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Abstract

Over the past few decades, urban floods have been gaining more attention due to their

increase in frequency. To provide reliable flooding predictions in urban areas, various nu-

merical models have been developed to perform high-resolution flood simulations. How-

ever, the use of high-resolution meshes across the whole computational domain causes a

high computational burden. In this thesis, a 2D control-volume and finite-element (DCV-

FEM) flood model using adaptive unstructured mesh technology has been developed. This

adaptive unstructured mesh technique enables meshes to be adapted optimally in time and

space in response to the evolving flow features, thus providing sufficient mesh resolution

where and when it is required. It has the advantage of capturing the details of local flows

and wetting and drying front while reducing the computational cost. Complex topographic

features are represented accurately during the flooding process. this adaptive unstructured

mesh technique can dynamically modify (both, coarsening and refining the mesh) and adapt

the mesh to achieve a desired precision, thus better capturing transient and complex flow

dynamics as the flow evolves. A flooding event that happened in 2002 in Glasgow, Scot-

land, United Kingdom has been simulated to demonstrate the capability of the adaptive

unstructured mesh flooding model. The simulations have been performed using both fixed

and adaptive unstructured meshes, and then results have been compared with those pub-

lished 2D and 3D results. The presented method shows that the 2D adaptive mesh model

provides accurate results while having a low computational cost.

The above adaptive mesh flooding model (named as Floodity) has been further devel-

oped by introducing (1) an anisotropic dynamic mesh optimization technique (anisotropic-

DMO); (2) multiple flooding sources (extreme rainfall and sea-level events); and (3) a

unique combination of anisotropic-DMO and high-resolution Digital Terrain Model (DTM)

data. It has been applied to a densely urbanized area within Greve, Denmark. Results from

MIKE 21 FM are utilized to validate our model. To assess uncertainties in model pre-
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dictions, sensitivity of flooding results to extreme sea levels, rainfall and mesh resolution

has been undertaken. The use of anisotropic-DMO enables us to capture high resolution

topographic features (buildings, rivers and streets) only where and when is needed, thus

providing improved accurate flooding prediction while reducing the computational cost. It

also allows us to better capture the evolving flow features (wetting-drying fronts).

To provide real-time spatio-temporal flood predictions, an integrated long short-term

memory (LSTM) and reduced order model (ROM) framework has been developed. This

integrated LSTM-ROM has the capability of representing the spatio-temporal distribution

of floods since it takes advantage of both ROM and LSTM. To reduce the dimensional

size of large spatial datasets in LSTM, the proper orthogonal decomposition (POD) and

singular value decomposition (SVD) approaches are introduced. The performance of the

LSTM-ROM developed here has been evaluated using Okushiri tsunami as test cases. The

results obtained from the LSTM-ROM have been compared with those from the full model

(Fluidity). Promising results indicate that the use of LSTM-ROM can provide the flood

prediction in seconds, enabling us to provide real-time flood prediction and inform the

public in a timely manner, reducing injuries and fatalities.

Additionally, data-driven optimal sensing for reconstruction (DOSR) and data assimi-

lation (DA) have been further introduced to LSTM-ROM. This linkage between modelling

and experimental data/observations allows us to minimize model errors and determine un-

certainties, thus improving the accuracy of modelling. It should be noting that after we

introduced the DA approach, the prediction errors are significantly reduced at time lev-

els when an assimilation procedure is conducted, which illustrates the ability of DOSR-

LSTM-DA to significantly improve the model performance. By using DOSR-LSTM-DA,

the predictive horizon can be extended by 3 times of the initial horizon. More importantly,

the online CPU cost of using DOSR-LSTM-DA is only 1/3 of the cost required by running

the full model.
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Chapter 1

Introduction

1.1 Motivation and objectives

Flood disasters caused the heavy economic and human losses in recent years [1] and

thus make flood protection measures becoming more important in flood management and

decision-making. Modelling of flood scenarios plays a central role in the implementation

of flood protection measures [2]. For example, the spatial distribution of flood depths and

velocities, or flooding intensity predicted by the flood inundation models are necessary

for the design of flood-risk maps. They are used for identification of the risk reduction

measures and thereby help to ensure people’s life property safety when flood occurs.

The non-linear shallow water equations (SWEs) are widely utilised in two-dimensional

(2D) flood inundation modelling. For accurate flood inundation modelling, highly accurate

terrain data are often needed in the form of Digital Terrain Models (DTMs). However, the

computational cost of 2D flood simulation with high mesh resolutions is very high. To re-

duce the computational cost, various approaches to adaptive mesh resolution for improving

computational efficiency have been presented for the SWEs [3–10]. A certain number of

works [6, 11–15] focus on the adaptive techniques applied to the discretization of SWEs.

However, isotropic adapted meshes are generally employed in most of the literature [6, 11,

14], whereas few studies focuses on an anisotropic mesh adaptation [12, 15]. This is due to

the fact that the employment of anisotropic meshes usually involves more complex setting,

even though the computational advantages yielded by the use of anisotropic meshes are

already well proved in the literature [12, 15]. Mesh adaptivity technique is advantageous to

improve the quality of an existing mesh using mesh modification operations, namely swap,

1



collapse, split and relocation. For instance, these mesh modification operations have been

successfully applied in the previous studies [16–19], which are governed by a desired mesh

size and shape distribution for adaptivity purpose in 2D [16–18] and 3D [19]. In dynamic

anisotropic mesh adaptivity, complex geometry domains (e.g. domains with complex to-

pographic coastlines, buildings or streets) can be accounted for, making features of flow

better captured around complex topography. Moreover, the spatial meshes corresponding

to different time steps are refined separately, which is necessary for construction of efficient

discretizations for problems with complex dynamic behavior, making significant computa-

tional savings compared with applying static meshing techniques.

In this PhD study, we have developed a 2D double control-volume finite element (DCV-

FEM) flood model using adaptive unstructured mesh technology [20]. This mesh adaptivity

technique has the major advantage of the fixed order mesh modification method and it

can enable elements with large angles to be used, when highly anisotropic elements are

used. We also use flux limiting of the free surface height based on the Normalized Variable

Diagram approach of Leonard (1988) [21]. In addition, we use a non-linear two-time level

theta method for the time stepping method in which the value of θ is adjusted (in space

and time) so that it is second-order accurate as much as possible. θ = 0.5 (Crank Nicolson

time stepping) but resorts to using θ = 1 (backward Euler) if an oscillation is detected

because of the time stepping. This is achieved based on a Total Variational Diminishing

(TVD) in time condition [22]. The non-linear iteration is based on the fixed-point iteration

method described in Salinas et al. (2017) [20]. This is important as wetting and drying

is highly non-linear due to the non-linear drag and inertia. The Discontinuous Galerkin

(DG) method applied to momentum/velocity is very powerful as it has a natural dissipation

associated with it, which is highly scale selective.

In many computational models, the physical phenomena mainly simulated are mass,

momentum, and energy transfer. This transport phenomena are typically described by a

set of partial differential equations (PDE), discretizing the spatial (position) and temporal
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(time) of the governing equations. A reliable representations of various simulated process

(e.g. heat transfer, fluid flows, chemical processes) can be provided by the computational

models. However, due to the complexity caused by non-linearities and large dimension,

such computational models models are usually time consuming and limited to be used in

real time prediction. For example, the spatial domain has to be discretized into very small

grid cells so that the continuous dynamics can be approximately represented reasonably.

This induces a large number of grid cells, leading to a huge number of partial differential

equations (equals to the number of grid cells) need to be solved at every time step. These

high order or large dimension models are generally very slow. Thus, it is desirable to

derive a simpler reduced order model which approximate the original high resolution com-

putational model. It would be beneficial that the simpler models can efficiently provide

reliable estimates of the current and future process in a real time mode and considering the

original physical relationships as well. As a result, another subject of this PhD thesis is how

to derive such simplified predictive models while significantly minimizing the computation

costs.

There exists various approaches to build a simpler reduced order model (ROM) from a

complex one. The method of Proper Orthogonal Decomposition (POD) is one of the most

popular reduction methods. It was first introduced to the fluid dynamics by Lumley (1967)

[23] as a mathematical technique to extract coherent structures from turbulent flow fields.

POD is also known as principal component analysis (PCA). By giving an orthogonal set

of basis vectors with the minimal dimension, POD is useful in constructing a ROM of the

flow field. Additionally, POD modes are simple to compute using the method of snapshots,

which is especially attractive for high-dimensional spatial datasets. POD modes have been

used to construct Galerkin projection-based reduced order models for incompressible [24–

27] and compressible [28] flows. In this PhD study, we consider the POD framework in

combination with Recurrent Neural Network (RNN) architecture LSTM (long short-term

memory). RNNs and other machine learning (ML) algorithms have been employed in
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data-driven prediction applications and are gaining more attention in the computational

physics. Studies into the feasibility of ML techniques for ROMs can be found in [29,

30]. While the POD model reduction framework has been used to derive ROMs of various

nonlinear systems, here we attempt to model the dynamic features of floods using a RNN-

based supervised machine learning framework. Our approach can be considered as a hybrid

modelling framework combining machine learning strategies and physics-based simulation

tools for dynamical systems.

1.2 Contributions

A 2D control-volume and finite-element flood model using adaptive unstructured mesh

technology has been developed. This adaptive unstructured mesh technique enables meshes

to be adapted optimally in time and space in response to the evolving flow features, thus

providing sufficient mesh resolution where and when it is required. It has the advantage

of capturing the details of local flows and wetting and drying front while reducing the

computational cost. Complex topographic features are represented accurately during the

flooding process. For example, the high-resolution meshes around the buildings and steep

regions are placed when the flooding water reaches these regions. This mesh adaptivity

technique has been first introduced to urban flooding simulations and applied to a simple

flooding event observed as a result of flow exceeding the capacity of the culvert during the

period of prolonged or heavy rainfall. Over existing adaptive mesh refinement methods

(AMR, locally nested static mesh methods), this adaptive unstructured mesh technique can

dynamically modify (both, coarsening and refining the mesh) and adapt the mesh to achieve

a desired precision, thus better capturing transient and complex flow dynamics as the flow

evolves.

The above adaptive mesh flooding model based on 2D shallow water equations (named

as Floodity) has been further developed by introducing (1) an anisotropic dynamic mesh

optimization technique (anisotropic-DMO); (2) multiple flooding sources (extreme rain-
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fall and sea-level events); and (3) a unique combination of anisotropic-DMO and high-

resolution Digital Terrain Model (DTM) data. It has been applied to a densely urbanized

area within Greve, Denmark. Results from MIKE 21 FM are utilized to validate our model.

To assess uncertainties in model predictions, sensitivity of flooding results to extreme sea

levels, rainfall and mesh resolution has been undertaken. The use of anisotropic-DMO en-

ables us to capture high resolution topographic features (buildings, rivers and streets) only

where and when is needed, thus providing improved accurate flooding prediction while re-

ducing the computational cost. It also allows us to better capture the evolving flow features

(wetting-drying fronts).

Another significant contribution of this thesis is the novel combination of reduced or-

der model (ROM) technique with machine learning algorithm for flood prediction. While

most of these studies focused mainly on time-series flooding prediction at specified sensors,

rarely on spatio-temporal prediction of inundations. In this work, an integrated long short-

term memory (LSTM) and reduced order model (ROM) framework has been developed.

This integrated LSTM-ROM has the capability of representing the spatio-temporal distri-

bution of floods since it takes advantage of both ROM and LSTM. To reduce the dimen-

sional size of large spatial datasets in LSTM, the proper orthogonal decomposition (POD)

and singular value decomposition (SVD) approaches are introduced. The LSTM training

and prediction processes are carried out over the reduced space. This leads to an improve-

ment of computational efficiency while maintaining the accuracy. The performance of the

LSTM-ROM developed here has been evaluated using Okushiri tsunami as test cases. The

results obtained from the LSTM-ROM have been compared with those from the full model

(Fluidity). In predictive analytics, it is shown that the results from both the full model

and LSTM-ROM are in a good agreement whilst the CPU cost using the LSTM-ROM is

decreased by three orders of magnitude compared to full model simulations. Addition-

ally, prescriptive analytics has been undertaken to estimate the uncertainty in flood induced

conditions. Given the time series of the free surface height at a specified detector, the
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corresponding induced wave conditions along the coastline have then been provided using

the LSTM network. Promising results indicate that the use of LSTM-ROM can provide

the flood prediction in seconds, enabling us to provide real-time predictions and inform

the public in a timely manner, reducing injuries and fatalities. Finally, data-driven optimal

sensing for reconstruction (DOSR) and data assimilation (DA) have been introduced to

LSTM-ROM. This linkage between modelling and experimental data/observations allows

us to minimize model errors and determine uncertainties, thus improving the accuracy of

modelling.

1.3 Thesis outline

Chapter 1 is an introduction including the motivation and objectives of developing DCV-

FEM flood model and LSTM-ROM framework, as well as the original contributions and

outline of the thesis.

Chapter 2 demonstrates the 2D double control-volume finite element (DCV-FEM) model

using adaptive unstructured mesh technology, as well as the deep learning algorithm (LSTM)

with reduced order modelling approach.

In Chapter 3, the DCV-FEM flood model is validated by a simple flooding event oc-

curred in Glasgow, UK. It is observed as a result of flow exceeding the capacity of the

culvert during the period of prolonged or heavy rainfall. This Chapter is derived from:

Hu, R., Fang, F., Salinas, P., & Pain, C. C. (2018). Unstructured mesh adaptivity for

urban flooding modelling. Journal of Hydrology, 560, 354-363.

In Chapter 4, the DCV-FEM flood model has been further developed by introducing

(1) an anisotropic dynamic mesh optimization technique (anisotropic-DMO); (2) multiple

flooding sources (extreme rainfall and sea-level events); and (3) a unique combination of

anisotropic-DMO and high-resolution Digital Terrain Model (DTM) data. This model has

been successfully applied to an urbanized area in Greve, Denmark, where joint urban flood

events were caused by multiple sources (extreme rainfall and sea-level events). This Chap-
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ter is derived from:

Hu, R., Fang, F., Salinas, P., & Pain, C. C., Sto.Domingo N. D., Mark O. (2019).

Numerical simulation of floods from multiple sources using an adaptive anisotropic un-

structured mesh method. Advances in Water Resources, 123, 173-188.

Chapter 5 presents an integrated long short-term memory (LSTM) and reduced order

model (ROM) framework for rapid spatio-temporal flood prediction. The performance of

the LSTM-ROM developed here has been evaluated using Okushiri tsunami as test cases.

The results obtained from the LSTM-ROM have been compared with those from the full

model (Fluidity). This Chapter is derived from:

Hu, R., Fang, F., Salinas, P., & Pain, C. C., Navon, I. M. (2019). Rapid spatio-temporal

flood prediction and uncertainty quantification using a deep learning method. Journal of

Hydrology, 575, 911-920.

A further development of the LSTM-ROM framework is demonstrated in Chapter 6.

In Chapter 6, a unique integrated DOSR-LSTM-DA framework is developed. It has the

features 1) use of optimal sensing data where the sensor locations are optimized using

POD; (2) POD modes are updated when the data is assimilated to modelling. This is

the first work to introduce both data-driven optimal sensor techniques (DOSR) and data

assimilation (DA) to LSTM-ROM.

Finally, Chapter 7 draws conclusions and findings of this thesis, and future research

works are proposed.
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Chapter 2

Anisotropic mesh adaptivity and machine learning based

reduced order models (ROMs)

2.1 Anisotropic mesh adaptivity

Anisotropic phenomena occurs in many physical problems, especially in cases such as high

Reynolds number flow problems and phase change problems. In this situation, the solution

fields vary differently in all directions and equilateral elements are not suitable for repre-

sentation. Using isotropic elements will hence induce the generation of small elements in

all directions, resulting in large size of meshes. To overcome the limitations imposed by

the computational resources while maintaining a satisfied accuracy of numerical solution,

dynamic adaptive remeshing techniques are employed [31]. The methods have been suc-

cessfully applied in 2D [16–18] and 3D [19] numerical modelling. Mesh optimisation is

available by default in 3D using the algorithm developed by Pain et al. (2001) [19], while

it is available in 2D using the Ani2D library developed by Vasilevskii and Lipnikov (1999)

[32]. To discretize the computational domain, there are several ways of the mesh modifi-

cation: (1) h-adaptivity: splitting the existing elements and changing the connectivity of

the nodes [33]; (2) r-adaptivity: moving vertices of elements to make new elements while

retaining the same connectivity [34]; (3) p-adaptivity: varying the polynomial order of the

approximation [35].

More recently, discontinuous Galerkin methods (DG) have appeared as an alternative

to finite volume or high-order finite difference schemes. These methods have also proven

to be very effective to solve the long-wave or shallow water approximation within a finite
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element framework [36, 37]. In this thesis, we propose the numerical solution of the SWE

with the discontinuous Galerkin methods (DG) method and expand it with anisotropic mesh

adaptivity techniques. It allows efficient h- and r-adaptivity that optimizes the mesh reso-

lution using a metric tensor field approach based on linear interpolation error in prognostic

fields. Dynamic mesh modification operations (swap, collapse, split and relocation) on ele-

ments [38] are involved in this method, and elements sizes can be controlled by specifying

the minimum and maximum edge length [19]. In this method, complex geometry domains

(e.g. domains with complex topographic coastlines, buildings or streets) can be accounted

for, which enables dynamic features better captured around complex topography. More-

over, the spatial meshes corresponding to different time steps are refined separately, which

is necessary for construction of efficient discretizations for problems with complex dy-

namic behavior, making significant computational savings compared with applying static

meshing techniques.

2.1.1 Mesh operations in anisotropic mesh adaptivity

The anisotropic dynamic mesh optimization algorithm is performed by applying local mod-

ifications of elements in the existing mesh:

(1) Edge split: Refinement by splitting existing elements and inserting a node at the

centre of an edge and surrounding elements are created [33] (Fig. 2.1 (a)).

(2) Edge collapse: Coarsening by edge collapse, removing an existing node by collaps-

ing an existing edge to zero length and thus replacing two vertices by a single one lying at

the edge midpoint (Fig. 2.1 (b)).

(3) Edge swap: Face-edge and edge-face swaps, reordering the connectivity of existing

elements to improve the mesh shape, while the number of nodes and elements is preserved

through the operation (Fig. 2.1 (c)).

(4) Node movement: Repositioning a vertex within the convex hull spanned by the

elements which share it [34] (Fig. 2.1 (d)).
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Figure 2.1: Element operations used to optimize the mesh in two dimensions. (a) Edge

split; (b) Edge collapse; (c) Edge swap; (d) Node movement.

Anisotropic dynamic mesh optimisation (anisotropic-DMO) approaches based on these

operations usually involve the definition of some objective function, a norm over the entire

mesh of a local mesh quality estimate. By improving the worst elements through a series of

elemental modifications to the mesh, the mesh optimisation aims to minimise the functional

and hence improve the overall quality of the mesh. Anisotropic-DMO is achieved through

the construction of error metric with which the objective functional is evaluated. The ob-

jective functional is defined to measure the quality of the mesh, namely decide which of

the operations described above should be used to improve the quality of the mesh [16, 19,

39–41]. This allows local anisotropic features in a solution to be represented through a

coordinate transformation. In anisotropic-DMO, element changes are made when they sat-

isfy an acceptability criterion based on the behaviour of the estimated representation error

functional. That is, when an element is selected, each of its vertices are tested to see if

they can be collapsed. If no vertex collapse is performed then an edge swap is attempted
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with each of the neighbouring elements. Finally, if none of these operations succeeds in

reducing the functional, vertex node movement is applied. The proposed new position of a

vertex is defined as:

vi =

∑J
j=1

‖ vi − vj ‖ vj∑j
j=1

‖ vi − vj ‖
, (2.1)

where vj for j = 1, . . . , J are the vertices connected to vi and ‖ · ‖ is the norm defined by

the vertex centred metric. As with the other operations, this new position is only accepted

if it improves the mesh. If the new position is rejected then the midpoint between this and

the current location of the vertex is also tested.

When the algorithm terminates and a new target mesh has been calculated, the variables

on the existing mesh are projected to it [42]. For more details regarding the dynamic mesh

adaptivity algorithm refer to Pain et al. (2001) [19] and Piggott et al. (2009) [38]. The

mesh adaptivity process must be repeated whenever the interpolation error estimate of the

solution on the existing mesh grows significant.

2.1.2 Anisotropic dynamic mesh optimization technique (anisotropic-DMO)

The anisotropic-DMO has the advantage of capturing details of surface and local flows

(wetting-drying front) during the process of flooding modelling. The use of anisotropic-

DMO can efficiently provide a high mesh resolution where and when it is needed [43]. That

is, finer meshes are placed only in specific regions where the variations of flow variable

solutions are relatively large (e.g. flow around buildings and along the flooding paths),

while coarser meshes are used in areas far from these regions, where inundation has not yet

occurred for example.

Here, the anisotropic-DMO technique relies on the derivation of appropriate error mea-

sures, which dictate how the mesh is to be modified. The required error measure is defined

in the form of a metric tensor. The metric is derived from a solution field variable and an

error norm based on the interpolation error Pain et al. (2002) [19] defined to make sure that
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a desired element length can be obtained while having a required interpolation error. Thus,

the metric M̂ is calculated from

M̂ =
γ̂

ǫ̂
|H|, (2.2)

where γ̂ is a scalar constant, and γ̂ = 1 is used here, ǫ̂ is a required interpolation error,

and H is the Hessian matrix for a specified field ψ(Ω) (here, the field of water depth):

H =




∂2ψ
∂x2

∂2ψ
∂x∂y

∂2ψ
∂y∂x

∂2ψ
∂y2


 . (2.3)

The desired edge length, hi, in the direction of the ith eigenvector ei, of the metric M̂ ,

is defined as hi = 1/
√
λi, i.e. anisotropic as well as inhomogeneous resolution results from

a mesh that respects the metric M̂ , where λi is the eigenvalue associated with ei [38, 41].

It is advantageous to modify the metric to impose the maximum and minimum element

sizes on the mesh, especially for problems that have known high-aspect ratio dynamics or

domains. To impose these maximum and minimum constraints directionally, M̂ is modified

and defined as

M = V T ∧ V, (2.4)

where V is a rotation matrix that includes the eigenvectors of the metric M̂ calculated

from Eq. (2.2) and general directions for the maximum and minimum edge length can be

introduced through the use of V .

To bound the aspect ratio of elements in physical space, there is a need to limit the

ratio of eigenvalues. For example, to limit the aspect ratio of elements to be below a, the

eigenvalues are modified as follows [19]:

λ̃j = max{λ′j,
1

a2
max
j=1,2,3

λ′j}∀j ∈ {1, 2, 3}, (2.5)
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where

λ′j = min{ 1

h2min
,max{|λj|,

1

h2max
}}∀j ∈ {1, 2, 3}. (2.6)

in which a is the maximum aspect ratio. hmin and hmax are the minimum and maximum

element sizes. A uniform isotropic element can be transformed to an adapted anisotropic

element under the transformation S = V
√
| ∧ |−1

in the physical domain, achieving the de-

sired interpolation error everywhere. A mesh adaptivity method similar to what described

above has been implemented in Ani2D [32], which is used in this work.

The Galerkin interpolation technique [42] is used for interpolating the solutions from

the previous mesh onto the newly adapted mesh. However, the interpolation error may

destroy the conservation of quantities important to the physical accuracy of simulations, for

example density and water height. To keep the conservation of quantities, the conservative

interpolation operator with an intermediate supermesh is used, for details see Farrell and

Maddison (2011) [42].

Davies et al. (2011) [44] shows that adapting every 5 time-steps incurs in a 2% extra-

cost for their simulation. Since this value slightly varies when solving different problems

(e.g. up to 8%), the rough figure is that the cost of adapting the mesh is around the same as

doing one time-step. Therefore, adapting every 10 times-steps means an approximate 10%

extra-cost. Based on heuristics for this case, the mesh is adapted every 10 time steps for

the adaptive simulation, due to fact that the Courant number is never big enough such as

the water front leaves the high-quality region of the mesh before the mesh is re-adapted. In

general, the mesh is adapted more frequently if the flow feature is changed rapidly.

2.2 Recurrent Neural Networks (RNNs)

Machine learning is a field of statistical research for training computational algorithms that

split, sort and transform a set of data to maximize the ability to classify, predict, cluster

or discover patterns in a target dataset [45]. Deep learning refers to machine learning al-
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gorithms that construct hierarchical architectures of increasing sophistication, for example,

the artificial neural networks (ANNs) [46] with many layers. Nowadays, ANNs are em-

ployed by a large number of studies concerning training, structure design, and real world

applications, ranging from classification to robot control or vision [47]. In recent years,

deep-NNs (including recurrent ones) have shown significant advantages in pattern recog-

nition and machine learning. Deep-NNs perform well in discovering intricate structures

in high-dimensional data and are therefore applicable to various areas including, science,

business and government [48]. They have been widely applied to image recognition [49–

51], speech recognition [52–54], natural language understanding [55], language translation

[56], as well as analysing particle accelerator data [57] and reconstructing brain circuits

[58].

Figure 2.2: A simple recurrent network [59].

A standard neural network (NN) consists of many simple, connected neurons, each

producing a sequence of real-valued activations [60]. Input neurons get activated through

sensors perceiving the environment, other neurons get activated through weighted connec-

tions from previously active neurons. The process of learning is to find weights that make
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the NN present desired behaviour. Usually, long chains of computational stages are re-

quired to obtain such behaviour and each stage contains transformations of the aggregate

activation for the network. Recurrent neural networks (RNNs) are feed-forward neural net-

works augmented by the inclusion of edges that span adjacent time steps, introducing a

notion of time to the model [59]. Similar to feed-forward networks, RNNs do not have

cycles among conventional edges. However, edges that connect adjacent time steps (re-

current edges) form cycles, including cycles of length one that are self-connections from

a node to itself across time. Fig. 2.2 shows how the network can be interpreted as a deep

network with one layer per time step and shared weights across time steps. At each time

step t, activation is passed along solid edges as in a feed-forward network. Dashed edges

connect a source node at each time t to a target node at each following time t + 1. The

unfolded network can be trained across many time steps using backpropagation, namely

backpropagation through time (BPTT) [61]. It is a commonly used algorithm for recurrent

networks.

RNNs can in principle create and process memories of arbitrary sequences of input

patterns [62, 63]. More importantly, compared with traditional methods for automatic se-

quential programming [64–66], RNNs can learn from mixed sequential information and

process in a natural and efficient way, sustaining a rapid reduction of computation cost.

Over existing recurrent neural networks, LSTM (Long Short Term Memory) has an inter-

nal memory system to deal with temporal sequence inputs, which makes it a powerful tool

for flooding predictions. A LSTM module is composed of a memory cell and three gates:

an input gate, a forgetting gate and an output gate. The input gate controls the information

transmitting from the input activations into the cell, and the forget gate and output gate se-

lect the information needed to be transmitted into next cell. Fig.1 shows how information

is flowing through a LSTM cell via the cell state, which is considered as a conveyor belt in

the network. The relationship between the input (xs) and output (hs) can be obtained as
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follows:

fs = σ(Wf · [hs−1, xs] + bf ),

is = σ(Wi · [hs−1, xs] + bi),

C̃s = tanh(Wc · [hs−1, xs] + bc),

Cs = fs ∗ Cs−1 + is ∗ C̃s,

os = σ(Wo · [hs−1, xs] + bo),

hs = os ∗ tanh(Cs), (2.7)

where is, os and fs represent the input, output and forget gates respectively, σ is the gate

activation function, Wi,Wo,Wf and Wc are the weights for each of the gates and cells, b

represent bias weights, C denotes the cell state, C̃ is the updated cell state, xs and hs are

the cell input and output respectively where the subscripts s and s − 1 denote the current

and previous predictive instances respectively. With transmitting of the information, the

cell states are propagated forward and weights are updated through time.

Figure 2.3: One cell in the LSTM network.
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2.3 Proper orthogonal decomposition (POD) based reduced order model

(ROM)

The high-dimensional models require high computational cost. Although a lot of efforts

have been made to the numerical modelling of physical processes to enhance the compati-

bility of the real process with the simulated one, the models remain computationally inten-

sive. This problem motivates the development of reduced order models (ROMs), which are

less complex than the original computational models, especially those governed by partial

differential equations (PDEs). The ROMs can be divided into two categories in terms of

the dependency on the governing equations: intrusive ROM [67] and non-intrusive ROM

[68]. Intrusive ROM is dependent of governing equations and source code, thus retaining

much of the physical characteristics from the original system due to its intrusiveness. In

contrast, the non-intrusive reduced order models (NIROMs) require no knowledge of the

physical systems. It is suitable for representing high-dimensional physical systems while

the source code describing the physical model is not available or the modifications required

to generate the ROM are complex. Recently, the neural networks have been introduced into

ROMs [69–71], which utilizes observed data to approximate an arbitrary function. A wide

applications has been made in the filed of fluid dynamics [72–76].

In this work, we focus on reduced order model (ROM) in which the dominant character-

istics of fluid dynamics can be efficiently represented by linear combinations of a small set

of basis functions. Most of the system information are projected onto a low-dimensional

subspace spanned by these basis functions via Galerkin projection. Various approaches

have been developed to compute the basis functions, including Krylov-subspace methods

[77–79], reduced-basis methods [80, 81] and proper orthogonal decomposition (POD) [82,

83]. POD in combination with the Galerkin projection method is an effective method for

deriving a reduced order model (ROM). It has proven to be an efficient means of deriv-

ing a reduced basis for high-dimensional nonlinear flow systems. The POD technique and
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its variants have been applied successfully to a numerous research fields such as: ocean

modelling [68, 84, 85], air pollution [86], fulids control [87–91] and data assimilation [92–

95]. It is a widely used reduced order modelling approach which is employed via snapshot

method, namely, the POD bases are derived from a set of the full state solutions (snap-

shots) obtained by solving the full order models. By applying singular value decomposition

(SVD) to the snapshots, POD retains the dominant left singular vectors corresponding to

the largest singular values as reduced basis. For example, for non-linear problems with the

finite element framework, when considering a mesh having N nodes, one must compute

N values at each time step. This means that the solution of at least one linear algebraic

system of size N need to be calculated at each time step, making it computationally ex-

pensive when N increases. Thus it is reasonable to look for a reduced order model whose

solution is efficiently obtained in a subspace of dimension much smaller thanN . This is the

main idea behind the POD reduced modelling approach, which will be explained in what

follows.

2.3.1 Conceptual introduction to POD-based ROM

POD is based on patterns generated by the experiments or simulation data [96]. This data

is collected from of physical process, such as variations of the temperature, chemical com-

positions, flow rate, and many others. Because of the regularities presented by the collected

data, there exists a certain pattern which keeps repeating itself from one time period to the

next time period. If the original model is governed by partial differential equations (PDEs),

then the spatial domain is discretized into a high number of grid cells to approximate the

continuous spatial domain as good as possible. For example, for a physical problem of

temperature distribution along the slab, the temperature at every time step and every loca-

tion can be expressed, or accurately approximated as functions of the patterns. Donate T (t)

the values of the temperature distribution along the slab at every time step, it can then be
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expressed as the linear combination of N patterns:

T(t) = a1(t)φ1 + a2(t)φ2 + · · ·+ aN(t)φN , (2.8)

where T(t) is the vector of a physical variable (here, temperature) over the whole spatial

domain and at time step t and {φi}Ni=1 denote the spatial patterns, which are called the basis

functions or the modes, and {ai}Ni=1 is time varying coefficient. Hence, the temperature

is thus decomposed into a linear combination of spatial patterns. The basis functions are

orthogonal to each other, namely that they are independent of each other. Associated with

each pattern, there is a time-varying coefficient which varies according to the temperature

distribution at time t. Thus, if the time varying coefficient is available, we can approximate

the original variable based on Eq. (2.8). In POD, the basis functions are derived from the

data. Assume the number of patterns can be reduced to K patterns such that T(t) can be

expressed as a linear combination of K patterns:

T(t) ≈ a1(t)φ1 + a2(t)φ2 + · · ·+ aK(t)φK , (2.9)

whereK is substantially smaller thanN in Eq. (2.8) and {ai}Ki=1 is time varying coefficient

which is slightly different from that in Eq. (2.8). By constructing a model for the first K

time varying coefficient to obtain an approximate model of the process variable, the process

variable can be expressed as a linear combination of very few patterns. This is the basic

idea of POD-ROM.

2.3.2 Extracting information using POD

Assume that u(x, t) is the known field of interest at the nodes xi of a spatial mesh for

discrete times tn = n ·∆t, with i ∈ [1, . . . , N ] and n ∈ [0, . . . , P ]. Define the notation as

u(xi, tn) ≡ un(xi) ≡ uni and {u}n is the vector of nodal values uni at time tn. To obtain

the most characteristic structure φ(x) among these un(x) [97], the scalar quantity a need
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to be maximized

a =

∑P
n=1

[
∑N

i=1
φ(xi)u

n(xi)]
2

∑N
i=1

(φ(xi))2
, (2.10)

namely, the following eigenvalue problem need to be solved:

cφ = aφ, (2.11)

Where the vector φ has i-component φ(xi), and {c} is the two-point correlation matrix

cij =
P∑

n=1

un(xi)u
n(xj) =

P∑

n=1

un · (un)T , (2.12)

which is positive definite and symmetric. Define the matrix {Q} as

Q =




u11, u21 · · · uP1

u12, u22 · · · uP2
...

...
. . .

...

u1N , u2N · · · uPN



, (2.13)

and we have

c = Q ·QT . (2.14)

2.3.3 Building the POD-based ROM

To build a POD-based ROM, we first solve the eigenvalue problem in Eq. (2.11) and chose

the K eigenvectors φi associated with the eigenvalues belonging to the interval defined by

the highest eigenvalue a1. Normally, K is much smaller than N . These K eigenfunctions

φi are then used to approximate the solution un(x). To this end, define the matrix {B} =
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[φ1, . . . , φK ] as

B =




φ1(x1), φ2(x1) · · · φK(x1)

φ1(x2), φ2(x2) · · · φK(x2)

...
...

. . .
...

φ1(xN), φ2(xN) · · · φK(xN)



. (2.15)

A linear algebraic system must thus be solved to calculate the discrete solution {u}n+1 at

time tn+1. Here, we consider the equations resulting from the discretisation of a partial

differential equation (PDE) in the form:

Gnun+1 = Hn. (2.16)

where, Hn is a vector which contains the discretized sources and the terms within the

matrix system account for the solution from the previous time step tn, Gn is the discretized

matrix containing mass and other matrices (e.g. advection or pressure). A POD-ROM is

thus obtained by approximating {u}n+1 in the subspace defined by the K eigenvectors φi:

{u}n+1 ≈
K∑

i=1

φiζ
n+1 = Bζn+1. (2.17)

Eq. (2.16) is then rewritten:

GnBζn+1 = Hn, (2.18)

or equivalently written as:

BTGnBζn+1 = BTHn. (2.19)

Here, the coefficients ζn+1 defines the solution of the ROM. Consequently, a POD-ROM is

thus obtained by solving an algebraic system of size K instead of N , when K ≪ N .
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Chapter 3

Anisotropic dynamic mesh optimization for urban flood

modelling

Over the past few decades, urban floods have been gaining more attention due to their in-

crease in frequency. To provide reliable flooding predictions in urban areas, various numer-

ical models have been developed to perform high-resolution flood simulations. However,

the use of high-resolution meshes across the whole computational domain causes a high

computational burden. In this section, a 2D double control-volume finite element (DCV-

FEM) flood model using adaptive unstructured mesh technology has been developed. Over

existing adaptive mesh refinement methods (AMR, locally nested static mesh methods),

this adaptive unstructured mesh technique can dynamically modify (both, coarsening and

refining the mesh) and adapt the mesh to achieve a desired precision, thus better capturing

transient and complex flow dynamics as the flow evolves. By introducing an anisotropic dy-

namic mesh optimization technique (anisotropic-DMO) combined with the high-resolution

Digital Terrain Model (DTM) data, the high resolution topographic features (buildings,

rivers and streets) are captured only where and when is needed, thus providing improved

accurate flooding prediction while reducing the computational cost. It also allows us to

better capture the evolving flow features (wetting-drying fronts). To demonstrate the capa-

bility of this new method, it has been successfully applied to a simple study case, a flooding

event observed as a result of flow exceeding the capacity of the culvert during the period of

prolonged or heavy rainfall, which happened in 2002 in Glasgow, Scotland, United King-

dom.
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3.1 Introduction

Flood disaster is one of the most influential natural hazards in history [98]. Over the past

few decades, the frequency of urban flooding has increased, due to the increasing urbaniza-

tion, aging sewer networks and climate change threats [99]. This has drawn more attention

in urban flooding research, hence increasing the effort in flood modelling [100–103]. To

provide reliable flooding predictions in urban areas, high-resolution simulation is essential

in order to resolve the complex urban topographic features, for example, buildings, streets

and embankments. However, the high computational burden associated with full hydrody-

namic models has restricted their wider applications to real-time urban flood modelling.

For efficient and accurate flood inundation modelling, numerous methods including

grid coarsening methods [104], cellular automata approach [105], and speeding-up strate-

gies (e.g. parallel processing) have been developed. Chen et al. (2012) [106] used a

Building Coverage Ratio (BCR) and the Conveyance Reduction Factor (CRF) parameters

to simplify the key features of building within a coarse grid. Leandro et al. (2014) [107] de-

veloped a parallelized two-dimensional diffusive wave model (P-DWave) with an adaptive

time step using the Matlab parallel computing toolbox and Fortran OpenMP Application

Programming. Smith et al. (2015) [108] presented a new hydrodynamic modelling frame-

work and described how a robust finite volume Godunov-type scheme was implemented

and applied it to urban flooding with a high-resolution grid. Parallel computation was

achieved with either central processing units (CPU) or graphics processing units (GPU)

devices.

The use of a uniform high-resolution mesh across the whole computational domain may

cause the simulation to run in an unacceptably slow speed [109]. It is desirable to apply

fine meshes only in specific regions for example, where complex dynamical flows (shock

waves, eddies etc.) occur, while coarse meshes are used in the rest of the computational

domain, especially in the area where inundation has not yet occurred [110]. Adaptive mesh
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refinement (AMR) (a fine structured mesh nested within a coarse mesh) technique was de-

veloped by Berger and Oliger (1984) [111] and Berger and Colella (1989) [33]. George

(2011) [112] applied the AMR technique to dam break flow modelling. An extension of

AMR using the adaptive quadtree grids approach was proposed and tested using differ-

ent numerical schemes [5, 113–115]. Huang et al. (2015) [116] further applied AMR to

coupled flood and sediment transport modelling.

In this thesis, we have introduced an advanced optimization based adaptive mesh tech-

nique [19] to flooding modelling. In comparison to AMR (locally nested static mesh meth-

ods), this adaptive unstructured mesh technique can dynamically modify and adapt the

mesh to achieve a desired level, thus better capturing transient and complex flow dynamics

as the flow evolves. Using the optimization-based adaptive technique, the mesh nodes can

either be increased or decreased locally in time and space (h-adaptive technique) with a

good solution accuracy [40], or optimally relocated (r-adaptive technique) to resolve the

small-scale flow features in a domain of interest (e.g. features of flow around buildings).

This dynamically adaptive mesh technique has been applied to idealistic oceanic cases

(without real bathymetry and topography), air pollution, multiphase flows and reservoir

modelling [117–121].

This is the first time to apply this optimization-based adaptive mesh technique to flood-

ing modelling. Unstructured meshes are used for optimal representation of complex do-

main geometries and boundaries. One of key issues in flooding modelling is the represen-

tation of wetting-drying (WD) fronts. As reviewed in Medeiros and Hagen (2013) [122],

simulating the WD front over a real domain is still nontrivial, due to the fact that accurate

solutions requiring high spatial and temporal resolutions are unstable and computationally

expensive. The use of adaptive meshes enables the models to capture the physics of an

advancing or receding wetting front better, while keeping the computational cost low.

In this thesis, our newly developed 2D double control-volume finite-element (CV-FE)

shallow water model together with the adaptive unstructured mesh technique has been suc-
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cessfully applied to the Glasgows urban flooding event of 2002. The performance of adap-

tive unstructured meshes in flood modelling has been evaluated. The adaptive mesh simu-

lations provide comparable results to the higher resolution 2D/3D fixed mesh simulations

whilst reducing a 20− 84% the computational cost.

3.2 Governing equations

Here, we have adopted the element pair P1DG-P1CV [123] (a modification of linear dis-

continuous velocity and continuous pressure representations) for 2D shallow water simula-

tions. In DCV-FEM scheme used here, the pressure (free surface height) is discretized CV-

wise rather than FE-wise in the classic CV-FEM [121, 124–127]. The DCV-FEM provides

significant improvements in the quality of the pressure matrix that can be solved efficiently

even on highly anisotropic elements. We also use flux limiting of the free surface height

based on the Normalized Variable Diagram (NVD) approach of of Leonard (1988) [21].

The Discontinuous Galerkin (DG) method is used for the discretization of the momen-

tum equation. The DG approach is very powerful as it has a natural dissipation associated

with it. To robustly stabilize the shallow water momentum equation and remove unwanted

oscillation for complex issues (e.g. shock waves), a non-linear Petrov-Galerkin scheme

[128, 129] with a DG discretization is used here, instead of using the flux limiter with a

DG discretizationis. It is a mathematically consistent residual scheme and converges to the

governing equations as the mesh and time step size are refined [130]. Due to a diffusion

term proportional introduced to the residual of the momentum equation, it provides the ro-

bustness needed when there are sharp changes in velocity (usually occurs near wetting and

drying fronts).

A non-linear θ method is used for the time discretization in which the value of θ (be-

tween 0.5 and 1) is adjusted in space and time. θ is calculated at each CV face based on the

satisfaction of a Total Variational Diminishing (TVD) criterion [22]. The non-linear itera-

tion is based on the fixed-point iteration method described in Salinas et al. (2017) [123].
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This is important as wetting and drying (due to the non-linear drag and inertia) is highly

non-linear.

3.2.1 Momentum and continuity equations

For depth averaged velocity u in non-conservative form, the momentum equation or shal-

low water is written as:

∂u

∂t
+ u · ∇u+ Cfu− µ∇2u = −∇p+ sb, (3.1)

and the continuity equation is written as:

∂h

∂t
+∇ · (hu) = sh, (3.2)

where h is the water depth, Cf is the volumetric drag coefficient, µ is the dynamic

viscosity, p is the depth averaged pressure, sb is the source term of velocity (unit: ms−2),

sh is the source term of mass (from rainfall for example, unit: ms−1), and p is calculated:

p = g(h+ d), (3.3)

and thus

h =
p

g
− d, (3.4)

where g is the gravitational acceleration, and d is bathymetry (the height deviation

from a horizontal and flat plain). The pressure and free surface height are defined CV-wise,

contrary to the classical CV-FEM, where they are FE-wise.
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3.2.2 Drag coefficient

A commonly used bottom stress parameterization is the Manning-Strickler formulation

[131, 132]:

n · ν∇u = n2

mg
|u|u
h

1

3

, on Γbottom, (3.5)

in which n is the unit normal to the bottom surface Γbottom normal, ν is the kinematic

viscosity, and nm is the Manning coefficient. The formulation for the volumetric drag

coefficient Cf is:

Cf = n2

mg
|u|

max{h, hmin}
1

3

. (3.6)

Wetting and drying: Here we use the thin film wetting and drying algorithms, which

specify a minimum threshold depth that defines the categories of wet or dry in the model.

Importantly, we have introduced the flux limiter to ensure the positive water depth and

avoid the physical oscillation. hmin = 0.01mm was finally chosen as considering a layer

of water of 0.01mm in the dry areas is physically plausible, while also reducing the non-

linear behaviour which may be introduced by a smaller value (e.g. 0.001mm). In order to

enable the CVs to wet and dry freely, we perform an element wise average of the node-wise

depths of water within each element. We then use this average in Eq. (3.6).

Representation of buildings: The most common methods for simulating the water flow

among structures are: 1) blocking-out of the solid area; 2) local elevation rise of the solid

area; 3) local increase of roughness of the solid area either via the Manning coefficient

increase [133]. In this work, the elevation and shape of buildings are embedded in the

realistic topography data, which is similar to the local elevation rise, namely that locations

with buildings have the actual high elevation values. Without smoothing the walls, which

are vertical in reality, there thus will be a jump in the bathymetry and by resolving the

mesh these should get more steep and eventually discontinuous in the model. To deal with
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this issue, a DG discretization field for bathymetry is used, which enables having finite

resolution in an assumed continuous bathymetric field. Additionally, we increase roughness

of the building areas via increasing Manning coefficient. With the use of anisotropic-DMO,

the details of buildings can be captured as the water floods around them.

3.2.3 Boundary conditions for the joint flooding events

The boundary conditions need to be set for the water depth h, pressure p or velocity u.

We can define either pressure or velocity boundary conditions but not both [134]. Here

we specify the pressure p boundary conditions and then the velocity is calculated from the

pressure gradient.

h boundary conditions: For the joint flooding events involved with pluvial and coastal

flooding, the water depth h boundary conditions along the coastline include: 1) time series

of extreme water level heights e estimated from storm-surge models or the historical data

observed; 2) bathymetry (terrain elevation) d along the coastline. Thus, the water depth h

is calculated from h = e− d.

p boundary conditions: Once the h boundary conditions are set, the pressure p boundary

conditions are specified through Eq. (3.3), and the velocity will be calculated from the

pressure gradient [134] and evolve to point into or out of the domain (depending on the

dynamics). The boundaries (except the coastline) over the domain can be set up as closed

or open based on actual situation.

Rainfall as source term: The rainfall needs to be considered as source term sh in Eq.

(3.2). Generally, given a large domain (a large catchment), where the characteristics of the

subcatchments are found to be significantly different from each other, the effect of spatial

distribution of rainfall is considered. This mean that different subcatchments may receive

different amounts of rainfall, namely different rainfall intensity time series are induced

according to the region. However, since the computation domain in this study is relatively

small, we assume that the rainfall is uniform across the domain. Due to the fact that the
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effect of rainfall is relatively small compared with that of incoming waves, infiltration is

not considered here. An average depth of runoff is then obtained, which contributes to the

calculation of the water depth h.

3.3 Applicability of the anisotropic-DMO technique and its applica-

tion to Glasgow case

3.3.1 Descriptions of study site and data

To assess the performance of adaptive meshes in flooding modelling, the new flooding

model has been applied to an urban area located within the city of Glasgow, Scotland, UK,

where a flood event occurred in July 2002. Here, the field of water depth is selected to be the

adapted field using anisotropic-DMO technique. The whole computational domain is 1.0

km by 0.4 km (Fig. 3.1). This flood is observed as a result of flow exceeding the capacity

of the culvert during the period of prolonged or heavy rainfall. The culvert is located at

the northeast corner of the domain (see location Q in Fig. 3.1). Once the capacity of the

culvert is exceeded, water overspills from the culvert and spreads over the west and south

urban area along the main roads.

The details of hydrographic data can be found in literatures [135, 136]. The raw LiDAR

data was originally collected by Infoterra Ltd., Leicester, UK, for Glasgow City Council.

For hydraulic modelling, Infoterra aggregated the LiDAR data and reinserted buildings,

kerbs and roads to obtain a 2m DEM with realistic representation of urban morphologic

characteristics [135]. The time series of flooding water depth at four detector locations

(Fig. 3.1) obtained by Hunter et al. (2008) [135] are utilized for model verification in this

study.

Fig. 3.2 shows the unstructured meshes created as 2D (triangle elements) by Gmsh

[137, 138], a free finite element grid generator with a build-in CAD engine and post-

processor. It can be seen how the surrounding mesh of the main street and the branches is
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refined.

Figure 3.1: LiDAR DTM with buildings of modeling domain and locations of monitoring

stations.

Figure 3.2: Multi-scale unstructured mesh with 2m/5m/20m resolution generated by

Gmsh [138].

3.3.2 Results and discussion

A series of model simulations using both the fixed and adaptive unstructured meshes have

been carried out to assess the performance of the new flooding model developed here. In

these simulations, water enters the densely urbanized area from a culvert at locationQ (Fig.

3.1). The flood condition has been described earlier. As specified by the hydrographic
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data used in previous studies [135, 136], the inflow discharge from the culvert started at

t = 5min, peaked between 22 and 24min, and ended at t = 40min. A fixed time step

size ∆t = 0.15 s is used in all simulations. No normal flow boundary condition is enforced

at all the external boundaries. For mesh adaptivity, the aspect ratio of the elements in the

adapted mesh is set to 5. For mesh size constraints, the maximum and minimum element

sizes are 50 and 2m respectively. The mesh is adapted considering the solutions of both

the water depth and velocity, being the absolute interpolation errors set to 0.05 and 0.14 for

the water depth and velocity respectively.

Water depth and velocity

For comparison purposes, 3D results from Zhang et al. (2016) [138] are used as a reference

solution in this study. These 3D results have been proved to be consistent with 2D published

results [135] in the region where the impact of 3D flow structures can be ignored.

Fig. 3.3 and 3.4 show the results of water depth and velocity from our newly developed

2D flooding model with both the fixed and adaptive unstructured meshes at time levels

t = 20, 30, 40, 60min, in comparison to those results from 3D modelling [138]. They

show the flood propagation process over the urban area. It can be observed that in most

of the inundation area, the solutions of water depth and velocity obtained from both 2D

fixed and adaptive mesh modelling are in good agreement with those of 3D modelling. As

seen in Fig. 3.4, the flood propagation process is accelerating during [22, 24]min when the

inflow discharge at locationQ peaks. The water spreads along the main street and branches

when t = 30min. During the flood recession (after t = 40min), water accumulates in

the low-lying areas, especially in the southern street area marked with a yellow rectangle

in Fig. 3.3. The variation of results in the speed and extent of flooding is relatively small

after 45min. We, therefore, discontinue adapting the mesh from this time level and run it

with the mesh already generated at this point until the end of the simulation. This helps

us to save the overhead and extra computational cost introduced during the adaptive mesh
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Figure 3.3: Water depth obtained from 3D modelling (left column, see Zhang et al. (2016)

[138]), 2D fixed unstructured mesh modelling (middle column) and 2D adaptive unstruc-

tured mesh modelling (right column) at time level t = 20min (first row), 30min (second

row), 40min (third row) and 60min (bottom row). Water accumulates in the low-lying

area (marked with a yellow rectangle) and around buildings (marked with green rectan-

gles).

procedure.

Generally speaking, the 2D adaptive mesh model provides promising results while the

number of nodes/elements used during the simulation period is significantly reduced by

up to 80% of that used by 2D fixed mesh modelling, thus reducing the computational cost

considerably.

Accurate representation of topography using the adaptive mesh technique

Using 2D adaptive mesh technology, the mesh is dynamically adjusted during the process

of flood propagation (right column in Fig. 3.5). Finer meshes are placed only in specific

regions where the gradients of the flow variables are relatively steep (e.g. flow around

buildings, Fig. 3.7), while coarser meshes are used in areas away from these regions,

where inundation has not yet occurred. It enables the mesh-based computing to be efficient

and have low computational complexity.
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Figure 3.4: Velocity results obtained from 3D modelling (left column, see Zhang et al.

(2016) [138]), 2D fixed unstructured mesh modelling (middle column) and 2D adaptive

unstructured mesh modelling (right column) at time level t = 20min (first row), 30min
(second row), 40min (third row) and 60min (bottom row).

In this case, the topographical data, a combination of airborne laser altimeter (LiDAR)

and digital map data, is available with a high resolution of 2m. The availability of high-

resolution topographical data is important for the accurate numerical simulation of urban

food inundation. However, high-resolution topographical data requires a high computa-

tional burden, thus, resulting in a computationally demanding flood modelling. Using the

adaptive mesh technology, the resolution of the topographical data can be dynamically ad-

justed during the process of flood propagation. The topographical data over the domain is

obtained by interpolating the high resolution (2 m) data onto the adapted mesh at each time

level. Therefore, the high-resolution topographical data is only used in the flooded region

while the low-resolution data is used in the rest of the domain. One of the advantages of 2D

adaptive unstructured mesh modelling is that the buildings can be represented accurately

when/where needed during the flooding process. Fig. 3.5 shows how buildings gradually

appear as the flooding water spreads across the domain.
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Fig. 3.6 indicates the error in bathymetries during the simulation period when using

adaptive meshes. It is seen that the high resolution (low error) data is used only over the

regions along the flood pathway.

Figure 3.5: Buildings gradually become visible as the flood water spreads west and south-

ward. The left column shows the plane view of surface topography. The right column

shows the corresponding mesh. Areas marked with green rectangles show the correspond-

ing building areas in Fig. 3.3 (marked with green rectangles as well).
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Figure 3.6: Error in bathymetries with the use of adaptive meshes during simulations.

The left column shows the plane view of water depth for adaptive mesh modelling. The

right column shows the corresponding the error of the bathymetries used at time levels

(20, 25, 30, 35, 60min), where the high resolution (2m) topographical data is a reference

data.
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Figure 3.7: Water depth in the areas marked with green rectangles in Fig. 3.3 (first and

middle row), and details of bathymetry for this building area marked with green rectangles

in Fig. 3.5 (bottom row). The right column shows the corresponding mesh.

Comparison with published results at detector locations

To further validate our 2D fixed and adaptive unstructured mesh flooding models, the time

series of water depth at detector locations STA1, STA2, STA3 and STA4 are compared

with those of six 2D hydraulic models (DIVAST, DIVAST-TVD, JFLOW, LISFLOOD-FP,

TRENT, and TUFLOW) from Hunter et al. (2008) [135] and the 3D model [138]. Fig.

3.8 shows the time series of water depth predicted by these models. STA1 represents a flat

area with surrounding buildings where water accumulates fast but releases slowly during

the flood process. STA2 is placed in the middle of the main road, where the flood water is

shallow and moving fast. STA3 is located in the low-lying area in the southern part of the

domain as marked with a yellow rectangle in Fig. 3.3. Water from the east-west oriented

main street converges and ponds there in the latter part of the simulation. STA4 is sited at

the side of the road where the ponding water comes from both north and south directions.
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Model performance has been assessed through comparison of the results at these detector

locations.

Figure 3.8: Flood depth time series at detector locations STA1, STA2, STA3 and STA4

simulated by 2D fixed and 2D adaptive unstructured mesh models and numerous published

models.

Fig. 3.8, the black and red lines represent the time series of water depth predicted by

the new 2D unstructured mesh flooding model with fixed and adaptive meshes respectively.

It can be seen that a good agreement is achieved between the results from our 2D adaptive

(and fixed) unstructured mesh models and those from other 2D models at all the detector

locations. The results of our 2D unstructured mesh modelling results (especially with adap-

tive meshes) are very close to the 3D results [138] at STA1 (a flat and ponding area) where

the vertical velocity is relatively small. However, there is a large difference between 2D

and 3D modelling results at STA2 where the vertical inertial and nonhydrostatic pressure

terms are large, the impact of 3D flow cannot be ignored [138]. Compared with the results
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when using 2D fixed meshes, 2D adaptive mesh modelling results at STA3 match well with

those from other 2D models, and are closer to the 3D results.

In general, the results between both of our 2D fixed and adaptive mesh models are in a

good agreement during t = 1− 40min (until the flooding peak), there is then a difference

between them at STAs 3 and 4 during the flooding recession (after t = 40min). Compared

with the 3D results, the time series of water depth using 2D adaptive unstructured meshes is

more accurate than that using 2D fixed unstructured meshes at STAs 1-3. The main reason

for this is that the adaptive mesh is optimised in response to the evolving flow features while

the fixed mesh is designed based on the main road network (see Zhang et al., 2016 [138]).

For both fixed and adaptive mesh modelling, a high mesh resolution of 2 m is placed along

the main road routes where the dominant flow features are observed. However, for fixed

mesh modelling, the meshes are coarser around the building areas than that of adaptive

mesh modelling. Whats more, mesh adaptivity ensures a certain precision. It is thus seen

in Fig. 3.8 that at STAs 1-3, the time series of water depth using 2D adaptive unstructured

meshes is more accurate than that using 2D fixed unstructured meshes while a smaller

number of nodes is used during the simulation. In general, both results of using adaptive

and fixed meshes are consistent with those from other 2D models.

Performance of 2D fixed and 2D adaptive unstructured mesh flood modelling

Table 3.1: Node and element number of the 2D fixed and 2D adaptive unstructured mesh

and the run time of the simulations.
Meshing Type Time Level (min) Node number Element number Run time (h)

Fixed mesh 0 - 120 28508 56862 300.5

Adaptive mesh 0 28508 56862 153.5

20 4601 8018

30 15153 30203

40 21784 43463

60 22331 44557

120 22331 44557

As seen in Table 3.1 and Fig. 3.9, a multi-scale unstructured mesh with 2m/5m/20m
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Figure 3.9: The numbers of nodes and elements used in 2D adaptive mesh modelling during

the simulation period [0, 120]min.

resolution generated by Gmsh (Fig. 3.2) consists of 28, 508 nodes and 56, 862 unstructured

triangle elements. This mesh is used during the whole simulation period for 2D fixed un-

structured mesh modelling, and used as the initial mesh for 2D adaptive unstructured mesh

modelling. After first adapting the mesh, the numbers of nodes and elements used for 2D

adaptive mesh are reduced by 84% and then gradually increased during t = 10 − 45min

as the flooding water spreads over the domain. At time level t = 40min, the inflow at lo-

cation Q ends and recession of water starts. As a result, the water accumulates in low areas

and the water velocity remains small. From t = 40min, the flow gradually becomes stable

and this leads to a small change of element number of the meshes. To avoid the overhead

and extra computational cost introduced during the adaptive mesh procedure, the mesh is

fixed from t = 45min. Using our 2D unstructured mesh model, the CPU time of 300.5h is

required for the fixed mesh simulation and 153.5h for the adaptive mesh simulation, which

is only half of the former. Moreover, adapting the mesh dynamically means that there is
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no need to perform a priori calculations, with its corresponding computational cost, to es-

timate the key regions of the domain to place more resolution in those areas. Above all,

2D adaptive unstructured mesh modelling is less computational expensive than 2D fixed

unstructured mesh modelling.

The use of 2D adaptive unstructured meshes improves the computational efficiency. To

further reduce the computational cost, various numerical techniques can be adopted in our

flood model. For example, an adaptive-time-step scheme and/or parallel computing using

MPI.

3.3.3 Summary

A 2D DCV-FEM flooding model with the adaptive unstructured mesh technique has been

developed and applied to a flooding event that happened in 2002 in Glasgow, Scotland,

United Kingdom, where the flood is induced by a stream flow from a culvert at the north-

east corner of the domain. A comparison between 2D adaptive and fixed mesh models

as well as 3D model has been undertaken. It has been found that using the 2D adaptive

mesh model, it is able to provide accurate results while the computational cost is reduced

by 20 − 84% in comparison to 2D fixed mesh models. Another advantage of 2D adap-

tive unstructured mesh modelling is that urban topography can be accurately represented

when/where needed by increasing the mesh resolution (around the buildings, for example)

dynamically when the flooding water spreads over the urban area. This is the first time

to use the dynamically adaptive mesh technique in flooding modelling and assess its per-

formance in a relatively simple flooding event. In the following subsection, more work

on flood modelling development will focus on complex realistic cases where flooding may

occur from more than one source.
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Chapter 4

Numerical simulation of floods from multiple sources using

anisotropic dynamic mesh optimization method

The coincidence of two or more extreme events (precipitation and storm surge, for example)

may lead to severe floods in coastal cities. It is important to develop powerful numerical

tools for improved flooding predictions (especially over a wide range of spatial scales -

metres to many kilometres) and assessment of joint influence of extreme events. Various

numerical models have been developed to perform high-resolution flood simulations in ur-

ban areas. However, the use of high-resolution meshes across the whole computational

domain may lead to a high computational burden. More recently, an adaptive isotropic

unstructured mesh technique has been first introduced to urban flooding simulations and

applied to a simple flooding event observed as a result of flow exceeding the capacity

of the culvert during the period of prolonged or heavy rainfall. In this work, the above

adaptive mesh flooding model based on 2D shallow water equations (named as Floodity)

has been further developed by introducing (1) an anisotropic dynamic mesh optimization

technique (anisotropic-DMO); (2) multiple flooding sources (extreme rainfall and sea-level

events); and (3) a unique combination of anisotropic-DMO and high-resolution Digital

Terrain Model (DTM) data. It has been applied to a densely urbanized area within Greve,

Denmark. Results from MIKE 21 FM are utilized to validate our model. To assess uncer-

tainties in model predictions, sensitivity of flooding results to extreme sea levels, rainfall

and mesh resolution has been undertaken.
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4.1 Introduction

Over the last two decades, the risk of urban flooding in heavily populated coastal regions

has increased and is expected to increase further, mainly due to the urbanization and cli-

mate change. Urban flooding in coastal regions could be caused by a single source (heavy

rainfall, high sea levels or storms), or several sources acting in combination [139]. Due to

this increasing high risk, the combined effect and the joint probability of multiple extreme

floods are gaining importance in flooding simulations [140]. Improving the predictive ca-

pabilities in such cases is critical for populated areas, especially cities. It is therefore im-

portant to develop an efficient and accurate numerical model for studying floods caused by

several concurrent hazards in coastal cities.

An overview of flood inundation models has been given by Teng et al. (2017) [141].

In the past, various numerical models have been developed to simulate flood inundation

[103, 106, 135, 142, 143]. These models are classified into three categories: 1) empir-

ical methods such as measurements [144] and remote sensing [145]; 2) hydrodynamic

models; and 3) conceptual models for large floodplains [146] and probabilistic flood risk

assessment [147]. The hydrodynamic models include one-dimensional (1D) [148], two-

dimensional (2D) [149–151] and three-dimensional (3D) models [138, 152]. MIKE Flood

[153] has the capability of simulating combined river, sewer and floodplain modelling with

high resolution and reliability [154]. Recently various efforts to compute overland flows

by solving the shallow-water equations have been made. These studies have simulated

overland flows under extreme and unsteady rainfall conditions and spatially constant infil-

tration rates have been taken into account [155–157]. However, due to the complexity and

uncertainty of flood modelling, efficient simulation of flooding at high-resolution terrain

remains a significant challenge in hydrologic and hydraulic studies. For efficient and ac-

curate flood inundation modelling, numerous methods have been developed, such as grid

coarsening methods [104], cellular automata approach [105], and speeding-up strategies
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such as parallel processing [158–160]. Nguyen et al. (2016) [156] have proposed a cou-

pled model called HiResFlood-UCI, which combines the hydrological model HL-RDHM

and the hydrodynamic BreZo model while ensuring a bare minimum computational cost.

HiResFlood-UCI uses HL-RDHM as a rainfall-runoff generator and BreZo as the hydro-

logical routing scheme. This model has been successfully applied to a catchment of the

Illinois river in USA.

In comparison to adaptive mesh refinement (AMR) (a fine structured mesh nested

within a coarse mesh) technique [33], the DMO technique is able to adapt the mesh opti-

mally in time and space in response to the evolving flow features, thus providing sufficient

mesh resolution where and when it is required. In this work, we have further developed this

adaptive unstructured mesh shallow water model with anisotropic considerations for mod-

elling urban floods from multiple sources (rainfall and storm surge). The implicit θ-scheme

has been adopted for solving the shallow water equations and applications to urban floods

caused by multiple sources (rains and sea levels). In the DCV-FEM scheme, the velocity

components are discretised FE-wise, while the pressure/free surface height is discretised

CV-wise [123].

In this work, a DCV-FEM adaptive mesh urban flooding model for simulating the con-

current flooding and has been successfully applied to a 2.2 km× 1.7 km densely urbanized

area within Greve, Denmark. This is the first time to apply the anisotropic-DMO method

to simulate urban floods caused by multiple sources based on high resolution Digital Ter-

rain Model (DTM) data. Model validation has been performed in comparison with results

from MIKE 21 FM. Sensitivity of the extreme sea levels, rainfall and mesh resolution to

the flood volume has been explored to assess uncertainties in model predictions.

4.2 Descriptions of study site and data

To assess the performance of anisotropic-DMO in flooding modelling, the new flooding

model has been applied to an urban area located within a 2.2 km× 1.7 km densely urban-
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ized area within Greve, Denmark. The study area is located in the northeastern part of

Figure 4.1: (a) Situation of study area in Greve, Municipality of Denmark. (b) DTM with

buildings of study area (resolution of 1.6m× 1.6m) - generated by the GIS (Geographical

Information System) software, see ArcGIS (2010) [161].

Greve, Denmark, which covers part of the coastal area (see Fig.4.1 (a)). Historical extraor-

dinary flood events which were caused by a series of rain events have occurred in Greve.

In addition to extreme rainfall events, Greve is also vulnerable to flood induced by extreme

sea-level events along its coast. For example, the most extreme historical flood occurred

on 13th October 1760 with a maximum water level of 3.7m, was caused by a very serious

storm surge [162]. Recurrence of any of these flood events would cause numerous damages

(e.g. loss of life, direct damages to roads, railways and buildings, indirect damages includ-

ing loss of income, clean-up cost, turnover loss, cost of illnesses, etc). As a consequence,

it is important to develop flooding models to improve the accuracy of flood predictions. In

the Greve case study, the digital elevation data provided was quality assured and buildings

were incorporated into the DTM (Digital Terrain Model) data with a resolution of 1.6m

(Fig.4.1 (b)), which was detailed enough to describe topographic features (buildings, rivers

and streets). Data of different extreme rainfall events as well as extreme sea-level events

have been used as the boundary conditions and sources.
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4.3 Extreme sea-level and rainfall events

Figure 4.2: (a) Forecast of water levels issued at 12:00 on 29th November 2015. (b) Corre-

lation coefficient between observed and predicted water levels at function of forecast time

[163].

Due to the impact of climate change in the next 100 years, future climate change con-

ditions should be taken into account to estimate the future extreme sea-level and rainfall

events [163]. To forecast storm surges, a hydrodynamic model has been calibrated against

historical events during 2000-2015. The capability of this built hydrodynamic model to
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Figure 4.3: (a) Initial water depth in a scenario of 2100 upper extreme water level. (b)

Future extreme seawater levels by 2100 (considering the worst climate change scenario for

100-yr projection), see Berbel Roman (2014) [163]. (c) Extreme 24h design rainfall for

2-yr, 10-yr and 100-yr return period (considering the effects of climate change), see Berbel

Roman (2014) [163].

forecast storm surges was evaluated against historical storm event during 2010-2017. An

example of a real time forecast issued during the storm “Gorm” on 29th November 2015

can be seen in Fig.4.2 (a). From Fig.4.2 (b) it can be seen how the correlation coefficient

between observed and predicted water levels goes down as the lead time increased.

The 3D hydrodynamic model was built using MIKE 3 FM, a software tool for modelling

unsteady three-dimensional flows, which uses a flexible mesh calculation grid taking into

account density variations, bathymetry and external forcing, such as meteorology, tidal el-

evations, currents and other hydrographic conditions [164]. Meteorological forcing for the

model is obtained from a WRF (Weather Research and Forecasting) limited-area numeri-

cal weather prediction model covering Northern Europe with a resolution of 0.1 degrees,

which is run by StormGeo in Norway. A description of the above method for estimating
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storm surge event time series for climate change analysis is described in Berbel Roman

(2014) [163]. For comparison purposes, the reference results from MIKE 21 FM.

Fig.4.3 (b) shows the extreme sea water levels which were used as input boundary

conditions along the coastline. According to Berbel Roman (2014) [163], to estimate the

expected changes in sea surges in future (up to year 2100), hydrodynamic simulations were

carried out, which were driven by the wind and atmospheric pressure results from three

regional climate models. A general observed extreme event pattern was identified based

on the past observed extreme sea-level events. The future extreme water level event time

series (Fig.4.3 (b)) were then obtained from the general observed pattern by scaling to a

given return period and adding estimates of mean sea level rise and change in storm surge

signal. The water level calculated with statistics projections of 100-yr return period consid-

ering climate change under a present scenario identified as ‘current’ and a future scenario

identified as ‘2100 mean’ and ‘2100 upper’ depending of the climate factor considered.

These extreme sea-level events (current, 2100 mean and 2100 upper) lasted 24 hours. As

seen in Fig.4.3 (b), for a return period of 100 years, the maximum value for the extreme

water levels is 1.52m (current), 2.25m (2100 mean) and 3.08m (2100 upper).

Extreme precipitation data in this case study is obtained by a frequency analysis, where

the rainfall data (over more than 10 years) from 83 stations in Denmark is used. By running

a regional statistical extreme model, the intensities of rainfall for the 2-yr, 10-yr and 100-yr

return period have been obtained, then multiplied by a factor of 1.1 - 1.5 due to the impact

of climate change in the next 100 years [163]. The designed intensities are shown in Fig.4.3

(c). It is assumed that for a given rainfall event, a uniform rainfall is falling over the whole

area of the domain (2.2 km× 1.7 km).

4.4 Model applications

A series of model simulations using anisotropic-DMO have been carried out to assess the

performance of the new flooding model developed here. In all cases, the field of water
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depth is selected to be the adapted field using anisotropic-DMO technique. The extreme

seawater level event (Fig.4.3 (b)) which lasts 24 hours is used as input boundary condition

on the sea boundary (Fig.4.1 (b)), the remaining boundaries are set up as closed (no flow).

In these simulations, sea water enters the densely urbanized area from the sea boundary

(Fig.4.1 (b)) and the extreme rainfall events (Fig.4.3 (c)) take place simultaneously. Fig.4.3

(a) shows the initial water depth within the domain in a scenario of 2100 upper extreme

water level. The adapting mesh schemes are listed in Table 4.1. The mesh is adapted to

ensure an absolute error in the water depth field of 0.01m and the aspect ratio is 100.

Table 4.1: Adapting mesh schemes for the Floodity simulations.

Minimum element size Maximum element size Time step ∆t (s)
20 200 [5,10]

10 200 [3,10]

5 200 [1,10]

4.5 Results and Discussion

4.5.1 Individual flooding events

(1) Flooding map

Fig.4.4 shows the flood propagation process over the urban area in a scenario of an

individual 2100 upper extreme sea-level event. It can be observed that in most of the

inundation area, the solutions of water depths obtained from Floodity are in good agreement

with those from MIKE 21 FM. The mesh is optimally adapted according to the evolving

flow features in time and space, thus providing sufficient mesh resolution where and when

it is required (right panel in Fig.4.4). For example, the fine mesh is located along the flood

propagation path while the coarser mesh is used in the areas where inundation has not

occurred yet. To further estimate and compare the flood extent, the flood volume during

the flood propagation process is calculated (Fig.4.5). It is clearly that flood volume obtained
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Figure 4.4: Water depths obtained from a MIKE 21 FM model updated from Berbel Roman

(2014) [163] (left column), a Floodity model with a mesh resolution 10m (middle column)

and results showing the corresponding mesh (right column) based on bathymetric data

without buildings in a scenario of 2100 upper extreme sea-level event at time level t = 2h
(first row), 8h (middle row), and 18h (bottom row).

from Floodity is a little higher than that from MIKE 21 FM during the whole period, whilst

the general trends of both are consistent.

(2) Comparison with MIKE 21 FM results at detector locations

To further evaluate the performance of Floodity using different mesh resolutions, the

time series of water depth at detector locations P1, P2, P3 and P4 are plotted in Fig.4.6, in

comparison to those from MIKE 21 FM. In Fig.4.6, the blue, green and black lines represent
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Figure 4.5: Flood volume obtained from a MIKE 21 FM model and a Floodity model with

a mesh resolution 10m based on bathymetric data without buildings in a scenario of 2100

upper extreme sea-level event.

the time series of water depth predicted by the new anisotropic unstructured mesh flooding

model Floodity with a minimum mesh size of 20m, 10m, and 5m respectively. It can be

seen that a good agreement is achieved between the results from both the fixed and adaptive

mesh simulations (except for that with a minimum mesh size of 20m) at detectors P3 and

P4 during the flooding propagation period [6.7, 24]h. However, MIKE 21 FM predicts

an earlier flood arrival time at P3 and P4 than that predicted by the Floodity simulations.

The results of water depth at detectors P1 and P2 obtained by both the MIKE 21 FM and

Floodity simulations are very close to each other when almost the same mesh resolution

(10m) is used over the inundated regions. The detectors P1 and P2 are located within a

narrow open channel, where a high resolution mesh (a mesh size smaller than 10m at least)

is required to represent it. We can see that the Floodity simulation with a minimum mesh

size of 5m predicts a deeper water depth at P1 and P2 than that in the simulations with the

large mesh size (10m and 20m). It proves that more detailed solutions can be obtained in

the local areas when using an adaptive mesh instead of a fixed mesh. It is also noted that it

is convergent with the increased resolution at detectors P3 and P4, not at P1 and P2. Again,

the reason for this is a mesh size larger than 5m is not able to represent the narrow channel,

50



thus causing an error in water depth.

Figure 4.6: Flood depth time series at detector locations P1, P2, P3 and P4 (see Fig.4.1

(b)) simulated using MIKE 21 FM and Floodity with a mesh resolution of 20m, 10m, and

5m respectively, based on bathymetric data without buildings in a scenario of 2100 upper

extreme sea-level event.

For comparison purposes, MIKE 21 FM results from the model updated from Berbel

Roman (2014) [163] are used as a reference solution in this study. The original model

domain in Berbel Roman (2014) [163] has a dimension of 2.3 km × 7.5 km, where the

northeastern region is selected as our computational domain (Fig.4.3 (a)). Berbel Roman

(2014) [163] divided the domain in 9 sub-regions with the element size in range of [10,100]

m, where large elements were used to represent the surroundings of harbours, the coastline

and the train tracks were represented with smaller elements. Thus, a flexible mesh with

the element size in range of [10,100] m is used in the MIKE 21 FM simulations while the

adaptive meshes with a minimum mesh size of 20m, 10m, and 5m are used in Floodity. A

comparison of water depth results using the adaptive (Floodity) and fixed (MIKE 21 FM)

unstructured mesh has been carried out.
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4.5.2 Joint flooding events

The newly developed adaptive mesh flooding model is further used for simulating floods

under the combined impacts of the events (extreme rainfall and sea level). Fig.4.7 shows

the results of water depth from MIKE 21 FM and Floodity with a minimum adaptive mesh

size of 10m at time levels t = 15h. It presents the flood propagation process over the urban

area in scenarios of an individual 2100 upper extreme sea-level event and a joint event with

100-yr return period rainfall respectively. Due to the effect of rainfall, the joint event has

larger flood areas than the individual event, as shown in the areas marked with rectangles

in Fig.4.7.

Fig.4.8 and Fig.4.9 show the time series of water depth at four detector locations pre-

dicted by these models respectively. The total rainfall amount in 24 hours is 28.1mm,

45.7mm and 82.1mm within the 2.2 km × 1.7 km study area for the 2-yr, 10-yr, 100-yr

return period respectively. Thus, in comparison to the extreme sea level, the rainfalls have

a relatively smaller impact on the inundation extent. Again, it can be observed that under

the scenarios of joint flooding events, the water depths and velocity obtained from Floodity

using the minimum mesh size of 10m are in good agreement with those from MIKE 21

FM simulations.

4.5.3 Impact of buildings on flooding simulations

The use of anisotropic-DMO in flooding modelling can better capture the evolving flow

features and topographic features (buildings, rivers and streets), thus providing improved

accurate flooding prediction. To further demonstrate the capability of the flooding model,

Floodity has been applied to the joint flooding events with the bathymetric data including

buildings, which were represented as impervious obstacles blocking the flow path.

Fig.4.10 presents the flooding map over the urban area at time level t = 15h in scenar-

ios of an individual and joint flooding event respectively. It can be observed that Floodity

results with a mesh resolution 5m have a larger inundation extent than MIKE 21 FM re-
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Figure 4.7: Water depths at time level t = 15h obtained from a MIKE 21 FM model (first

row), a Floodity model with a mesh resolution 10m (middle row) and results showing the

corresponding mesh (bottom row) based on bathymetric data without buildings in scenarios

of an individual 2100 upper extreme sea-level event (left column) and a joint event with

100-yr return period rainfall (right column).

sults and present more details of topographic features, including buildings and channels.

The details of roads, buildings and channels can be observed clearly with an increased

mesh resolution around them. Fig.4.11 provides the details of the areas marked with rect-
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Figure 4.8: Flood depth time series at detector locations P1, P2, P3 and P4 (see Fig.4.1

(b)) simulated using MIKE 21 FM and Floodity with a mesh resolution of 20m, 10m, and

5m respectively, based on bathymetric data without buildings in a scenario of 2-yr return

period rainfall and 2100 upper extreme sea-level event.

Figure 4.9: Flood velocity time series at detector locations P1, P2, P3 and P4 (see Fig.4.1

(b)) simulated using MIKE 21 FM and Floodity with a mesh resolution of 10m based on

bathymetric data without buildings in a scenario of 2-yr return period rainfall and 2100

upper extreme sea-level event.
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Figure 4.10: Water depths at time level t = 15h obtained from a MIKE 21 FM model (first

row), a Floodity model with a mesh resolution 5m (middle row) and results showing the

corresponding mesh (bottom row) based on bathymetric data with buildings in scenarios

of an individual 2100 upper extreme sea-level event (left column) and a joint event with

100-yr return period rainfall (right column).

angles in Fig.4.10. It is noted that the information of roads and channels has been lost

in the MIKE 21 FM simulations. However, with the use of anisotropic-DMO, Floodity

can capture the details of topographic features even with almost the same mesh resolution

(10m) as that used in the MIKE simulation. The bottom in Fig.4.11 shows more details

of the anisotropic unstructured meshes, where the adapted anisotropic elements are placed
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under the limitation of the aspect ratio of elements.

Figure 4.11: Details of the areas marked with rectangles (Fig.4.10) obtained from MIKE

21 FM modelling (left column), a Floodity model with a mesh resolution 10m (middle

column) and 5m (right column). The bottom shows more details of the anisotropic un-

structured meshes.

In these simulations, the topographical data (digital elevation data) is available with a

high resolution of 1.6m. The availability of high-resolution topographical data is important

for the accurate numerical simulation of urban food inundation. However, high-resolution

topographical data requires a high computational effort, thus, resulting in a computation-

ally demanding flood modelling. Using anisotropic-DMO, the topographical data over the

domain is obtained by interpolating the high resolution (1.6m) data onto the adapted mesh

at each time level. Therefore, the high-resolution topographical data is only used in the

flooded region while the low-resolution data is used in the rest of the domain, thus reducing

the computational cost. In addition, the details of buildings can be represented accurately

as the flooding water spreads across the domain (see Figs.4.10 and 4.12).

Fig.4.13 shows the time series of water depth at four detector locations simulated using

MIKE 21 FM and Floodity with three different meshes in a scenario of a joint flooding
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Figure 4.12: Buildings gradually become visible as the flood water spreads west and

northward. The left column shows the plane view of surface topography. The right column

shows the corresponding mesh.
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Figure 4.13: Flood depth time series at detector locations P1, P2, P3 and P4 (see Fig.4.1

(b)) simulated using MIKE 21 FM and Floodity with a mesh resolution of 20m, 10m, and

5m respectively, based on bathymetric data with/without buildings in a scenario of 100-yr

return period rainfall and 2100 upper extreme sea-level event.

event from extreme sea level and rainfall for a 100-yr return period. It can be observed

that due to the impact of buildings, the water depths obtained from Floodity have a slight

difference from that of MIKE 21 FM. A deeper water depth at P1 and P2 locations is pre-

dicted when using the 5m resolution adaptive mesh than that using the fixed mesh (MIKE

21 FM), similarly as which is shown in Fig.4.6. This is due to the fact that the detectors P1

and P2 are located at the channel, thus having a larger water depth. Again this proves that

the adaptive mesh flooding model can provide relatively accurate predictions. Also note

that there is an arrival time lag at detectors if the impact of buildings is considered in the

flooding simulations. As a result, the arrival time at P3 and P4 has nearly 140minutes’

time lag in Floodity with a mesh resolution of 5m results, in comparison to MIKE 21 FM

results.
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4.5.4 Sensitivity to the forcing inputs and mesh resolution

Extreme joint flooding is the product of a wide range of interacting processes. Here the

uncertainties from the forcing inputs are the extreme sea levels and rainfall. In addition,

the mesh resolution is one of critical parameters in flooding modelling. In this section,

sensitivity analysis of flood volume over inundated areas to extreme sea levels, rainfall and

mesh resolution has been explored and shown in Fig.4.3 (a), (b) and (c) respectively.

Figure 4.14: Sensitivity of flood volume results to forcing inputs in scenarios: (a) indi-

vidual extreme sea-level events (shown in Fig.4.3 (b)); (b) both the individual 2100 upper

sea-level flood event and the joint event with 100-yr return period rainfall; and (c) mesh

resolutions of 20m, 10m, and 5m.

The impact of the incoming sea levels on flooding results has been investigated and

the corresponding results in Fig.4.14 (a). There are three scenarios of individual extreme

sea-level events shown in Fig.4.3 (b), where the maximum value for the extreme incoming

water levels is 1.52m (current), 2.25m (2100 mean) and 3.08m (2100 upper) peaking

at t = 9.5h. In Fig.4.14 (a), we can see that the flood volume become large with an

increased incoming wave level. The flood volume peaks approximately at t = 9.5h when

the incoming wave is reaching its extreme. There is a slight time lag in the the peak of

flood volumes in the scenario of the current extreme sea-level event.

Further investigation of the effect of rainfall on flood volume has been undertaken in

the scenario of the joint flood event. A comparison of flood volumes between the scenarios

of the individual and joint flood events is provided in Fig.4.14 (b). The solid line is the
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flood volume during the individual extreme sea-level event (2100 upper) while the dashed

line represents the joint flood event with the 100-yr return period rainfall event during the

rainfall period t = 13− 16h. The influence of rainfall is reflected by the divergence of the

flood volume during rainfall. The largest difference in flood volume is 1.10 × 105m3 at

t = 14.08h.

Fig.4.14 (c) presents the flood volume results from the simulations using different mesh

resolutions. It is found that the peak values of flood volume results are very close in all

simulations, while the peak time differs greatly when using the mesh resolutions of 20m

(dotted blue line) and 10m (dotted green line) as well as 5m (solid black line). The reason

for this is that the blocking effect of buildings cannot be represented in flood modelling

with use of coarse mesh resolutions (20m, here) due to the failure of capturing the details

of buildings.

In general, the flood volume results are sensitive to both incoming sea levels and rain-

fall. However, in joint flood events, the effect of rainfall is relatively small in comparison to

extreme incoming waves. In flooding modelling the mesh resolution is the key to capture

the details of complex topography, for example, buildings and channels. One can see the

blocking effect of buildings only when the buildings are captured with high mesh resolu-

tions.

4.5.5 Performance of Floodity modelling

Table 4.2: Node and element number of the adaptive unstructured mesh with mesh resolu-

tion 20m, 10m, and 5m for Floodity modelling.

Meshing Type Time Level (min) Node #(20m) Element #(20m) Node #(10m) Element #(10m) Node #(5m) Element #(5m)

Fixed mesh 0 - 120 13033 25666 51367 101939 204980 408373

0 13033 25666 51367 101939 204980 408373

5 3120 6095 8166 16157 19825 39446

Adaptive mesh 200 3395 6647 9064 17952 21797 43390

600 4904 9620 12897 25548 29289 58275

1200 4666 9156 12520 24806 28235 56176

1440 4581 8990 12271 24315 27485 54686

As seen in Fig.4.15 and Table 4.2, an unstructured mesh with 20m resolution generated
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Figure 4.15: The numbers of nodes and elements used in Floodity modelling for mesh

resolution 20m, 10m, and 5m during the simulation period [0, 1440] min.

by Gmsh [137] consists of 13,033 nodes and 25,666 unstructured triangle elements, while

10m resolution consists of 51,367 nodes and 101,939 elements, and 5m resolution mesh

contains 204,980 nodes and 408,373 elements. These meshes are used during the whole

simulation period for fixed unstructured mesh modelling, and used as the initial mesh for

the adaptive mesh simulations. After first adapting the mesh, the numbers of nodes and ele-

ments used for adaptive mesh of 20m, 10m, and 5m resolution are reduced by 74%, 82%

and 88% respectively, then gradually increased during t = [1, 600] min and decreased

during t = [600, 1440] min as the flooding water retreats. Above all, Floodity is less

computationally expensive than fixed unstructured mesh modelling. The use of adaptive

unstructured meshes improves the computational efficiency. To further reduce the compu-

tational cost, various numerical techniques can be adopted in the flood model Floodity, for

example, parallel computing using MPI.
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4.6 Summary

Realising the importance of flood coincidence risk assessments, we have further developed

the adaptive unstructured mesh flooding model Floodity for the joint urban flood events

caused by multiple sources (extreme rainfall and sea-level events) and successfully ap-

plied to Greve in Denmark. By introducing the anisotropic-DMO technique, the features

of flooding flows (local flows around the buildings or the wetting and drying front, for

example) are able to be better captured while reducing computational cost without sacri-

ficing accuracy of flooding simulations. With a unique combination of anisotropic-DMO

and high-resolution Digital Terrain Model (DTM) data, the complex urban topography can

be accurately represented when/where needed by increasing the mesh resolution (around

the buildings, for example) dynamically when the flooding water spreads over the urban

area. This new Floodity model has been applied to several flooding scenarios that hap-

pened in Greve, Denmark, where the flood is induced by different combinations of extreme

incoming sea levels and rainfall. A comparison between Floodity and MIKE 21 FM results

has been undertaken. It has been found that Floodity is able to provide relatively accurate

results while the computational cost is reduced by 20 - 88% in comparison to fixed mesh

models. To assess uncertainties in model predictions, the sensitivity of flood volumes to

extreme sea levels and rainfalls has been explored. In joint flood events, we found that the

flood volume over the inundated area is more sensitive to sea levels than rainfall. Extreme

sea-level events with the higher peak water levels induce higher peak flood volume while

the impact of rainfall is relatively small. The sensitivity of flood results to the mesh reso-

lution is also investigated. In flood modelling, the blocking effect of buildings on the peak

time of flood volumes can be seen only when using high resolution meshes and Digital

Terrain Model data.

Flood modelling is a complex and parametric problem. The input uncertainty is one

of the main sources of uncertainty. In this work, we mainly focused on the simulation of
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flooding from multiple sources. We have done some basic sensitivity analysis. Given its

complexity, in future we will further carry out uncertainty analysis using advanced numer-

ical techniques, for example, the adjoint sensitivity and uncertainty analysis [165]. In this

work, the effect of rainfall is relatively small compared to incoming waves. So infiltration

is not taken into account here, namely all amount of rainfall water becomes ponded water

on ground surface. We will further introduce infiltration rate in future work. Due to the

lack of optimization of codes, the CPU time is not demonstrated here. Instead, we have

demonstrated the computational cost is significantly reduced by the decrease of the num-

ber of nodes used while the accuracy remains the same or better than that in fixed mesh

modelling. In future work we will focus on the optimization of codes (data structures).
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Chapter 5

Rapid spatio-temporal flood prediction and uncertainty

quantification using a deep learning method

Recently accrued attention has been given to machine learning approaches for flooding pre-

diction. However, most of these studies focused mainly on time-series flooding prediction

at specified sensors, rarely on spatio-temporal prediction of inundations. In this work, an

integrated long short-term memory (LSTM) and reduced order model (ROM) framework

has been developed. This integrated LSTM-ROM has the capability of representing the

spatio-temporal distribution of floods since it takes advantage of both ROM and LSTM. To

reduce the dimensional size of large spatial datasets in LSTM, the proper orthogonal de-

composition (POD) and singular value decomposition (SVD) approaches are introduced.

The LSTM training and prediction processes are carried out over the reduced space. This

leads to an improvement of computational efficiency while maintaining the accuracy. The

performance of the LSTM-ROM developed here has been evaluated using Okushiri tsunami

as test cases. The results obtained from the LSTM-ROM have been compared with those

from the full model (Fluidity). In predictive analytics, it is shown that the results from both

the full model and LSTM-ROM are in a good agreement whilst the CPU cost using the

LSTM-ROM is decreased by three orders of magnitude compared to full model simula-

tions. Additionally, prescriptive analytics has been undertaken to estimate the uncertainty

in flood induced conditions. Given the time series of the free surface height at a specified

detector, the corresponding induced wave conditions along the coastline have then been

provided using the LSTM network. Promising results indicate that the use of LSTM-ROM

can provide the flood prediction in seconds, enabling us to provide real-time predictions
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and inform the public in a timely manner, reducing injuries and fatalities.

5.1 Introduction

Flooding causes considerable damage to people, infrastructure and economies in many

countries of the world. During a flooding event, a rapid response management is critical

to reducing damage resulting from a flood event. Emergency managers require timely

and accurate information on the areas affected by floodwater to plan mitigation measures

against damage. In recent years, the Early Warning Systems (EWS) have been widely used

to better predict floods and reduce their impact on urbanized areas. Learning from the past

flood events is vital to enhancing the capability of flood forecasting.

Flood modelling involves the complex and nonlinear flow and physical processes. Com-

pared to a physically based numerical model, machine learning approaches can provide a

powerful way for flooding prediction without explicitly knowing such nonlinear dynamic

processes [166]. In the past, great efforts have been made to flooding prediction using

machine learning methods, for example, autoencoder [167], genetic algorithm (GA) [168],

artificial neural networks (ANN) [169], back propagation neural networks (BPNN) [170],

radial basis function neural networks (RBFNN) [171] and recurrent neural networks (RNN)

[172, 173]. Most of these studies focused mainly on time-series flooding prediction (e.g.

water levels, streamflow and discharge) at specified sensors [166], but rarely addressed

spatio-temporal prediction of inundations since it is difficult to handle large spatial data

sets.

In this work, we propose the long short-term memory (LSTM) for flood prediction.

LSTM was introduced by Sepp Hochreiter and Jurgen Schmidhuber [174]. LSTMs are able

to learn non-linear functions of arbitrary-length input sequences and effectively capture

long-term temporal dependencies. They have been widely used in various research areas,

such as, language modelling [175], handwriting recognition [176–178], speech synthesis

[179], audio analysis [180], and video recognition [181].
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For efficient LSTM training and spatio-temporal prediction in flood events, ROM tech-

niques are introduced to LSTM in this study. ROM techniques have been widely used in

various research fields including fluid dynamics [182, 183], molecular dynamics [184], heat

transfer [185], data assimilation [93, 186], elasticity problems [187], shape optimization

[188], and aeroplane components design [189]. Proper Orthogonal Decomposition (POD)

is often used for generating reduced order models. POD-ROM approaches have been

widely applied to many fields [86, 184, 190–192]. There are numerous hyper-reduction

POD approaches, for example, in combination with Galerkin projection [193], discrete

empirical interpolation method (DEIM) for nonlinear problems [194], Gauss-Newton with

approximated tensors (GNAT) [195], quadratic expansion method [196], radial basis func-

tion (RBF) [197, 198], and Smolyak sparse grid [199].

More recently, machines learning techniques have been introduced to ROM [29, 200–

204]. Kerschen and Golinval (2003) [205] presented a machine learning approach for the

nonlinear modal analysis. The authors combined auto-associative neural network (AANN)

with nonlinear Principal Component Analysis (PCA) and this proposed method has been

successfully applied in the context of model reduction for nonlinear systems [206]. San

and Maulik (2018) [200] introduced the artificial neural networks to proper orthogonal

decomposition-based ROMs and the newly developed ROM-ANN framework has been

successfully applied to a wind-driven ocean circulation problem. The ROM-ANN satis-

fies the dual demands of statistical accuracy as well as low computational expense and

effectively retains the dynamics of the full-order model during the simulation period. The

method is proved to be robust for larger choices of time steps, which is an efficient and re-

liable tool in long-term predictions of geophysical turbulent flows. Swischuk et al. (2019)

[201] develops a low-dimensional parametrization of high-dimensional output quantities

of interest (e.g. pressure, temperature and strain fields) using POD, and combines this

parametrization with machine learning methods to learn the relationship between the input

parameters and the POD expansion coefficients. Two engineering examples demonstrate
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the embedding physical constraints that less training data is available in engineering ma-

chine learning applications than non-engineering applications, making it essential to choose

an appropriate machine learning strategy with knowledge incorporated from physical mod-

els.

The integrated LSTM and ROM framework developed here takes advantage of both

ROM and RNN-LSTM. This is the first time that LSTM network based on ROM has been

considered in flood forecasting and used to estimate spatial aggregation of inundations. It

should be noted that having the compatibility of LSTM and ROM will enable solving pre-

dictive problems efficiently and accurately. In this work, the LSTM-ROM framework has

the capability of predictive and prescriptive analytics. Predictive analysis is used to forecast

the future by learning patterns from holistic/experience data. Prescriptive analytics is used

for inverse problems. In prescriptive analytics the past/estimated data is used to explore de-

pendencies among results. These previous learned dependencies are then used to estimate

the cause factors given the prescribed results at a future time. This means that predictive

analytics tells what will happen, while prescriptive analytics provides the cause factors and

suggests what to do. Predictive and prescriptive analytics with big data are becoming more

and more prevalent in industries [207, 208]. To the best of our knowledge, there has not

been any particular study which incorporates these two types of analytics together to pro-

vide a framework to address flood issues. The goal of this work is to develop an advanced

fast-running computational model to predict urban floods and guide effective response in

the event of emergencies. It will lead to a step change in the speed of forecasting, with

possible CPU reductions of several orders of magnitude compared to existing methods.

The layout of this chapter is as follows. Section 5.2 introduces the methodology of

LSTM. The integrated LSTM-ROM framework for flood prediction is provided in detail

in section 5.3 while LSTM for predictive and prescriptive analytics in flood prediction is

described in Section 5.4. Section 5.5 demonstrates the performance of the LSTM-ROM

using Okushiri tsunami as test cases. Finally in Section 5.6, a summary and future work
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are presented.

5.2 Construction of the POD-based ROM

Specifically in this work, we assume that a set of optimal truncated spatial basis functions

φm(x) (where x is the spatial coordinate) can be obtained from solution snapshots [209].

Once the dominant flow spatial basis functions (also called POD modes) are obtained, the

state variables representing the evolution of the underlying flow dynamics can approxi-

mately be expressed by a linear combination of the dominant spatial modes and temporal

coefficients:

U ≈ Φka or u(x, t) ≈
K∑

k=1

ak(t)φk(x), (5.1)

where u is the state variable, φk(x) is the POD spatial mode while the coefficients ak(t), a ∈

ℜK , is the corresponding temporal coefficients.

Let U be the snapshot matrix containing the state solutions u(x, tn) = un(x) ∈ ℜN at

instances of the temporal sequence during the period [0, tNt
], that is, U = [u1, . . . , uNt ] ∈

ℜNt×N, whereNt is the number of snapshots, and N is the number of spatial points or nodes

where data or solution is provided in the computational domain. Using SVD, the matrix U

can be written:

U = ΦΣV T ≈ ΦKΣKVK
T , (5.2)

where the matrices ΦK and VK contain the first K columns of Φ and V (left and right

singular vectors, respectively), and the diagonal matrix ΣK contains the first K ×K block

of Σ (singular values). Alternatively, the left singular vector VK can be obtained by solving

the eigenvalue problem [83]:

UTUVK = VKΣ
2

K , (5.3)

and the first K POD spatial modes corresponding to nontrivial singular values are calcu-
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lated:

ΦK = UVKΣ
−1

K , (5.4)

while the POD temporal coefficient a is given by the orthogonal projection:

a = (a1, . . . , an, . . . , aNt) = ΦT
KU, (5.5)

where an = (an1 , . . . , a
n
K). Usually, K (K ≪ N) is chosen to make sure a tolerance

percentage of energy of the full space to be captured [83].

The eigenvalue problem of the correlation matrix V ΣUTUΣV T = V Σ2V T ∈ ℜNt×Nt

is solved [83]:

UTUVi = λiVi, i ∈ {1, . . . , Nt}, (5.6)

where λi = σ2
i is the eigenvalue of UTU . The eigenvalues are ordered λ1 ≥ λ2 ≥

... ≥ λn ≥ 0 while the eigenvectors are orthogonal. The K leading left eigenvectors

are chosen to be the POD modes for constructing the reduced space Φ = (φ1, . . . , φK) =

(U1, . . . , UK). The eigenvector associated with the largest eigenvalue is the direction along

which the data have the most variance of the projection. The variance of the projection can

be calculated by
∑K

m=1
λm while the percentage of the total energy captured by the POD

modes is:

E(K) =

∑K
i=1

λi∑Nt

i=1
λi
, (5.7)

The number of POD modes K is chosen such that

K = argmin {E(k) : E(k) ≥ γ}, (5.8)

where γ (0 ≤ γ ≤ 1) is the tolerance percentage chosen to enable most of the energy

of the full system to be captured. For more details on SVD, we refer the reader to [210].
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5.3 LSTM-ROM for predictive modelling of the spatio-temporal dis-

tribution of floods

As discussed above, most of existing flooding studies based on machine learning techniques

are limited to either the time-series flooding prediction at sensors or the simulations of

the spatial distribution of floods. The main objective of this work is to develop a new

LSTM tool for predicting the spatio-temporal distribution of floods. In spatio-temporal

simulations, the input dataset in Eq. (2.7) is the spatial function and can be rewritten:

xs = (hb,s, µ), (5.9)

where hb,s is the flood induced condition (here, an incoming wave along the coastal bound-

ary), and µ represents the uncertainty (drag coefficient, for example) in modelling, while

the output in Eq. (2.7) is the spatio-temporal distribution during the specified flooding

period [0, tNt
], that is,

hs = (hs,0, . . . , hs,tnt
, . . . , hs,tNt

), (5.10)

where hs,tnt
is the variable spatial solution at time level tnt

(here, nt ∈ {0, . . . , Nt},

tnt
∈ [0, tNt

] and Nt is the number of time instances). In a discretisation form, the spa-

tial variables in Eqs. (5.9) and (5.10) can be rewritten:

hs,0 = (hs,0,1, . . . , hs,0,n, . . . , hs,0,N ), hs,tnt
= (hs,tnt ,1

, . . . , hs,tnt ,n
, . . . , hs,tnt ,N

), (5.11)

and the variables:

• hs,0, hs,tnt
, hs,tNt

∈ ℜN , where N is the number of nodes where data or solution is

provided in the computational domain Ω;

• hb ∈ ℜNb , where Nb is the number of parameters used for defining the flood induced

conditions (for example, the peak values and period in an incoming wave);
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• µ ∈ ℜNm , where Nm is the number of uncertainties in modelling;

• xs ∈ ℜNb+Nm ;

• hs ∈ ℜNt×N .

One may note that for spatio-temporal prediction of floods within a large flooding area,

huge spatial datasets have to be handled during the training and predictive processes. To

reduce the size of data sets, a ROM based on proper orthogonal decomposition (POD) is

introduced to LSTM in this work.

Let H the snapshot matrix containing flooding variables at instances of the temporal

sequence during the flooding period [0, tNt
], that is,

H = (hTs,0, . . . , h
T
s,tnt

, . . . , hTs,tNt
), (5.12)

where H ∈ ℜN×Nt ,N >> Nt, the flooding dataset {hs,tnt
} is constructed from the output

of Eq. (2.7) and the superscript T denotes the transpose.

Once the POD modes are obtained, the solution snapshot at each instance of the data

sequence can be re-constructed as the linear combination of the POD modes:

H ≈
K∑

m=1

√
λmφmV

T
m , (5.13)

where the truncated error (the residual of the projection) is
∑Nt

m=K+1
λm.

For any input xs ∈ I \Itr in Eq. (5.9) (where I and Itr are the whole input dataset and

the training input dataset respectively), the predictive solution at each time instance nt can

be expressed as a linear combination of POD modes:

hTs,nt
= ΦaTs,nt

=
K∑

m=1

as,nt,mφm, (5.14)
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where as,m,nt
is the time-dependent coefficient associated with the corresponding POD

mode φm. The coefficients as,tnt
= (as,nt,1, . . . , as,nt,m, . . . , as,nt,K) can be calculated using

the LSTM described in Eq. (2.7). The output hs = (hs,0, . . . , hs,tnt
, . . . , hs,tNt

) in Eq.

(5.10) is projected onto the low-dimensional space spanned by {φ1, . . . , φm, . . . , φK}:

as = (as,1, . . . , as,tnt
, . . . , as,tNt

) = (hs,0Φ, . . . , hs,tnt
Φ, . . . , hs,tNt

Φ). (5.15)

Note that the dimensional size of the output dataset in Eq. (5.10) is reduced from

N × Nt to K × Nt (K << N ). The coefficient set as can replace hs in Eq. (2.7) and be

obtained using LSTM.

5.4 LSTM in predictive and prescriptive analytics of floods

In this section, taking an example of flooding caused by incoming waves (but not limited

to), we demonstrate the way how to use LSTM for flood prediction and uncertainty quan-

tification.

5.4.1 Predictive analytics: the spatio-temporal model based on LSTM-ROM

Predictive analytics =⇒ Given {xs}, find ys = f(xs, t). Given a set of inputs {xs ∈ Itr}

(where Itr is the training input dataset), using machine learning techniques, one can find

a mathematical predictive model, f(xs, t), which is used for providing the variable values

at a future time t. In flooding simulations, for a set of given training input-output pairs

(xs, ys) ∈ (Itr,Otr), one first uses the past flooding data and machine learning techniques

to construct the predictive model. For a new flood induced condition xs ∈ I \ Itr, one

can forecast the future floods. To tackle the challenge of large spatio-temporal datasets,

the ROM/POD described above can be used to reduce the dimensional size of data. Both

the training and predictive processes are then undertaken in a reduced space, thus reducing

significantly the computational cost.
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The input dataset is the incoming wave boundary condition:

xs = (hcrb,s, h
dr
b,s, Tb,s), (5.16)

where, hcrb,s and hdrb,s are the crest and trough wave heights respectively, and Tb,s is the wave

period. Three input variables hcrb,s, h
dr
b,s and Tb,s are used to define the incoming wave [211].

Given Sw as the number of incoming wave series used for training purpose, the input

data xsw in the training input dataset Itr are:

xsw = (hcrb,sw , h
dr
b,sw , Tb,sw), sw ∈ {1, . . . , Sw}. (5.17)

The corresponding output data hsw in the training dataset Otr are:

hsw = (hTsw,0, . . . , h
T
sw,tnt

, . . . , hTsw,tNt
), sw ∈ {1, . . . , Sw}. (5.18)

To reduce the dimensional size of hsw ∈ ℜN×Nt , using POD/SVD a set of POD modes

is obtained from the snapshots (h1, . . . , hsw , . . . , hSw
) and used for constructing the reduced

space ℜm = span{φ1, . . . , φK}. Projecting the training output data hsw onto the reduced

space yields:

asw = (asw,1, . . . , asw,tnt
, . . . , asw,tNt

) = (hsw,0Φ, . . . , hsw,tnt
Φ, . . . , hsw,tNt

Φ), (5.19)

where asw ∈ ℜK×Nt . The input-output dataset in Eq. (2.7) is (xsw , asw), sw ∈ {1, . . . , Sw}.

The LSTM training process is thus undertaken in the reduced space. In LSTM, most of

input-output pairs (xsw , asw) ∈ (Itr,Otr) are used for training while the rest for validation.

Once the LSTM training and validation processes are completed, one can find the re-

lationship between the input-output pair (xs, as) in the reduced space. By using LSTM

based on ROM, the predictive solutions during the flooding period [0, tNt
] for any input
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data xs ∈ I \ Itr can be obtained in Eq. (5.14).

The framework of LSTM-ROM methodology is demonstrated in Fig. 5.1.

5.4.2 Prescriptive analytics for uncertainty quantification in flooding modelling

Prescriptive/inverse analytics: =⇒ Given ys, find xs = f−1(ys, t). Given a prescribed

outcome ys at time level t, using the previously learned dependencies, one can find an

inverse function, f−1(ys, t), which is used for optimising the inputs (or uncertainties in

modelling). Flood modelling is a complex and parametric problem. The flood induced

condition is the main factor of uncertainties in flood risk management. In this work, LSTM

is used to conduct the prescriptive analytics to estimate the uncertainty in flood induced

conditions (incoming waves) for given historical/estimated flood results.

To construct the LSTM network in the prescriptive analytics, the training input is the

temporal variation of one flood characteristic (e.g. free surface height, water depth, quantity

of flow, or velocity) at specified sensor locations, while the corresponding flood induced

condition (e.g. waves or rainfall) is the output. Subsequently, the LSTM network is built

through learning with the input-output pairs. Finally, given a new estimated temporal varia-

tion of the flood characteristic, the corresponding flood induced condition will be provided

using the LSTM network.

As an example, for a series of induced waves, the input dataset is the prescribed free

surface height at specified sensors:

hsw(xd) = (hsw,0xd, . . . , hsw,tnt
xd, . . . , hsw,tNt

xd), sw ∈ {1, . . . , Sw}, d ∈ {1, . . . ,Nd},

(5.20)

where Nd is the number of sensors, while the corresponding induced wave is uncertainty to

be determined, that is, the output data is the parameters used for defining the induced wave

xs = hb,s = (hcrb,s, h
dr
b,s, Ts). Using LSTM described in Eq. (2.7), the relationship xs =

hb,s(xd) = f−1(hsw(xd)) can be found and used to estimate the induced wave condition for
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Figure 5.1: Framework of LSTM-ROM.
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given observational data at specified sensors.

5.5 Numerical examples

The example used for validation of the new LSTM-ROM is the Okushiri tsunami test case.

The event is the Okushiri tsunami in 1993 caused by the Hokkaido Nansei-Oki earthquake

offshore of southwestern Hokkaido Island, Japan. The resulting tsunami hit a sparsely

populated part of the Okushiri Island, Japan with a runup height of up to 30m. To investi-

gate the danger of such extreme events, the Research Institute for Electric Power Industry

(CRIEPI) in Abiko, Japan constructed a scaled-down laboratory model of the area around

the island [212]. The inundated area measures 5.448m × 3.402m with walls on each

side except the left where the water level is enforced (see Fig 5.2). Fig. 5.2 shows the

bathymetry and the three gauge stations, as well as the actual induced wave data used for

the example case.

Figure 5.2: The bathymetry and the three gauge stations used for the Hokkaido-Nansei-Oki

tsunami example [213].

76



The training data is from the existing 3D simulation in (Fluidity) [213], and the mesh

used for the simulation is a 2D single layer horizontally unstructured mesh. Fluidity can

extrude this 2D mesh to create a layered 3D mesh. The extrusion is downwards (in the

direction of gravity), and the top of the domain is always flat. It is performed according

to bathymetry such that the depth of the extrusion conforms to bathymetric data. The

extruded 3D mesh is 2-layer mesh with a top surface and bottom surface, in which all the

nodes line up in vertical lines. In this case study, only water depth solution is included

in the training set since 1) water depth is the main concern in 2D flood modelling, and

2) the laboratory data of surface heights is available at three gauges. The equations are

solved with the P1 − P1 finite element pair and a backward Euler time discretisation. The

threshold value of wetting and drying (d0) is set to be 0.5mm in dry area to prevent non-

physical flows in numerical simulations. A Manning-Strickler drag is used at the bottom

with n = 0.002 sm−1/3. The acceleration of gravity magnitude is 9.81ms−2. In this case,

the simulation period is [0, 70] s, and a time step size is 0.1 s is used. Thus, the training

data were obtained by running the full model (Fluidity), with an unstructured mesh of

6894 nodes. A fixed mesh scheme is used since the same dimensional size of snapshots is

required for constructing POD modes.

5.5.1 Predictive analytics in flooding modelling

Calculation of snapshots via running the full model: As seen in Fig. 5.1, for training pur-

pose, given a series of incoming waves (here, sw = 1, . . . , 10), the corresponding solution

snapshots (hsw ∈ Otr) are obtained from the full model simulations. By scaling the actual

induced wave (in Fig. 5.1) with a factor of 0.7− 1.25, 10 series of incoming waves (in Fig.

5.3) are given as inputs. Thus, for each incoming wave xsw , the collection of 100 snapshots

during the period [25, 35] s for the free surface height is the output training dataset hsw .

The dimensional size of the output dataset is large, i.e. N ×Nt = 6894 × 100 = 689400.

Reduction of the size of the training dataset is necessary for LSTM prediction.
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Figure 5.3: The series of flood induced waves for training purpose.

Figure 5.4: Singular values of free surface heights to construct the reduced space.

Construction of LSTM-ROM: With the datasets of snapshots obtained above, a LSTM-

ROM model is generated using POD/SVD techniques. Fig. 5.4 shows that the singular

values decreases dramatically by two orders of magnitude between the first 3 leading POD

modes and 99.5% of the total energy is captured by 20 POD modes. In this work, the se-

lected number of POD modes equals to the number of LSTM models need to be trained and
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fitted. Less LSTM models results in less predictions of temporal coefficients for each step,

which could cause over simplification and low accuracy when projecting back to generate

snapshot. Thus, the first 20 leading POD modes (K = 20) were chosen for constructing the

reduced space, thus ensuring the predictive accuracy. The training and prediction processes

were then undertaken over the reduced space. The training input dataset is the parameters

used to define the incoming waves, xsw = (hcrb,sw , h
dr
b,sw

, Tb,sw), while the corresponding

output dataset asw ∈ RK×Nt (where K = 20 and Nt = 100) is obtained by projecting

hsw ∈ RN×Nt (where N = 6894) onto the reduced space. By using ROM, the dimensional

size of the output dataset is reduced from 689400 to 2000. In LSTM model, the epochs is a

measure of the number of times passing through the entire training dataset. The number of

epochs should be large enough to allow the learning model fit optimally to the data. Here,

the number of epochs is set to 1000 and RMSprop optimizer [214] is used here. The LSTM

model contains 3 layers: 1 input layer, 1 hidden layer, and 1 output layer.

Prediction of floods using LSTM-ROM: To evaluate the predicability of the LSTM-

ROM, for the given actual input wave (xs ∈ I \ Itr shown in Fig. 5.1), a comparison

between the LSTM-ROM and full modelling results is carried out (see Fig. 5.5). It is worth

noting that results from the full model and LSTM-ROM are in very good agreement with

each other. As shown in Fig. 5.6, the differences of the free surface height between the full

model and LSTM-ROM are quite small over the whole domain, which suggests that the

accuracy of LSTM-ROM is maintained whilst the CPU cost is reduced by several orders of

magnitude in comparison with the full model.

To further estimate the performance of the LSTM model, the root mean square error

(RMSE) is calculated for each time step by,

RMSEj =

√∑N
i=1

(Si,jfull − Si,jLSTM−ROM)2

N
, i = 1, 2, ... ,N , j = 1, 2, ... , Nt. (5.21)

where N = 6894 denotes the number of nodes on the full mesh; Nt = 20 is the number

79



Figure 5.5: The comparison of free surface heights between the full model and LSTM-

ROM.

of time step; Si,jfull and Si,jLSTM−ROM represent the solution on node i at time step j from

the original full model and LSTM-ROM, respectively. As shown in Fig. 5.7, the errors are

quite small, demonstrating that LSTM-ROM performs very well and the predicted solutions

are in good agreement with the true solutions.

The LSTM prediction includes both offline and online procedures. The offline CPU

cost is defined as the time for pre-computing, that is, the calculation of snapshots and

POD modes and LSTM training. The online CPU cost is the time required for prediction

of floods using LSTM-ROM for any given flood induced condition. In this study, the
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Figure 5.6: Differences of free surface heights between the full model and LSTM-ROM

during the whole period.

Figure 5.7: The RMSE errors of free surface heights between the original full model and

LSTM-ROM.

simulations were performed on a computer with 24 cores (Intel Xeon(R) CPU@ 2.90GHz)

and 16GB RAM. Only one of the cores was used when running the model. It is worth

mentioning that the online CPU cost for running LSTM-ROM during one time-step is only

0.02 s, while the full model is 30.8 s. Although the offline CPU cost of training the LSTM

network is somewhat expensive (331 s), it is much less than the simulation time of the full

model (6160 s). Results obtained from this test case show that the novel LSTM-ROM can
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provide reasonable accuracy in flood prediction whilst the CPU time is reduced by three

orders of magnitude.

In summary, for any given input xs ∈ I \ Itr, the LSTM-ROM can provide a better

prediction of floods at a future time t ∈ [0, tNt
]. However, it is also noted that the predictive

accuracy of LSTM-ROM decays when the predictive lead-time is extended to beyond the

period [0, tNt
]. The longer the predictive lead-time, the larger the RMSE of LSTM results

(see Table 5.1, similarly in the work of of Babovic et al. (2001) [215] and Sun et al.

(2010) [216]). This indicates that capturing dependencies of features between successive

time period in the model becomes more intractable as the prediction horizon extends in

time. In this case, it is suggested that the use of data assimilation methods will help the

improvement of model performance [215]. Using data assimilation techniques, only the

reliable information from observations will be extracted to modify/correct the input datasets

during the prediction process. It helps extending the prediction horizon and enables LSTM-

ROM predictions in a real-time mode, which will be the focus of our future work.

Table 5.1: The RMSE errors of free surface heights between the original full model and

LSTM-ROM during predicted period [67.5, 70] s.

Time (s) 67.5 68 68.5 69 69.5 70

RMSE (×10−3) 2.16 2.67 4.03 5.99 8.39 11.13

5.5.2 Prescriptive analytics for uncertainty quantification in flooding modelling

The uncertainty quantification is critical in flood prediction. Can one estimate the incoming

wave through LSTM prescriptive analytics if the temporal measurements of free surface

heights at specified locations? In this study, ten flood scenarios are set up with the induced

waves shown in Fig. 5.3. The corresponding pseudo-data at Gauge 2 are shown in Fig. 5.8

which are obtained by running the full model. Here 12 key values are selected from each

incoming wave (values marked with red circle in Fig. 5.8) as the input data for training,

while choosing 3 key values from the corresponding wave time series as the output data for
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Figure 5.8: The free surface height at Gauge 2.

Figure 5.9: The input (left) and output (right) in prescriptive analytics.

training. The LSTM network would thus be constructed through the training process and

used to estimate the flood induced condition (here, the incoming wave condition) for any

given time series of free surface height at Gauge 2.

For a given measurement of free surface heights at Gauge 2 shown in Fig. 5.9 (left), the

corresponding flood induced condition was estimated using the established LSTM network

(shown in the right of Fig. 5.9). It is seen that the percent relative errors (%) between
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the estimated and actual wave peak values (marked with green rectangles) are (0.01, -

1.56), (0.12, 0.31), (0.05, -0.23), respectively. It is clear that in the prescriptive analytics,

the corresponding flood induced condition can be accurately provided using the LSTM

network.

5.6 Summary

In this work, a RNN architecture LSTM in combination with POD/ROM has been proposed

for flood prediction, which simultaneously takes advantage of both LSTM and ROM. This

is the first time that the ROM based LSTM network has been considered in flood forecasting

and used to estimate spatial aggregation of inundations. This novel integrated LSTM-

ROM framework which consists of both predictive and prescriptive analytics leads to a

step change in the speed of forecasting, thus providing effective response management in

emergencies.

The performance of the new method has been illustrated using Okushiri tsunami test

cases. To estimate the accuracy of the LSTM-ROM, a comparison of results obtained

from the LSTM-ROM and full model has been undertaken. It is shown that the accuracy of

solutions from the LSTM-ROM is maintained while the CPU cost is reduced by three orders

of magnitude. An error analysis has also been performed for the validation and accuracy of

the LSTM-ROM through RMSE. Comparing LSTM-ROM results with those from the full

model, the LSTM-ROM exhibits a good agreement with the full model. Subsequently in

the prescriptive analytics, the corresponding flood induced conditions have been accurately

provided using the LSTM network. Having the compatibility of LSTM and ROM, the

integrated framework will enable predictive problems to be solved rapidly and accurately.

In addition, further evaluation of LSTM-ROMs in flood forecast will be carried out with

different forecasting configurations including optimized training parameters, the predictive

lead-time and the type of inputs. For example, the selection of training parameters in the

networks (e.g. values for time delays and embedding dimension) is critical for LSTM
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model predictive performance optimization. With optimal architectures, the underlying

structure of nonlinear time series can be better viewed [216]. To further improve predictive

accuracy, data assimilation methods can be adopted. The data assimilation techniques can

improve the accuracy of model prediction by updating output variables based on the ob-

served variables during a forecast period. For instance, given historical/simulated datasets

of snapshots from floods, the target value (e.g. water depth) of the whole domain for the

next few time steps in the future will be predicted. Usually, the performance of the model

decays as the forecasting horizon extends beyond these few time steps, while data assimi-

lation may be the most suitable approach to address this issue.
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Chapter 6

An adaptive POD-LSTM predictive model using

data-driven optimal sensing with data assimilation

6.1 Introduction

High fidelity numerical modelling plays an important role in providing accurate predictive

information for decision makers/engineers, design and real-time operation, especially in

industrial applications, However it often suffers from not only computationally intensive,

but also significant uncertainties in the controlling parameters used as inputs when pre-

dicting the performance. Reduced order modelling (ROM) is a rapidly growing discipline,

with significant potential advantages in predictive, real-time modelling: interactive use,

emergency response, ensemble calculations, control, error norm quantification and in data

assimilation. In ROM, the computational cost can be reduced by decreasing the dimen-

sions of the control space thus ensuring that the minimisation of the cost function (or error

covariances) is carried out within a low-dimensional space.

Chapter 5 demonstrates the integrated LSTM-ROM developed for both prescriptive and

predictive analytics [217]. The LSTM-ROM has been applied to simulation of temporal-

spatial distribution of floods. To reduce the dimensional size of large spatial datasets in

LSTM, the proper orthogonal decomposition (POD) and singular value decomposition

(SVD) approaches are introduced. The results showed that given a unseen input dataset

the predictive accuracy of results using LSTM-ROM remains within the given simulation

period. However the performance of the LSTM-ROM decays as the forecasting horizon ex-

tends beyond the given period. To tackle this challenging issue, data-driven optimal sensing
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for reconstruction (DOSR) and data assimilation (DA) are here introduced to LSTM-ROM.

This linkage between modelling and experimental data/observations allows us to minimize

model errors and determine uncertainties, thus improving the accuracy of modelling.

In this work, a unique integrated DOSR-LSTM-DA framework is developed. It has the

features 1) use of optimal sensing data where the sensor locations are optimized using POD;

(2) POD modes are updated when the data is assimilated to modelling, which is named as

adaptive POD method here. To the best of our knowledge, this is the first work to introduce

both DA and optimal sensor techniques to LSTM-ROM.

The layout of the chapter is as follows. Details of constructing a LSTM-ROM predictive

model are presented in Section 6.2. Section 6.3 illustrates how data driven optimal sensing

and data assimilation are introduced to LSTM-ROMs to establish the new DOSR-LSTM-

DA framework, which largely extends the predictive horizon and improves the predictive

ability. Finally in Section 6.5, a summary is presented.

6.2 LSTM-ROM predictive modelling for parameterized PDEs

As a widely used data-driven dimensionality reduction technique, POD extracts dominant

features from a data set over a full space and efficiently constructs a low-dimensional

approximation representation. Here the POD approach is used for 1) reduction of large

dataset; 2) construction of LSTM-ROM (Section 6.2); and 3) optimization of sensor loca-

tions (Section 6.3).

In this section, we provide the details of constructing a LSTM-ROM for representing

the physical dynamics of the parameterized PDEs. In general, the parameterized PDEs at

time level ti can be written:

u(x, tn, µ) = F (u(x, tn−1), x, tn, µ) . (6.1)

By using Eq. (5.1) and projecting Eq. (6.1) onto the POD sub-space, a set of ROMs
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fm can be constructed to represent the physical dynamics of the original PDEs over the

reduced space::

ank = fk
(
an−1

1 , an−1

2 , . . . , an−1

K

)
, k ∈ (1, . . . , K). (6.2)

The LSTM technique is here selected to construct the set of ROMs fk since it explicitly

considers the memory in a sequence without the vanishing gradient problem [218]. In the

LSTM network, the input is the temporal coefficients (an−1

1 , . . . , an−1

k ) at the previous time

level n − 1 while the output is the temporal coefficient anm associated with the kth POD

basis function Φk (k ∈ (1, . . . , K)). The relationship function (fm) between the input an−1

and output ank can be obtained using the following equations:

I i = ̺(Wiaa
n−1 +Wihh

n−1 +WiCeCe
n−1 + bi),

fn = ̺(Wfaa
n−1 +Wfhh

n−1 +WfCeCe
n−1 + br),

on = ̺(Woaa
n−1 +Wohh

n−1 +WoCeCe
n + bo),

Cen = rn ⊙ Cen−1 + in ⊙ Cei(WCeua
n−1 +WCehh

n−1 + bCe), (6.3)

hn = on ⊙ Ceo(Ce
n),

ank = ζ(Wrhh
n + br),

where I , f and o denote the input, forget and output gate vectors respectively, Ce is the cell

activation vector, b is the bias vector, ̺ is the activation function, W denotes the weight ma-

trices (e.g. Wia is the weight matrix from the input gate to the input), ⊙ is the element wise

product of the vectors, Ceo and Cei are the cell output and cell input activation functions

respectively and ζ is the network output activation function.

Given the input-output training data set during the training period [0, tNt
], using Eq.

(6.4), a set of LSTM-ROMs fm for representing the low-dimensional physical dynamics

is constructed during the offline training process. The LSTM-ROMs can then be used to
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predict the temporal coefficients at time level tn ∈ [0, tNt
] and beyond. The predicted

variable solution will then be calculated using Eq. (5.1). However it is noted that the

predictive accuracy of solutions is decayed beyond the training period. To tackle this issue,

data assimilation techniques in conjunction with optimal sensing data are introduced to the

LSTM-ROMs.

6.3 Data-driven optimal sensing data assimilation framework

Our newly developed predictive model has three characteristics that distinguish it signifi-

cantly from our previous work [217]: (1) Optimal point sensor locations are selected specif-

ically to reconstruct high-dimensional dynamic systems; (2) POD modes are updated ac-

cording to the prediction accuracy; (3) Extension of predictive horizon is achieved in data

assimilation procedures, where these optimal sensor locations provide observations. Fig.

6.1 demonstrates a schematic representation of our procedure.

Figure 6.1: Training and execution modules for data-driven optimal sensing data assimi-

lation framework DOSR-LSTM-DA.

Recall that the full order solution of state variable at time level n can be approximately

computed:

ũn =
K∑

k=1

ankφk(x), (6.4)

where un ∈ ℜN. The temporal coefficient ank is obtained by the LSTM network in Eq.
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(6.3). The absolute error of solutions in Eq. (6.4) can be expressed:

ξ =‖ un − ũn ‖22, (6.5)

Our aim to alleviate the error in Eq. (6.4) by assimilating optimal sensing data into the

LSTM-ROM.

6.3.1 Data-driven optimal sensing for reconstruction (DOSR)

Theory of data-driven sparse sensing using POD

Inspired by recent advances in sparse sensor placement optimization techniques [219–221],

we present a data-driven optimal sensing framework (DOSR) to reconstruct data from few

point sensors (measurements). DOSR aims to find the locations of optimal sensors where

the data is assimilated to the LSTM-ROM for improving the accuracy of solutions.

Let Û = (ûp1 , . . . , ûpn , . . . , ûpt)T ∈ ℜpt×p denote the sparse measurements, and ûpn ∈

ℜp is a compressed version consisting of only the measured data from p selected sensors at

time level pn:

ûpn = Cupn (6.6)

where

• C ∈ ℜp×N is a masked matrix with entries of 1s and 0s to obtain a filtered data matrix

Û ∈ ℜpt×p, which is defined as follows:





C = (ex1 , . . . , exj , . . . , exp)
T ,∈ ℜN

enxj = 1 at the element where the sensor is located at node j,

enxj = 0 at the rest of elements,

(6.7)

• (p1, . . . , pn, . . . , pt) ⊂ (1, . . . , n, . . . , Nt) denote the time levels when the measure-

ments available;
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• (x1, . . . , xj, . . . , xp) ⊂ (1, . . . , n, . . . ,N) denote the sensor locations;

• p is the number of optimal sensors;

• pt is the number of time levels when measurements are available.

Using POD, the sparse measurements at time level pn can be written:

ûpn ≈ epn
K∑

k=1

âpnk φk =
K∑

k=1

âpnk φ̂k = Φ̂K â
pn , (6.8)

where âpnk ) (âpn ∈ ℜK×N) is the POD coefficient while the corresponding φ̂k (Φ̂K ∈ ℜN×K)

is masked POD modes.

The error in the reconstructed solutions can be written:

ξ̂ =‖ ûpn −
K∑

k=1

âpnk φ̂k ‖22 . (6.9)

By differentiating Eq. (6.9) with respect to the temporal coefficient âpnk , one can find how

sensitive the error in solutions is to the change of temporal coefficients. For minimization

of errors in Eq. (6.9), â can be obtained by solving the least squares problem below:

Mâ = f , (6.10)

where M = Φ̂T
k Φ̂k and f = Φ̂T

k Û .

Sensor placement optimization in DOSR

To maximally improve the accuracy of numerical solutions by DA, one has to consider the

problem of where the best locations to put the sensors. For example, given p sensors and

l possible locations, how to select the locations that will determine the POD coefficients

most accurately? Mathematically, one way to solve this issue is to minimize the condition

number of M. Considering Eqs. (6.8) - (6.10), the optimal sensor location problem is
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defined as:

min κ(M)

s.t. Ci,j ∈ 0, 1, j = 1, . . . , l

l∑

j=1

Ci,j = p,

where κ(M) is the condition number of M. By minimizing the condition number κ(M)

[222], this sensor location optimization problem is solved. According to [223], the loca-

tions of the POD spatial modes φ̂m that experience relatively large modal amplitudes (e.g.

locations of maxima/minima values) can be used for sensor placement. Consequently, here

we define the mean of the ensemble {φ̂m}km=1 as φmean (φmean = 1

k

∑k
m=1

φ̂m) and choose

locations where the absolute values are relatively large as sensor locations. These iden-

tified locations will be used for DA procedure demonstrated in the following section. To

summarize, the DOSR method consists of following steps:

(1) Select the training datasets of N snapshots and build data matrix U ;

(2) Compute SVD of U to obtain the POD spacial modes Φ;

(3) Select the number of modes k(k ≪ n) to be employed in the reconstruction;

(4) Design a masked matrix C to obtain a filtered data matrix Û ;

(4) Construct the matrix M = Φ̂T
k Φ̂k and vector f = Φ̂T

k Û ;

(5) Solve the least square problem: Mâ = f for new temporal coefficients â;

(6) Reconstruct the solution field using Û = Φ̂kâ with the new coefficients â and

determined number of modes k;

(7) Compare full data U with approximated solution Û in validation procedure to guar-

antee accuracy of â and Φ̂k;

(8) Select p sensor locations according to the maxima/minima values from the POD

modes Φ̂k.
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6.3.2 DOSR-based spatio-temporal prediction using LSTM and DA

Utilizing DOSR outlined above, the first goal of modelling the spatio-temporal dynamics

without computing the governing equations is achieved, thus reducing computational and

data handling costs. In this work, we further explore a DOSR-based approach combined

with deep learning (LSTM) and data assimilation (DA) to predict dynamic features at future

time instants.

Spatio-temporal prediction using LSTM

In LSTM modelling, the historical temporal coefficients âm(ti) of spatial modes φ̂m are

used to train and test the LSTM model, which is then utilized to predict the temporal be-

haviour in the next few time instants. Subsequently, the snapshots during predicted period

will be constructed using Eq. (6.8). Assume that âm(ti) are calculated from N snapshots

during period [t1, tN ] with time step size ∆t. Set the predicted time period t′ = [tN , tP ].

The DOSR-based LSTM approach is outlined below:

(1) Split temporal coefficients âm(ti) from period [t1, tv] and [tv, tN ] into training and

test data respectively, namely that {âm(t)}tvt=t1 are training data, and {âm(t)}tNt=tv are test

data;

(2) Train the LSTM model with {âm(t)}tvt=t1;

(3) Use the trained LSTM model to predict {âm(t)}tNt=tv and compare them with the true

{âm(t)}tNt=tv from the test data to guarantee the model performance;

(4) Given the validated LSTM model from step (3), use the âm(tN) as input to predict

âm(tN +∆t), which is the temporal coefficients for the next time step;

(5) Compute the predicted solution field using û =
∑k

m=1
âm(tN + ∆t)φ̂m(x), thus

obtaining snapshot at time level tN +∆t;

(6) Use previous predicted âm(tN + ∆t) as input to predict âm(tN + 2∆t) and repeat

step (5) to obtain snapshot at time level tN + 2∆t.

(7) Repeat steps (4)-(5) to compute all predicted snapshots during [tN , tP ].
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Extension of predictive horizon using data assimilation

Previously developed DOSR-based LSTM approach is employed to predict the spatio-

temporal dynamics efficiently. However, the performance of the model decays as the

predictive horizon extends beyond a few time steps, while DA method may be the most

suitable approach to address this issue. It is found that the predicted results (15 steps) re-

main good even without retraining the LSTM after updating the POD, due to the reason

that the variation of POD is small. Thus, the LSTM models have not been retrained. In this

work, we integrate DOSR-based LSTM with DA approach to extend the predictive horizon,

which helps to improve the predictive ability.

In most cases, the difference between the predicted coefficients {âm(t)}tPt=tN and the

true ones is increasing with time. Here, to illustrate the DA procedure, assume that the

observed data at t = tP (true snapshot at t = tP ) is known and a relatively large difference

exists between the predicted snapshot and the true one at time level tP . There’s thus a need

to modify/correct the predicted snapshot at t = tP and update POD modes φ̂m(x) accord-

ing to this corrected snapshot. Subsequently, âm(tP ) are re-calculated, which is used as the

input for prediction of next time step. This updating procedure enables a longer predic-

tive horizon compared to the original t′ mentioned above. This means that, the predictive

horizon is able to be extended to d size of t′ when d times of updating are preformed. In

this work, we use the optimal interpolation (OI) algorithm of DA [224], which is operated

by directly assimilating data into the predicted snapshot given the observed data. Given

the observed data (known snapshot at t = tP ), the observations derive from the sensor lo-

cations identified using DOSR (Section 6.3) provide data to be assimilated in OI analysis.

Finally, to demonstrate the overall integration of DOSR-based POD-LSTM-DA method,

the outline of algorithmic procedure is shown in Fig. 6.2.
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Figure 6.2: Framework of DOSR-LSTM-DA method.
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6.4 Numerical examples

The example used for validation of the new DOSR-LSTM-DA method is the Okushiri

tsunami test case. The event is the Okushiri tsunami in 1993 caused by the Hokkaido

Nansei-Oki earthquake offshore of southwestern Hokkaido Island, Japan. The resulting

tsunami hit a sparsely populated part of the Okushiri Island, Japan with a runup height of

up to 30m. To investigate the danger of such extreme events, the Research Institute for

Electric Power Industry (CRIEPI) in Abiko, Japan constructed a scaled-down laboratory

model of the area around the island [212]. The tsunami problem is simulated using the 3D

unstructured mesh finite element fluid model (Fluidity) [225]. As shown in Fig. 6.3, the

considered domain measures 5.448m × 3.402m with a tsunami wave is enforced on the

left boundary while the remaining boundaries were solid. The simulation period is [0, 70] s,

and a time step size is ∆t = 0.1 s. The snapshots as training data were thus obtained by

running the full model (Fluidity), with an unstructured mesh of 6894 nodes.

6.4.1 DOSR-based reconstruction

In this Hokkaido-Nansei-Oki tsunami example, here we select N = 200 snapshots during

period [10, 30] s from the full model as the training dataset. Each snapshot is a spatial

measurement of the system at a given time ti (i = 1, . . . , 200), where t1 = 10s, t200 = 30s.

Using SVD technique, the POD modes of the dataset reflect its oscillatory dynamics. As

shown in Fig. 6.4, the singular values decay rapidly and most of the spectral energy in

the dataset is captured by the first 30 POD modes. Thus, we determine number of POD

modes k = 30 for reconstruction of the system, which yields a dramatic reduction from the

initial state dimension of n = 6894 spatial grid points. It should be noted that the solution

field (water depth) reconstructed using Eq. (6.8) from the first 30 POD modes successfully

captures nearly 100% of the system’s energy, which is the normalized sum of the singular

values.
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Figure 6.3: The bathymetry for the Hokkaido-Nansei-Oki tsunami example [213].

As mentioned in DOSR procedure (Section 6.3), the locations of the POD spatial modes

that experience relatively large modal amplitudes (e.g. locations of maxima/minima values)

should be used for sensor placement. Consequently, here we calculate the mean of the 30

modal ensemble {φm}30m=1 as φmean = 1

30

∑
30

m=1
φ̂m and choose the locations where the

absolute values are relatively large as sensor locations. These identified locations will be

used for data assimilation (DA) procedure demonstrated in the following section. Fig.

6.5 (b) demonstrates the sensor locations extracted from φmean (Fig. 6.5 (b)). Selecting

the number of sensors p for Hokkaido-Nansei-Oki tsunami example illustrates the ability

of optimized sensing to significantly reduce the number of sensors required for a given

performance.
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Figure 6.4: POD singular values of water depth to construct the reduced space.

Figure 6.5: (a) φmean, mean of the 30 POD modal ensemble {φm}30m=1; (b) Sensor locations

extracted from φmean.

6.4.2 Spatio-temporal prediction using LSTM and DA

Following the reconstruction demonstrated in Section 6.4.1, LSTM modelling is performed

given the calculated temporal coefficients. Here, the temporal coefficients {ak(t)}t200t=t1

are used to train and test the LSTM model, which is then utilized to predict the tempo-

ral coefficients in the next few time instants {am(t)}t200+t
′

t=t1 . Given the historical period

[t1, t200] (t1 = 10s, t200 = 30s), here we set the predicted time period t′ = [t200, t215] =
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Figure 6.6: Comparison of the water depth from the full model with the DOSR-LSTM

using 30 POD modes with a predictive horizon of 1, 5, 13 and 15 time steps.

1.5s (t200 = 30s, t215 = 31.5s). In this case, the coefficients {am(t)}t215t=t200 are pre-

dicted using the trained and tested LSTM models. Subsequently, the 15 predicted snap-

shots during period [t200, t215] ([30, 31.5]s) are constructed using Eq. (6.8). Fig. 6.6 pro-

vides a comparison of the water depth from the full model with the DOSR-LSTM using

30 POD modes with a predictive horizon of 15 time steps. It shows that the DOSR-

LSTM solutions with 30 POD modes are in close agreement with the full state solu-

tions while the predictive accuracy decays with the extending predictive lead-time. The

longer the predictive lead-time, the larger difference exists between the results. To im-
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Figure 6.7: Comparison of water depth between the full model and the DOSR-LSTM-DA

(left and middle column), as well as the differences (right column) after introducing DA

method.

prove the predictive ability, we introduced the DA approach to extend the predictive hori-

zon. Given the observed data from the sensor locations with a predictive horizon of 15,

30, 45 and 60 time steps, namely the known snapshot at time level t = t215 = 31.5s,

t = t230 = 33s, t = t245 = 34.5s, and t = t260 = 36s, we use the optimal in-

terpolation (OI) algorithm of DA [224] to directly assimilating data into the predicted

snapshot at the same time levels. Following each assimilation procedure at time level

t = t215, t230, t245 and t260, coefficients am(t215), am(t230), am(t245), and am(t260) are re-

calculated and used as the new input for prediction of next time steps. Simultaneously,
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Figure 6.8: The RMSE of water depth between the DOSR-LSTM-DA and full model.

POD modes {φk}30k=1
are updated and recalculated base on the the newly modified/corrected

snapshots. This means that d = 4 times of updating procedure enables the predictive hori-

zon extended to d × t′ = 4 × t′ = 4 × 1.5s = 6s (60 time steps), which is 4 times of

the original predictive lead-time t′ = 1.5s. Fig. 6.7 demonstrates the comparison between

the DOSR-LSTM-DA and full modelling results. It is worth noting that results from the

DOSR-LSTM-DA and full model are in very good agreement with each other. As shown in

Fig. 6.7, the differences of the water depth between the DOSR-LSTM-DA and full model

are quite small over the whole domain, which proves the predictive ability improvement of

DOSR-LSTM-DA.

The error analysis of DOSR-LSTM-DA has been further carried out using the root-

mean-square error (RMSE) of solutions (water depth) between the DOSR-LSTM-DA and

full model. The RMSE is calculated for each time step by,

RMSEj =

√∑n
i=1

(Si,jfull − Si,jDOSR)
2

n
, i = 1, 2, ... , n, j = 1, 2, ... , Np, (6.11)

where n = 6894 denotes the number of nodes on the full mesh; Np = 60 is the number

of time step; Si,jfull and Si,jDOSR represent the solution on node i at time step j from the
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original full model and DOSR-LSTM-DA, respectively. Obviously from Fig. 6.8, it can be

seen that the errors gradually increase with the extending predictive horizon, demonstrating

the decay of predictive accuracy during prediction. However, each assimilation produce at

time level t = t215, t230, t245 and t260 (a predictive horizon of 15, 30, 45, and 60 time steps)

significantly reduces the prediction errors, which illustrates the ability of DOSR-LSTM-

DA to significantly improve the model performance.

The DOSR-LSTM-DA algorithm includes both offline and online procedures. The of-

fline CPU cost is defined as the time for pre-computing, that is, the calculation of snapshots

and POD modes and LSTM training. The online CPU cost is the predictive time required

using LSTM and DA. In this study, the simulations were performed on a computer with

24 cores (Intel Xeon(R) CPU@ 2.90GHz) and 16GB RAM. Only one of the cores was

used when running the model. It is worth mentioning that the online CPU cost for run-

ning DOSR-LSTM-DA during one time-step is only 10.8 s, while the full model is 30.8 s.

Although the offline CPU cost of training the LSTM network is somewhat expensive (213

s), it is much less than the simulation time of the full model (1848 s). Results obtained

from this test case show that the novel DOSR-LSTM-DA approach can provide reasonable

accuracy in flood prediction whilst the CPU time is largely reduced.

6.5 Summary

In this work, we addressed the challenging issue of how to extend the predictive horizon of

LSTM-ROM [217] beyond the given period with a good predictive accuracy remained. To

this end, we first employed the dimensionality reduction technique POD for reconstruction

of high-dimensional dynamic systems. The dominant features from a data set over a full

space is efficiently extracted and hence a handful of POD modes is sufficient to describe

the essential dynamics. In particular, we selected optimal point sensor locations for the

reconstruction (DOSR) based on POD modes. Subsequently, we explored the predictive

ability by introducing deep learning (LSTM) and data assimilation (DA) to predict dynamic
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features at future instants. During the DA procedure, POD modes are updated when the

data is assimilated to modelling. This, in turn, takes the advantages of DA technique, with

which the accuracy of predictions can be improved with the extending predictive lead-time.

To the best of our knowledge, this is the first work to introduce both DA and optimal sensor

techniques to LSTM-ROM.

To assess the performance of the integrated DOSR-LSTM-DA framework, we’ve ap-

plied the method to the Okushiri tsunami test case successfully. To estimate the accuracy

of the DOSR-LSTM-DA, a comparison of results obtained from the DOSR-LSTM-DA and

full model has been undertaken. It is found that the DOSR-LSTM solutions with 30 POD

modes are in close agreement with the full state solutions while the predictive accuracy

decays with the extending predictive lead-time. The longer the predictive lead-time, the

larger difference exists between the results. It should be noting that after we introduced

the DA approach, the prediction errors are significantly reduced at time levels when an

assimilation procedure is conducted, which illustrates the ability of DOSR-LSTM-DA to

significantly improve the model performance. By using DOSR-LSTM-DA, the predictive

horizon can be extended by 3 times of the initial horizon. More importantly, the online

CPU cost of using DOSR-LSTM-DA is only 1/3 of the cost required by running the full

model. We conclude that the method presented here improves the performance of LSTM-

ROMs and satisfies the dual demands of required accuracy as well as low computational

cost in predictions in long-term evolution of dynamical systems.

103



Chapter 7

Conclusions and recommendations

7.1 Conclusions

In this thesis, I have developed a 2D control-volume and finite-element (DCV-FEM) flood

model using adaptive unstructured mesh technology. This model has been further devel-

oped by introducing (1) an anisotropic dynamic mesh optimization technique (anisotropic-

DMO); (2) multiple flooding sources (extreme rainfall and sea-level events); and (3) a

unique combination of anisotropic-DMO and high-resolution Digital Terrain Model (DTM)

data. Additionally, an integrated long short-term memory (LSTM) and reduced order model

(ROM) framework has been developed for rapid spatio-temporal flood prediction. Finally,

a unique integrated DOSR-LSTM-DA framework has been developed by introducing both

data-driven optimal sensor techniques (DOSR) and data assimilation (DA) to LSTM-ROM.

In Chapter 3, a 2D DCV-FEM flooding model with the adaptive unstructured mesh

technique has been developed and applied to a flooding event that happened in 2002 in

Glasgow, Scotland, United Kingdom, where the flood is induced by a stream flow from

a culvert at the northeast corner of the domain. A comparison between 2D adaptive and

fixed mesh models as well as 3D model has been undertaken. It has been found that using

the 2D adaptive mesh model, it is able to provide accurate results while the computational

cost is reduced by 20 − 84% in comparison to 2D fixed mesh models. Another advantage

of 2D adaptive unstructured mesh modelling is that urban topography can be accurately

represented when/where needed by increasing the mesh resolution (around the buildings,

for example) dynamically when the flooding water spreads over the urban area. This is the

first time to use the dynamically adaptive mesh technique in flooding modelling and assess
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its performance in a relatively simple flooding event. In the following subsection, more

work on flood modelling development will focus on complex realistic cases where flooding

may occur from more than one source.

Realising the importance of flood coincidence risk assessments, in Chapter 4, we have

further developed the adaptive unstructured mesh flooding model Floodity for the joint ur-

ban flood events caused by multiple sources (extreme rainfall and sea-level events) and suc-

cessfully applied to Greve in Denmark. By introducing the anisotropic-DMO technique, the

features of flooding flows (local flows around the buildings or the wetting and drying front,

for example) are able to be better captured while reducing computational cost without sac-

rificing accuracy of flooding simulations. With a unique combination of anisotropic-DMO

and high-resolution Digital Terrain Model (DTM) data, the complex urban topography can

be accurately represented when/where needed by increasing the mesh resolution (around

the buildings, for example) dynamically when the flooding water spreads over the urban

area. This new Floodity model has been applied to several flooding scenarios that hap-

pened in Greve, Denmark, where the flood is induced by different combinations of extreme

incoming sea levels and rainfall. A comparison between Floodity and MIKE 21 FM results

has been undertaken. It has been found that Floodity is able to provide relatively accurate

results while the computational cost is reduced by 20 - 88% in comparison to fixed mesh

models. To assess uncertainties in model predictions, the sensitivity of flood volumes to

extreme sea levels and rainfalls has been explored. In joint flood events, we found that the

flood volume over the inundated area is more sensitive to sea levels than rainfall. Extreme

sea-level events with the higher peak water levels induce higher peak flood volume while

the impact of rainfall is relatively small. The sensitivity of flood results to the mesh reso-

lution is also investigated. In flood modelling, the blocking effect of buildings on the peak

time of flood volumes can be seen only when using high resolution meshes and Digital

Terrain Model data.

In Chapter 5, a RNN architecture LSTM in combination with POD/ROM has been
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proposed for flood prediction, which simultaneously takes advantage of both LSTM and

ROM. This is the first time that the ROM based LSTM network has been considered in flood

forecasting and used to estimate spatial aggregation of inundations. This novel integrated

LSTM-ROM framework which consists of both predictive and prescriptive analytics leads

to a step change in the speed of forecasting, thus providing effective response management

in emergencies. The performance of the new method has been illustrated using Okushiri

tsunami test cases. To estimate the accuracy of the LSTM-ROM, a comparison of results

obtained from the LSTM-ROM and full model has been undertaken. It is shown that the

accuracy of solutions from the LSTM-ROM is maintained while the CPU cost is reduced

by three orders of magnitude. An error analysis has also been performed for the validation

and accuracy of the LSTM-ROM through RMSE. Comparing LSTM-ROM results with

those from the full model, the LSTM-ROM exhibits a good agreement with the full model.

Subsequently in the prescriptive analytics, the corresponding flood induced conditions have

been accurately provided using the LSTM network. Having the compatibility of LSTM and

ROM, the integrated framework will enable predictive problems to be solved rapidly and

accurately.

In Chapter 6, we addressed the challenging issue of how to extend the predictive horizon

of LSTM-ROM [217] beyond the given period with a good predictive accuracy remained.

To this end, we first employed the dimensionality reduction technique POD for reconstruc-

tion of high-dimensional dynamic systems. The dominant features from a data set over a

full space is efficiently extracted and hence a handful of POD modes is sufficient to de-

scribe the essential dynamics. In particular, we selected optimal point sensor locations for

the reconstruction (DOSR) based on POD modes. Subsequently, we explored the predictive

ability by introducing deep learning (LSTM) and data assimilation (DA) to predict dynamic

features at future instants. During the DA procedure, POD modes are updated when the

data is assimilated to modelling. This, in turn, takes the advantages of DA technique, with

which the accuracy of predictions can be improved with the extending predictive lead-time.
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To assess the performance of the integrated DOSR-LSTM-DA framework, we’ve applied

the method to the Okushiri tsunami test case successfully. To estimate the accuracy of

the DOSR-LSTM-DA, a comparison of results obtained from the DOSR-LSTM-DA and

full model has been undertaken. It is found that the DOSR-LSTM solutions with 30 POD

modes are in close agreement with the full state solutions while the predictive accuracy

decays with the extending predictive lead-time. The longer the predictive lead-time, the

larger difference exists between the results. It should be noting that after we introduced

the DA approach, the prediction errors are significantly reduced at time levels when an

assimilation procedure is conducted, which illustrates the ability of DOSR-LSTM-DA to

significantly improve the model performance. By using DOSR-LSTM-DA, the predictive

horizon can be extended by 3 times of the initial horizon. More importantly, the online

CPU cost of using DOSR-LSTM-DA is only 1/3 of the cost required by running the full

model. We conclude that the method presented here improves the performance of LSTM-

ROMs and satisfies the dual demands of required accuracy as well as low computational

cost in predictions in long-term evolution of dynamic systems.

7.2 Recommendations

7.2.1 Parallelism of anisotropic-DMO

In this thesis, the newly developed 2D DCV-FEM flooding model with the anisotropic-

DMO technique has been validated by two test cases. However, the relatively high CPU

time required is an issue which should be further improved by using parallel computing.

Highly accurate terrain data in the form of Digital Terrain Models (DTMs) are often

needed in 2D flood inundation modelling. For example, a typical DTM data at 1m hori-

zontal resolution contains detailed terrain features such as individual buildings, streets or

open channels. Researchers have to simulate flooding at this scale [159]. Unfortunately,

the computational cost of simulations at 1m horizontal resolution is very high. For exam-
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ple, when a 1m mesh resolution corresponds to 106 elements per km2 and a time step of

0.1s or less is required, this means that nearly 1012 operations per km2 is needed and the

computation becomes even more complex when the study area is 100km2 or more. The

running time required for simulations may far exceed the period of the flood events. Al-

though the anisotropic-DMO technique performs well in meshing and largely reduces the

meshes involved in computation at each time step, we expect our model generate results in

a matter of minutes. This requires parallel computing or parallelism to address the running

time challenge.

There are two fundamental types of parallel computing architectures [159]:

(1) Shared memory systems: where calculations are performed in parallel using work-

stations with multiple processor cores on a single motherboard or with numerous graphical

processing units (GPUs). Implementation of shared memory systems is usually aided by

the OpenMP directives [226]. Moreover, the recent advances in GPUs provide a promising

cost efficient way for implementing over a hundred processors in a shared memory envi-

ronment [227]. However, this approach is presently limited a specialized coding language

and the maximum amount of memory available on a single motherboard is also limited.

(2) Distributed memory systems: where multiple servers are networked to enable fast

communication between servers or nodes. Distributed memory systems are limited by

the number of available nodes and the efficiency of communication between nodes, but

the potential memory limitations are avoided because each additional node includes addi-

tional memory capacity. In the future work, we can focus on explicit, distributed-memory

parallelism where the task decomposition, mapping of tasks to processors and the commu-

nication structure are determined by the programmer [228]. Implementation of distributed

memory parallelism is aided by the Message Passing Interface (MPI), with which a set of

processes of data exchange is executed. Each process refers to a task assigned to a pro-

cessor, namely one process is assigned per processor, resulting in a significant reduction in

running time compared to sequential computing.
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7.2.2 Applicability and robustness of ROM

In this PhD thesis, the reduced order modelling techniques are applied for flood modelling.

However, this does not imply that the techniques developed in this thesis are restricted to

the domain of flood modelling only. The LSTM-ROM techniques can be applied to reduce

models in other application domains such as aerodynamics, ocean modelling, air pollution,

and large-scale mechanical applications. In this thesis we’ve developed non-intrusive re-

duced order models (NIROMs) where inputs (e.g. input wave conditions) vary in time. To

generate a robust ROM for different parameters/inputs to represent the physical dynamics

of PDEs with the varying model parameters, in the future, it will be beneficial to have a

more precise detail about the validity range of the physical parameters (e.g. precipitations,

weather, viscosity, manning coefficients) and their individual or combined contribution to

the stability and validity of the ROM. For example, it will be important to know whether the

ROM will still be a valid model if the parameters such as manning coefficients or viscosity

have specified minimum and maximum values. Since the change of spatial distribution

is dependent on changes of the physical parameters, in nonlinear PDEs, the POD basis

functions may not suitable to approximate the new spatial distribution any more. If this

limitation can be addressed by determining the variations of physical parameter, it will

thus help engineers to decide whether a new ROM has to be built or whether the exist-

ing models are already adequate. Moreover, since non-intrusive reduced order modelling

based on snapshot method has been applied here, the effectiveness of POD-ROM depends

on the accuracy and smoothness of the data collected from the measurements or simulations

(snapshots). The POD-ROM approach may thus not work well if the studied problem ex-

hibits discontinuous dynamics, since it is difficult to obtain a POD basis numerically from

the data with discontinuous dynamics [96]. To tackle this issue, a intrusive ROM approach

is suggested since the complex fluid flow dynamics is considered in the physical PDEs.

Further work will be the development of an intrusive ROM in combination with machine

learning techniques.
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7.2.3 Combination of ROM with LSTM Autoencoders

In recent years, the abundance of data have facilitated the construction of data-driven mod-

els of systems lacking high-fidelity governing laws. Data-driven methods have become an

increasingly popular approach to tackle the challenge of data abundance. These methods

provide solutions which are learned from measurements or numerical solutions [30, 229,

230]. Reduced order models (ROMs) have thus been constructed to capture the large-scale

system behaviour while retaining physical fidelity. More recently, machine learning strate-

gies have been applied to aid in modelling low-dimensional dynamics of complex systems,

such as identification for truncated generalized POD coordinates [202, 231, 232]. The

normal approaches for the treatment of nonlinearities include ROMs based on discrete em-

pirical interpolation (DEIM) [233], or Gauss-Newton with approximated tensors (GNAT)

[195]. Gonzalez and Balajewicz (2018) [234] have proposed a modular model consisting of

a deep convolutional autoencoder and a modified LSTM network to model the evolution of

low-dimensional data representations while avoiding costly state reconstructions at every

step. The model performance have been validated via three examples for fluid systems with

large parameter-variations and the stability in long-term prediction have also been proved.

In another paper, Nitish Srivastava et al. (2015) [235] describe the LSTM Autoencoder as

an extension or application of the Encoder-Decoder LSTM. Their model uses an encoder

LSTM to map an input sequence into a fixed length representation. This representation is

decoded using single or multiple decoder LSTMs to perform different tasks, such as recon-

structing the input sequence, or predicting the future sequence. The best performing model

was the Composite Model that combined an autoencoder and a future predictor. The model

was able to persistently generate motion well beyond the time scales it was trained for.

In this work, the ROM in combination with LSTM is constructed based on POD, where

the physical variables are represented by a linear combination of POD modes. Despite

the successes of LSTM-ROM developed here, there exists issues of instability for com-

plex nonlinear flow simulations, particularly when dealing with high-Reynolds number
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fluid flows. POD-ROMs are biased towards large energy-producing scales and are not en-

dowed with the small energy-dissipating scales that maybe dynamically significant [234].

To address these issues, in future work, instead of POD, autoencoder techniques can be

introduced to construct ROMs for nonlinear fluid flow problems. We can develop a new

LSTM Autoencoders ROM model using a completely data-driven approach to identify and

evolve a low-dimensional representation of a spatio-temporal system. More efficient filter-

ing strategies would be included in decoder designs and the design of the LSTM network

should be changeable according to spatial parameter variations. LSTM Autoencoders are

used to learn the dynamics of low-dimensional representation on its underlying nonlinear

manifold, offering specific advantages over POD-ROMs.

111



Bibliography

[1] K. Smith, Environmental hazards: assessing risk and reducing disaster. Routledge,

2003.

[2] J. Ernst, B. J. Dewals, S. Detrembleur, P. Archambeau, S. Erpicum, and M. Pirotton,

“Micro-scale flood risk analysis based on detailed 2D hydraulic modelling and high

resolution geographic data,” Natural Hazards, vol. 55, no. 2, pp. 181–209, 2010.

[3] P. Sleigh, P. Gaskell, M. Berzins, and N. Wright, “An unstructured finite-volume

algorithm for predicting flow in rivers and estuaries,” Computers & Fluids, vol. 27,

no. 4, pp. 479–508, 1998.

[4] B. Rogers, M. Fujihara, and A. G. Borthwick, “Adaptive Q-tree godunov-type

scheme for shallow water equations,” International Journal for Numerical Meth-

ods in Fluids, vol. 35, no. 3, pp. 247–280, 2001.

[5] Q Liang, A. Borthwick, and G Stelling, “Simulation of dam-and dyke-break hy-

drodynamics on dynamically adaptive quadtree grids,” International journal for

numerical methods in fluids, vol. 46, no. 2, pp. 127–162, 2004.
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[35] I. Babuška and M. Suri, “The p and h-p versions of the finite element method, basic

principles and properties,” SIAM review, vol. 36, no. 4, pp. 578–632, 1994.

[36] A. Ern, S. Piperno, and K. Djadel, “A well-balanced Runge–Kutta discontinuous

Galerkin method for the shallow-water equations with flooding and drying,” Inter-

national journal for numerical methods in fluids, vol. 58, no. 1, pp. 1–25, 2008.

[37] P. Tassi, O. Bokhove, and C. Vionnet, “Space discontinuous Galerkin method for

shallow water flowskinetic and HLLC flux, and potential vorticity generation,” Ad-

vances in water resources, vol. 30, no. 4, pp. 998–1015, 2007.

[38] M. Piggott, P. Farrell, C. Wilson, G. Gorman, and C. Pain, “Anisotropic mesh adap-

tivity for multi-scale ocean modelling,” Philosophical Transactions of the Royal

Society of London A: Mathematical, Physical and Engineering Sciences, vol. 367,

no. 1907, pp. 4591–4611, 2009.

[39] R. B. Simpson, “Anisotropic mesh transformations and optimal error control,” Ap-

plied Numerical Mathematics, vol. 14, no. 1-3, pp. 183–198, 1994.

[40] M. Piggott, C. Pain, G. Gorman, P. Power, and A. Goddard, “H, r, and hr adaptivity

with applications in numerical ocean modelling,” Ocean modelling, vol. 10, no.

1-2, pp. 95–113, 2005.

[41] P. Power, M. Piggott, F Fang, G. Gorman, C. Pain, D. Marshall, A. Goddard, and

I. Navon, “Adjoint goal-based error norms for adaptive mesh ocean modelling,”

Ocean modelling, vol. 15, no. 1-2, pp. 3–38, 2006.

[42] P. Farrell and J. Maddison, “Conservative interpolation between volume meshes

by local Galerkin projection,” Computer Methods in Applied Mechanics and Engi-

neering, vol. 200, no. 1-4, pp. 89–100, 2011.

[43] H. Hiester, M. Piggott, and P. Allison, “The impact of mesh adaptivity on the grav-

ity current front speed in a two-dimensional lock-exchange,” Ocean Modelling, vol.

38, no. 1, pp. 1–21, 2011.

[44] D. R. Davies, C. R. Wilson, and S. C. Kramer, “Fluidity: a fully unstructured

anisotropic adaptive mesh computational modeling framework for geodynamics,”

Geochemistry, Geophysics, Geosystems, vol. 12, no. 6, 2011.

[45] M. Reichstein, G. Camps-Valls, B. Stevens, M. Jung, J. Denzler, N. Carvalhais,

et al., “Deep learning and process understanding for data-driven earth system sci-

ence,” Nature, vol. 566, no. 7743, p. 195, 2019.

115



[46] M. H. Hassoun et al., Fundamentals of artificial neural networks. MIT press, 1995.

[47] K. Khan and A. Sahai, “A comparison of BA, GA, PSO, BP and LM for train-

ing feed forward neural networks in e-learning context,” International Journal of

Intelligent Systems and Applications, vol. 4, no. 7, p. 23, 2012.

[48] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521, no. 7553,

p. 436, 2015.

[49] A Krizhevsky, I Sutskever, and G Hinton, “//Proc. Advances in Neural Inform.,”

Proces. Systems. 2012. V. 25., vol. 25, p. 1090, 2012.

[50] C. Farabet, C. Couprie, L. Najman, and Y. LeCun, “Learning hierarchical features

for scene labeling,” IEEE transactions on pattern analysis and machine intelli-

gence, vol. 35, no. 8, pp. 1915–1929, 2012.

[51] J. J. Tompson, A. Jain, Y. LeCun, and C. Bregler, “Joint training of a convolutional

network and a graphical model for human pose estimation,” in Advances in neural

information processing systems, 2014, pp. 1799–1807.

[52] T. Mikolov, A. Deoras, D. Povey, L. Burget, and J. Černockỳ, “Strategies for train-
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