Fault Tree Analysis: Identifying Maximum
Probability Minimal Cut Sets with MaxSAT

Martin Barrere and Chris Hankin
Institute for Security Science and Technology, Imperial College London, UK
{m.barrere, c.hankin}@imperial.ac.uk

Abstract—In this paper, we present a novel MaxSAT-based
technique to compute Maximum Probability Minimal Cut Sets
(MPMCSs) in fault trees. We model the MPMCS problem as a
Weighted Partial MaxSAT problem and solve it using a parallel
SAT-solving architecture. The results obtained with our open
source tool indicate that the approach is effective and efficient.

Index Terms—TFault tree analysis, minimal cut sets, MaxSAT,
cyber-physical systems, risk assessment, dependability evaluation.

I. INTRODUCTION

Fault Tree Analysis (FTA) constitutes a fundamental analyt-
ical tool aimed at modelling and evaluating how complex sys-
tems may fail [1]. FTA is widely used in safety and reliability
engineering as a risk assessment tool for a variety of industries
such as aerospace, power plants, nuclear plants, and other
high-hazard fields [2]. Essentially, a fault tree (FT) involves a
set of basic events that are combined using logic operators (e.g.
AND and OR gates) in order to model how these events may
lead to an undesired system state represented at the root of the
tree (top event). Basic events can be associated to hardware
failures, human errors, and other cyber-physical conditions
including cyber events such as software errors, communication
failures, and cyber attacks. Let us consider a simple example.

A. Fault tree example

The fault tree shown in Fig. 1 illustrates the different combi-
nations of events that may lead to the failure of an hypothetical
Fire Protection System (FPS) based on [3]. The FPS can
fail if either the fire detection system or the fire suppression
mechanism fails. In turn, the detection system can fail if
both sensors fail simultaneously (events x; and x3), while the
suppression mechanism may fail if there is no water (x3), the
sprinkler nozzles are blocked (z4), or the triggering system
does not work. The latter can fail if neither of its operation
modes (automatic (x5) or remotely operated) works properly.
The remote control can fail if the communications channel
fails (zg) or the channel is not available due to a cyber attack,
e.g. DDoS attack (x7). Each basic event has an associated
value that indicates its probability of occurrence p(z;).

II. PROBLEM DESCRIPTION

FTA comprises a broad family of methods and techniques
used for qualitative and quantitative analysis. Qualitative tech-
niques normally involve structural aspects of faults trees like
single points of failure (SPOFs) and minimal cut sets (MCSs).
MCSs are minimal combinations of events that together may

This work has been supported by the European Union’s Horizon 2020
research and innovation programme under grant No 739551 (KIOS CoE).

Failure of Fire
Protection System
X
\ 9 \
Fire detection
system fails

7 I—» AND 7 ‘ 0: l

S x3,0.001— - - - T
/“Failure of smoke ™ / Nowaterto Triggering
detector sensor/ \.sprinkler system / system fails
x1,0.2 | — I
(~ Failure of heat ™

AND
detector sensor/ _ .

1 x2, 0.0 x5,04(‘)5 Automatic Remote
\.mechanism fails / control fails

(Top event t)

Fire suppression
system fails

‘r"'S/p;inkIer nozzle‘s\‘
blocked /
x4, 0.002

x6,01 1 [> ®"<""11,7 005
/ Communications -
failure J/

\/ DDoS attack ‘

Fig. 1. Fault tree of a cyber-physical fire protection system (simplified)

lead to the failure of the top level event [2]. Quantitative
analysis usually involves numerical outcomes such as failure
probabilities. The present work lies in the intersection of
these two families. On the one hand, we are interested in
finding MCSs. On the other hand, we focus on the MCS
whose probability is the highest among all possible MCSs.
We call this MCS the Maximum Probability Minimal Cut
Set (MPMCS). Note that this optimisation problem not only
relates to the structural minimal cut set in the fault tree but
also to the probabilities assigned to the events in it.

A fault tree F' can be represented as a Boolean equation
f(t) that expresses the different ways in which the top event
t can be satisfied [1]. In our example, f(t) is as follows:

f@)=(x1 Ax2) V (z3 Vs V (5 A (26 V T7)))

The objective is to find the minimal set of logical variables
that makes the equation f(t) frue and whose joint probability
is maximal among all minimal sets. In our example, the
MPMCS is {z1, 22} with a joint probability of 0.02.

III. RESOLUTION METHOD

Our resolution method relies on Maximum Satisfiability
(MaxSAT) techniques [4]. A MaxSAT problem consists in
finding a truth assignment that maximises the weight of the
satisfied clauses. Equivalently, MaxSAT minimises the weight
of the clauses it falsifies [5]. A Weighted Partial MaxSAT
problem involves soft clauses with non-unit weights and it
will try to minimise the penalty induced by falsified weighted
variables. We use this last variant to solve our optimisation
problem. The proposed resolution method involves six steps.

Step 1 (Logical transformation). Since MaxSAT tries to
maximise the number of satisfied clauses, and we are looking
for minimal cut sets, we consider the complement of the

equation f(t) to represent the non-occurrence of the top event
(system success): X (t) = —f(t). X(¢t) models the Success
Tree and can be obtained directly from the original fault tree
by complementing all the events and substituting OR gates by
AND gates, and vice versa [1]:

X(t) = (—‘.1‘1 Vv —\1'2) AN (—\I3 A xg A (‘@5 Vv (_‘1'6 AN —|£C7)))

Since we are interested in minimising the number of
satisfied clauses, which is opposed to what MaxSAT does
(maximisation), we flip all logic gates but keep all events in
their positive form. To explain why, let us reformulate X (¢)
as Y (t) where the logical variables are renamed as y; = —a;:

Y(t)=(y1 Vy2) A(ys Aya A (ys V (ys Ayr)))

We know that =Y (¢t) = f(t) by definition. Therefore, we
aim at maximising the number of satisfied variables y; to
make —Y(t) = true. But because the variables y; are the
complement of the logical variables z;, we are actually max-
imising the number of falsified variables z; and minimising the
satisfied ones in f(¢). Such a minimal set in f(¢) constitutes
an MCS in the fault tree.

Step 2 (CNF conversion). SAT solvers normally consider
input formulas in conjunctive normal form (CNF). To avoid
exponential computation times, we use the Tseitin transforma-
tion to produce, in polynomial time, a new formula in CNF
that is not strictly equivalent to the original formula (because
there are new variables) but is equisatisfiable [4]. This means
that given an assignment of truth values, the new formula is
satisfied if and only if the original formula is also satisfied.

Step 3 (Probabilities transformation into log-space). In
order to maximise the product of weighted decision variables
in MaxSAT, we transform the weights p(z;) into w; =
—log(p(z;)) to produce positive values. This means that the
lower a probability p(z;), the higher its negative log value
w;. Conversely, the higher the probability, the lower the —log
value, as shown in Table I for our example fault tree.

TABLE I
FAULT TREE PROBABILITIES AND —log VALUES w;

Probs. ‘ T ‘ To ‘ T3 ‘ T4 ‘ Ts ‘ Te ‘ xT7
p(x;) 0.2 0.1 0.001 0.002 0.05 0.1 0.05
w; 1.60944 | 2.30259 | 6.90776 | 6.21461 | 2.99573 | 2.30259 | 2.99573

Step 4 (Weighted Partial MaxSAT instance). We define
a soft clause for each decision variable in —Y'(¢). These
soft clauses indicate the solver that each variable y; can be
falsified with a certain penalty w;, which corresponds to the
transformed probability of event x; as shown in Table 1. The
MaxSAT solver tries to minimise the total weight of falsified
variables, and therefore, a solution to this problem yields a
minimum vertex cut of the fault tree in logarithmic space.
Since the lowest logarithmic values correspond to the highest
probabilities, the solution indicates the MCS with maximum
joint probability, i.e. the MPMCS.

Step 5 (Parallel MaxSAT resolution). We have experimen-
tally observed that, quite often, SAT solvers are very good at
some instances and not that good at others. This is due to the
different optimisation techniques used within solvers [5]. To
address this issue, our tool executes multiple pre-configured
solvers in parallel and picks up the solution of the solver that

® ©® @ locahost:8000Aiz.html x +
< C' @ localhost:8000/viz.html
FPS failure
OR
vV .)
Detection fails Suppression fails
A Aor
v
AAND iy Nozzles blocked (0.002)
YA No water (0.001)
I,—Smoke sensor (0.2) Triggering fails
\, - t 0.1
'~ 7~ t;ea sensor (0.1) A anD
‘& vhe Remote fails
Auto fails (0.05) A
OR
v V.v
Comms fail (0.1) DDoS attack (0.05)

Fig. 2. Example scenario and MPMCS with our tool MPMCS4FTA

finishes first. This method provides a more stable behaviour
in terms of performance and scalability.

Step 6 (Reverse log-space transformation). The joint
probability of the MPMCS is computed by performing the
reverse log-space transformation Pp(t) = exp(—1 x) . w;),
where ¢ indexes the events found in the MaxSAT solution.

IV. PRELIMINARY RESULTS AND CONCLUSION

We have developed an open source tool called
MPMCS4FTA that implements the proposed methodology
and is publicly available at [6]. The tool runs in the command
line and outputs the solution in a JSON file that is used to
graphically display the fault tree and the MPMCS in a web
browser. Fig. 2 shows the output of MPMCS4FTA for our
example fault tree. The results of our analytical evaluation
indicate that the method is able to scale to fault trees with
thousands of nodes in seconds.

FTA is an essential technique to evaluate dependability in
a wide range of systems. The proposed MPMCS is intended
to extend the body of measures used in FTA and support fun-
damental activities such as decision making, risk assessment,
and fault prioritisation. As future work, we plan to evaluate
different representation techniques (e.g. BDDs [2]) to address
the MPMCS problem and conduct a thorough comparison on
performance and scalability. We also aim at extending our
approach to include additional operators such as voting gates.

REFERENCES

[1] W. Vesely, M. Stamatelatos, J. Dugan, J. Fragola, J. Minarick III, and
J. Railsback, “Fault Tree Handbook with Aerospace Applications,” Office
of Safety and Mission Assurance, NASA Headquarters, US, 2002.

[2] E. Ruijters and M. Stoelinga, “Fault tree analysis: A survey of the state-
of-the-art in modeling, analysis and tools,” Computer Science Review,
vol. 15-16, pp. 29 — 62, 2015.

[3] S. Kabir, “An overview of Fault Tree Analysis and its application in
model based dependability analysis,” Expert Systems with Applications,
vol. 77, pp. 114 — 135, 2017.

[4] M. Barrere, C. Hankin, N. Nicolaou, D. Eliades, and T. Parisini, “Identi-
fying Security-Critical Cyber-Physical Components in Industrial Control
Systems,” https://arxiv.org/abs/1905.04796, May 2019.

[5] J. Davies and F. Bacchus, “Solving MAXSAT by Solving a Sequence
of Simpler SAT Instances,” in Principles and Practice of Constraint
Programming — CP 2011, J. Lee, Ed. Springer, 2011, pp. 225-239.

[6] M. Barrere, “MPMCS4FTA - Maximum Probability Minimal Cut Sets for
Fault Tree Analysis,” https://github.com/mbarrere/mpmcs4fta, Mar. 2020.

