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Abstract 

Recent years have offered a wealth of genetic association data, with a concurrent explosion in 

the availability of methods for exploring causal effects through randomly allocated genetic 

variants that serve as proxies for traits of interest. This thesis investigates the state of this field 

within the remit of cardiovascular disease. Following an introduction into cardiovascular 

disease and Mendelian randomization (MR), the research focuses on dietary, social and 

pharmacological exposures as demonstrative examples for highlighting the breadth of 

techniques that can be harnessed towards understanding underlying mechanisms and 

therapeutic opportunities. Both two-sample and one-sample MR analyses are performed, using 

genetic summary data from large-scale consortia and the UK Biobank. Sample sizes for 

individual analyses typically exceed tens of thousands of participants. A diverse array of MR 

methods are employed, appropriate to the setting and objective of each analysis. Considering 

systemic iron status as a diet-related trait, genetic instruments are identified with consequent 

MR analyses supporting a protective effect on risk of cardiovascular outcomes related to 

atherosclerosis but a detrimental effect on outcomes related to thrombosis arising from stasis of 

blood. Phenome-wide association study further highlights effects of systemic iron status outside 

the remit of cardiovascular disease. In the investigation of social factors, MR mediation analysis 

techniques are applied to identify the pathways by which education affects cardiovascular 

disease risk, with multivariable MR further used to disentangle the direct effects of education 

and intelligence respectively. In the investigation of pharmacological exposures, genetic 

instruments for antihypertensive drugs are identified and validated by comparing against 

corresponding estimates from clinical trials. Phenome-wide association study is used to identify 

possible side-effects and repurposing opportunities, with a potential detrimental effect of 

calcium channel blockers identified on risk of diverticulosis. The final section provides an 

overview of the current state of applied MR, as well as future perspectives.
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Structure of the thesis 

This thesis explores the application of Mendelian randomization (MR) techniques for identifying 

cardiovascular disease (CVD) mechanisms and therapeutic opportunities. It is divided into three 

parts. The first is made up of Chapter 1, and provides an introductory overview of CVD, MR and 

application of MR for studying CVD. Having highlighted diet, education and blood pressure as 

important cardiovascular risk factors that can be studied to demonstrate the breadth of 

scenarios within which MR can be applied, the second part of the thesis consists of Chapters 2-4, 

which in turn investigate previously unexplored aspects of these. Chapter 2 looks at the effect of 

systemic iron status on CVD subtypes and health outcomes more generally, Chapter 3 

investigates mediators of the effect of educational attainment on CVD risk and effects not 

mediated via cognition, and Chapter 4 explores the efficacy, side-effects and repurposing 

opportunities for common antihypertensive drugs. The final part of the thesis, Chapter 5, looks 

at the recent advances and available strategies for applying MR to infer causal effects within the 

field of cardiovascular medicine, finishing to consider future perspective. 
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Chapter 1: Introduction 

All of the work presented in this chapter is my own, unless otherwise indicated in the text 
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1.1 Cardiovascular disease 

Cardiovascular disease (CVD) is the leading cause of death worldwide, with an age-standardized 

mortality rate of 278 per 100,000 population per year (1). Furthermore, there is relatively little 

variation in its incidence across countries of different economic status, although case fatalities 

do vary, with more favourable outcomes in higher income countries (2). The term CVD 

encompasses a range of conditions, of which coronary artery disease (CAD) and stroke are the 

most common, with a global prevalence of approximately 150 million and 80 million 

respectively (3), and together accounting for 85% of CVD deaths (1). CAD describes 

atherosclerotic disease of the coronary arteries, resulting in disruption of the cardiac blood 

supply with associated ischaemia and increased risk of thrombosis. In contrast, stroke is defined 

as a neurological deficit of the central nervous system caused by an acute vascular injury (4). 

Myocardial infarction (MI) refers to death of heart tissue due to an inadequate blood supply, 

and represents the most severe consequence of CAD. Although CAD is the most common cause 

of MI, the specific mechanisms by which this can occur are heterogeneous, and MI can be sub-

classified accordingly. Type 1 MI relates to the rupture or erosion of an atherosclerotic plaque in 

the coronary arteries and consequent occlusion of adequate blood flow to the heart tissue (5). In 

contrast, type 2 MI relates to a mismatch between myocardial oxygen demand and blood supply 

that is not related to an acute thrombotic event, such as can occur due to coronary artery 

atherosclerosis, spasm, dissection, or due to systemic causes such as hypotension of hypoxia (5). 

Stroke itself is also a highly heterogeneous disease, with its two major subtypes being ischaemic 

stroke (IS) and intracerebral haemorrhage (ICH), making up 85% and 15% of the total stroke 

burden respectively in European-ancestry populations (6). IS relates to insufficient blood 

supply to the brain, and ICH describes a bleed within the brain parenchyma (4). IS and ICH may 

be further subdivided in relation to the underlying causative mechanism. The Causative 

Classification of Stroke system uses an algorithm to categorise IS subtypes based on the most 

likely underlying mechanism of occlusion to cerebral blood flow: large artery stroke (LAS), 

cardioembolic stroke (CES), small vessel stroke (SVS), and other uncommon cause or 

undetermined cause (7). This approach uses examination and investigation results from 

individual patients (7), and has moderate to strong correlation of allocated phenotypes as 

compared to the less widely used Trial of Org 10172 in Acute Stroke Treatment system (8), 

which employs clinician judgement to assign aetiology (9). Identifying the underlying 

pathophysiologic aetiology of IS can be challenging in scenarios where multiple mechanisms 

may be at play. For example, although atrial fibrillation (AF) is the major risk factor for CES (10, 

11), patients with AF also tend to have other cerebrovascular risk factors and may also be 

susceptible to IS from LAS or SVS (12, 13). Thus, while aetiological classification systems aim to 
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offer insight into the most likely cause of IS, they cannot be perfectly accurate (14). While 

symptom based classification systems for IS are also available, they still offer less information 

on the underlying mechanism (15). ICH subtypes also differ in their pathophysiology – most 

cases are attributable to hypertension, with cerebral amyloid angiopathy accounting for 

approximately 10% of cases as the next most common cause (16). Similar to IS, classification 

systems for ICH are either based on an anatomical or mechanistic subdivision, and have 

excellent inter- and intra-rater reliability within specialist centres (17). Anatomical ICH 

subtypes are defined by the location of haemorrhage; lobar, deep, cerebellar or brainstem, with 

the latter three categories combined as ‘non-lobar’ in some systems (17). Mechanistic ICH 

classification is typically related in some form to the ‘SMASH-U’ system that subtypes based on 

most likely cause of ICH: structural lesion, medication, amyloid angiopathy, systemic disease, 

hypertension, or undetermined aetiology (18). In general terms, lobar ICH is more commonly 

associated with cerebral amyloid angiopathy than non-lobar ICH (19), while non-lobar ICH is 

more likely to be related to hypertension than lobar ICH (20). 

The Emerging Risk Factors Collaboration and other groups have performed meta-analyses of 

observational studies to offer insight into the association of individual risk factors with CVD, 

identifying blood pressure (21), dyslipidaemia (22), blood glucose levels (23), cigarette smoking 

(24), and obesity to all show significant positive associations (25). There is also mediation 

between risk factors, with changes in body mass index (BMI) affecting blood pressure, for 

example (26). Risk factor and susceptibility profiles also vary for different CVD subtypes and 

across distinct population groups (27-30). For example, observational research has found 

smoking to be more strongly associated with LAS than other IS subtypes, and hypertension 

similarly more commonly seen in SVS (27, 30). For ICH, alcohol use and hypertension have been 

identified as prominent risk factors (31), with obesity possibly being protective (32).  

The most comprehensive observational studies to investigate the association of modifiable 

traits with CVD risk have been performed by the Global Burden of Disease Study (33, 34). These 

efforts have consistently identified metabolic, social and dietary factors to explain the majority 

of cardiovascular risk (34). However, potential limitations to these studies include the 

amalgamation of data from diverse populations, with distinct methods used in different 

geographical locations to obtain, record and analyse data (34). To complement such efforts and 

overcome these limitations, a recent multinational, prospective cohort analysis consisting of 

155,722 individuals in the Prospective Urban Rural Epidemiology Study explored the 

association between modifiable risk factors and incident CVD events (35). This effort provided 

evidence to support that 70% of CVD events can be attributed to variation in modifiable risk 

factors (35). In particular, metabolic traits represented over 40% of risk, with hypertension 
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making up over 20% of this (35). Of the considered socioeconomic and psychosocial factors, low 

educational attainment was the greatest risk factor for CVD, contributing over 10% of total risk 

(35). Finally, of the behavioural risk factors studied, diet explained approximately 5% of the 

CVD risk (35). Indeed, these findings are consistent with previous Global Burden of Disease 

Study efforts in identifying the large contributing effects of these traits on CVD risk worldwide. 

The Comparative Risk Assessment Study has also made progress towards improving 

comparability across analyses of cardiovascular risk factors (36, 37), further supporting that 

traditional CVD risk factors such as hypertension are among the leading causes of global 

mortality and morbidity (36-38). Consistent with the Prospective Urban Rural Epidemiology 

Study, the Comparative Risk Assessment Study found that 80% of CAD death and 70% of stroke 

deaths were attributable to the joint effect of a select number of risk factors, including 

hypertension, raised serum cholesterol, cigarette smoking, obesity, alcohol consumption, low 

fruit and vegetable intake and physical inactivity (39). Of relevance, when considering the 

various risk factors separately, rather than in a joint model, the sum of their effects came to 

226% for CAD and 165% for stroke (rather than 80% and 70% respectively as in the joint 

model), highlighting that many of these risk factors interact, overlap and cluster within the 

same individuals. Following on from this work, research priorities have been put forward 

towards improving understanding of the determinants of CVD risk, and in particular highlighted 

that methods less vulnerable to the confounding, reverse causation and measurement error 

biases encountered in traditional epidemiological research are required (40). The next sections 

will discuss how the emergence of genetic data may facilitate such an objective.   

 

1.2 Genetic data 

With the growing availability of genetic data, it is becoming increasingly feasible to identify the 

genetic correlates of phenotypic traits. Figure 1.1 shows the number of scientific papers listed 

on the PubMed database when searching for ‘genome-wide association study’ as a general 

search term (accessed 14 May 2019), with just 18 in 2000, to 52 in 2003 when the human 

genome was first sequenced, and increasing to 3310 in 2018. The first GWAS was entered into 

the curated GWAS Catalog database in 2005, with the total number of entered research papers 

exceeding 3600 in 2018 (41).  
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Figure 1.1. The number of scientific papers, listed by year, on the PubMed database when searching 

for ‘genome-wide association study’ as a general search term 

 

In turn, this has been associated with opportunities for identifying disease mechanisms and 

therapeutic targets, as well for individualised risk stratification and personalised medicine (41). 

Relating to CVD, there have been large-scale GWAS meta-analyses for abdominal aortic 

aneurysm (42), AF (43), CAD (44), carotid plaque (45), IS and its subtypes (46), ICH and its 

subtypes (29), and peripheral arterial disease (47). Details relating to these studies are 

provided in Table 1.1. While there have been a number of different GWASs investigating each of 

these traits, a recent study for each outcome is listed for demonstrative purposes. While such 

work has clearly highlighted the role of genetic factors in predisposing to CVD risk, the findings 

have also been used to study the interplay between genetic and environmental determinants, 

with these each shown to cumulatively affect outcomes (48). Genetic studies investigating CVD 

subtypes have also supported aetiological overlap. For example, there is a strong genetic 

association between AF and CES (11), which is consistent with AF being a major predisposing 

factor for CES. Similarly, there is substantial genetic overlap between ICH and SVS (29), which 

both relate to pathology of the cerebral small vessels, or LAS and CAD (49), which both relate to 

atherosclerosis.   
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Table 1.1. Published genome-wide association studies exploring cardiovascular disease outcomes. 

Trait Subtype Ethnicity Cases Controls 
Summary data 

availability 
Reference 

Abdominal 

aortic aneurysm 
- 

European-

ancestry 
10,204 107,766 

Available on 

request 
(42) 

Atrial fibrillation - 

Mixed (88% 

European- 

ancestry) 

65,446 522,744 
Publicly 

available 
(43) 

Carotid plaque - 
European-

ancestry 
21,540 26,894 

Available on 

request 
(45) 

Coronary artery 

disease 
- 

Mixed (76% 

European-

ancestry) 

60,801 123,504 
Publicly 

available 
(44) 

Ischaemic stroke 

Any 
Mixed (86% 

European- 

ancestry) 

67,162 

454,450 
Publicly 

available 

(46) 

 

Cardioembolic 9,006 

Large artery 6,688 

Small vessel 11,710 

Intracerebral 

haemorrhage 

Any Mixed (73% 

European-

ancestry) 

3,226 

3,742 
Publicly 

available 
(29) Lobar 1,148 

Non-lobar 2,075 

Peripheral 

artery disease 
- 

Mixed (91% 

European-

ancestry) 

36,424 601,044 
Available on 

request 
(47) 

 

Table 1.1 highlights that the majority of GWASs exploring CVD outcomes have been conducted 

in populations either entirely or predominantly of European ancestry, thus in turn having 

implications regarding the generalisability of these findings to other ethnic groups. This is more 

reflective of the distribution and allocation of resources available for such study, rather than the 

representation of this European-ancestry group within the global population. Also of interest is 

the marked variation in the sizes of the respective studies, ranging from the 3,226 cases 

included in the analysis of ICH (29), up to 67,162 cases included in the study of IS (46), more than 

a 20-fold difference. Neither can this discrepancy be attributed to differences in the relative 

incidence or prevalence of these outcomes, as ICH and IS are estimated to make up 

approximately 15% and 85% respectively of all stroke cases in European populations (6). 

Rather, it is again a function of differences in resource allocation and prioritisation of research 

objectives. Importantly for work that requires summary genetic association estimates related to 

these studies, their data have been made publicly available in the majority of cases, and are 
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otherwise obtainable on request from the relevant study authors or consortia in the remaining 

cases (Table 1.1). 

 

1.3 Mendelian randomization 

While observational research is useful for identifying associations between environmental or 

physiological traits and disease outcomes, such study is intrinsically limited in its ability to infer 

causal effects because of the possibility that any observed associations arise due to confounding 

or reverse causation (50). Instrumental variable analysis can overcome such limitations (51), 

and more specifically, where randomly allocated genetic variants are used as instruments for an 

environmental or physiological exposure (52), this Mendelian randomization (MR) principle can 

be used to estimate the effect of an intervention (53). It is specifically because the genetic 

variants used as instruments are randomly allocated at conception that they are independent of 

environmental factors and also precede the outcome of interest, thus allowing the MR 

framework to overcome confounding and reverse causation biases respectively. Furthermore, 

the same approach can be used to investigate the direction of causality (54), and can also 

accommodate negative and positive control analyses (55). With the availability of genetic 

association studies that investigate particular CVD subtypes, it is also possible to perform MR 

analysis that explore distinctions in underlying CVD mechanisms. 

MR requires that the instrument is associated with the exposure of interest (relevance 

assumption), but not directly with the outcome of interest independently of the exposure 

(exclusion-restriction), nor any confounders of the relationship between the exposure and the 

outcome (independence assumption) (52) (Figure 1.2). With the widespread availability of 

genetic association data, MR studies have shown an exponential and persistent increase in 

number over recent years. Figure 1.3 shows the number of MR-related scientific papers 

identified on PubMed by searching ‘Mendelian randomization’ as a general search term 

(accessed 14 May 2019), growing to 350 in 2018 from zero in 2002.  
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Figure 1.2. Instrumental variable assumptions of Mendelian randomization depicted in a directed 

acyclic graph. The solid lines represent causal associations, whereas the dashed lines represent 

violations of the underlying assumptions. 

 

 

Figure 1.3. The number of Mendelian randomization scientific papers, listed by year, identified on 

PubMed by searching ‘Mendelian randomization’ as a general search term. 
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1.4 Mendelian randomization approaches 

Where genetic association estimates for both the exposure and the outcome are obtained from 

the same population, the effect of the exposure on the outcome can be estimated using the ratio 

method, by regressing the outcome on the instrument and dividing the consequent coefficient 

from that obtained by regressing the exposure on the instrument (56). Incidentally, the same 

estimate can also be obtained using the two-stage least squares method, where the exposure is 

first regressed on the instrument, and the outcome is then regressed on the fitted values from 

this first-stage regression (56). These methods can be applied to consider multiple genetic 

instruments separately, or also after creating a genetic risk score, which has the advantage of 

minimising bias from use of many weak instruments (57).  

The availability of summary genetic data has further made it possible to perform MR analysis 

using genetic association estimates for the exposure and outcome of interest arriving from 

separate studies, thus also increasing the maximum available sample size and consequent 

statistical power. However, to avoid the introduction of bias when using such two-sample 

approaches, it is important that consistency is maintained in the populations used to obtain 

genetic association estimates for the exposure and the outcome, including demographics, co-

morbidities, lifestyle factors and ethnicity, as these approaches assume homogenous effects and 

genetic associations with the exposure and outcome in both populations (58, 59). A range of MR 

methods are now available for both the one-sample and two-sample summary data settings, 

each with distinct properties and characteristics within different scenarios (58, 60, 61).  

As detailed in Figure 1.2, central to MR analysis is that the instruments are associated with the 

outcome only through the exposure, and not by some pleiotropic pathway. Violation of this 

exclusion-restriction assumption can potentially result in biased MR estimates (62). MR 

exposures for consideration can be broadly categorized as either ‘distal’ or ‘proximal’ in respect 

to their relation with the genetic variant. Distal exposures arise from the culmination of many 

inter-related processes that are mechanistically far downstream of the genetic variant used as 

an instrument, with examples including educational attainment (63, 64), BMI index or age at 

menarche (65, 66). In contrast, ‘proximal’ exposures are closely related to the genetic variant in 

terms of mechanism, and may for example relate to effects on the structure or function of 

proteins. Such clinically relevant examples include HMGCR inhibition (statin treatment) (67), or 

beta-blockade (beta-blocker treatment) for example. Instruments for distal exposures can be 

selected as related genetic variants from throughout the genome (63, 65). Such instruments 

typically also associate to the outcome of interest in MR through pleiotropic mechanisms, thus 

generating heterogeneity in their consequent MR estimates (68). In contrast, instruments for 

proximal exposures can be selected as variants at the corresponding gene locus (cis-acting) 
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(69). Such mechanistic proximity to the relevant gene increases assurance in the validity of the 

instrument, although the potential for bias from pleiotropic effects remains.  

A further distinction is between MR analyses considering a change in exposure through a 

particular pathway, and those considering a change in exposure through any mechanism. An 

example highlighting this in low-density liproprotein cholesterol (LDL-C) lowering through 

HMGCR inhibition (a particular pathway), in contrast to LDL-C lowering by any means. For the 

former, genetic variants specifically related to the HMGCR locus and LDL-C levels (thus proxying 

the effect of HMGCR inhibition) would be preferred, while in the latter scenario, variants from 

throughout the genome that are associated with LDL-C levels may be employed as instruments. 

The proportion of exposure variance explained by the genetic instruments is a key factor in 

determining the consequent statistical power of MR analysis (70, 71). A commonly employed 

strategy to thus increase statistical power is the pooling of MR estimates generated from 

different genetic instruments. Such pooling of MR estimates can be achieved using a number of 

methods (72), with inverse-variance weighted (IVW) meta-analysis commonly implemented in 

applied studies where the ratio method is used to calculate MR estimates (73). With the ratio 

method, the MR estimate is derived using the Wald ratio (74), with standard errors typically 

estimated using either the first order or second order expansion of the Taylor series (75), 

although modified second order weights have also been suggested (75). However, in the context 

of selecting such instruments from a specific gene locus, the proximity of the genetic variants 

with each other makes it likely that they will suffer some degree of linkage disequilibrium (LD) 

and will thus be correlated. Pooling of MR estimates from correlated instruments without 

accounting for this will thus cause shrinkage of the resultant MR estimate standard errors and 

an inflated risk of false positive results. This issue may be overcome using alternative summary 

data methods, such as by combining estimates from multiple instruments using a generalized 

linear regression approach weighted for the correlation between instruments (57), or through 

use of principal component analysis to construct instruments (76). 

Where plausible genetic variants that explain a sufficiently large proportion of the variance in 

the exposure of interest are available for use as instruments, MR analyses can have sufficient 

statistical power with fewer instruments that have known biological functions (69). In 

contrasting scenarios where the exposure of interest is a trait distal to the genetic variant that 

represents the culmination of various genetic and environmental factors, many genetic variants 

with less clearly defined biological functions may be incorporated as instruments. Examples of 

such MR analyses include an investigation into the causal effect of age at menarche on lung 

function (77), or the effect of time spent in education on coronary heart disease risk (64). 

Indeed, for such distal traits, individual genetic variants may only explain a small proportion of 
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the variation on the exposure of interest (78, 79), and thus using many genetic variants as 

instruments serves to increase the statistical power of the MR study (70, 71).  

Other considerations for identifying instruments include the P-value thresholds for association 

with the exposure. No consensus criteria have yet been established for this, with individual 

authors also varying in their approaches for different circumstances (80-82). Generally 

speaking, arbitrary criteria that attempt to minimise bias while optimising statistical power may 

be selected, with appropriate sensitivity analyses performed to investigate the effects of altering 

these thresholds. As further discussed below, the F-statistic can also be used as a measure of 

instrument strength, and is related but preferable to P-value thresholds for this purpose  (83). 

Additionally, information on secondary traits can be incorporated to improve the validity and 

robustness of genetic instruments for MR, thus also reducing bias in consequent analyses. This 

relates to the exclusion-restriction assumption of MR, where instruments do not relate to 

confounders of the exposure-outcome relationship, and the relevance assumption of MR, where 

the instruments must be related to the exposure of interest. A practical example demonstrating 

this could be the identification of genetic variants for the diuretic antihypertensive drug 

furosemide, for which genetic variants at the corresponding SLC12A1 gene locus would also be 

expected to relate to lower SBP and higher urinary sodium, given the known mechanism and 

clinical effects of this agent. 

 

1.5 Pleiotropy in Mendelian randomization 

The availability of multiple instruments in MR analysis allows for statistical investigation of 

possible pleiotropy (84), where instruments may be associated with the outcome through some 

pathway at least partly independent of the exposure (85). Where the instruments are all valid, 

little heterogeneity would be expected in their individual MR estimates. The presence and 

magnitude of any heterogeneity may thus be used to estimate the presence and magnitude of 

instrument pleiotropy that may be biasing the MR estimate (68). In cases where there is 

significant heterogeneity in the individual MR estimates generated by different instruments but 

no MR evidence of directional pleiotropy, random-effects IVW meta-analysis of MR estimates is 

preferred for generating an overall MR estimate (72). This is in contrast to the fixed-effects 

model that would be favoured if there was no convincing evidence of heterogeneity (which is 

used as a proxy for pleiotropy) in the MR estimates of different instruments (72). 

Numerous pleiotropy robust MR methods have now been described, with the number of 

available methods continuously growing (61). One popular method is MR-Egger, which is an 

adaptation of the Egger regression used to assess for publication bias following meta-analysis 
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(86). Under the assumption that instrument strength is independent of any direct effect on the 

outcome (InSIDE), the MR-Egger technique regresses each instrument-outcome association by 

the corresponding instrument-exposure association, weighted for the precision of the 

instrument-outcome association (86). A non-zero intercept provides evidence of any directional 

pleiotropy that may be biasing the MR estimate, and thus allows MR-Egger to serve as a test for 

this. However, this approach is particularly sensitive to violations of the InSIDE assumption, and 

can produce misleading results in scenarios where it does not hold (87). A similar regression-

based approach is applied in the MR-pleiotropy residual sum and outlier (PRESSO) method, 

which regresses the variant-outcome estimates on the variant-exposure estimates, with the 

gradient of the regression line representing the MR estimate (88). Furthermore, MR-PRESSO is 

able to identify outlier variants based on their observed distance from the regression line, as 

compared to their expected distance based on the assumption of no horizontal pleiotropy, and 

can thus generate outlier-corrected MR estimates that exclude such variants (88).  

Where there are known biological pathways through which an instrument may be affecting an 

outcome independently of the exposure of interest, a technique called multivariable MR 

(MVMR) may be used to generate MR estimates that are independent of these pleiotropic 

pathways (89), with a regression based MVMR method applicable for the two-sample summary 

data setting (86). This approach may be used for example, to generate MR estimates for the 

causal effect of age at menarche on adult BMI, independent of the genetic association of the 

instruments with childhood BMI (65). Furthermore, MVMR may also be used to dissect causal 

pathways, such as in the investigation of the role of BMI in mediating the effect of age at 

menarche on cancer risk (90). An extension of this approach now also incorporates elements of 

the MR-Egger technique to investigate if there is any residual directional pleiotropy after 

adjusting for possible mediators or pleiotropic pathways (91).  

The IVW meta-analysis MR, MR-Egger, MR-PRESSO and MVMR techniques all rely on the InSIDE 

assumption and there is no widely applicable method to test whether this is being violated (92). 

Fortunately, other statistical approaches are available that make orthogonal assumptions on the 

inclusion of any pleiotropic instruments (84). The median estimator calculates the mid-point of 

the distribution of MR estimates, and can be weighted for their precision, allowing it to offer 

consistent estimates when more than half of the estimates for the analysis come from valid 

instruments (93). Another MR sensitivity analysis is the mode-based estimator, which centres 

its overall MR estimate on the greatest number of individual instruments giving similar MR 

estimates, thus providing robust results when these instruments are valid (94). The mode-

based estimator can be similarly weighted for the precision of the MR estimates (94). Table 1.2 

summarises the most commonly applied MR methods within the two-sample summary data 
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setting. Other statistical approaches to deal with pleiotropy are also available (61), as are 

Bayesian models that average the MR estimates from various analyses with differing underlying 

assumptions on the nature of pleiotropy, to reduce bias at the cost of precision (95). 

Recent developments have enabled MR to also be used for performing mediation analysis, both 

for the purpose of disentangling causal mechanisms, as well as for estimating mediation effects. 

The most commonly applied methods for this are MVMR and network MR (90, 96). In MVMR, 

the variant-outcome association estimates are regressed against the variant-exposure estimates 

adjusted for the variant-mediator estimates. Attenuation of the direct estimates obtained in 

MVMR as compared to the total exposure-outcome effect estimate generated in conventional 

(univariable) MR methods would provide an indication of the degree of mediation through the 

considered mediator (90). For network MR, the exposure-mediator MR estimate is multiplied by 

the mediator-outcome estimate adjusted for the exposure using MVMR, to estimate the effect of 

the exposure on the outcome that is mediated through the mediator (96). Standard errors can 

be estimated using bootstrapping or the propagation of error method. In all MVMR, superior 

power is generally achieved when instruments for both the exposure and any considered 

mediators are included in the same model. 

Table 1.2. Commonly applied two-sample Mendelian randomization approaches. 

Method Pleiotropy assumption Strengths Weaknesses Reference 

Inverse-

weighted 

All variants are valid 

instruments 

Tends to offer precise 

estimates 
Least robust to pleiotropy (73) 

Egger 

Instrument strength is 

independent of any 

direct effect on the 

outcome 

Can still be reliable when all 

variants are invalid 

instruments, offers a test for 

bias related to  pleiotropy 

Sensitive to outliers, often 

imprecise 
(86) 

PRESSO 
Only outlier variants 

are pleiotropic 

Tends to offer precise 

estimates, can identify 

outlier variants 

High false positive rate 

with a large proportion of 

invalid instruments 

(88) 

Multivariable 

Genetic association 

estimates for all 

pleiotropic pathways 

are available 

Can estimate both direct 

and indirect effects 

Susceptible to bias related 

to measurement error, can 

be unstable with highly 

correlated traits 

(89) 

Median 

Majority of the 

variants are valid 

instruments 

Robust to pleiotropic 

outliers 

Sensitive to removal of 

genetic variants 
(93) 

Mode 

Variants generating 

the most frequently 

observed estimate are 

valid 

Robust to pleiotropic 

outliers 

Generally conservative, 

sensitive to pre-defined 

modelling parameters 

(94) 
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1.6 Other sources of bias in Mendelian randomization 

When translating the results of MR analyses to clinical practice, it is also important to 

appreciate the various other implicit assumptions made by the technique. The MR effect 

estimate represents the cumulative lifetime effect of genetic variants serving as an instrument 

for the exposure (52). Bias may therefore be introduced where developmental compensation 

buffers the effect of genetic variants in a process called canalization, thus attenuating MR causal 

effect estimates towards the null (52). Under the assumption of monotonicity, MR calculates an 

average causal effect estimate for the population considered (i.e. the local-average treatment 

effect), and there may be subgroups that deviate from this (97). This assumption may be 

notably violated in MR analyses that consider a binary exposure (such as the presence of a 

disease phenotype), as in such scenarios it is unusual for any instrument to perfectly predict the 

presence of the trait (98). Furthermore, MR assumes that the effect of the exposure on the 

outcome is linear and homogenous across participants (homogeneity assumption) (96). The 

linearity assumption may be particularly susceptible to violation in the scenarios considering 

metabolites or other small molecules as exposure in MR (99), and the homogeneity assumption 

may be compromised when there are relevant distinctions in the populations used to obtain 

genetic association estimates for the exposure and outcome, for example. 

 

As discussed above, the MR technique is a form of instrumental variable analysis and is 

therefore subject to bias from the inclusion of weak instruments, where the genetic variants do 

not relate to the exposure under consideration with sufficient strength (100). The F-statistic can 

be used to quantify the level of such bias for each instrument (100), with a value of 10 

previously shown to correspond to an approximate 10% relative bias (83). Approximations for 

the F-statistic are also available to facilitate the practical measurement of instrument strength 

in applied MR analyses (66, 101). Any weak instrument bias of the MR estimates will be towards 

the observational association between the exposure and the outcome for MR analyses that 

derive all genetic association estimates from a single population (i.e. one-sample MR) (102). For 

such one-sample MR, weak instrument bias can be reduced by combining multiple genetic 

instruments into a single genetic risk score that has greater overall strength as an instrument 

(60). In the case of two-sample ratio method MR analysis, where the genetic association 

estimates for the exposure and outcome are derived from separate populations, any bias from 

the inclusion of weak instrument would push the overall MR estimate towards the null 

hypothesis (102). However, for two-sample MR analyses where there is overlap in the 

populations used to derive instrument-exposure and instrument-outcome genetic association 
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estimates, any bias would be towards the observational estimate, and is a linear function of the 

degree of overlap between the samples for continuous outcomes, whereas for binary outcomes 

such bias only arises if there is sample overlap with the exposure population for outcome cases 

(102). 

 

As the genetic association estimates used to fit models in two-sample MR are associated with 

measurement error, the method used for weighting the contribution of individual instruments 

in pooled analyses can have implications for the overall accuracy (75). To this end, modified 

second order (Taylor series) weighting has been shown to be preferable for estimating 

heterogeneity and causal effects (75). For the MR-Egger technique in particular, measurement 

error can result in regression dilution bias (103), and the I2 heterogeneity statistic for 

instrument-exposure estimates can be used to explore the implications of this interpreting MR-

Egger estimates, with caution recommended for I2 estimates less than 90% (103). 

 

The use of instrument-exposure genetic association estimates from discovery analyses can 

introduce Winner’s curse bias to inflate estimates and bias two-sample MR analysis towards the 

null hypothesis (104). In scenarios where the instruments for an MR analysis are valid, but their 

genetic association estimates with the exposure are biased or unknown, an unweighted allele 

score of instrument-outcome genetic association estimates may be used to investigate for any 

causal effect of an exposure on an outcome, but not measure its magnitude (60). Such an 

unweighted allele score can therefore be used as a sensitivity analysis in MR analyses where 

instrument-exposure estimates may be biased because of Winner’s curse (66). 

 

In the field of statistics and causal inference, colliders are variables that are themselves affected 

by two or more variables (105). In the context of MR, any conditioning on such colliders can also 

result in bias (Figure 1.4) (105, 106). This includes any adjustment or stratification undertaken 

in obtaining genetic association estimates for MR analysis or when selecting populations in 

which to perform MR analysis (Figure 1.4).  
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Figure 1.4. Examples of collider bias. Part A: Conditioning on the exposure (a collider), such as by 

restricting the Mendelian randomization analysis to a subpopulation with a certain level of the 

exposure, will result in collider bias by introducing an association between the instrument and 

confounders of the exposure and outcome. Part B: Conditioning on disease incidence (a collider) 

when performing Mendelian randomization to study disease progression will introduce collider 

bias if the exposure under consideration also affects disease incidence. 

 

Finally, where the exposure under investigation in MR analyses affects survival, and particularly 

survival long enough to develop the outcome of study, survivor bias can also be a relevant 

consideration (107, 108). Where the exposure has the same direction of effect on both the 

outcome and survival, bias is towards the null hypothesis (no effect of the exposure on the 

outcome), with greater bias seen in studies that consider older populations (108). Simulation 

analyses have suggested that such bias might be in the order of approximately 5% when 

considering the effect of BMI on Parkinson’s disease risk, for example (109). 
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1.7 Mendelian randomization and cardiovascular disease 

Given the burden of CVD discussed above, and the applicability and advantages of its 

investigation using MR, it follows that this approach has been used extensively to study 

underlying disease mechanisms and therapeutic opportunities. In order to formally explore the 

application of MR in the context of CVD, PubMed was searched up to 19 May 2019 using the 

following search terms: (((Mendelian randomization) OR (Mendelian randomisation))) AND 

((Cardiovascular disease) OR (Coronary heart disease) OR (Coronary artery disease) OR 

(Stroke)). No restrictions were applied for language or article type. Rather than a formal 

systematic review of the literature, this semi-systematic search was merely performed to 

provide a broad overview of the application of MR to the field of CVD. A total of 695 search 

results were produced, for which all titles and abstracts were read. Of these, 260 were 

Comments, Commentaries, Editorials, Letters or Review articles, 40 were Methodological 

papers, 18 were not MR studies, 2 were exactly duplicated entries and 2 were Corrections 

(Figure 1.5). Of the 373 remaining original research articles, 258 were considering 

cardiovascular and thrombotic diseases as the outcome of interest. 

 

Figure 1.5. A flow chart depicting the results of the PubMed search of Mendelian randomization 

studies investigating cardiovascular disease. The boxes to the right side relate to those studies that 

were excluded. 
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The 258 articles broadly fell into five categories (presented in tabular format in Appendix 1):  

1. Circulating factors (156 articles, Appendix Table 1),  

2. Physiological traits and diseases (56 articles, Appendix Table 2),  

3. Social and behavioural traits (19 articles, Appendix Table 3), 

4. Cellular characteristics (14 articles, Appendix Table 4), and 

5. Existing drugs (13 articles, Appendix Table 5). 

The results of the literature review highlight the wide variety of exposures that have been 

studied using MR within the context of CVD. While the majority of studies investigate circulating 

factors, such as metabolites, chemical messengers, enzymes and hormones (156/258; 60%), 

fewer investigated social and behavioural traits (19/258; 7%) or existing drugs (13/258; 5%). 

The number of MR studies in each of the 5 categories published over time are depicted in Figure 

1.6.  

 

Figure 1.6. The number of Mendelian randomization studies falling within different exposure 

categories published by year. 
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While MR studies considering circulating factors and physiological traits and diseases have been 

published since 2005 and 2008 respectively, those considering social and behavioural traits, 

existing drug targets and cellular characteristics have only become prominent more recently 

(Figure 1.6). While this is partly reflective of the growing availability of genetic association data 

and instruments for these different exposure categories with time, it may also relate to how 

interest in various different types of exposure trait has shifted. To highlight the transition, while 

94% (16/17) of the published MR studies considering CVD outcomes in 2012 related to 

circulating factors as exposures, this proportion fell to 52% (24/46) in 2018. 

There are also exposures that are relatively over-represented in the MR literature. One example 

of this is serum urate, a product of purine metabolism, for which the literature review identified 

9 MR studies where this was considered as the exposure of interest (110-118), thus 

representing 6% (9/156) of all MR studies within the category of circulating factors, and 3% 

(9/258) of all included studies. However, these studies did vary in the populations and specific 

disease outcomes studied, thus offering complementary insight. At the other end of the 

spectrum, there was also a relative sparsity of MR investigation into some of the modifiable risk 

factors that have previously been highlighted to have most influence on CVD risk (34, 35). While 

dietary factors have been shown to be an important determinants for CVD (34, 35), with MR 

now extensively used to study the effect of variations in circulating levels of nutrients 

(Appendix Table 1), no MR studies had previously investigated the effect of systemic iron status 

on cardiovascular outcomes. Of relevance, iron status is highly variable, having a coefficient of 

variation greater than 30% in both men and women (119). Furthermore, iron deficiency affects 

approximately a fifth of the world’s population, representing a significant health burden in its 

own right (120). Most importantly, iron status can be effectively modified through both dietary 

and pharmacological interventions (121). 

Of the behavioural and social risk factors, educational attainment has been shown to have the 

greatest effect on CVD risk (35), and indeed MR evidence supports this finding (64). However, 

the mediators of this relationship are not known and can now also be explored using mediation 

analysis methods within the MR framework (90, 96). Similarly, it is not known whether 

education itself is affecting cardiovascular risk or whether it is the closely related measure of 

intelligence that is causing any benefit, something that can now be disentangled using the 

MVMR framework. Distinguishing the mediators and distinct effects of education and 

intelligence would have important public health implications, as this would identify clear 

targets for public health and educational policy, as well as resource allocation. In addition, 

where educational attainment is not amenable to modification but the mediators of education’s 
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protective effect on CVD are known, these can be targeted to minimise any societal consequence 

of educational inequality. 

Finally, hypertension has been identified as the risk factor having the single greatest effect on 

CVD risk (35), and furthermore there are numerous pharmacological treatments that have been 

shown to be efficacious for reducing blood pressure and consequently CVD risk (122). However, 

less is known about possible side-effects and repurposing potential for these medications, 

particularly as trials are often limited by their time and resource constraints to focus on 

demonstrating efficacy in high risk populations. To this end, the MR approach can now be 

applied to instrument drug effects (123), as has already previously been done for lipid-lowering 

drugs (Appendix Table 5) (124). However, such an approach had not previously been adopted 

to antihypertensive medications.  

 

1.8 Scope, overall aims and objectives of the thesis 

The literature review above highlighted relative gaps in the application of MR for specific 

purposes when studying mechanisms and therapeutic targets for CVD. Specifically, within the 

domains of dietary, social and pharmacological exposures, there was a relative sparsity in the 

use of MR to explore the implications of variation in systemic iron status on cardiovascular 

health, mediators of the effect of education, and effects and repurposing potential of 

antihypertensive drugs, respectively. The aim of this thesis was therefore to integrate 

developments in MR methodology with the availability of large-scale genetic data to explore 

these three areas further: 

1. Cardiovascular and general health consequences of variation in iron status  

2. Factors mediating the effect of educational attainment on CVD subtypes 

3. Antihypertensive drug efficacy, side-effects and repurposing potential 

The diversity of these exposures importantly offers opportunity for understanding and applying 

the MR framework in distinct contexts, while specifically considering effects on CVD as the 

outcome (Figure 1.7). This was expected to highlight the full potential of the MR approach, as 

well as how its application and overall strategy may need to be adapted in different settings. 
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Figure 1.7. Structure of the thesis, in terms of the exposures explored in order to appreciate the full 

breadth of contexts to which MR can be applied. These make up Chapters 2-4 respectively, while 

Chapter 5 offers an overview of the areas covered and possible future directions. 

 

The data sources used to investigate such a range of exposures and indeed CVD outcomes were 

similarly broad, and are summarised below in Table 1.3. Data analysis for this work was 

performed using R statistical software (version 3.4.3, The R Foundation for Statistical 

Computing). For two-sample MR analyses using the IVW, MR-Egger and weighted median 

approaches, the ‘TwoSampleMR’ package was applied (125). For MR-PRESSO, the ‘MRPRESSO’ 

package was used (88). For analysis of associations with multiple phenotypes in cohort data 

(also called ‘phenome-wide association analysis’), the ‘phecode’ package was used (126). All 

other analyses were performed using raw code specifically generated for that purpose. 

Harmonization of genetic data from distinct sources were performed by aligning effect alleles, 

with no exclusions performed for palindromic variants. UK Biobank data were accessed through 

application 236. Any GWAS summary data originating from the UK Biobank that was used in 

this work were retrieved from analyses performed in previous studies, and have been cited 

appropriately. Individual participant data from the UK Biobank was used for phenome-wide 

association analysis. As detailed in the individual chapters, I performed this myself for the 

analysis of iron status (Chapter 2). For the phenome-wide association analysis of 

antihypertensive drug targets, this was performed by Fotios Koskeridis (University of Ioannina, 

Greece) for data relating to the UK Biobank cohort, with that in the Vanderbilt University 

Biobank performed by Lan Jiang, Qiping Feng, Wei-Qi Wei and Joshua C. Denny (Vanderbilt 

University Medical Center, United States of America).  

Mendelian randomization investigating cardiovascular disease

Dietary exposure

Iron status

Social exposure

Mediators of 
education

Pharmacological 
exposure

Antihypertensive 
drugs
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1.9 Ethical approval 

Ethical approval and participant consent for use of all data in this work had been previously 

obtained in their respective primary studies, and therefore was not required to be sought again 

here. The primary studies from which data were obtained have been cited in the Methods 

sections for the Chapters where they are introduced.
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Table 1.3. Data sources used to obtain genetic association estimates for performing the various 

Mendelian randomization analyses in the thesis. 

Chapter Trait Population ethnicity Sample size Reference 

2 Serum iron biomarkers European 48,972 (127) 

2 Coronary artery disease Multi-ethnic 
60,801 cases and 

123,504 controls 
(44) 

2 Stroke Multi-ethnic 
67,162 cases and 

454,450 controls 
(46) 

2 Venous thromboembolism European 
of 7,507 cases and 

52,632 controls 
(128) 

2 
Carotid intima media 

thickness 
European 71,128 (45) 

2 Carotid plaque European 
21,540 cases and 

26,894 controls 
(45) 

2 Multiple White British 424,439 (129) 

3 Education European 1,131,881 (130) 

3 Cognition European 257,841 (130) 

3 Coronary artery disease Multi-ethnic 
60,801 cases and 

123,504 controls 
(44) 

3 Stroke Multi-ethnic 
67,162 cases and 

454,450 controls 
(46) 

3 Body mass index European 681,275 (131) 

3 Systolic blood pressure White British 318,417 (63) 

3 Smoking White British 462,690 (132) 

4 Systolic blood pressure European 757,601 (133) 

4 Coronary artery disease Multi-ethnic 
60,801 cases and 

123,504 controls 
(44) 

4 Stroke Multi-ethnic 
67,162 cases and 

454,450 controls 
(46) 

4 Multiple – UK Biobank White British 424,439 (129) 

4 
Multiple – Vanderbilt 

University Biobank 
European 45,517 (126) 
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2.1 Introduction 

Iron is involved in a number of fundamental biological processes, including red blood cell 

production and metabolism (1). Systemic iron status can vary considerably in individuals, with 

this having associated clinical implications (2, 3). Relative iron deficiency can be caused by an 

inadequate diet, abnormal gastrointestinal absorption, and increased requirements or losses 

(4). This can in turn result in iron deficiency anaemia, which currently affects approximately 1.2 

billion people worldwide and causes 35 million years lived with disability per annum (5). In 

comparison, iron overload is most commonly related to medical treatments such as blood 

transfusion for severe anaemia, thalassemia, or haemochromatosis (6). The ability to modify 

systemic iron status in both the healthy population and in those with abnormally low or high 

levels makes understanding the effects of fluctuations in iron status an important research 

pursuit.   

Thrombosis is the common underlying aetiology for many forms of cardiovascular disease, 

including coronary artery disease (CAD), ischemic stroke (IS) and venous thromboembolism 

(VTE), and also represents the primary cause of mortality and disability worldwide (7-10). Iron 

status has been implicated in thrombosis, and specifically in the formation of blood clots 

mediated by endothelial oxidative stress and increased blood viscosity (11, 12). However, the 

available evidence investigating the association between iron status and risk of thrombotic 

diseases is mixed. Supporting a harmful effect of higher iron levels, a lower risk of heart disease 

was observed in premenopausal women as compared to men and postmenopausal women, 

which was attributed to iron and blood loss during menstrual bleeding (13). Observational 

study has also positively associated higher iron stores with risk factors for cardiovascular 

disease, including type 2 diabetes mellitus (14). Mutations that cause hereditary 

haemochromatosis have been related to increased risk of cardiovascular disease (CVD) (15). 

However, this contradicts the findings of a meta-analysis of observational studies that supports 

a protective effect of iron status in CAD (16). Additionally, some observational studies have 

linked lower iron status to an increased risk of stroke (17-19), while others find an opposite 

relationship (19-21), or no association (22-24). In regard to atherosclerosis and VTE, these 

disease processes have been associated with both iron deficiency and iron overload (11, 25-30).  

Research investigating the observed associations of iron status may be biased by unmeasured 

or unknown environmental confounding factors, or by reverse causation where the outcomes 

being studied themselves affect iron status. By utilising genetic variants related to systemic iron 

status for the study of its effects, these limitations can be overcome because their random 

distribution during meiosis limits confounding from environmental factors and minimises 

reverse causation bias (31, 32). Such a Mendelian randomization (MR) approach has already 
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been applied to investigate the effect of iron status on risk of Parkinson’s disease (33). In the 

same way that traditional observational studies explore the association between a measured 

exposure and an outcome, MR considers the link between a genetic variant that is related to the 

exposure of interest, and the outcome (31). Importantly, this allows MR to draw causal 

inferences on the nature of these relationships.  

The MR principle can be similarly applied a range of outcome traits. When agnostically 

investigating traits across the human phenome, the term MR-phenome-wide association study 

(MR-PheWAS) can be used to describe the approach (34). Such a strategy allows for the rapid 

study of any potential clinical implications related to varying an exposure (for example, 

systemic iron status), and offers a means to inform the direction of future research (35). 

The genetic instrumental variables used to proxy the exposure of interest in an MR study should 

be associated with that exposure, which is systemic iron status in this current work. There are a 

number of known biomarkers of iron status that provide a quantifiable measure of systemic 

iron levels, including serum iron, transferrin, transferrin saturation and ferritin (36). Genetic 

instrumental variables that proxy systemic iron status would be expected to have concordant 

associations with all of these markers in a pattern reflecting an overall association with 

systemic iron status. Specifically, increasing iron status would be related to increasing serum 

iron, transferrin saturation, and ferritin and decreasing transferrin levels (36). Genetic 

instrumental variables used in MR to investigate the effect of systemic iron status on a 

phenotypic outcome of interest should also only relate to that outcome through effects on the 

exposure, and not by some other pleiotropic pathway. Such effects of the variants on the 

outcome that are independent of the exposure are described as pleiotropy, and represent 

violations of a requisite assumption of MR, potentially biasing the consequent estimates. 

Genome-wide association studies (GWASs) on a range of cardiovascular and thrombotic 

diseases have been performed, thus providing genetic association estimates for consequent MR 

analyses. This current work considers the effect of systemic iron status on CAD, IS and its 

subtypes, carotid plaque and atherosclerosis, and VTE. In this context, CAD relates to 

atherosclerotic disease of the coronary arteries, resulting in disruption of the cardiac blood 

supply, with associated ischaemia and increased risk of thrombosis. In contrast, IS is defined as 

a neurological deficit of the central nervous system caused by ischaemia (37), and may be 

further categorised by the underlying aetiology - large artery stroke (LAS), cardioembolic stroke 

(CES), and small vessel stroke (SVS) (38). Carotid artery intima-media thickness (cIMT) and 

carotid plaque are measures of carotid artery narrowing, with cIMT associated with carotid 

artery thickening following shear stress, and carotid plaque more representing inflammatory 

atherosclerotic changes in the vessel wall (39-41). In addition, MR-PheWAS of genetically 
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determined iron status was performed using data from the UK Biobank to measure genetic 

associations with a broad range of health outcomes. In view of the established role of iron in 

pivotal physiological processes (3, 42), and the potential for therapeutic manipulation of 

systemic levels to optimise health outcomes, the purpose of these analyses was to decipher the 

effect of varying iron status on cardiovascular and thrombotic disease, as well its wider 

implications across the human phenome.   
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2.2 Methods 

Genetic association estimates 

Single-nucleotide polymorphism (SNP)-iron status biomarker association estimates 

Higher systemic iron status is associated with higher serum iron, ferritin and transferrin 

saturation, and lower transferrin (36). Therefore, genetic instrumental variables for systemic 

iron status were selected as SNPs that had genome-wide significant associations (P<5x10-8) 

with increased serum iron, ferritin and transferrin saturation, and decreased transferrin levels, 

thus proxying increased systemic iron status (43). A GWAS performed by the Genetics of Iron 

Status (GIS) Consortium aggregated data from eleven discovery cohorts and eight replication 

cohorts (Table 2.1) to obtain association estimates between SNPs and biomarkers of iron status 

for a total of 48,972 European subjects, adjusting for age and principal component scores (2). 

The GIS Consortium study identified 12 SNPs across 11 loci that were associated with any of 

these four biomarkers of systemic iron status at genome-wide significance (Table 2.2) (2). Of 

these 12 SNPs, only 3 had genome-wide significant associations with all four biomarkers in a 

pattern consistent with an increase in overall iron status, specifically increasing serum iron, 

transferrin saturation and ferritin, but decreasing transferrin. These SNPs were rs1800562 and 

rs1799945 in the hemochromatosis (HFE) gene, and rs855791 in the transmembrane protease, 

serine 6 (TMPRSS6) gene (2). These three SNPs offered viable instruments for systemic iron 

status, and were taken forward to MR analysis. There was low linkage disequilibrium (LD) 

correlation between the two SNPs (rs1800562 and rs1799945) in the HFE gene (LD r2<0.01) 

(2), consistent with there being negligible correlation between them (44).  

Considering the biological effects of the HFE and TMPRSS6 proteins to justify their relation to 

iron status, HFE is a membrane protein that modulates iron absorption by competitively 

inhibiting the TRF1 tranferrin receptor (45). When saturation of transferrin and by relation, 

systemic iron status, is high, the HFE protein is able to activate a transferrin receptor 2 (TFR2) 

protein complex to enhance expression of hepcidin, an iron transporter regulator (46). Hepcidin 

in turn limits production of the iron export protein ferroportin in enterocytes and macrophages, 

thus reducing uptake of iron through the hepatic portal system (47, 48). In this way, hepcidin 

reduces iron absorption. Through a contrasting mechanism, the transmembrane serine protease 

TMPRSS6 inhibits hepcidin production when systemic iron levels are depleted, to consequently 

increase uptake (49). 

The first-stage regression (F) statistic was calculated for each variant as a measure of its strength 

as an instrument, using the formula F = (R2)/((1-R2)/(N-2)), with R2 being the proportion of the 

iron status biomarker variance explained by the variant and N the total sample size (44).  
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Table 2.1. Cohort details for the studies contributing to the Genetics of Iron Status Consortium genome-wide 

association study. PMID: PubMed identifier; SD: standard deviation. 

Cohort Study 
Discovery/ 

Replication 

References 

(PMID) 
Sample size Sex 

Mean age 

+/- SD 

(years) 

Covariates 

Australia-Adult 
QIMR Berghofer 

Adult 
Discovery 

19820699; 

21151130; 

20802479 

3432 MALE 47.5 +/- 12.3 

Age, 5 PCs 
5716 FEMALE 46.0 +/- 12.8 

Australia-Adolescent 
QIMR Berghofer 

Adolescent 
Discovery 17539372 

1230 MALE 14.6 +/- 2.0 
Age, 5 PCs 

1314 FEMALE 14.9 +/- 2.3 

Estonia (original) 
Estonian 

Genome Project 
Discovery 24518929 

440 MALE 37.3 +/- 15.4 
Age, sex, 5 PCs 

453 FEMALE 37.5 +/- 15.7 

Val Borbera 
Val Borbera 

Study 
Discovery 19847309 

733 MALE 54.4 +/- 18.4 
Age, 5 PCs 

926 FEMALE 54.8 +/- 18.7 

NBS 
Nikmegen 

Biomedial Study 
Discovery 

16254196; 

18794855 

889 MALE 66.3 +/- 7.1 
 

902 FEMALE 56.6 +/- 10.8 

Cambridge 

UK Blood 

Services (UKBS) 

Common 

Controls panel 

Discovery 17554300 

1198 MALE 45.1 +/- 11.9 

 
1221 FEMALE 42.1 +/- 12.7 

Micros/EURAC Micros/EURAC Discovery 17550581 
528 MALE 45.5 +/- 15.8 

 
690 FEMALE 46.0 +/- 16.7 

ERF/Rotterdam ERF/Rotterdam Discovery 
15054401; 

16877869 

342 MALE 54.6 +/- 14.1 
Age 

529 FEMALE 52.8 +/- 15.1 

KORA F3 

Kooperative 

Gesundheitsfor 

schung in der 

Region Augsburg 

Discovery 
16032513; 

16032514 

809 MALE 63.0 +/- 10.1 

Age 
825 FEMALE 62.1 +/- 10.1 

KORA F4 

Kooperative 

Gesundheitsfor 

schung in der 

Region Augsburg 

Discovery 
16032513; 

16032514 

882 MALE 61.2 +/- 8.9 

Age 
927 FEMALE 60.6 +/- 8.8 

BHS 
Busselton Health 

Study 
Discovery 19643935 

397 MALE 54.0 +/- 15.4 
 

480 FEMALE 55.5 +/- 14.9 

Estonia (replication) 
Estonian 

Genome Project 
Replication 24518929 

547 MALE 54.4 +/- 16.1 
Age, sex, 5 PCs 

470 FEMALE 53.4 +/- 15.9 

InCHIANTI InCHIANTI study Replication 19880490 
536 MALE 67.1 +/- 15.3 

Age, sex, centre 
670 FEMALE 69.1 +/- 15.6 

SardiNIA 
SardiNIA study 

on aging 
Replication 16934002 

2051 MALE 43.7 +- 18.1 
Age, age-squared, sex 

2643 FEMALE 43.1 +/- 17.3 

CoLAUS 
Cohorte 

Lausanne 
Replication 18366642 

2550 MALE 52.9 +/- 10.8 Age, sex, first 5 

ancestry PCs 2869 FEMALE 52.9 +/- 10.8 

PREVEND 

Prevention of 

Renal and 

Vascular 

Endstage 

Disease 

Replication  

1875 MALE 50.9 +/- 12.8 

Age, sex, first 5 PCs 
1769 FEMALE 48.2 +/- 12.0 

FENLAND Fenland Study Replication 21248185 
615 MALE 44.5 +/- 7.4 

Age, sex, 4 PCs 
787 FEMALE 45.4 +/- 7.2 

INTERACT (cases) InterAct (cases) Replication 21717116 
2087 MALE 54.7 +/- 8.0 

Age, sex, centre, 5 PCs 
2251 FEMALE 55.6 +/- 8.3 

INTERACT (subcohort) 
InterAct 

(controls) 
Replication 21717116 

1816 MALE 52.2 +/- 9.2 
Age, sex, centre, 5 PCs 

3140 FEMALE 51.7 +/- 9.6 
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Table 2.2. Genetic variants associated with iron status biomarkers in the Genetics of Iron Status Consortium genome-wide association study. The effect estimates (beta) 

are provided in standard deviation units. A1: effect allele; A1 Freq: effect allele frequency; SE: standard error; * denotes SNPs used in the Mendelian randomization 

analysis. 

 Iron Transferrin Transferring Saturation Log10 Ferritin 

SNP Gene A1 A1 Freq Beta SE P Beta SE P Beta SE P Beta SE P 

rs744653 
WDR75–

SLC40A1 
T 0.854 0.004 0.010 0.702 0.068 0.010 1.35E−11 −0.028 0.011 0.008 −0.089 0.010 8.37E−19 

rs8177240 TF T 0.669 −0.066 0.007 6.65E−20 −0.380 0.007 8.43E−610 0.100 0.008 7.24E−38 0.021 0.007 0.004 

rs9990333 TFRC T 0.460 0.017 0.007 0.014 −0.051 0.007 1.95E−13 0.039 0.007 7.28E−8 0.001 0.007 0.878 

rs1800562* 
HFE 

(C282Y) 
A 0.067 0.328 0.016 2.72E−97 −0.479 0.016 8.90E−196 0.577 0.016 2.19E−270 0.204 0.016 1.54E−38 

rs1799945* HFE (H63D) C 0.850 −0.189 0.010 1.10E−81 0.114 0.010 9.36E−30 −0.231 0.010 5.13E−109 −0.065 0.010 1.71E−10 

rs7385804 TFR2 A 0.621 0.064 0.007 1.36E−18 −0.003 0.007 0.728 0.054 0.008 6.07E−12 0.015 0.007 0.039 

rs4921915 NAT2 A 0.782 0.004 0.009 0.633 0.079 0.009 7.05E−19 −0.026 0.009 0.004 0.001 0.009 0.886 

rs651007 ABO T 0.202 −0.004 0.009 0.611 −0.001 0.009 0.916 −0.006 0.009 0.498 −0.050 0.009 1.31E−8 

rs6486121 ARNTL T 0.631 −0.009 0.007 0.202 −0.046 0.007 3.89E−10 0.015 0.008 0.048 0.006 0.007 0.424 

rs174577 FADS2 A 0.330 0.001 0.007 0.878 0.062 0.007 2.28E−17 −0.025 0.008 0.002 −0.012 0.007 0.098 

rs411988 TEX14 A 0.564 −0.002 0.007 0.770 0.014 0.007 0.052 −0.012 0.007 0.115 −0.044 0.007 1.59E−10 

rs855791* 
TMPRSS6 

(V736A) 
A 0.446 −0.181 0.007 1.32E−139 0.044 0.007 1.98E10−9 −0.190 0.008 6.41E−137 −0.055 0.007 1.38E−14 
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Coronary artery disease genetic association estimates 

Publicly available summary data from the CARDIoGRAMplusC4D 1000 Genomes GWAS 

(CARDIoGRAMplusC4D 1000G) and CARDIoGRAMplusC4D Metabochip were used to derive 

SNP-CAD genetic association estimates (50, 51). Specifically, CARDIoGRAMplusC4D 1000G 

included 60,801 CAD cases and 123,504 controls, with adjustment made for population 

stratification using the genomic control method (51). Cases and controls were of European 

(approximately 75%), East and South Asian, Hispanic and African American ancestry (51). The 

definition for CAD varied between studies, typically including individuals with a documented 

history of acute coronary syndrome, coronary artery bypass grafting, percutaneous coronary 

revascularization, coronary stenosis greater than 50% in at least one coronary vessel, or angina 

pectoris (51). The CARDIoGRAMplusC4D Metabochip study meta-analysed data on 63,746 CAD 

cases and 130,681 controls, which were genotyped using either the Metabochip array or GWAS 

data imputed using HapMap (50). CARDIoGRAMplusC4D Metabochip participants were of either 

European (approximately 95%) or South Asian ancestry (50). The CAD cases were diagnosed 

using criteria similar to those as for CARDIoGRAMplusC4D 1000G, with corrections made for 

age, sex and population stratification in the association analysis (50). Overall SNP-CAD 

association estimates were obtained by meta-analysing results from CARDIoGRAMplusC4D 

1000G and CARDIoGRAMplusC4D Metabochip summary genetic association data after 

accounting for participant overlap between the studies, which consisted of 34,997 cases and 

49,512 controls (52), using a ‘decoupling’ approach that transforms the covariance structure of 

the data from the studies so that consequent meta-analysis is able to assume independence 

(52). 

 

Stroke genetic association estimates 

Genetic association estimates for stroke were obtained from a GWAS meta-analysis performed 

by the MEGASTROKE Consortium that combined data from 67,162 stroke cases and 454,450 

controls. Participants were of European (approximately 87%), East, South and mixed Asian, 

African, and Latin American ancestry. Considering IS subtypes, there were 9,006 CES cases, 

6,688 LAS cases, and 11,710 SVS cases (53). All studies included in the meta-analysis adjusted 

for age and sex as covariates, and stroke was defined using the World Health Organization 

definition of sudden onset neurological deficit related to a vascular cause lasting more than 24 

hours, with IS further categorised into subtypes as per the Trial of Org 10172 in Acute Stroke 

Treatment criteria (53, 54). 
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Venous thromboembolism genetic association estimates 

The SNP-VTE genetic association estimates were obtained from a GWAS meta-analysis 

performed by the International Network on Venous Thrombosis Consortium (55), which 

consisted of 12 studies including participants of European descent, providing a total of 7,507 

VTE cases and 52,632 controls. The VTE diagnoses included deep vein thrombosis or pulmonary 

embolism, and were made by a physician following relevant evaluation.  

 

Carotid intima media thickness and carotid plaque genetic association estimates 

The Cohorts for Heart and Aging Research in Genomic Epidemiology Consortium performed a 

GWAS meta-analysis from which summary data was used to obtain SNP-cIMT and SNP-carotid 

plaque genetic association estimates (56). This meta-analysis consisted of 31 studies and 71,128 

participants for cIMT, and 17 studies with 21,540 cases and 26,894 controls for carotid plaque. 

All participants for both traits were European heritage. Carotid traits were diagnosed using 

high-resolution B-mode ultrasonography (57), with carotid plaque defined as atherosclerotic 

thickening of the carotid artery wall or luminal stenosis greater than 25%, and cIMT measured 

as the mean of maximal values from several common carotid artery measurements, taken in 

millimetres.  

 

Phenome-wide association study genetic association estimates 

Genetic association estimates for PheWAS were obtained from the UK Biobank, a prospective 

cohort study consisting of approximately half a million participants in the United Kingdom that 

were aged 40-69 years at recruitment between 2006 and 2010 (58). Genetic data was obtained 

from blood samples, and were linked to National Health Service Hospital Episode Statistics 

(HES) from April 1995 to March 2016 (58). Analysis was only performed in participants of self-

reported European descent, and one participant from each pair of relatives was randomly 

excluded based on a kinship coefficient of >0.0884 in order to minimise bias from related 

individuals. The International Classification of Diseases (ICD) versions 9 and 10 were used to 

ascertain cases from the HES data, including both incident and prevalent cases (as allocation of 

genetic instruments occurs at conception, preventing reverse causation bias). The ‘phecode 

grouping system’ was used to categorise HES diagnoses into groups based on clinically-related 

phenotypes (59). Cases were selected as having one documented event, with controls identified 

as all individuals with no record of any related outcomes (within that phecode category) (60). 

To generate genetic association estimates, case and control groups were created for each 

respective phecode, and logistic regression was used to estimate associations with each 
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instrument SNP after adjusting for age, sex, the type of genotyping array used and the first four 

genetic principal components. Only phecodes where there were 200 or more cases were 

considered to improve statistical power (61, 62).  

 

Mendelian randomization 

For all outcomes, the ratio method was used to generate MR estimates for individual instrument 

SNPs, with fixed-effect inverse-variance weighted (IVW) meta-analysis performed to pool MR 

estimates across instruments (44, 63). The Delta method (second order weights) was used to 

estimate standard errors (63). MR estimates were scaled to the effect on serum iron (measured 

in standard deviation units, 6.1µmol/L) for the main analysis, with sensitivity analyses also 

performed with MR estimates scaled to effects on transferrin saturation, ferritin and transferrin 

(all also in standard deviation units).  A statistical significance threshold of P<0.05 was used for 

directed analysis considering cardiovascular and thrombotic outcomes. No adjustment was 

made for multiple testing of the four iron status biomarkers, as they were each serving as a 

proxy for systemic iron status. Adjustment for multiple testing of various traits considered in 

the directed analysis of cardiovascular and thrombotic outcomes was also not made because 

each of these were specifically selected based on existing supportive evidence. Multiple 

outcomes were also investigating the same underlying mechanism – CAD and carotid plaque 

exploring effects on atherosclerosis, and VTE and CES exploring effects on thrombosis related to 

stasis of blood. For outcome traits throughout the phenome identified in PheWAS, statistical 

significance of MR estimates was established using the false discovery rate (FDR) method, with 

a 5% cut off applied (64).  

In MR, pleiotropy refers to the scenario where the genetic instrumental variables affect the 

outcome under consideration through a pathway that is independent of the exposure under 

study, and can create bias (32, 65). Excess heterogeneity (beyond that expected by chance) 

between MR estimates arising from different instrument SNPs chance can be used to identify 

the presence of such a phenomenon (66). This was investigated using the Cochran’s Q test, with 

P<0.05 interpreted as evidence of heterogeneity and pleiotropy. To further explore for possible 

pleiotropy arising in the MR analysis of all considered outcomes, including the targeted analysis 

of the cardiovascular and thrombotic diseases, the PhenoScanner online curated database of 

genetic association estimates (http://www.phenoscanner.medschl.cam.ac.uk/phenoscanner) 

was accessed on 1 March 2019 to search for secondary phenotypes that are known to be 

associated with the three selected iron status instruments at genome-wide significance (67).  
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All analyses are performed using the statistical programme R (version 3.4.2). The 

TwoSampleMR and MendelianRandomization packages were used to conduct the MR analyses 

(68, 69). All data used in this work were obtained from previous studies that had already 

obtained the relevant ethical approval and participant consent, and no further review was 

required.  

 

Ethical approval 

Ethical approval and participant consent for use of all data in this work had been previously 

obtained in their respective primary studies, and therefore was not required to be sought again 

here. The primary studies from which data were obtained have been cited on first introduction. 

UK Biobank data were accessed through application 236. 
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2.3 Results 

Instruments 

The three instrument SNPs used had F statistics ranging from 47 to 2,127 for the 4 iron status 

biomarkers (Table 2.3), consistent with marked weak instrument bias in the analyses being 

unlikely (44). Investigating possible bias related to pleiotropy, the three SNPs associated with 

iron status biomarkers and red blood cell traits as expected (67). Additionally, potentially 

pleiotropic effects for rs1799945 were identified through the association of its iron status 

increasing allele with blood pressure (67, 70, 71). Similarly, the iron status increasing allele of 

rs1800562 was inversely associated with total cholesterol and low density lipoprotein 

cholesterol levels (67, 70, 72).  

 

Table 2.3. Variance explained and F statistics for the instrument single-nucleotide polymorphisms 

(SNPs) and iron status biomarkers. EA: effect allele; EAF: effect allele frequency. 

  

 

SNP-iron status associations (n=48,972) 

  Iron 
Transferrin 

saturation 

Log10 

Ferritin 
Transferrin 

SNP EA EAF R2 F R2 F R2 F R2 F 

rs1800562 A 0.07 1.3 668 4.2 2127 0.5 256 2.9 1446 

rs1799945 G 0.15 0.9 450 1.4 676 0.1 53 0.3 163 

rs855791 G 0.55 1.6 806 1.8 889 0.1 73 0.1 47 

 

Mendelian randomization  

The IVR MR result for the effect of iron status on CAD risk (reported as odds ratio [OR] scaled 

per SD increase in serum iron), was 0.94 (95% confidence interval [CI] 0.88 to 1.00, P=0.04). 

Similar results supporting a protective effect of iron stats on CAD risk were obtained when 

scaling the estimates to standard deviation (SD) change in the other iron status biomarkers - 

transferrin saturation OR 0.95 (95% CI 0.91 to 0.99, P=0.03) and (log-transformed) ferritin OR 

0.85 (95% CI 0.73 to 0.98, P=0.02). Consistent with a protective effect of iron status, the 

estimate for transferrin (OR 1.08, 95% CI 1.01 to 1.16, P=0.03) was in the opposite direction, 

with higher transferrin levels reflecting lower systemic iron levels.  
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In contrast, when considering stroke the analysis identified a detrimental effect of genetically 

increased iron status (serum iron OR 1.07, 95% CI 1.01-1.14, P=0.03; [log-transformed] ferritin 

OR 1.18, 95% CI 1.02-1.36, P=0.03; transferrin saturation OR 1.06, 95% CI 1.01-1.11, P=0.02). In 

keeping with this pattern, higher genetically determined transferrin associated with a lower 

stroke risk (OR 0.92, 95% CI 0.86-0.99, P=0.02). Genetic association for the rs1800562 SNP with 

SVS was not available in the MEGASTROKE summary data, and there were no proxies available 

with LD r2>0.3. Investigating ischemic stroke subtypes found the detrimental effect of 

genetically determined iron status was related to effects particularly on the CES subtype (serum 

iron OR 1.16, 95% CI 1.01-1.32, P=0.03; [log-transformed] ferritin OR 1.46, 95% CI 1.07-2.00, 

P=0.02; transferrin saturation OR 1.13, 95% CI 1.02-1.25, P=0.02; transferrin OR 0.82, 95% CI 

0.70-0.96, P=0.01). For LAS, there was no apparent effect of genetically determined iron status 

(serum iron OR 0.95, 95% CI 0.81-1.12, P=0.54; [log-transformed] ferritin OR 0.82, 95% CI 0.55-

1.22, P=0.32; transferrin saturation OR 0.95, 95% CI 0.84-1.08, P=0.41; transferrin OR 1.12, 

95% CI 0.91-1.38, P=0.28). Furthermore, when performing IVW MR using the two SNPs 

available for SVS, no effect of iron status was identified (serum iron OR 0.98, 95% CI 0.84-1.15, 

P=0.79; [log-transformed] ferritin OR 0.94, 95% CI 0.57-1.55, P=0.81; transferrin saturation OR 

0.98, 95% CI 0.85-1.14, P=0.82; transferrin OR 1.00, 95% CI 0.66-1.52, P=1.00).  

The IVW MR also demonstrated a detrimental effect higher genetically determined systemic 

iron status on risk of VTE (serum iron OR 1.37, 95% CI 1.14-1.66, P=1x10-3; transferrin 

saturation OR 1.25, 95% CI 1.09-1.43, P=1x10-3; [log-transformed] ferritin OR 1.92, 95% CI 

1.28-2.88, P=2x10-3; transferrin OR 0.76, 95% CI 0.63-0.92, P=0.01). 

In contrast, IVW MR analyses demonstrated a protective effect of iron status on risk of carotid 

plaque for serum iron (OR 0.85, 95% CI 0.73-0.99, P=0.04) and transferrin saturation (OR 0.89, 

95% CI 0.80-1.00, P=0.05).  The other biomarkers reflected a protective role of higher iron 

status on carotid plaque, although their effect estimates did not reach significance ([log-

transformed] serum ferritin OR 0.72, 95% CI, 0.51-1.01, P=0.06; serum transferrin OR 1.15, 

95% CI 0.97-1.35, P=0.11).  

IVW MR did not identify any apparent effect of genetically determined iron status on cIMT 

measured in millimetre increase per SD higher iron biomarker (serum iron 0.00, 95% CI -0.01-

0.01, P=0.90; transferrin saturation 0.00, 95% CI -0.01–0.01, P=0.75; [log-transformed] serum 

ferritin 0.01, 95% CI -0.02–0.03, P=0.58; serum transferrin -0.01, 95% CI -0.01–0.01, P=0.32). 

Figure 2.1 summarises the results of the MR analysis (scaled to SD increase in genetically 

determined serum iron levels) for the binary cardiovascular and thrombotic disease outcomes 
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considered, and depicts the trend for a protective effect of on diseases related to atherosclerosis 

but a detrimental effect on traits related to thrombosis attributable to stasis of blood. 

 

 

Figure 2.1. A forest plot summarising the results of the Mendelian randomization analyses 

investigating the effect of genetically determined iron status on dichotomous cardiovascular and 

thrombotic outcomes. Estimates are provided in odds ratio scaled per standard deviation increase 

in serum iron. 

 

Table 2.4 summarises the Cochran’s Q P-value for each of the cardiovascular and thrombotic 

phenotypes investigated in targeted MR. Only for cIMT was there evidence of heterogeneity 

between the three instrument SNPs (P=0.02). 

 

Table 2.4. Cochran’s Q test for heterogeneity between the instruments used to generate Mendelian 

randomization estimates. cIMT: carotid intima-media thickness. 

Outcome Cochran's Q P Value 

Coronary artery disease 0.18 

Stroke 0.23 

Cardioembolic stroke 0.31 

Large artery stroke 0.13 

Small vessel disease stroke 0.58 

cIMT 0.02 

Carotid plaque 0.99 

Venous thromboembolism 0.76 
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Mendelian randomization-phenome-wide association study 

The characteristics of UK Biobank participants considered in PheWAS analysis, as well as the 

numbers of distinct phenotypes and cases included for each of the disease categories are 

detailed in Table 2.5.  

 

Table 2.5. Part A: Characteristics of UK Biobank participants analysed in phenome-wide 

association study (N=424,439). Part B: Number of phenotypes and cases included for each disease 

category. BMI: body mass index; DBP: diastolic blood pressure; SD: standard deviation; SBP: 

systolic blood pressure. 

Part A 

Age, years (SD) Sex, female (%) BMI (SD) 

SBP, 

mmHg 

(SD) 

DBP, 

mmHg 

(SD) 

Current 

smoker (%) 

56.8 (8.0) 229,239 (54.0%) 27.4 (4.8) 
138.1 

(18.6) 

82.2 

(10.13) 

43,928 

(10.4%) 

Part B 

Disease Category Phenotypes (N) 
Subjects 

Minimum Median Mean Maximum 

Circulatory System 98 202 1048 6308 133749 

Congenital Anomalies 19 211 442 557 1823 

Dermatologic 43 218 799 4765 82669 

Digestive 116 228 1455 4817 79488 

Endocrine/Metabolic 49 208 773 4076 45303 

Genitourinary 106 203 1376 4153 103829 

Hematopoietic 22 201 569 2690 12759 

Infectious Diseases 25 219 1012 2237 10752 

Injuries & Poisonings 59 222 536 1513 16683 

Mental Disorders 36 202 710 3280 29405 

Musculoskeletal 57 213 925 4164 53823 

Neoplasms 82 215 1124 4261 90826 

Neurological 44 204 567 2286 40703 

Pregnancy Complications 17 208 1113 1854 9534 

Respiratory 56 200 1124 3837 62168 

Sense Organs 64 210 774 2443 39998 

Symptoms 16 304 2341 7036 42311 
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After having excluded related and non-European individuals, there were 904 distinct phecodes 

for which genetic association estimates for all three instrument SNPs were available in MR-

PheWAS. The IVW MR estimates for phenotypic outcomes that were significant at the 5% FDR 

threshold (equivalent to P<1.1x10-3) are provided in Table 2.6, which also includes their 

Cochran’s Q test P-value for heterogeneity between the three instrument SNPs. Only 14 traits 

showed no evidence of heterogeneity in the MR estimates produced from the three genetic 

instruments. Consistent estimates supporting an effect of overall systemic iron status were 

obtained for these traits when scaling MR estimates to SD changes in different biomarkers of 

iron status (Table 2.7).  
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Table 2.6. Inverse-variance weighted Mendelian randomization estimates, odds ratio (OR) per 

standard deviation (SD) increase in serum iron, for the outcomes reaching 5% false discovery rate 

(FDR) significance. CI: confidence interval; NOS; not otherwise specified. 

Description Cases Controls OR 
Lower 

95% CI 

Upper 

95% CI 
P 

5% FDR 

significant 

Evidence of 

heterogeneity 

Cochran's 

Q P 

Disorders of iron 

metabolism 
681 319180 10.30 6.65 15.95 1.58E-25 YES YES 1.65E-60 

Aplastic anaemia 12485 302401 0.68 0.62 0.74 3.90E-17 YES NO 1.65E-01 

Other anaemias 11586 302401 0.67 0.61 0.74 9.14E-16 YES NO 3.18E-01 

Polycythemia vera 399 311049 3.88 2.50 6.02 1.55E-09 YES YES 1.08E-05 

Iron deficiency 

anaemias, unspecified 

or not due to blood 

loss 

7340 302401 0.72 0.64 0.81 3.57E-08 YES NO 7.19E-01 

Varicose veins of 

lower extremity 
11323 281673 1.28 1.17 1.40 1.03E-07 YES YES 1.45E-02 

Other deficiency 

anaemia 
8605 302401 0.75 0.67 0.83 1.76E-07 YES NO 7.07E-01 

Hypercholesterolemia 33268 285396 0.88 0.83 0.93 2.07E-05 YES NO 8.15E-01 

Other local infections 

of skin and 

subcutaneous tissue 

10784 309738 1.22 1.11 1.34 5.06E-05 YES NO 2.13E-01 

Disorder of skin and 

subcutaneous tissue 

NOS 

41334 280000 1.10 1.05 1.15 1.11E-04 YES NO 3.46E-01 

Chronic liver disease 

and cirrhosis 
530 311623 2.09 1.42 3.08 1.94E-04 YES YES 1.97E-03 

Glossitis 298 315742 2.64 1.56 4.46 2.92E-04 YES NO 8.50E-01 

Poisoning by 

antibiotics 
3446 293867 0.74 0.62 0.87 4.18E-04 YES NO 9.15E-01 

Cellulitis and abscess 

of arm/hand 
5671 309738 1.25 1.10 1.42 5.56E-04 YES NO 1.34E-01 

Cellulitis and abscess 

of foot, toe 
5635 309738 1.25 1.10 1.42 5.56E-04 YES NO 1.34E-01 

Cellulitis and abscess 

of leg, except foot 
5679 309738 1.25 1.10 1.42 5.79E-04 YES NO 1.62E-01 

Cholesterolosis of 

gallbladder 
459 299761 0.45 0.28 0.72 9.06E-04 YES NO 8.18E-01 

Acute post-

haemorrhagic 

anaemia 

262 302401 0.35 0.19 0.65 9.89E-04 YES NO 2.93E-01 

Arthropathy NOS 52689 268139 1.08 1.03 1.14 1.06E-03 YES YES 4.00E-02 
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Table 2.7. Inverse-variance weighted Mendelian randomization (MR) estimates when scaling results to changes in the levels of the different iron status 

biomarkers (log odds ratio per standard deviation increase in biomarker). NOS: not otherwise specified; SE: standard error. 

 Serum iron Ferritin 
Transferrin 
saturation 

Transferrin 

Description Cases Controls MR SE P MR SE P MR SE P MR SE P 

Aplastic anaemia 12485 302401 -0.39 0.05 
3.90E-

17 
-0.71 0.11 

2.23E-
10 

-0.26 0.03 
8.12E-

15 
0.27 0.05 

5.06E-
08 

Other anaemias 11586 302401 -0.40 0.05 
9.14E-

16 
-0.75 0.12 

9.96E-
11 

-0.28 0.03 
1.20E-

15 
0.29 0.05 

1.94E-
08 

Iron deficiency anaemias, unspecified or not due to blood 
loss 

7340 302401 -0.33 0.06 
3.57E-

08 
-0.63 0.14 

3.78E-
06 

-0.22 0.04 
2.31E-

07 
0.25 0.06 

6.58E-
05 

Other deficiency anaemia 8605 302401 -0.29 0.06 
1.76E-

07 
-0.56 0.13 

8.67E-
06 

-0.20 0.04 
4.20E-

07 
0.22 0.06 

1.41E-
04 

Hypercholesterolemia 33268 285396 -0.13 0.03 
2.07E-

05 
-0.26 0.07 

7.68E-
05 

-0.09 0.02 
8.00E-

06 
0.11 0.03 

6.84E-
04 

Other local infections of skin and subcutaneous tissue 10784 309738 0.20 0.05 
5.06E-

05 
0.47 0.11 

9.21E-
06 

0.15 0.03 
4.13E-

06 
-0.22 0.05 

8.62E-
06 

Disorder of skin and subcutaneous tissue NOS 41334 280000 0.10 0.02 
1.11E-

04 
0.22 0.06 

1.72E-
04 

0.07 0.02 
1.57E-

04 
-0.10 0.03 

1.68E-
04 

Glossitis 298 315742 0.97 0.27 
2.92E-

04 
1.96 0.57 

5.86E-
04 

0.66 0.19 
3.48E-

04 
-0.82 0.26 

1.72E-
03 

Poisoning by antibiotics 3446 293867 -0.31 0.09 
4.18E-

04 
-0.66 0.20 

7.57E-
04 

-0.22 0.06 
4.69E-

04 
0.28 0.09 

2.46E-
03 

Cellulitis and abscess of arm/hand 5671 309738 0.23 0.07 
5.56E-

04 
0.53 0.14 

2.51E-
04 

0.17 0.05 
2.17E-

04 
-0.25 0.07 

1.89E-
04 

Cellulitis and abscess of foot, toe 5635 309738 0.23 0.07 
5.56E-

04 
0.53 0.14 

2.64E-
04 

0.17 0.05 
2.36E-

04 
-0.25 0.07 

2.05E-
04 

Cellulitis and abscess of leg, except foot 5679 309738 0.23 0.07 
5.79E-

04 
0.52 0.14 

2.97E-
04 

0.17 0.05 
2.74E-

04 
-0.24 0.07 

2.84E-
04 

Cholesterolosis of gallbladder 459 299761 -0.80 0.24 
9.06E-

04 
-1.59 0.55 

3.59E-
03 

-0.55 0.18 
1.75E-

03 
0.61 0.26 

1.92E-
02 

Acute post-haemorrhagic anaemia 262 302401 -1.05 0.32 
9.89E-

04 
-1.97 0.73 

6.84E-
03 

-0.70 0.23 
2.46E-

03 
0.69 0.35 

4.75E-
02 
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Higher genetically determined iron status was most negatively associated with acute post-

haemorrhagic anaemia, while in the other direction was most positively associated with 

glossitis, followed by skin and soft tissue infections at various body sites (Tables 2.6 and 2.7). 

Figure 2.2 is a forest plot summarising MR results for all the outcomes associated genetically 

determined systemic iron status at 5% FDR significance. 

 

 

Figure 2.2. Mendelian randomization results for all outcomes achieving 5% false discovery rate 

significance in the phenome-wide association study of genetically determined systemic iron status. 

Units are in odds ratio per standard deviation increase in serum iron. 
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2.4 Discussion 

Summary of main findings 

The array of MR analyses performed in this work offer important insight into the role of iron 

status in cardiovascular and thrombotic disease pathogenesis, as well as offering a broader 

overview of the effect of iron status on outcomes throughout the phenome. The pattern of 

results offers overall support for a protective effect of higher iron status on atherosclerotic 

traits, including CAD and carotid plaque. In contrast, the findings support a detrimental effect of 

higher iron status on risk of thrombosis related to stasis of blood, such as that predisposing to 

CES and VTE. In the MR-PheWAS, higher iron status was shown to protect against 

hypercholesterolemia, potentially explaining part of the reduced risk of atherosclerotic traits, 

but was also associated with increased risk of skin and skin structure infections. The MR-

PheWAS also identified a protective effect of higher iron status on a number of anaemia related 

traits, thus serving as a positive control for the validity of this approach.  

 

Research in context 

The association of heart disease with iron storage disorders and post-menopausal status in 

women has previously been attributed to an effect of higher systemic iron status (13). However, 

this was not supported in consequent observational research (16). While a randomised trial 

identified a protective effect of heavy metal chelation on heart disease, this finding may not be 

generalizable to a wider population, with the effects potentially specific to patients that have 

suffered recent myocardial infarction or independent to effects on systemic iron status (73). 

Consistent with the findings of the current MR analysis, a systematic review and meta-analysis 

of prospective observational studies on the association of body iron status and coronary heart 

disease risk found that the risk ratio for individuals with iron status biomarker levels in the top 

tertile compared with those in the bottom tertile was 0.80 (95% CI 0.73-0.87) for iron, 0.82 

(95% CI 0.75-0.89) for transferrin saturation, 1.03 (95% CI 0.87-1.23) for ferritin, and 0.99 

(95% CI 0.86-1.13) for transferrin (16). Both ferritin and transferrin levels are affected by 

inflammation, and it may be that the lack of significant findings for these biomarkers are related 

to confounding from this. Of relevance, all but one of the 17 studies included in the meta-

analysis adjusted for smoking and major cardiovascular risk factors, which may represent 

possible sources of confounding (16). 

In contrast to CAD, the MR analysis generated evidence that higher genetically determined iron 

status increases risk of IS, with this driven by increased CES risk. Many observational studies 

have supported a detrimental role of higher iron status on stroke risk (19-21), although there is 
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also observational evidence in the other direction (17-19, 74-78). Such findings of increased 

stroke risk at both the higher and lower extremes of iron status may suggest a non-linear 

association with iron status (18, 19). Only two case-control studies have previously investigated 

the effect of iron status on risk of IS subtypes, with Chang et al. finding an increased risk of a 

prior iron deficiency diagnosis in individuals with both thrombotic and embolic stroke, as 

compared with non-stroke cases (17). However, the other case-control study that investigated 

ischaemic stroke subtypes did not find any significant association between SVS, LAS and CES 

with biomarkers of iron status (22). It may be that the distinct population investigated as well 

as unmeasured or unknown confounding factors contributed to the different findings, along 

with the possible play of non-linear effects of variation in systemic iron status on risk of stroke.  

Numerous observational studies have also investigated the relationship between iron status and 

carotid atherosclerotic processes, although with inconsistent findings. There have been three 

studies that found gender-specific positive associations between serum ferritin and either 

carotid plaque (79, 80), or cIMT (81), with a further two studies supporting a positive 

association with carotid plaque when pooling individuals of either sexes (28, 82). However, 

there are also observational studies that produced no evidence of any association between 

serum ferritin and carotid atherosclerosis (83, 84), with two case-control studies also 

suggesting negative associations between ferritin and cIMT (85, 86). Given the susceptibility of 

such observational research to environmental confounding, this may we be the explanation for 

the discrepancy in findings between these studies.  

Relatively few papers have explored the association between systemic iron levels and VTE risk. 

One  case-control study identified an increased risk of VTE in individuals that had higher levels 

of hepcidin, a biomarker reflective of systemic iron status (87). This compared 390 patients 

with VTE with 802 age and sex-matched controls to identify a dose-dependent relationship 

between circulating hepcidin levels and VTE risk, independently of C-reactive protein, which 

was used as a biomarker of inflammation.  

While recent work used MR to study the association of hereditary hemochromatosis genetic 

variants with risk of 11 outcomes implicated in iron overload (88), a notable advantage in the 

currently presented MR-PheWAS is that it explored the effects of iron status across over 900 

human diseases captured in HES data using a hypothesis-free approach, and was thus able to 

identify potentially novel results, such as the possible effects of iron status on risk of cellulitis 

and hypercholesterolemia. The current MR-PheWAS also incorporated genetic instruments for 

systemic iron status, rather than narrowly focusing on only variants related to hereditary 

haemochromatosis (88), to thus allow for better exploration into the effects of fluctuations of 

iron status through any mechanism. Additionally, the use of strong instruments related to 
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serum iron, ferritin, transferrin and transferrin saturation, all in a pattern supportive of their 

effect on overall systemic iron status, the MR-PheWAS was directed towards investigating 

systemic iron status specifically, rather than some other related trait. 

 

Strengths and limitations 

The MR analyses undertaken here overcome many of the limitations suffered in traditional 

observational epidemiology by minimising the play of bias related to environmental 

confounding (31). This is important because iron status biomarker levels are affected by other 

concurrent pathological processes, such as inflammation, liver disease, renal failure and 

malignancy, which can also affect risk of cardiovascular and thrombotic disease, thus acting as 

potential confounders. For example, ferritin levels rise and transferrin levels fall in the context 

of systemic inflammation (89). As a consequence, any observational studies that measure 

circulating levels of these biomarkers may suffer confounding related to unmeasured or 

unknown inflammation.  

Another major advantage of the genetic epidemiological approaches undertaken in this work is 

that they allowed for a high degree of phenotypic resolution in disentangling the role of 

systemic iron status in distinct and heterogeneous cardiovascular and thrombotic disease 

processes. For example, it was only the cardioembolic subtype of IS for which there was an 

increase in risk in the context of higher genetically determined iron status. This finding was 

similar to that observed in the MR analysis of systemic iron status and VTE risk. Consistent with 

this, the pathophysiology of CES relates to stasis of blood, often in the left atrial appendage, with 

thrombus formation following a similar mechanism to that seen in VTE, where there is typically 

stasis of blood in the deep veins of the legs. In contrast, LAS, carotid plaque and CAD typically 

follow a different aetiology, more commonly related to atherosclerosis, and in-keeping with this, 

the MR analysis suggested detrimental effects of higher genetically determined iron status for 

all of these disease processes, though not reaching formal statistical significance for LAS. 

A potential cause for bias in MR analyses is pleiotropy of the genetic variants used. In scenarios 

where these are many instrument variants available for MR analysis, statistical methods that 

are more robust to the inclusion of pleiotropic variants are available (90), as well as methods 

that can test for the presence of pleiotropy, and provide adjusted estimates (91, 92). However, 

with only three instrument SNPs, opportunities for such statistical methods are limited, with 

even the detection of heterogeneity for MR estimates produced by different variants subject to 

limited statistical power (65). Thus, alternative methods to investigate pleiotropy were 

incorporated – namely biological knowledge of potential pleiotropic pathways. Specifically, by 
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searching for secondary phenotypes of the three instruments for systemic iron status, it was 

possible to identify potential pleiotropic pathways that could introduce bias into the MR 

analysis. The association of all three systemic iron status instruments with red blood cell traits 

would be expected given the well-established role of iron status in erythropoiesis (2), and 

furthermore this would be unlikely to be introducing bias into the MR considering 

cardiovascular and thrombotic outcomes, as red blood cells traits are not believed to directly 

affect these outcomes (93). In contrast, the observed association of the iron status increasing 

allele of rs1800562 (in the HFE gene) with lower low-density lipoprotein cholesterol (LDL-C) 

levels, and the iron status increasing allele of rs1799945 (also in the HFE gene) with higher 

systolic and diastolic blood pressures traits would likely introduce bias through pleiotropy in 

MR analyses considering atherosclerotic outcomes, because these secondary phenotypes 

represent established cardiovascular risk factors. In this context, the described associations of 

the rs1800562 and rs1799945 variants with LDL-C and blood pressure respectively were 

considered as potential genetic confounding rather than mediation because these traits were 

each only associated with one of the three instruments variants. If they were serving as 

mediating pathways, it would be expected that they relate to all three genetic instruments of 

systemic iron status. Reassuringly however, the MR estimates produced by the rs855791 SNP 

(in the TMPRSS6 gene) provided consistent MR estimates to the overall IVW MR, suggesting that 

any bias from pleiotropy was unlikely to be significant affecting the results or conclusions 

reached (94-96). 

A strength of this work is that it only includes genetic variants as instruments where they have a 

known biological role in determining systemic iron status (97), and further are related to all 

four considered biomarkers of systemic iron status (2), thus offering strong reassurances 

towards their validity. The fact that instruments were identified from two distinct genes, on 

different chromosomes, whose corresponding proteins regulate iron status by distinct 

mechanisms offers some reassurance that the effects of these variants can be attributed to 

variations in systemic iron status generally, rather than through protein specific mechanisms,  

While more relaxed instrument selection criteria may be employed to increase the number of 

genetic variants available for analysis, this may do more harm than good. For example, by 

selecting instruments by their association with only one biomarker of iron status rather than all 

four, there is considerable risk of including SNPs that do not reflect systemic iron status, but 

rather are related to distribution of iron. This point is well demonstrated by the genome-wide 

significant variants associated with different biomarkers of iron status, but in directions of 

effect that are not compatible with their reflection of overall iron status (2). 
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The limitations of this work must also be fully appreciated. The MR approach instruments 

genetic variants to study the effect of varying an exposure of interest, which in this case is 

systemic iron status. However, inherent to this process is that the genetic variants have lifelong 

effects on iron status, which would be distinct to the effect of a discrete clinical intervention, 

particularly one that is applied in adolescence or adult life (98). Furthermore, the genetic 

variants used in MR generally, and indeed for the current analyses, only represent the effect of 

small variations in the exposure of interest, around the mean levels for the considered 

population, and within the normal range (2). The results from these MR analyses should 

therefore not be extrapolated to the extremes of iron status, namely iron overload or deficiency. 

This is particularly important as the MR model assumes a linear effect of iron status on risk of 

the outcomes considered, an assumption that likely breaks down at very high or low levels of 

iron status.  

The MR analyses were undertaken using genetic data from predominantly European ancestry, 

and it is therefore not clear whether the findings on the effect of genetically determined iron 

status can be extrapolated to other ethnic groups. There was also a small degree of overlap, in 

the region of 5%, between the populations used to obtain genetic association estimates for the 

iron status biomarkers and those used for cardiovascular and thrombotic disease outcome traits 

(96). Given the limited nature of this participant overlap, it is unlikely for this to be a source of 

substantial bias in the consequent MR estimates (99), and it will therefore not affect the 

conclusions drawn. 

Particular limitations of the MR-PheWAS approach relate to the HES data used. Although this 

provided a source of clinically relevant outcomes that were linked to the genetic data, there may 

have also been some introduction of misclassification bias (100). As one example of this, it may 

be that the identified protective effect of iron status on aplastic anaemia is related to 

misclassification of iron deficiency anaemia. As another example, where iron status does not 

cause aplastic anaemia, it may still contribute to its diagnosis in borderline cases that would 

otherwise fall below the requisite threshold for label allocation. The MR-PheWAS also generated 

findings that seem to contradict established clinical knowledge, such as the finding of increased 

glossitis risk arising from higher iron status. One explanation may relate to a weakness with the 

phecode grouping system used, perhaps relating to ambiguity between underlying atrophy 

(101), or super-imposed infection for this diagnosis, with the latter being consistent with the 

findings for the effect of iron status on risk of superficial infections. Insufficient statistical power 

may have also contributed to potential false negative results in the MR-PheWAS. For example, 

this analysis did not replicate the findings from the direct MR analysis of CAD, stroke or VTE, 

which were all included in the considered PheWAS diagnoses. Other causes for type II error and 



80 
 

false negative results may be the exclusion of any results that produced evidence of 

heterogeneity in the MR estimates derived different instrument SNPs, when filtering out 

findings potentially susceptible to bias related to pleiotropy. 

 

Underlying mechanisms 

The protective effect of higher iron status on CAD and carotid plaque may relate to reduced 

circulating LDL-C levels and resultant effects on atherosclerosis (102). Consistent with this, the 

MR-PheWAS also supported an effect of higher iron status on reducing risk of 

hypercholesterolemia. The discrepancy in the MR findings for cIMT and carotid plaque may 

represent a distinct role for iron in different atherosclerotic processes, with cIMT more 

representing arterial hyperplasia related to hypertension, while carotid plaque represents fatty 

atherosclerotic injury (103). This is also supported by observational research identifying an 

association between circulating ferritin levels and carotid plaque, rather than cIMT (79, 80). 

However, there was also a significant Cochran’s Q P-value (of 0.02) when assessing for 

heterogeneity between the MR estimates produced by individual instrument SNPs for the 

analysis investigating the effect of iron status on cIMT, suggesting that pleiotropy may also be 

responsible for the null result. 

In contrast, the MR finding of higher iron status increasing CES risk is unlikely to be related to 

effects related to atherosclerosis. Of more potential relevance, iron-catalysed processes have 

been implicated in the coagulation of blood (104), with dense fibrin-like deposits identified in 

the blood of individuals with diabetes mellitus, attributable to prothrombotic actions of iron 

(104). Following on from this, one possibility is that excess free iron in blood results in 

production of fibrin-like debris that consequently results in thrombus generation (105). 

However, caution should be taken here, as these mechanisms are only suggested as plausible 

explanations, and further confirmatory work is of course required. 

Considering possible mechanisms explaining the novel MR-PheWAS results, iron scavenging 

systems are present in bacteria that cause skin and soft tissue infections, including 

Staphylococcus aureus (106), and Streptococcus pyogenes (107). It has also been proposed that 

iron metabolism in these organisms is related to their virulence (106). This is also consistent 

with the sequestration of free iron from invading organisms through immune defence 

mechanisms (108). In diseases of iron overload, such as hereditary hemochromatosis, increased 

susceptibility to bacterial infections has been observed (109), with certain bacteria also 

demonstrating increased growth and division in human serum that is obtained after iron 

supplementation (110).  
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The MR-PheWAS also produced evidence that higher iron status reduced risk of both 

hypercholesterolaemia and gallbladder cholesterolosis, which relates to accumulation of 

cholesteryl esters in the gallbladder (111). The HFE gene variant rs1800562 that was 

incorporated as a genetic instrument for iron status has been associated with LDL-C in GWAS 

(112). The mechanism behind this is not known, but may relate to its effects on systemic iron 

levels. Consistent with this, all three genetic variants used to instrument systemic iron status, 

both in the HFE gene (rs1800562 and rs1799945) and in the TMPRSS6 gene (rs855791) 

produced MR estimates to demonstrate consistent effects of systemic iron status on lowering 

both hypercholesterolaemia and gallbladder cholesterolosis risk (113). Further supporting this 

hypothesis, iron status has been implicated in affecting lipid metabolism in both rodents and 

humans (114, 115).  

 

Clinical relevance 

There are available treatments to both increase and decrease systemic iron levels. However, the 

effectiveness of oral iron supplementation is restricted by its low gastrointestinal absorption 

(116), as well as side-effects including abdominal cramps, nausea and bowel disturbance, which 

affect compliance (116, 117). As a public health measure, fortification of food with iron was 

effective for reducing the burden of iron deficiency anaemia (118, 119). In the case of anaemia 

that is refractory to oral supplementation, or when anaemia is severe, intravenous iron infusion 

may be required (116). At the other end of the spectrum, iron overload is mainly managed with 

venesection in the context of haemochromatosis (120), with iron chelation also used to enhance 

iron excretion in certain scenarios (73). Clinical trials and formal guidance on titration of 

systemic iron levels have mostly focused on the treatment of anaemia (116), such as related to 

chronic kidney disease (121), heavy menstruation (122), and pregnancy (123). More limited 

evidence is available for the manipulation of iron levels to treatment other clinical outcomes, 

such as stroke (124), malaria (125) and restless leg syndrome (126). To date however, there has 

not been any clinical trial investigating the impact of adjusting iron status to prevent or treat 

hypercholesterolaemia, cardiovascular or thrombotic disease, nor skin and skin structure 

infections. Given the results of the described genetic analyses, there is now a rationale to further 

investigate the possibility of manipulating systemic iron status in the prevention of these 

diseases. Importantly however, caution must be taken, as while genetic support increases the 

chances of success for clinical trials into therapeutic interventions (127), these forms of 

evidence are not equivalent. 
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Conclusions 

The targeted MR and MR-PheWAS analyses performed into this work offer novel insight into the 

role of systemic iron status in both cardiovascular and thrombotic disease, as well as in 

clinically relevant outcomes throughout the human phenome. The analyses support a 

detrimental role of higher genetically determined iron status on stasis-mediated thrombotic 

processes, including CES and VTE, but a protective effect of on dyslipidaemia-related 

atherosclerotic disease processes such as carotid plaque and CAD. Hypothesis-free exploration 

of traits throughout the phenome verified the known associations of higher iron status with 

lower risk of anaemia, but also identified inverse associations with hypercholesterolaemia, and 

positive associations with skin and soft tissue infections. Taken together, this work offers 

clinically relevant insight into the implications of varying iron status within the normal range, 

and warrants further study in the setting of clinical intervention.  
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79. Wolff B, Völzke H, Lüdemann J, Robinson D, Vogelgesang D, Staudt A, et al. Association 

Between High Serum Ferritin Levels and Carotid Atherosclerosis in the Study of Health in 

Pomerania (SHIP). Stroke. 2004;35(2):453-7. 

80. Rossi E, McQuillan BM, Hung J, Thompson PL, Kuek C, Beilby JP. Serum ferritin and 

C282Y mutation of the hemochromatosis gene as predictors of asymptomatic carotid 

atherosclerosis in a community population. Stroke. 2000;31(12):3015-20. 

81. Xu H, Song Y, Xu J, Gu Y, Zhang Q, Liu L, et al. Increased serum ferritin levels are 

independently associated with carotid atherosclerosis in women. 2017:117(11):1623-30. 

82. Kiechl S, Aichner F, Gerstenbrand F, Egger G, Mair A, Rungger G, et al. Body iron stores 

and presence of carotid atherosclerosis. Results from the Bruneck Study. Arterioscler Thromb. 

1994;14(10):1625-30. 

83. Vergnaud AC, Bertrais S, Zureik M, Galan P, Blacher J, Hercberg S, et al. Dietary iron 

intake and serum ferritin in relation to 7.5 years structure and function of large arteries 

in the SUVIMAX cohort. Diabetes Metab. 2007;33(5):366-71. 



91 
 

84. Yunker LM, Parboosingh JS, Conradson HE, Faris P, Bridge PJ, Buithieu J, et al. The effect 

of iron status on vascular health. Vasc Med. 2006;11(2):85-91. 

85. Moore M, Folsom AR, Barnes RW, Eckfeldt J. No Association between Serum Ferritin and 

Asymptomatic Carotid Atherosclerosis. Am J Epidemiol. 1995;141(8):719-23. 

86. Raumaraa R, Vaisanen S, Mecuri M, Raniken T, Penttila I, Bond MG. Association of risk 

factors and body iron status to carotid atherosclerosis in middle-aged Eastern Finnish men. Eur 

Heart J. 1994;15(8):1020-7. 

87. Ellingsen TS, Lappegård J, Ueland T, Aukrust P, Brækkan SK, Hansen J-B. Plasma 

hepcidin is associated with future risk of venous thromboembolism. Blood Advances. 

2018;2(11):1191-7. 

88. Pilling LC, Tamosauskaite J, Jones G, Wood AR, Jones L, Kuo CL, et al. Common conditions 

associated with hereditary haemochromatosis genetic variants: cohort study in UK Biobank. 

BMJ. 2019;364:k5222. 

89. Ross AC. Impact of chronic and acute inflammation on extra- and intracellular iron 

homeostasis. Am J Clin Nutr. 2017;106(Suppl 6):1581S-7S. 

90. Bowden J, Davey Smith G, Haycock PC, Burgess S. Consistent Estimation in Mendelian 

Randomization with Some Invalid Instruments Using a Weighted Median Estimator. Genet 

Epidemiol. 2016;40(4):304-14. 

91. Verbanck M, Chen CY, Neale B, Do R. Detection of widespread horizontal pleiotropy in 

causal relationships inferred from Mendelian randomization between complex traits and 

diseases. Nat Genet. 2018;50(5):693-8. 

92. Bowden J, Davey Smith G, Burgess S. Mendelian randomization with invalid instruments: 

effect estimation and bias detection through Egger regression. Int J Epidemiol. 2015;44(2):512-

25. 

93. Astle WJ, Elding H, Jiang T, Allen D, Ruklisa D, Mann AL, et al. The Allelic Landscape of 

Human Blood Cell Trait Variation and Links to Common Complex Disease. Cell. 

2016;167(5):1415-29 e19. 



92 
 

94. Gill D, Del Greco M F, Walker AP, Srai SKS, Laffan MA, Minelli C. The Effect of Iron Status 

on Risk of Coronary Artery Disease: A Mendelian Randomization Study-Brief Report. 

Arterioscler Thromb Vasc Biol. 2017;37(9):1788-92. 

95. Gill D, Monori G, Tzoulaki I, Dehghan A. Iron Status and Risk of Stroke: A Mendelian 

Randomization Study. Stroke. 2018;49(12):2815-21. 

96. Gill D, Brewer CF, Monori G, Tregouet DA, Franceschini N, Giambartolomei C, et al. 

Effects of Genetically Determined Iron Status on Risk of Venous Thromboembolism and Carotid 

Atherosclerotic Disease: A Mendelian Randomization Study. J Am Heart Assoc. 

2019;8(15):e012994. 

97. Swerdlow DI, Kuchenbaecker KB, Shah S, Sofat R, Holmes MV, White J, et al. Selecting 

instruments for Mendelian randomization in the wake of genome-wide association studies. Int J 

Epidemiol. 2016;45(5):1600-16. 

98. Davey Smith G, Ebrahim S. Mendelian randomization: can genetic epidemiology 

contribute to understanding environmental determinants of disease? Int J Epidemiol. 

2003;32(1):1-22. 

99. Burgess S, Davies NM, Thompson SG. Bias due to participant overlap in two-sample 

Mendelian randomization. Genet Epidemiol. 2016;40(7):597-608. 

100. Padmanabhan S, Carty L, Cameron E, Ghosh RE, Williams R, Strongman H. Approach to 

record linkage of primary care data from Clinical Practice Research Datalink to other health-

related patient data: overview and implications. Eur J Epidemiol. 2018:34(1):91-9. 

101. Wu YC, Wang YP, Chang JY, Cheng SJ, Chen HM, Sun A. Oral manifestations and blood 

profile in patients with iron deficiency anemia. J Formos Med Assoc. 2014;113(2):83-7. 

102. Ozdemir A, Sevinc C, Selamet U, Turkmen F. The relationship between iron deficiency 

anemia and lipid metabolism in premenopausal women. Am J Med Sci. 2007;334(5):331-3. 

103. Touboul PJ, Hennerici MG, Meairs S, Adams H, Amarenco P, Bornstein N, et al. Mannheim 

Carotid Intima-Media Thickness and Plaque Consensus (2004–2006–2011). Cerebrovasc Dis. 

2012;34(4):290-6. 



93 
 

104. Lipinski B, Pretorius E. Novel pathway of ironinduced blood coagulation: implications 

for diabetes mellitus and its complications. Pol Arch Med Wewn. 2012;122(3):115-22. 

105. Lipinski B, Pretorius E. Iron-induced fibrin in cardiovascular disease. Curr Neurovasc 

Res. 2013;10(3):269-74. 

106. Dale SE, Doherty-Kirby A, Lajoie G, Heinrichs DE. Role of siderophore biosynthesis in 

virulence of Staphylococcus aureus: identification and characterization of genes involved in 

production of a siderophore. Infect Immun. 2004;72(1):29-37. 

107. Bates CS, Montanez GE, Woods CR, Vincent RM, Eichenbaum Z. Identification and 

characterization of a Streptococcus pyogenes operon involved in binding of hemoproteins and 

acquisition of iron. Infect Immun. 2003;71(3):1042-55. 

108. Parrow NL, Fleming RE, Minnick MF. Sequestration and scavenging of iron in infection. 

Infect Immun. 2013;81(10):3503-14. 

109. Khan FA, Fisher MA, Khakoo RA. Association of hemochromatosis with infectious 

diseases: expanding spectrum. Int J Infect Dis. 2007;11(6):482-7. 

110. Cross JH, Bradbury RS, Fulford AJ, Jallow AT, Wegmuller R, Prentice AM, et al. Oral iron 

acutely elevates bacterial growth in human serum. Sci Rep. 2015;5:16670. 

111. Koga A. Fine-Structure of the Human Gallbladder with Cholesterosis with Special 

Reference to the Mechanism of Lipid-Accumulation. Brit J Exp Pathol. 1985;66(5):605-11. 

112. Teslovich TM, Musunuru K, Smith AV, Edmondson AC, Stylianou IM, Koseki M, et al. 

Biological, clinical and population relevance of 95 loci for blood lipids. Nature. 

2010;466(7307):707-13. 

113. Gill D, Benyamin B, Moore LSP, Monori G, Zhou A, Koskeridis F, et al. Associations of 

genetically determined iron status across the phenome: A mendelian randomization study. PLoS 

Med. 2019;16(6):e1002833. 

114. Stangl GI, Kirchgessner M. Different degrees of moderate iron deficiency modulate lipid 

metabolism of rats. Lipids. 1998;33(9):889-95. 



94 
 

115. Ahmed U, Latham PS, Oates PS. Interactions between hepatic iron and lipid metabolism 

with possible relevance to steatohepatitis. World J Gastroenterol. 2012;18(34):4651-8. 

116. Jimenez K, Kulnigg-Dabsch S, Gasche C. Management of Iron Deficiency Anemia. 

Gastroenterol Hepatol (NY). 2015;11(4):241-50. 

117. Cancelo-Hidalgo MJ, Castelo-Branco C, Palacios S, Haya-Palazuelos J, Ciria-Recasens M, 

Manasanch J, et al. Tolerability of different oral iron supplements: a systematic review. Curr Med 

Res Opin. 2013;29(4):291-303. 

118. De-Regil LM, Jefferds MED, Peña-Rosas JP. Point-of-use fortification of foods with 

micronutrient powders containing iron in children of preschool and school-age. Cochrane 

Database Syst Rev. 2017;11:CD009666. 

119. Arcanjo FPN, da Costa Rocha TC, Arcanjo CPC, Santos PR. Micronutrient Fortification at 

Child-Care Centers Reduces Anemia in Young Children. J Diet Suppl. 2018:1-10. 

120. Assi TB, Baz E. Current applications of therapeutic phlebotomy. Blood Transfus. 

2014;12:s75-83. 

121. Padhi S, Glen J, Pordes BA, Thomas ME, Guideline Development G. Management of 

anaemia in chronic kidney disease: summary of updated NICE guidance. BMJ. 2015;350:h2258. 

122. Low MS, Speedy J, Styles CE, De-Regil LM, Pasricha SR. Daily iron supplementation for 

improving anaemia, iron status and health in menstruating women. Cochrane Database Syst 

Rev. 2016;4:CD009747. 

123. Pena-Rosas JP, De-Regil LM, Garcia-Casal MN, Dowswell T. Daily oral iron 

supplementation during pregnancy. Cochrane Database Syst Rev. 2015(7):CD004736. 

124. Ma J, You C, Hao L. Iron chelators for acute stroke. Cochrane Database Syst Rev. 

2012(9):CD009280. 

125. Neuberger A, Okebe J, Yahav D, Paul M. Oral iron supplements for children in malaria-

endemic areas. Cochrane Database Syst Rev. 2016;2:CD006589. 

126. Trotti LM, Bhadriraju S, Becker LA. Iron for restless legs syndrome. Cochrane Database 

Syst Rev. 2012(5):CD007834. 



95 
 

127. Nelson MR, Tipney H, Painter JL, Shen J, Nicoletti P, Shen Y, et al. The support of human 

genetic evidence for approved drug indications. Nat Genet. 2015;47(8):856-60. 

 



96 
 

Chapter 3: Mediators of the effect of educational attainment 

on cardiovascular disease risk 
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3.1 Introduction 

Cardiovascular disease (CVD) makes up the world’s single greatest cause mortality, and is 

responsible for more than 17 million deaths every year (1). Social factors such as educational 

attainment are major determinants of CVD (2-4), with previous observational and Mendelian 

randomization (MR) evidence suggesting that for every additional 3.6 years spent in full time 

education, the probability of suffering from coronary artery disease (CAD) falls by 

approximately 33% (2). However, educational attainment is not easily modifiable, and is 

typically related to complex environmental and personal factors. Furthermore, intelligence and 

educational attainment are closely related, with evidence of bi-directional causal effects (5), as 

well as a shared genetic aetiology (6). Disentangling the effect of education on cardiovascular 

risk, and its mediators could have important public health implications, as it would allow for 

resources to be appropriately allocated into targeting the relevant determinants of health. 

Furthermore, for scenarios where educational attainment itself cannot be directly modified, 

downstream modifiable mediators of its effect may still be targeted.   

Previous work has suggested that body mass index (BMI), systolic blood pressure (SBP) and 

cigarette smoking account for some of the discrepancy observed in CVD risk related to varying 

levels of education (7-9). However, such evidence largely originates from observational 

methods that are subject to notable limitations. Specifically, measurement error can be 

introduced because these approaches only study a cross-sectional snapshot of risk factor 

profiles, which are in fact dynamic across life course (10). Similarly, unmeasured or unknown 

confounding is a major limitation in observational epidemiology (11). Randomised, controlled 

trials that vary time spent in education are also not appropriate or practical. 

The use of randomly allocated genetic variants to proxy an exposure of interest in MR allows for 

some of the limitations of observational research related to bias from environmental 

confounding and measurement error to be overcome (12). Furthermore, both network MR and 

multivariable MR (MVMR) approaches can be used in mediation analyses to quantify the degree 

to which the effect of an exposure on an outcome is attributable to a particular mediating 

phenotype (13, 14). Similarly, MVMR can also be used to estimate the effects of an exposure on 

an outcome that are not mediated through traits closely related to the exposure under 

consideration (15). In the case of education, it would be important to know whether any effects 

on CVD outcomes are mediated through cognition, for example, so that causal exposure can be 

directly targeted in public health interventions. The availability of large-scale genome-wide 

association studies (GWAS) for education (6), cognition (6), BMI (16), SBP (17), smoking (18), 

CAD (19), and stroke (20, 21) have made it possible to disentangle the effects of education on 
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CVD risk, as well as identify mediators, and its effects that are not mediated through cognitive 

function.  

While MR has previously been employed to identify an effect of educational attainment on BMI, 

SBP and smoking, with these traits each also affecting CVD risk (22-27), these efforts have not 

formally quantified the degree of any mediation towards the protective effect of education on 

CVD. The following MR analyses performed in this work investigate the degree to which the 

effect of education on CAD and stroke risk is mediated by BMI, SBP and lifetime smoking, as well 

as the three risk factors together, and further the effect of education on cardiovascular risk that 

arises through pathways unrelated to cognitive function.  

 

3.2 Methods 

Genetic association estimates 

Single-nucleotide polymorphisms (SNPs) were used as genetic instruments in the MR analyses, 

and their association with the phenotypes of interest were obtained from summary data 

produced in existing GWASs. For the analyses investigating the mediators of education on CVD 

risk, summary genetic association estimates for education were obtained from the Social 

Science Genetic Association Consortium (SSGAC) GWAS meta-analysis performed in 1,131,881 

European ancestry individuals (28), and instruments were 1,271 independent (pairwise linkage 

disequilibrium [LD] r2<0.1) genome-wide significant (P<5x10-8) SNPs obtained from the 

analysis of the full sample in the published study (28). For the MVMR adjusting the effect of 

education for cognition (and vice versa), the summary data from this study that excluded the 

23andMe cohort were used, consisting of 766,345 individuals of European ancestry (6). 

Instruments were again selected based on their genome wide-significance and LD r2<0.1. For all 

analyses, educational attainment was defined as years of full time education completed, with the 

International Standard Classification of Education (ISCED) system used to compare educational 

achievement where there was discrepancy in the qualification systems used between the 

cohorts (29). For demonstrative purposes, Table 3.1 represents the equivalent number of years 

of education in the UK for each ISCED category based on UK Biobank data (18). Estimates are 

scaled to standard deviation (SD) units, which corresponds to a 3.6 year change in full time 

education. 
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Table 3.1. International Standard for Classification of Education (ISCED) codes mapped to the UK 

Biobank data, to relate qualifications and years of education estimates 

Qualification (as reported in UK 

Biobank) 
ISCED 

Years of 

education 

College or University degree  5 20 

NVQ or HND or HNC or equivalent 5 19 

Other prof. qual. e.g. nursing, teaching 4 15 

A levels/AS levels or equivalent 3 13 

O levels/GCSEs or equivalent  2 10 

CSEs or equivalent 2 10 

None of the above 1 7 

Prefer not to answer Excluded 

 

Genetic association estimates for cognitive function were taken from a GWAS meta-analysis 

performed in the UK Biobank and Cognitive Genomics Consortium (COGENT) Consortium, 

including 257,841 individuals of European ancestry (6). The same selection criteria was used to 

identify instruments as for educational attainment (i.e. genome-wide significance and r2<0.1). 

Cognitive function was measured using verbal-numerical reasoning tests in UK Biobank, and 

neuropsychological assessment in the COGENT Consortium analyses (6), with association 

estimates provided in SD units.  

Genetic association estimates for BMI were obtained from the Genetic Investigation of 

ANthropometric Traits (GIANT) Consortium’s 2018 GWAS meta-analysis of 681,275 European 

ancestry individuals (30). Genetic association estimates for SBP (18), and smoking (31), were 

from a GWAS of 318,417 White British ancestry participants in the UK Biobank, as previously 

described. Blood pressure was measured automatically at the baseline assessment centre, with 

readings taken twice, and separated by two minutes (18). The GWAS used the second reading, 

with missing data replaced with the first measure, or any follow up recordings. For individuals 

on any antihypertensive medication, 10mmHg was added to the SBP reading (32). Lifetime 

smoking was estimated for UK Biobank participants using self-reported age at initiation, age at 

cessation and smoking intensity (cigarettes smoked per day), also accounting for an exponential 

decrease in the effect of cigarettes on health over time (31). It had a scoring unit that ranged 

from 0 (non-smokers) to 4.17, with a mean 0.35 and SD of 0.69 (31). BMI, SBP and smoking 

instruments for MR analysis were selected genome-wide significant SNPs clumped to an LD 

threshold r2<0.001 and distance >10,000kb based on a 1000 genomes European reference 

panel. 
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For CAD genetic association estimates, the CARDIoGRAMplusC4D 1000 Genomes-based multi-

ethnic (approximately 75% European) GWAS meta-analysis of 60,801 cases and 123,504 

controls was used (19). A broad definition was applied for cases, including acute coronary 

syndrome, myocardial infarction and angina (19). In the analyses investigating mediators of the 

effect of education on cardiovascular disease, publicly available genetic association estimates 

from the MEGASTROKE Consortium’s multi-ethnic GWAS meta-analysis of 67,162 stroke cases 

(comprising of ischaemic stroke, intracerebral haemorrhage and stroke of unknown type) and 

406,111 controls were used (21). Participants were of European (approximately 87%), East, 

South and mixed Asian, African, and Latin American ancestry (21). However, the publicly 

available MEGSATROKE GWAS data was not approved for the study of intelligence, so all MR 

analyses considering the effect of cognition, or education adjusted for cognition, used genetic 

association estimates from a GWAS of 37,792 ischemic stroke cases and 397,209 controls 

performed by the National Institute of Neurological Disorders and Stroke-Stroke Genetics 

Network (20), which were downloaded from the Cerebrovascular Disease Knowledge Portal 

(33). Participants were of European (94%), Hispanic and African ancestry (20). The World 

Health Organisation definition of stroke was used, defined as rapidly evolving clinical signs of 

impaired cerebral lasting 24 hours or more or causing death, with no cause other than of 

vascular origin. 

 

Mendelian randomization  

Two-sample, ratio method MR analysis was performed to estimate the effect of education and 

cognition on CAD and stroke risk, respectively, with standard errors estimated using the Delta 

method (second order weights, to account for imprecision in both the exposure and outcome 

genetic association estimates) (34). MR estimates across individual SNPs were pooled using 

fixed-effect inverse-variance weighted (IVW) meta-analysis (35).  

For MR mediation analysis, the network method was used to estimate the effect of BMI, SBP and 

smoking individually, on mediating the effect of education on the CVD outcomes (13). 

Specifically, IVW MR was used to first measure the effect of education on each risk factor 

separately (i.e. BMI, SBP and smoking), with regression-based MVMR implemented to then 

estimate the effect of each risk factor on risk of the considered CVD outcome (i.e. CAD or stroke), 

whilst adjusting for genetic effect of the instruments on education (36). The indirect effect of 

education on risk of each cardiovascular outcome mediated by each considered risk factor was 

estimated by multiplying results from the aforementioned IVW and MVMR analyses (13). The 

two stages of network MR are depicted in Figure 3.1, which details BMI as the mediator and CAD 

as the outcome, for demonstrative purposes. The estimated indirect effect was finally divided by 
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the total effect to obtain a proportion of the total effect of education mediated through the 

considered risk factor.  

 

Figure 3.1. A schematic figure detailing the two stages of network Mendelian randomization (MR) 

in the scenario where education is the exposure, body mass index is the mediator and coronary 

artery disease risk is the outcome. To estimate the indirect effect of education on coronary artery 

disease risk in this scenario, the MR estimate from stage 1 is multiplied by that from stage 2. The 

dotted grey lines represent associations that would violate the requisite assumptions of the model. 

 

To estimate the total effect of education mediated through all three risk factors together, MVMR 

was first used to estimate the direct effect of education on each respective CVD outcome after 

adjusting for genetic associations of the instrument SNPs with the three risk factors. This is 

demonstrated in Figure 3.2 for the scenario where CAD is the outcome under consideration. 

This direct effect estimate was then divided by the total effect of education on the considered 

CVD outcome (estimated using IVW MR) and subtracted from one. For all mediation analysis, 

standard errors were estimated using the propagation of error method. 
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Figure 3.2. A schematic figure detailing the principles of multivariable Mendelian randomization 

for estimating the direct effect of education on coronary artery disease risk, which is not mediated 

through body mass index (BMI), systolic blood pressure (SBP) and lifetime smoking. The dotted 

grey lines represent associations that would violate the requisite assumptions of the model. 

 

MR estimates can be biased if the necessary assumption of the model are not met (37). 

Horizontal pleiotropy describes the scenario where a genetic variant is related to the outcome 

under consideration through some pathway independent of the exposure being studied (37). To 

investigate for this, statistical sensitivity analyses that are more robust to the inclusion of 

pleiotropic variants were performed, namely MR-Egger and weighted median MR (36, 38). MR-

Egger performs a linear regression of the SNP-outcome association estimates on the SNP-

exposure association estimates, weighted for the precision of the SNP-outcome association 

estimates (36). This generates MR estimates that are adjusted for potential horizontal 

pleiotropy, with a non-zero regression intercept further serving as a test for directional 

pleiotropy (36). MR-Egger is valid when any direct effect of the variants on the outcome (i.e. not 

mediated through the exposure) are not correlated to the association of the variants with the 

exposure (36). In contrast, weighted median MR orders the MR estimates obtained from 

individual instrument SNPs by their magnitude, weighted for their precision, and consequently 
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identifies the median value as the overall MR estimate (38). Confidence intervals can be 

calculated by bootstrapping (38), and the approach is usually robust when more than half of the 

analysis data is obtained from valid instruments.  

Regression-based multivariable MR using summary data was performed to investigate the 

direct effects of education and cognition (i.e. not mediated through each other) on CAD and 

stroke risk respectively. With this approach, adjustment was made for the genetic associations 

of the education instruments for cognition, and vice versa (36). Specifically, a regression is 

performed of the SNP-outcome genetic association estimates on the SNP-exposure genetic 

association estimates and the SNP-genetic confounder genetic association estimate, weighted 

for the inverse standard error (precision) of the SNP-outcome estimates, with the a fixed zero 

intercept. Only instruments for the exposure under consideration were included in each 

analysis. The modelling assumptions made for IVW MR also apply to MVMR, including those 

relating to pleiotropic effects of the instrument SNPs. To explore this, MVMR-Egger was also 

performed as a sensitivity analysis (39). This method is similar to standard regression-based 

multivariable MR (36), but additionally does not fix the intercept of the regression line to zero, 

instead using it as a test for directional pleiotropy and additionally generating pleiotropy-

adjusted effect estimates in a similar fashion to MR-Egger (36). MVMR median regression 

sensitivity analysis was also performed. This technique estimates the median of the SNP-

outcome genetic association estimates, when conditioned on the SNP-exposure genetic 

association estimates and the SNP-genetic confounder genetic association estimates, with a zero 

intercept and weighted for the inverse standard error (precision) of the SNP-outcome genetic 

association estimates. As with conventional median-based MR approaches, standard errors for 

multivariable MR median regression can be estimated by bootstrapping (38).  

As a further sensitivity analysis of the MVMR analyses investigating the direct effects of 

education and cognition on CAD and stroke risk respectively, all analyses were performed 1,000 

times after sampling, at random and without replacement, a subset of only 200 of the available 

instrument SNPs for education and cognition in the respective analyses. This also additionally 

served as a sensitivity analysis into whether any differences in the findings for the effect of 

education and cognition on CAD or stroke risk related to a discrepancy in the number of 

available instruments. 

All statistical analysis was performed using R 3.4.3 (The R Foundation for Statistical 

Computing), with the TwoSample MR package used to conduct IVW, MR-Egger and weighted 

median MR analyses (40). Ethical approval was not required because only summary data, 

obtained from existing studies that had each received relevant ethical approval and participant 

consent, were used.    



104 
 

 

Ethical approval 

Ethical approval and participant consent for use of all data in this work had been previously 

obtained in their respective primary studies, and therefore was not required to be sought again 

here. The primary studies from which data were obtained have been cited on first introduction.  
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3.3 Results 

Mediators of education 

For the populations used to obtain the respective genetic association estimates, the standard 

deviation (SD) of educational attainment was 3.6 years, BMI was 4.69kg/m2 and SBP was 

18.68mmHg. For smoking, the 1-SD unit increase was used to scale effects related to lifetime 

smoking intensity, with a mean of 0.35 and SD of 0.69. The units cannot be directly translated to 

the number of cigarettes smoked (31). Details for instrument SNPs used for all MR analyses 

have previously been published (18, 41). All instruments had F statistics greater than 10, 

suggesting that any bias of MR estimates derived from individual instrument variants will be 

less than 10% of the bias arising in observational analysis (18, 41, 42). 

Results of the univariable MR analyses are detailed in Table 3.2. There was evidence of a causal 

effect of education on all the considered cardiovascular risk factors (BMI, SBP and smoking), as 

well as risk on CAD and stroke. Consistent estimates were produced in MR sensitivity analyses 

that are more robust to the inclusion of pleiotropic variants, with the MR-Egger intercept not 

providing evidence of directional pleiotropy for any outcome. 
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Table 3.2. Univariable Mendelian randomization (MR) analyses investigating the effect of 

educational attainment. Coronary artery disease (CAD) and stroke are in odds ratio (OR) units, 

while body mass index (BMI), systolic blood pressure (SBP) and smoking are in standard deviation 

(SD) units, per 1-SD increase in education. CI: confidence interval. 

Exposure-

outcome 
MR Method Estimate 

95% lower 

CI 

95% upper 

CI 

P 

value 

Education-CAD 

IVW 0.63 0.60 0.67 <0.001 

MR-Egger 0.68 0.54 0.85 0.001 

Intercept  0.370 

Weighted median 0.62 0.57 0.67 <0.001 

Education-

stroke 

IVW 0.71 0.68 0.75 <0.001 

MR-Egger 0.72 0.60 0.87 0.001 

Intercept  0.757 

Weighted median 0.71 0.66 0.76 <0.001 

Education-BMI 

IVW -0.22 -0.24 -0.20 <0.001 

MR-Egger -0.28 -0.49 -0.07 0.009 

Intercept  0.989 

Weighted median -0.27 -0.30 -0.23 <0.001 

Education-SBP 

IVW -2.86 -3.12 -2.60 <0.001 

MR-Egger -2.41 -3.93 -0.89 0.002 

Intercept  0.325 

Weighted median -3.39 -3.82 -2.95 <0.001 

Education-

smoking 

IVW -0.32 -0.33 -0.31 <0.001 

MR-Egger -0.29 -0.36 -0.22 <0.001 

Intercept  0.057 

Weighted median -0.35 -0.37 -0.33 <0.001 

 

For the mediation analysis, the considered risk factors of BMI, SBP and smoking each mediated 

8 to 33% of the effect of education on CVD (CAD and stroke) risk (Table 3.3), with this rising to 

36 to 41% when considering all three risk factors together.  
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Table 3.3. Mendelian randomization (MR) estimates for the effects of education on coronary artery 

disease (CAD) and stroke that are mediated through body mass index (BMI), systolic blood 

pressure (SBP) and smoking. CI: confidence interval 

Outcome Mediator 

Percentage of the effect of 

education mediated through each 

risk factor (95% CI) 

Coronary artery 

disease 

BMI 18 (14 – 23) 

SBP 21 (15 – 27) 

Smoking 33 (17 – 49) 

BMI, SBP and smoking together 36 (5 – 68)  

Stroke 

BMI 8 (4 – 13) 

SBP 28 (21 – 35) 

Smoking 20 (4 – 36) 

BMI, SBP and smoking together  41 (7 – 75) 

 

Direct effects of education and cognition on cardiovascular disease risk 

Results of the MR analyses investigating the effects of education and cognition on CAD and 

stroke risk respectively are provided in Figure 3.3. There was consistent evidence of a 

protective effect of education on CAD and stroke risk respectively, even after adjustment was 

made for cognition. However, cognition only demonstrated a protective effect on risk of CAD, 

but not stroke, when no adjustment was made for education. However, the protective effect of 

cognition on CAD risk was not present after adjusting for education using MVMR methods. The 

MR-Egger and MVMR-Egger intercept P values did not support the presence of directional 

pleiotropy in any of the analyses (Table 3.4). 
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Table 3.4. Mendelian randomization (MR)-Egger and multivariable MR-Egger (MVMR-Egger) 

intercept P value results. These intercept values act as a test for directional pleiotropy (with 

statistical significance defined as P<0.05). 

Analysis P 

Education-coronary artery disease MR-Egger 0.60 

Education-coronary artery disease MVMR-Egger 

(adjusted for cognition) 
0.46 

Cognition-coronary artery disease MR-Egger 0.61 

Cognition-coronary artery disease MVMR-Egger 

(adjusted for education) 
0.83 

Education-ischaemic stroke MR-Egger 0.48 

Education-ischaemic stroke MVMR-Egger 

(adjusted for cognition) 
0.74 

Cognition-ischaemic stroke MR-Egger 0.65 

Cognition-ischaemic stroke MVMR-Egger 

(adjusted for education) 
0.73 
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Figure 3.3. Univariable and multivariable Mendelian randomization (MR) results for the analysis investigating the effects of education and cognition on coronary artery 

disease and ischaemic stroke risk, respectively (41). The univariable analyses estimate the total effect of the exposure on the outcome under study. Considering education 

as the exposure, multivariable MR (MVMR) analyses are adjusted for cognition. When cognition is the exposure, multivariable MR analyses are adjusted for education. 

For both univariable and multivariable MR, Egger and median statistical sensitivity analyses that make distinct assumptions regarding the inclusion of pleiotropic 
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variants are provided. Odds ratios are detailed, with 95% confidence intervals and P values in brackets. SD: standard deviation. The standard deviation of education is 

3.6 years,



111 
 

When randomly selecting only 200 instrument SNPs from the total available pool (625 for 

education and 226 for cognitive function, respectively (41), and repeating the standard MVMR 

analysis 1,000 times (i.e. examining the effect of education adjusted for cognition, and vice 

versa), results consistent with the main MVMR analyses that included all instrument SNPs were 

produced (Figure 3.4).  

 

Figure 3.4. Results of the multivariable Mendelian randomization performed 1,000 times after 

randomly sampling (without replacement) 200 instruments from the available pool of 625 for 

education and 226 for cognition (41). The mean odds ratios (and 95% confidence intervals) are 

detailed. SNP: single-nucleotide polymorphism; SD: standard deviation. The standard deviation of 

education is 3.6 years, 
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3.4 Discussion 

Main findings 

The findings of the MR analyses support that approximately 8% to 33% of the effect of 

education on CAD and stroke risk is mediated through any one of BMI, SBP and smoking. 

Interestingly, this estimate rose to 36% and 41% for CAD and stroke respectively when 

considering all three of these risk factors together, which is considerably lower than would be 

expected if their effects were independent and additive. Therefore, these findings also suggest 

that more than 50% of the effect of education in protecting against CVD is not related to these 

risk factors and occurs through other mechanisms. While the study did not consider other 

traditional cardiovascular risk factors, including those related to exercise, diet, dyslipidaemia 

and glycaemic control (43-49), it is likely that these would have at least partially overlapped 

with the considered BMI, SBP and smoking phenotypes. The remaining effects of education may 

therefore be related to other factors, such as engagement with healthcare services and 

compliance with medical advice. 

Furthermore, exploring whether it is education or cognition per se that has implications for 

cardiovascular health, the univariable MR analyses supported that education has a protective 

effect on risk of both CAD and stroke risk, and that cognition only showed evidence of having a 

protective effect on CAD risk, but not stroke risk. However, the MVMR that investigated the 

direct effects of education and cognition (i.e. not mediate through each other) supported that it 

is in fact education that has a direct protective effect on cardiovascular risk. In converse, there 

was no apparent effect of cognition on CAD (or stroke) risk when adjusting for education. 

Consistent findings were obtained when using MR methods that are more robust to the 

inclusion of pleiotropic SNPs, suggesting that bias from pleiotropy was unlikely to be affecting 

these conclusions. Furthermore, the same pattern of results was obtained when randomly 

sampling 200 SNPs (from the full pool of instruments), in the MVMR that adjusted education for 

cognition, and vice versa, suggesting that the results of the main analyses were not related to 

differences in the number of instrument SNPs used in the various analyses.  

 

Research in context 

The findings of the MR analyses, in terms of the proportion of the effect of education mediated 

by BMI, SBP and smoking, are consistent with traditional observational analyses (18), thus 

triangulating evidence across distinct methodological approaches. Indeed, numerous previous 

observational studies have performed mediation analyses to investigate the degree to which 

BMI, SBP and smoking mediate the effect of education on CVD risk (7, 8, 50, 51), to generate 

consistent results irrespective of whether education was measured using time spent in school, 
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or through academic qualifications. In a Dutch study, approximately 27% of the association 

between education and CAD was related to smoking, with 10% and 5% attributed to adiposity 

and high blood pressure respectively (50). Another study estimated that 7% and 14% of the 

association between education and CVD could be explained by BMI and raised blood pressure 

respectively, although with no evidence that smoking was involved in the association (8). Other 

studies that have stratified by sex also found consistent evidence of SBP and smoking mediating 

the association (51).  

While a protective effect of education on CVD risk has been described previously in 

observational work (52-54), as well as using MR (2, 18), these studies did not adjust for 

cognition or make any attempt to disentangle the direct contributions of education and 

cognition in this relationship. The attenuation of the protective effect of cognition on risk of CAD 

after having adjusted for education has previously been identified in conventional observational 

research (55-57), although in the case of stroke, cognition was described to affect risk of stroke 

independently of education (58, 59). This discrepancy may relate to differences in the definition 

used for cognitive function, as well as the broad range of measures and domains used in its 

assessment.  

For the various causal effects considered in this work, the MR analysis results are larger in 

magnitude than corresponding observational estimates (18), possibly related to their 

instrumenting the lifetime effect of the exposure under consideration, rather than representing 

a single snapshot as in traditional observational epidemiology. Furthermore, MR does not suffer 

the same potential confounding that observation approaches are susceptible to, perhaps also 

explaining some of the discrepancy in the point estimates achieved between approaches (18).  

MR has previously been used to investigate the causal effect of education on CAD, BMI, SBP and 

smoking (2, 22-24), as well as the effect of BMI and smoking on CVD (26, 27). However, these 

previous studies did not perform formal mediation analysis, as was done in this work. The 

current MR analysis also makes other notable advances over these previous studies in that it 

uses larger GWAS data to increase statistical power, particularly for the education instruments, 

which here may explain approximately 12% of the phenotypic variation, as compared to the 3% 

reportedly explained in the previous GWAS meta-analysis (28, 60). Furthermore, the current 

work also separately considers CAD and stroke, thus confirming consistency in the effect of 

education on both these CVD outcomes. With regard to consideration of smoking, this has 

typically been modelled as a binary trait in previous work to potentially introduce bias in MR 

(61), in contrast to the current approach where it is modelled as a continuous variable, and also 

accounts for lifetime smoking intensity and time since cessation, where applicable (31). 
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Strengths and limitations 

To avoid the introduction of collider bias through the adjustment for BMI that is made in many 

large scale GWAS of SBP (62, 63), these genetic association estimates were obtained from a 

GWAS conducted in the UK Biobank that did not make this adjustment. This was particularly 

important as BMI was one of the mediators under investigation. A major potential limitation of 

MR is related to bias through pleiotropic effects of the genetic variants employed as instruments 

on the outcome through pathways at least partly independent of the exposure. In anticipation of 

this possibility, statistical sensitivity analyses that are more robust to the inclusion of such 

pleiotropic variants were fully incorporated. The consistent findings in these analyses provided 

support that pleiotropy was unlikely to be a cause of major bias, and would be unlikely to be 

affecting the conclusions drawn. Of relevance, the wide 95% CIs of the MR-Egger approach are 

expected given it’s notoriously low statistical power (64). Furthermore, the IVW, MR-Egger, 

multivariable MR and multivariable MR-Egger approaches all rely on the ‘instrument strength 

independent of direct effect’ (InSIDE) assumption being maintained, which requires that the 

genetic associations of the instruments with the exposure are not correlated to any direct effect 

that they have on the outcome (36). As it is possible that the associations of the education and 

cognition instruments are proportional to any direct effect that they have on CAD or stroke risk, 

this assumption may break down, rendering the MR estimates from these methods biased. 

Reassuringly however, consistent results were obtained when using the weighted median 

approaches, making this possibility less likely to affect the conclusions drawn. 

A strength of mediation analysis performed using MR is its robustness to mediator 

measurement error. This is important because measurement error in a mediator can result in 

underestimation of mediation, possibly also explaining the discrepancy between observational 

and MR analyses investigating this (10, 18). For example, SBP varies temporally, even within the 

same day, and as such investigation of mediation through SBP using traditional observational 

approaches may be susceptible to underestimation. Furthermore, the SBP instruments measure 

average adult SBP, and may not capture blood pressure variability, which is an independent risk 

factor for stroke (65). Other sources of measurement error include participants underreporting 

undesirable traits, such as smoking, and over-reporting desirable traits, such as education (66).  

Another theoretical source of bias in two-sample MR analysis relates to participant overlap in 

the populations sued to obtain genetic association estimates between the exposure and the 

outcome (67). However, it is unlikely that there was greater than 10% overlap in these 

populations for the current work, so the implications of this are unlikely to be marked (18, 41). 

In addition, precautions were taken in all MR analyses to minimise any implications of 
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participant overlap in the genetic association estimates used within any given analysis. Firstly, 

only relatively strong instruments that are less susceptible to such bias were incorporated (68). 

Secondly, all IVW MR analyses used second-order weights (i.e. derived using the Delta method, 

the second order expansion of the Taylor series), which can reduce the rate of false-positive 

results in this context, as compared to the use of first-order weight. A separate consideration is 

participant overlap between the populations used to obtain genetic association estimates for the 

exposure and the mediator (or genetic confounder) in MVMR. The majority of participants 

involved in the studies used for obtaining genetic association estimates for education (58%) and 

cognition (86%) were from the UK Biobank (28). However, this does not introduce bias in the 

context of MVMR. 

It is important to note that in the investigation of the direct effects of education and cognition on 

CAD and stroke risk respectively, although the instruments used for the univariable MR were all 

considered relatively strong, with F-statistics > 30 (41), there is not currently any available 

method to measure instrument strength in the MVMR setting when using only summary data 

(69). It is therefore theoretically possible that weak instrument bias was affecting these 

analyses. 

The UK Biobank cohort is made up of a select population that may not be representative of the 

UK in general (70), and selection bias related to this can bias MR analyses (71). Discrepancies in 

the genetic ancestry of populations considered in MR is another potential source of bias, 

because for example, some of the genetic variants may have different frequencies or effect sizes 

in different ethnic groups. The education and cognition GWAS meta-analyses considered only 

participants of European ancestry, in contrast to the multi-ethnic populations included in the 

study of CAD and stroke. However, greater than 75% of the participants of these multi-ethnic 

GWAS meta-analyses consisted of European ancestry participants, thus limiting the potential 

implications of this.  

In regard to the GWAS meta-analyses used for education and cognition, the estimates used are 

likely to have been inflated due to the effects of parental rearing on these traits, independently 

of inherited variants (6). In addition, the relationship between the genetic variants and the traits 

considered might vary in relation to different environmental contexts (6), thus representing an 

additional source of bias in the MR. Cognition was assessed in the respective GWAS analyses 

using verbal-numerical reasoning tests and neuropsychological assessment (6), which may only 

pick up on some aspects of cognitive function. Finally, education was measured as the number 

of years spent in an academic institution (using academic qualifications to infer this in some 

contexts). However, education can also be considered as an on-going learning process that is not 



116 
 

restricted to such a definition. For example, obtaining skills and life experience through other 

means may also offer similar benefits, and warrants further study.  

 

Clinical implications 

Interventions to increase the minimum duration of compulsory education typically require both 

social and political reform, which may not be easy to achieve. The finding that approximately 

40% of the effect of education on reducing cardiovascular risk occurs through BMI, SBP and 

smoking is of relevance to policymakers because it offers an opportunity to target the 

downstream mediators of education, and thus also minimise healthcare inequalities related to 

difference in educational attainment. Furthermore, these findings provide quantitative 

estimates of the mediators of education in reducing CVD risk, thus allowing for calculated 

decisions to be made, which consider both the economic and social costs of disparities in 

education. It is relevant that this work finds that BMI, SBP and smoking together account for less 

than half of the total effect of educational attainment on CVD risk. Further work that 

investigates other possible mediators of education’s effect on reducing risk of these diseases, as 

well as the interplay between them, will be important for understanding the remaining effect of 

education. Similarly, further work might also aim to explore whether these findings can be 

extrapolated to diverse populations, including different ethnic groups and educational systems.  

Regarding the effects of education and cognition on CVD risk, these traits are closely related (6), 

with previous work suggesting bi-directional effects (5). People with higher cognitive function 

are likely to spend more time in education, and in the other direction, spending more time in 

education can also improve cognition (72). The MR analyses investigating the independent 

effects of education and cognition on CVD risk therefore offer important insight towards 

understanding which trait should be targeted to improve clinical outcomes and optimise 

population health. Despite education and cognition overlapping (5, 6), the MVMR approaches 

used in this work provide evidence that it is education rather than cognition that is causal for 

CVD, and further that any effect of cognition is only causal through effects on education. These 

findings would therefore suggest that increasing the minimum compulsory time that an 

individual must spend in education would protect against CVD risk, irrespective of whether 

cognition is affected. Consistent with this, previous interventions through educational policy 

have reduced morbidity and mortality from a range of chronic diseases, including CAD and 

stroke (73). In this example, the UK has increased the age that individuals must remain in full 

time education from 16 to 18 years, offering a case study to highlight that such changes are 

feasible, and beneficial to health (73). A further consideration is that the health and economic 

benefits of such interventions may not be fully apparent for some years after their first 
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introduction, so sufficient follow up is required for accurate evaluation. Furthermore, it is also 

unclear whether similar benefits might be achieved through education that is provided in a 

different format, such as through vocational training or apprenticeships, and further research 

will be required to explore this. 

 

The findings from the various MR analyses performed in this work can also be aggregated to 

offer insight into why it is education rather than cognition that protects against CVD risk. The 

effects of education mediated through BMI, SBP and smoking are consistent with the finding 

that greater education is associated with a healthier lifestyle, including with lower BMI, SBP and 

smoking incidence (74-76). Additionally, education protects against CVD through improved 

socioeconomic status, including association with professions that have safer working 

conditions, and life situations that offer better healthcare access (74-76). Furthermore, more 

educated people may also better understand modifiable risk factors related to health, offering 

them greater opportunity to optimise these (74-76). In all this, cognition may be secondary to 

education, as it could be the additional knowledge afforded by educational settings that 

provides the majority of the described benefits, rather than improved cognition itself. 

 

Conclusions 

The MR analyses performed here provide evidence to suggest that approximately a third of the 

effect of education on reducing CVD risk is mediated through BMI, SBP and smoking, with these 

three traits together explaining approximately 40% of the effect of education. Thus, 

interventions that aim to reduce these risk factors would negate some of the effect of disparities 

in educational attainment in a European population settings. However, more than half of the 

protective effect of education on cardiovascular risk is mediated through alternative pathways, 

and further work is required to identify these. This study also provides evidence to support that 

it is a direct effect of education that protects against CVD risk. This is in-keeping with the 

proposed mechanisms by which education is likely to be exerting its beneficial effects, and 

highlights educational attainment as a potentially modifiable exposure that may be targeted to 

improve population cardiovascular health. The findings of this work are consistent with the 

existing body of literature in this field, and add important novel insight towards preventing 

CVD. 
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Chapter 4: Application of genetic variants to study 

antihypertensive drug efficacy, side-effects and repurposing 

potential 

In this chapter, the genomic loci of the genes corresponding to antihypertensive drug targets 

were extracted by Marios K Georgakis (Ludwig-Maximilians Universität LMU, Germany). The 

phenome-wide association analysis in the UK Biobank was performed by Fotios Koskeridis 

(University of Ioannina, Greece), and that in the Vanderbilt University Biobank was performed 

by Lan Jiang, Qiping Feng, Wei-Qi Wei and Joshua C. Denny (Vanderbilt University Medical 

Center, United States of America). The remainder of the work presented in this chapter is my 

own, unless otherwise indicated in the text. 
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4.1 Introduction 

Hypertension is a major risk factor for cardiovascular disease (CVD), and thus represents a 

leading cause of morbidity and mortality worldwide. There are approximately 900 million 

individuals around the world estimated to have a systolic blood pressure (SBP) greater than 

140mmHg, which in turn is responsible for 106 deaths per 100,000 in the population every 

year, and loss of 143 million disability-adjusted life years (1). Interventions to lower blood 

pressure can reduce CVD risk, and every 10mmHg reduction in SBP has been estimated to lower 

all-cause mortality by 13% (2).  

There have been notable developments in the available pharmacological treatments for treating 

hypertension through randomized controlled trials (RCTs), with several drug classes identified 

as being effective and safe for blood pressure lowering (3). However, there are also constraints 

to the RCT design (4). To increase their economic efficiency (i.e. reduce their overall cost and 

duration), they often focus on individuals at higher risk of the disease outcomes under 

consideration, as well as a relatively short follow up period (5). This often makes it necessary in 

clinical practice to extrapolate their findings to a wider population than those considered in the 

actual studies. Furthermore, the RCT design does not prioritise the identification of side-effects 

or repurposing opportunities (6). Although traditional observational epidemiology has been 

more conducive towards these aims, such approaches are often limited by environmental 

confounding factors, indication biases and reverse causation (7).  

Genome-wide association study (GWAS) of blood pressure traits has resulted in the availability 

of genetic association estimates related to genetic variants at genes corresponding to the 

protein targets of antihypertensive drugs (7). Such variants can serve as instrumental variables 

for the effect of varying systolic blood pressure (SBP) through the drug target corresponding to 

the particular locus under consideration (7). This approach has previously been extensively 

employed to study the effect of genetic variants related to lipid lower drug targets (8-11). In 

support of such a strategy, trials of drugs for which there is supportive genetic evidence are 

more likely to be successful than for those for which there is no such supportive evidence (12). 

Furthermore, genetic data can be utilised to identify and validate targets for drug development 

(13), as well as increase the probability of successful drug discovery (14). 

In this work, genetic variants located at genes corresponding to the protein targets of common 

antihypertensive drugs that can serve as instrumental variables for studying these medications 

were first identified. To confirm the validity of the identified variants as proxies for their 

respective antihypertensive drug class, Mendelian randomization (MR) estimates for their SBP 

lowering their effects on coronary artery disease (CAD) and stroke risk were compared to 
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corresponding estimates obtained for pharmacological therapy in RCTs against placebo. Finally, 

phenome-wide association study (PheWAS) was performed using genetic risk scores 

constructed for the genetic variants that proxy the effect of each respective antihypertensive 

drug class, with the aim of identifying potential side-effects and repurposing opportunities. The 

various stages of this work are summarised schematically in Figure 4.1. 

 

 

Figure 4.1. A schematic figure summarising the steps of the work presented in this Chapter. 

 

Step 1
•Identify genetic variants that proxy the effect of antihypertensive drugs by their 
location at the respective gene loci and relation to systolic blood pressure

Step 2
•Explore the validity of these genetic variants as instruments for their respective 
drug class by comparing Mendelian randomization estimates for effects on 
coronary artery disease and stroke with clinical trial estimates

Step 3
•Perform phenome-wide association study of the respective drug class 
instruments to identify potential side-effects and repurposing opportunities

Step 4
•Explore any novel findings from phenome-wide association study using UK 
Biobank observational data on antihypertensive drug use at baseline and 
incident outcomes
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4.2 Methods 

Genetic variant selection 

The antihypertensive drugs to be investigated in this work were selected from expert guidelines 

on pharmacological therapy for treating hypertension (6). The following drug classes were 

short-listed for consideration: 

 Angiotensin-converting-enzyme inhibitor (ACEI) 

 Angiotensin receptor blocker (ARB) 

 Beta-blocker (BB) 

 Calcium channel blocker (CCB)  

 Thiazide diuretic (TD) 

 

The genes corresponding to the blood pressure lowering protein targets of these drugs were 

identified using the DrugBank database (15), a publicly accessible online database of drug and 

drug target information. The corresponding genomic location of the identified genes, along with 

their known enhancers and promoters were retrieved using GeneHancer, a database within the 

GeneCards publicly accessible online platform (version 4.7) (16).  

GWAS summary data for SBP were derived from a study of 757,601 European-ancestry 

individuals performed by the International Consortium of Blood Pressure (17), which also 

included UK Biobank participants. To increase the statistical power of GWAS, correction for 

antihypertensive medication use was made by adding 15mmHg to the SBP of individuals taking 

any antihypertensive medication (18). Additional adjustment was also made for body mass 

index (BMI) (17). As a sensitivity analysis to explore the possibility of introduction of collider 

bias related to correction for antihypertensive medication use or adjustment for BMI, genetic 

association estimates from an SBP GWAS performed on approximately 337,000 White British 

individuals from the UK Biobank were also used; this GWAS did not correct for antihypertensive 

medication use, or adjust for BMI (19). 

As uncorrelated instrumental variables for studying the effect of the considered 

antihypertensive drugs, single-nucleotide polymorphisms (SNPs) at the gene, gene promoter or 

gene enhancers corresponding to the protein target of the respective drug class that associated 

with SBP at genome-wide significance (P<5 x 10-8) were identified, and clumped to a linkage 

disequilibrium (LD) threshold of r2<0.1 based on the 1000 Genomes European reference panel. 

For all individual SNPs used as instrumental variables, R2 statistics were calculated as measures 

of the variance in SBP that they explained, with F statistics calculated to assess their strength 

(20). 
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Mendelian randomization 

The MR approach was used to study the effect of randomly allocated genetic variants related to 

SBP lowering through a particular antihypertensive drug target on risk of CAD and stroke. The 

CARDIoGRAMplusC4D Consortium’s 1000 Genomes-based trans-ethnic GWAS meta-analysis 

considering 60,801 CAD cases and 123,504 controls was used to obtain summary genetic 

association estimates for CAD risk (21). The MEGASTROKE Consortium’s trans-ethnic GWAS 

meta-analysis of 67,162 stroke cases (of any aetiology) and 454,450 controls was used to obtain 

genetic association estimates for stroke (22).  

As the main MR analysis, the ratio method was used to produce individual MR estimates for 

each instrument SNP, with standard errors estimated using second order weights (23). Second 

order weights were preferred over first order weights because they also take into consideration 

possible measurement error in the exposure (as well as the outcome) (24). To produce overall 

MR estimates for antihypertensive drugs that had numerous instrument SNPs, individual MR 

estimates derived from single SNPs were pooled using fixed-effects inverse-variance weighted 

(IVW) meta-analysis (i.e. the IVW MR method) (24).  

MR estimates were given for the approximate SBP lowering effect of the considered drug target 

in RCTs (3), to thus allow direct comparison between MR estimates and these RCT estimates for 

the effect of different antihypertensive drug classes on risk of CAD and stroke. This was for the 

purposes of exploring instrument validity, as the MR estimates in this context would be 

expected to corroborate RCT findings (25). MR estimates were originally produced in odds ratio 

(OR) units, and were further converted to relative risk (RR) units for comparison with RCT 

findings. For this conversion, the baseline risk of CAD and stroke were estimated as 0.042 and 

0.041 respectively, based on a systematic review of 613,815 patients that were included in 

blood pressure lowering clinical trials (2). In a sensitivity analyses to explore the implications of 

varying baseline risk of CAD and stroke, MR RR estimates were also estimated assuming 

incidences of 1%, 5% and 10%. 

The main analysis MR estimates for the effect of each antihypertensive drug on CAD and stroke 

risk were compared to corresponding estimates from a systematic review and meta-analysis of 

RCTs against placebo (3).  

 

Investigation of potential pleiotropy 

MR estimates can be biased if the genetic variants used affect the outcome through pathway that 

is independent of the exposure under consideration, in a phenomenon referred to as pleiotropy. 

Potential bias from pleiotropy can be investigated both biologically, through secondary 
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associations of the genetic variants selected as instruments, and also by statistical methods that 

consider the MR estimates produced by different instrument SNPs (26).  

To investigate potential bias from pleiotropic variants using biological knowledge, the 

PhenoScanner database of publicly available genetic association estimates was used to identify 

genome-wide significant (P<5 x 10-8) associations of the instrument SNPs (or proxies with LD 

r2>0.8) with secondary traits (other than blood pressure). Any SNPs identified to have such 

potentially pleiotropic associations were excluded in consequent MR sensitivity analyses using 

the IVW method. 

Numerous statistical methods for assessing potential bias from pleiotropy were incorporated. 

Heterogeneity between MR estimates derived from individual instrument SNPs greater than 

would be expected by chance can indicate potential bias from pleiotropic variants, and was 

tested using the Cochran’s Q test (with P<0.05 representing statistical evidence of pleiotropy) 

(27). MR techniques that are more robust to the inclusion of pleiotropic variants were also 

applied in statistical sensitivity analyses. Firstly, MR-Egger was used, which regresses the SNP-

outcome associations by the SNP-exposure associations, weighing this for the precision of the 

SNP-outcome associations (28). Provided that the association of the instrument SNPs with the 

exposure are not correlated to any direct effects that they have on the outcome (i.e. independent 

of the exposure), MR-Egger is able to provide an overall MR estimate that is adjusted for any 

pleiotropic effects of the variants used, and further also offers a non-zero MR-Egger intercept as 

a test for directional pleiotropy (with P<0.05 used to identify statistical significance) (28). 

Secondly, MR-PRESSO was applied (29). This performs a regression of the SNP-outcome 

estimates against the SNP-exposure estimates with an intercept of zero, and uses the 

consequent residual errors to identify any outlier MR estimates (P<0.05) arising from individual 

instrument SNPs, and further whether removing these changes the overall MR estimate (29). 

Finally, the weighted median MR was incorporated. This method orders individual SNP MR 

estimates by their magnitude, weighted for their precision, and selects the median result as the 

overall MR estimate (30). Given the potentially low statistical power of MR sensitivity analyses 

(26, 31), a formal statistical significance threshold was not used for these, but rather 

consistency in the MR estimates with the main IVW MR approach was assessed.  

 

Phenome-wide association study 

The UK Biobank cohort of approximately 500,000 individuals was used for performing PheWAS 

(32). Genetic data was acquired from individuals through donated blood samples, with data on 

diagnoses obtained through linkage with Hospital Episode Statistics (HES). PheWAS analysis 
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was limited to individuals of European ancestry, with one participant from each pair of relatives 

excluded for situations where the kinship coefficient was >0.0884. Genetic variants identified to 

proxy the effect of antihypertensive drugs were used to create genetic risk scores (GRSs) using 

PLINK software (33). These scores were weighted for the blood pressure lowering effect of each 

included variant SNP, and were standardized to have a mean of 0 and a standard deviation (SD) 

of 1 (33).  

Clinical diagnoses recoded in the HES were grouped into clinically relevant groups using the 

phecode grouping system (34). For the PheWAS analyses, case-control groups were generated 

for each phecode, where controls were selected as individuals that did not have any diagnosis 

from the disease group under consideration, nor its related conditions (34). Logistic regression 

was then performed against the respective antihypertensive drug class GRS, with adjustments 

made for age, sex and first four genetic principal components. The PheWAS analysis was 

restricted to phecodes that had a minimum of 200 cases to increase the statistical power of the 

analyses (35), and a 5% false discovery rate (FDR) threshold was applied for ascertaining 

statistical significance of the associations.  

Consistent to the MR analysis described above, PheWAS sensitivity analyses were also 

performed using SBP genetic association estimates that had not been corrected for 

antihypertensive medication use or adjusted for BMI, and also after excluding from the 

respective GRSs any SNPs that may be having pleiotropic associations (at genome-wide 

significance), as identified from PhenoScanner (36).  

For 5% FDR significant associations with non-cardiovascular outcomes (that are therefore 

unlikely to be attributable to the blood pressure lowering effects of antihypertensive drugs) 

identified in PheWAS, the association of these outcomes to a GRS for SBP more generally (i.e. 

created by selecting SBP variants from throughout the genome rather than restricted to any 

given antihypertensive protein target gene) was also investigated. Specifically, a permutation-

based approach was used generate a GRS for SBP by randomly sampling (without replacement) 

from the available pool of SBP instruments (that had genome-wide significant associations with 

SBP and at LD r2<0.001 using a 1000 Genomes European reference panel) an equal number of 

SNPs to that used in the GRS for the antihypertensive drug under consideration. This was 

repeated 1,000 times, with the mean and 95% confidence interval of the associations of the GRS 

for SBP with the outcome under consideration (measured using the same logistic regression 

model as in the main PheWAS) used to investigate whether this was an SBP-related effect, or 

specific to the drug class under study. Furthermore, the proportion of the 1,000 analyses using 

the GRS for SBP that had consistent directions of effect but with magnitude greater than that 

observed for the investigation with the GRS of the antihypertensive drug class would serve as an 
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adjusted P-value of the null hypothesis (i.e. that the effect is due to SBP lowering generally, 

rather than specific to the drug target under consideration).  

Any 5% FDR significant PheWAS associations with the GRSs of the antihypertensive drug 

targets with non-cardiovascular outcomes were also followed up in the Vanderbilt University 

Biobank (BioVU), a separate cohort that has genetic data on approximately 50,000 participants 

linked to their Electronic Health Records (37). As for the main PheWAS, the standardised GRS of 

the antihypertensive drug class was applied in a logistic regression model with the outcome 

under consideration (and controls were also identified using the same approach as in the main 

analysis), restricting to European ancestry individuals and adjusting for age, sex and first three 

principal components. Association estimates obtained using the UK Biobank and BioVU cohorts 

were pooled using a fixed-effects meta-analysis model. 

 

Conventional observational analysis of antihypertensive drug use 

PheWAS associations for non-cardiovascular conditions reaching 5% FDR significance were also 

explored by investigating actual antihypertensive drug use in the UK Biobank. This approach 

additionally allowed the dihydropyridine and non-dihydropyridine CCB subclasses to be 

distinguished, which was not possible in the GRS analysis because the protein targets of these 

drug subclasses are related to the same genes. In Cox regression analysis, the time to first 

incident event was compared between individuals orally taking different antihypertensive drug 

classes at recruitment to the UK Biobank.  

Antihypertensive drug treatment was categorised into ACEIs monotherapy, ARBs monotherapy, 

BBs monotherapy, dihydropyridine CCBs monotherapy, non-dihydropyridine CCBs 

monotherapy, TDs monotherapy, a combination of medications from any two antihypertensive 

classes, and a combination of medications from three of more antihypertensive classes. In a 

separate analysis model, participants on any subclass of CCBs (i.e. dihydropyridine CCBs or non-

dihydropyridine CCBs) were pooled into one category. For all analyses, adjustments were made 

for age, sex, BMI, Townsend Deprivation Index, smoking status, self-reported diagnosis of 

cancer, number of non-cancer diagnoses and number of surgical operations. Participants 

diagnosed with the condition under consideration before they were recruited to the UK Biobank 

were excluded and those that died during follow-up prior to receiving this diagnosis were 

censored. 
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Ethical approval and statistical software 

The data used in this work were obtained from studies that had already obtained the necessary 

ethical approval and participant consent. UK biobank data were accessed through application 

236. Statistical analyses were performed using the statistical software R, version 3.4.1 (The R 

Foundation for Statistical Computing).  

 

4.3 Results 

Instrument selection 

The protein targets of ACEIs (ACE gene), ARBs (AGTR1 gene), BBs (ADRB1 gene) and TDs 

(SLC12A3 gene) corresponded to single genes respectively, whereas the protein target of CCBs 

corresponded to 11 genes (CACNA1D, CACNA1F, CACNA2D1, CACNA2D2, CACNA1S, CACNB1, 

CACNB2, CACNB3, CACNB4, CACNG1, CACNA1C), which each encode different calcium channel 

subunits. The CACNA1F gene is located on the X chromosome and SNPs for this were not 

available.  

Considering the gene, promotor and enhancer regions of the relevant genes, 1 instrument SNP 

was identified for ACEIs, 6 for BBs and 24 SNPs for CCBs (Table 4.1). The F-statistic for SNPs 

ranged from 54 to 534, suggesting a relatively low risk of bias from use of weak instrument 

(20). No instrument SNPs were identified for any of the other considered antihypertensive drug 

classes. 

 

Mendelian randomization 

MR estimates for each antihypertensive drug were scaled to the corresponding SBP lowering 

effect of that agent, in order to allow direct comparison with RCT estimates (against placebo) 

for effects on CAD and stroke risk. Therefore, MR estimates for ACEIs are given per 21.14mmHg 

decrease in SBP, for BBs are per 9.51mmHg decrease, and for CCBs are per 8.90mmHg decrease 

(3). In the main IVW MR analysis, estimates were also converted to RR units from OR units, 

assuming a CAD and stroke prevalence of 0.042 and 0.041 respectively. 

For ACEI, MR using the single identified instrument SNP supported a protective effect on risk of 

stroke (RR 0.21, 95% confidence interval [CI] 0.06-0.72, P=0.01), but not CAD (RR 0.67, 95% CI 

0.16-2.56, P=0.58). For BBs, the main IVW MR supported a protective effect on risk of CAD (RR 

0.62, 95% CI 0.47-0.81, P=4x10-4), but not stroke (RR 0.91, 95% CI 0.73-1.14, P=0.41). The main 

IVW MR analysis supported a protective effect of CCBs on risk of both CAD (RR 0.73, 95% CI 

0.64-0.84, P=6x10-6) and stroke (RR 0.75, 95% CI 0.66-0.84, P=1x10-6). Consistent results were 
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found when using OR units, or modelling the incidence of coronary artery disease and stroke as 

being 1%, 5% or 10% (Table 4.2).  

MR analysis results for each antihypertensive drug class had overlapping 95% CIs to the 

corresponding RCT meta-analysis (against placebo) (3) (Figure 4.2). Figures 4.3-4.6 show 

individual MR estimates for each of the BB and CCB SNPs for the ratio method MR analysis 

considering CAD and stroke as outcomes.  

Considering the sensitivity analyses that identified antihypertensive drug target instruments 

and their genetic association estimates with SBP from a GWAS that did not correct for 

antihypertensive medication use or adjusted for BMI (17), no genetic instrument SNPs were 

identified for ACEI, with 2 SNPs identified for BB, and 6 for CCB (Table 4.3). IVW MR using these 

instrument SNPs for BBs and CCBs produced results that were consistent with the main 

analysis, although with wider 95% CIs (Figures 4.7-4.10).  

Searching PhenoScanner for potential pleiotropic effects of the instrument SNPs (36), there was 

1 BB SNP and 5 CCB SNPs that may be exerting bias through effects on the considered outcomes 

through pathways independent of blood pressure lowering (Table 4.4). Performing the IVW MR 

analysis after excluding these variants similarly produced consistent estimates to the main 

analysis (Figures 4.7-4.10). 

When using statistical methods to explore possible bias from pleiotropy, there was evidence of 

heterogeneity only in the MR analysis of BBs on risk of stroke (Cochran’s Q P=0.03). The MR-

Egger intercepts were not significant for directional pleiotropy in any of the analyses (BBs; CAD 

P=0.87, stroke P=0.89 and CCBs; CAD P=0.89, stroke P=0.51). MR-PRESSO detected 2 outlier 

SNPs in the analysis of BBs on stroke, and estimates were consistent with the main analysis 

after excluding these (Figure 4.8). MR-Egger, weighted median MR and MR-PRESSO also 

produced consistent estimates to the main IVW MR (Figures 4.7-4.10). 
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Table 4.1. The main instrument single-nucleotide polymorphisms (SNPs) for angiotensin-converting-enzyme 

inhibitors (ACEIs), beta-blockers (BBs) and calcium channel blockers (CCBs). The Effect estimate is given for 

change in systolic blood pressure (in mmHg units). The F statistics are provided as an indication of instrument 

strength. 

Drug SNP Chromosome Position 
Effect 

allele 

Other 

allele 

Effect 

allele 

frequency 

Effect 
Standard 

error 
P value 

Sample 

size 
R² 

F 

statistic 

ACEI rs4291 17 61554194 a t 0.6155 -0.2839 0.0312 8.65E-20 745820 3.69E-04 276 

BB 

rs11196549 10 1.16E+08 a g 0.0425 0.6884 0.0784 1.58E-18 738169 1.54E-04 114 

rs460718 10 1.16E+08 a g 0.3266 -0.2764 0.0324 1.36E-17 738169 3.34E-04 247 

rs11196597 10 1.16E+08 a g 0.1330 0.2858 0.0458 4.23E-10 737164 1.81E-04 134 

rs17875473 10 1.16E+08 t c 0.0871 0.3283 0.0552 2.66E-09 738170 1.43E-04 106 

rs1801253 10 1.16E+08 c g 0.7338 0.4626 0.0344 2.84E-41 738169 4.97E-04 367 

rs4359161 10 1.16E+08 a g 0.1812 -0.2662 0.0391 9.46E-12 738168 2.17E-04 160 

CCB 

rs3821843 3 53558012 a g 0.6808 0.3373 0.0335 6.56E-24 736049 4.03E-04 297 

rs114987861 3 53605712 a g 0.0284 0.5289 0.0958 3.36E-08 737054 8.02E-05 59 

rs113210396 3 53612327 t g 0.0451 -0.4338 0.0770 1.76E-08 737164 1.03E-04 76 

rs7340705 3 53734443 t c 0.6732 -0.2425 0.0322 4.87E-14 738169 2.93E-04 217 

rs2488136 10 18334521 a g 0.2875 0.2261 0.0334 1.22E-11 738169 2.55E-04 188 

rs1888693 10 18440444 a g 0.3449 0.3858 0.0317 4.69E-34 736050 4.79E-04 353 

rs16916914 10 18457722 t c 0.9631 -0.5636 0.0806 2.72E-12 737424 1.10E-04 81 

rs7076319 10 18459450 a g 0.7339 -0.3210 0.0341 5.07E-21 737054 3.45E-04 254 

rs61278674 10 18481737 a g 0.9062 -0.3298 0.0540 1.03E-09 737163 1.54E-04 114 

rs1779209 10 18514561 t c 0.2876 0.2736 0.0336 4.23E-16 729448 3.08E-04 225 

rs10828399 10 18553968 a g 0.5218 -0.1947 0.0302 1.10E-10 738168 2.67E-04 197 

rs10828452 10 18592450 a t 0.7930 0.3046 0.0388 4.20E-15 737164 2.75E-04 203 

rs10828542 10 18627285 a g 0.6137 0.1817 0.0311 5.18E-09 738170 2.37E-04 175 

rs12780039 10 18678987 c g 0.1210 0.2852 0.0470 1.26E-09 738167 1.67E-04 123 

rs112133583 10 18695681 t c 0.0299 -0.5546 0.0973 1.18E-08 737169 8.84E-05 65 

rs11014170 10 18710991 a g 0.0206 -0.6701 0.1150 5.61E-09 732148 7.43E-05 54 

rs7923191 10 18727901 a g 0.7918 -0.3690 0.0376 1.10E-22 737054 3.34E-04 246 

rs12258967 10 18727959 c g 0.7047 0.6327 0.0337 1.08E-78 737165 7.24E-04 534 

rs72786098 10 18729855 a g 0.0322 -0.5033 0.0883 1.18E-08 737055 8.62E-05 64 

rs1998822 10 18755664 a g 0.7234 -0.1958 0.0343 1.15E-08 727331 2.15E-04 157 

rs4748474 10 18790727 a g 0.5214 0.1946 0.0304 1.61E-10 729908 2.67E-04 195 

rs150857355 12 49209340 c g 0.0217 0.9406 0.1122 5.20E-17 731300 1.10E-04 80 

rs2239046 12 2434419 a g 0.6817 0.2082 0.0322 9.58E-11 745818 2.48E-04 185 

rs714277 12 2514270 t c 0.2834 0.1986 0.0333 2.38E-09 745820 2.22E-04 165 
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Table 4.2. Mendelian randomization (MR) results, per change in systolic blood pressure observed in clinical trials of the corresponding drug (3), and for different disease 

incidence rates, demonstrating how the conversion of MR estimates from odds ratio to relative risk units is affected by modelling different disease incidence rates (1%, 

5% and 10%). ACEI: angiotensin-converting enzyme inhibitor; BB: beta-blocker; CCB: calcium channel blocker; CI: confidence interval. 

 

 

 

 

 

 

 

 

  Odds ratio 1% incidence 5% incidence 10% incidence 

Drug  Outcome 
Odds 

ratio 

Low 95% 

CI 

Upper 

95% CI 

Relative 

risk 

Low 95% 

CI 

Upper 

95% CI 

Relative 

risk 

Low 95% 

CI 

Upper 

95% CI 

Relative 

risk 

Low 95% 

CI 

Upper 

95% CI 

ACEI 
Coronary 

artery disease 
0.66 0.16 2.75 0.66 0.16 2.70 0.67 0.16 2.53 0.68 0.17 2.34 

ACEI Stroke 0.21 0.06 0.72 0.21 0.06 0.72 0.22 0.06 0.73 0.23 0.07 0.74 

BB 
Coronary 

artery disease 
0.61 0.46 0.80 0.61 0.46 0.80 0.62 0.47 0.81 0.63 0.49 0.82 

BB Stroke 0.91 0.72 1.15 0.91 0.72 1.14 0.91 0.73 1.14 0.92 0.74 1.13 

CCB 
Coronary 

artery disease 
0.72 0.63 0.83 0.72 0.63 0.83 0.73 0.64 0.84 0.74 0.65 0.84 

CCB Stroke 0.74 0.66 0.84 0.74 0.66 0.84 0.75 0.67 0.84 0.76 0.68 0.85 
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Table 4.3. Instrument single-nucleotide polymorphisms (SNPs) for beta-blockers (BBs) and calcium channel blockers (CCBs) obtained using genetic association study 

summary data that were not corrected for antihypertensive medication use or adjusted for body mass index. These instruments were used in sensitivity analyses. The 

Effect estimate is given for change in systolic blood pressure (in mmHg units).  

Drug SNP Chromosome Position 
Effect 

allele 

Other 

allele 
Effect 

Standard 

error 
P value 

Sample 

size 

BB 

rs151597 10 115720514 c g 0.0160 0.0026 
1.23E-

09 
317754 

rs1801253 10 115805056 c g 0.0182 0.0028 
9.24E-

11 
317754 

CCB 

rs10741083 10 18790858 c t 0.0142 0.0026 
2.64E-

08 
317754 

rs12258967 10 18727959 g c 
-

0.0314 
0.0027 

1.73E-

31 
317754 

rs17604757 10 18442940 g a 0.0318 0.0050 
1.78E-

10 
317754 

rs1779240 10 18476313 a g 
-

0.0189 
0.0029 

6.89E-

11 
317754 

rs10828650 10 18691531 g a 0.0185 0.0026 
1.56E-

12 
317754 

rs35593046 3 53553923 t g 
-

0.0164 
0.0028 

6.23E-

09 
317754 
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Table 4.4. Possible pleiotropic effects related to the instrument genetic variants, as identified using PhenoScanner (accessed 28 March 2018). 

Drug Instrument 
Effect 

allele 

Other 

allele 
SNP 

Effect 

allele 

Other 

allele 
Proxy r² Trait Study PMID Ancestry Year Beta 

Standard 

error 
P 

BB  rs1801253 

C G rs1801253 C G No 1.00 
Birth weight and 

gestational age 
EGGC 23202124 European 2013 NA NA 4E-09 

C G rs1801253 C G No 1.00 Birth weight EGGC 23202124 European 2013 -0.041 0.0070 4E-09 
C G rs1801253 C G No 1.00 Birth weight Neale B UKBB European 2017 0.0286 0.0036 3E-15 
C G rs1801253 C G No 1.00 Height Neale B UKBB European 2017 0.0125 0.0020 2E-10 
C G rs2484294 A G Yes 0.97 Birth weight Neale B UKBB European 2017 0.0280 0.0036 8E-15 
C G rs2484294 A G Yes 0.97 Height Neale B UKBB European 2017 0.0125 0.0020 2E-10 
C G rs740746 A G Yes 0.97 Birth weight Neale B UKBB European 2017 0.0278 0.0036 1E-14 
C G rs740746 A G Yes 0.97 Height Neale B UKBB European 2017 0.0125 0.0020 2E-10 
C G rs2773469 G A Yes 0.97 Birth weight Neale B UKBB European 2017 0.0281 0.0036 6E-15 
C G rs2773469 G A Yes 0.97 Height Neale B UKBB European 2017 0.0125 0.0020 2E-10 
C G rs7076938 T C Yes 0.96 Birth weight Horikoshi 27680694 Mixed 2016 0.0349 0.0040 5E-18 
C G rs7076938 T C Yes 0.96 Birth weight Neale B UKBB European 2017 0.0280 0.0036 8E-15 
C G rs7076938 T C Yes 0.96 Height Neale B UKBB European 2017 0.0125 0.0020 2E-10 

CCB 

rs3821843 A G rs3821843 A G No 1.00 Impedance of Neale B UKBB European 2017 -0.011 0.0020 4E-08 

rs10828399 
A G rs10828399 A G No 1.00 Body mass index Akiyama 28892062 East 2017 0.0215 0.0037 5E-09 
A G rs10764373 T G Yes 0.99 Body mass index Akiyama 28892062 East 2017 0.0215 0.0037 5E-09 
A G rs2357928 A G Yes 0.94 Body mass index Akiyama 28892062 East 2017 0.0198 0.0036 5E-08 

rs12780039 C G rs79586955 T A Yes 0.92 Pulse rate Neale B UKBB European 2017 -0.021 0.0038 2E-08 
rs72786098 A G rs72786098 A G No 1.00 Small vessel stroke Cheng YC 26732560 Mixed 2016 1.2730 0.2268 2E-08 

rs714277 

C T rs714277 C T No 1.00 Haematocrit Astle W 27863252 European 2016 -0.024 0.0039 3E-10 
C T rs714277 C T No 1.00 Red blood cell Astle W 27863252 European 2016 -0.024 0.0039 8E-10 
C T rs714277 C T No 1.00 Schizophrenia PGC 25056061 Mixed 2014 0.0686 0.0118 7E-09 
C T rs12823424 A G Yes 1.00 Haematocrit Astle W 27863252 European 2016 -0.024 0.0039 3E-10 
C T rs12823424 A G Yes 1.00 Red blood cell Astle W 27863252 European 2016 -0.024 0.0039 6E-10 
C T rs12823424 A G Yes 1.00 Schizophrenia Goes FS 26198764 European 2015 0.0677 0.0116 5E-09 
C T rs12823424 A G Yes 1.00 Schizophrenia PGC 25056061 Mixed 2014 0.0690 0.0118 5E-09 
C T rs2239063 A C Yes 1.00 Haematocrit Astle W 27863252 European 2016 -0.024 0.0039 3E-10 
C T rs2239063 A C Yes 1.00 Red blood cell Astle W 27863252 European 2016 -0.024 0.0039 7E-10 
C T rs2239063 A C Yes 1.00 Schizophrenia PGC 25056061 Mixed 2014 0.0690 0.0118 5E-09 
C T rs758117 C T Yes 1.00 Haematocrit Astle W 27863252 European 2016 -0.024 0.0039 3E-10 
C T rs758117 C T Yes 1.00 Red blood cell Astle W 27863252 European 2016 -0.024 0.0039 6E-10 
C T rs758117 C T Yes 1.00 Schizophrenia Li Z 28991256 Mixed 2017 0.0608 0.0108 2E-08 
C T rs758117 C T Yes 1.00 Schizophrenia PGC 25056061 Mixed 2014 0.0686 0.0118 6E-09 
C T rs10491964 G A Yes 0.92 Haematocrit Astle W 27863252 European 2016 -0.025 0.0040 7E-11 
C T rs10491964 G A Yes 0.92 Haemoglobin  Astle W 27863252 European 2016 -0.022 0.0040 2E-08 
C T rs10491964 G A Yes 0.92 Red blood cell Astle W 27863252 European 2016 -0.025 0.0040 4E-10 
C T rs10491964 G A Yes 0.92 Schizophrenia PGC 25056061 Mixed 2014 0.0656 0.0118 3E-08 
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Figure 4.2. The main Mendelian randomization (MR) results compared to clinical trial meta-

analyses against placebo (38). The MR estimates have been converted from odds ratios to relative 

risk estimates to allow comparison with trail estimates, as detailed in the Methods section. There 

was only one instrument variant for the angiotensin-converting enzyme inhibitor drug class, and 

so the confidence intervals for related estimates were wider than for other drug classes where 

more instrument variants were identified. ACE: angiotensin-converting enzyme inhibitor; IVW: 

inverse-variance weighted. 



139 
 

 

Figure 4.3. Individual instrument Mendelian randomization estimates in the analysis of 

beta-blockers and coronary artery disease risk. Units are odds ratio units per change in systolic 

blood pressure observed in clinical trials of beta-blockers (9.51mmHg) (3). IVW: inverse-variance 

weighted. 

 

 

Figure 4.4. Individual instrument Mendelian randomization estimates in the analysis of 

beta-blockers and stroke risk. Units are odds ratio units per change in systolic blood pressure 

observed in clinical trials of beta-blockers (9.51mmHg) (3). IVW: inverse-variance weighted. 
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Figure 4.5. Individual instrument Mendelian randomization estimates in the analysis of calcium 

channel blockers and coronary artery disease risk. Units are odds ratio units per change in systolic 

blood pressure observed in clinical trials of calcium channel blockers (8.9mmHg) (3). IVW: inverse-

variance weighted. 

 

Figure 4.6. Individual instrument Mendelian randomization estimates in the analysis of calcium 

channel blockers and stroke risk. Units are odds ratio units per change in systolic blood pressure 

observed in clinical trials of calcium channel blockers (8.9mmHg) (3). IVW: inverse-variance 

weighted. 
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Figure 4.7. Mendelian randomization (MR) sensitivity analyses for the investigation of beta-blockers and coronary artery disease risk. Units are odds 

ratio units per change in systolic blood pressure observed in clinical trials of beta-blockers (9.51mmHg) (3). IVW: inverse-variance weighted. 
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Figure 4.8. Mendelian randomization (MR) sensitivity analyses for the investigation of beta-blockers and stroke risk. Units are odds ratio units per 

change in systolic blood pressure observed in clinical trials of beta-blockers (9.51mmHg) (3). IVW: inverse-variance weighted. 
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Figure 4.9. Mendelian randomization (MR) sensitivity analyses for the investigation of calcium channel blockers and coronary artery disease risk. Units 

are odds ratio units per change in systolic blood pressure observed in clinical trials of calcium channel blockers (8.9mmHg) (3). IVW: inverse-variance 

weighted. 
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Figure 4.10. Mendelian randomization (MR) sensitivity analyses for the investigation of calcium channel blockers and stroke risk. Units are odds ratio 

units per change in systolic blood pressure observed in clinical trials of calcium channel blockers (8.9mmHg) (3). IVW: inverse-variance weighted. 
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Phenome-wide association study 

After excluding non-European and related participants, 424,439 participants were included in 

the PheWAS analysis, with the ICD-9 and ICD-10 diagnoses mapped to 909 distinct phecodes. 

Table 4.5 provides details of the number of phenotypes and cases included in each disease 

category.  

 

Table 4.5: Phenotypes and cases in each disease category for the phenome-wide association study 

in UK Biobank. 

Category Phenotypes (number) 
Cases (number) 

Min Median Mean Max 

Circulatory System 98 202 1048 6308 133749 

Congenital Anomalies 19 211 442 557 1823 

Dermatologic 43 218 799 4765 82669 

Digestive 116 228 1455 4817 79488 

Endocrine/Metabolic 49 208 773 4076 45303 

Genitourinary 106 203 1376 4153 103829 

Hematopoietic 22 201 569 2690 12759 

Infectious Diseases 25 219 1012 2237 10752 

Injuries & Poisonings 59 222 536 1513 16683 

Mental Disorders 36 202 710 3280 29405 

Musculoskeletal 57 213 925 4164 53823 

Neoplasms 82 215 1124 4261 90826 

Neurological 44 204 567 2286 40703 

Pregnancy Complications 17 208 1113 1854 9534 

Respiratory 56 200 1124 3837 62168 

Sense Organs 64 210 774 2443 39998 

Symptoms 16 304 2341 7036 42311 

 

Performing PheWAS for the ACEI, BB and CCB standardized GRSs respectively, the results 

highlighted associations with hypertension and related diseases (Figures 4.11-4.13). The CCB 

analysis further showed an association with increased risk of diverticulosis (OR per SD increase 

in standardized GRS 1.02, 95% CI 1.01-1.04, P=2x10-4). Similar results were obtained in 

PheWAS sensitivity analyses (OR 1.02, 95% CI 1.01-1.03 when using SBP genetic association 

estimates that were not corrected for antihypertensive medication use or adjusted for BMI; OR 
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1.02, 95% CI 1.01-1.04 when using a GRS that excluded potentially pleiotropic SNPs based on 

their identified secondary associations in PhenoScanner).  

 

Figure 4.11. Phenome-wide association study plot for the angiotensin-converting enzyme inhibitor 

genetic risk score. 
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Figure 4.12. Phenome-wide association study plot for the beta-blocker genetic risk score. 

 

 

Figure 4.13. Phenome-wide association study plot for the calcium channel blocker genetic risk 

score.
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Creating a standardized GRS by randomly sampling 24 SBP instrument SNPs from throughout 

the genome and estimating associations with diverticulosis risk over 1,000 iterations produced 

effect estimates close to the null (mean OR per SD increase in standardized GRS 1.00, 95% CI 

0.98-1.02, P=0.79; Figure 4.14). Only 10 of the 1,000 analyses (1%) had a consistent direction of 

effect and a P-value lower than found when investigating the association of the standardized 

CCB GRS with diverticulosis, to thus produce adjusted P-value=0.01. 

 

Figure 4.14. Associations with diverticulosis risk of the standardized genetic risk score (GRS) 

produced after randomly sampling 24 systolic blood pressure instrument variants from 

throughout the genome 1,000 times. The dashed line is result obtained when using the 

standardized calcium channel blocker GRS. OR: odds ratio; SD: standard deviation. 

 

Linked genetic and Electronic Health Record data for 45,517 participants were available in 

BioVU, with cohort characteristics for the considered populations from the UK Biobank and 

BioVU provided in Table 4.6. Diverticulosis prevalence was 10% in the UK Biobank, and 12% in 

BioVU. The CCB standardized GRS association with diverticulosis had an OR per SD increase 

1.01 (95% CI 1.00-1.02, P=0.17), with the meta-analysis of UK Biobank and BioVU estimates 

having OR 1.02 (95% CI 1.01-1.03, P=3x10-4). 
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Observational analysis of drug use 

From recruitment (13 March 2006 to 1 October 2010) to the UK Biobank, there were 1,408 

incident diverticulosis cases up to 13 February 2016 amongst the 54,612 participants taking 

any of the considered antihypertensive drug classes at baseline, providing a mean follow-up 

period of 2,538 days. Adjusted Cox regression considering TD antihypertensive medication use 

alone as the reference category did not provide evidence for an association between use of any 

CCBs and risk of diverticulosis (hazard ratio [HR] 1.10, 95% CI 0.88-1.35, P=0.43). However, 

when investigating CCB subclasses, there was evidence supporting an association between risk 

of diverticulosis with non-dihydropyridine CCB use (HR 1.49, 95% CI 1.03-2.14, P=0.03), but not 

dihydropyridine CCB use (HR 1.01, 95% CI 0.80-1.28, P=0.91) or any other drug class (Table 

4.7).   

 

Table 4.6. Characteristics of the UK Biobank and BioVU populations. Mean (standard 

deviation)/number (%) estimates are provided. BMI: Body Mass Index, SBP: systolic blood 

pressure, DBP: diastolic blood pressure. 

Cohort 
Total 

number 

Age, 

years 
Sex, female BMI 

SBP, 

mmHg 

Current 

smoker 

UK 

Biobank 
424,439 57 (8) 

229,239 

(54%) 
27 (5) 138 (19) 43,928 (10%) 

BioVU 45,517 61 (21) 25,148 (62%) 29 (8) 125 (13) 13,701 (30%) 
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Table 4.7. Cox regression results for the association between antihypertensive medication use and 

incident diverticulosis. Thiazide diuretics are the reference category (N=5501, diverticulosis 

cases=138). The calcium channel blocker (CCB) category analysis was performed in a separate 

model to the CCB subclass analysis. ACEI: angiotensin-converting enzyme inhibitor; ARB: 

angiotensin receptor blocker; BB: beta-blocker; HR: hazard ratio. 

Antihypertensive drug 

class 
Number 

Diverticulosis 

cases 
HR L95% CI U95% CI P 

ACEI 7210 162 1.00 0.79 1.26 0.99 

ARB 4021 111 1.11 0.86 1.43 0.42 

BB 6908 191 1.14 0.91 1.42 0.24 

CCB 6756 180 1.09 0.88 1.35 0.43 

Dihydropyridine CCB 5961 142 1.01 0.80 1.28 0.91 

Non-dihydropyridine CCB 782 37 1.49 1.03 2.14 0.03 

Two drug classes 18488 465 0.95 0.78 1.15 0.61 

Greater than two drug 

classes 
5741 162 1.02 0.81 1.28 0.90 
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4.4 Discussion 

Summary of findings and clinical relevance 

Using GWAS summary data from over 750,000 individuals, this work has identified genetic 

variants that serve as instrumental variables for the effect of the ACEI, BB and CCB classes of 

antihypertensive drug, which represent three of the most commonly prescribed medications in 

the world. MR estimates for risk of CAD and stroke generated using these respective 

instruments were comparable RCT meta-analyses (against placebo), to support the validity of 

this approach for studying the effect of these drugs. PheWAS performed to explore potential 

side-effects and repurposing opportunities for these medications across over 900 clinically 

relevant outcomes further supported the known efficacy of these drugs in preventing 

cardiovascular outcomes related to hypertension, further corroborating the validity of the 

genetic instruments for studying the effects of these antihypertensive drug classes. PheWAS in 

the UK Biobank also provided evidence to support an increased risk of diverticulosis for the CCB 

standardized GRS, with similar associations identified when considering the BioVU cohort. 

However, a similar association was not observed when considering GRSs for SBP using genetic 

variants from throughout the genome, suggesting that the association with diverticulosis is 

unlikely to be attributable to effects of lower SBP generally.  

The CCB association with diverticulosis was also observed when investigating antihypertensive 

drug use and new diverticulosis diagnoses in the UK Biobank, although it was only use of the 

non-dihydropyridine CCB subclass that was associated with increased risk of consequent 

diverticulosis, with no such association found for dihydropyridine CCBs. Consistent with this, 

dihydropyridine and non-dihydropyridine CCB subclasses have different pharmacological 

effects (39). For example, constipation is a known side-effect of non-dihydropyridine CCBs that 

arises due to their effect on reducing bowel contractility (40), and it could be through a similar 

mechanism that diverticulosis risk is increased. Another potential mechanism might be through 

drug effects on the vasa recta vessels penetrating the colon wall, in turn leading to weaknesses 

where diverticulae form (41). Diverticulosis can lead to a number of complications that require 

admission to hospital (42), and is rising in incidence (43). Over 10% of the world’s adult 

population are estimated to have hypertension and non-dihydropyridine CCBs in particular are 

recommended for individuals that have concurrent atrial fibrillation (1, 6). These findings could 

therefore have clinical implications, and for example it may be that individuals suffering with, or 

at increased risk of developing, diverticulosis are better suited to pharmacological treatments 

for hypertension other than non-dihydropyridine CCBs.  

It is also worth noting that the PheWAS analyses using GRSs for ACEIs, BBs and CCBs did not 

identify detrimental associations with any of the other traits considered in PheWAS. Although 
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this does not necessarily serve as evidence to support that these drugs do not have side-effects 

related to any of these considered outcomes, it does offer some reassurance towards the general 

safety of long-term use of these drugs, with serious adverse effects either being relatively rare 

or not being so serious as to require hospital admission.   

 

Strengths and limitations 

A major advantage of the approach taken in this work is that it uses existing genetic summary 

data to rapidly and efficiently investigate the efficacy, side-effects and repurposing potential of 

commonly prescribed antihypertensive drug classes. The initial MR analyses were able to help 

support the validity of the identified genetic instruments for the various antihypertensive drug 

classes, with PheWAS allowing hypothesis-free exploration of over 900 disease outcomes. In 

particular, this strategy does not suffer the time and resource constraints that often limit 

investigation in the form of RCT (4), while also overcoming the potential confounding and 

reverse causation biases that make it difficult to infer causality from conventional observational 

research methods (7). A range of sensitivity analyses were incorporated to assess the 

robustness of findings in the context of the various assumptions made by the genetic methods 

employed, with further study of drug use and consequent diverticulosis diagnoses in the UK 

Biobank cohort serving to triangulate the findings using methods that make distinct 

assumptions. 

This work also has limitations. Both the MR and PheWAS approaches estimate the cumulative 

effect of lifetime exposure to genetic variants, which is not the same as a discrete clinical 

intervention. The genetic variants incorporated as instruments may also have unknown 

pleiotropic effects that affect the outcomes under study through pathways independent of SBP 

to bias the consequent MR and PheWAS estimates (31). Use of a less stringent criteria for 

instrument selection (e.g. a more relaxed P-value cut off for the SBP association, or a more 

relaxed LD threshold for clumping) may have identified more variants for use as genetic 

instruments, but could potentially also have had adverse implications for the sensitivity and 

specificity of the analyses because of greater susceptibility to incorporate weak or invalid 

instruments, respectively. Information relating to gene expression was not used to identify 

genetic instruments in this work. While such a strategy has been used previously (7), such data 

are restricted to the particular cells and tissues where gene expression is measured, and so may 

not necessarily be extrapolated to explore systemic drug effects more generally. Finally, the 

observational analysis exploring antihypertensive drug use in the UK Biobank may be 

susceptible to some residual confounding or ascertainment bias, particularly as diverticulosis 
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itself can often be asymptomatic, only being diagnosed in the context of complications, or 

incidentally during interactions with the healthcare service for other reasons. 

 

Conclusions 

To summarise, the analyses undertaken in this work have identified genetic variants to serve as 

instrumental variables for exploring the effects of the ACEI, BB and CCB types of 

antihypertensive drug. Both in MR and PheWAS instrumental variable analyses, the findings 

supported known associations of these drug classes with disease outcomes related to 

hypertension. The hypothesis-free PheWAS investigation of potential drug side-effects and 

repurposing opportunities additionally identified a previously unreported detrimental 

association of the CCB GRS with risk of diverticulosis, a finding that was supported for the non-

dihydropyridine CCB drug class when investigating antihypertensive drug use and consequent 

diverticulosis diagnoses in the UK Biobank. Although this finding could be of clinical relevance, 

it requires further validation before it should change clinical practice. There was no other 

evidence produced to support potential side-effects or lack of long-term safety for the 

antihypertensive drug classes considered. The approach taken in this work highlights that the 

use of genetic variants can offer a complementary approach to existing RCT and observational 

research techniques for investigating the clinical effects of antihypertensive drugs. 
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Chapter 5: Discussion, conclusions and future perspectives 

All of the work presented in this chapter is my own, unless otherwise indicated in the text.
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5.1 Introduction 

The work in the preceding chapters has highlighted the broad applicability of the Mendelian 

randomization (MR) approach to investigate underlying mechanisms and therapeutic targets in 

cardiovascular disease (CVD). In this regard, Chapter 1 offered an introductory overview of CVD 

and MR, and also explored existing epidemiological evidence supporting diet, education and 

blood pressure as modifiable behavioural, social and metabolic risk factors respectively that 

have been shown to have important effects on CVD risk. The themes of systemic iron status, 

mediators of education, and antihypertensive drugs were consequently investigated in the 

proceeding chapters as demonstrative examples to apply the breadth of Mendelian 

randomization approaches available for exploring causal mechanisms in CVD. 

The work in Chapter 2 first identified robust genetic instruments for systemic iron status as 

variants located at genes known to have biologically plausible roles in maintaining iron levels 

that also have associations with the four main biomarkers of iron status (serum iron, 

transferrin, transferrin saturation and ferritin) in a pattern consistent with their relation to 

systemic iron status. These were then employed in targeted MR analyses to investigate the 

effect of systemic iron levels on CVD subtypes, namely coronary artery disease (CAD), stroke 

and its subtypes, carotid plaque and intima media thickness, and venous thromboembolism. 

This provided evidence to support a potential contrasting effect of iron status on CVD subtypes 

– reducing risk of outcomes related to lipid-mediated atherosclerosis, while increasing risk of 

those related to stasis-mediated thrombosis. Furthermore, phenome-wide association study 

(PheWAS) analysis was undertaken to investigate the broad health implications of iron status, 

identifying the expected protective effect on risk of anaemia, but also novel protective effects on 

risk of hypercholesterolaemia, as well as detrimental effects on risk of skin and soft tissue 

infections. Given the variability in systemic iron levels and the potential to modify this through 

diet and pharmacological intervention, these findings are clinically relevant, and warrant 

further investigation. 

Chapter 3 focused on the degree to which the traditional cardiovascular risk factors of systolic 

blood pressure (SBP), body mass index (BMI) and smoking mediate the effect of educational 

attainment on CVD risk, as well as the relation of any effects of educational attainment with 

cognitive function. The results support that approximately 20% of the effect of education on 

reducing CVD risk is mediated through each of the three considered mediator traits, and that 

due to their overlap, they together explain approximately 40% of the mediated effect. 

Furthermore, multivariable MR (MVMR) provided evidence to support that the effects of 

education on CVD risk are not related to cognitive function. In summary, these findings have 

important public health and policy implications, as they highlight that education, rather than 
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cognition, should be the target of intervention to improve cardiovascular health, and further 

that where educational attainment cannot be directly modified, its downstream consequences 

can be optimised through modifying blood pressure, obesity and smoking. Potential limitations 

in the study of education and cognition include that they span across many domains and can 

therefore be difficult to measure and quantify. Furthermore, both of these traits can be difficult 

to modify, typically requiring simultaneous political, social and cultural reform for this. 

Raised blood pressure is a well-established risk factor for CVD (1-3), with numerous 

pharmacological interventions currently available as treatment options (4, 5). However, 

investigation of the efficacy, side-effects and repurposing potential of such therapies within the 

framework of randomised, controlled trial (RCT) can be expensive and slow (6). Chapter 4 

identified genetic instruments for common antihypertensive drugs as variants at the loci for the 

gene coding the corresponding target protein of the drug, which also relate to SBP. Diastolic 

blood pressure could similarly have been used as a trait by which to identify instruments, given 

its high phenotypic and genetic correlation with SBP (7). The validity of the identified 

instruments within the MR framework was explored by comparing MR estimates for their 

effects on CVD outcomes to those measured in RCT meta-analyses against placebo. Following 

successful validation of the instruments, PheWAS was performed to explore potential side-

effects and repurposing opportunities, with the novel association of calcium channel blockers 

with diverticulosis later replicated for the non-dihydropyridine class in analysis of incident 

events for those taking the medication (versus other antihypertensive drug classes) in UK 

Biobank. This work thus highlights the potential of genetic approaches to rapidly and cost-

effectively identify novel side-effects of commonly prescribed drugs, and pending further 

validation, could have important clinical implications. 

The breadth of research themes and analyses presented so far in this thesis has allowed for 

thorough exploration of the current potential of MR. This current chapter summarises the 

described methodological strategies in more detail, including instrument selection, sensitivity 

analysis, distinguishing association from causation, scalability and reproducibility, mediation 

analysis and MVMR, paying particular attention to how they can be applied more widely in 

other contexts. The final sections consider future perspectives, including emerging techniques 

and applications. 
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5.2 Methodological strategies in Mendelian randomization 

Instrument selection 

Instrument selection is perhaps the most important stage of MR analysis. Although previous 

work has offered comprehensive practical suggestions for selecting instruments in MR analyses 

investigating the effects of disease biomarkers (8), the field has continued to evolve since (9). 

The increased availability of genetic data, which include epigenetic factors, gene, metabolite and 

protein expression, as well as phenotypic traits, is now coupled with improved efficiency in 

performing MR studies using automated software and online tools (9, 10). Additionally, MR 

analyses are no longer typically restricted to the investigation of biomarkers, and often explore 

dietary factors, social factors and drug targets, for example (10).  

Instrument selection for MR should relate to the specific exposure being investigated in that 

given MR study. For practical purposes, exposures may be considered as “proximal” or “distal”. 

Proximal exposures relate to a gene, such as for circulating proteins (e.g. C-reactive protein 

(11)) or protein drug targets (e.g. beta-blocker anti-hypertensive drugs (12)). In contrast, distal 

exposures typically relate to multiple gene effects that cannot be attributed to one mechanism 

or pathway (e.g. age at menarche (13), and time spent in education (14)). 

It is because proximal exposures correspond to protein-coding genes that greater confidence is 

afforded in the validity of genetic instruments located at the gene locus for the protein of 

interest (i.e. cis-acting variants) (8). Of note though, is that there is no consensus on how such 

variants should relate to the corresponding gene locus. For example, studies considering the 

same exposure vary in the distance on either side of the gene that they include (15, 16), as well 

as whether enhancer or promotor regions for the gene are considered (12). A similar 

consideration is the permissible degree of correlation between variants through linkage 

disequilibrium (LD), while still assuming independent, additive effects. In practice, a range of LD 

thresholds are applied where adjustment is not made for this, such as r2<0.1 (12), or r2<0.3 (15, 

16). Methods that can adjust for genetic correlation through LD are available (17, 18), and can 

be applied, such as in sensitivity analyses that aim to confirm the robustness of the main MR 

findings. 

For distal exposures, where there is generally no corresponding gene locus, it is typically 

preferable to select instruments from throughout the genome. A low LD threshold (e.g. 

r2<0.001) can therefore be used minimise correlation between variants. For some distal 

exposures, it is still possible to identify underlying genes with biological relevance, thus 

allowing for MR analyses that use instruments restricted to these loci. One such example of this 

is consideration of variants at genes for neuronal pathways when studying the effect of 
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appetite-mediated obesity on smoking behaviour (19). Inclusion of a large number of genetic 

variants will likely introduce some pleiotropy, with potential violation of the requisite MR 

assumptions and related bias (20). However, if the instruments together explain a relatively 

large proportion of the exposure variance, this bias could be relatively small, to still allow for 

robust conclusions.  

The P-value for association with the exposure used to select instruments varies in MR studies. 

For example, some analyses have included all variants that relate to the exposure at P<0.05 

(15), while others incorporate a more conservative threshold of P<5x10-8 (12). There are 

advantages and disadvantages to both relaxed and conservative criteria. More relaxed 

thresholds can allow for incorporation of a larger number of variants that cumulatively explain 

a greater proportion of the exposure variance to increase the statistical power of the 

consequent MR analysis (assuming that all the included variants are valid instruments) (21, 22). 

On the contrary, more relaxed selection criteria increase the potential to include invalid 

instruments that increase type I and type II error in MR analysis. Furthermore, more lenient 

significance thresholds for selecting instruments can also increase weak instrument bias, 

distorting MR estimates towards the confounded observational association in one sample-MR, 

and towards the null hypothesis in two-sample MR where there is no population overlap (18, 

23). An additional concern is that bias in MR related to pleiotropic effects of the variants will be 

relatively greater when their association with the exposure is weaker. 

Associations with secondary traits can also be used to support (or refute) the validity of 

instruments. As a practical example, when investigating the effect of systemic iron status using 

MR, genetic association estimates for four biomarkers of systemic iron status are available, 

including serum iron, transferrin, transferrin saturation and ferritin (24). Instruments for 

systemic iron status would be expected to relate to all four of these biomarkers – others that 

only relate to one biomarker may be more reflective of iron distribution for example (25-28). 

Secondary traits that can be used to explore the validity of instruments do not have to be 

phenotypic, and may include measures of gene, metabolite or protein expression, for example. 

In this way, instruments for antihypertensive drugs can be identified by their relation to 

expression of genes corresponding to their protein targets, as well as their relation to SBP (29).  

Randomised, controlled trials (RCTs) represent a robust study design for estimating the clinical 

effects of an exposure on an outcome. Although they can often be time-consuming and costly, 

they continue to be considered as the gold-standard for informing clinical practice (6). Where 

RCT data are available on exposure-outcome effects, these can be compared against 

corresponding MR estimates to either support or refute the validity of selected genetic 
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instruments (12). Any discrepancy between RCT and MR findings may serve as evidence that 

the chosen instruments do not appropriately proxy the clinical exposure under study. 

The contrasting methods that can used to select instruments for the same exposure are well-

exampled by two recent studies that aimed to instrument antihypertensive drug effects (12, 30). 

One study identified genetic instruments for antihypertensive classes as variants located at the 

corresponding target protein’s gene, promotor or enhancer region that also associated with SBP 

at P<5x10-8 (12). For the same exposures, a separate study by Walker et al. selected instruments 

as variants at the corresponding protein target’s gene locus that had the strongest association 

with expression of that gene in any tissue within the Genotype-Tissue Expression data (30, 31). 

These genetic variants were then only included in the final analyses if they also had an MR effect 

on SBP in a two-sample setting (30). While the separate approaches used in these two studies 

did produce different instruments, consistent MR estimates were obtained when considering 

the same exposure and outcome, suggesting that distinct selection strategies may be 

successfully employed to identify valid instruments (30).  

 

Sensitivity analysis 

A range of MR sensitivity analyses can be incorporated to investigate the robustness of findings 

to possible violations of the modelling assumptions. Such approaches might vary the criteria 

used to select instruments that are described above, including the P-value threshold for 

association to the exposure, LD r2 criteria, and (for cis-acting variants) the specific genomic 

region. Consistency across MR estimates produced with variations in these selection criteria 

would support that the MR findings are more robust. Additionally, both biological and statistical 

sensitivity analysis strategies can be incorporated. 

Biological sensitivity analyses consider the existing information on the variants. For example, 

this could consist of a review of available associations, and where there is suggestion that 

particular variants are exerting pleiotropic effects that could be introducing bias in MR, these 

can be excluded to explore that consistent MR estimates are obtained in their absence. For such 

exploration, numerous online databases now provide information on known biological effects 

and associations of genetic variants, with examples including the PhenoScanner and MR-Base 

curated databases of genetic association data (32, 33).  

When numerous variants are used as instruments, excess heterogeneity (greater than would be 

expected by chance) across the MR estimates produced can indicate pleiotropy (34). In such a 

situation, various statistical methods are also available that make distinct assumptions on the 

nature of any underlying pleiotropy (35-37). While such statistical methods have been 
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discussed in the preceding chapters, it is again worth noting here that where genetic association 

estimates are available for a known pleiotropic pathway relating the variants to the outcome 

independently of the exposure, MVMR can be applied to adjust for this genetic confounding 

(38). As an example, this method has been applied to measure the independent effect of 

different lipid traits on coronary artery disease risk (38). Discrepancy in MR estimates 

produced when applying different statistical sensitivity methods would suggest some violation 

of the requisite assumptions such as through the presence of pleiotropy, and should encourage 

greater caution and consideration in interpreting the results.  

Where there are only a few (such as less than ten) variants available to serve as instruments, 

statistical methods for investigating bias related to pleiotropy are less feasible (37). This may be 

more commonly encountered with proximal exposures because cis-acting variants are identified 

from relatively small genomic regions where relatively few independent variants might be 

available. In addition, when variants are in close proximity, pleiotropic associations are more 

likely to be shared, in turn having implications for the ability of MR statistical sensitivity 

analyses to detect or adjust for this.  

 

Distinguishing causation from association 

Violations of the modelling assumptions of MR may in some cases also limit its ability to 

distinguish causation from association. In 1965, Austin Bradford Hill described a series of 

considerations for distinguishing causation from association in the context of epidemiological 

associations (39). These eventually resulted in the formation of ‘Hill’s criteria’, which are 

discussed below in the context of how they can also be related to the MR approach. They are 

divided into two sections; those which relate to the MR modelling assumptions themselves, and 

those that apply to the context of the MR analysis within the larger framework of academic 

pursuit (39, 40). 

Strength. Hill originally described that stronger associations were more likely to be suggestive 

of causation, and a similar phenomenon may also be applicable in the context of MR. This is 

particularly relevant as a major source of bias in MR analyses relates to pleiotropic effects of the 

genetic variants directly on the outcome, independently of the exposure under consideration. 

Such pleiotropy is likely to have relatively greater influence on the interpretation of MR 

analyses when the exposure-outcome association estimate itself is weaker. Another 

consideration is that MR, like all other analysis methods, has limited statistical power, and will 

be less likely to produce evidence to support a causal effect when the strength of the effect is 

smaller. However, this would not affect the MR approach’s ability to distinguish between 
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association and causation, but rather its ability to identify a true causal effect (i.e. minimise type 

II error).  

Consistency. Hill’s consistency criterion required that the association be observed across 

different populations, times and places. Within the context of MR, this may involve performing 

analyses using both exposure and outcome genetic association estimates taken from different 

populations, at different times and places. One difficulty with implementing this may relate to 

the availability of sufficiently large cohorts for which such data are available. Considering this 

criterion from another perspective, consistency of MR estimates could also be explored across 

different genetic variants – heterogeneity in MR estimates greater than expected by chance 

would indicate the presence of bias, such as due to pleiotropic effects (34). 

Specificity. Hill argued that specificity of the exposure with the outcome provided support for a 

causal effect, rather than mere association. An example of this might be the effect of iron status 

on risk of particular subtypes of ischaemic stroke, rather than all types of cardiovascular disease 

generally (28). Where genetic association estimates that distinguish between specific exposures 

and outcomes are available, then such MR analysis may also be feasible. 

Temporal sequence. A key advantage of the MR approach is that it is often able to overcome 

the reverse causation bias that limits interpretation of causal effects in traditional 

epidemiological research (41). It is because the genetic variants used as instrumental variables 

for the exposure are randomly allocated during conception that MR is typically able to delineate 

the temporal sequence between exposure and outcome. However, in some scenarios such as 

where the exposure and outcome being considered are closely related, it may be that the genetic 

variants used to proxy the exposure better serve as instruments for the outcome (42). Under 

these conditions, the exposure-outcome direction of effect may be reversed. Fortunately, 

statistical techniques such as the Steiger test are also available to disentangle this (42), with bi-

directional MR a further option. 

Dose response. In MR, the genetic variants used as instrumental variables for studying the 

effect of varying the exposure typically relate to small changes in the exposure around the 

population average. A linear effect of the exposure on the outcome is consequently assumed (in 

most analyses), with extrapolation of the exposure-outcome relationship to a scale relevant for 

meaningful interpretation. Where multiple genetic variants are available to instrument the 

exposure, the MR estimates from these are typically also fitted assuming a linear effect of the 

exposure on the outcome. Thus, while a dose-response relationship is inherent to MR using 

multiple genetic variants, potential limitations of this may relate to the assumption of a linear 

effect, with extrapolation of this beyond the range of measured variation in the considered 
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exposure. It should be appreciated that such assumptions may not be valid if a linear model 

does not apply throughout the exposure-outcome dose-response relationship. More recently, 

non-linear MR methods have also been applied, such as to explore the J-shaped relation 

between BMI and all-cause mortality (43). 

Analysis in context. While the above five Hill’s criteria relate to details of the MR analysis and 

modelling assumptions, the remaining four criteria more relate to the context of the scientific 

inquiry, namely other supportive evidence. Specifically, these include the presence of 

experimental evidence, biological plausibility, coherence with known details about the 

phenomenon under consideration, and analogous examples that demonstrate similar 

relationships.   

To therefore draw holistic evidence to support exposure-outcome causal effects, MR analysis 

should be performed with the above considerations in mind, within the design of the MR 

analysis itself, as well in its interpretation in the wider context. 

 

Scalability and reproducibility 

The scalability of MR also allows for an array of traits to be simultaneously investigated. Where 

the effect of one exposure with multiple outcomes is the primary objective of the study, PheWAS 

approaches may be undertaken to identify associations of the genetic instruments to outcomes 

throughout the phenome (44), with MR similarly applied using the resultant genetic association 

estimates of the instrument variants with the considered outcomes (25). In a similar way, the 

effect of multiple health exposure on a single outcome may be investigated with MR (45). The 

traits considered with MR also extend beyond phenotypic measures, and can include epigenetic 

modification (46), gene expression (31), and serum metabolite (47), cytokine, growth factor 

(48), and protein concentrations (49). Using such data that represents the cross-section from 

basic genetic elements to distal physiological and behavioural traits, it is also possible to 

incorporate MR mediation analyses to quantitatively measure causal mediators at each level 

(50, 51). Such a strategy not only offers mechanistic insight towards underlying causal 

mechanisms, but can also offer interventional targets where modification of the primary 

exposure is not feasible (14). With the availability of genetic association estimates relating to 

cell and tissue specific traits, MR may now also be focused to study such specific causal 

mechanisms (31). 

The availability of publicly accessible genetic association summary estimates has allowed for 

MR analyses using these data to be semi-automated on online platforms or linked software 

packages (33). In this way, this information can be used for obtaining genetic association 
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estimates related to either the exposure or outcome of interest, potential mediators of this 

relationship, as well as possible genetic confounders (i.e. pleiotropic pathways) (33, 52). It is 

possible that in the future, such resources may allow for automated, machine-learning 

algorithms to make use of the vast data that is available to inform, refine and optimise the 

conduct of MR, such as through neural networks (33).  

Given the tremendous and continued increase in popularity of MR analyses, there is 

corresponding variation in the methods used and quality of reporting (53, 54). To this end, 

efforts have been made to provide advice for researchers performing (8, 53, 55), reporting (56, 

57), reading (58) and reviewing MR analyses (56), with the aim of maintaining scientific 

standards and consistency.  Such standards are important for assessing the robustness of 

evidence, particularly given the known potential for reporting biases in the scientific literature 

(59), which has also been shown relevant to MR work (53, 54). The umbrella review 

methodological approach is used to systematically assess evidence on the association between a 

trait with multiple outcomes, across distinct methodological approaches, to produce high level 

conclusions on the strength of evidence for association (60), and is now applied to include MR 

analyses (61). 

 

Mediation analysis 

Mediation methods have been adapted to the MR framework (50, 51), and have been 

successfully incorporated in applied examples that estimate mediating effects consistently 

across traditional observational, one-sample MR and two-sample MR approaches (14). Along 

with the advantages of univariable MR over traditional observation research, an additional 

strength of MR mediation analysis is its relative robustness to measurement error in the 

mediator, which would otherwise result in underestimation of any mediating effect (14, 62). 

However, MR mediation analysis methods are still in their relative infancy and make distinct 

assumptions beyond those required for conventional univariable MR.  

The two approaches typically used to perform MR mediation analysis are network MR and 

multivariable MR (MVMR). Network MR is a two-stage analysis method, where the exposure-

mediator association estimate is estimated in the first step, and the mediator-outcome 

association estimate adjusted for the genetic effect of the instruments on the exposure is 

calculated in the second step using MVMR (Figure 5.1). Thus, network MR also requires MVMR 

analysis in its second stage. To calculate the effect of the exposure on the outcome occurring 

through the mediator, the MR estimates from the two stages are multiplied together. Standard 

errors can be calculated using a number of approaches, including bootstrapping or the 
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propagation of error method. The proportion of effect occurring through the mediator is then 

calculated by dividing this estimate by the total effect of the exposure on the outcome that can 

be estimated using univariable MR approaches such as inverse variance weighted (IVW) MR 

(18), and again using bootstrapping or the propagation of error method to estimate standard 

errors. 

 

 

Figure 5.1. A schematic diagram depicting network Mendelian randomization. The solid black lines 

represent causal effects, while the grey dashed lines represent causal effects that would violate the 

requisite modelling assumptions. The exposure-mediator effects and the mediator-outcome effects 

(adjusted for the exposure) are estimated in two separate stages.  

 

In MVMR mediation analysis, all the instruments specific for the exposure and mediator 

respectively are applied into the same model (Figure 5.2). Clumping may be required to ensure 

their LD independence (33), as such instruments for different traits are typically selected from 

distinct GWAS summary data and may therefore not necessarily be in low LD. A summary data 

regression based approach may then be used to regress the instrument-outcome genetic 

association estimates on the instrument-exposure and instrument-mediator genetic association 

estimates, weighted for the precision of the variant-outcome genetic association estimates, and 

with the intercept fixed at zero (51, 63). This gives the direct effect of the exposure on the 

outcome that is not mediated via the mediator. By subtracting this from the total effect of the 

exposure on the outcome estimated using univariable MR approaches (18), the effect of the 

exposure on the outcome arising through the mediator can be estimated. As for network MR, 
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this may be divided by the total effect of the exposure on the outcome (obtained such as with 

IVW MR) to estimate the proportion of the exposure effect on the outcome arising through the 

mediator. Standard errors for each step may again be estimated by bootstrapping or the 

propagation of error method. 

 

 

Figure 5.2. A schematic diagram depicting multivariable Mendelian randomization. The solid black 

lines represent causal effects, while the grey dashed lines represent causal effects that would 

violate the requisite modelling assumptions. For mediation analysis, the instrument variants 

should be specific to the exposure and mediator respectively. 

 

Multivariable Mendelian randomization 

As described above, both the network MR and MVMR approaches for mediation analysis 

incorporate MVMR analysis. Even outside mediation analysis, MVMR can be used to investigate 

the effect of an exposure on an outcome that is not attributable to genetic confounding or 

mediation through a known pathway for which genetic association estimates are also available 

(63, 64). Other general considerations are required for performing MVMR however, and are 

discussed here.  
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The measures used to estimate instrument strength in univariable MR do not directly translate 

to the MVMR setting, and it may be the case that instruments considered as strong in 

univariable MR are weak in the multivariable setting (65). At a practical level, if the instruments 

selected for the exposure and mediator respectively in MVMR mediation analyses are specific to 

these traits and do not overlap, such attenuation of instrument strength when moving from a 

univariable to multivariable MR setting should be minimal. In univariable MR analyses that 

obtain exposure and outcome genetic association estimates from distinct populations, any weak 

instrument bias is towards the null (18). For MVMR, this bias is more complicated and can vary 

depending on the context. Currently, consideration of instrument strength in MVMR when using 

summary data requires an estimate of the covariance of the error term for genetic association 

estimates of the instruments with the exposure and mediator (65), which may not necessarily 

be available in all studies. When this is not available, an estimate of the phenotypic correlation 

between the exposure and mediator may offer a suitable proxy, and future work is needed to 

allow this to be used to estimate instrument strength in MVMR that uses summary data from 

different populations. 

Consideration of dichotomised exposure traits in univariable MR can produce severely biased 

estimates (66), with some bias also anticipated with a dichotomised outcome trait (and 

continuous exposure trait) (67). The same applies for MVMR, with dichotomised exposures and 

mediators likely to cause severe bias. For MVMR considering dichotomised outcomes, genetic 

associations are usually provided as log odds ratios, with such estimates typically sensitive to 

the choice of covariates used in the model. Thus, any such differences between the studies used 

to obtain genetic association estimates for the exposure, mediator and outcome in MVMR can 

also introduce bias into mediation estimates (51). At a practical level however, such bias is 

likely to be slight, and would typically still allow for interpretable estimates of the direct effect 

of the exposure on the outcome in MVMR analysis (51). 

Pleiotropy of the genetic variants incorporated as instruments remains a source of bias in 

MVMR, as it does for univariable MR. Care should therefore be taken to select instruments that 

are specific for their association with the trait that they are instrumenting, and not some other 

potentially pleiotropic pathways. Publicly available databases of known genetic association 

estimates may be used to facilitate this process (32). While statistical sensitivity analysis 

methods for MVMR such as MVMR-Egger have been proposed (68), their implications within the 

context of mediation analysis have not yet been studied. 
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5.3 Future perspectives 

The final sections of this chapter consider emerging methods and future perspectives, 

specifically focusing on investigation of non-linear effects and disease progression within the 

MR framework, colocalization and non-MR instrumental variable approaches. This is followed 

by concluding remarks on the current scope and future potential of MR in medical sciences. 

 

Non-linear effects 

The majority of published MR analyses assume a linear effect of the exposure on the outcome 

under study. In practice, this assumption may not hold, and methods are available for 

investigating non-linear effects with MR (69). The approach typically taken with such 

investigations is to stratify the population under study based on what their observed level of the 

exposure would be if they were not carrying any instrument variants (i.e. their residual 

exposure). It is important that the population is stratified on instrument-free exposure levels, as 

conditioning on the exposure directly would introduce collider bias (69). An MR estimate is 

consequently calculated for each stratum using conventional MR approaches such as the ratio 

method, and non-linearity can be investigated using statistical methods that compare MR 

estimates across different strata. Such methods include meta-regression with the fractional 

polynomial method, or estimation of a continuous piecewise linear function (70). Non-linear MR 

has previously been used to demonstrate that the J-shaped association between BMI and 

mortality has a causal aetiology in smokers (43). 

 

Disease progression 

MR has been applied to study disease progression as well as recovery after an event such as 

stroke (71). Incident event bias is an important consideration for such analyses, as any study of 

disease progression would inevitably stratify on disease occurrence. This has the potential to 

introduce collider bias into MR analyses of exposures that affect risk of disease onset (72). To 

deal with this, there is an available statistical approach that can adjust for any such incident 

event bias on the genetic association estimates for disease progression, which may in turn allow 

for unbiased MR analyses (73). In a similar way to the “instrument strength independent of 

direct effect” (InSIDE) assumption of MR-Egger however, this approach requires as a requisite 

that any direct effect of the variants under consideration on disease progression is not 

correlated to their effect on disease incidence (73). Currently, alternative methods that 

investigate differences between MR estimates produced by variants that superficially relate to 
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disease incidence, disease progression or both are being developed to address such incident 

event bias without this described assumption.   

 

Colocalization 

MR approaches for studying causal effects often rely on the availability of instruments to serve 

as proxies for the exposure under consideration (29). The criteria used to select genetic 

instruments can vary, in turn affecting the consequent MR estimates generated (12, 30). Where 

appropriate instruments for MR are available, any exclusion of variants, which may otherwise 

be providing useful information, due to high LD may inadvertently reduce statistical power. 

Furthermore, MR methods that account for the genetic correlation due to LD between variants 

can become biased when too lenient an LD threshold is used (17, 18). In contrast to MR, the 

colocalization approach investigates whether any genetic correlation between variants at two 

loci can be attributed to them sharing the same causal variants (74). This approach employs a 

Bayesian statistical method, with principal component analysis used to summarize the 

information provided by genetic variants correlated by LD.  

However, such colocalization methods also have limitations. Similarly to the difficulties 

encountered in achieving consistency for instrument selection in MR, the described 

colocalization approach can be affected by the choice of priors used in the Bayesian analysis, as 

well as the number of principal components incorporated (74). Furthermore, this method 

cannot be applied to summary genetic association data, such as are typically publicly released 

by consortia after performing GWAS meta-analyses. Existing colocalization methods that can 

use GWAS summary data are centered on the assumption that there is only one underlying 

causal variant that explains the genetic correlation between the two traits at the locus of 

interest (75, 76). A final limitation of existing colocalization methods is that, in scenarios where 

one trait is believed to be exerting a causal effect on the other, they are unable to quantify the 

magnitude of any such effect in the same way that MR approaches can (20).  

While MR and colocalization have their respective strengths and weaknesses in different 

settings, methods for both approaches continue to develop rapidly. Rather than as competitors, 

these two strategies should be used synergistically where appropriate, to improve the overall 

arsenal of methods that may be directed to the available data for addressing the research 

question under study. 
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Other instrumental variable approaches 

The success of MR, as measured by its popularity, has also encouraged a more general growth of 

instrumental variable approaches in biomedical sciences. Examples of such methods include 

discontinuity regression (77), study of doctors’ prescribing preferences (78), and use of 

offspring phenotypes as instruments for parental phenotypes (79). 

Discontinuity regression is based on the principle that individuals placed immediately on either 

side of an arbitrary cut off threshold used for allocation of an exposure would be unlikely to 

differ significantly in their baseline risk, including demographic profile or exposure to 

confounders for the exposure-outcome effect under study. An example of this is where an SBP of 

140mmHg is used as the threshold for treatment with antihypertensive medications. 

Particularly given the degree of measurement error in such readings, it would be unlikely for an 

individual with an SBP of 139mmHg to differ markedly from one with an SBP of 141mmHg, yet 

the former would not receive treatment, while the latter would. Thus, restricting such analyses 

to those with a SBP close to 140mmHg, the measured reading can be used as an instrument to 

study the effect of antihypertensive medications. 

Use of prescribing preferences in instrumental variable analysis is based on such preference 

being unrelated to the exposure, outcome and confounders of the exposure-outcome 

association. An example of this would be variation in choice of antihypertensive medications 

between different general medical practices (78). In this example, the practice would be the 

instrument, the choice of antihypertensive medication would be the exposure, and a range of 

different outcome traits might be considered. 

Where linked data for parents and their offspring are available, observed traits in the offspring 

can be used as instruments for the same traits in the parents (79). This approach is unlikely to 

be biased by reverse causation, as parental traits typically affect offspring traits, rather than the 

other way around. Furthermore, such instrumental variable analysis is relatively protected from 

confounding, as the environmental determinants of the exposure in the offspring will not be the 

same as those in the parents. Such an approach has recently been used to study the effect of BMI 

on multiple health outcomes, where offspring BMI is used as an instrument for parental BMI 

(79). 

 

5.4 Conclusion 

The MR approach has gained tremendous popularity over the last decade, and despite the 

various assumptions implicit to the model, it continues to represent an informative source of 

evidence towards optimising clinical practice. Rather than its application to obtain precise 
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causal effect estimates, the technique has found its niche within the wider framework for 

assessing causality, and serves as a powerful and efficient means of undertaking both 

exploratory and hypothesis-driven analyses. However, despite the numerous applications and 

successes of MR, the approach is also entirely fallible (53), being dependent on the availability 

of suitable genetic proxies for the exposure under consideration, as well as appropriate 

interpretation. Given the widespread pleiotropy throughout the human genome (80), the 

limited ability of genetic variants to accurately reflect the effect of a discrete intervention (20), 

and the other biases that limit the reliability of MR analyses (9), such findings should always be 

interpreted in context (39). To this end, there remains no substitute for careful study design and 

triangulation of all available evidence when interpreting research (9, 81). With continued 

growth in the availability of genetic data and corresponding analytical methods, the future 

offers incredible promise for the application of MR and genetic epidemiology more generally. 

Accordingly, the ambitions of what can be achieved also grow. The limits of MR continue to be 

expanded, with it now becoming common place to be able to rapidly investigate, for example, 

causal effects, their mediating mechanisms, linearity of effects and population specificity, in a 

large variety of research settings. 
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Appendix 

Appendix Table 1. Mendelian randomization studies investigating the effect of 

circulating factors on cardiovascular disease. 

Title First Author PMID Journal Date 

Mendelian 

randomization 

evaluation of 

causal effects of 

fibrinogen on 

incident coronary 

heart disease. 

Ward-Caviness CK 31075152 PLoS One 11/05/2019 

Genetic 

Determinants of 

Circulating 

Glycine Levels and 

Risk of Coronary 

Artery Disease. 

Jia Q 31070104 J Am Heart Assoc 10/05/2019 

Estimation of the 

Required 

Lipoprotein(a)-

Lowering 

Therapeutic Effect 

Size for Reduction 

in Coronary Heart 

Disease 

Outcomes: A 

Mendelian 

Randomization 

Analysis. 

Lamina C 31017618 JAMA Cardiol 25/04/2019 

Effect of 

glutamate and 

aspartate on 

ischemic heart 

disease, blood 

pressure, and 

diabetes: a 

Mendelian 

Zhao JV 30949673 Am J Clin Nutr 06/04/2019 
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randomization 

study. 

Effect of linoleic 

acid on ischemic 

heart disease and 

its risk factors: a 

Mendelian 

randomization 

study. 

Zhao JV 30866921 BMC Med 15/03/2019 

Causal 

associations of 

blood lipids with 

risk of ischemic 

stroke and 

intracerebral 

hemorrhage in 

Chinese adults. 

Sun L 30858617 Nat Med 13/03/2019 

Association of 

genetically 

predicted 

testosterone with 

thromboembolism

, heart failure, and 

myocardial 

infarction: 

mendelian 

randomisation 

study in UK 

Biobank. 

Luo S 30842065 BMJ 08/03/2019 

Serum magnesium 

and calcium levels 

in relation to 

ischemic stroke: 

Mendelian 

randomization 

study. 

Larsson SC 30804065 Neurology 26/02/2019 

Relative effects of 

LDL-C on ischemic 

stroke and 

Valdes-Marquez E 30787162 Neurology 23/02/2019 
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coronary disease: 

A Mendelian 

randomization 

study. 

Homocysteine and 

small vessel 

stroke: A 

mendelian 

randomization 

analysis. 

Larsson SC 30785218 Ann Neurol 21/02/2019 

Evaluation of 

GDF15 as a 

therapeutic target 

of cardiometabolic 

diseases in 

human: A 

Mendelian 

randomization 

study. 

Cheung CL 30772304 EBioMedicine 18/02/2019 

Cardioprotective 

Properties Of 

HDL: Structural 

And Functional 

Considerations. 

Pappa E 30714519 Curr Med Chem 05/02/2019 

LDL triglycerides, 

hepatic lipase 

activity, and 

coronary artery 

disease: An 

epidemiologic and 

Mendelian 

randomization 

study. 

Silbernagel G 30685440 Atherosclerosis 28/01/2019 

A genome-wide 

association study 

identifies new loci 

for factor VII and 

implicates factor 

de Vries PS 30642921 Blood 16/01/2019 
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VII in ischemic 

stroke etiology. 

Genome-Wide 

Association 

Transethnic Meta-

Analyses 

Identifies Novel 

Associations 

Regulating 

Coagulation 

Factor VIII and 

von Willebrand 

Factor Plasma 

Levels. 

Sabater-Lleal M 30586737 Circulation 28/12/2018 

Genetically 

Determined 

Levels of 

Circulating 

Cytokines and 

Risk of Stroke. 

Georgakis MK 30586705 Circulation 28/12/2018 

Genome-wide 

meta-analysis 

identifies 3 novel 

loci associated 

with stroke. 

Malik R 30383316 Ann Neurol 02/11/2018 

Plasma C-Reactive 

Protein and 

Abdominal Aortic 

Aneurysm: A 

Mendelian 

Randomization 
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atherosclerotic 

stenosis rather 

than venous 

thrombosis. 

Kamstrup PR 22516069 
Arterioscler 

Thromb Vasc Biol 
21/04/2012 

Prospective study 

of 

methylenetetrahy

drofolate 

reductase 

(MTHFR) variant 

C677T and risk of 

all-cause and 

cardiovascular 

disease mortality 

Yang Q 22492374 Am J Clin Nutr 12/04/2012 
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among 6000 US 

adults. 

The interleukin-6 

receptor as a 

target for 

prevention of 

coronary heart 

disease: a 

mendelian 

randomisation 

analysis. 

Interleukin-6 

Receptor 

Mendelian 

Randomisation 

Analysis (IL6R 

MR) Consortium. 

22421340 Lancet 17/03/2012 

Association 

between bilirubin 

and 

cardiovascular 

disease risk 

factors: using 

Mendelian 

randomization to 

assess causal 

inference. 

McArdle PF 22416852 
BMC Cardiovasc 

Disord 
16/03/2012 

Homocysteine and 

coronary heart 

disease: meta-

analysis of MTHFR 

case-control 

studies, avoiding 

publication bias. 

Clarke R 22363213 PLoS Med 01/03/2012 

LCAT, HDL 

cholesterol and 

ischemic 

cardiovascular 

disease: a 

Mendelian 

randomization 

study of HDL 

cholesterol in 

54,500 

individuals. 

Haase CL 22090275 
J Clin Endocrinol 

Metab 
18/11/2011 
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Type II secretory 

phospholipase A2 

and prognosis in 

patients with 

stable coronary 

heart disease: 

mendelian 

randomization 

study. 

Breitling LP 21799821 PLoS One 30/07/2011 

Association 

between C 

reactive protein 

and coronary 

heart disease: 

mendelian 

randomisation 

analysis based on 

individual 

participant data. 

C Reactive Protein 

Coronary Heart 

Disease Genetics 

Collaboration 

(CCGC). 

21325005 BMJ 18/02/2011 

Conventional and 

Mendelian 

randomization 

analyses suggest 

no association 

between 

lipoprotein(a) and 

early 

atherosclerosis: 

the Young Finns 

Study. 

Kivimaki M 21078622 Int J Epidemiol 17/11/2010 

Does elevated C-

reactive protein 

increase atrial 

fibrillation risk? A 

Mendelian 

randomization of 

47,000 individuals 

from the general 

population. 

Marott SC 20797493 J Am Coll Cardiol 28/08/2010 
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Triglyceride-

mediated 

pathways and 

coronary disease: 

collaborative 

analysis of 101 

studies. 

Triglyceride 

Coronary Disease 

Genetics 

Consortium and 

Emerging Risk 

Factors 

Collaboration. 

20452521 Lancet 11/05/2010 

Association of 

AHSG gene 

polymorphisms 

with fetuin-A 

plasma levels and 

cardiovascular 

diseases in the 

EPIC-Potsdam 

study. 

Fisher E 20031641 
Circ Cardiovasc 

Genet 
25/12/2009 

Genetic Loci 

associated with C-

reactive protein 

levels and risk of 

coronary heart 

disease. 

Elliott P 19567438 JAMA 02/07/2009 

Integrated 

associations of 

genotypes with 

multiple blood 

biomarkers linked 

to coronary heart 

disease risk. 

Drenos F 19336475 Hum Mol Genet 02/04/2009 

Does high C-

reactive protein 

concentration 

increase 

atherosclerosis? 

The Whitehall II 

Study. 

Kivimaki M 18714381 PLoS One 21/08/2008 

Lifelong reduction 

of LDL-cholesterol 

related to a 

Linsel-Nitschke P 18714375 PLoS One 21/08/2008 
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common variant 

in the LDL-

receptor gene 

decreases the risk 

of coronary artery 

disease--a 

Mendelian 

Randomisation 

study. 

Mendelian 

randomization 

suggests no causal 

association 

between C-

reactive protein 

and carotid 

intima-media 

thickness in the 

young Finns 

study. 

Kivimaki M 17377152 
Arterioscler 

Thromb Vasc Biol 
23/03/2007 

Fibrinogen and 

coronary heart 

disease: test of 

causality by 

'Mendelian 

randomization'. 

Keavney B 16870675 Int J Epidemiol 28/07/2006 

Insight into the 

nature of the CRP-

coronary event 

association using 

Mendelian 

randomization. 

Casas JP 16565153 Int J Epidemiol 28/03/2006 

Homocysteine and 

stroke: evidence 

on a causal link 

from mendelian 

randomisation. 

Casas JP 15652605 Lancet 18/01/2005 
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Appendix Table 2. Mendelian randomization studies investigating the effect of 

physiological traits and diseases on cardiovascular disease. 

Title First Author PMID Journal Date 

Genetic overlap of chronic obstructive 

pulmonary disease and cardiovascular 

disease-related traits: a large-scale 

genome-wide cross-trait analysis. 

Zhu Z 30940143 Respir Res 04/04/2019 

Shared mechanisms between coronary 

heart disease and depression: findings 

from a large UK general population-

based cohort. 

Khandaker 

GM 
30886334 Mol Psychiatry 20/03/2019 

Differential Association of Genetic Risk 

of Coronary Artery Disease With 

Development of Heart Failure With 

Reduced Versus Preserved Ejection 

Fraction. 

Mordi IR 30742529 Circulation 12/02/2019 

Thyroid Function and Dysfunction in 

Relation to 16 Cardiovascular Diseases. 
Larsson SC 30702347 

Circ Genom 

Precis Med 
01/02/2019 

Mendelian Randomization Analysis of 

Hemoglobin A(1c) as a Risk Factor for 

Coronary Artery Disease. 

Leong A 30659074 Diabetes Care 20/01/2019 

Iron Status and Risk of Stroke. Gill D 30571402 Stroke 21/12/2018 

Clinical and Genetic Determinants of 

Varicose Veins. 
Fukaya E 30566020 Circulation 20/12/2018 

Assessing the causal role of body mass 

index on cardiovascular health in young 

adults: Mendelian randomization and 

recall-by-genotype analyses. 

Wade KH 30524135 Circulation 14/12/2018 

Adult height and risk of 50 diseases: a 

combined epidemiological and genetic 

analysis. 

Lai FY 30355295 BMC Med 26/10/2018 

Genetic Association of Albuminuria with 

Cardiometabolic Disease and Blood 

Pressure. 

Haas ME 30220432 
Am J Hum 

Genet 
18/09/2018 

A comprehensive evaluation of the 

genetic architecture of sudden cardiac 

arrest. 

Ashar FN 30169657 Eur Heart J 01/09/2018 
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Mendelian randomisation analysis of 

clustered causal effects of body mass on 

cardiometabolic biomarkers. 

Conde S 30066639 
BMC 

Bioinformatics 
02/08/2018 

Exploring shared genetic bases and 

causal relationships of schizophrenia 

and bipolar disorder with 28 

cardiovascular and metabolic traits. 

So HC 30045777 Psychol Med 27/07/2018 

The Impact of Glycated Hemoglobin 

(HbA(1c)) on Cardiovascular Disease 

Risk: A Mendelian Randomization Study 

Using UK Biobank. 

Au Yeung SL 29950300 Diabetes Care 29/06/2018 

Genetically driven adiposity traits 

increase the risk of coronary artery 

disease independent of blood pressure, 

dyslipidaemia, glycaemic traits. 

Lv WQ 29891878 
Eur J Hum 

Genet 
13/06/2018 

Birthweight, Type 2 Diabetes Mellitus, 

and Cardiovascular Disease: Addressing 

the Barker Hypothesis With Mendelian 

Randomization. 

Zanetti D 29875125 
Circ Genom 

Precis Med 
08/06/2018 

Assessing causal estimates of the 

association of obesity-related traits with 

coronary artery disease using a 

Mendelian randomization approach. 

Zhang X 29739994 Sci Rep 10/05/2018 

Causal Impact of Type 2 Diabetes 

Mellitus on Cerebral Small Vessel 

Disease: A Mendelian Randomization 

Analysis. 

Liu J 29686024 Stroke 25/04/2018 

Association of Genetic Instrumental 

Variables for Lung Function on Coronary 

Artery Disease Risk: A 2-Sample 

Mendelian Randomization Study. 

Au Yeung SL 29650766 
Circ Genom 

Precis Med 
14/04/2018 

Childhood BMI and Adult Type 2 

Diabetes, Coronary Artery Diseases, 

Chronic Kidney Disease, and 

Cardiometabolic Traits: A Mendelian 

Randomization Analysis. 

Geng T 29483184 Diabetes Care 28/02/2018 

Liver fat content, non-alcoholic fatty 

liver disease, and ischaemic heart 
Lauridsen BK 29228164 Eur Heart J 12/12/2017 
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disease: Mendelian randomization and 

meta-analysis of 279,013 individuals. 

Bone mineral density and risk of type 2 

diabetes and coronary heart disease: A 

Mendelian randomization study. 

Gan W 28989980 
Wellcome 

Open Res 
11/10/2017 

Causal effects of cardiovascular risk 

factors on onset of major age-related 

diseases: A time-to-event Mendelian 

randomization study. 

He L 28964830 Exp Gerontol 02/10/2017 

The role of glycaemic and lipid risk 

factors in mediating the effect of BMI on 

coronary heart disease: a two-step, two-

sample Mendelian randomisation study. 

Xu L 28889241 Diabetologia 11/09/2017 

Thyroid function and ischemic heart 

disease: a Mendelian randomization 

study. 

Zhao JV 28819171 Sci Rep 19/08/2017 

The Effect of Iron Status on Risk of 

Coronary Artery Disease: A Mendelian 

Randomization Study-Brief Report. 

Gill D 28684612 

Arterioscler 

Thromb Vasc 

Biol 

08/07/2017 

Association of Body Mass Index With 

Cardiometabolic Disease in the UK 

Biobank: A Mendelian Randomization 

Study. 

Lyall DM 28678979 JAMA Cardiol 06/07/2017 

Type 2 diabetes, glucose, insulin, BMI, 

and ischemic stroke subtypes: 

Mendelian randomization study. 

Larsson SC 28667182 Neurology 02/07/2017 

Age at menarche and cardiovascular risk 

factors using Mendelian randomization 

in the Guangzhou Biobank Cohort Study. 

Au Yeung SL 28601624 Prev Med 12/06/2017 

Assessing the causal relationship 

between obesity and venous 

thromboembolism through a Mendelian 

Randomization study. 

Lindstrom S 28528403 Hum Genet 22/05/2017 

Causal Associations of Adiposity and 

Body Fat Distribution With Coronary 

Heart Disease, Stroke Subtypes, and 

Type 2 Diabetes Mellitus: A Mendelian 

Randomization Analysis. 

Dale CE 28500271 Circulation 14/05/2017 
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Taller height as a risk factor for venous 

thromboembolism: a Mendelian 

randomization meta-analysis. 

Roetker NS 28445597 
J Thromb 

Haemost 
27/04/2017 

Genetic variants associated with type 2 

diabetes and adiposity and risk of 

intracranial and abdominal aortic 

aneurysms. 

van 't Hof FN 28378816 
Eur J Hum 

Genet 
06/04/2017 

Genetic Analysis of Venous 

Thromboembolism in UK Biobank 

Identifies the ZFPM2 Locus and 

Implicates Obesity as a Causal Risk 

Factor. 

Klarin D 28373160 
Circ Cardiovasc 

Genet 
05/04/2017 

Genetically Driven Hyperglycemia 

Increases Risk of Coronary Artery 

Disease Separately From Type 2 

Diabetes. 

Merino J 28298470 Diabetes Care 17/03/2017 

Genetic Association of Waist-to-Hip 

Ratio With Cardiometabolic Traits, Type 

2 Diabetes, and Coronary Heart Disease. 

Emdin CA 28196256 JAMA 15/02/2017 

Relationships of Measured and 

Genetically Determined Height With the 

Cardiac Conduction System in Healthy 

Adults. 

Kofler T 28039282 
Circ Arrhythm 

Electrophysiol 
01/01/2017 

Genetic Obesity and the Risk of Atrial 

Fibrillation: Causal Estimates from 

Mendelian Randomization. 

Chatterjee 

NA 
27974350 Circulation 16/12/2016 

Birth weight and risk of ischemic heart 

disease: A Mendelian randomization 

study. 

Au Yeung SL 27924921 Sci Rep 08/12/2016 

Mendelian Randomisation study of the 

influence of eGFR on coronary heart 

disease. 

Charoen P 27338949 Sci Rep 25/06/2016 

Obesity and peripheral arterial disease: 

A Mendelian Randomization analysis. 
Huang Y 26945778 Atherosclerosis 08/03/2016 

Increased genetic risk for obesity in 

premature coronary artery disease. 
Cole CB 26220701 

Eur J Hum 

Genet 
30/07/2015 

A Mendelian randomization study of the 

effect of type-2 diabetes on coronary 

heart disease. 

Ahmad OS 26017687 Nat Commun 29/05/2015 
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Adiposity as a cause of cardiovascular 

disease: a Mendelian randomization 

study. 

Hagg S 26016847 Int J Epidemiol 29/05/2015 

Adult height, coronary heart disease and 

stroke: a multi-locus Mendelian 

randomization meta-analysis. 

Nuesch E 25979724 Int J Epidemiol 17/05/2015 

Mendelian randomization analysis 

supports the causal role of dysglycaemia 

and diabetes in the risk of coronary 

artery disease. 

Ross S 25825043 Eur Heart J 01/04/2015 

Age- and sex-specific causal effects of 

adiposity on cardiovascular risk factors. 
Fall T 25712996 Diabetes 26/02/2015 

Remnant cholesterol, low-density 

lipoprotein cholesterol, and blood 

pressure as mediators from obesity to 

ischemic heart disease. 

Varbo A 25411050 Circ Res 21/11/2014 

Obesity as a causal risk factor for deep 

venous thrombosis: a Mendelian 

randomization study. 

Klovaite J 25161014 J Intern Med 28/08/2014 

Clinical effect of naturally random 

allocation to lower systolic blood 

pressure beginning before the 

development of hypertension. 

Ference BA 24591335 Hypertension 05/03/2014 

Causal effects of body mass index on 

cardiometabolic traits and events: a 

Mendelian randomization analysis. 

Holmes MV 24462370 
Am J Hum 

Genet 
28/01/2014 

The role of adiposity in cardiometabolic 

traits: a Mendelian randomization 

analysis. 

Fall T 23824655 PLoS Med 05/07/2013 

The effect of elevated body mass index 

on ischemic heart disease risk: causal 

estimates from a Mendelian 

randomisation approach. 

Nordestgaard 

BG 
22563304 PLoS Med 09/05/2012 

Genes associated with adult cerebral 

venous thrombosis. 

Marjot T 21350198 Stroke 26/02/2011 

Association of a fasting glucose genetic 

risk score with subclinical 

atherosclerosis: The Atherosclerosis 

Risk in Communities (ARIC) study. 

Rasmussen-

Torvik LJ 
21036910 Diabetes 03/11/2010 
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Lifetime body mass index and later 

atherosclerosis risk in young adults: 

examining causal links using Mendelian 

randomization in the Cardiovascular 

Risk in Young Finns study. 

Kivimaki M 18550552 Eur Heart J 14/06/2008 
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Appendix Table 3. Mendelian randomization studies investigating the effect of 

social and behavioural traits on cardiovascular disease. 

Title First Author PMID Journal Date 

Conventional and genetic evidence on 

alcohol and vascular disease aetiology: a 

prospective study of 500,000 men and 

women in China. 

Millwood IY 30955975 Lancet 09/04/2019 

Genome-wide analysis of insomnia in 

1,331,010 individuals identifies new risk loci 

and functional pathways. 

Jansen PR 30804565 Nat Genet 26/02/2019 

Evaluation of the causal effects between 

subjective wellbeing and cardiometabolic 

health: mendelian randomisation study. 

Wootton RE 30254091 BMJ 27/09/2018 

Alcohol Intake and Risk of Ischemic and 

Haemorrhagic Stroke: Results from a 

Mendelian Randomisation Study. 

Christensen 

AI 
29886720 J Stroke 12/06/2018 

Education and coronary heart disease: 

mendelian randomisation study. 
Tillmann T 28855160 BMJ 01/09/2017 

Alcohol Consumption, Aldehyde 

Dehydrogenase 2 Gene Polymorphisms, and 

Cardiovascular Health in Korea. 

Shin MJ 28540979 
Yonsei 

Med J 
26/05/2017 

Effect of handgrip on coronary artery 

disease and myocardial infarction: a 

Mendelian randomization study. 

Xu L 28424468 Sci Rep 21/04/2017 

Genetically predicted milk consumption and 

bone health, ischemic heart disease and type 

2 diabetes: a Mendelian randomization 

study. 

Yang Q 28225053 
Eur J Clin 

Nutr 
23/02/2017 

Coffee intake, cardiovascular disease and all-

cause mortality: observational and 

Mendelian randomization analyses in 

95,000-223,000 individuals. 

Nordestgaard 

AT 
28031317 

Int J 

Epidemiol 
30/12/2016 

Habitual coffee consumption and risk of type 

2 diabetes, ischemic heart disease, 

depression and Alzheimer's disease: a 

Mendelian randomization study. 

Kwok MK 27845333 Sci Rep 16/11/2016 

Associations of the MCM6-rs3754686 proxy 

for milk intake in Mediterranean and 
Smith CE 27624874 Sci Rep 15/09/2016 
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American populations with cardiovascular 

biomarkers, disease and mortality: 

Mendelian randomization. 

Alcohol intake and cardiovascular risk 

factors: A Mendelian randomisation study. 
Cho Y 26687910 Sci Rep 22/12/2015 

Evaluation of Moderate Alcohol Use With QT 

Interval and Heart Rate Using Mendelian 

Randomization Analysis Among Older 

Southern Chinese Men in the Guangzhou 

Biobank Cohort Study. 

Au Yeung SL 26153479 
Am J 

Epidemiol 
15/07/2015 

Milk intake is not associated with ischaemic 

heart disease in observational or Mendelian 

randomization analyses in 98,529 Danish 

adults. 

Bergholdt HK 26085675 
Int J 

Epidemiol 
19/06/2015 

Testing for non-linear causal effects using a 

binary genotype in a Mendelian 

randomization study: application to alcohol 

and cardiovascular traits. 

Silverwood 

RJ 
25192829 

Int J 

Epidemiol 
07/09/2014 

Association between alcohol and 

cardiovascular disease: Mendelian 

randomisation analysis based on individual 

participant data. 

Holmes MV 25011450 BMJ 12/07/2014 

Causal associations of tobacco smoking with 

cardiovascular risk factors: a Mendelian 

randomization analysis of the HUNT Study in 

Norway. 

Asvold BO 24867305 
Int J 

Epidemiol 
29/05/2014 

Moderate alcohol use and cardiovascular 

disease from Mendelian randomization. 
Au Yeung SL 23874492 PLoS One 23/07/2013 

Exploring causal associations between 

alcohol and coronary heart disease risk 

factors: findings from a Mendelian 

randomization study in the Copenhagen 

General Population Study. 

Lawlor DA 23492672 
Eur Heart 

J 
16/03/2013 
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Appendix Table 4. Mendelian randomization studies investigating the effect of 

cellular traits on cardiovascular disease. 

Title First Author PMID Journal Date 

No Causal Effect of Telomere Length 

on Ischemic Stroke and Its Subtypes: 

A Mendelian Randomization Study. 

Cao W 30769869 Cells 17/02/2019 

Prioritizing putative influential genes 

in cardiovascular disease 

susceptibility by applying tissue-

specific Mendelian randomization. 

Taylor K 30704512 Genome 

Med 

02/02/2019 

Genetically Determined Platelet 

Count and Risk of Cardiovascular 

Disease. 

Gill D 30571169 Arterioscler 

Thromb 

Vasc Biol 

21/12/2018 

Blood Eosinophil Count and 

Metabolic, Cardiac and Pulmonary 

Outcomes: A Mendelian 

Randomization Study. 

Amini M 29506594 Twin Res 

Hum Genet 

07/03/2018 

Deep molecular phenotypes link 

complex disorders and physiological 

insult to CpG methylation. 

Zaghlool SB 29325019 Hum Mol 

Genet 

13/01/2018 

Mendelian Randomization Analysis 

Identifies CpG Sites as Putative 

Mediators for Genetic Influences on 

Cardiovascular Disease Risk. 

Richardson TG 28985495 Am J Hum 

Genet 

07/10/2017 

Large-Scale Identification of Common 

Trait and Disease Variants Affecting 

Gene Expression. 

Hauberg ME 28552197 Am J Hum 

Genet 

30/05/2017 

Exploring the Causal Pathway From 

Telomere Length to Coronary Heart 

Disease: A Network Mendelian 

Randomization Study. 

Zhan Y 28515044 Circ Res 19/05/2017 

Association Between Telomere 

Length and Risk of Cancer and Non-

Neoplastic Diseases: A Mendelian 

Randomization Study. 

Telomeres 

Mendelian 

Randomization 

Collaboration. 

28241208 JAMA Oncol 28/02/2017 

The Allelic Landscape of Human 

Blood Cell Trait Variation and Links 

to Common Complex Disease. 

Astle WJ 27863252 Cell 20/11/2016 
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The effect of hematocrit and 

hemoglobin on the risk of ischemic 

heart disease: A Mendelian 

randomization study. 

Zhong Y 27609746 Prev Med 10/09/2016 

Predicting gene targets from 

integrative analyses of summary data 

from GWAS and eQTL studies for 28 

human complex traits. 

Pavlides JM 27506385 Genome 

Med 

11/08/2016 

Telomere length and health 

outcomes: A two-sample genetic 

instrumental variables analysis. 

Hamad R 27321645 Exp 

Gerontol 

21/06/2016 

Short Telomere Length and Ischemic 

Heart Disease: Observational and 

Genetic Studies in 290 022 

Individuals. 

Scheller Madrid A 27259814 Clin Chem 05/06/2016 
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Appendix Table 5. Mendelian randomization studies investigating the effect of 

existing drugs on cardiovascular disease.  

Title 
First 

Author 
PMID Journal Date 

Mendelian Randomization Study of ACLY and 

Cardiovascular Disease. 

Ference 

BA 
30865797 

N Engl J 

Med 
14/03/2019 

Association of Triglyceride-Lowering LPL Variants 

and LDL-C-Lowering LDLR Variants With Risk of 

Coronary Heart Disease. 

Ference 

BA 
30694319 JAMA 30/01/2019 

Genetic Regulation of PCSK9 (Proprotein 

Convertase Subtilisin/Kexin Type 9) Plasma 

Levels and Its Impact on Atherosclerotic Vascular 

Disease Phenotypes. 

Pott J 29748315 

Circ 

Genom 

Precis 

Med 

12/05/2018 

CETP (Cholesteryl Ester Transfer Protein) 

Concentration: A Genome-Wide Association Study 

Followed by Mendelian Randomization on 

Coronary Artery Disease. 

Blauw LL 29728394 

Circ 

Genom 

Precis 

Med 

08/05/2018 

Genetic Association of Lipids and Lipid Drug 

Targets With Abdominal Aortic Aneurysm: A 

Meta-analysis. 

Harrison 

SC 
29188294 

JAMA 

Cardiol 
01/12/2017 

Mendelian randomization analysis of cholesteryl 

ester transfer protein and subclinical 

atherosclerosis: A population-based study. 

Christen 

T 
29174438 

J Clin 

Lipidol 
28/11/2017 

Differential effects of PCSK9 variants on risk of 

coronary disease and ischaemic stroke. 

Hopewell 

JC 
29020353 

Eur Heart 

J 
12/10/2017 

Association of Genetic Variants Related to CETP 

Inhibitors and Statins With Lipoprotein Levels 

and Cardiovascular Risk. 

Ference 

BA 
28846118 JAMA 29/08/2017 

Investigating Real-World Clopidogrel 

Pharmacogenetics in Stroke Using a Bioresource 

Linked to Electronic Medical Records. 

Tornio A 28653333 

Clin 

Pharmacol 

Ther 

28/06/2017 

Effect of Bile Acid Sequestrants on the Risk of 

Cardiovascular Events: A Mendelian 

Randomization Analysis. 

Ross S 26043746 

Circ 

Cardiovasc 

Genet 

06/06/2015 

Genetic variation in the cholesterol transporter 

NPC1L1, ischaemic vascular disease, and gallstone 

disease. 

Lauridsen 

BK 
25841872 

Eur Heart 

J 
07/04/2015 
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Effect of naturally random allocation to lower 

low-density lipoprotein cholesterol on the risk of 

coronary heart disease mediated by 

polymorphisms in NPC1L1, HMGCR, or both: a 2 x 

2 factorial Mendelian randomization study. 

Ference 

BA 
25770315 

J Am Coll 

Cardiol 
17/03/2015 

Association of cholesteryl ester transfer protein 

(CETP) gene polymorphism, high density 

lipoprotein cholesterol and risk of coronary artery 

disease: a meta-analysis using a Mendelian 

randomization approach. 

Wu Z 25366166 
BMC Med 

Genet 
05/11/2014 

 

 

 

 

 


