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Abstract

We investigate an optimal growth portfolio problem with contingent convertible

bonds (CoCos). As the conversion risk in CoCos is closely associated with the issuer’s

capital structure and the stock price at conversion, we model both equity and credit

risk to frame this optimisation problem. This study aims to answer two questions

that (i) how investors should optimally allocate their financial wealth between a

CoCo and a risk-free bond; and (ii) which approach – investing in a CoCo or in a

stock issued by the same bank – could result in higher expected returns. First, we

derive the dynamic of a coupon-paying CoCo price under a reduced-form approach.

We then decompose the problem into pre- and post-conversion regimes to obtain

closed-form optimal strategies. A comparative simulation leads us to conclude that,

under various market conditions, investing in a CoCo with a risk-free bond provides

a higher expected growth than investing in stock.

keywords: Growth portfolio optimisation; Contingent convertible bond; Statistical

comparisons; Sensitivity analysis;
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1 Introduction

During the 2007-2008 global financial crisis, a central issue in regulating large banks in-

volved determining how to improve their capital structure to ensure sufficient loss-absorbing

capital, thereby eliminating the need for public bailouts. For example, much stricter capital

requirements were applied under the Basel III reforms: all banks were required to maintain

at least 4.5% of their common equity tier 1 (CET1) capital in total risk-weighted assets

until 2015. This was an increase from the 2% under the prior Basel II accord. One remark-

able evolution in banks’ capitalisation was the emergence of a new hybrid asset class, called
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contingent convertible bonds, or CoCos, for short. As a type of bond, CoCos are automat-

ically either converted into equity or written down when the issuer experiences a shortage

of capital but still retains enterprise value. This automatic conversion feature is designed

to not only reduce economic costs in the case of bankruptcy, but also to enhance financial

market stability. Such a contingent claim relies on whether the issuer’s capital-ratio falls

below a pre-defined level. This is a key characteristic of CoCos compared to traditional

corporate or convertible bonds, which provide bond holders the right to call. Under the

Basel III accord, CoCos are admitted as an eligible instrument for meeting capital buffers

(European Banking Authority, 2011). Such a regulatory environment, in combination with

the pressure on banks to recapitalise, has led to the rapid growth of the CoCo market over

the past decade. Since their first issue in 2009 by the Lloyds Banking Group, CoCos had

an estimated issuance of USD 640 billion worldwide as of 2018 (Figure ?? in Appendix B).

The rapid expansion of the CoCo issuance market implies the existence of high investor

demand. Specifically, the current low interest rate circumstances have increased investors’

attraction to CoCos, as they typically provide higher coupon rates than corresponding

corporate bonds1. A high yield rate reflects CoCos’ higher risk than standard corporate

bonds. While the primary risk in standard bonds arises from the potential of default, the

dominating risk in CoCos arises from their conversion prior to default. As the conversion

mechanism is designed to help issuing banks enhance their capital buffers before a default

occurs, the conversion risk for CoCos is typically higher than the default risk for corporate

bonds. Due to this additional risk, credit rating agencies are reluctant to provide ratings

higher than BBB for CoCos. However, several highly rated banks such as Barclays, Credit

Suisse, HSBC, and the Industrial & Commercial Bank of China are major active issuers in

the current market. Thus, investors have different opinions regarding whether the current

spread between default and conversion risk has been overestimated, and if the current high

coupon level could provide a profitable opportunity. This view is supported by the case

of Banco Popular, which immediately defaulted prior to converting their CoCos in June

2017. This was the first case in which CoCos were wiped out of their face value due to the

company’s resolution. Moreover, Banco Popular’s failure created to little risk of spill-over

into the rest of the market, which contradicted the strong contagion concerns across the

entire CoCo market.

Despite the high demand and potential profitability in CoCo secondary markets, large

financial institutions have limited their investments in CoCos due to their lack of complete

credit ratings and of clarity regarding how regulators should handle CoCo investments

1For example, Barclays plc issued a CoCo bond with 7.88% (XS1481041587), while the corresponding

senior note had 3.25% (US06738EAL92); Credit Suisse Group AG issued a 7.125% coupon-paying CoCo

bond (CH0352765157) in 2017, while the corresponding corporate bond provided 3.57% (US225401AB47).
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(Avdjiev et al., 2013). Instead, CoCos comprise an overwhelmingly large proportion of the

indirect investment in hedge funds rather than being directly adopted by individual insti-

tutions – according to Boermans and Wijnbergen (2017)’s investigation of the European

CoCo market. Additionally, retail investors have expressed a growing interest in CoCo

portfolio products as a new investable class. For example, large asset management com-

panies such as PIMCO2 and JP Morgan Asset Management3 now actively manage CoCo

bond mutual funds or high-yield bond funds with CoCos, and WisdomTree4, Invesco5, and

China Post Global6 have recently launched CoCo bond exchange-traded funds. In 2017,

the CoCo bond market saw remarkable performance records, with returns of approximately

18% – more than European bank shares7.

Inspired by an increasing demand for a portfolio investment sector that utilises CoCos,

our questions of interest are as follows: (i) How should agents optimally allocate their

wealth when they invest in CoCo bond markets with risk-free bonds? (ii) If they do choose

to invest, which can be expected to gain better performance – a portfolio with CoCos or

a classical composition with equities? CoCos’ conversion risk is closely associated with

the issuers’ capital structure and depends, in particular, on the issuer’s equity price at

the moment of conversion, unlike typical corporate bonds. Therefore, additional attention

should be paid to both equity and credit risk to establish a framework for determining the

optimal CoCo trading strategy.

In this context, we investigate an optimal trading strategy in which an investor’s total

wealth is dynamically allocated between two asset categories – a CoCo with continuously

paying fixed coupons and a risk-free bond. We derive a CoCo price dynamic by employing

a reduced-form approach. This involves designing the conversion intensity as a function

of the coupon rate and the issuer’s stock price. For the conversion intensity, we assume a

positive relationship with the coupon variable, as a higher coupon rate implies a greater

possibility of conversion. In addition, there may be a negative relationship between the

conversion intensity and the stock price variable. This is because conversion seldom occurs

when the issuer’s stock price is soaring or remaining reasonably high; it is more likely

to occur when the stock price decreases. Based on this newly designed CoCo dynamic

2PIMCO GIS Capital Securities Fund, https://www.pimco.co.uk/, http://www.morningstar.co.

uk/uk/funds/snapshot/snapshot.aspx?id=F00000WW0F
3JPM Global High Yield Bond Fund, http://jp.techrules.com/JP/JP.mvc/OverView?FundId=

7378&ShareClassId=12962&country=GB&lang=EN&paramMIFID=yes&Display=NO&UserId=
4https://www.bloomberg.com/quote/CCBO:IM
5https://www.bloomberg.com/quote/AT1:LN
6https://www.ftadviser.com/european/2018/07/10/china-post-global-launches-world-s-

first-euro-coco-etf/
7https://www.ipe.com/investment/asset-class-reports/high-yield-bonds/
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process, we examine an optimal allocation strategy that maximises the expected growth

rate on a CoCo portfolio’s terminal wealth when this portfolio includes a bank account in

continuous time. We accomplish this by considering two regimes – pre-conversion and post-

conversion – to derive closed-form optimal strategies. Finally, we conduct a comprehensive

simulation under various parameter sets, justified by empirical evidence, to compare two

optimal portfolio when investing agents’ wealth in either CoCos or in the issuer’s equity.

We find that utilising the CoCo market can enhance investors’ welfare more than accessing

the corresponding equity market.

This study employs the optimal growth approach, which is based on a growth-optimal

portfolio (GP) – a portfolio that maximises expected log utility from terminal wealth. It

was originally introduced by Kelly (1956), who proves that GPs asymptotically outper-

form any other strategy. This property may indicate that a GP would be most suitable for

investors with long-term asset allocation decisions. Moreover, a GP has exact connections

with modern portfolio theory leading to the capital asset pricing model and the arbitrage

pricing theory (Sharpe, 1964; Lintner, 1969; Ross, 1976). Modern portfolio theory has

been shown to play a critical role in determining passive portfolio investment strategies

for rational investors. For these reasons, the GP has been widely applied in various finan-

cial market models regarding asset pricing, risk management, and portfolio optimisation

(Latane, 1959; Long, 1990; Bajeux-Besnainou and Portait, 1997; Platen, 2006).

This study makes three primary contributions. First, to the best of our knowledge, it is

the first examine the optimal growth portfolio problem by including CoCos with conversion

risk. We obtain optimal investment proportions as a closed-form formula, which facilitates

financial insights on proper investment decisions with CoCos. As CoCos have a relatively

short history compared to other fixed-income securities, conversion events are rare, with

only one conversion example available in the current market. Therefore, fund managers are

reluctant to invest in CoCos, although CoCos have high potential profitability. Our results

could provide the agents who manage CoCos with a background to their decision-making

towards efficient investments. This would also contribute to the diversification of investable

asset sections. Second, we propose a pricing methodology for CoCos under the reduced-

form approach. As an extension of Duffie and Singleton (1999), we obtain a complete

form of a dynamic process of a CoCo price under a physical measure from a risk-neutral

measure. Our proposed framework contains two characteristics: A plausible conversion

intensity is applied, which depends on the CoCo’s yield rate and the issuing bank’s equity

level. In addition, a dilution effect is reflected in the CoCo and stock price dynamics due

to the equity conversion. Third, we comparatively simulate the optimal expected growth

between two different portfolios – a CoCo versus a stock issued by the same bank and a

risk free bond. We demonstrate that a trading strategy that includes CoCos generates
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higher expected returns than one with the same issuer’s stock in a portfolio investment.

Specifically, investing in CoCos produces a higher significant stable performance which

delivers a higher expected profit than the stock as long as conversion does not occur.

However, CoCo holders bear much more loss than equity holders if conversion does occur.

The remainder of this paper is organised as follows: Section 2 reviews the relevant

literature, while Section 3 explains the structure of CoCos and the loss given conversion.

Section 4 introduces a market model and derives the optimal growth portfolio strategies for

CoCos and stocks. Section 5 conducts numerical tests for both CoCo and stock investment

distributions, and Section 6 provides our conclusions. Technical proofs and figures are in

Appendices A and B, respectively.

2 Literature review

This study is related to prior research that analysed CoCos in terms of their structural

design and valuation and is based on a theory regarding portfolio optimisation problems.

Although this study’s background is established in both streams of the literature, pre-

vious studies have rarely discussed portfolio optimisation problems that include CoCos.

This section reviews two areas of the literature regarding analyses of CoCos and portfolio

optimisation problems.

Regarding the design of CoCos, Flannery (2005, 2009) and Pennacchi et al. (2014)

introduce ‘reverse convertible debentures’ and ‘call option enhanced reverse convertibles’,

respectively, as examples of the structure of early CoCo proposals. McDonald (2013)

suggests that CoCos have a ‘dual-trigger’ that depends on the situations of both the in-

dividual firm and the entire banking system. Sundaresan and Wang (2015) discuss stock

price-trigger CoCos and the nonexistence of a unique equilibrium in their prices.

There are two literature streams regarding the valuation of CoCo bonds. One is centered

on structural bond pricing models (Leland, 1994), where a CoCo’s value can be derived

as an optimal level when a firm’s capital structure is composed of equity, subordinated

debt, and CoCos (Glasserman and Nouri, 2012; Chen et al., 2017). In a similar essence,

De Spiegeleer and Schoutens (2010, 2012) introduce a method using financial derivatives of

pricing techniques. This approach considers a hidden barrier level of stock prices embedded

in market CoCo prices and define the conversion time as the first passage of time for

which the stock price drops below a hidden barrier (Brigo et al., 2015;Jang et al., 2018).

A primary drawback of both these works is that the stock price at conversion is fixed,

thus overlooking the randomness of the conversion price and the LGC of CoCos. The

other stream of research regards a reduced-form approach that focuses on the dynamics

of conversion intensity and the magnitude of the change in stock prices at the time of
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conversion (Cheridito and Xu, 2015; Chung and Kwok, 2015).

Regarding the optimal portfolio investment, Merton (1969) introduces a methodology

that employed the stochastic control theory and the dynamic programming principle, which

discusses how an agent efficiently allocates wealth between two asset categories: a risk-

free bond and equity. Based on Merton (1969)’s framework, extensive research has since

been conducted into dynamic portfolio optimisation problems (Pham, 2009; Rogers, 2013;

Fleming and Pang, 2004); this includes studies on defaultable bond optimisation problems.

Hou and Jin (2002) adopt a reduced-form approach with an Ornstein-Uhlenbeck process

to derive a closed-form solution for an investor who optimally allocates wealth among a

defaultable bond, default-free stock, and risk-free bank account in a finite time horizon

under a power utility function. Korn and Kraft (2003) employ a structural approach with

defaultable bonds and stocks.

Bielecki and Jang (2006) extend Hou and Jin (2002)’s work to explicitly model a recov-

ered amount in default using the conditional diversification assumption from Jarrow et al.

(2005) with a constant parameter assumption. Bo et al. (2010) consider a perpetual de-

faultable bond over an infinite time horizon for optimal investment and consumption under

log utility. Capponi and Figueroa-Lopez (2014) consider a dynamic portfolio optimisation

problem in a regime-switching market, concerning a defaultable bond, a default-free stock,

and a risk-free bank account. The authors then derive a dynamic defaultable bond using a

regime-switching model, through a closed-form pricing formula as originally noted in Duffie

and Singleton (1999)’s work. In a recent study, Jia et al. (2019) investigate a defaultable

portfolio with stocks containing looping contagion risk under general utility.

The optimal portfolio problem can be dealt with under an incomplete market frame-

work, which incorporates asset dynamic models that either lack information or contain

unpredictable Poissonian jumps. Under this setup, perfect risk diversification and hedg-

ing do not work; thus, solving optimal investment problems requires alternative methods

(Karatzas et al., 1991; He and Pearson, 1991; El Karoui and Quenez, 1995; Duffie et al.,

1997). Such a problem has been extended with various components, such as the occur-

rence of defaults, incomes, and uncontrollable events. Bouchard and Pham (2004) treat the

stochastic investment time-horizon with default risk; and Lakner and Liang (2008) inves-

tigate an asset’s default time given reduced information of the asset values over observable

finite times. Jang et al. (2019) also consider an insurer’s default risk in a retiree’s opti-

mal strategy problem. Employing a default-density process, Jiao and Pham (2011) work

on a stock with counterparty risk inducing a jump. Regarding unhedgeable income risk,

Cocco et al. (2005) consider uninsurable labour income risk and borrowing constraints.

Bensoussan et al. (2016) solve an optimal retirement problem under forced unemployment

risk using a convex-duality approach.
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3 Structure setup for CoCos

The CoCo conversion process is activated when a certain identifier breaches a specified

level. CoCos have two defining characteristics: (i) a trigger that activates conversion and

(ii) a mechanism that specifies how losses are absorbed at conversion.

In practice, three types of triggers are primarily employed: the capital-ratio trigger,

regulatory trigger, or a combination of both. The capital-ratio trigger is established based

on accounting values in balance sheets such as equities and liabilities. These easily illustrate

banks’ overall capital sufficiency. One drawback, however, is that information on capital-

ratios is not continuously available, due to infrequent updates. Furthermore, regulatory

triggers are implemented based on a regulator’s judgement regarding the issuing banks’

prospective solvency. This trigger is controlled by authorities, which makes it difficult to

quantify the probability of conversion.

Once conversion has been activated under the pre-defined trigger, a loss-absorbing

process is automatically enforced in two directions: a bond principal is either converted

into common equity or written down, this is denoted henceforth as either ‘EC-CoCo’ or

‘WD-CoCo’, respectively. Figure 4 in Appendix B presents the propensity to issue CoCos

relative to the loss-absorbing method. In this figure, EC-CoCos and WD-CoCos account

for 43% and 57% of the total amount of CoCos issued until 3Q-2018, respectively. Table 1

provides examples of ongoing CoCo contracts issued by major banks in the current market;

the data are sourced from Bloomberg. Regarding the CoCo issued by UBS (CH0244100266)

a fixed 5.125% annual coupon is paid with a maturity date of May 15, 2024, and this was

issued at 99.905. This CoCo can be written down if the CET1 ratio of UBS falls below

5% without the regulatory trigger condition being met. The CoCos’ maturity has either a

fixed maturity type or a perpetual type, which can be callable after the issue date.

Issuing bank Barclays HSBC Lloyds Credit Suisse UBS

ISIN US06738EAB11 US404280AS86 XS0459090774 XS1076957700 CH0244100266

Coupon rate 6.625% 6.375% 7.38% 6.25% 5.125%

Coupon frequency Quarterly Semi-annually Annually Semi-annually Annually

Issue price 100.0 100.0 100.0 100.0 99.905

Maturity Perpetual Perpetual 12/03/2020 Perpetual 15/05/2024

Callable 15/09/2019 30/03/2025 No 12/18/2024 No

Accounting trigger CET1 < 7% CET1 < 7% CET1 < 5% CET1 < 5.125% CET1 < 5%

Regulatory trigger No No No Yes (by FINMA) No

Loss absorption Equity conversion Write down

Table 1: Specifications of the CoCo contracts issued by major banks (Source: Bloomberg)

Let us discuss the specific structure of an EC-CoCo. The conversion price determines
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the number of shares that CoCo holders can receive, which is called the conversion ratio.

Denoting the conversion price as CP and the face value as F , the conversion ratio Cr is

equal to F/CP .Let τ signify the conversion time, and the equity price Sτ at conversion

typically will not equal the stock price just before conversion, denoted by Sτ−. This is

true because the CoCos’ conversion will immediately impact the stock price. Because, on

the one hand, the information of the CoCo conversion’s activation can damage investors’

confidence, which will an adverse impact its stock price. On the other hand, the sudden

injection of new shares into the market can cause a dilution effect. Both of these effects

can decrease the stock price.

Although both effects – the adverse reaction of other equity holders and the dilution

effect – can lead to a significant decline in the stock price, our model focuses on a discon-

tinuous jump-down at a single point at τ due to diluting equities. As CoCo’s are conversed

when the CET1 ratio of the issuer breaches the given barrier level, it is difficult to say that

conversion is totally exogenous. Moreover, equity holders can access the capital structure

information in the balance sheet and can therefore recognise that the bank has been expe-

riencing financial difficulties before the conversion. Thus, it is more likely that the adverse

situation would be considered in the issuer’s stock pricing and the perspective of market

participants would therefore differ before a true conversion. In addition, empirical results

confirm that a positive correlation is usually observed between the dynamics of CoCo and

the equity prices of the same issuer (p.52, Avdjiev et al., 2013). Unlike such phenomena,

the inflow of new shares from conversion can induce an immediate drop.

Here, the number of market shares before conversion is M , and the number of CoCo

bonds in the market is MC , MSτ− then indicates the total equity. Owing to the dilution

effect, the stock price at conversion becomes

Sτ =
MSτ−

M +MCCr
.

Thus, the fraction of loss for the stock price occurring at τ is derived by

LSτ =
Sτ− − Sτ
Sτ−

.

As the EC-CoCo holder receives the amount of CrSτ−(1−LSτ ) at the moment of conversion,

the LGC ratio of an EC-CoCo holder can be expressed by

Lτ = 1− Cr
Pτ−

Sτ−(1− LSτ ),

where Pτ− is the CoCo market value just before conversion. Here, Cr plays a crucial role

in determining the EC-CoCo holder’s LGC, which linearly decreases with respect to Cr.
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Although Cr equals F/CP in principle, there is a conversion shares offer consideration rule,

which allows the issuing bank to reduce the conversion ratio at its discretion. This rule is

adopted to protect shareholders from a significant dilution effect. Thus, we approximate

the actual Cr by Pτ−/CP when estimating the LGC8. From this, we obtain the loss fraction

of the stock price at conversion and the LGC ratio of CoCo, as follows:

LSτ =
αPτ−

αPτ− + CP
and Lτ = 1− Sτ−

αPτ− + CP
, (1)

where α = MC/M .

In terms of the WD-CoCo’s stock price loss, we set LSτ = 0 as no dilution effect exists.

The rationale for this is as follows. At the WD-CoCo’s trigger, the loss absorption process

is activated by wiping out the CoCo’s notional value in the issuer’s balance sheet. The

writing-down event can be perceived by equity holders as a positive signal, as it can be

expected that the capital structure will be improved due to the CoCo being written-down,

unless a dilution risk exists in the equity market. Specifically, when the trigger is activated,

the 1−R fraction of the face value is written down with the recovery rate R. This implies

that Lτ = 1 − R, and R is set as zero in practice. Avdjiev et al. (2013) discover that

most WD-CoCos have a full write-down feature (i.e. R = 0) in practice, except in some

cases (e.g. Rabobank issued a WD-CoCo with R = 0.25 in 2010, which wipes out 75%

of its face value and pays 25% in cash upon conversion.). Greene (2016) discusses the

inappropriateness of partial WD-CoCos9.

The conversion price CP normally takes the following expression:

CP = max{β1Sτ , β2SF},

where β1, β2 ∈ {0, 1} are constants and SF is a pre-determined constant. If β1 = 0, β2 =

1, then the conversion price is CP = SF – the fixed price determined at the CoCo’s

inception. If β1 = 1, β2 = 0, then the conversion price is CP = Sτ – the floating conversion

price. If β1 = 1, β2 = 1, then the conversion price is CP = max{Sτ , SF}, the stock price

at the conversion time floored by a constant SF . For example, the Lloyds-issued CoCo

(XS0459090774) has a fixed conversion price of SF = $0.5921 (β1 = 0, β2 = 1) with the

initial stock price of Lloyds $0.55 at the CoCo issuing date, as shown in Table 3.

In practice, most EC-CoCos seldom adopt a floating conversion price. Many studies

discuss the concerns regarding a floating conversion price (De Spiegeleer and Schoutens,

2012; Sundaresan and Wang, 2015; Cahn and Kenadjian, 2014), focusing on its drawbacks

8It is generally believed that the CoCo market price is lower than the face value just before conversion.
9Greene (2016) mentions that ‘Partial WD-CoCos are impractical because issuing banks would have to

pay out cash during a time of market distress’.
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in the context of dilution and manipulation. Thus, the floating conversion type is rarely

adopted in real-life CoCo markets. A report by Barclays (Barclays, 2014) examines contract

configurations for 32 samples of CoCos issued by major European banks from 2009 to 2014,

with 11 EC-CoCos and 21 WD-CoCOs being issued. All the 11 EC-CoCos had fixed or

floor conversion prices as their loss absorption; however none of the CoCos employed a

floating conversion price.

4 Market models and optimal growth portfolios

In this section, we establish the price dynamics for the three assets being considered and

postulate the optimal investment problem from a growth portfolio perspective. Considering

the necessity of the optimal growth portfolio – as discussed in the Introduction, the loga-

rithmic optimal portfolio has been widely employed in various financial market models. In

particular, for asset allocation decisions, considering log utility is the most appropriate ap-

proach for long term investors both theoretically and practically. As the investment period

for CoCos would cover the medium/long term, considering the spectrum of CoCo maturity

in Table 1, using the log utility in our framework seems to be a reasonable assumption.

Let us assume that the market consists of one risk-free bank account, one stock, and

one CoCo bond issued by the same company as the stock. (Bt)t≥0 denotes the value of

the risk-free bank account with interest rate r, (St)t≥0 denotes the stock price, and (Pt)t≥0
denotes the CoCo bond price paying a continuous coupon with a rate of c. Assuming

continuous compounding, Bt satisfies

dBt = rBtdt, t ≥ 0.

Furthermore, we establish that St follows a geometric Brownian motion

dSt = µStdt+ σStdWt, (2)

where µ is the stock’s growth rate, σ is its volatility, and (Wt)t≥0 is a standard Brownian

motion. It is assumed that the issuer’s stock price follows Eq.(2) for all t ≥ 0 except for

τ . At t = τ , the stock price suffers a percentage loss LSτ . After conversion, St continues

to follow the dynamic in Eq.(2). The post-conversion stock price Sτ and the immediate

pre-conversion stock price Sτ− have the following relationship: Sτ = (1 − LSτ )Sτ−. Thus,

the stock price in the whole timeline can be written as shown in Eq.(13).

Let us define τ as the first time at which the total hazard is greater than an independent

exponential variable. In other words,

τ := inf

{
t ≥ 0 :

ˆ t

0

hudu ≥ X
}
, (3)
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where (ht)t≥0 is a hazard rate (conversion intensity) process, X is a standard exponential

random variable, and (ht)t≥0 and X are independent of each other. Here, (ht)t≥0 can be a

general stochastic process. In a special case of ht = h, in which t ≥ 0 and h is a positive

constant, τ is an exponential random variable with parameter h.

In our setting, we consider that ht depends on St to reflect the likelihood of the stock

price affecting the CoCo’s conversion, that is, ht = h̄(St) for a deterministic function h̄.

This means that ht is given as an adapted process to a filtration generated by Wt. In

addition, we assume that ht = 0 if St ≥ s∗, where s∗ is a given stock price threshold. From

a practical perspective, this assumption is reasonable because CoCos are not exposed to a

conversion risk under high-level stock prices.

Considering arbitrage-free pricing and the recovery of the market value scheme, we can

derive a dynamic for CoCo prices before conversion, given by

dPt
Pt−

= (r − c+ θt) dt+ λtdWt, (4)

where θt is the excess return over the risk-free rate r determined by market factors, and

λt is the volatility of the CoCo price. At τ , the price Pt decreases to zero since the CoCo

contract ceases to exist. Proposition 3 provides the whole dynamic of the CoCo price with

the detailed derivation procedure (Appendix A).

Investors dynamically allocate a proportion (π, 1 − π) of their total wealth between

CoCos P and bank accounts B before conversion. After conversion, the CoCo is converted

into equities; thus, investors allocate a proportion (π, 1− π) of their wealth to the issuer’s

stock S and B. We can naturally split the wealth process into two stages: pre- and

post-conversion. For the wealth process {Xt}t≥0, the pre-conversion dynamic is given as

dXt

Xt−
= πt

(
dPt
Pt−

+ cdt

)
+ (1− πt)

dBt

Bt

= (r + θtπt) dt+ λtπtdWt, (5)

where π is a portfolio (control) process satisfying the condition 1 − Ltπt ≥ ε for constant

ε > 0, which ensures that the wealth process is always non-negative; more details are

provided in Appendix A. At τ , the wealth process X increases due to the loss of conversion

L in the CoCo price P . Thus, we have Xτ = (1− Lτπτ )Xτ−. The post-conversion wealth

dynamic is given by

dXt

Xt

= πt
dSt
St

+ (1− πt)
dBt

Bt

= (r + (µ− r)πt) dt+ σπtdWt. (6)

For a stock investor, the pre-conversion wealth process also satisfies Eq.(6), except that

the wealth process X at conversion time τ experiences a jump due to the loss of conversion

LSτ in the stock price S. Therefore, we can obtain Xτ = (1− LSτ πτ )Xτ−.
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The investor’s objective involves finding the optimal growth portfolio, or

vz(t, x, s) = sup
π

E [ln (Xπ
T ) |Xt = x, St = s,Ht = z] ,

where T is the terminal investment time, Xt = x and St = s are the initial wealth and

stock price, respectively, and Ht = I{τ≤t} is a conversion indicator that equals zero if

the conversion has not occurred before t, and one otherwise, as defined in Eq.(12). The

objective function vz(t, x, s) depends upon the conversion’s realization z at the evaluation

time. As the wealth process (Xt)t≥0 follows an exponential process in Eq.(5) or (6), we can

denote this as

vz(t, x, s) = ln x+ sup
π
fz(t, s; π),

where fz(t, s; π) is given by

fz(t, s; π) =


ˆ T

t

E
[
ψ0
u(πu)(1−Hu) + ψ1

u(πu)Hu

]
du if z = 0ˆ T

t

E
[
ψ1
u(πu)

]
du if z = 1.

Here, ψ0
t represents a pre-conversion running objective function defined by

ψ0
t (πt) := r + θtπt −

1

2
λ2tπ

2
t + ht ln (1− Ltπt) , (7)

and ψ1
t defines a post-conversion running objective function by

ψ1
t (πt) := r + (µ− r)πt −

1

2
σ2π2

t . (8)

Note that only the post-conversion objective function is effective only if the conversion has

already occurred at the initial time, that is, if z = 1. Thus, we can find the maximum value

for fz(0, s; π) over π by using the pointwise maximum of ψ0
t (πt) and ψ1

t (πt) for t ∈ [0, T ]

for each case.

Before conversion, the maximum of Eq.(7) is achieved at π satisfying the equation

θt − λ2tπt − Ltht
1

1− Ltπt
= 0.

By solving the above equation and noting the requirement 1− Ltπt ≥ ε, we can conclude

that the optimal portfolio for a CoCo investor in a pre-conversion period is given by

π∗t = min

{
λ2t + Ltθt −

√
∆t

2Ltλ2t
,
1− ε
Lt

}
, (9)

12



where ∆t = (λ2t − Ltθt)
2

+ 4L2
tλ

2
tht. Similarly, the optimal portfolio of a stock investor in

a pre-conversion period is given by

π∗t = min

{
σ2 + LSt (µ− r)−

√
∆S
t

2LSt σ
2

,
1− ε
LSt

}
, (10)

where ∆S
t =

(
σ2 − LSt (µ− r)

)2
+ 4(LSt )2σ2ht.

In the post-conversion period, we need to consider the optimal controls for EC-CoCo

and WD-CoCo holders separately, as the EC-CoCo investor is transformed to the equity

holder of the same bank at the trigger, whereas the WD-CoCo investor receives cash

depending on the promised recovery rate. For EC-CoCos, the optimal control is obtained

by finding the value that maximises Eq.(8); hence, it is achieved at π∗t = (µ− r)/σ2,

which is the well-known Merton portfolio. This implies that one should invest a constant

proportion of wealth in stock S after the EC-CoCo’s conversion. For WD-CoCos, as the

investor has the cash converted from the WD-CoCo, a proportion of the total wealth goes

to risk-free assets after the trigger, that is, π∗t = 0.

5 Performance for CoCo and stock investments

This section incorporates numerical tests to compare the experiences of two investors who

invest in the same company that issues both common equities (stock) and CoCos. One

investor invests in CoCos and the other in stock. For comparison, we consider two port-

folios: a CoCo and a bank account, versus the stock issued by the same issuer and bank

account. We assume that each investor, who decides to invest in either the CoCo or in the

issuer’s stock follows the strategies discussed in Section 4.

5.1 Selection of benchmark parameters

For the simulation, we choose the market and model variables as the benchmark parameters

under both practical and theoretical rationales: First, we set r = 2% and µ = 10%,

based on the market situation10. For the volatility variables, we observed that CoCo

prices exhibited low volatility compared to the corresponding equity price despite the high

coupon rates. Table 2 presents the estimation results regarding the volatility of the five

representative CoCos and their equity prices as mentioned in Table 1. Regarding these

estimations, we collected market data of CoCos and stock prices from the Bloomberg

10US five-year risk-free rate https://www.treasury.gov/resource-center/data-chart-center/

interest-rates/pages/textview.aspx?data=yield; US stock market return http://www.market-

risk-premia.com/us.html.
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database for 2014 to 2018, and obtained three-year time series volatility through a one-

year moving time window. The results in Table 2 show the average level of each volatility

achieved for past three years. This indicates that the equity price had an annual volatility

ranging between 20% and 40% over the said period, while the CoCo bond volatility range

was 5% to 15%. Based on these empirical results, we set the volatilities for the CoCo and

stock as λ = 10% and σ = 30% for the benchmark simulation, respectively.

Issuing bank UBS HSBC Lloyds Credit Suisse Barclays

CoCo volatility 0.05 0.11 0.10 0.08 0.13

Stock volatility 0.27 0.21 0.36 0.32 0.30

Table 2: Estimation of volatility of CoCo and the stock prices of the CoCo issuer

Next, we assume that the conversion intensity h is given as a function of the stock price

S = s and the coupon rate c. The intensity function ht = h̄(c, St) is given by

h̄(c, s) = min
{

max
{

0, chk(s
−a − (s∗)−a)

}
, hM

}
, (11)

where hk is a scaling parameter and hM is the maximum intensity. This setup indicates

that the larger the value of c, the higher the initial conversion risk. In the simulation test,

we choose the following benchmark values for setting h in Eq.(11): a = 0.8, s∗ = 120, hk =

300, hM = 1011. Note that s∗ = 120 means that no conversion occurs if the stock price

is greater than 120, as we assume that the stock price moves starting at 100. From this

setup, the CoCo’s growth rate r + θt(c, s) increases to compensate, as the conversion risk

increases.

For the risk premium parameter κ, we follow the empirical results obtained by Heyn-

derickx et al. (2016) who determine the general risk premium (1 + κt in our case) lies

between 2 and 5. In this simulation, we set κ(c) = κ0e
−c, where κ0 = 2.5 is the benchmark

case. Regarding the loss fraction of the issuer’s stock price at conversion and the LGC

ratio defined in Eq.(1), we set the degree of dilution at conversion to α = 0.512.

For testing we choose a fixed conversion price EC-CoCos. We assume that SF = 120

based on S0 = 100 by considering for the EC-CoCo examples in Table 1. As the ratio

SF/S0 ranges around 1, as shown in Table 3, we conservatively set a ratio of 1.2. Under

this setting, it is guaranteed that Lτ is always greater than LSτ , as the CoCo holder’s loss

should be greater than that of the equity holder upon conversion.

11We select the power decay rates a and scale hk for fitting the conversion intensity curve reasonably,

which makes λ = 1% when stock price is 100 with the maximum at 10 and the minimum at zero.
12For simulation of Lτ , we use min {Sτ−, s∗} instead of Sτ since avoiding the case the LGC is greater

than one. In theoretical derivation, it does not need to consider the LGC when the issuer’s stock price

stays higher than s∗, since there is no possibility to conversion in our model.
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Issuing bank Barclays HSBC Lloyds

ISIN US06738EAB11 US404280AS86 XS0459090774

Fixed conversion price SF 1.6519 4.3558 0.5921

Stock price at issuance S0 2.18 6.4 0.55

Ratio SF /S0 0.76 0.68 1.08

Table 3: Conversion price and stock price at issuance for the issued EC-CoCos (Bloomberg)

With this selection, Figure 1 illustrates the intensity function shown in Eq.(11) and

the optimal controls of the CoCo and stock with the lower bound ε = 0.01 to changes

in the underlying stock price. This demonstrates that both optimal strategies increase

with respect to the stock price. Overall, the CoCo’s optimal strategy is much larger than

that of the stock due to the CoCo’s high yield and low volatility, although it faces the

risk of larger losses upon conversion. When the stock price is low (e.g. when S = 60, as

displayed by a red dotted line), the conversion intensity is high (h = 0.48). The CoCo’s

optimal strategy in this scenario still takes a long position of CoCos (π∗ = 1.03), whereas

the stock’s strategy has a short position of the stock (π∗ = −0.49). This difference can be

attributed from the fact that the CoCo’s yield also increases with the conversion intensity.
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Figure 1: Benchmark intensity function and optimal controls for CoCo and stock investors

5.2 Performance tests for CoCo and stock investments

This section compares the differences in performance between investing in CoCos and

investing in stocks issued by the same bank. We consider the EC and WD-CoCos paying

for c = 10% and adopt the investment period as T = 1, the initial stock price S0 = 100,

the initial CoCo price P0 = 100, and the initial total wealth of investment x0 = 100. Under

the conditions of the benchmark parameters, the initial conversion intensity h0 = 0.1 and
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the initial CoCo growth rate r+θ0 is 0.15. We generate 100,000 sample paths for the stock

price and the corresponding CoCo prices and obtain 10,143 converted paths.

As an illustrative example, Figure 2 presents one converted sample path for the stock

price and its CoCo price (left), the respective optimal strategies (middle), and the respec-

tive optimal wealth process (right) under two different compositions of trading assets –

CoCo and risk-free bonds versus the stock and the bond. The left panel illustrates the

sample paths of the stock St and the CoCo Pt. As both assets are driven by the same

Brownian motion but have different volatilities, their paths have a similar pattern but

show different fluctuations. At conversion, while P drops to zero, S decreases but con-

tinues to move. The middle panel indicates the optimal control processes π∗t ; the overall

optimal holding amount for the CoCo is relatively large compared to that of the equity, as

shown in Figure 1. The right panel indicates that the CoCo holder experiences substantial

loss at conversion, whereas the equity holder does not experrence as much loss, as the

holding amount of equity is lower than that of the CoCo.

Figure 2: The sample paths of the equity price and the CoCo price (left); the respective

optimal controls π∗t (middle), and the corresponding wealth processes Xt with π∗t (right)

With this sampling procedure, we finally estimate the two investment performances

as a form of statistical distribution. Figure 3 shows the main results of the terminal

wealth distributions generated by all paths (left), the converted paths (middle), and the

unconverted paths (right). Two histograms are plotted in each panel: one is the optimal

strategy with the CoCo bond (yellow), while the other is the optimal strategy with equity

(black). The distributions generated by all the paths exhibit remarkable differences in their

tails. This is because when investing in CoCo both probabilities of achieving substantial

profit and loss are higher than the equity’s counterparts.

This phenomenon can also be observed in the middle and right panels. When conversion

occurs, the CoCo investment is more likely to underperform the equity. This is because the

optimal strategy of CoCo takes long positions of CoCo as it provides a higher yield than the

risk-free rate, while that of equity adopts short-selling when the stock price is sufficiently

low. However, when conversion does not occur, the probability of loss from investing in
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CoCo is less than that from investing in equity (left tail), while the probability of gaining

from investing CoCo is greater than that of investing in equity (right tail). Therefore, in

terms of expected returns, investing in CoCos can be a better decision if no conversion

occurs due to the benefits of high yield and low volatility.

Figure 3: The terminal wealth distributions of EC-CoCo and stock investments under all

paths (left), conversion paths (middle), and non-conversion paths (right)

For a more precise comparison of the simulation above, we compute the descriptive

statistics for the terminal wealth value in Table 4. This shows that, when conversion

occurs, the expected growth rate (represented by mean) of the terminal wealth with CoCo

investment (42.47) is much smaller than that with equity (94.87) compared to the initial

wealth. Both the 2.3% and 97.7% quantiles are smaller for CoCo than for equity. However,

when conversion does not occur, the mean of the CoCo investment (132.83) is significantly

higher than that for equity (107.31). The standard deviation of the former (20.28) is also

smaller than that of the latter (23.00). Investing in CoCo generates higher returns and a

lower risk under the condition of no conversion. We can thus conclude that investing in

CoCos is a better choice if it is anticipated that the CoCo-issuer has reserved sufficient

capital and has stable financial prospects and if conversion appears to be highly improbable.

Mean diff. Std. dev. diff. 2.3% quantile 97.7% quantile

All samples + CoCo 123.66
+17.6

33.50
+10.2

35.56 181.12

All samples + Equity 106.05 23.25 78.89 168.74

Conversion + CoCo 42.47
-52.4

9.15
-13.4

26.09 62.62

Conversion + Equity 94.87 22.56 60.60 148.90

Non-conversion + CoCo 132.83
+25.5

20.28
-2.7

103.30 182.67

Non-conversion + Equity 107.31 23.00 86.94 170.04

Table 4: EC-CoCo’s sample means, standard deviations (Std. dev.), and quantile values.

The absolute difference (diff.) between EC-CoCo and the equity investment performance’s

mean and standard deviation are given for each case.
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It may be inferred from the above results that the EC-CoCo risk is dominated by con-

version. Applying all the samples, the CoCo improves the expected growth rate of the

optimal portfolio by 17.6% over the corresponding equity; it also increases risk (standard

deviation) by 10.2%. In particular, performance distribution has a significantly fat left

tail. As shown in the conversion case, the loss incurred by conversion is reflected in the

performance – the expected return of the CoCo’s portfolio is 52.4% worse than that of

equity. In the non-conversion case, the portfolio with a CoCo provides 25.5% higher ex-

pected returns than the portfolio with equity with 2.7% less risk. Thus, when conversion

does not occur, investing in CoCos can deliver better performance than equity; however,

investing in CoCos bears substantial loss upon conversion. Note that investing in equity

creates more sensitivity to market risk rather than conversion risk, as shown in Figure 1.

For the case of WD-CoCos, as there is no dilution effect, that is, LS = 0, the LGC is

set to constant L = 0.4. Table 5 shows the descriptive statistics for the terminal wealth

distribution when the WD-CoCo is wiped out at conversion. A situation analogous to the

EC’s can be noted. In terms of expectation, the WD-CoCo enhances the expected growth

rate of the optimal portfolio by 15.5% compared to the corresponding equity; however,

the average risk also increases by 4.6%. If conversion occurs, the expected profit of the

WD-CoCo is 59.9% lower than that of the stock. Otherwise, the WD-CoCo strategy can

achieve 23.5% higher expected returns than can equity.

Mean diff. Std. dev. diff. 2.3% quantile 97.7% quantile

All samples + CoCo 125.01
+15.5

34.49
+4.6

29.46 177.33

All samples + Equity 109.44 29.35 63.19 179.46

Conversion + CoCo 35.41
-56.9

8.03
-14.7

20.89 53.16

Conversion + Equity 92.34 22.76 55.35 146.64

Non-conversion + CoCo 134.93
+23.5

18.07
-11.3

108.29 178.81

Non-conversion + Equity 111.34 29.39 64.83 181.38

Table 5: WD-CoCo’s sample means, standard deviations (Std. dev.), and quantile values.

The absolute difference (diff.) between WD-CoCo and the equity investment performance’s

mean and standard deviations are shown in each case.

6 Conclusions

This study presents investigation of optimal growth portfolios featuring CoCos. The CoCo

model assumes that the conversion intensity is a function of the coupon rate and the CoCo
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issuing bank’s stock price. Based on the fact that the CoCo’s conversion induces an imme-

diate decrease in the issuer stock price, we analyse the LGC structures of different CoCo

contracts and derive the dynamics of CoCo prices. From these optimal growth approach, we

compute the optimal investment strategy for CoCo assets in pre/post-conversion regimes.

Finally, we compare the statistical distributions of the terminal wealth between CoCos and

the issuer’s stock.

Overall, CoCo investors can expect higher profits in their terminal wealth than stock

investors – despite the probability of larger losses in the case of a conversion. However,

if no conversion occurs, a trading strategy that includes CoCos produces a significantly

more stable outcome, which achieves better expected profits than a stock-based approach

when other conditions remain the same. Our results show that for two options of investable

assets – CoCo and stock from the same issuer, investing in CoCos can be a more reasonable

decision in terms of its mean performance; however, CoCo investors can be riskier and may

suffer much bigger losses if conversion indeed occurs though it is rare.

Although our results provide a computationally convenient formula and offer meaningful

insights for investors interested in CoCos, they are applicable only to a single CoCo. In

further studies, this setup could be generalised for a portfolio of two or more CoCos with a

risk-free bond. A portfolio of three different assets a CoCo defaultable corporate bond and

risk free bond could also be considered. In both cases, it is necessary to model multiple

correlated conversion times and to solve the optimal strategy problem.
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A The dynamic of the CoCo price in Eq.(4)

We formulate a rigorous derivation of Eq.(4) by introducing appropriate mathematical

concepts. Let (Ω,G, (Gt)t≥0,P) be a complete probability space satisfying the usual con-

ditions, and let (Ft)t≥0 be the filtration (market information) generated by a standard
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Brownian motion (Wt)t≥0. Let (Ht)t≥0 be the filtration (conversion information) generated

by a conversion indicator process (Ht)t≥0, which is defined by:

Ht := I{τ≤t}, (12)

and driven by the intensity process (ht)t≥0. We let (Gt)t≥0 be the enlarged filtration (total

information) given by Gt = Ft ∨Ht.

We assume that the CoCo is automatically written down or converted into Cr ∈ [0,∞)

shares of equity after a contractually pre-defined trigger event occurs with an LGC ratio

of Lt ∈ [0, 1]. The CoCo pays a fixed continuous coupon at constant annual rate c before

the conversion occurs.

The issuer’s stock price before τ is the same as in Eq.(2). However, when conversion

occurs, the stock price immediately decreases by a fraction given by LS ∈ [0, 1). Therefore,

the traded stock price S̃t has the following dynamic:

dS̃t

S̃t−
= µdt+ σdWt − LSt dHt. (13)

Thus, we make the following assumption:

Assumption 1. The loss of stock price at conversion LSt := LS(St) and the LGC of CoCo

Lt := L(St) are given as a deterministic function of St that takes values in [0, 1].

Remark 2. Note that St and S̃t are identical until conversion time τ . Due to technical

reasons, we assume that LSt and Lt are functions of St instead of S̃t−, as LSt and Lt affect

the optimisation problem only up to (and including) conversion. After conversion, the

CoCo’s value decreases to zero, and the stock price follows a standard geometric Brownian

motion. Under the current assumption, both LSt and Lt are Ft-measurable.

We derive the CoCo pricing formula based on the above model setup. For simplicity,

we assume that a face value of F = 1 and the CoCo’s contract maturity is fixed at T1. We

treat the CoCo bond as a bond component, while the equity component is treated only as

a recovery amount. After conversion, the CoCo bond has a value of zero. Following the

approach of Duffie and Singleton (1999), we conjecture the CoCo pricing formula under

recovery of market value scheme as follows:

Vt = EQ
[
e−
´ T1
t (r−c+Luh

Q
u)du | Ft

]
, (14)

where hQt is an Ft-measurable conversion intensity process under risk-neutral measure Q.

To confirm this conjecture, we use the fact that the discounted gain process must be a

martingale under Q. The discounted gain process G is given by

Gt := e−rtVt(1−Ht) +

ˆ t

0

e−rs(1− Ls)Vs−dHs +

ˆ t

0

e−rscVs(1−Hs)ds.
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Applying Ito’s formula to Gt produces

dGt = e−rt(1−Ht)

(
dVt − (r − c+ Lth

Q
t )Vtdt− LtVt

(
dHt − hQt (1−Ht)dt

))
.

In order to Gt be Q-martingale, it is necessary and sufficient that

Vt =

ˆ t

0

(r − c+ Lth
Q
t )Vtdt+Mt

for some Q-martingale Mt. The property under which Gt is a Q-martingale and the given

terminal condition VT1 = 1 provides a characterisation of arbitrage-free pricing of the

contingent-claim.

Next, we consider the CoCo price dynamic under the risk-neutral measure Q. The

dynamic of CoCo price is defined by Pt = I{τ>t}Vt.

Proposition 3. Assuming that the intensity process hQt is Ft–measurable, the dynamic of

CoCo’s price under Q is

dPt
Pt−

=
(
r − c+ Lth

Q
t

)
dt+ λtdW

Q
t − dHt, (15)

where λt is an Ft–predictable process.

Proof. From Eq.(14), we reformat Vt into Vt = btφt, where bt := e
´ t
0 (r−c+Luh

Q
u)du and

φt := EQ
[
e−
´ T1
0 (r−c+Luh

Q
u)du | Ft

]
. (16)

By its conditional expectation structure, φt is a (Q,F)–martingale. As the filtration

Ft is generated by the Brownian motion Wt with P and Q being equivalent to P in the

complete market, Theorem 1.2.14 (Pham, 2009, p.21) can be applied. By the martingale

representation theorem, as the random variable e−
´ T1
0 (r+Luh

Q
u)du is Ft–measurable, there

exists a Ft–predictable process λt such that dφt = φtλtdW
Q
t . Thus, the CoCo price Vt

follows
dVt
Vt

= (r − c+ Lth
Q
t )dt+ λtdW

Q
t .

Since Pt = (1−Ht)Vt, the CoCo price process is derived as:

dPt = (1−Ht−)dVt − Vt−dHt

= Pt−
(
(r − c+ Lth

Q
t )dt+ λtdW

Q
t

)
− Pt−dHt.
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We derive the dynamic for the CoCo price under the physical measure P by employing

the change of measure method proposed by Bielecki and Rutkowski (2004) Let Q be an

equivalent martingale measure and let T be a fixed investment terminal time with T � T1
where T1 is the CoCo’s maturity time. We introduce the Radon-Nikodym density process

ηt for any t ∈ [0, T ] by

ηt :=
dQ
dP

∣∣∣∣
Gt

= E[ηT | Gt], (17)

where ηT is both a GT–measurable and an integrable random variable, such that P(ηT >

0) = 1 and E[ηT ] = 1. Further, ηt is a (P,G)–martingale by construction. Thus, according

to Bielecki and Rutkowski (2004) (Corollary 5.2.4), η generates the following dynamic

representation

dηt = ηt− (βtdWt + κtdMt) ,

where βt and κt are Gt–predictable processes, and Mt is a (P,G)–martingale given as

Mt = Ht −
ˆ t

0

(1−Hu−)hudu.

Bielecki and Rutkowski (2004) (Proposition 5.3.1) note this, process

WQ
t = Wt −

ˆ t

0

βudu

follows a Brownian motion with respect to G under Q, and the process

MQ
t = Ht −

ˆ t

0

(1−Hu−)(1 + κu)hudu

follows a G-martingale under Q. Therefore, the relationship between hQ and h is given by

hQt := (1 + κt)ht. The quantity 1 + κt is the coverage ratio, which reflects the conversion

risk premium. Empirically, κt decreases with the conversion risk and converges to zero

when the conversion risk tends towards infinity (Heynderickx et al., 2016). The dynamic

of the traded stock price under Q is

dS̃t

S̃t−
=
(
µ+ σβt − LSt (1 + κt)ht

)
dt+ σdWQ

t − LSt dM
Q
t .

As the stock price’s drift equals the interest rate r under the risk-neutral measure Q, we

have the following relationship among processes βt, κt and ht:

βt =
r − µ+ LSt (1 + κt)ht

σ
. (18)

Combined with Proposition 3, we can obtain the dynamic of the CoCo’s price under

the physical measure P, as given by Eq.(4).
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Remark 4. Define θt := Lt(1 + κt)ht − βtλt. Combining it with Eq.(18), we have

θt =
λt
σ

(µ− r) +

(
Lt −

λt
σ
LSt

)
(1 + κt)ht. (19)

The drift of the CoCo price process under the physical measure P then becomes r−c+θt. As

we assume that the CoCo bond pays an annual coupon at rate c, its yield can be estimated

using r + θt. Thus, θt is the excess return over the risk-free rate r. As the returns of the

current CoCo market are greater than that of the equity market, we have r + θt > µ. We

use this relationship to mimic the actual market’s situation.

B Figures

All statistical data are based on the Moody’s Quarterly Rated and Tracked CoCo Monitor

Database for the period of 4Q-2009 to 3Q-2018.
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Figure 4: Cumulative issuance CoCo amounts relative to a continental region – Asia-

Pacific, Europe, Non-Europe, Latin America, Middle East and Africa, and North America

(left); and proportion of CoCos’ cumulative issuance relative to loss-absorbing methods –

equity-conversion and write-down (right).
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