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Abstract

In this work we introduce a new bounding-box free net-
work (BBFNet) for panoptic segmentation. Panoptic seg-
mentation is an ideal problem for a bounding-box free
approach as it already requires per-pixel semantic class
labels. We use this observation to exploit class bound-
aries from an off-the-shelf semantic segmentation network
and refine them to predict instance labels. Towards this
goal BBFNet predicts coarse watershed levels and use
it to detect large instance candidates where boundaries
are well defined. For smaller instances, whose bound-
aries are less reliable, BBFNet also predicts instance cen-
ters by means of Hough voting followed by mean-shift to
reliably detect small objects. A novel triplet loss net-
work helps merging fragmented instances while refining
boundary pixels. Our approach is distinct from previous
works in panoptic segmentation that rely on a combina-
tion of a semantic segmentation network with a compu-
tationally costly instance segmentation network based on
bounding boxes, such as Mask R-CNN, to guide the predic-
tion of instance labels using a Mixture-of-Expert (MoE) ap-
proach. We benchmark our non-MoE method on Cityscapes
and Microsoft COCO datasets and show competitive per-
formance with other MoE based approaches while out-
perfroming exisiting non-proposal based approaches. We
achieve this while been computationally more efficient in
terms of number of parameters and FLOPs. Video results
are provided here https://blog.slamcore.com/
reducing-the-cost-of-understanding

1. Introduction
Panoptic segmentation is the joint task of predicting

semantic scene segmentation together with individual in-
stances of objects present in the scene. Historically this
has been explored under different umbrella terms of scene
understanding [43] and scene parsing [37]. In [17], Kir-
illov et al. coined the term and gave a more concrete defi-
nition by including Forsyth et al. [11] suggestion of split-
ting the objects categories into things (countable objects

(a) Semantic Segmentation Head (b) Watershed Head

(c) Hough Voting Head (d) Triplet Loss Head

Figure 1. BBFNet gradually refines the class boundaries of the
semantic segmentation network to predict panoptic segmentation.
The Watershed head detects candidates for large instances whereas
the Hough voting head detects small object instances. The Triplet
Loss network refines and merges the detection to obtain the final
instance labels.

like persons, cars, etc.) and stuff (uncountable like sky,
road, etc.) classes. While stuff classes require only se-
mantic label prediction, things need both the semantic and
the instance labels. Along with this definition, Panoptic
Quality (PQ) measure was proposed to benchmark differ-
ent methods. Since then, there has been a more concen-
trated effort towards panoptic segmentation with multiple
datasets [7, 23, 25] supporting it.

Existing methods address this as a Multi-Task Learn-
ing (MTL) problem with different branches (or networks)
used to predict the instance and scene segmentation. Tra-
ditionally these methods use completely separate instance
and scene segmentation networks although more recently
some works propose sharing a common feature backbone
for both networks [16, 28]. Using a Mixture-of-Experts
(MoE) approach the outputs are combined either heuristi-
cally or through another sub-network. In this work we show
that instance information already exists in a semantic seg-
mentation network. To support this we present Bounding-
Box Free Network (BBFNet) which can be added to the
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head of any off-the-shelf semantic segmentation network.
By gradually refining the class boundaries predicted by the
base network, BBFNet predicts both the things and stuff
information in a scene. Without using MoE our method
produces comparable results to existing approaches while
being computationally efficient. Furthermore, the different
sub-modules of BBFNet are end-to-end trainable while the
base network requires no extra information.

An additional benefit of our proposed method is that we
do not need bounding-box predictions. While bounding-
box detection based approaches have been popular and
successful, they require predicting auxiliary quantities like
scale, width and height which do not directly contribute
to instance segmentation. Furthermore, the choice of
bounding-boxes for object-detection had been questioned
in the past [31]. We believe panoptic segmentation to
be an ideal problem for a bounding-box free approach
since it already contains structured information from se-
mantic segmentation. To achieve this we exploit previous
works in non-proposal based methods for instance segmen-
tation [3, 5, 26]. Based on the output of a semantic seg-
mentation network, BBFNet first detects noisy and frag-
mented large instance candidates using a watershed-level
prediction head (see Fig. 1). These candidate regions are
clustered and their boundaries improved with a novel triplet
loss based head. The remaining smaller instances, with un-
reliable boundaries, are detected using a Hough voting head
that predicts the offsets to the center of the instance. Mean-
shift clustering followed by vote back-tracing is used to re-
liably detect the smaller instances.

To summarise, we present BBFNet for panoptic segmen-
tation which a bounding-box free end-to-end trainable non-
MoE approach for panoptic segmentation network that does
not use the output of any instance segmentation or detection
network while outperforming existing non-proposal based
methods. The next section briefly describes the related work
in panoptic and instance segmentation. In §3 we introduce
BBFNet and explain its various components along with its
training and inference steps. §4 introduces the datasets used
in our experiments and briefly describes the different met-
rics used for benchmarking panoptic segmentation. Imple-
mentation details are given in §4.1. Using ablation studies
along with qualitative results we show the advantages of
each of its components. Qualitative and quantitative results
are presented in we §4.3 and used to benchmark BBFNet
against existing MoE based approaches.

2. Related Work
Despite the recent introduction of panoptic segmentation

there have already been multiple works attempting to ad-
dress this [9, 19, 21, 41]. This is in part due to its importance
to the wider community, success in individual subtasks of
instance and semantic segmentation and publicly available

datasets to benchmark different methods. We review related
work and tasks here.
Panoptic Segmentation: Current works in panoptic seg-
mentation are built upon a similar template of MTL fol-
lowed by MoE. In [17], the authors use separate networks
for semantic segmentation (stuff ) and instance segmenta-
tion (things) with a heuristic MoE fusion of the two results
for the final prediction. Realising the duplication of fea-
ture extractors in the two related tasks, [16, 19, 21, 28, 41]
propose using a single backbone feature extractor network.
This is followed by separate branches for the two sub-tasks
(MTL) with a heuristic or learnable MoE head to com-
bine the results. While panoptic Feature Pyramid Net-
works (FPN) [16] uses Mask R-CNN [13] for the things
classes and fills in the stuff classes using a separate FPN
branch, UPSNet [41] combines the resized logits of the
two branches to predict the final output. In AUNet [21],
attention masks predicted from the Region Proposal Net-
work (RPN) and the instance segmentation head help fus-
ing the results of the two tasks. Instead of relying only on
the instance segmentation branch, TASCNet [19] predicts
a coherent mask for the things and stuff classes using both
branches. This is later filled with the respective outputs.
All these methods rely on Mask R-CNN [13] for predict-
ing things. Mask R-CNN is a two-stage instance segmenta-
tion network which uses a RPN to predict initial candidates
for instance. The proposed candidates are either discarded
or refined and a separate head produces segmentation for
the remaining candidates. The two-stage, serial approach
makes Mask R-CNN accurate albeit computationally ex-
pensive thus slowing progress towards real-time panoptic
segmentation.

In FPSNet [9] the authors replace Mask R-CNN with
a computationally less expensive detection network, Reti-
naNet [22], and use its output as a soft attention masks to
guide the prediction of things classes. This trade off is at
a cost of considerable reduction in accuracy. Furthermore
RetinaNet still uses bounding-boxes for predicting things.
In [35] the detection network is replaced with an object
proposal which predicts instance candidates. Similarly,
in [38] the authors predict the direction to the center and
replace bounding box detection with template matching
using these predicted directions as a feature. Instead of
template matching, [2, 20] use a dynamically initiated
conditional random field graph from the output of an object
detector to segment instances. In [12], graph partioning is
performed on an affinity pyramid computed within a fixed
window for each pixel. In comparison, our work predicts
things by refining the segmentation boundaries that can be
obtained from any segmentation network.

Instance segmentation: Traditionally predicting instance
segmentation masks relied on obtaining rough boundaries



followed by refining them [18, 34]. With the success of deep
neural networks in predicting object proposals [30, 32], and
the advantages of an end-to-end learning method, proposal
based approaches have become more popular. Recent works
have suggested alternatives to predicting proposals in an
end-to-end trainable network. As these are most relevant
to our work, we only review these below.

In [3], the authors propose predicting quantised wa-
tershed energies [39] using a Deep Watershed Transform
network (DWT). Connected-components on the second-
lowest watershed energy level are used to predict the
instance segments. While this does well on large instances
it suffers on small and thin instances. Moreover, frag-
mented regions of occluded objects end up being detected
as different instances. In comparison, [5] embed the
image into a transformed feature space where pixels of
the same instance cluster together and pixels of different
instances are pushed apart. While this method is not
affected by object fragmentation, poor clustering often
leads to either clustering multiple objects as single instance
(under-segmentation) or segmenting large objects into
multiple instances (over-segmentation). In [27], the authors
try to address this by using variable clustering bandwidths
predicted by the network. In this work, we observe the
complementary advantages of these methods and exploit
it towards our goal of an accurate, bounding-box free
panoptic segmentation.

Semantic Boundaries: In addition to above, a parallel
body of work deals with detection of object boundaries.
In [1] the authors focus on detecting accurate object bound-
aries by explicitly reasoning about annotation noise. Using
a new semantic boundary thinning layer the class bound-
aries are better localised. Boundaries, however, belong to
multiple objects (two or more) and this fact is used to im-
prove edge prediction in [15]. Here they explicitly condi-
tion boundaries on multiple objects to better segment ob-
jects. Either of these works could be incorporated to im-
prove panoptic segmentation methods including ours.

3. Panoptic Segmentation
In this section we introduce our non-bounding box ap-

proach to panoptic segmentation. Fig. 2 shows the various
blocks of our network and Table 1 details the main com-
ponents of BBFNet. The backbone semantic segmentation
network consists of a ResNet50 followed by an FPN [36]. In
FPN, we only use the P2, P3, P4 and P5 feature maps which
contain 256 channels each and are 1/4, 1/8, 1/16 and 1/32
of the original scale respectively. Each feature map then
passes through the same series of eight deformable convo-
lution blocks [8]. Intermediate features after every couple of
deformable convolutions are used to predict semantic seg-
mentation (§3.1), Hough votes (§3.2), watershed energies

(§3.3) and features for the triplet loss [40] network. We first
explain each of these components and their corresponding
training loss. In (§3.5) we explain our training and inference
steps. Through ablation studies we show the advantages of
each block in (§4.2).

3.1. Semantic Segmentation

The first head in BBFNet is used to predict semantic seg-
mentation. This allows BBFNet to quickly predict things
(Cthings) and stuff (Cstuff ) labels while the remainder of
BBFNet improves things boundaries using semantic seg-
mentation features Fseg . The loss function used to train se-
mantic segmentation is a per-pixel cross-entropy loss given
by:

Lss =
∑

c∈{Cstuff ,Cthing}

yc log(pssc ), (1)

where yc and pssc are respectively the one-hot ground truth
label and predicted softmax probability for class c.

3.2. Hough Voting

The Hough voting head is similar to the semantic seg-
mentation head and is used to refine Fss to give Hough fea-
tures Fhgh. These are then used to predict offsets for the
center of each things pixel. We use a tanh non-linearity to
squash the predictions and obtain normalised offsets (X̂off
and Ŷoff). Along with the centers we also predict the uncer-
tainty in the two directions (σx and σy) making the num-
ber of predictions from the Hough voting head equal to
4 × Cthings. The predicted center for each pixel (x, y), is
then given by:

X̂center(x, y) = x+ X̂
C(x,y)
off (x, y),

Ŷcenter(x, y) = y + Ŷ
C(x,y)

off (x, y),
(2)

where C is the predicted class.
Hough voting is inherently noisy [4] and requires cluster-

ing or mode seeking methods like mean-shift [6] to predict
the final object centers. As instances could have different
scales, tuning clustering hyper-parameters is difficult. For
this reason we use Hough voting primarily to detect small
objects and to filter predictions from other heads. We also
observe that the dense loss from the Hough voting head
helps convergence of deeper heads in our network.

The loss for this head is only for the thing pixels and is
given by:

Lhgh = w
( (Xoff − X̂off)

2

σx
+

(Yoff − Ŷoff)
2

σy

)
−1

2

(
log(σx) + log(σy)

)
,

(3)

where Xoff and Yoff are ground truth offsets and w is the per
pixel weight. To avoid bias towards large objects, we in-
versely weigh the instances based on the number of pixels.



Figure 2. BBFNet gradually refines the class boundaries of the backbone semantic segmentation network to predict panoptic segmentation.
The watershed head predicts quantized watershed levels (shown in different colours) which is used to detect large instance candidates. For
smaller instances we use Hough voting with fixed bandwidth. The output shows offsets (Xoff, Yoff) colour-coded to represent the direction
of the predicted vector. Triplet head refines and merges the detection to obtain the final instance labels. We show the class probability
(colour-map hot) for different instances with their center pixels used as fa. Table 1 lists the components of individual heads while §3
explains them in detail.

This allows it to accurately predict the centers for objects of
all sizes. Note that we only predict the centers for the visi-
ble regions of an instance and do not consider its occluded
regions.

3.3. Watershed Energies

Our watershed head is inspired from DWT [3]. Simi-
lar to that work, we quantise the watershed levels into fixed
number of bins (K = 4). The lowest bin (k = 0) corre-
sponds to background and regions that are within 2 pixels
inside the instance boundary. Similarly, k = 1, k = 2 are
for regions that are within 5 and 15 pixels away from the
instance boundary, respectively, while k = 3 is for the re-
maining region inside the instance.

In DWT, the bin corresponding to k = 1 is used to detect
large instance boundaries. While this does reasonably well
for large objects, it fails for smaller objects producing er-
roneous boundaries. Furthermore, occluded instances that
are fragmented cannot be detected as a single object. For
this reason we use this head only for predicting large object
candidates which are filtered and refined using predictions
from other heads.

Due to the fine quantisation of watershed levels, rather
than directly predicting the upsampled resolution, we grad-
ually refine the lower resolution feature maps while also
merging higher resolution features from the backbone se-
mantic segmentation network. Fhgh is first transformed into
Fwtr followed by further refining into FW as detailed in ta-
ble 1. Features from the shallowest convolution block of
ResNet are then concatenated with FW and further refined
with two 1 convolution to predict the four watershed levels.

We use a weighted cross-entropy loss to train this given
by:

Lwtr =
∑

k∈(0,3)

wkWk log(pwtr
k ), (4)

where Wk is the one-hot ground truth for kth watershed
level, pwtr

k its predicted probability and wk its weights.

3.4. Triplet Loss Network

The triplet loss network is used to refine and merge the
detected candidate instance in addition to detecting new in-
stances. Towards this goal, a popular choice is to formulate
it as an embedding problem using triplet loss [5]. This loss
forces features of pixels belonging to the same instance to
group together while pushing apart features of pixels from
different instances. Margin-separation loss is usually em-
ployed for better instance separation and is given by:

L(fa, fp, fn) = max
(
(fa−fp)2−(fa−fn)2+α, 0

)
, (5)

where fa, fp, fn are the anchor, positive and negative pixel
features resp. and α is the margin. Choosing α is not easy
and depends on the complexity of the feature space [27].
Instead, here we opt for a two fully-connected network to
classify the pixel features and formulate it as a binary clas-
sification problem:

T (fa, f∗) =

{
1 if, f∗ = fp,

0 if, f∗ = fn,
(6)



Input Blocks Output
FPN dc-256-256, dc-256-128 Fss

Fss ups, cat, conv-512-(Cstuff +Cthing), ups Segmentation
Fss 2×dc-128-128 Fhgh

Fhgh ups, cat, conv-512-128, conv-128-(4×Cthing), ups Hough
Fhgh 2×dc-128-128 Fwtr

Fwtr ups, cat, conv-512-128, conv-128-16, ups F∗W
Fwtr 2×dc-128-128 Ftrp

Ftrp ups, cat, conv-512-128, conv-128-128, ups F∗T

Table 1. Architecture of BBFNet. dc, conv, ups and cat stand for
deformable convolution [8], 1 × 1 convolution, upsampling and
concatenation resp. The two numbers that follow dc and conv are
the input and output channels to the blocks.* indicates that more
processing is done on these blocks as detailed in §3.3 and §3.4.

We use the cross-entropy loss to train this head.

Ltrp =
∑

c∈(0,1)

Tc log(ptrpc ), (7)

Tc is the ground truth one-hot label for the indicator func-
tion and ptrp the predicted probability.

The pixel feature used for this network is a concatenation
of FT (see Table 1), its normalised position in the image
(x, y), and the outputs of the different heads (pseg , pwtr,
X̂off, Ŷoff, σx and σy).

3.5. Training and Inference

We train the whole network along with its heads in an
end-to-end fashion using a weighted loss function:

Ltotal = α1 Lss + α2 Lhgh + α3 Lwtr + α4 Ltrp. (8)

For the triplet loss network, training with all pixels is
prohibitively expensive. Instead we randomly choose a
fixed number of anchor pixels Na for each instance. Hard
positive examples are obtained by sampling from the far-
thest pixels to the object center and correspond to watershed
level k = 0. For hard negative examples, neighbouring in-
stances’ pixels closest to the anchor and belonging to the
same class are given higher weight. Only half of the an-
chors use hard example mining while the rest use random
sampling.

We observe that large objects are easily detected by the
watershed head while Hough voting based center prediction
does well when objects are of the same scale. To exploit this
observation, we detect large object candidates (IL′ ) using
connected components on the watershed predictions corre-
sponding to k ≥ 1 bins. We then filter out candidates whose
predicted Hough center (Icenter

L′ ) does not fall within their
bounding boxes (BBL′ ). These filtered out candidates are
fragmented regions of occluded objects or false detections.
Using the center pixel of the remaining candidates (IL′′ ) as
anchors points, the triplet loss network refines them over the
remaining pixels allowing us to detect fragmented regions
while also improving their boundary predictions.

After the initial watershed step, the unassigned thing pix-
els corresponding to k = 0 and primarily belong to small
instances. We use mean-shift clustering with fixed band-
width (B) to predict candidate object centers, Icenter

S . We
then back-trace pixels voting for their centers to obtain the
Hough predictions IS .

Finally, from the remaining unassigned pixels we ran-
domly pick an anchor point and test it with the other re-
maining pixels. We use this as candidates regions that are
filtered (IR) based on their Hough center predictions, sim-
ilar to the watershed candidates. The final detections are
the union of these predictions. We summarize these steps in
algorithm 1 provided in the supplementary section §7.

4. Experiments
In this section we evaluate the performance of BBFNet

and present the results we obtain. We first describe the
datasets and the evaluation metrics used. In §4.1 we
describe the implementation details of our network. §4.2
then discusses the performance of individual heads and how
its combination helps improve the overall accuracies. We
presents both the qualitative and quantitative results in §4.3
and give a brief analysis of the computational advantage
of BBFNet over other methods. We end this section by
presenting some of the failure cases in §4.4 and comparing
them with other MoE+BB based approaches.

Datasets: The Cityscapes dataset [7] contains driving
scenes with 2048 × 1024 resolution images recorded over
various cities in Germany and Switzerland. It consists of
2975 densely annotated images training images and a fur-
ther 500 validation images. For the panoptic challenge, a
total of 19 classes are split into 8 things and 11 stuff classes.

Microsoft COCO [23] is a large scale object detection
and segmentation dataset with over 118k training (2017
edition) and 5k validation images with varying resolutions.
The labels consists of 133 classes split into 80 things and
53 stuff.

Evaluation Metrics: We benchmark using the Panoptic
quality (PQ) measure which was proposed in [16]. This
measure comprises of two terms, recognition quality (RQ)
and segmentation quality (SQ), to measure individual per-
formance on recognition and segmentation tasks:

PQ =

∑
(p,g)∈TP IoU(p,g)

|TP|︸ ︷︷ ︸
SQ

|TP|
| TP|+ 1

2 |FP|+ 1
2 |FN|︸ ︷︷ ︸

RQ

, (9)

where, IoU is the intersection-over-union measure, (p,g)
are the matching predicted and ground-truth regions (> 0.5
IoU), TP, FP and FN are true-positive, false-positive and
false-negative respectively.



4.1. Implementation Details

We use the pretrained ImageNet [10] models for
ResNet50 and FPN and train the BBFNet head from scratch.
We keep the backbone fixed for initial epochs before train-
ing the whole network jointly. In the training loss (eq. 8),
we set α1, α2, α3 and α4 parameters to 1.0, 0.1, 1.0 and 0.5
respectively, since we found this to be a good balance be-
tween the different losses. The mean-shift bandwidth is set
to reduced pixels of B = 10 to help the Hough voting head
detect smaller instances. In the watershed head, the number
of training pixels decreases with K and needs to be offset
by higher wk. We found the weights 0.2, 0.1, 0.05, 0.01 to
work best for our experiments. Moreover, these weights
help the network focus on detecting pixels corresponding
to lower bins on whom the connected-component is per-
formed. To train the triplet-loss network head we set the
number of pixels per object Na = 1000. For smaller in-
stance, we sample with repetition so as to give equal impor-
tance to objects of all sizes.

To improve robustness we augment the training data
by randomly cropping the images and adding alpha noise,
flipping and affine transformations. Cityscapes dataset is
trained with full resolution. For COCO, the longest edge of
each image is resized to 1024 while keeping the aspect ratio
same.

A common practice during inference is to remove pre-
diction with low detection probability to avoid penalising
twice (FP & FN) [41]. In BBFNet these correspond to re-
gions with poor segmentation (class or boundary). We use
the mean segmentation probability over the predicted region
as the detection probability and filter regions with low prob-
ability (< 0.65). Furthermore, we also observe boundaries
shared between multiple objects to be frequently predicted
as different instances. We filter these by having a threshold
(0.1) on the IoU between the segmented prediction and its
corresponding bounding box.

4.2. Ablation studies

We conduct ablation studies here to show the advantage
of each individual head and how BBFNet exploits them. Ta-
ble 2 shows the results of our experiments on Cityscapes.
We use the validation sets for all our experiements. We ob-
serve that watershed or Hough voting heads alone do not
perform well. In the case of watershed head this is be-
cause performing connected component analysis on k = 1
level (as proposed in [3]) leads to poor segmentation qual-
ity (SQ). Note that performing the watershed cut at k = 0
is also not optimal as this leads to multiple instances that
share boundaries being grouped into a single detection. By
combining the Watershed head with a refining step from the
triplet loss network we observe over 10 point improvement
in accuracy.

On the other hand, the performance of the Hough voting

W H T PQ SQ PQs PQm PQl

3 7 7 44.4 75.7 1.3 24.1 57.9
7 3 7 49.7 78.8 11.6 37.4 44.5
3 7 3 55.3 79.8 10.2 44.4 72.0
3 3 3 56.3 79.4 12.4 47.2 72.5

Table 2. Performance of different heads (W- Watershed, H- Hough
Voting and T- Triplet Loss Network) on Cityscapes validation set.
BBFNet exploits the complimentary performance of watershed
(large objects > 10k pixels) and Hough voting head (small objects
< 1k pixels) resulting in higher accuracy. PQs, PQm and PQl are
the PQ scores for small, medium and large objects respectively.

head depends on the bandwidth B that is used. Fig. 3 plots
its performance with varying B. As B increases from 5 to
20 pixels we observe an initial increase in overall PQ before
it saturates. This is because while the performance increases
on large objects (> 10k pixels), it reduces on small (< 1k
pixels) and medium sized objects. However, we observe
that at lower B it outperforms the Watershed+triplet loss
head on smaller objects. We exploit this in BBFNet (see
§3.5) by using the watershed+triplet loss head for larger ob-
jects while using Hough voting head primarily for smaller
objects.
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Figure 3. Performance of Hough voting head (H) with varying B
for different sized objects, s-small < 1k pixels, l-large > 10k pix-
els and m-medium sized instances. For reference we also plot the
performance of Watershed+Triplet loss (W+T) head (see Table 2).

4.3. Experimental Results

Table 3 benchmarks the performance of BBFNet with
existing methods. As all state-of-the-art methods report re-
sults with ResNet50+FPN networks while using the same
pre-training dataset (ImageNet) we also follow this con-
vention and report our results with this setup. Multi-scale
testing was used in some works but we omit those results
here as this can be applied to any existing work includ-



ing BBFNet improving the predictions. From the result we
observe that BBFNet, without using an MoE or BB, has
comparable performance to other MoE+BB based meth-
ods while outperforming other non-BB based methods on
most metrics. Fig. 4 shows some qualitative results on the
Cityscapes validation dataset.

Method BB PQ PQTh PQSt IoU
FPSNet [9] 3 55.1 48.3 60.1 -

TASCNet [19] 3 55.9 50.5 59.8 -
AUNet [21] 3 56.4 52.7 59.0 73.6
P. FPN [16] 3 57.7 51.6 62.2 75.0

AdaptIS [35] 3 59.0 55.8 61.3 75.3
UPSNet [41] 3 59.3 54.6 62.7 75.2

Porzi et al. [28] 3 60.3 56.1 63.6 77.5
DIN [20] 7 53.8 42.5 62.1 71.6

SSAP [12] 7 56.6 49.2 - 75.1
BBFNet 7 56.3 49.7 61.0 76.2

Table 3. Panoptic segmentation results on the Cityscapes dataset.
All methods use the same backbone of ResNet50+FPN with Ima-
geNet pretraining. BBFNet is the only non-MoE method that does
not use any instance detection, instance segmentation or proposal
networks (BB). Bold is for overall best results and underscore is
the best result in non-BB based methods.

In Table 4 we benchmark the quantitative performance
on the Microsoft COCO dataset while qualitative results
are shown in figure 6. Similar to the methodology used
for Cityscapes we report results with same backbone and
with same pre-training. We present results on individ-
ual classes in the supplementary material. BBFnet outper-
forms all exisiting non-BB methods while using a more ef-
ficient network backbone compared with others(ResNet50
vs ResNet101).

Method BB PQ PQTh PQSt IoU
AdaptIS [35] 3 35.9 29.3 40.3 -
P. FPN [16] 3 39.0 45.9 28.7 41.0
AUNet [21] 3 39.6 49.1 25.2 45.1

TASCNet [19] 3 40.7 47.0 31.0 -
UPSNet [41] 3 42.5 48.5 33.4 54.3
DeepLab [42] 7 33.8 - - -

SSAP [12] 7 36.5 - - -
BBFNet 7 37.1 42.9 28.5 54.9

Table 4. Panoptic segmentation results on Microsoft COCO-2017
dataset. All methods use the same backbone (ResNet50+FPN)
and pretraining (ImageNet) except for SSAP (ResNet101) and
DeepLab (Xception-71). Bold is for overall best results and un-
derscore is the best result in non-BB based methods.

As BBFNet does not use a separate instance segmen-
tation head, its computationally more efficient using only
≈ 28.6M parameters compared to 44.5M in UPSNet and

51.43M in [28]. We find a similar pattern when we com-
pare the number of FLOPs on a 1024 × 2048 image with
BBFNet taking 0.38 TFLOPs compared to 0.425 TFLOPs
of UPSNet and 0.514 for [28]. Note that 0.28 TFLOPs cor-
respond to the ResNet50+FPN backbone which is used in
both methods making BBFNet 2.34 times more efficient in
terms of FLOPs compared to [28].

To highlight BBFNets ability to work with different seg-
mentation backbones we compare its generalisation with
different segmentation networks. From table 5 we observe
that BBFNets performance improves with better semantic
segmentation backbones.

Network Cityscapes COCO
PQ SQ RQ IoU PQ SQ RQ IoU

ERFNet [33] 47.8 77.2 59.7 69.8 - - - -
ResNet50 [14] 56.3 79.4 69.1 76.2 37.1 77.6 45.2 54.9
ResNet101 [14] 57.8 80.7 70.2 78.6 43.4 80.1 52.4 57.5

Table 5. Panoptic segmentation results on Cityscapes and COCO
datasets using different semantic segmentation backbones with
BBFNet.

4.4. Error Analysis

We discuss the reasons for performance difference be-
tween our bounding-box free method and ones that use
bounding-box proposals. UPSNet [41] is used as a bench-
mark as it shares common features with other methods. Ta-
ble 6 depicts the number of predictions made for different
sized objects in the Cityscapes validation dataset. We report
the True Positive (TP), False Positive (FP) and the False
Negative (FN) values.

Method Small Medium Large
TP FP FN TP FP FN TP FP FN

UPSNet 1569 722 2479 3496 401 954 1539 49 82
BBFNet 1067 666 2981 3446 680 1004 1527 82 94

Table 6. Performance comparison of BBFNet with an MoE+BB
method (UPSNet). Due to a non-MoE approach, errors from the
backbone semantic segmentation network (low TP-small and high
FP-medium,large) cannot be corrected by BBFNet.

One of the areas where BBFNet performs poorly is the
number of small object detections. BBFNet detects 2/3 of
the smaller objects compared to UPSNet. Poor segmenta-
tion (wrong class label or inaccurate boundary prediction)
also leads to a relatively higher FP for medium and large
sized objects. Figure 5 shows some sample examples. The
multi-head MoE approach helps addressing these issues but
at the cost of additional complexity and computation time
of Mask R-CNN as shown in §4.3. For applications where
time or memory are more critical compared to detecting
smaller objects, BBFNet would be a more suited solution.



(a) Input Image (b) Ground truth (c) BBFNet predictions

Figure 4. Sample qualitative results of BBFNet on Cityscapes dataset. BBFNet is able to handle complex scenes with multiple occluded
and fragmented objects.

(a) Input Image (b) Ground truth (c) BBFNet predictions (d) Incorrect predictions

Figure 5. Sample results where BBFNet fails. First row shows an example where low confidence of semantic segmentation network leads
to missed detection while the second row shows example of false positive due to wrong class label prediction. Without a MoE approach
these errors from the semantic segmentation network cannot be corrected by BBFNet.

5. Conclusions and Future Work

We presented an efficient bounding-box free panoptic
segmentation method called BBFNet. Unlike previous
methods, BBFNet does not use any instance segmentation
network to predict things. It instead refines the boundaries
from the semantic segmentation output obtained from any
off-the-shelf segmentation network. In this process we re-

duce the computational complexity while showing compa-
rable performance with existing state-of-the-art methods in
panoptic segmentation benchmarks.

In the next future we would like to improve the perfor-
mance of BBFNet on small objects and to experiment with
faster segmentation networks [29] towards the goal of ex-
panding the capabilities of visual Simultaneous Localisa-
tion and Mapping (vSLAM) [24] with semantics and indi-



vidual object instances.
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Algorithm 1 Compute Instance segments I
Require: Watershed levels Wk , predicted class c, probability pss

c , X̂center and
Ŷcenter ∨ c ∈ Cthing

1 IL′ ← connected-components on Wk >= 1. .Large instance candidates

2 BBI
L′
← bounding-box of IL′ .

3 Icenter
L′ ←

∑
x∈I

L′
X̂centerp

ss
c∑

x∈I
L′

pssc
,
∑

y∈I
L′

Ŷcenterp
ss
c∑

y∈I
L′

pssc
.

4 IL′′ ← Icenter
L′ ∈ BBI

L′
. .Filter candidates

5 IL ← IL′′ ∪ T (fa, f∗) = 1∨ fa = Icenter
L′′ & f∗ = c ∈ Cthing/IL′′ . 6

6 Icenter
S ← meanshift ∨c ∈ Cthing/IL. .Small instances

7 IS ← Back-trace pixels voting for Icenter
S

8 while c /∈ ∅ do .Remaining instances

9 IR′ ← (∪T (fa, f∗) = 1)∨ fa = Random(c) & f∗ = c ∈
Cthing/IL/IS . 6

10 end while

11 BBI
R′
← bounding-box of IR′ .

12 Icenter
R′ ←

∑
x∈I

R′
X̂centerp

ss
c∑

x∈I
R′

pssc
,
∑

y∈I
R′

Ŷcenterp
ss
c∑

y∈I
R′

pssc
.

13 IR ← Icenter
R′ ∈ BBI

R′
. .Filter candidates

14 I ← IL ∪ IS ∪ IR

7. Supplementary
7.1. Inference Algorithm

We summarise the inference steps detailed in §3.5 in an
algorithm 1

7.2. Cityscapes dataset

Table 7 gives the per-class results for the Cityscapes
dataset. The first 11 classes are stuff while the rest 8 are
thing label.

7.3. COCO dataset

Tables 8, 9 and 10 give the per-class results for the
COCO dataset. The first 80 classes are things while the rest
53 are stuff label.



class PQ SQ RQ PQs PQm PQl

road 97.9 98.2 99.7 0.0 0.0 0.0
sidewalk 74.9 84.0 89.2 0.0 0.0 0.0
building 87.4 89.2 98.0 0.0 0.0 0.0

wall 26.2 72.0 36.4 0.0 0.0 0.0
fence 27.6 72.9 37.8 0.0 0.0 0.0
pole 50.8 65.2 77.9 0.0 0.0 0.0

T. light 40.7 68.4 59.4 0.0 0.0 0.0
T. sign 64.8 76.4 84.7 0.0 0.0 0.0

vegetation 88.3 90.3 97.8 0.0 0.0 0.0
terrain 27.6 72.4 38.1 0.0 0.0 0.0

sky 85.1 91.9 92.7 0.0 0.0 0.0
person 48.0 76.3 62.9 22.9 62.0 81.9
rider 43.8 71.2 61.6 11.2 54.3 71.7
car 64.7 84.5 76.5 32.2 72.2 91.5

truck 48.2 84.5 57.0 6.7 37.3 72.3
bus 69.1 88.5 78.1 0.0 49.6 85.0
train 46.1 80.7 57.1 0.0 10.7 64.2

motorcycle 36.9 72.5 50.9 8.9 44.3 56.6
bicycle 40.6 70.2 57.9 17.4 47.1 56.8

Table 7. Per-class results for cityscapes dataset. The first 11 classes
are from stuff while the rest 8 are from thing label.

class PQ SQ RQ PQs PQm PQl

person 51.7 77.7 66.5 32.0 55.7 71.1
bicycle 17.6 66.9 26.4 7.9 19.5 33.2

car 42.1 81.0 52.0 30.9 54.9 56.0
motorcycle 40.6 74.1 54.8 13.7 35.7 58.9

airplane 56.8 78.0 72.7 45.4 37.5 72.3
bus 52.0 87.8 59.3 0.0 34.1 76.4
train 50.0 84.2 59.4 0.0 16.8 56.2
truck 24.3 78.4 31.0 13.3 21.5 36.7
boat 23.1 68.2 33.9 10.9 32.2 37.5

T. light 36.7 77.3 47.4 31.4 51.5 69.8
F. hydrant 77.5 87.1 88.9 0.0 71.6 91.3

S. sign 80.4 91.3 88.0 36.5 88.5 92.6
P. meter 56.2 87.9 64.0 0.0 48.6 82.0
bench 17.2 67.9 25.4 11.0 23.4 13.5
bird 28.2 73.5 38.4 15.0 47.5 78.6
cat 86.3 91.2 94.6 0.0 78.7 89.0
dog 69.3 86.0 80.6 0.0 58.5 82.9

horse 56.5 78.7 71.8 0.0 47.6 71.5
sheep 49.5 79.0 62.6 23.7 59.1 80.7
cow 42.3 82.5 51.4 0.0 32.4 70.1

elephant 63.0 83.9 75.0 0.0 37.4 71.5
bear 64.5 85.0 75.9 0.0 56.2 75.8
zebra 74.3 88.2 84.2 0.0 71.6 81.9
giraffe 73.1 82.2 88.9 0.0 77.0 72.4

backpack 9.6 83.5 11.5 2.8 16.4 34.7
umbrella 50.2 81.9 61.3 21.6 57.2 64.3
handbag 12.8 74.6 17.2 2.8 20.4 29.7

tie 29.8 77.6 38.5 0.0 56.2 51.4
suitcase 51.6 79.9 64.6 16.7 51.6 70.2
frisbee 70.4 85.8 82.1 51.1 77.7 93.0

skis 4.5 71.2 6.3 0.0 12.4 0.0
snowboard 24.2 65.3 37.0 9.5 34.3 0.0

kite 27.1 72.4 37.5 25.8 21.7 43.6
B. bat 23.8 67.9 35.0 35.0 8.5 0.0

B. glove 37.7 83.6 45.2 18.6 74.3 0.0
skateboard 37.3 71.5 52.2 0.0 48.8 50.6
surfboard 48.5 75.2 64.4 29.8 49.0 69.0
T. racket 58.1 83.0 70.0 27.1 68.6 86.7

bottle 38.6 80.7 47.8 29.5 49.4 81.8
wine glass 38.7 79.3 48.8 0.0 44.4 86.1

cup 48.5 88.1 55.0 15.9 70.9 75.6
fork 8.5 63.5 13.3 7.2 10.4 0.0
knife 17.7 78.7 22.5 0.0 26.3 68.2
spoon 20.2 76.4 26.4 0.0 36.9 0.0
bowl 29.9 78.6 38.0 17.3 32.2 39.8

banana 16.5 76.4 21.6 4.0 22.1 35.5
apple 30.4 87.5 34.8 8.0 63.6 51.3

sandwich 31.8 88.4 36.0 0.0 34.2 32.9
orange 59.8 88.3 67.7 36.1 37.9 82.8

broccoli 22.4 74.9 30.0 0.0 20.3 42.6
carrot 17.3 74.2 23.3 12.4 24.1 0.0

hot dog 26.5 68.6 38.6 13.7 29.6 27.5
pizza 44.5 83.2 53.5 12.6 37.5 54.5
donut 44.5 86.5 51.4 45.2 26.2 72.2

Table 8. Per-class results for COCO dataset. Continued in Table 9



class PQ SQ RQ PQs PQm PQl

cake 49.9 90.2 55.3 0.0 31.6 62.3
chair 24.0 74.3 32.3 7.4 33.6 41.5
couch 44.1 80.8 54.5 0.0 32.4 52.4

P. plant 27.2 74.1 36.7 16.6 33.1 27.3
bed 48.4 82.0 59.0 0.0 0.0 57.2

D. table 13.0 71.5 18.2 0.0 7.7 21.0
toilet 73.2 86.9 84.2 0.0 58.3 78.5

tv 57.2 86.8 66.0 0.0 49.4 72.2
laptop 57.2 81.7 70.0 0.0 44.0 67.9
mouse 68.2 86.6 78.8 44.3 81.0 62.6
remote 20.7 80.1 25.8 6.8 48.8 0.0

keyboard 52.4 85.2 61.5 0.0 46.8 72.2
cell phone 46.1 84.9 54.3 15.0 66.2 58.1
microwave 61.3 91.9 66.7 0.0 60.7 94.8

oven 33.3 79.1 42.1 0.0 19.5 42.4
toaster 0.0 0.0 0.0 0.0 0.0 0.0
sink 49.5 81.8 60.5 30.8 56.8 45.7

refrigerator 30.6 87.2 35.1 0.0 12.0 41.9
book 8.1 70.6 11.5 6.3 11.6 13.1
clock 59.3 86.4 68.7 40.9 68.1 92.5
vase 31.8 80.5 39.4 22.4 35.3 42.5

scissors 0.0 0.0 0.0 0.0 0.0 0.0
teddy bear 49.0 82.4 59.4 0.0 39.8 72.8
hair drier 0.0 0.0 0.0 0.0 0.0 0.0

toothbrush 0.0 0.0 0.0 0.0 0.0 0.0
banner 5.5 79.9 6.9 0.0 0.0 0.0
blanket 0.0 0.0 0.0 0.0 0.0 0.0
bridge 22.0 71.3 30.8 0.0 0.0 0.0

cardboard 16.6 75.7 21.9 0.0 0.0 0.0
counter 19.7 67.8 29.0 0.0 0.0 0.
curtain 45.6 83.0 54.9 0.0 0.0 0.0

door-stuff 24.4 72.8 33.6 0.0 0.0 0.0
floor-wood 35.5 82.7 43.0 0.0 0.0 0.0

flower 12.5 65.8 19.0 0.0 0.0 0.0
fruit 5.4 65.0 8.3 0.0 0.0 0.0

gravel 11.6 63.5 18.2 0.0 0.0 0.0
house 13.5 72.5 18.6 0.0 0.0 0.0
light 16.1 67.5 23.8 0.0 0.0 0.0

mirror-stuff 28.2 80.4 35.1 0.0 0.0 0.0
net 33.7 84.3 40.0 0.0 0.0 0.0

pillow 0.0 0.0 0.0 0.0 0.0 0.0
platform 10.3 92.5 11.1 0.0 0.0 0.0

playingfield 69.4 87.6 79.2 0.0 0.0 0.0
railroad 25.5 72.9 35.0 0.0 0.0 0.0

river 22.2 82.1 27.0 0.0 0.0 0.0
road 45.6 83.1 54.9 0.0 0.0 0.0
roof 5.2 80.8 6.5 0.0 0.0 0.0
sand 40.6 91.4 44.4 0.0 0.0 0.0
sea 71.0 91.6 77.5 0.0 0.0 0.0

shelf 8.8 76.3 11.5 0.0 0.0 0.0
snow 81.0 91.8 88.2 0.0 0.0 0.0
stairs 10.9 65.4 16.7 0.0 0.0 0.0
tent 5.3 53.3 10.0 0.0 0.0 0.0

towel 16.8 77.7 21.6 0.0 0.0 0.0

Table 9. Per-class results for COCO dataset. Continued in table 10

class PQ SQ RQ PQs PQm PQl

wall-brick 24.7 77.6 31.8 0.0 0.0 0.0
wall-stone 10.0 92.1 10.8 0.0 0.0 0.0
wall-tile 35.2 75.7 46.5 0.0 0.0 0.0

wall-wood 14.3 76.2 18.8 0.0 0.0 0.0
water-other 20.9 80.3 26.1 0.0 0.0 0.0

window-blind 44.6 84.7 52.6 0.0 0.0 0.0
window-other 22.2 73.7 30.0 0.0 0.0 0.0
tree-merged 64.6 80.7 80.0 0.0 0.0 0.0

fence-merged 19.7 74.9 26.3 0.0 0.0 0.0
ceiling-merged 57.3 81.8 70.1 0.0 0.0 0.0

sky-other-merged 76.9 90.4 85.1 0.0 0.0 0.0
cabinet-merged 33.1 79.7 41.5 0.0 0.0 0.0
table-merged 15.9 72.1 22.0 0.0 0.0 0.0

floor-other-merged 29.5 80.3 36.7 0.0 0.0 0.0
pavement-merged 36.4 78.9 46.2 0.0 0.0 0.0
mountain-merged 39.7 76.9 51.6 0.0 0.0 0.0

grass-merged 50.3 81.2 61.9 0.0 0.0 0.0
dirt-merged 27.4 77.0 35.6 0.0 0.0 0.0

paper-merged 4.7 74.6 6.3 0.0 0.0 0.0
food-other-merged 14.0 78.7 17.8 0.0 0.0 0.0

building-other-merged 29.3 76.4 38.4 0.0 0.0 0.0
rock-merged 31.0 78.4 39.6 0.0 0.0 0.0

wall-other-merged 45.6 79.2 57.6 0.0 0.0 0.0
rug-merged 38.3 82.7 46.4 0.0 0.0 0.0

Table 10. Per-class results for COCO dataset. The first 80 classes
are from the thing while the rest 53 are from stuff label.



Figure 6. Sample qualitative results of BBFNet on COCO dataset. BBFNet can handle different object classes with multiple instances.


