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ABSTRACT 

The Continuous Strength Method (CSM) provides accurate resistance predictions for both stocky and 

slender stainless steel cross-sections; in the case of the former, allowance is made for the beneficial 

effects of strain hardening, while for the latter, design is simplified by the avoidance of effective width 

calculations. Although the CSM strain limits can be used in conjunction with advanced analysis for the 

stability design of members, for hand calculations, the method is currently limited to the determination 

of cross-sectional resistance only, i.e. member buckling resistance is not covered. To address this 

limitation, extension of the CSM to the design of stainless steel tubular section columns is presented 

herein. The proposed approach is based on the traditional Ayrton-Perry formulation, but features 

enhanced CSM cross-section resistances and a generalized imperfection parameter that is a function of 

cross-section slenderness. The value of the imperfection parameter increases as the slenderness of the 

cross-section reduces to compensate for the detrimental effect of plasticity on member stability that is 

not directly captured in the elastic/first yield Ayrton-Perry approach. The accuracy of the proposed 

approach is assessed against numerical results generated in the current study and existing experimental 

results collected from the literature. The presented comparisons show that the CSM provides 

consistently more accurate member buckling resistance predictions than the current EN 1993-1-4 design 

rules for all stainless steel grades. The reliability of the proposed approach is demonstrated through 

statistical analyses performed in accordance with EN 1990. Finally, the paper presents a framework 

through which the proposed approach can be developed for other cross-section types and materials. 
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HIGHLIGHTS 

• A consistent CSM approach for the design of stainless steel members is presented. 

• The new approach allows for the influence of material nonlinearity and strain hardening. 

• The accuracy of the CSM for the design of columns is assessed against experimental and 

numerical data. 

• The CSM provides consistently more accurate member buckling resistance predictions than 

current design rules. 

• The reliability of the proposed approach is demonstrated through statistical analyses. 

1. INTRODUCTION 

The efficient design of structures is one of the mainstays of engineering practice, regardless of the 

considered construction material. This efficiency depends on the adopted structural form, but also on 

the accuracy of the provisions for the design of individual structural elements [1-3]. Given the high 

material cost of stainless steel in comparison to carbon steel, the development of efficient design 

expressions that fully exploit all the specific features of this corrosion-resistant material is particularly 

crucial. 

The Continuous Strength Method (CSM) is a deformation-based design approach that provides a 

rational means of exploiting capacity gains arising from the spread of plasticity and strain hardening, 

allowing more efficient design of metallic structures. Currently, the method provides design expressions 

for calculating cross-sectional resistances under compression, bending and combined loading 

conditions. These rules can be used in conjunction with second order inelastic analysis with 

imperfections for the stability design of members [4,5], but design rules suitable for implementation by 

hand calculation for member buckling require further development. Several studies into the behaviour 

of stainless steel members subjected to combined loading [6,7] have highlighted the need for providing 

accurate flexural buckling and bending moment resistance predictions to act as suitable end points for 

design interaction curves. Hence, enhancing resistance predictions for members under isolated loading 

conditions will also lead to improvements under combined loading. Zhao et al. [7] proposed the use of 
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the CSM bending moment resistance as the bending end point in the design interaction equations for 

stainless steel beam-columns with stocky cross-sections, but no modification was proposed to the 

flexural buckling resistance (i.e. the compression end point). Previous efforts to extend the CSM to the 

design of stainless steel columns have been presented by Ahmed and Ashraf [8], though the method 

features several empirical-based modification factors to account for the nonlinear material response and 

further improvements are deemed possible. Other research accounting for strain hardening effects in 

stainless steel members, but based on the Direct Strength Method, can also be found [9,10]. 

A consistent new hand calculation approach for the design of stainless steel members subjected to 

compression, based on the CSM, that allows for the influence of material nonlinearity and strain 

hardening is presented in the current paper. The new proposals have a sound theoretical basis and are 

shown to provide more accurate predictions of the flexural buckling resistance of stainless steel columns 

than are achieved by current design codes. First, the current CSM provisions for cross-section resistance 

are described in Section 2. Secondly, existing experimental data and new finite element (FE) data on 

the capacity of stainless steel columns are assembled in Section 3. The theoretical development of the 

CSM for the prediction of member buckling resistance is then presented in Section 4, and the resulting 

formulations are assessed in Sections 5–7.  

2. THE CONTINUOUS STRENGTH METHOD FOR CROSS-SECTION RESISTANCE 

The Continuous Strength Method (CSM) is a deformation-based design approach that provides accurate 

predictions of the resistance of structural cross-sections composed of a range of metallic materials, 

including stainless steel [11,12], carbon steel [13,14] and aluminium [15]. The method was originally 

developed for stocky cross-sections and allowed the incorporation of strain hardening effects into the 

calculation of resistances. However, in recent research [16], the CSM has been extended to also cover 

slender cross-sections, dominated by local buckling effects. The method has been consistently shown 

to provide more accurate resistance predictions than traditional strength-based design rules, and has the 

additional benefit of providing explicit information on cross-section ductility, i.e. knowledge of the 

level of deformation required to reach the design capacity; this information is usually unknown. A 

further significant recent development is the implementation of the CSM within an advanced analysis 

framework [4,5,17]. 
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The CSM is underpinned by a base curve that defines the maximum strain 𝜀𝑐𝑠𝑚 that a cross-section 

can achieve prior to failure, evaluated in terms of its relative local slenderness 𝜆̅𝑝 and the yield strain 

𝜀𝑦, as shown in Eq. 1a and Eq. 1b for stocky and slender cross-sections, respectively, where 𝜀𝑢 is the 

ultimate material strain and C1 is a material coefficient, both of which are described further below 

[11,12,16,18].  

𝜀𝑐𝑠𝑚
𝜀𝑦

=

{
 
 

 
 
0.25

𝜆̅𝑝
3.6 ≤ 𝑚𝑖𝑛 (15,

𝐶1𝜀𝑢
𝜀𝑦

)  𝑓𝑜𝑟 𝜆̅𝑝 ≤ 0.68

1

𝜆̅𝑝
1.05 (1 −

0.222

𝜆̅𝑝
1.05 )  𝑓𝑜𝑟 𝜆̅𝑝 > 0.68

 
Eq. 1a 

 

Eq. 1b 

The local cross-sectional slenderness is calculated from Eq. 2, where 𝜎𝑐𝑟 is the elastic local buckling 

stress of the full cross-section, and 𝑓𝑦 is the 0.2% proof stress. The elastic buckling stress of the full 

cross-section can be determined using the simple analytical expressions set out in [19] or using 

numerical tools, e.g. CUFSM [20]. 

𝜆̅𝑝 = √
𝑓𝑦

𝜎𝑐𝑟
 Eq. 2 

For stainless steel, the CSM utilises a bi-linear (elastic, linear hardening) material stress-strain model 

for ease of application in hand calculations developed for the austenitic and duplex stainless steel grades 

by Afshan and Gardner [11] and for the less ductile ferritic grades by Bock et al. [12]. The slope of the 

linear hardening region i.e. the strain hardening modulus Esh is given by Eq. 3, in which 𝑓𝑢 is the ultimate 

tensile strength of the material and 𝜀𝑢 is the ultimate strain that can be estimated from Eq. 4. The 

coefficients (C1 to C3) of the CSM material model are summarized in Table 1 for the different types of 

stainless steel.  

𝐸𝑠ℎ =
𝑓𝑢 − 𝑓𝑦

𝐶2𝜀𝑢 − 𝜀𝑦
 Eq. 3 

𝜀𝑢 = 𝐶3 (1 −
𝑓𝑦

𝑓𝑢
) Eq. 4 

 

Once the maximum strain 𝜀𝑐𝑠𝑚 that the cross-section can achieve has been calculated, the cross-section 

compression Nc,csm and bending Mc,csm resistances can be determined from Eqs. 5 and 6, respectively. In 

these equations, Ny is the squash (yield) load of the gross cross-section, Mpl and Mel are the plastic and 
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elastic bending moment capacities, Wpl and Wel are the plastic and elastic section moduli, respectively, 

𝛼 is a cross-section dependent exponent equal to 2 for tubular sections, and E is the Young’s modulus.  

𝑁𝑐,𝑐𝑠𝑚 =

{
 
 

 
 𝑁𝑦 [1 +

𝐸𝑠ℎ
𝐸
(
𝜀𝑐𝑠𝑚
𝜀𝑦

− 1)] 𝑓𝑜𝑟    𝜆̅𝑝  ≤ 0.68

𝑁𝑦 (
𝜀𝑐𝑠𝑚
𝜀𝑦

) 𝑓𝑜𝑟    𝜆̅𝑝  > 0.68 

Eq. 5 

𝑀𝑐,𝑐𝑠𝑚 =

{
 
 

 
 𝑀𝑝𝑙 [1 +

𝐸𝑠ℎ
𝐸

𝑊𝑒𝑙

𝑊𝑝𝑙
(
𝜀𝑐𝑠𝑚
𝜀𝑦

− 1) − (1 −
𝑊𝑒𝑙

𝑊𝑝𝑙
)(
𝜀𝑐𝑠𝑚
𝜀𝑦

)

−𝛼

] 𝑓𝑜𝑟    𝜆̅𝑝  ≤ 0.68

𝑀𝑒𝑙 (
𝜀𝑐𝑠𝑚
𝜀𝑦

) 𝑓𝑜𝑟    𝜆̅𝑝  > 0.68

 Eq. 6 

For cross-sections under combined compression plus bending, use of the EN 1993-1-1 [21] cross-

section interaction curves, but anchored to the CSM end points, has been recommended and shown to 

provide accurate resistance predictions [22,23]. Note that although the cross-section interaction 

equations are the same for carbon steel and stainless steel, the member level beam-column interaction 

curves are different [24]. Having described the basis of the CSM cross-section design provisions in the 

current section, extension of the scope of the CSM to the prediction of member buckling resistance is 

presented in the remaining sections of this paper. 

3. COLLECTION OF EXISTING EXPERIMENTAL DATA AND GENERATION OF NEW 

FE DATA  

Existing experimental data on stainless steel square and rectangular hollow section (SHS and RHS) 

columns are assembled in this section. These data are complemented by further numerical results 

generated herein. Both groups of data are employed in Sections 5-7 to assess the accuracy and reliability 

of the new CSM member resistance functions derived in Section 4. 

3.1 EXPERIMENTAL DATA COLLECTION 

The behaviour of stainless steel SHS and RHS members subjected to compression has been extensively 

analysed through experimentation over the past few decades. The resulting test data on austenitic [25-

30], ferritic [6,31,32] and duplex (or lean duplex) [33-36] stainless steel columns have been assembled 

herein, as summarized in Table 2. All collected data are used in the assessment of the CSM member 



6 
 

buckling design formulations presented in Section 4, while some of the data are used for the validation 

of the numerical models described in the present section. 

3.2 FE MODEL VALIDATION 

FE models of stainless steel columns were developed using the general-purpose software ABAQUS 

[37] and validated against the experimental results reported by Arrayago et al. [6]. The mid-surfaces of 

the cross-sections were modelled using four-noded shell elements with reduced integration, designated 

S4R [37]; these elements have been widely used in the modelling of cold-formed steel [38] and stainless 

steel [33,39] members. Computational efficiency and reliability of results was ensured by conducting a 

prior mesh convergence study, following which, a uniform mesh size of 5 mm was adopted. Local and 

global initial geometric imperfections were introduced into the FE model in the form of elastic buckling 

mode shapes obtained from prior linear buckling analyses; for the validation of the model, the measured 

imperfection amplitudes from the test specimens, as reported in [6], were introduced. The geometrically 

and materially nonlinear FE analyses were solved using the modified Riks method [37]. 

To replicate the pin-ended boundary conditions of the tests, the elements at the ends of the members 

were kinematically coupled and connected to two reference points. These reference points were 

positioned at a distance of 50 mm (corresponding to the knife-edge thickness) from the ends of the 

member, following the experimental setup [6]. At the lower reference point, all degrees of freedom 

except rotation around the minor axis were restrained; at the upper reference point, all degrees of 

freedom except longitudinal displacement and minor axis rotation were restrained. The load was then 

introduced as an imposed displacement at the upper reference point. 

The measured material properties from the test specimens were incorporated into the FE models, 

considering separately the flat and corner regions of the cross-sections. The corner material properties, 

which are enhanced due to cold-working in the forming process, were applied to the curved regions of 

the cross-sections, but also extended into the adjacent flat regions by a distance equal to two times the 

thickness of the material, according to the recommendations in [40]. It was observed in [30,41] that 

coupons curve longitudinally when cut from cold-formed tubes, but return to their original straight 

shape when they are gripped and loaded in a tensile testing machine. During the straightening process, 

the bending residual stresses are approximately reintroduced; hence the obtained stress-strain curves 
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inherently include the influence of bending residual stresses, which do not therefore need to be explicitly 

incorporated into the FE models. Membrane residual stresses also exist in cold-formed stainless steel 

SHS and RHS, but are low in magnitude and have been shown to have a negligible influence on 

structural response [41,42]. Hence, membrane residual stresses have not been included in the developed 

FE models. The material parameters describing the stress-strain behaviour of the flat and corner regions 

of the modelled test specimens can be found in [6].  

The experimental load-lateral deflection curves are compared to the corresponding FE curves in Figure 

1, while the key results for the considered columns are reported in Table 3 as the mean values and the 

coefficients of variation (COV) of the numerical-to-experimental ratios of the ultimate loads and the 

corresponding lateral deflections, in which Nu,FE and Nu,exp are the FE and experimental ultimate axial 

loads, respectively, and u,FE and u,exp are the corresponding FE and experimental lateral displacements. 

These comparisons demonstrate that the presented numerical analysis approach is capable of accurately 

predicting the experimental ultimate loads and replicating the full experimental load-deformation 

histories. The FE failure modes are also in good agreement with the experimental results. 

3.3 NUMERICAL PARAMETRIC STUDIES 

Once the numerical model had been validated against the experimental results, a parametric study on a 

series of SHS and RHS stainless steel columns was carried out through a combination of Python and 

ABAQUS [37] tools. Considering that the measured initial imperfection amplitudes of the members 

tested in the experimental programme reported in [6] ranged between L/1000 and L/2000, where L is 

the member length, and that residual stresses are implicitly reflected in the FE models through the use 

of measured stress-strain properties [30,41], an imperfection amplitude of L/1500 was used in the 

parametric study. Eigenmode-affine local initial imperfections were also included in the FE models 

with amplitudes predicted using the Dawson and Walker model [43], as modified by Gardner and 

Nethercot [44]. 

The parametric study included austenitic, duplex and ferritic stainless steels, adopting the material 

properties obtained from the results reported in [6] for the ferritic grades and the material properties 

employed in a previous parametric study [7] for the austenitic and duplex alloys. The key material 
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parameters for the flat and corner regions of the cross-sections are presented in Table 4, where E is the 

Young’s modulus, 𝑓𝑦 is the proof stress corresponding to 0.2% plastic strain, 𝑓𝑢 is the tensile strength, 

𝜀𝑢 is the ultimate strain corresponding to 𝑓𝑢 and n and m are strain hardening exponents. Finally, the 

full stress-strain curves were generated using the formulations presented in Arrayago et al. [45]. 

The minor axis flexural buckling behaviour of a variety of SHS and RHS stainless steel columns 

was investigated, utilising the general modelling assumptions described in the previous section. Four 

cross-sectional aspect ratios H/B equal to 1, 1.2, 1.5 and 2 were considered, with thicknesses ranging 

between 2 mm and 4 mm and member slendernesses 𝜆̅ ranging from 0.25-0.75.  

4. DEVELOPMENT OF THE CSM FOR MEMBERS BUCKLING 

The Continuous Strength Method (CSM) provides excellent resistance predictions for cross-sections, 

accounting for strain hardening effects in stocky sections and providing a direct and straightforward 

procedure to account for local buckling effects in slender sections. However, for hand calculations, the 

method is limited to cross-sectional resistance predictions in its current form; extension of the CSM to 

also cover member buckling is undertaken herein.  

The behaviour of slender stainless steel columns is dominated by member instability, with failure 

occurring at low average stress levels, below the 0.2% proof stress, or even below the proportional limit, 

of the material. However, for columns of low to intermediate slenderness, the average axial stress at 

failure can exceed the 0.2% proof stress, as the member is sufficiently stocky to maintain stability even 

after partial plastification of the critical cross-section. The resistance of these columns is therefore 

generally underestimated by current design specifications in which the maximum attainable stress is 

limited to the 0.2% proof stress. Accounting for strain hardening effects, a new CSM-based approach 

is proposed herein for stainless steel SHS and RHS columns. 

4.1 FLEXURAL BUCKLING DESIGN PROVISIONS IN CURRENT STANDARDS 

Traditional design provisions for stainless steel columns given in current standards, such as EN 1993-

1-4 [1] and AS/NZS4673 [2], are based on the Ayrton-Perry buckling formulation [46] utilised in EN 

1993-1-1 [21] for carbon steel members, where the design column strength 𝑁𝑏,𝑅𝑑 is determined by 

reducing the characteristic cross-section squash load 𝑁𝑐,𝑅𝑘 = 𝐴𝑓𝑦, where A is the cross-section area (or 
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effective area for Class 4 sections) and 𝑓𝑦 is the 0.2% proof stress, to account for flexural buckling 

effects through the buckling reduction factor 𝜒, as given in Eq. 7, in which 𝛾𝑀1 is the partial factor for 

member instability. 

𝑁𝑏,𝑅𝑑 =
𝜒𝑁𝑐,𝑅𝑘
𝛾𝑀1

 Eq. 7 

The reduction factor  is calculated from the corresponding buckling curve, as given in Eqs. 8 and 9, as 

a function of the member slenderness 𝜆̅ = √𝑁𝑐,𝑅𝑘 𝑁𝑐𝑟⁄  , where Ncr is the elastic buckling load of the 

member. 

𝜒 =
1

𝜙 + √𝜙2 − 𝜆̅2
,   but  ≤ 1 

Eq. 8 

𝜙 = 0.5[1 + 𝜂 + 𝜆̅2] 
Eq. 9 

In EN 1993-1-4 [1], the imperfection parameter 𝜂 is given by 𝜂 = 𝛼𝐸𝑁(𝜆̅ − 𝜆̅0), with 𝛼𝐸𝑁 = 0.49 and 

𝜆̅0 = 0.4 for cold-formed hollow sections, while AS/NZS4673 [2] utilises a nonlinear generalized 

imperfection factor and provides different buckling curves for different stainless steel grades. 

AS/NZS4673 [2] also allows the use of a tangent modulus approach in the prediction of flexural 

buckling resistance, where the nonlinear stress-strain response of the material is directly considered, 

though the design procedure is iterative. 

Recent reliability analyses carried out by Afshan et al. [47] in accordance with EN 1990 [48] 

indicated that the flexural buckling curve currently specified in EN 1993-1-4 [1] for cold-formed 

stainless steel SHS and RHS columns yielded a required partial safety factor 𝛾𝑀1 that exceeded the 

recommended value of 1.10, suggesting that a lower buckling curve is required. It was also proposed 

that different buckling curves are necessary for different stainless steel grades to reflect their varying 

degrees of material nonlinearity. The revised buckling curves have already been included in the Fourth 

Edition of the Design Manual for Structural Stainless Steel [18] and are due to be incorporated into the 

upcoming version of EN 1993-1-4; these curves are therefore considered in the comparisons made in 

the present paper. The proposed revised curves are similar to buckling curve c [1,21], adopting the same 

imperfection factor 𝛼𝐸𝑁 = 0.49 for all stainless steels, but with different limiting slendernesses of 𝜆̅0 =

0.3 for austenitic and duplex and 𝜆̅0 = 0.2 for ferritic stainless steel alloys.  
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4.2 DERIVATION OF THE CSM FORMULAE FOR MEMBER BUCKLING 

4.2.1 INTRODUCTION 

Derivation of the CSM design formula for member buckling is based on consideration of a pin-ended 

column with a half sine-wave initial geometrical imperfection of magnitude e0, subjected to an axial 

compressive load. From the classical elastic flexural equilibrium equation of the imperfect column 

Trahair et al. [49], the most heavily loaded cross-section reaches first yield at an applied load level 

𝑁𝑏,𝑅𝑘 given by Eq. 10. 

𝑁𝑏,𝑅𝑘
𝑁𝑐,𝑅𝑘

+
1

(1 −
𝑁𝑏,𝑅𝑘
𝑁𝑐𝑟

)

𝑁𝑏,𝑅𝑘𝑒0
𝑀𝑒𝑙

= 1 
Eq. 10 

where Mel is the elastic bending moment resistance of the cross-section and Ncr is the elastic critical 

buckling load of the member. In Eurocode 3, the above expression is presented through Eqs. 7 to 9 

where, based on the first yield failure criterion, the generalized imperfection factor 𝜂 =
𝑒0𝐴

𝑊𝑒𝑙
 is adopted. 

When the slenderness plateau 𝜆̅0 is introduced, the generalized imperfection factor can be expressed as 

per Eq. 11. This first yield failure criterion, or slight modification thereof, has traditionally been used 

for the development of column buckling rules in Europe, but does not represent well the nonlinear 

material response of stainless steel [50,51]. 

𝜂 = 𝛼𝐸𝑁(𝜆̅ − 𝜆̅0) Eq. 11 

4.2.2 OUTLINE OF THE METHOD 

To reflect the particular characteristics of stainless steel, the elastic cross-sectional resistances in 

compression 𝑁𝑐,𝑅𝑘 = 𝐴𝑓𝑦 and bending 𝑀𝑒𝑙 = 𝑊𝑒𝑙𝑓𝑦 used in Eq. 10 can be replaced by the 

corresponding CSM resistances defined in Eqs. 5 and 6 to give Eq. 12, where 𝑁𝑐,𝑐𝑠𝑚,𝑅𝑘 and 𝑀𝑐,𝑐𝑠𝑚,𝑅𝑘 are 

the CSM cross-section compression and bending moment resistances and 𝑁𝑏,𝑐𝑠𝑚,𝑅𝑘 is the flexural 

buckling resistance of the column according to the CSM. It is of course recognized that in order to reach 

the CSM cross-section resistances in the stocky range, material nonlinearity will be experienced, and 

the traditional elastic/first yield assumption of the Ayrton-Perry formulation no longer holds. This is 
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considered through the definition of the CSM equivalent imperfection amplitude 𝑒0,𝑐𝑠𝑚, as discussed 

in the following sections.  

𝑁𝑏,𝑐𝑠𝑚,𝑅𝑘
𝑁𝑐,𝑐𝑠𝑚,𝑅𝑘

+
1

(1 −
𝑁𝑏,𝑐𝑠𝑚,𝑅𝑘
𝑁𝑐𝑟

)

𝑁𝑏,𝑐𝑠𝑚,𝑅𝑘𝑒0,𝑐𝑠𝑚
𝑀𝑐,𝑐𝑠𝑚,𝑅𝑘

= 1 
Eq. 12 

Defining 𝜎𝑏,𝑐𝑠𝑚 = 𝑁𝑏,𝑐𝑠𝑚,𝑅𝑘 𝐴⁄ , 𝜎𝑐,𝑐𝑠𝑚 = 𝑁𝑐,𝑐𝑠𝑚,𝑅𝑘 𝐴⁄  and 𝜎𝑐𝑟 = 𝑁𝑐𝑟 𝐴⁄ , Eq. 12 can be re-written in 

terms of stresses, to give Eq. 13. Note that 𝜎𝑐,𝑐𝑠𝑚 and 𝜎𝑏,𝑐𝑠𝑚 refer to the failure stress of the cross-

section and member (due to flexural buckling), respectively. 

𝜎𝑏,𝑐𝑠𝑚
𝜎𝑐,𝑐𝑠𝑚

+
1

(1 −
𝜎𝑏,𝑐𝑠𝑚
𝜎𝑐𝑟

)

𝜎𝑏,𝑐𝑠𝑚𝑒0,𝑐𝑠𝑚
𝑀𝑐,𝑐𝑠𝑚
𝐴

= 1 Eq. 13 

Eq. 13 can be rewritten as Eq. 14, where 𝜂𝑐𝑠𝑚 is a new generalised imperfection factor given by Eq. 15. 

(𝜎𝑐,𝑐𝑠𝑚 − 𝜎𝑏,𝑐𝑠𝑚)(𝜎𝑐𝑟 − 𝜎𝑏,𝑐𝑠𝑚) = 𝜎𝑏,𝑐𝑠𝑚𝜎𝑐𝑟𝜂𝑐𝑠𝑚  Eq. 14 

 

𝜂𝑐𝑠𝑚 =
𝑒0,𝑐𝑠𝑚𝐴

𝑀𝑐,𝑐𝑠𝑚,𝑅𝑘
𝜎𝑐,𝑐𝑠𝑚⁄

= 𝑒0,𝑐𝑠𝑚
𝑁𝑐,𝑐𝑠𝑚,𝑅𝑘
𝑀𝑐,𝑐𝑠𝑚,𝑅𝑘

 
Eq. 15 

Presenting Eqs. 12 and 13 in the familiar format of Eurocode 3, the CSM flexural buckling resistance 

is given by Eq. 16, while the corresponding member slenderness 𝜆̅𝑐𝑠𝑚 and the buckling reduction factor 

𝜒𝑐𝑠𝑚 are given by Eq. 17 and Eqs. 18 and 19, respectively. 

𝑁𝑏,𝑐𝑠𝑚,𝑅𝑑 =
𝜒𝑐𝑠𝑚𝑁𝑐,𝑐𝑠𝑚,𝑅𝑘

𝛾𝑀1
 Eq. 16 

𝜆̅𝑐𝑠𝑚 = √𝑁𝑐,𝑐𝑠𝑚,𝑅𝑘 𝑁𝑐𝑟⁄  Eq. 17 

𝜒𝑐𝑠𝑚 =
1

𝜙𝑐𝑠𝑚 + √𝜙𝑐𝑠𝑚
2 − 𝜆̅𝑐𝑠𝑚

2
 Eq. 18 

𝜙𝑐𝑠𝑚 = 0.5[1 + 𝜂𝑐𝑠𝑚 + 𝜆̅𝑐𝑠𝑚
2 ] Eq. 19 

The proposed CSM approach for the flexural buckling resistance of stainless steel columns given by 

Eqs. 16 to 19 is equivalent to the procedure described in Section 4.1 and adopted in current standards 

[1-2,21] but requires the definition of a new generalised imperfection factor 𝜂𝑐𝑠𝑚, given in Eq. 15, in 

which 𝑒0,𝑐𝑠𝑚 is the CSM equivalent imperfection amplitude. From Eq. 15, introducing the slenderness 

plateau 𝜆̅0 and the relationships 𝜆 = 𝐿 𝑖⁄ , 𝑖2 = 𝐼 𝐴⁄  and 𝑊𝑒𝑙 = 𝐼 𝑣⁄ , the new generalized imperfection 
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factor 𝜂
𝑐𝑠𝑚

 can be expressed as in Eq. 20. In these relationships, L is the length of the column, I is the 

relevant second moment of area, A is the gross-section area and v is the distance from neutral axis to 

the extreme fibre. 

𝜂𝑐𝑠𝑚 =
𝑒0,𝑐𝑠𝑚𝜋

𝐿 (
𝑖
𝑣
)
√

𝐸

𝜎𝑐,𝑐𝑠𝑚
(𝜆̅𝑐𝑠𝑚 − 𝜆̅0)

𝜎𝑐,𝑐𝑠𝑚𝑊𝑒𝑙

𝑀𝑐,𝑐𝑠𝑚,𝑅𝑘
= 𝛼𝑐𝑠𝑚(𝜆̅𝑐𝑠𝑚 − 𝜆̅0) Eq. 20 

The CSM equivalent imperfection amplitude is obtained from Eqs. 20 and 15 as: 

𝑒0,𝑐𝑠𝑚 = 𝛼𝑐𝑠𝑚(𝜆̅𝑐𝑠𝑚 − 𝜆̅0)
𝑀𝑐,𝑐𝑠𝑚,𝑅𝑘
𝑁𝑐,𝑐𝑠𝑚,𝑅𝑘

 Eq. 21 

This expression is similar to the imperfection factor given in Section 7 of EN 1993-1-1 [21] for the 

calculation of the unique (back-calculated) imperfection amplitude 𝑒0,𝑒𝑙,𝐸𝑁 to be adopted with a linear 

elastic cross-section check in the design of carbon steel columns by second order elastic analysis, as 

given by Eq. 22. From Eqs. 20 and 11, the relationship between 𝛼𝑐𝑠𝑚 and 𝛼𝐸𝑁 can be obtained, as 

shown in Eq. 23, in which 𝑁𝑝𝑙 = 𝐴𝑓𝑦. 

𝑒0,𝑒𝑙,𝐸𝑁 = 𝛼𝐸𝑁(𝜆̅𝑐𝑠𝑚 − 𝜆̅0)
𝑀𝑒𝑙
𝑁𝑝𝑙

 Eq. 22 

𝛼𝑐𝑠𝑚 = 𝛼𝐸𝑁
𝑒0,𝑐𝑠𝑚
𝑒0,𝑒𝑙,𝐸𝑁

√
𝑓𝑦

𝜎𝑐,𝑐𝑠𝑚

𝜎𝑐,𝑐𝑠𝑚𝑊𝑒𝑙

𝑀𝑐,𝑐𝑠𝑚,𝑅𝑘
= 𝛼𝐸𝑁

𝑒0,𝑐𝑠𝑚
𝑒0,𝑒𝑙,𝐸𝑁

√
𝑓𝑦

𝜎𝑐,𝑐𝑠𝑚

𝑁𝑐,𝑐𝑠𝑚,𝑅𝑘𝑀𝑒𝑙
𝑀𝑐,𝑐𝑠𝑚,𝑅𝑘𝑁𝑝𝑙

 Eq. 23 

Figure 2 presents the back-calculated equivalent bow imperfection amplitudes 𝑒0 for the design of 

columns by second order elastic analysis using different linear cross-section interaction equations –

elastic, plastic and CSM-plastic–, with the corresponding end points indicated. Critical cross-section N-

M equilibrium paths obtained by second order elastic analysis (GNIA) are plotted along with these 

interaction diagrams in the figure, where N is the applied axial compression and M is the corresponding 

second order bending moment in the case of the appropriate bow imperfection amplitude 𝑒0, calculated 

from 𝑀 = (𝑁𝑒0)/(1 − 𝑁 𝑁𝑐𝑟⁄ ). The intersection point of the different equilibrium paths with their 

corresponding interaction diagrams provides the load level (as marked with the horizontal line) 

corresponding to the buckling resistance of the column. The back-calculated imperfection amplitudes 

are higher when the linear plastic curve is considered, in line with the imperfection amplitudes given in 
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Table 7.1 of [21] for the reference relative bow imperfections, and Eq. 22 in the case that Mel is replaced 

by Mpl [51].  

As shown in Figure 2, the equivalent imperfection amplitude 𝑒0,𝑐𝑠𝑚 required for use in conjunction 

with the linear CSM-plastic interaction is higher again. Determination of this CSM equivalent 

imperfection amplitude, which is utilized in the definition of the CSM imperfection factor 𝛼𝑐𝑠𝑚, is 

addressed in the following section for stainless steel SHS and RHS columns. 

4.2.3 CSM EQUIVALENT IMPERFECTION AMPLITUDE 𝑒0,𝑐𝑠𝑚 AND IMPERFECTION FACTOR 𝛼𝑐𝑠𝑚 

For the definition of the CSM imperfection factor 𝛼𝑐𝑠𝑚 it is necessary to analyse the required equivalent 

CSM column imperfection amplitudes 𝑒0,𝑐𝑠𝑚 for stainless steel columns of different proportions and 

material grades. Critical cross-section N-M equilibrium paths and interaction diagrams are shown in 

Figures 3 to 5 for some typical SHS/RHS columns in austenitic, ferritic and duplex stainless steel, 

respectively. For each stainless steel grade, two members, with stocky cross-sections (𝜆̅𝑝 ≈ 0.35) and 

two different lengths (giving member slenderness values around 0.75 and 1.25) are considered. For each 

cross-section, three linear interaction diagrams with different end points are plotted in Figures 3 to 5: 

(i) based on first yield using Npl and Mel, (ii) based on Npl and Mpl and (iii) considering the CSM axial 

and bending cross-section resistances, Nc,csm and Mc,csm. Second order elastic analysis (GNIA) paths 

corresponding to the back-calculated bow imperfection amplitudes for the numerically predicted 

resistances Nb,FE are also included in these figures. The back-calculated imperfections have been 

determined such that the intersection between the GNIA paths and the different interaction diagrams 

occur at the numerically predicted buckling resistances of the columns Nb,FE, as obtained from GMNIA; 

these resistances are indicated with horizontal lines in Figures 3 to 5. 

It is important to note that the required bow imperfection amplitudes increase with decreasing cross-

sectional slenderness, since plasticity effects, which are ignored in GNIA but have to be compensated 

for by the use of a larger imperfection, become more relevant. The same approach is used in the EN 

1993-1-1 provisions for member design by second order elastic analysis, in which a larger equivalent 

bow imperfection is used when a plastic rather than an elastic axial-moment cross-section interaction 

curve is used [51]. This is illustrated in Figure 6, where normalized plastic-CSM interaction diagrams 



14 
 

are shown for different cross-section slenderness values. As 𝜆̅𝑝 values increase, the plastic-CSM 

interaction diagrams tend towards the elastic interaction diagram corresponding to the column buckling 

design approaches adopted in current Standards [1-2,21]. Thus, it is necessary to determine appropriate 

imperfection amplitudes for use with linear interaction diagrams using CSM cross-section resistances 

as the end points (Eq. 12), as a function of the local slenderness of the cross-sections. 

For the determination of the required CSM bow imperfection amplitude 𝑒0,𝑐𝑠𝑚, the available 

experimental and numerical column buckling resistance data described in Section 3 have been 

employed. The required equivalent experimental (or numerical) imperfection amplitudes 𝑒0,𝑒𝑙,𝐸𝑁 and 

𝑒0,𝑐𝑠𝑚 can be back-calculated by setting Nb,Rk and Nb,csm,Rk in Eqs. 10 and 12, equal to the experimental 

or numerical column resistances. Then, the 𝑒0,𝑐𝑠𝑚 𝑒0,𝑒𝑙,𝐸𝑁⁄  ratios can be calculated and plotted against 

the corresponding local slenderness 𝜆̅𝑝, as per Figure 7, for the different stainless steel grades 

considered in the analysis. In this analysis, and throughout the paper, local slenderness values have been 

obtained using elastic local buckling stresses derived from eigenvalue analyses, though the simplified 

analytical expressions provided in [19] yield very similar results. From Figure 7, a clear descending 

trend in 𝑒0,𝑐𝑠𝑚 𝑒0,𝑒𝑙,𝐸𝑁⁄  can be observed with increasing 𝜆̅𝑝 values for the three materials. 

The relationship between 𝑒0,𝑐𝑠𝑚 𝑒0,𝑒𝑙,𝐸𝑁⁄  and 𝜆̅𝑝 is defined by Eq. 24, where the required values of 

the coefficients C5 and C6 are provided in Eqs. 25 and 26. These coefficients have been defined in such 

a way that they account for the different stress-strain characteristics of the different stainless steel grades 

through their dependency on 𝑓𝑢 𝑓𝑦⁄ . As shown in Figure 7, the proposed linear relationship (Eq. 24) and 

coefficients C5 and C6 provide a good fit to the 𝑒0,𝑐𝑠𝑚 𝑒0,𝑒𝑙,𝐸𝑁⁄  results back-calculated from 

experimental and numerical column buckling resistances. Note that, at the CSM limiting local 

slenderness 𝜆̅𝑝 = 0.68, the 𝑒0,𝑐𝑠𝑚 𝑒0,𝑒𝑙,𝐸𝑁⁄  ratio is equal to 1.0, i.e. the CSM and EN equivalent 

imperfection amplitudes converge. This is to be expected because at 𝜆̅𝑝 = 0.68, the CSM cross-section 

resistances (Nc,csm and Mc,csm) are equal to Npl and Mel. Beyond this slenderness limit (i.e. for all slender 

sections), a constant value of to 1.0 is adopted for the 𝑒0,𝑐𝑠𝑚 𝑒0,𝑒𝑙,𝐸𝑁⁄  ratio. 

𝑒0,𝑐𝑠𝑚
𝑒0,𝑒𝑙,𝐸𝑁

= {
𝐶5 − 𝐶6𝜆̅𝑝 𝑓𝑜𝑟 𝜆̅𝑝 ≤ 0.68

1 𝑓𝑜𝑟 𝜆̅𝑝 > 0.68
 Eq. 24 
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𝐶5 = 1 + 0.68𝐶6 Eq. 25 

𝐶6 = 1.2(𝑓𝑢 𝑓𝑦⁄ ) Eq. 26 

4.2.4 COLUMNS WITH SLENDER CROSS-SECTIONS 

The prediction of the flexural buckling resistance of columns with slender cross-sections (i.e. 𝜆̅𝑝 >

0.68) needs to account for cross-section resistance reductions due to premature local buckling as 

opposed to cross-section resistance gains due to strain hardening. These reductions can be considered 

through the CSM strength curve for slender sections –see Eq. 1b–, or indeed using the traditional 

effective width method. The first approach is more direct, simpler and based on gross-sectional 

properties. Since for cross-sections with 𝜆̅𝑝 > 0.68, 𝑒0,𝑐𝑠𝑚 𝑒0,𝑒𝑙,𝐸𝑁⁄ = 1, 𝜎𝑐,𝑐𝑠𝑚 = 𝑓𝑦 and 

√
𝑓𝑦

𝜎𝑐,𝑐𝑠𝑚

𝑁𝑐,𝑐𝑠𝑚,𝑅𝑘𝑀𝑒𝑙

𝑀𝑐,𝑐𝑠𝑚,𝑅𝑘𝑁𝑝𝑙
= 1, Eq. 23 becomes 𝛼𝑐𝑠𝑚 = 𝛼𝐸𝑁, and thus the CSM approach is similar to the 

currently codified method, with the only difference being the way in which local buckling is treated 

based on the full cross-section slenderness [19] and Eq. 1b for the CSM and based on the plate-by-plate 

effective width method for EN 1993-1-4 [1]. 

4.2.5 ILLUSTRATIVE CSM BUCKLING CURVES 

With the aim of illustrating the proposed CSM member design approach, typical Nb,csm/Npl curves are 

calculated for different materials and cross-section slenderness values 𝜆̅𝑝 and plotted in Figures 8 to 10. 

Note that the specific Nb,csm/Npl curve for a given member will depend on its particular geometrical and 

material parameters; thus, the curves shown in the figures only represent the CSM buckling curves for 

specific cases. Austenitic, ferritic and duplex stainless steel SHS/RHS columns are considered in 

Figures 8 to 10, respectively, considering four different cross-section slenderness values. Buckling 

curve c, provided in [18] for stainless steel hollow sections, is also shown for comparison. It is evident 

from Figures 8 to 10 that, for a given material, the highest buckling curves are obtained for those cross-

sections with the lowest local slenderness 𝜆̅𝑝. In addition, it can be observed that the obtained buckling 

curves are higher for those materials in which strain hardening effects are more significant i.e. the 

austenitic stainless steel buckling curves are higher than the duplex and ferritic buckling curves.  
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In a similar manner to Figures 8 to 10, Figures 11 to 13 show the increase (or decrease) in column 

buckling resistance obtained using the CSM approach over the Eurocode approach for the considered 

austenitic, ferritic and duplex stainless steel columns; the data are grouped into four bands by cross-

section slenderness value. From these figures it is evident that the largest benefit is obtained for 

members with both low column and cross-section slenderness.  

5. ASSESSMENT OF THE CSM APPROACH FOR COLUMNS WITH STOCKY CROSS-

SECTIONS  

An assessment of the proposed CSM approach for the stability design of stainless steel columns is 

presented in this section by comparing the predicted flexural buckling resistances with the experimental 

and numerical results introduced in Section 3. Note that although the proposed approach is applicable 

to a number of materials and cross-section shapes for which the CSM has been developed, this paper 

only covers the assessment of SHS and RHS members, which are the most commonly used stainless 

steel cross-sections. The assessment is presented separately for columns with stocky and slender cross-

sections. In this section, members with cross-section slenderness values 𝜆̅𝑝 ≤ 0.68 are considered to 

evaluate the beneficial influence of strain hardening, which is not included in the Eurocode 3 buckling 

curves. Note that, for the presented comparisons, the EN 1993-1-4 buckling curves are taken as those 

developed in [47], which have already been included in the Design Manual [18] and are due to be 

incorporated into the upcoming revision to EN 1993-1-4. 

Tables 5 and 6 present the mean and COV values of the predicted-to-experimental (or FE) ratios for 

the considered flexural buckling design approaches for different data subsets. To illustrate more clearly 

the improvements achieved using the proposed CSM approach, results corresponding to the stockiest 

cross-sections (𝜆̅𝑝 ≤ 0.5) are presented in Table 5, separated by stocky (𝜆̅𝑐𝑠𝑚 ≤ 1) and slender (𝜆̅𝑐𝑠𝑚 >

1) members, while Table 6 shows results for the full cross-section slenderness range. In the tables, Nu 

is the ultimate test or FE resistance, Nb,EN is the resistance obtained using the revised Eurocode buckling 

curves [18,47] and Nb,csm is the resistance obtained using the CSM. In the presented assessment, cross-

section slenderness values have been calculated using Eq. 2, in which the elastic local buckling stress 

under pure compression crl was obtained using CUFSM [20]. 
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The results presented in Tables 5 and 6 show that the proposed CSM approach provides improved 

predictions of the resistance of stainless steel SHS and RHS columns since higher predicted-to-test/FE 

resistance ratios Nb,pred/Nu, with lower or similar scatter, are obtained. The results reported in Table 5 

show a greater improvement in the prediction of the ultimate capacity of columns with stocky cross-

sections for duplex stainless steel than for austenitic grades, despite the lesser degree of strain 

hardening. This is because the proportion of data in the lowest cross-section slenderness range 𝜆̅𝑝 ≤

0.4, in which greater improvements are expected, is higher for the duplex stainless steel database than 

for the austenitic stainless steel database, as shown in Figures 11 and 13. Figure 14 presents similar 

results by plotting the predicted-to-experimental (or FE) resistance ratios against the corresponding 

member slenderness (see Figure 14(a)) and cross-sectional slenderness (see Figure 14(b)) for the 

developed method and the revised Eurocode 3 flexural buckling curves provided in [18]. From these 

figures it can be also seen that the prediction of column buckling resistances is improved when the 

proposed CSM method is adopted. 

6. ASSESSMENT OF THE CSM APPROACH FOR COLUMNS WITH SLENDER CROSS-

SECTIONS 

In this section, an assessment of the CSM approach for the design of stainless steel members with 

slender cross-sections (i.e. 𝜆̅𝑝 > 0.68) is presented. As in the previous section, the revised Eurocode 3 

buckling curves [18,47] are considered throughout the comparisons. The results calculated using the 

CSM and EN 1993-1-4 [1], utilising the effective width expressions developed in [53] and adopted in 

[1,18], are compared with the test and FE results in Table 7. It is evident from the comparisons that the 

CSM and EN 1993-1-4 yield very similar results when applied to stainless steel SHS/RHS columns 

with slender cross-sections. The CSM is however simpler to use, since no effective width calculations 

are required, yet a similar level of accuracy is achieved; this is therefore considered to be an overall 

improvement. Similar conclusions can be drawn from Figure 15, where the predicted-to-experimental 

(or FE) ratios are plotted against member slenderness (see Figure 15(a)) and against cross-sectional 

slenderness (see Figure 15(b)). 
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7. RELIABILITY ANALYSIS  

The reliability of the proposed CSM and Eurocode 3 [18,47] member design approaches is assessed in 

this section. The statistical analyses have been carried out according to EN 1990, Annex D [48], while 

the statistical parameters corresponding to the material and geometrical variations of the different 

stainless steel grades have been extracted from Afshan et al. [54]. The considered material overstrength 

ratios are 1.3 for austenitic, 1.2 for ferritic and 1.1 for duplex stainless steel, with COV values equal to 

0.060, 0.045 and 0.030 respectively, and the COV of the geometric properties was taken as 0.050.  

A summary of the most relevant statistical parameters is presented in Table 8. In this table, b is mean 

value of the correction factor, V is the coefficient of variation of the errors relative to the experimental 

results, Vr is the combined coefficient of variation and M1 is the calculated required partial safety factor. 

Note that for the calculation of the parameter b, which represents the mean value of the correction factor, 

the adopted approach is slightly different from that stated in [48], since for this method the relative 

weight of specimens with high ultimate load in the determination of b is higher than for specimens 

failing at lower loads, meaning that the value of b is biased towards data with high absolute resistances. 

The adopted b values have been calculated herein following the approach described in [55,56], with 

𝑏 =
1

𝑛
∑

𝑁𝑢,𝑖

𝑁𝑏,𝑝𝑟𝑒𝑑,𝑖

𝑛
𝑖=1 , where n is the number of considered specimens, Nu the is the experimental (or FE) 

ultimate resistance and Nb,pred is the predicted column resistance.  

According to the results gathered in Table 8, the proposed CSM design approach for stainless steel 

columns can be safely applied to members with both stocky and slender cross-sections, and to the different 

stainless steel grades considered, since the calculated required M1 values lie below the partial safety factor 

M1 currently recommended in EN 1993-1-4 [1], which is equal to 1.10.  

8. SUMMARY OF CSM MEMBER BUCKLING DESIGN PROPOSALS 

Based on the described analyses, the proposed CSM design formulae for member buckling are 

summarised as follows: 

𝑁𝑏,𝑐𝑠𝑚,𝑅𝑑 =
𝜒𝑐𝑠𝑚𝑁𝑐𝑠𝑚,𝑅𝑘

𝛾𝑀1
 Eq. 16 
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𝜒𝑐𝑠𝑚 =
1

𝜙𝑐𝑠𝑚 + √𝜙𝑐𝑠𝑚
2 − 𝜆̅𝑐𝑠𝑚

2
 Eq. 18  

𝜙𝑐𝑠𝑚 = 0.5[1 + 𝛼𝑐𝑠𝑚(𝜆̅𝑐𝑠𝑚 − 𝜆̅0) + 𝜆̅𝑐𝑠𝑚
2 ] Eq. 19 

𝜆̅𝑐𝑠𝑚 = √𝑁𝑐𝑠𝑚,𝑅𝑘 𝑁𝑐𝑟⁄  Eq. 17 

𝛼𝑐𝑠𝑚 = 𝛼𝐸𝑁
𝑒0,𝑐𝑠𝑚
𝑒0,𝑒𝑙,𝐸𝑁

√
𝑓𝑦

𝜎𝑐,𝑐𝑠𝑚

𝑁𝑐,𝑐𝑠𝑚,𝑅𝑘𝑀𝑒𝑙
𝑀𝑐,𝑐𝑠𝑚,𝑅𝑘𝑁𝑝𝑙

 Eq. 23 

𝑒0,𝑐𝑠𝑚
𝑒0,𝑒𝑙,𝐸𝑁

= {
𝐶5 − 𝐶6𝜆̅𝑝 𝑓𝑜𝑟 𝜆̅𝑝 ≤ 0.68

1 𝑓𝑜𝑟 𝜆̅𝑝 > 0.68
 Eq. 24 

𝐶5 = 1 + 0.68𝐶6 Eq. 25 

𝐶6 = 1.2(𝑓𝑢 𝑓𝑦⁄ ) Eq. 26 

with 𝛼𝐸𝑁 being the EN 1993-1-4 imperfection factor. 

9. CONCLUSIONS 

A new design approach for determining the flexural buckling resistance of stainless steel columns based 

on the Continuous Strength Method (CSM) has been presented. Previously, since the CSM only covered 

cross-section resistance, assessment of member stability (within the CSM framework) was only possible 

in conjunction with second order inelastic analysis [4,5,17]. The new approach presented in this paper 

extends the CSM to member buckling, allowing for consideration of strain hardening and local buckling 

effects for stainless steel SHS and RHS columns. The proposed approach builds on the traditional 

Ayrton-Perry based design formulation, but considers a different generalized imperfection parameter 

that depends on the cross-sectional slenderness and considered material, introducing strain hardening 

effects directly into the formulation. The value of the imperfection parameter increases as the 

slenderness of the cross-section reduces to compensate for the detrimental effect of plasticity on 

member stability that is not directly captured in the elastic/first yield Ayrton-Perry approach. An 

assessment of the CSM and Eurocode 3 column buckling design approaches against experimental and 

numerical results showed that the proposed CSM provides improved predictions of the resistance of 

SHS and RHS columns with stocky cross-sections. For columns with slender cross-sections, the CSM 
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provided similar results to Eurocode 3, using the effective width method, but is simpler to apply. The 

reliability of the proposed approach was demonstrated through statistical analyses. 

The proposed new CSM approach provides a framework that can be extended to further cross-section 

types and materials, as well as to other failure modes, such as lateral-torsional buckling and loading 

conditions, such as axial load plus bending. 
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FIGURES 

 

 
Figure 1. Comparison of experimental and FE load-lateral deflection curves for ferritic stainless 

steel columns. 

 
 

 
Figure 2. Critical cross-section N-M equilibrium paths obtained using GNIA with back-calculated 

equivalent bow imperfection amplitudes 𝑒0 and different linear interaction equations.  
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Figure 3. N-M interaction diagrams and determination of flexural buckling resistance for austenitic 

stainless steel columns with 𝜆̅𝑐𝑠𝑚 = 0.75 and  𝜆̅𝑐𝑠𝑚 = 1.25. 
 

 
Figure 4. N-M interaction diagrams and determination of flexural buckling resistance for ferritic 

stainless steel columns with 𝜆̅𝑐𝑠𝑚 = 0.75 and  𝜆̅𝑐𝑠𝑚 = 1.25. 
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Figure 5. N-M interaction diagrams and determination of flexural buckling resistance for duplex 

stainless steel columns with 𝜆̅𝑐𝑠𝑚 = 0.75 and  𝜆̅𝑐𝑠𝑚 = 1.25. 
 

 

 

Figure 6. Influence of the cross-section slenderness in linear CSM-plastic interaction diagrams. 
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Figure 7. Relationship between CSM and EN equivalent bow imperfection amplitudes as a function of 

local slenderness 𝜆̅𝑝. 

 

 

 
Figure 8. CSM member buckling curves for austenitic stainless steel SHS/RHS columns. 
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Figure 9. CSM member buckling curves for ferritic stainless steel SHS/RHS columns. 

 

 

 

Figure 10. CSM member buckling curves for duplex stainless steel SHS/RHS columns. 
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Figure 11. Comparison between buckling resistance predictions obtained using the proposed CSM 

member design approach and EN 1993-1-4 [1] for austenitic stainless steel SHS/RHS columns. 

 

 

 

 

 

 
Figure 12. Comparison between buckling resistance predictions obtained using the proposed CSM 

member design approach and EN 1993-1-4 [1] for ferritic stainless steel SHS/RHS columns. 
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Figure 13. Comparison between buckling resistance predictions obtained using the proposed CSM 

member design approach and EN 1993-1-4 [1] for duplex stainless steel SHS/RHS columns. 
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 (a)  

(b)   

Figure 14. Assessment of the proposed CSM and Eurocode 3 [18,47] approaches for stainless steel 

SHS/RHS columns with stocky cross-sections (𝜆̅𝑝 ≤ 0.68). 
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(a)   

(b)   

Figure 15. Assessment of the proposed CSM and Eurocode 3 [18,47] approaches for stainless steel 

SHS/RHS columns with slender cross-sections (𝜆̅𝑝 > 0.68). 
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TABLES 

Table 1. CSM material model coefficients. 

Stainless steel type C1 C2 C3 

Austenitic 0.10 0.16 1.00 

Ferritic 0.40 0.45 0.60 

Duplex 0.10 0.16 1.00 
 

 

Table 2. Summary of assembled experimental data on stainless steel tubular section columns. 

Stainless 

steel type 

Material 

grade 

No. of 

tests 

Boundary 

conditions 

Range of 

cross-section 

slenderness 𝜆̅𝑝 

Range of 

member 

slenderness 𝜆̅ 

Reference 

Austenitic 

1.4301 12 Pin-ended 0.27-0.98 0.52-1.92 [25] 

1.4301 22 Pin-ended 0.28-1.17 0.39-1.95 [26] 

1.4301 12 Fixed-ended 0.27-0.71 0.27-1.07 [27] 

1.4301 24 Fixed-ended 0.39-1.26 0.30-1.72 [28] 

1.4318 12 Pin-ended 0.59-0.86 0.59-1.66 [29] 

1.4307 4 Pin-ended 0.50-0.52 0.14-1.43 [30] 

Ferritic 

1.4003 5 Pin-ended 0.46-0.94 0.69-1.76 [6] 

1.4003 11 Pin-ended 0.41-0.91 0.31-2.43 [31] 

1.4509 4 Pin-ended 0.55 0.80-1.74 [31] 

1.4003 2 Pin-ended 0.54-0.56 0.43-1.21 [32] 

Duplex 

1.4162 12 Pin-ended 0.49-0.54 0.58-2.07 [33] 

1.4162 43 Pin-ended 0.50-1.73 0.20-2.67 [34] 

- 20 Fixed-ended 0.51-1.32 0.28-1.80 [35] 

1.4462 5 Pin-ended 0.49-0.84 0.50-1.43 [36] 

 
 

Table 3. Comparison between experimental and FE results for ferritic stainless steel columns. 

Specimen Nu,FE/Nu,exp u,FE/u,exp 

80804 1.00 0.93 

60603 1.02 0.99 

80404 1.01 1.03 

120803 0.97 0.80 

70502 1.02 1.00 

Mean 1.00 0.95 

COV 0.021 0.096 
 

 

Table 4. Definition of material properties for parametric studies 

Stainless 

steel type 

Cross-section 

region 

E 

[GPa] 

𝑓𝑦 

[MPa] 

𝑓𝑢 

[MPa] 

𝜀𝑢 

[%] 
n m Source 

Austenitic 
Flat 196 355 608 0.45 5.9 3.5 [7] 

Corner 201 559 725 0.28 4.8 4.1 [7] 

Ferritic 
Flat 187 485 505 0.07 12.2 2.6 [6] 

Corner 178 555 587 0.01 7.9 5.2 [6] 

Duplex 
Flat 198 635 756 0.44 6.0 4.2 [7] 

Corner 207 833 1079 0.23 5.0 6.1 [7] 
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Table 5. Assessment of design approaches for stainless steel SHS/RHS members with stocky cross-

sections (𝜆̅𝑝 ≤ 0.5) in compression. 

Stainless steel 

type 

  Eurocode 3 CSM Eurocode 3 CSM 

  Nb,EN/Nu Nb,csm/Nu Nb,EN/Nu Nb,csm/Nu 

  Stocky members 

𝜆̅𝑐𝑠𝑚 ≤ 1 

Slender members 

𝜆̅𝑐𝑠𝑚 > 1 

Austenitic 

Exp. 

 

Mean 0.91 0.95 0.90 0.91 

COV 0.060 0.050 0.084 0.071 

FE 

 

Mean 0.96 1.02 0.89 0.90 

COV 0.056 0.033 0.042 0.052 

All 

 

Mean 0.94 0.99 0.89 0.90 

COV 0.061 0.054 0.046 0.053 

Ferritic 

Exp. 
Mean - - - - 

COV - - - - 

FE 
Mean 0.89 0.91 0.86 0.85 

COV 0.055 0.060 0.044 0.044 

All 
Mean 0.89 0.91 0.86 0.85 

COV 0.055 0.060 0.044 0.044 

Duplex 

Exp. 
Mean - - - - 

COV - - - - 

FE 
Mean 0.91 0.99 0.87 0.90 

COV 0.024 0.016 0.037 0.037 

All 
Mean 0.91 0.99 0.87 0.90 

COV 0.024 0.016 0.037 0.037 

 

 

Table 6. Assessment of design approaches for stainless steel SHS/RHS members in compression 

for the full cross-section slenderness range. 

Stainless steel 

type 

  Eurocode 3 CSM 

  Nb,EN/Nu Nb,csm/Nu 

Austenitic 

Exp. 

 

Mean 0.91 0.93 

COV 0.070 0.064 

FE 

 

Mean 0.89 0.90 

COV 0.074 0.075 

All 

 

Mean 0.89 0.90 

COV 0.074 0.075 

Ferritic 

Exp. 

 

Mean 0.84 0.85 

COV 0.047 0.051 

FE 

 

Mean 0.87 0.87 

COV 0.052 0.055 

All 

 

Mean 0.87 0.87 

COV 0.052 0.055 

Duplex 

Exp. 
Mean 0.89 0.90 

COV 0.062 0.065 

FE 
Mean 0.89 0.93 

COV 0.061 0.070 

All 
Mean 0.90 0.93 

COV 0.062 0.072 
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Table 7. Assessment of design approaches for stainless steel SHS/RHS members with slender 

cross-sections (𝜆̅𝑝 > 0.68) in compression 

Stainless steel 

type 

  Eurocode 3 CSM 

  Nb,EN/Nu Nb,csm/Nu 

Austenitic 

Exp. 
Mean 0.84 0.83 

COV 0.056 0.060 

FE 
Mean 0.92 0.88 

COV 0.101 0.080 

All 
Mean 0.89 0.87 

COV 0.099 0.079 

Ferritic 

Exp. 
Mean 0.82 0.82 

COV 0.047 0.056 

FE 
Mean 0.80 0.79 

COV 0.089 0.078 

All 
Mean 0.79 0.79 

COV 0.096 0.078 

Duplex 

Exp. 
Mean 0.85 0.84 

COV 0.079 0.067 

FE 
Mean 0.85 0.84 

COV 0.102 0.085 

All 
Mean 0.85 0.84 

COV 0.096 0.081 

 
 

Table 8. Summary of the reliability analysis results for the CSM and Eurocode 3 approaches for 

stainless steel SHS/RHS members in compression. 

 
Design 

approach 
Stainless steel 

type 
b V Vr M1 

Stocky  

cross-sections 

 

𝜆̅𝑝 ≤ 0.68 

𝜆̅𝑐𝑠𝑚 ∈ [0.23,2.98] 
 

Eurocode 3 

Austenitic 1.131 0.076 0.109 1.01 

Ferritic 1.152 0.052 0.085 0.98 

Duplex 1.119 0.062 0.085 0.98 

CSM 

Austenitic 1.113 0.076 0.109 1.03 

Ferritic 1.148 0.054 0.087 0.99 

Duplex 1.084 0.071 0.092 1.05 

Slender  

cross-sections 

 

𝜆̅𝑝 > 0.68 

𝜆̅𝑐𝑠𝑚 ∈ [0.11,2.98] 

Eurocode 3 

Austenitic 1.135 0.092 0.121 1.07 

Ferritic 1.259 0.086 0.110 1.05 

Duplex 1.187 0.092 0.109 1.09 

CSM 

Austenitic 1.156 0.076 0.109 1.02 

Ferritic 1.258 0.079 0.104 1.03 

Duplex 1.186 0.088 0.106 1.08 

 
 

 


