appendix). Substituting this expansion into the governing equations and

boundary conditions, and solving the resulting equations at O(1) and O(✏), the kinematic

condition (up to O(✏2)) can be written as,
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where we have reverted back to the physical variables, x
1

and t. Further details on this

derivation are provided in the appendix. The first term within the brackets in equation (5)

arises due to the shear generated by the combination of the no–slip condition and gravi-

tational forcing along the x
1

direction; the second to fourth terms represent the e↵ects of

inertia, inclination, and surface tension, respectively, and the fifth term represents the in-

fluence of elasticity with D ⌘ De(1 � �). This equation matches the evolution equation

introduced in [1] (after accounting for di↵erences in non–dimensionalization), and for the

case of a flat wall with s = 0 and Re = 0, we recover the VBE derived by [18] up to O(✏)

(and again after accounting for their non–dimensionalization). The derivation of equation

(5) assumes that C
t

, Re ⌧ 1/✏; for Newtonian fluids, the numerical solutions of this equation
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have been shown to be very close to numerical solutions of the full Navier–Stokes equations

up to Re ⇡ 5 [20, 34].

Equation (5) is valid for general slowly–varying topography, however for simplicity, we

will only consider sinusoidal wall profiles with wavelength, L, and amplitude, �/2:

s(x
1

) =
1

2
� cos(x

1

), = 2⇡/L. (6)

The ‘steepness’, �/L, is an important parameter in the discussion below and is required to

be O(✏) or smaller.

Polymer stress

We can infer that the influence of viscoelasticity is destabilizing from equation (5) (see

section IV), and a fuller view of this influence and the importance of the streamwise normal

stress can be obtained by examining the coupling between the polymer stress components

and the film thickness. Elasticity enters equation (5) via the O(✏) x
1

–momentum equation,

and using the Oldroyd–B equation we find,
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It is the sum of these terms which appears in the momentum equation, and after substan-

tial cancellations, we arrive at a fairly simple result which is x
2

–independent and strongly

dependent on streamwise variations in the film thickness:
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This result represents competition between the streamwise–normal and shear components of

the polymer stress. Crucially, the magnitude of the normal–stress is larger, and overall, elas-

ticity ‘pushes’ fluid in the streamwise direction towards local maxima in the film thickness

and away from local minima. This then is clearly a destabilizing e↵ect and is very similar

to the description of the long–wave linear elastic instability mechanism in gravity–driven
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films on flat walls presented in [15]. Equations 7 and 8 also indicate that the wall topog-

raphy, s, directly influences the individual polymer stress components but it is only via the

film thickness, h, that the topography a↵ects the overall influence of elasticity on the film

dynamics.

III. STEADY STATE

Steady–state film profiles provide important insight into the response of the film flow to

wall topography and are also needed for linear stability calculations. The computation of

these profiles is considerably more complicated than the flat–wall case where we simply have

h
0

= 1. Setting the flux to q = q
0

= 1, the governing equation is,
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and we will only consider periodic solutions. Generally, this equation must be solved numer-

ically, and following the formulation of Tseluiko et al.[29], steady states are computed after

first writing eq. (9) as a system of first–order non–autonomous ODEs on the domain [0, L]

with f
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Periodic boundary conditions are implemented as, f
i

(0) = f
i

(L), i = 1, 2, 3, and equation

(10) is solved using the Matlab suite bvp4c[35] which is an iterative adaptive–mesh bound-

ary–value–problem solver that uses finite–di↵erence discretizations. We only consider steady

states with fixed volume flow rates (q
0

= 1), however a reasonable alternative is to fix the

average film height (or equivalently the total volume of fluid). The former case is typically

used in experiments while the latter has been frequently used in stability studies and non-

linear simulations of films on topography[36]. Tseluiko et al.[29] considered both approaches

in their study of inertial instabilities on films over topography, and found qualitatively sim-

ilar results for the critical Reynolds number. Preliminary calculations for viscoelastic films

with fixed fluid volumes (not shown here) show qualitatively similar results for the critical

Deborah number, however further investigation of the fixed-volume case would be a useful

complement to the present study.
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A. Asymptotic Solution

The results presented below largely correspond to cases where the amplitude of the wall

deformation is small. In such cases, an approximate analytical solution for the steady–state

film thickness can be found using asymptotic expansions. The steady state surface elevation

F (x
1

) = h
0

(x
1

) + s(x
1

) is expanded as,

F (x
1

) = 1 + �F
1

(x
1

) +O(�2), (11)

and after substituting this expansion into equation (10), F
1

can be found in a straightforward

manner using Fourier transforms (see [37]):
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The influences of elasticity and inertia are condensed into a single parameter, V , while P


contains the e↵ects of surface tension and inclination,

V =
6

5
Re+ 3D, P



= C
t

+
1

3
2S. (13)

The bulk of the results presented below correspond to cases where P


> V , and with our

chosen parameter values, numerical calculations indicate that P


typically controls the pro-

file shapes. Taking the extreme case, V = 0, we see that the amplitude of free–surface

oscillations, A
1

, decreases as any one of , S, and C
t

are increased. The selective damping

of higher–wavenumber oscillations by surface tension is expected, and here we see that incli-

nation has a similar e↵ect though the relative importance of the inclination angle decreases

as the topography wavenumber increases.

Steady state results for inertialess films with D = 0.2 and C
t

= 1 are shown in figure

2. With a fixed wall amplitude, � = 0.2, the free surface is relatively flat for the smaller

wall wavelengths and tends to synchronize with the wall at larger wavelengths (figure 2a).

The influence of the amplitude, �, can be accounted for by normalizing the free surface

height with, F
norm

= (F (x
1

)� 1)/� + 1. From the asymptotic results above, we expect this

normalized height to be independent of the wall amplitude if L and S are fixed, and numerical

results shown in figure 2b confirm this expectation. In the next section, it will be useful to

compare results with the steepness, �/L, held fixed. Steady state results for �/L = 0.2 are
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FIG. 2: Influence of sinusoidal wall on the steady state for Re = 0, D = 0.2 and C
t

= 1.

Numerical Solutions (S = 300): (a) Interface profiles for fixed wall amplitude, � = 0.2; (b)

Normalised interfacial profiles, F
norm

for fixed wall wavelength, L = 25. Numerical and

Analytical Solutions (S = 100, 200 and 300) with fixed wall steepness, �/L = 0.02, and

varying wall wavelength, L: (c) Amplitude of F
norm

; (d) phase di↵erence between the

interface and the wall (same legend as (c)).

summarized in figures 2c and 2d. Asymptotic solutions are also included here, and there

is good agreement between analytical results and numerical solutions to the full equations

(9). For relatively small wall wavelengths, the free surface flattens due (primarily) to surface

tension, and at large wavelengths the film thickness tends towards a constant, x
1

–independent

value. At intermediate wavelengths, both the normalized amplitude and the phase di↵erence

change substantially as the film transitions from a flat free surface to a sinusoidal profile

which is in–phase with the wall. Reducing the surface tension produces a shift towards

shorter wavelengths. Below, we consider flows with 0  D . 1 and 0  Re . 2.5 and the
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trends shown in figure 2 are observed throughout this parameter space.

IV. LINEAR STABILITY

We now examine the influence of sinusoidal topography on the linear stability of computed

steady film profiles. After presenting the problem formulation, we move on to numerical

results with a focus on inertialess flows (Re = 0). For flat walls, elastic instability is present

when D > 1/3C
t

(see below), and the question then is, how does topography with a given

wavelength, L, and amplitude, �, modify this critical elasticity? We will principally consider

wavelengths in the range, 5  L . 60, and amplitudes, � . 1. The surface tension will be

set to S = 100, 200, or 300, and these choices ensure both that the wall topography exerts

a non–trivial influence on the flow stability and that the modelling assumptions required

for equation (5) are satisfied. The physical mechanisms underlying the topography–induced

changes to D
crit

are also discussed in detail. This discussion centers on a disturbance energy

equation obtained from our linearized kinematic condition which allows us to isolate the

influence of topography on the elastic instability.

A. Formulation

The formulation of the linear problem begins with the addition of a small perturbation

to the steady state,
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Substituting this expression into equation (5) and linearizing gives,
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For a flat wall (s = 0), the steady state is h
0

= 1, and linear stability analysis is straight-

forward. Introducing normal modes, ⌘(x
1

, t) = ⌘̂ exp (i (kx
1

� !t))+ c.c., the growth rate is,
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r

+ i!
i

. The phase speed is, c
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/k = 3, and instability occurs when,
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6
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3
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We see that elasticity and inertia are destabilising whereas surface tension and reduction

of inclination (increase of C
t

) are stabilising. Equivalent expressions for the growth rate in

inertialess flow were given by [15] and [18] with the former also neglecting surface tension.

These results apply to long waves, and [13] presented results for instabilities with O(1)

wavenumbers.

With a sinusoidal wall, we can analyze the stability problem by utilizing Floquet theory

and assuming perturbations take the form,

⌘(x
1

, t) = exp(�t+ ikx
1

)g(x
1

) + c.c., (19)

where k 2 [�⇡/L, ⇡/L], and g(x
1

) is L–periodic. Substituting equation (19) into (15) gives

an eigenvalue problem,

L
k

[g] = �g, (20)

where L
k

[g] = exp(�ikx
1

)L[exp(ikx
1

)g], and each L
k

acts over the finite domain of size L.

The eigenvalue spectrum of L, ⌃(L), is the union over all k,

⌃(L) =
[

k2[�⇡/(L),⇡/(L)]

⌃(L
k

). (21)

After solving for the base flow, a series of eigenvalue problems corresponding to di↵erent

values of k are solved in Matlab. Specifically, we vary k in the range [�⇡/L, ⇡/L] with
increments of ⇡/(50L). Cases with k = 0 and k = ⇡/L correspond to the fundamental and

sub-harmonic modes, respectively, however we find that other ‘detuned’ modes are typically

the most unstable (see figure 5b). Temporal instability is present when the real part of �

is positive for one or more values of k (�
r

= <(�) > 0). We have validated our results via

comparisons with [29] for several values of Re with D = 0, and the overall approach used

here is very similar to that used by Tseluiko et al.[29]. The main di↵erences are that their

study considered Newtonian fluids and allowed for spatiotemporal instability.
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B. Numerical results

Computed results indicate that the influence of wall topography can be stabilizing or

destabilizing depending on the details of the deformation. Eigenspectra for D = 0.32, S =

300, C
t

= 1, and L = 15 are shown in figure 3a for � = 0, 0.15, and 0.3. The flat–wall case is

stable, and introducing a wall deformation with su�ciently large amplitude destabilizes the

film flow via a Hopf bifurcation. Increasing the amplitude further introduces instability over

a broader range of wavenumbers while also increasing the growth rates. The opposite trend

is seen when L = 25 and D = 0.4 (figure 3b). The flat–wall case is now linearly unstable

and wall deformations tend to stabilize the flow. Similar trends are seen in calculations of

FIG. 3: Linear stability results, S = 300, C
t

= 1, Re = 0; eigensepectra for (a) D = 0.32,

L = 15 and (b) D = 0.4 and L = 25 (same legend as (a)).

the critical elasticity parameter, D
crit

(figure 4a). For the two smaller wavelengths shown,

topography reduces D
crit

and is destabilizing (instability occurs when D > D
crit

) whereas

the topography is stabilizing for L = 25 and L = 40. Again, increasing the deformation

amplitude increases the influence of the topography, however, as can be seen in the figure,

the sensitivity to the amplitude is very much dependent on the wall wavelength. A clearer

view of these trends is found by simultaneously varying the wall wavelength and amplitude

such that �/L is held fixed. This constrains the slope of the wall topography, and the results

for D
crit

with S = 300 and C
t

= 1 are shown in figure 4b for �/L = 0.01, 0.015, and 0.02.

The figure shows there is an intermediate range of wavelengths, 10 . L . 40, where the flow

13



FIG. 4: Influence of topography on D
crit

, S = 300, C
t

= 1, Re = 0; individual curves

correspond to (a) fixed wall wavelength, L, and (b) fixed wall steepness, �/L.

stability is particularly sensitive to topography. Within this intermediate range, topography

initially exhibits a destabilizing influence reducing the critical Deborah number by more

than 25% when L = 16 and � = 0.32. As the wavelength increases there is a rapid shift

and topography becomes stabilizing, increasing D
crit

by more than 40% for the parameters

shown. For wavelengths outside of this range (both longer and shorter), the neutral curves

are relatively insensitive to the wall deformation and, for these deformation amplitudes,

D
crit

remains close to its flat–wall value. The full eigenvalue spectra for three di↵erent wall

wavelengths are shown in figure 5a along with the spectrum for the flat wall case. Here,

�/L = 0.02, D = 0.5, and all cases shown are linearly unstable. The qualitative trends are

similar to those seen for D
crit

for 15  L  24. There is a clear reduction in the growth

rate as the wavelength increases, and the influence of topography shifts from destabilizing

to stabilizing.

The most–unstable (or least–stable) modes correspond to particular values of the wavenum-

ber, k, however, these wavenumbers do not provide a full picture of a mode’s streamwise

dependence which is of the form, exp(ikx
1

)g(x
1

). An e↵ective wavenumber can be computed

by applying a Fourier transform (x
1

! k̂) and then extracting the wavenumber at which the

amplitude of the Fourier transform is maximum. These wavenumbers, k̂
max

, are shown in

figure 5b with D = 0.5. For flat walls, k̂
max

=
q

3/(2S)
�
6/5Re+ 3D � C

t

�
, and topography

substantially modifies the instability wavelength in the intermediate range of wall wave-

14



FIG. 5: Linear stability results, S = 300, C
t

= 1, Re = 0; (a) Eigenspectra for D = 0.5 and

�/L = 0.02; (b) E↵ective wavenumber for most destabilising mode (same legend as figure

4b)

lengths. Within the destabilizing range of wall wavelengths, the instability wavelengths are

reduced, while in the stabilizing range, the wavelengths are substantially increased. Similar

trends are observed for the e↵ective wavenumbers of neutral waves computed with D = D
crit

(not shown).

Influence of inclination angle and surface tension

The results above all correspond to fixed values of the inclination (C
t

= 1) and surface

tension parameters (S = 300). Similar qualitative trends are observed when these parameters

are varied. As discussed earlier, the critical elasticity parameter for a flat wall is, D
crit

= C
t

/3,

so a flat vertical wall (C
t

= 0) is linearly unstable with any non–zero Deborah number, and

reducing the inclination angle from 90� has a simple stabilizing e↵ect. This stabilizing

influence is also present for walls with topography as can be seen in figure 6a where D
crit

curves shift upwards as C
t

is increased. Figure 6a additionally shows that there is typically

a particular wavelength where the critical elasticity is approximately independent of � and

equal to its flat-wall value. It appears likely that the base-state phase di↵erence plays an

important role (see discussion below), however we have not been able to pinpoint the physical

mechanism responsible for this behavior. These results also suggest that it is surface tension
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that dictates the range of wall wavelengths that influences D
crit

. Indeed, the results shown

in figure 6b confirm that the intermediate range of wavelengths is sensitive to S. Decreasing

S shifts this range to smaller wavelengths, and also reduces the magnitude of the influence

of the wall topography. This shift is connected to trends in the base state shown in figure 2d.

There, we see that decreasing the surface tension results in a more rapid “transition” from a

flat free surface to one that is sinusoidal and synchronized with the wall. In figure 6c, D
crit

is plotted against the base-state phase di↵erence rather than L, and this removes the shift

which indicates it is the influence of S on the base-state phase di↵erence which dictates the

range of L where D
crit

is sensitive to the wall topography. The magnitude of this sensitivity

is related linearly to S. This can be seen in 6d where plotting the scaled critical elasticity,

D
crit,scaled

= (D
crit

� 1/3) / (S/100), against the phase di↵erence nearly collapses the three

curves. These results also show that with the addition of wall topography, surface tension

no longer has a simple stabilizing e↵ect and in fact can be destabilizing for certain wall

wavelengths.

C. Influence of topography on instability mechanism

A number of studies have examined the linear instability mechanisms of gravity–driven

films on flat walls (e.g. [14, 15, 38, 39]). Huang & Khomami[15] in particular provide a

broad discussion of both inertial and elastic instability mechanisms in single and multilayer

gravity–driven films. Their analysis of elastic instability in single–layer film flow utilized

three di↵erent approaches. First, long–wave analysis was used to show that elastic stresses

tend to ‘push’ fluid horizontally toward regions beneath crests in the perturbed free surface

thus driving instability. This description is very similar to our discussion of the influence of

elasticity in section II. Their second approach was based on analysis of a disturbance energy

equation and again highlighted the importance of elastic stresses. Specifically it was found

that elastic stresses acting at the free surface were primarily driving the instability. Finally,

they examined the phase di↵erence between the perturbed free surface and the disturbance

vorticity, and verified that instability arises as this phase di↵erence becomes positive. This

corresponds to a positive induced vertical perturbation velocity at the crest of the disturbed

free surface which is a destabilizing mechanism highlighted in our discussion below.
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FIG. 6: Influence of C
t

and S on D
crit

, Re = 0, �/L = 0.02; (a) S = 300; (b) C
t

= 1; (c)

C
t

= 1, D
crit

vs. base-state phase di↵erence, �; (d) C
t

= 1, D
crit,scaled

vs. base-state phase

di↵erence, �.

The aim here is to elucidate how this elastic instability mechanism is modified by wall

topography. Our analysis utilizes a disturbance ‘energy’ equation which is derived starting

from the general linearized kinematic condition applied at the undisturbed free surface,

x
2

= s+ h
0

(this follows directly from the linearization of (3)),

@⌘

@t
+
h
ũ
1

|
f0

@

@x
1

(h
0

+ s) + ū
1

|
f0

@⌘

@x
1

i
= ũ

2

|
f0 +

@u
2

@x
2

����
f0

⌘, (22)

where the velocity has been decomposed as u
i

= u
i

+ ũ
i

, and ‘f
0

’ indicates that a variable

should be evaluated at x
2

= h
0

+s. General expressions for the velocities, u(0)

i

(x
2

, h(x
1

); s(x
1

))

and u
(1)

i

(x
2

, h(x
1

); s(x
1

)), were obtained during the derivation of the VBE (see the appendix),

and u
(2)

2

can be found from the continuity equation, @u(2)

2

/@x
2

= �@u(1)

1

/@x
1

. The base state
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velocities (u
i

) are obtained by substituting h = h
0

into these expressions, and the perturba-

tion velocities (ũ
i

) are then found by substituting equation (14) into the general expressions

for the velocities, substracting the base state, and finally discarding terms which are, O(|⌘|2)
or smaller. Defining ⌘̂ such that, ⌘ = ⌘̂ + ⌘̂⇤, equation 22 can then be rearranged into an

‘energy–like’ equation for |⌘̂|2,

@

@t

Z
L

0

|⌘̂|2dx
1

=� 2

Z
L

0


< (û

1

|
f0 ⌘̂

⇤)
@

@x
1

(h
0

+ s)

�
dx

1

+ 2

Z
L

0

"
< (û

2

|
f0 ⌘̂

⇤) +
@u

2

@x
2

����
f0

|⌘̂|2
#
dx

1

�
Z

L

0

ū
1

|
f0

@|⌘̂|2
@x

1

dx
1

,

(23)

with û
i

defined such that ũ
i

= û
i

+ û
i

⇤. From (19), we have ⌘̂ = exp (�t+ ikx
1

) g(x
1

), and

then letting û
i

|
f0 = exp (�t+ ikx

1

) v
i

(x
1

), equation (23) can be restated as:

�
r

= P
1

+ P
2

+ P
3

, (24a)

P
1

= � 1

G
Z

L

0


< (v

1

g⇤)
@

@x
1

(h
0

+ s)

�
dx

1

, (24b)

P
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1
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����
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, (24c)

P
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ū
1

��
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dx
1

= � 1
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2

��
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, (24d)

where G =
R

L

0

|g|2dx
1

. For a flat wall, P
1

and P
3

are zero, and (24a) reduces to,

�
r

=
1

G
Z

L

0

< (v
2

g⇤) dx
1

. (25)

The growth rate then tends to be large when vertical velocity perturbations and the

free–surface perturbation are in–phase with each other. This is a well–established pic-

ture of interfacial instability and is consistent with the Huang & Khomami[15] description of

elastic (and inertial) instability driven by vorticity perturbations inducing upward motion at

the crests (and downward motion at troughs) of the perturbed free surface. With sinusoidal

walls, the base-state free surface, f
0

(x
1

), is no longer flat, and it is helpful to consider the

perturbation velocity and displacement in the direction normal to f
0

(see figure 7). Let  be

the angle between this normal and the x
2

direction as indicated in the figure. The normal

component of the perturbation velocity at the free surface is ũ
n

= ũ
1

|
f0+⌘

sin + ũ
2

|
f0+⌘

cos .

Since tan = �df
0

/dx
1

, this can be rearranged as, ũ
n

= cos (�ũ
1

|
f0+⌘

df
0

/dx
1

+ ũ
2

|
f0+⌘

)
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FIG. 7: Illustration of (local) destabilization driven by ũ
n

at x
2

= f
0

+ ⌘ (ũ
n

is the

component of the perturbation velocity normal to the base-state free surface).

(cf. equation 22). Then, defining v
n

such that ũ
n

|
f0+⌘

= v
n

exp (�t+ ikx
1

) + c.c., it follows

that,

P
1

+ P
2

=
1

G
Z

L

0

< (v
n

g⇤
n

)

"
1 +

✓
df

0

dx
1

◆
2

#
dx

1

, (26)

where g
n

= gcos is the projection of g in the normal direction, and we have used, 1/cos2 =

1 + (df
0

/dx
1

)2. Noting that (df
0

/dx
1

)2 ⇠ O(✏2), we see that for thin films instability is

enhanced when g
n

and v
n

are in phase with each other, and the combined e↵ect of P
1

and

P
2

can be interpreted as a generalization of (25) for thin-film flows with wall topography. The

third term, P
3

, is related to the streamwise advection of the free-surface perturbation by the

base state velocity, u
1

|
f0 . For flat walls, u1

|
f0 is constant, and the resulting simple translation

of the perturbation has no e↵ect on the growth rate (P
3

= 0). With the introduction of

topography, the streamwise variation of u
1

|
f0 leads to local stretching and compression of

⌘ in the streamwise direction. The global e↵ect of these deformations on the growth rate

can be interpreted using the second integral in (24d) (obtained using integration by parts).

Comparing this integral with P
2

, we see that when P
3

< 0, it directly counteracts any

destabilization driven by ũ
2

at the perturbed free surface.

The influence of the three P terms is illustrated in figure 8a which shows the decomposition

of �
r

for the most–unstable mode with D = 0.5, �/L = 0.02, and varying L. The growth rate

follows the general trend seen for D
crit

in figures 4b and 6 above. Initially, at smaller wall

wavelengths, the instability is una↵ected by topography. Surface tension tends to ‘flatten’
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the steady–state free surface, and as a result, P
1

, @u
2

/@x
2

, and P
3

all tend to be small, and

the perturbation dynamics near the free surface remain essentially the same as in the case

of a flat wall. For large wavelengths (L & 40), the instability mechanism again matches

results for a flat wall. At these wavelengths, the steady–state film thickness tends towards a

constant value, so the integrand in (24b) becomes ⇡�/L < (v
1

g⇤) sin(x
1

). Integration over

a wall period will only be non–zero if < (v
1

g⇤) contains non–zero Fourier components with

wavenumbers, ±. In practice for the parameters considered here, these components for

the most unstable waves tend to be small, and thus for larger values of L, P
1

tends to be

small. The third term, P
3

also goes to zero at larger wavelengths, and this behavior can

be understood by examining @u
1

/@x
1

since P
3

will be zero when u
1

is constant as in the

flat-wall case. Taking h
0

= 1, we find that @u
1

/@x
1

= �⇡2/L cos(x
1

) (3/L C
t

+ 4⇡2/L3 S),

and the discussion of the integrand for P
1

can be applied here as well. Also note that if �/L

is held fixed and L is increased (as in figure 8), then the amplitude of @u
1

/@x
1

will tend to

decrease. The most interesting behavior is again in the intermediate range, 10 . L . 40.

Within this range, topography substantially modifies the perturbation field near the free

surface. There is “improved” alignment between g
n

and ũ
n

as indicated by the larger values

of P
1

+ P
2

relative to the growth rate for the flat wall case. However, this is balanced

by the stabilizing influence of P
3

. Ultimately, there is a complex balance which leads to a

destabilzing influence for 10 . L . 19 and a stabilizing e↵ect for 19 . L . 40. Generally,

instability is still driven by perturbation elastic stresses, however these results indicate that

the coupling between these stresses, the free surface, and velocity changes tangibly. These

qualitative trends remain the same when the inclination angle and elasticity are varied (figure

8b). Furthermore, these trends are qualitatively similar but smaller in magnitude at smaller

S (not shown). Figure 9 focuses on the most unstable mode at D
crit

+ 0.005 and tracks

its growth rate and the P terms as the Deborah number is varied. This provides further

insight into the influence of topography near the onset of instability (it is di�cult to track

the neutral mode which is why the most unstable mode at D
crit

+0.005 has been chosen). For

both wavelengths, the growth rate increases with D, however the relatively small values of

P
1

and P
2

delay the onset of instability for L = 25. The rate of increase of the growth rate is

higher for L = 25 and with su�ciently large D, this case has a higher growth rate than both

the flat wall and L = 15 cases. It follows that the descriptions above of wall-wavelengths as
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FIG. 8: Decomposition of maximum growth rate, max(<(�)) of elastic instability, R = 0,

for various wall wavelengths with S = 300, �/L = 0.02: (a) D = 0.5, C
t

= 1.0; (b) D = 1,

C
t

= 2.0 (same legend as figure (a)).

FIG. 9: Decomposition of growth rate, corresponding to most unstable mode at 0.005+

D
crit

, max(<(�)
crit

), with, C
t

= 1, S = 300, �/L = 0.02: (a) Destabilising wall, L = 15

(D
crit

= 0.25); (b) Stabilising wall, L = 25 (D
crit

= 0.47, same legend as (a)).

stabilizing or destabilizing should only be applied near the onset of linear instability.
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D. Inertial instability

The qualitative trends shown in figure 4a have also been observed in studies of Newtonian

film flows on sinusoidal walls[26, 27, 29], which showed that topography could increase or

reduce the critical Reynolds number. Here, we present linear stability results which allow

direct comparisons between Newtonian and inertialess (elastic) flows. With a flat wall,

inertia and elasticity enter the linearized equations (17) as the sum, 6/5Re + 3D, and an

inertialess flow with D = D
0

exhibits identical linear dynamics to a Newtonian flow with

Re = 5/2D
0

. This formal equivalence between the e↵ects of inertia and elasticity is no

longer present when topography is introduced, however the numerical results in figure 10

show strong qualitative agreement between D
crit

and 2/5Re
crit

for a range of values of S

and C
t

. In fact, there is clear quantitative agreement over a broad range of parameters

with di↵erences appearing at larger wavelengths and smaller inclinations. The influence of

topography is stronger (destabilising) for the Newtonian cases in this parameter range, and

the Re
crit

curves only return to their flat–wall values at very large wavelengths which are not

shown in the figure. The decomposition of the growth rate, equation (24), shown in figure

11 follows the same qualitative trends discussed for elastic instabilities above. Streamwise

variations of the base state at the free surface induced by topography again play a key role

in modifications to the most–unstable and neutral modes within an intermediate range of

wall wavelengths.

V. NON–LINEAR DYNAMICS

A number of studies have investigated the evolution of nonlinear waves on thin films

overlying both flat and sinusoidal walls. Oron & Gottlieb[20] provide a systematic numer-

ical study of the Benney equation subject to periodic boundary conditions and reported

stationary and time-periodic traveling waves as well as non–stationary waves (which con-

stantly change their shape with time). Trifonov[40] performed a numerical investigation of

the Navier–Stokes equations for Newtonian fluids to specifically obtain travelling wave solu-

tions and compared flow over sinusoidal walls to that over a flat wall. At the lowest Reynolds

number considered in that study, Re = 20/3 (C
t

= cot(10�) ⇡ 5.67, S = 6.62), the free sur-

face disturbance for a flat wall consisted of asymmetric, non–linear humps characterised by a
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FIG. 10: Linear stability results, �/L = 0.02: —— Critical inertial (for D = 0) and - - -

elastic (for Re = 0) instability for various values of (a) S with C
t

= 1; (b) C
t

with S = 300.

FIG. 11: Decomposition of growth rate for Newtonian films with D = 0, C
t

= 1, S = 300,

�/L = 0.02: (a) most–unstable mode, Re = 1.25, varying L; (b) near-neutral mode, L = 25,

varying Re.

relatively sharp front and a long, smooth tail. Introduction of a sinusoidal wall (�/L = 0.4)

modified these disturbances to include finer spatial scales: shorter waves overlaid the humps

so these modified travelling waves were doubly periodic in space. Similar waves had been ob-

served earlier in the experiments of Reck & Aksel[41]. Oron & Heining[25] derived a weighted-

residual IBL model and also simulated unsteady films on sinusoidal walls. They indentified

a range of nonlinear states similar to those observed for flat walls. Dávalos–Orozoco[28]
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investigated the Benney equation forced with a time–periodic, spatially–localized pressure

perturbation. The perturbations excited by this forcing were suppressed when the steady

state free surface consisted of deep valleys; therefore suitable wall wavelengths could be cho-

sen that stabilised the flow. This approach was applied to Oldroyd–B fluids in [1] which

showed that elastic instability could be similarly suppressed. However, the non–linear dy-

namics of the disturbance evolution have not been fully characterized for the VBE.

Here, we present results from extensive numerical simulations of the VBE (equation (5))

and provide a broad view of the influence of sinusoidal topography on the nonlinear states

generated by elastic instability. We will compare results for flat walls with sinusoidal walls

with L = 15, 25, and 150 which correspond to destabilizing, stabilizing, and neutral (growth

rate is una↵ected) wavelengths. The results below illustrate the influence of elasticity and

topography on the bifurcation structure and amplitudes of nonlinear waves on viscoelastic

films.

A. Numerical Method

We consider the evolution of the film thickness, h(x
1

, t) and, in particular, the perturba-

tion, ⇣(x
1

, t) where, h = h
0

(x
1

) + ⇣, and h
0

is the pre-computed steady state. The initial

perturbation is,

⇣(x
1

, 0) = 10�3 cos

✓
2⇡x

1

L

◆
exp

✓
� ln 2

L2

gauss

x2

1

◆
, L

gauss

=
L
D

15
, (27)

where L is again the wall wavelength, L
D

= N
periods

L is the length of the computational

domain, and we will set L
D

= 150 and � = 0.02 (for flat walls, we set L = L
D

). We use

a pseudospectral approach where spatial derivatives are calculated using fast Fourier trans-

forms, and the time integration is performed using Matlab’s multi-step, variable-order solver,

ode15s[35]. The code has been validated via comparisons with linear stability computations

and by reproducing results for Newtonian films on flat walls in Oron & Gottlieb[20]. The

analysis of our numerical results focuses on the perturbation ‘energy’,

E(t) =
1

L
D

Z
LD

0

⇣(x
1

, t)2dx
1

, (28)

and we use maps of its local extrema, E⇤, to (partially) characterize the nonlinear dynamics.

A similar approach was used in [42].
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FIG. 12: Evolution of disturbance energy for C
t

= 1, S = 300, Re = 0, L
D

= 150 and

�/L = 0.02: (a) Flat wall, varying D; (b) D = 0.55, di↵erent walls.

B. Inertialess films

We begin with a flat wall and set S = 300, C
t

= 1, and Re = 0. Linear instability

first occurs for this finite-sized computational domain at D
crit

= 0.39 (with wavenumber

k = 2⇡/150), and the evolution of the energy at four supercritical values of D is shown in

figure 12a. Initially, there is a very short transient ‘adjustment’ where the energy decreases

as linearly stable components of the initial perturbation rapidly decay. Following this ad-

justment, there is clear exponential growth. Eventually, the perturbation saturates due to

nonlinearity, and we see three nonlinear states which can be characterized by their temporal

dynamics: 1) travelling waves (D = 0.55 and 0.75, characterized by a constant energy level),

2) period–1 (D = 0.85), and 3) period–2 (D = 0.65) solutions. The latter two states arise

via period-doubling subharmonic bifurcations (see section VB). Also, the mean energy level

of the final nonlinear state increases with elasticity. The spatio–temporal evolution of the

non–linear states beyond the initial transient time, t
transient

= 2 ⇥ 105 for D = 0.55 and

D = 0.85 is shown in figures 13a and 13e respectively. Here the major streamwise transla-

tional component of the perturbation is removed by transforming the streamwise direction,

x, to a moving frame, x � c · ⌧ , where c ⇡ 3 and ⌧ = t � (t
transient

+ t
0

). The parameter t
0

is set to align the solutions for illustrative purposes. The travelling wave solution in figure

13a has a similar characteristic shape to that observed in [40]. The time periodic (period–2)

evolution of the perturbation for D = 0.85 can also be observed in figure 13e.
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FIG. 13: Spatio–temporal evolution of the perturbations ⇣, for C
t

= 1, S = 300, Re = 0,

L
D

= 150 and �/L = 0.02 (⌧ = t� (t
0

+ 2⇥ 105)): D = 0.55—(a) Flat (t
0

= 25, c = 3.022),

(b) L = 150 (t
0

= 20, c = 3.021), (c) L = 15 (t
0

= 33.5, c = 2.964) and (d) L = 25 (t
0

= 45,

c = 3.081) sinusoidal walls; D = 0.85—(e) Flat (t
0

= 0, c = 3.025), (f) L = 150 (t
0

= 31,

c = 3.023), (g) L = 15 (t
0

= 137.5, c = 2.969) and (h) L = 25 (t
0

= 35, c = 3.051)

sinusoidal walls.

Now, we move on to the e↵ect of sinusoidal topography. Replacing the flat wall with a

L = 150 sinusoidal wall has no tangible e↵ect on the linear dynamics (section IV and figure
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FIG. 14: Temporal evolution of E of the saturated non–linear state for C
t

= 1, Re = 0,

S = 300, L
D

= 150 and �/L = 0.02 with (a) D = 0.55 and (b) D = 0.85 and their

representation in 3D energy phase space in (c) and (d) respectively (for

0  t� 2⇥ 105  5⇥ 104) for flat (- - -) and L = 150 (——) sinusoidal walls. In figure (b)

E for L = 15 (destabilising wall, ——, top curve) and L = 25 (stabilising wall, ——,

bottom curve) sinusoidal walls respectively are also shown.

12b), however the nonlinear state exhibits finer temporal scales for both D = 0.55 and 0.85.

The latter can be observed both in the energy plots (at large times) shown in figure 14a and

14b and the space-time plots in figure 13 (compare figure 13b with 13a and 13f with 13e).

This e↵ect can also be described geometrically: the attractor for the flat wall dynamics lie is

modified into a higher dimensional object for the L = 150 sinusoidal wall as shown in the 3D

(E�dE/dt�d2E/dt2) phase portraits in figures 14c and 14d. A travelling wave (represented

by a point attractor in the energy phase space) for D = 0.55 is modified into a period–1

solution (a single loop in the 3D phase space), and the period–1 solution for D = 0.85

becomes modulated by smaller waves resulting in the formation of dense tranjectories on
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FIG. 15: Dynamics of the saturated non–linear state for C
t

= 1, Re = 0, S = 100,

L
D

= 150, D = 0.85 and �/L = 0.02: (a) Spatio- temporal evolution of the perturbation ⇣

(x, ⌧ = t� 2⇥ 105) for flat wall; (b) temporal evolution of E (same legend as figure 14b but

without the stabilising wall; the destabilising wall corresponds to L = 10).

the surface of a torus in the 3D phase space and suggesting quasi–periodic dynamics. These

changes are distinct from those reported by Trifonov[40] where travelling wave solutions

acquired additional spatial periods with the introduction of the sinusoidal wall.

Results for L = 15 and 25 are also included in figure 12b. We see that the stabilizing wall

(L = 25) has a smaller growth rate and saturates at a lower mean energy relative to the flat

wall while the destabilizing wall (L = 15) results correspond to a larger growth rate and a

higher mean energy. These smaller-L cases also produce fine temporal scales similar to those

observed for L = 150. The nonlinear states are quasi–periodic at D = 0.55 and 0.85 for both

these walls, and the amplitude of fluctuations (figure 13) as well as the mean E (12b and

14b) of the non–linear state of the disturbance decrease as we move from L = 15 to L = 25.

Reducing the surface tension to S = 100 results in more irregular temporal dynamics and

increases the amplitude of ⇣ as shown in the spatio–temporal evolution of the non–linear

state for the flat wall with D = 0.85 in figure 15a. Here, the temporal evolution is chaotic

for the flat wall as also shown in the E–t plot in figure 15b. Again, the introduction of

topography produces finer temporal scales (figure 15b). For S = 100, the L = 10 sinusoidal

wall lies in the linearly destabilizing regime (figure 6b) and in figure 15b we see the di↵erence

in mean E for di↵erent walls. Compared to L = 150 sinusoidal wall, the solution for L = 10

wall has higher mean E in the time period shown and finer scales. For a linearly stabilising
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L = 15 wall for S = 100 (figure 6b) we observe a lower mean E and quasi–periodic behavior

(not shown).

Energy Maps

A broader view of the combined influence of elasticity and topography on the nonlinear

dynamics is obtained by constructing energy maps as shown in figure 16 for S = 100, 200 and

300 for C
t

= 1 and 0.4  D  0.85. Each point in these plots represents a local extremum of

the energy, E⇤, i.e. the value of E at dE/dt = 0. This corresponds to Poincaré sections in the

E� dE/dT energy phase plane [42]. For a particular D, a distinct individual point on these

energy maps represents a travelling wave, multiple but countable points represent period–1

(two points), period–2 (four points) or higher periodic solutions and a dense set of points

represents a quasi–periodic or chaotic attractor. The flat wall solutions for S = 300 in figure

16a has several bifurcations that separate travelling wave, period-1 and period-2 solutions.

The overall structure of the map remains largely the same when the flat wall is replaced with

a L = 150 sinusoidal wall (figure 16b), however closer inspection of the L = 150 results shows

that there is a higher density of points in the maps and this corresponds to the introduction

of finer temporal scales that were discussed above for D = 0.55 and 0.85. This e↵ect can be

seen more clearly in figures 16e and 16f where results for the flat wall and L = 150 sinusoidal

wall are plotted together. Reducing the surface tension to S = 200 and 100 (with the

energy maps in figure 16 shifted up by a factor of 10 and 100 respectively) tends to produce

higher values of E⇤ and earlier transitions to time-periodic or non-stationary dynamics with

chaotic dynamics appearing for the flat wall case. Energy maps for linearly destabilising

walls (L = 15 for S = 200 and 300 and L = 10 for S = 100) are shown in figure 16c, and

there is an increase in E⇤ relative to the flat wall while for linearly stabilising walls (L = 25

for S = 200 and 300 and L = 15 for S = 100) a decrease in E⇤ relative to the flat wall is

observed (figure 16d).

As discussed in section 4, the elastic instability is observed for flat walls whenD�C
t

/3 > 0.

Varying C
t

, we find that energy maps tend to align for a broad range of parameters when

E⇤ is plotted against D � C
t

/3 as shown in figure 17. For L = 150, the dynamics at larger

C
t

(shallower inclination) are more chaotic (see panel (b)), whereas for L = 15 and 25 the
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FIG. 16: Maps of the extrema of E(t) with Re = 0, C
t

= 1, L
D

= 150 and �/L = 0.02 for

(a) Flat, (b) L = 150, (c) destabilising (L = 15 for S = 200 and 300 and L = 10 for

S = 100) and (d) stabilising (L = 25 for S = 200 and 300 and L = 15 for S = 100)

sinusoidal walls at S = 100, 200 and 300 (the first two maps are shifted up by a factor of

10a with a labeled on each curve ) . Superposition of flat (·) and L = 150 (⇥) sinusoidal

wall maps with S = 300 plotted for (e) 0.45  D  0.55 and (f) 0.78  D  0.85.
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dynamics are very similar for the three inclinations shown (see panels (c) and (d)). Relative

to the flat wall, the qualitative e↵ects of L = 150, destabilising (L = 15), and stabilising

(L = 25) walls are similar for all three values of C
t

with the introduction of finer scales, an

increase in mean E⇤, and a decrease in mean E⇤, respectively.

FIG. 17: Maps of the extrema of E(t) with Re = 0, S = 300, L
D

= 150 and �/L = 0.02 for

(a) Flat, (b) L = 150, (c) L = 15 and (d) L = 25 sinusoidal walls for C
t

= 0.5, 1 and 2 (the

latter two maps are shifted up by a factor of 10a with a labeled on each curve).

C. Influence of inertia

We compare finite-Re and inertialess cases using a similar approach to that used when

varying C
t

. As noted in section 4, for flat walls, inertia and elasticity contribute to the linear

dynamics in the combination V/3 = D+2/5Re, and we will use this parameter to ‘align’ the

following three cases 1) Re = 0,D varying; 2) D = 0, Re varying; 3) D and Re both varying
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with D = 2/5Re. We set S = 300, C
t

= 1 and L
D

= 150 and vary the wall wavelength

as before. The corresponding energy maps are shown in figure 18. First, we note that the

parameter V does tend to align the maps, and clear qualitative similarities are observed for

D . 0.6 for each of the four topographies shown. At larger D, clear di↵erences can be seen.

For example, inertia delays the second bifurcation for the flat wall and L = 150 cases while

bringing it forward to smaller values of V when L = 25. These maps also show that the e↵ect

of replacing a flat wall with a L = 150 sinusoidal wall for the finite-Re cases is very similar

to the inertialess–elastic case (figure 18a vs. 18b). The e↵ect of destabilising (L = 15) and

stabilising (L = 25) walls on the nonlinear dynamics is also similar to the inertialess cases

as shown in figures 18c and 18d.

FIG. 18: Maps of the extrema of E(t) with S = 300, C
t

= 1, L
D

= 150 and �/L = 0.02 for

(a) Flat, (b) L = 150, (c) L = 15 and (d) L = 25 sinusoidal walls for D = V/3, V/6 and 0

(the remaining contribution to V/3 = D + 2/5Re is from inertia Re, and the latter two

maps are shifted up by a factor of 10a with a labeled on each curve).
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VI. CONCLUSIONS

The influence of sinusoidal wall topography on the linear stability and nonlinear dynam-

ics of thin gravity-driven viscoelastic films has been analyzed using the modified viscoelastic

Benney equation introduced by [1]. Steady-state and linear stability results were organized

into three regimes based on the wall wavelength, L. For shorter wall wavelengths, surface

tension tends to ‘flatten’ the steady-state free surface, and linear stability results are similar

to those found for flat walls. At intermediate wavelengths, both steady state and linear

stability calculations show much greater sensitivity to wall deformation. As L is increased

within this regime, topography initially exerts a destabilizing influence, however increasing

L further leads to a rapid change and the topography tends to stabilize the flow. At still

larger wavelengths, the steady state film thickness tends towards a constant value, and to-

pography ceases to a↵ect the stability results. A decomposition of the growth rate into three

components was developed from the linearized equations, and applying this decomposition

within the ‘intermediate’ range of wavelengths showed that the flat-wall instability mech-

anism was substantially modified by topography. The streamwise velocity perturbation at

the free surface (particularly the component normal to the base-state free surface) enhances

instability while streamwise variations in the streamwise base-state velocity (coupled with

the free-surface perturbation) tend to stabilize the flow. The details of the balance between

these e↵ects leads to the initial destabilization followed by stabilization observed within the

intermediate range as L is increased. It was also shown that appropriately scaled results for

Newtonian films exhibited very similar trends.

Nonlinear simulations generally showed that ‘more-unstable’ cases (e.g. flows with higher

D or a destabilizing wall wavelength) saturated at higher average values of the energy, E. A

broad range of nonlinear states was observed including traveling waves, time-periodic waves,

quasi-periodic waves, and chaos. Topography was shown to introduce finer temporal scales

and increase the dimension of the underlying attractor. The influences of inclination and

inertia were partly explained by relying on linear stability results for flat walls, and increasing

surface tension was shown to reduce linear growth rates, shift the range of influential wall

wavelengths to larger values of L, reduce the average E of saturated nonlinear states, and

to produce more regular dynamics.
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We are not aware of experiments which these results can be directly compared to, however

Shaqfeh et al.[13] provide a thorough discussion of the dimensional fluid and flow parameters

that correspond to viscoelastic films which could be produced in a laboratory setting (and

reasonably modeled with the Oldroyd-B equation). This discussion can be applied directly

to the present study with the further restriction of a large surface tension. We then expect

the results presented here to most readily apply to gravity driven films of dilute polymeric

solutions with thicknesses of the order of 10�4m. In many practical cases, the working

fluid is either a concentrated solution or a polymer melt and more complicated constitutive

models should then be considered. Additionally, non-sinusoidal wall topographies are also

of interest, and important steps in these directions have already been taken[e.g. 43–45]. The

present study and the trends highlighted here provide a foundation for further progress in

the analysis of these more complex flows.
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Appendix A: Further details on formulation

In this section, we provide details on the steps leading from the initial asymptotic ex-

pansion (A1) to the final nonlinear evolution equation (5). The dependent variables are

expanded as:

(u
i

, p, a
ij

) =
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and these variables are functions of x̃
1

, x
2

, and t̃ only. The continuity equation at leading

order gives, u(0)

2

= 0, and substituting the expansion into the Oldroyd–B equations (while

assuming De ⇠ O(1)), the polymer stresses are found to be,
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These results are then substituted into the momentum equations (at the appropriate order)

which can then be integrated across the film. At the free surface, the needed boundary

conditions are obtained by substituting the expansion (A1) into the full normal stress and

tangential stress boundary conditions which are,
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where f = h+s. Using the resulting conditions to complete the integration of the momentum

equations across the film, we arrive at the needed expressions for the velocity and pressure,
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Note that we have assumed Re ⌧ 1/✏, so at leading order, inertial e↵ects are neglected

leading to a parabolic streamwise velocity profile (A4a). The streamwise velocities from

equations (A4a) and (A4b) are used to obtain the volume flow rate,
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where we have now moved back to the original streamwise coordinate, x
1

. Substituting

equation (A5) into the kinematic condition (3), we obtain the non–linear evolution equation

for the film surface (5). This equation retains terms up to O(✏) as is common in studies using

the Benney equation and close variants. The stabilizing influence of surface tension enters

the equation at this order, and in its absence, discontinuous shock-like solutions are expected

to develop[4] for linearly-unstable configurations. The assumption of S ⇠ 1/✏2 ensures that:

1) a regularizing e↵ect is present, and 2) viscoelastic and inertial e↵ects can be retained for

De,Re ⇠ O(1). Equivalent assumptions were made by [1, 18].
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[28] L. A. Dávalos-Orozco, “Nonlinear instability of a thin film flowing down a smoothly deformed

surface,” Physics of Fluids (1994-present) 19, 074103 (2007).

[29] D. Tseluiko, M. G. Blyth, and D. T. Papageorgiou, “Stability of film flow over inclined

topography based on a long-wave nonlinear model,” Journal of Fluid Mechanics 729, 638–671

(2013).

[30] C. Heining and N. Aksel, “E↵ects of inertia and surface tension on a power-law fluid flowing

down a wavy incline,” International Journal of Multiphase Flow 36, 847–857 (2010).

[31] R. Usha and B. Uma, “Long waves on a viscoelastic film flow down a wavy incline,” Interna-

tional Journal of Non-Linear Mechanics 39, 1589–1602 (2004).

[32] D. J. Benney, “Long waves on liquid films,” Journal of Mathematics and Physics 45, 150–155

(1966).

[33] R. Byron Bird and John M. Wiest, “Constitutive equations for polymeric liquids,” Annu. Rev.

Fluid Mech 27, 169–93 (1995).

[34] Todd R. Salamon, Robert C. Armstrong, and Robert A. Brown, “Traveling waves on vertical

films: Numerical analysis using the finite element method,” Physics of Fluids (1994-present)

6, 2202–2220 (1994).

[35] Lawrence F. Shampine and Mark W. Reichelt, “The matlab ode suite,” SIAM Journal on

Scientific Computing 18, 1–22 (1997).

38



[36] C. Pozrikidis, “E↵ect of surfactants on film flow down a periodic wall,” Journal of Fluid

Mechanics 496, 105?127 (2003).

[37] Dmitri Tseluiko, M. G. Blyth, Demetrios T. Papageorgiou, and J.-M. Vanden-Broeck, “Vis-

cous electrified film flow over step topography,” SIAM Journal on Applied Mathematics 70,

845–865 (2009).

[38] Marc K. Smith, “The mechanism for the long-wave instability in thin liquid films,” Journal of

Fluid Mechanics 217, 469–485 (1990).

[39] R. E. Kelly, D. A. Goussis, S. P. Lin, and F. K. Hsu, “The mechanism for surface wave

instability in film flow down an inclined plane,” Physics of Fluids A: Fluid Dynamics 1, 819–

828 (1989).

[40] Yuri Trifonov, “Nonlinear waves on a liquid film falling down an inclined corrugated surface,”

Physics of Fluids 29, 054104 (2017).

[41] Daniel Reck and Nuri Aksel, “Experimental study on the evolution of traveling waves over an

undulated incline,” Physics of Fluids 25, 024103 (2013).

[42] Prasun K. Ray, Jordan C. Hauge, and Demetrios T. Papageorgiou, “Nonlinear interfacial

instability in two-fluid viscoelastic couette flow,” Journal of Non-Newtonian Fluid Mechanics

251, 17–27 (2018).

[43] M. Pavlidis, Y. Dimakopoulos, and J. Tsamopoulos, “Steady viscoelastic film flow over 2d

topography: I. the e↵ect of viscoelastic properties under creeping flow,” Journal of Non-

Newtonian Fluid Mechanics 165, 576–591 (2010).

[44] M. Pavlidis, G. Karapetsas, Y. Dimakopoulos, and J. Tsamopoulos, “Steady viscoelastic film

flow over 2d topography: II. the e↵ect of capillarity, inertia and substrate geometry,” Journal

of Non-Newtonian Fluid Mechanics 234, 201–214 (2016).

[45] M. Pradas, D. Tseluiko, C. Ruyer-Quil, and S. Kalliadasis, “Pulse dynamics in a power-law

falling film,” Journal of Fluid Mechanics 747, 460–480 (2014).

39


