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Abstract

Land-use change is a major driver of biodiversity change; while it increases many species’
extinction risk and often causes a loss of local diversity, it also promotes the establishment of
novel alien and native species. All these processes change the species composition of
assemblages. Global syntheses rarely compare the effects of land-use change across different
ecological systems, limiting our ability to identify which systems are most affected. Islands and
mainlands often face different human pressures and harbour very different species
assemblages. Importantly, many islands harbour native species that are particularly sensitive
to human pressures and they tend to be more vulnerable than mainlands to invasions by alien
species. In this thesis, | model a global collation of site-level biodiversity data from sites facing
different land uses and related pressures to answer three questions. Does the change in
species composition caused by land-use change differ between islands and mainlands? Have
land-use change and related pressures decreased biodiversity integrity more on islands than
on mainlands? How do land use and related pressures affect the diversity of alien and native
species on islands? My results highlight particular cases where land-use change causes a
greater change in local species assemblages on islands than on mainlands. Based on the
Biodiversity Intactness Index (Bll), | also show that, on average, land-use change and related
pressures have reduced biotic integrity more on islands than on mainlands, mainly because
island species are more sensitive to human pressures. The chapters underpinning these
findings represent the first global analyses to include a wide range of taxa while comparing
biodiversity responses on islands and mainlands to land-use change. Additionally, through
analyses focusing exclusively on islands, | show that land-use change reduces both local
richness and total abundance of island native species but increases both the number and
abundance of alien species. My results highlight the sensitivity of island natives to human
pressures and attest to the establishment of alien species on islands, particularly in disturbed
habitats and on more isolated islands. They support calls for stronger efforts to protect islands’
unique biodiversity. This thesis also contributes to the development of a new implementation
of Bll, improving on the statistical modelling approach used recently to estimate BIl globally.
In a final analysis integrating results from the different chapters, | show that this improved
approach yields estimates that reflect the intactness of native biodiversity more accurately than
previous estimates. Most of this improvement is attributable to the use of a more stringent
definition for sites whose biota is assumed to have been minimally impacted by people, which

was facilitated by a more efficient use of the underlying assemblage data.
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CHAPTER 1

General introduction

The functioning of ecosystems and their capacity to provide services to humanity depend on
the state of local, rather than global biodiversity (Cardinale et al., 2012; Hautier et al., 2018).
Although biodiversity is critical for the provision of ecosystem services — benefits from nature
that underpin human wellbeing (Mace et al., 2012) — human-caused pressures are reducing
biodiversity worldwide. This thesis is about how one particular pressure, land-use change,

affects local biodiversity globally.

Land-use change is one of the main drivers of biodiversity loss (Sala et al., 2000; Maxwell et
al., 2016); it increases the risk of global extinction for many species (Brummitt et al., 2015;
Maxwell et al., 2016), can sharply reduce local species richness and abundance (Murphy &
Romanuk, 2014; Newbold et al., 2015) and alters species composition of ecological
assemblages (Socolar, 2016; Newbold et al., 2016b), e.g., by promoting the establishment of
alien species and favouring a subset of tolerant or widespread species (Catford et al., 2012;
Socolar et al., 2016; Newbold et al., 2018). However, the effects of land-use change vary
across geographic regions (Lenzen et al., 2009; De Palma et al., 2016) and taxonomic groups
(Flynn et al., 2009; Stork et al., 2009), because exposure to habitat modification and related
human pressures differ across regions (Cincotta et al., 2000; Ramankutty et al., 2008), and
because species’ responses and vulnerability can vary according to their ecological and life
history traits (Cardillo, 2003; Barbaro & van Halder, 2009; De Palma et al., 2015). This thesis
focuses on how land-use change affects local ecological communities in two different
ecological arenas: mainlands and islands (focusing exclusively on marine or ‘true’ islands —

i.e., landmasses completely surrounded by ocean).

Island and mainland settings differ markedly in terms of environmental conditions, species
assemblages and human pressures (Whittaker & Fernandez-Palacios, 2007; Kier et al., 2009).
Specifically, islands are expected to be more vulnerable to human disturbance as a
consequence of their small size, isolation, and the rarity of their endemic species (Paulay,
1994; Whittaker & Fernandez-Palacios, 2007; Fordham & Brook, 2010; Keppel et al., 2014),
among other factors (see below). However, to date, no global analyses of a wide range of taxa
have examined island-mainland differences in how biodiversity responds to land-use change

and related pressures. This comparison is often not possible since data on biodiversity in
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disturbed landscapes are often biased towards geographic regions which are usually
mainlands; e.g., mainland Europe and America (Trimble & van Aarde, 2012). For example,
Newbold et al. (2016a) recently published a global map of the estimated state of an indicator
of local biodiversity, the Biodiversity Intactness Index (Bll: Scholes & Biggs, 2005); this map is
based on global statistical models which, because of data limitations, could not allow island
and mainland assemblages to respond differently to human pressures. Therefore, if island
responses differ from mainlands, then Newbold et al.’s (2016a) estimates of biodiversity
intactness of island assemblages may be systematically biased. In particular, if island biotas
tend to be more sensitive, the published Bll estimates may be overoptimistic. This thesis
refines Newbold et al.’s (2016a) modelling approach to generate improved estimates of Bll for

the world’s islands and mainlands.

The loss of island biodiversity is particularly worrying since islands harbor many unique species
(i.e., endemics) and a large proportion of Earth’s biodiversity (Whittaker & Fernandez-Palacios,
2007; Delgado et al., 2017). For example, even though islands only constitute around 3% of
Earth’s land area, they contribute around 20% of terrestrial species (Whittaker et al., 2017) —
“a disproportionately high biodiversity relative to their area” (Delgado et al., 2017). Importantly,
nine of the 25 biodiversity hotspots — areas high in species endemism but facing a strong
habitat loss (Myers, 1988) — are entirely or mostly made up of islands (Myers et al., 2000).
Furthermore, some of these ‘island-rich’ hotspots (i.e., the Caribbean, Madagascar, Phillipines
and Sundaland hotspots) are among the “most depleted habitats” (Myers et al., 2000),
retaining only 10% or less of their primary vegetation, highlighting the need to prioritise these

systems for conservation interventions.

In this introductory chapter, | review some of the factors that may contribute to different
responses of island and mainland assemblages to human pressures, focusing on factors that
drive vulnerability of island assemblages. | also discuss patterns of land-use change and
additional human pressures (e.g., introduction of species) on islands and mainlands, as
different levels of exposure are likely to contribute to island/mainland differences in biodiversity
loss. Finally, | include a thesis overview, highlighting the main questions addressed in each

chapter and the methods and approaches used.

1.1 ISLAND ASSEMBLAGES AND VULNERABILITY TO HUMAN
PRESSURES

Islands are unique systems with distinctive environmental conditions (e.g., limited area,

geographic isolation and lower elevational heterogeneity and seasonality than mainlands —
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Weigelt et al., 2013), which shape communities in a very particular way. Previous studies have
suggested that the extinction risk of island species is highly sensitive to habitat loss (Simberloff,
1995b; Brooks et al., 2002) and the literature on factors that define islands’ uniqueness and
vulnerability is extensive. In this section, | review how island size (area) and isolation play an

essential role in shaping island species assemblages and their responses to human pressures.

1.1.1 Island species richness

Island isolation and size are the attributes that underpin the equilibrium theory of island
biogeography (ETIB — MacArthur & Wilson, 1963; 1967), a model for prediction of patterns of
species diversity on islands. Although other models have been developed to explain the
variation in island species richness (e.g., the species-energy theory — Wright, 1983; the small-
island effect — Whitehead & Jones, 1969; Triantis et al., 2006), ETIB has been widely used as
a conceptual foundation for community ecology, even providing insights to community
assembly in other systems (Warren et al., 2015). ETIB focuses on the species-distance and
species-area relationships and bases its predictions on the balance between immigration and
extinction rates. The theory assumes that as the number of species on an island increases,
the rates of immigration decrease but rates of extinction increase; this implies that the number
of species will reach an equilibrium point, at which the loss of species caused by extinction is
balanced by the species added through immigration (MacArthur & Wilson, 1963). ETIB also
hypothesises that large islands have lower extinction rates than small islands and that islands
that are closer to the colonisation source (e.g. a continent or another island) have higher
immigration rates (Warren et al., 2015). Based on these assumptions, ETIB makes two
principal predictions: small islands have fewer species than large islands; and distant — or more

isolated — islands have less species than near islands (MacArthur & Wilson, 1963).

The island species-area relationship (ISAR) varies across systems (MacArthur & Wilson, 1963;
Matthews et al., 2019); for example, ISAR is expected to vary across biogeographical regions
and taxa, since these factors determine the overall biotic richness of the system or source-
pool region (Whittaker & Fernandez-Palacios, 2007). Additionally, MacArthur and Wilson
(1967) predicted that, with increasing geographic isolation, ISAR becomes steeper; for
example, in minimally isolated systems a shallow ISAR slope with a high intercept (i.e., number
of species on small islands) would be expected since extinction events can be rapidly reversed
by recolonization (i.e. ‘rescue effect’ — Brown & Kodric-Brown, 1977), which can maintain a
relatively high species richness on small islands (Whittaker et al., 2017). On the other hand, in
a remote system, small islands have a markedly low species richness as a consequence of

their low rates of immigration and restricted resources, which “cannot sustain marginal
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populations of small size or permit the origin and persistence of newly formed endemics”
(Whittaker et al., 2017); therefore, in these systems, a steep ISAR slope with a low intercept
is expected. Under these assumptions, it has been long stated that, as a consequence of their
isolation, islands usually encompass fewer species than same-sized areas in mainlands
(MacArthur & Wilson, 1967), and islands are considered to be undersaturated with species
(Whittaker & Fernandez-Palacios, 2007).

Based on ETIB, on further developments for this ecological model and adding theory on island
evolution, multiple studies have examined how island size and isolation contribute to other

characteristics of island assemblages and their vulnerability to human pressures:

1.1.2 Effects of island isolation on island assemblages

Island isolation acts as a barrier and filter for species colonisation (Whittaker & Fernandez-
Palacios, 2007). In the case of ‘true islands’, water represents a non-colonisable area, which
enhances isolation compared to other insular systems such as montane sky islands,
fragmented landscapes and caves (Warren et al., 2015), which are also present on mainlands.
These other island-like systems can have changing surrounding matrices which at some point
can present favourable conditions for colonisation (Warren et al., 2015). In contrast, under
natural conditions, the more severe isolation of islands mainly allows the arrival of species with
strong dispersal abilities (Paulay, 1994; Gillespie et al., 2008) suitable to cross the surrounding
water (Whittaker & Fernandez-Palacios, 2007). As a consequence, restricted immigration not
only has a negative effect on island species richness, but it also creates a ‘taxonomic
disharmony’, since taxonomic representation on islands is often biased towards groups that
are good dispersers (Gillespie et al., 2008). This is mainly the case for oceanic islands that
have never been connected to continents and “receive their biotas solely through dispersal”
(Paulay, 1994); in contrast, a variety of taxonomic groups are often well represented on
continental islands, since many of these were connected to mainlands until relatively recently,
when they separated due to tectonics or postglacial sea-level rise (Whittaker & Fernandez-
Palacios, 2007). More groups from mainlands are also more likely to colonise continental than
oceanic islands since the former are generally closer to continents (Whittaker & Fernandez-
Palacios, 2007).

The isolation of islands can enhance the vulnerability of their assemblages through different
processes. First, because in situ diversification has played a more important role than
colonization in generating the biodiversity of more isolated islands (Gillespie et al., 2008; Losos
& Ricklefs, 2009), such islands often have very high levels of local endemism — since biotas of

remote islands show evolutionary trajectories that are not influenced by evolutionary
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processes happening elsewhere (Losos & Ricklefs, 2009). Islands endemics usually evolve
with lower pressures from predators, competitors and pathogens than do mainland species
(Paulay, 1994; Denslow, 2003; Whittaker & Fernandez-Palacios, 2007); therefore, they often
show poor competitive abilities (Denslow, 2003), lack of defence strategies (Bowen & Van
Vuren, 1997), loss of dispersal abilities (Cody & Overton, 1996; Gillespie et al., 2008) and
reduced reproductive output (Adler & Levins, 1994; Siliceo & Diaz, 2010), all of which lower
species’ potential to face changes in their habitat and recover after disturbances. Furthermore,
some island endemics have adapted to very particular ecological niches (i.e., through adaptive
radiation — Paulay, 1994; Sakai et al., 2002; Gillespie, 2005) and can be highly specialized;
such species are less likely to cope with the abiotic changes caused by habitat modification or
to exploit human-dominated habitats. Although higher endemism is particularly associated with
more isolated islands (Mayr, 1965; Gillespie, 2007), islands as a whole show higher average
endemism than mainlands (Kier et al., 2009), which might contribute to a global pattern of

higher vulnerability of island assemblages.

A second reason why isolation can enhance the islands’ vulnerability to human pressures is
that it prevents the rescue of declining populations, as more isolated islands are unlikely to be
recolonized quickly from sites that have not been affected by human pressures (Simberloff,
1995b). Mainland settings have bigger native ‘species pools’ — i.e. the set of species whose
propagules can reach a target community in reasonable time and establish there (Zobel, 1997;
Gillespie et al., 2008) — than islands (Herben, 2005), since more sources of dispersing species

are available, which reduces species extinction risk (Brown & Kodric-Brown, 1977).

Considering that remote islands (e.g., oceanic islands) have lower immigration rates
(MacArthur & Wilson, 1963) and higher levels of endemism (Mayr, 1965; Gillespie, 2007), their
assemblages are expected to be particularly vulnerable to habitat modification (e.g., Paulay,

1994; Keppel et al., 2014) compared to assemblages of continental or less isolated islands.

1.1.3 Effects of island area on island assemblages

Islands are geographically discrete landmasses with areas ranging from few hectares to large
landmasses; but most are small (Weigelt et al., 2013; Delgado et al., 2017). One consequence
of this size spectrum is that many island populations are small (Paulay, 1994; Wright, 1983).
A small population size is known to increase species’ sensitivity to habitat modification (Henle
et al., 2004; Brook et al., 2008); for example, it leads to populations with more uniform genetic
composition which usually cannot adapt to environmental changes (Mayr, 1965), increasing

the likelihood of populations extinction (Lande, 1999).
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Islands’ restricted size also contributes to island species typically having more restricted
geographic ranges than mainland species. Although some island natives might have a
relatively broad distribution across several archipelagos or even mainland regions (e.g., if an
island is very close to a continent or if a species manages to persist in both settings) (Whittaker
& Fernandez-Palacios, 2007), many are restricted to a single archipelago or island (i.e., single
island endemics; e.g., Sakai et al., 2002; Paulay, 1994) with a small total land area. Moreover,
island endemics can be restricted to very small areas within an island (e.g., a single volcano
or areas smaller than 1 km? — Paulay, 1994; Gillespie et al., 2008), which has in part been
attributed to these species losing dispersal ability (Gillespie et al., 2008) as an adaptation to
reduce the likelihood being blown out to sea (Darwin, 1859; Carlquist, 1966; Cody & Overton,
1996). However, the narrow distribution of some species is interpretable in terms of habitat
requirements and competition (Whittaker & Fernandez-Palacios, 2007). For example, the
‘taxon cycle’ model (Wilson, 1961; Ricklefs & Cox, 1978) hypothesises that, after an island
colonisation (e.g., by a widespread continental species), immigrant species tend to move from
marginal habitats towards more central island habitats, partly driven by competitive
interactions with later arrivals (Whittaker & Fernandez-Palacios, 2007). As time passes, these
species become increasingly specialized in their habitat requirements; this process therefore,
limits the possibility for range expansion among island endemics (Webb & Gaston, 2000). A
highly restricted habitat distribution also contributes to the small population sizes of some
island natives (Brown, 1984; Gaston et al., 1997).

Regardless of its cause, the narrow geographic range of some island species increases their
extinction risk (Purvis et al., 2000; Collen et al., 2016; Chen et al., 2019) from human activities.
The underlying explanation is that human disturbances are more likely to affect the whole
distribution of species with very narrow geographic ranges, and therefore affect all the species’
populations (Charrette et al., 2006). Accordingly, it has been suggested that the reason why
island species tend to be at greater risk of extinction from localized pressures is their highly

restricted range rather than an inherent vulnerability (Simberloff, 1995b).

1.2 HUMAN PRESSURES ON ISLANDS AND MAINLANDS

Islands and mainlands not only have different ecological assemblages; they are also likely to
experience different human pressures. The length of time since human colonisation can be
one of the factors driving these differences; islands have been more recently colonized by
humans compared to mainland settings (Keegan & Diamond, 1987), so at least some human
pressures might have expanded and intensified more on mainlands (but see Kier et al., 2009),

where humans have had more time to settle and exploit resources. Moreover, if islands have
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been experiencing human disturbances for a relatively short time, assemblages’ responses
might be in an earlier stage than on mainlands. For example, islands might still harbour species
that are highly sensitive to human pressures (e.g., Spatz et al., 2017) — which are likely to be
suffering strong declines where disturbances are taking place — whereas such species might
have already disappeared on mainland settings as a result of a longer history of human
settlement (Keegan & Diamond, 1987). Hence, on mainlands, only the more resilient species

might have persisted through the ‘extinction filter’ (Balmford, 1996).

Pressures such as overexploitation, pollution and climate change have been pointed out as
maijor drivers of biodiversity decline at a global scale (Maxwell et al., 2016). For islands,
historical causes of species loss include predation by humans and the spread of diseases
(Whittaker & Fernandez-Palacios, 2007). However, across many systems (including islands:
Paulay, 1994; Whittaker & Fernandez-Palacios, 2007), land-use change and the introduction
of species are currently the most — or among the most — important drivers of biodiversity loss
(Sala et al., 2000; Brummit et al., 2015; Maxwell et al., 2016); therefore, here | focus on

discussing patterns for these two pressures on islands and mainlands.

1.2.1 Land-use change and related pressures

Contrary to the expectations based on time since human colonization, in a global assessment,
Kier et al. (2009) suggested that islands and mainlands have suffered an equal amount of
habitat loss to date; these results were based on the percentage of total land area classified
as cultivated or managed for the year 2000 (Bartholome & Belward, 2005). However, they
found that the ‘Human Impact Index’ (Sanderson et al.,, 2002) — a composite measure
quantifying human influence, based on global data on agricultural land, urban extent,
population density, roads and navigable rivers (Kier et al., 2009) — was significantly higher for
islands than for mainlands, and they predicted a future acceleration of habitat loss driven by
land-use change for islands. As an explanation for the two latter findings, they suggested that
islands’ small size and high degree of infrastructure makes them more vulnerable to habitat
loss or modification because access to pristine sites can be easier than on mainlands (Kier et
al., 2009).

Kier et al.’s (2009) results might reflect global trends; however, rates of habitat modification
can vary greatly across islands or within mainland regions. Particular islands, geographic
regions or countries can be suffering an extensive habitat conversion; for example,
Ramankutty et al.’s (2008) global maps of agricultural lands (for the year 2000), which
combined agricultural inventory data and satellite data, showed that Southeast Asia and the

Pacific are among the island-rich regions having a high percentage of croplands and pastures,

22



respectively. For mainlands, the regions with the highest proportion of croplands are South
Asia, Europe, and the United States, while regions with the highest proportion of pastures are
some parts of South and Central America, Tropical Africa, China and the United States.
Notably, from Ramankutty et al. ‘s (2008) results for 14 geographic regions, it seems that the
proportion of land area with agricultural lands tends to be particularly high in some mainland

regions.

Such geographic variation in the degree of habitat modification can be driven by multiple
factors such as economic development and human population density (Meyer & Turner, 1992;
Lambin et al., 2001; Liping et al., 2018). It is normally assumed that habitat conversion has
occurred more rapidly in developed regions (Meyer & Turner, 1992); however, some studies
suggest that high rates of land-use change and human population growth are taking place in
regions with developing economies (Cohen, 2003; Laurance et al., 2014). A large proportion
of islands (particularly small islands) belong to developing countries (Turvey, 2007), which
might be an important factor defining global patterns of island land-use change. In particular,
the rates of land-use change on islands can also vary according to different island
characteristics. Island size, age, altitude, topographical complexity and isolation can determine
space and resource availability, habitability for humans, and therefore patterns of human
occupation (Delgado et al., 2017). The extraction of natural resources is likely to be more
intense on larger islands than on smaller islands, since they provide a greater amount and
diversity of resources (Delgado et al., 2017); moreover, larger islands are more likely to have
permanent human populations and therefore greater land-use change (Trevino et al., 2007;
Didham et al., 2005).

While human population growth is related to land-use intensification (e.g., expansion of
agriculture and urban areas — Grimm et al., 2008; Laurance et al., 2014), human populations
are also the source of additional pressures that can affect more natural habitats, such as the
development of roads or hunter-gathering practices (Cincotta, 2011). Cincotta et al. (2000)
estimated that, in 1995, 20% of the world population were living within biodiversity hotspots;
they highlighted three hotspots “with the most elevated risks, as assessed by high human
population density” (Cincotta et al., 2000), all of which are entirely or mostly made up of islands
(i.e., the Caribbean, Western Ghats/Sri Lanka and Philippines hotspots). More recently,
Williams (2013) reported high human population densities in the Sundaland and Wallacea
hotspots and high population growth rates in the Philippines, Madagascar (and the Indian
Ocean islands) and Pacific Islands region. These results are alarming because the spatial
constriction of islands brings a higher human population density close to natural habitats with

vulnerable biota (Delgado et al., 2017).
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In summary, whether the extent and intensity of land use and related pressures differs
systematically between islands and mainlands remains unclear. Habitat loss has been a major
driver of species extinctions in many ecological systems (Brooks et al., 2002; Brook et al.,
2003; Sodhi et al., 2009), and some studies have pointed out extreme cases of loss of forest
cover or habitat transformation on islands, which have driven the extinction of many island
species (Paulay, 1994; Myers et al., 2000; Whittaker & Fernandez-Palacios, 2007; Delgado et
al., 2017; Johnson et al., 2017). However, there has not yet been a multi-taxon synthesis of

the impacts of land-use change on island ecological assemblages at the local scale.

1.2.2 Introduction of species

International trade is a primary source of introduction of alien species (Levine et al., 2003;
Early et al., 2016). The number of species introduced to a defined location (i.e., colonisation
pressure — Lockwood et al., 2009) increases with economic development — e.g., with
increasing GDP per capita (Dyer et al., 2017a), and regions with high economic development
tend to have more alien species (Hulme, 2009; Capinha et al., 2017). These patterns have
been mainly attributed to the high trade volumes and high levels of pet trade in high-income
countries (Early et al., 2016; Dyer et al., 2017a), which increase the chances of introducing of
species as stowaways (Helmus et al., 2014) and lead to the of escape of imported species into
the wild (Reichard & White, 2001; Hulme et al., 2008), respectively. Additionally, alien species
can be intentionally introduced in a particular location for other economic purposes, such as
forestry or agriculture (PySek et al., 2010; Monroe et al., 2017) or for cultural reasons — for
example, many species were introduced by European settlers on some islands as an attempt

to recreate their home environments (Atkinson & Cameron, 1993).

As well as the factors determining the introduction of alien species to a particular location, a
further range of factors contribute to their establishment success. Higher establishment
success of alien species has been related to event-level processes (Redding et al., 2019) such
as a high propagule pressure (i.e, number of released individuals — Lockwood et al., 2005)
(Forsyth & Duncan, 2001; Britton & Gozlan, 2013; Redding et al., 2019), but also to specific
characteristics of the recipient location such as climatic suitability for the alien species and
anthropogenic factors such as the presence of human disturbances, extinctions of natives or
the presence of other alien species (Blackburn & Duncan, 2001; Sax et al., 2002; Jeschke et
al., 2012; Duncan et al., 2014; Redding et al., 2019). In particular, previous studies have
highlighted how the establishment of alien species is strongly related to habitat modification
(e.g.; Lozon & Maclsaac, 1997; Didham et al., 2007) and that disturbance or land-use change

often drives an increase in richness or abundance of alien species (Lonsdale, 1999; Borges et
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al., 2006; Meijer et al., 2011). Establishment success can also be related to traits of alien
species, for example their adaptive history (Redding et al., 2019) which can make them
“‘competitively superior to natives” (Sax et al., 2002) and particularly successful in disturbed

environments (Sax & Brown, 2000).

Many studies have highlighted that islands are particularly invasible (Simberloff, 1995a;
Denslow, 2003; Whittaker and Fernandez-Palacios, 2007; Dalmazzone & Giaccaria, 2014),
and recently, islands have been pointed out as hotspots for alien species richness (Capinha
et al.,, 2017; Dawson et al., 2017). This pattern has mainly been discussed in terms of the
characteristics of island assemblages (a location-level factor— see Redding et al., 2019) that
make islands more vulnerable to invasions than mainlands (Sax & Brown, 2000; Denslow,
2003; Pysek & Richardson, 2006). For example, islands’ species poverty and ecological
undersaturation can make them less resistant against invaders (i.e., ‘biotic resistance’ theory,
Elton, 1958; but see Lonsdale, 1999), and the reduced competitive ability of natives can favour
the establishment of alien species (Denslow, 2003). Alternatively, it has been suggested that
islands are more invasible than mainlands simply because of their smaller pool of native
species (Herben, 2005; Gillespie et al., 2008), which leads to a low species richness per unit
area and a restricted sample from a set of potential species that can establish in different
habitat conditions (Herben, 2005). Given that alien species are often good dispersers (Sakai
et al., 2001; Cadotte et al., 2006; Ordonez et al., 2010) and they tolerate a broad range of
conditions (Sakai et al., 2001), on islands, aliens are more likely to colonize open ecological

spaces (e.g., disturbed sites) than are natives (Gillespie et al., 2008).

In terms of the rates of introduction of alien species, the low economic development of many
islands (Turvey, 2007) may imply low levels of international trade and thus little colonization
pressure. However, previous studies have discussed how on islands — particularly remote
islands (Blackburn et al., 2008) — intentional releases of alien species can be very common,
perhaps because the low diversity of native species means that more species need to be
introduced for economic purposes; e.g., for species trade, farming or as sources of fuel
(Denslow, 2003; Blackburn et al., 2008; Dalmazzone & Giaccaria, 2014). Unintentional
introductions might also be very common on some islands that have been “important
provisional stations for transoceanic shipping traffic’ (Denslow, 2003) or that rely on tourism
(see Anderson et al., 2015); such islands are exposed to the introduction of species from many
different sources (Denslow, 2003). These studies highlight that, as a consequence of
anthropogenic factors, islands are no longer ‘sea-isolated entities’ (Delgado et al., 2017) which
follow the expected species-isolation relationship (Helmus et al., 2014). Currently, island

biogeography can be mainly dominated by anthropogenic factors and the introduction of
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species might be obscuring natural processes (Blackburn et al., 2008; Helmus et al., 2014;
Nakamura et al., 2015).

Many extinctions of island species have been related to the introduction of alien species
(Paulay, 1994; Sax et al., 2002; Blackburn et al., 2004; Clavero et al., 2009; McCreless et al.,
2016), mainly as a consequence of predation or competition (Sax & Gaines, 2008; Whittaker
& Fernandez-Palacios, 2007). Alien species can be the main driver of extinctions for some
taxa on islands (Clavero et al., 2009; Bellard et al., 2016). Additionally, the displacement of a
native keystone species on islands can produce severe shifts in a whole ecosystem, affecting
several trophic levels and reconfiguring species interactions (O'Dowd et al., 2003) — e.g., as a
result of islands’ low functional equivalence (Denslow, 2003) and simple food webs (Pimm,
1991).

Considering the human pressures that islands face and the sensitivity of their assemblages, it
is not surprising that a recent study highlighted that almost half of the world’s highly threatened
terrestrial vertebrates occur on islands (Spatz et al., 2017). Higher extinction rates have also
been reported on islands than on mainlands (Humphreys et al., 2019), with most known
historical extinctions (e. g., over the last 500 years — Whittaker & Fernandez-Palacios, 2007;
Sax & Gaines, 2008) having happened on islands. Endemism has been suggested as the main
factor determining extinction on islands, obscuring the effect of intensity of human pressures
(Sadler, 1999). However, both the intensity of human pressures on islands and unique traits
of their assemblages are likely to determine the severity of changes that island assemblages
are suffering. Importantly, the combination of these two factors may combine to cause a more

severe biodiversity loss on islands than on mainlands.

1.3 THESIS OVERVIEW

This thesis represents the first global analysis, including a wide range of taxonomic groups,
comparing the effects of land-use change and related human pressures on local biodiversity
on islands and mainlands. My analyses aim to assess the effects of land-use change on
multiple aspects of island and mainland biodiversity, so involve statistical models for a range
of biodiversity measures. Furthermore, the thesis includes an analysis of how land-use change
affects the local diversity of alien and native species on islands. The modelling approaches
used and developed throughout the thesis have also contributed to a new implementation for
the Biodiversity Intactness Index (Bll) (Scholes & Biggs, 2005) (see details below); in the last
chapter, | demonstrate that this new implementation is an improvement on that of Newbold et
al. (2016a).
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All statistical modelling in this thesis uses data on species abundance and occurrence
extracted from the PREDICTS (Projecting Responses of Ecological Diversity in Changing
Terrestrial Systems) database (Hudson et al., 2017) in October 2016. The PREDICTS
database has collated data from published research (or unpublished theses where field
sampling had used published methods) that compared local biodiversity across sites facing
different land uses and related pressures. In compiling the database, efforts prioritised under-
represented taxa and biomes, in order to make the database — and therefore models fitted to
its data — reasonably representative of terrestrial biodiversity (Hudson et al., 2017). The
database is structured hierarchically into Data Sources (publications), Studies (different
sampling methods within a source), Blocks (spatial blocks, if present in the study) and Sites
(Hudson et al., 2014; Hudson et al., 2017). The sites in the database are classified into 10
land-use categories and three land-use intensities (Minimal, Light and Intense) within each
land use; these land-use and use-intensity categories are defined in Table A.1 and in Hudson
et al. (2014). The dataset extracted in October 2016 included data for 49,511 species (Figure
1.1) from 540 Data Sources, 747 Studies and 31,248 sites in 97 countries across all 14
terrestrial biomes (Figure 1.2). More detailed description for island and mainland data is
provided in the following chapters.
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Figure 1.1. Number of species (per Phylum and Kingdom) included in the dataset extracted from the
PREDICTS database in October 2016.
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Tundra (0; 50)

Boreal Forests/Taiga (0; 1093)

Temperate Conifer Forests (125; 686)

Temperate Broadleaf & Mixed Forests (4402; 7945)
Montane Grasslands & Shrublands (485; 552)

Temperate Grasslands, Savannas & Shrublands (651; 1125)
Mediterranean Forests, Woodlands & Scrub (310; 1859)
Deserts & Xeric Shrublands (67; 294)

Tropical & Subtropical Grasslands, Savannas & Shrublands (581; 2172)
Tropical & Subtropical Coniferous Forests (0; 419)

Flooded Grasslands & Savannas (0; 51)

Tropical & Subtropical Dry Broadleaf Forests (241; 451)
Tropical & Subtropical Moist Broadleaf Forests (3387; 4268)
Mangroves (6; 28)
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Figure 1.2. Locations of sites included in the dataset extracted from the PREDICTS database in October
2016. Sites are coloured according to the biome where they are located. Numbers in brackets show the
number of island and mainland sites per biome (first value: island sites, second value: mainland sites).

The core of this thesis is the Biodiversity Intactness Index (Bll), “an indicator of the average
abundance of a large and diverse set of organisms in a given geographical area, relative to
their reference populations” (Scholes & Biggs, 2005). Bll was proposed as a suitable interim
metric for assessing biotic integrity in the Planetary Boundaries framework (Steffen et al.,
2015), despite at that time only having been estimated using expert judgement (Scholes &
Biggs, 2005). In order to provide a scientifically robust indicator of the state of biodiversity (e.g.,
for any given area and using data across multiple taxa), the PREDICTS project developed a
Bll implementation based on the modelling of its global collation of site-level biodiversity data
(Newbold et al., 2016a; Purvis et al., 2018; Chapter 3). PREDICTS’ implementation of Bll has
become a high-profile biodiversity indicator: it has been adopted by the Convention on
Biological Diversity (CBD), the Intergovernmental Science-Policy Platform for Biodiversity and
Ecosystem Services (IPBES) and the Biodiversity Indicators Partnership (BIP) as an indicator
for tracking progress towards biodiversity targets such as the Sustainable Development Goals
and the Aichi 2020 Targets. It has attracted criticism, however; for example, Martin et al. (2019)
pointed out that BIl estimates from Newbold et al. (2016a) were unexpectedly high for some

regions that have suffered widespread habitat loss.
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Although all chapters in this thesis are related to the development, testing and refinement of
Bll, each of them addresses different questions about the effects of land-use change on
aspects of island and mainland biodiversity. Chapter 2 asks whether the change in species
composition caused by land-use change differs quantitatively between islands and mainlands.
Chapter 3 combines statistical modelling with projections from those models to ask whether
land use and related pressures have compromised biotic integrity — as estimated by Bll — more
severely on islands than on mainlands. Chapter 4 focuses exclusively on island assemblages,
separating their species into natives and aliens to ask how does land use and related
pressures affect diversity (species-richness, total abundance and species composition) of alien
and native species on islands. The final chapter synthesises how the earlier chapters have
refined the implementation of Bll, asking which methodological change has the greatest effect
and whether the changes are improvements. The thesis concludes with a brief general

discussion.

The statistical analyses of all chapters are based on generalized mixed-effect models (GLMMs:
Bolker et al., 2009). These models are needed in order to deal with the methodological
heterogeneity among the studies’ methods, taxonomic focus and location (e.g., differences in
sampling method and effort, sampled taxa and broad-scale biogeographic differences); they
are also able to accommodate differences among spatial blocks within the studies that have
blocked or split-plot designs. GLMMs provide a robust approach for quantifying the variation
in the response variable among studies and blocks (random-effects) without needing to

estimate coefficients for each study and block (Bolker et al., 2009).

Chapters 2 and 3 respectively focus on comparing the effects of land use on the composition
of local species assemblages and local biotic integrity (Bll) on islands and mainlands. In order
to do so, the analyses of these chapters are based on models that include interactions between
the sites’ Island/Mainland status and the human pressures included as explanatory variables
in the models. The models in Chapter 3 are also used to project high-resolution (~1km?) global
maps of Bll for the year 2005, which account for different responses between island and
mainland assemblages. In contrast, Chapter 4 focuses exclusively on islands, to evaluate
whether alien and native species respond differently to land-use change and related pressures,
considering that island native species can be particularly vulnerable to human disturbances
and that islands are at higher risk of invasions. Hence, these models for local species richness,
total abundance and composition of local species assemblages include interactions between
the species’ alien/native status and various human pressures. In Chapter 4 | also fit models to
test whether island traits (e.g., island area and isolation) and indices of economic connectance

(e.g., GDP per capita) predict local richness and total abundance of alien species on islands.
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Finally, in Chapter 5 | assess my implementation of Bll (developed in Chapter 3) which not
only allows pressure effects to differ between islands and mainlands but also includes
improvements on the methods previously used to estimate Bl globally (Newbold et al., 2016a).
| compare my island and mainland Bll estimates against global estimates in Newbold et al.
(2016a) and, using estimates generated in Chapter 4 of how native species on islands respond
to human pressures, | project additional high-resolution global maps of the status of island
native biodiversity for year 2005. These maps, which estimate Bl for islands without the need
for some of the assumptions and caveats that Newbold et al. (2016a) required, are compared
against island Bll maps from Chapter 3 to test how well they reflect the intactness of native
biodiversity. This chapter represents the first test of the validity of PREDICTS’ implementation
of BII.
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CHAPTER 2

Differences in species assemblages among and within
land uses on islands and mainlands

2.1 ABSTRACT

The transformation of natural habitat into human-dominated land uses not only causes a
decline of narrow-ranged native species but also favours many widespread species that can
tolerate disturbed conditions. Such processes change the species composition of
assemblages of natural habitats and contribute to biotic homogenization. Global syntheses of
how land-use change affects compositional similarity among assemblages are scarce and
seldom consider whether these effects differ among geographic regions or ecological systems,
such as islands and mainlands — two systems with very different species assemblages,
environmental conditions and human pressures. In this chapter, | test whether island
assemblages are more susceptible to compositional changes than mainland assemblages, as
expected from the vulnerability of their endemic species to human pressures and susceptibility
of their assemblages to the establishment of alien species. | estimate assemblage turnover
caused by land-use change on islands and mainlands, test for biotic homogenization in human-
dominated land uses on both systems, and explore whether island isolation and size can
explain the differences seen between island and mainland responses. In models including all
taxa, the compositional difference between minimally-disturbed primary vegetation and most
human dominated land uses is greater on mainlands than on islands. Island size and isolation
do not seem to have a strong effect on compositional similarity between sites on the same
island; however, the greater compositional changes on mainlands could be the result of
mainland sites facing more intense land use, and having bigger species pools (which provide
more synanthropic species that can be assembled in disturbed sites) than island sites. In
contrast, when running separate models for plant/fungal and animal assemblages, | found
some cases (masked in models including all taxa), where land-use change causes greater
compositional changes in island assemblages, mainly because of novel species becoming
abundant. | suggest that such cases result from islands’ natural species poverty and
vulnerability of native species, which can ease the establishment of novel species in disturbed
sites. Finally, on both islands and mainlands, most land uses mainly reduce spatial beta

diversity of plant/fungal assemblages. The different responses of island and mainland
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assemblages to land use should be incorporated into global biodiversity models to avoid

systematic mis-estimations of the effects of human pressures on island biodiversity.

2.2 INTRODUCTION

Conversion of natural habitat to human use is a major driver of species’ global extinction risk
(Brummitt et al., 2015; Maxwell et al., 2016), and also drives net reductions in local-scale
species richness (Gibson et al., 2011; Murphy & Romanuk, 2014; Newbold et al., 2015) and
population sizes (WWF, 2016). Here | focus on an intermediate spatial scale, analysing the

effects of land-use change on the compositional similarity between local assemblages.

The transformation of primary vegetation into human-dominated land uses tends to favour
species that are able to thrive under disturbed conditions (McKinney, 2006; McCune & Vellend,
2013). Such species are often widespread or invasive (Newbold et al., 2018), often introduced
by humans (McKinney & Lockwood, 1999), tend to tolerate a broad range of conditions (Sakai
et al., 2001), and often have strong reproductive and dispersal abilities (Hamilton et al., 2005;
Cadotte et al., 2006; McKinney, 2006). At the same time, the transformation causes a decline
of native and narrow-ranged species in human-dominated land uses (McKinney & Lockwood,
1999; Scholes & Biggs, 2005; Newbold et al., 2018). Both these processes contribute to biotic
homogenization (Socolar et al., 2016; Newbold et al., 2018); i.e., they result in species
composition tending to be more similar between sites in human-dominated land uses than

among undisturbed habitats (Socolar et al., 2016).

To date, despite convincing case studies (e.g., Gossner et al., 2016), few global syntheses
have assessed how land-use change affects compositional similarity among terrestrial
assemblages. One reason for the shortage is that estimating compositional similarity requires
the site-by-species data matrix (which is often not presented in source papers), whereas meta-
analyses can estimate the effects of land use on species richness from statistical summaries
(which source papers nearly always do present) (Purvis et al.,, 2018). Another is that
compositional similarity between assemblages is expected to decline with increasing
geographical and/or environmental distance between them — a relationship known as the
distance-decay curve (Nekola & White, 1999) — meaning that the locations of sites must also
be known. The most recent global synthesis (Newbold et al., 2016b) showed that land use
strongly reshapes local assemblages, with those in human-dominated land uses or an early
successional stage of recovery being very dissimilar from those in primary vegetation,
especially in the tropics; but that (distance-corrected) similarity of assemblages in the same

land use did not differ strongly among land uses.
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Newbold et al. (2016b) did not consider whether effects of land use on compositional similarity
differed between islands and mainlands, even though there are several reasons why island
biotas are likely to be particularly susceptible to biotic homogenization. Islands’ small size
makes them more vulnerable to habitat destruction because access to pristine sites can be
easier and faster than in mainlands (Kier et al., 2009). Low rates of natural immigration to
isolated islands can prevent the recovery of declining populations (Lomolino, 1986). Endemic
species can lack the potential to face changes in their habitat if evolutionary isolation has led
to the loss of traits that ease populations’ recovery after disturbances; for example, loss of
dispersal abilities (Gillespie et al., 2008) and reduced reproductive output (Adler & Levins,
1994). Endemic species might be particularly vulnerable on small, remote islands which often
shelter more rare and fragile species and ecosystems (Delgado et al., 2017) and which have
more limited resources (Whittaker and Fernandez-Palacios 2007; Delgado et al., 2017).
Moreover, islands are also more susceptible than mainlands to the establishment of alien
species (Simberloff, 1995a; Sax & Brown, 2000; Denslow, 2003; Dalmazzone & Giaccaria,
2014), perhaps because their species poverty (caused by their isolation and low colonisation
rates — Whittaker & Fernandez-Palacios, 2007) means that newcomers may find vacant
niches, reduced competition from native species (Roderick & Vernon, 2009; but see Lonsdale,
1999) and more available resources (Denslow, 2003). It has also been suggested that the
small pool of native species on islands (Herben, 2005) — i.e. the set of native species whose
propagules can reach a target community in reasonable time and establish in the given habitat
(Zobel, 1997; Gillespie et al., 2008) — increases the chances for alien species to colonize open
ecological spaces, especially if the aliens have a higher propagule pressure than do island
natives (Gillespie et al., 2008). Recent studies have pointed out islands as hotspots of alien
species (e.g., Capinha et al., 2017; Dawson et al., 2017; Dyer et al., 2017a), and shown that
geographic isolation may now be less important than economic isolation as a barrier to the

arrival of alien species (Helmus et al., 2014).

If land-use changes do indeed cause greater compositional changes on islands than on
mainlands, this would be concerning, given the unique biodiversity that many islands harbour
(for example, the Wallacea biodiversity hotspot is entirely made up of islands: Myers et al.
2000). However, previous global models of how land-use change affects biodiversity (e.g.,
Newbold et al., 2016b; Alkemade et al., 2009) have so far not assessed the possibility,
implicitly assuming that island and mainland biotas respond the same way to land-use change.
There is therefore a risk that current models may be providing overoptimistic pictures of the
state of island biodiversity (and correspondingly pessimistic estimates of the state of
biodiversity on mainlands). Conversely, if a given land use tends to be less damaging on

islands (e.g., due to factors such as low economic development — Turvey, 2007, or more recent
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human colonization than on mainlands — Keegan & Diamond, 1987), then models not

incorporating land-use intensity may have overestimated the impacts on islands.

My study aims to resolve these issues by answering three main questions: 1) Does the change
in species composition caused by land-use change differ significantly among islands and
mainlands? | address this question by comparing compositional similarity between sites in
minimally-disturbed primary vegetation with matched sites in other land use/use intensity
combinations, on both islands and mainlands. 2) Does average compositional similarity
between matched sites that have the same land use differ between islands and mainlands?
This question is tackled by comparing compositional similarity of sites within the same land
use on islands and mainlands, to test whether biotic homogenization in human-dominated land
uses is more pronounced on islands. 3) Do island isolation and size explain how island
assemblages respond? In interpreting the results, | also explore whether taxonomic
differences between island and mainland data sets could explain any differences, given that
species’ responses and vulnerability can differ greatly according to their ecological and life
history traits (Cardillo et al., 2005; Barbaro & van Halderand, 2009; Newbold et al., 2013; De
Palma et al., 2015).

2.3 METHODS

2.3.1 Data assemblage

All data on species’ abundance and presence/absence at sites were extracted from the
PREDICTS database (Hudson et al., 2017 and described in detail in Chapter 1) in October
2016. Each site was classified as an island or mainland site by matching the coordinates with
a global layer of land polygons taken from OpenStreetMap (OpenStreetMap Contributors,
2015). | define islands as land masses completely surrounded by ocean and smaller than
continents, but here treated Australia as an island for two reasons. First, many of its
characteristics are more island-like than continental: e.g., complete isolation from other
continents by ocean, long isolation history (complete isolation ~ 33 Mya - Wilford & Brown,
1994) and relatively small size. Second, treating Australia as an island helped to improve the
balance between island and mainland sites in my analyses. Repeating my analyses with
Australia classed as a mainland did not change results qualitatively (Table B.6). The name of
the island where each site was located was determined by matching the site coordinates with
the Global Island Database, ver. 2.1 (UNEP-WCMC, 2015).

Sites had previously been classified into ten land-use categories and three land-use intensities

(Minimal, Light and Intense) within each land use (Table A.1; Hudson et al., 2014). To obtain
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reasonable sample sizes (at least 100 sites) within each land-use category for both islands
and mainlands, the ten land-use categories and three use intensities were collapsed into seven
final land use/intensity classes: 1) Primary vegetation (Primary forest + Primary non-forest)
with minimal use, 2) Primary vegetation (light and intense use combined), 3) Secondary
vegetation (young + intermediate + mature + indeterminate secondary vegetation), 4)
Plantation forest, 5) Cropland, 6) Pasture and 7) Urban (last five categories include all use
intensities). Primary vegetation with minimal use (henceforth PriMin) was selected as a
baseline for analyses, representing minimally disturbed sites. Even these sites with the most
natural conditions will often have experienced human influence (e.g. Watson et al., 2016); to
the extent that such influence has made the biota of such sites more similar to that in other

land-use classes, my analyses will underestimate the effects of land use (Purvis et al., 2018).

Other site variables extracted from the database and used in analysis were sampling effort,
diversity metric type (e.g., species richness and abundance), coordinates and maximum linear
extent sampled (metres; this refers to the length of the maximum distance between multiple
sampling points within a site, e.g., the extent of a single quadrat, transect or the extent that
multiple traps cover within a site). Studies that did not report abundance data, that sampled
only a single species, or where sampling effort varied among sites were excluded from

analysis, as were any sites with unknown land use/intensity.

2.3.2 Statistical modelling

All calculations and statistical modelling used R Version 3.2.3 (R Core Team, 2017). My
strategy for estimating the assemblage turnover caused by land-use change on islands and
mainlands was to model two measures of compositional similarity (one abundance-based and
one species-based) between pairs of sites as a function of the sites’ land uses and the
geographic and environmental distance between them. Pairwise comparisons were therefore
excluded if the environmental distance could not be calculated due to missing data or if the

estimated geographic distance equalled zero (due to lack of coordinate precision).

Newbold et al. (2016a; 2016b) chose pairs of sites to compare in such a way as to avoid any
nonindependence among comparisons, limiting the complexity of the statistical models they
were able to consider. Here, | use a different strategy, making all possible pairwise
comparisons between sites, using matrix regression — explained in more detail below — to fit
models (which can be as complex as required) to these non-independent comparisons, and

using carefully-structured randomisation tests to assess term significance.
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2.3.2.1 Compositional similarity

| calculated two measures of compositional similarity between sites j and j: the richness-based
asymmetric Jaccard Index, Jr (= S; /S;, where S; is the number of species common to both
sites and S; is the number of species in site j — Newbold et al., 2016a), and the abundance-
based asymmetric Jaccard index, Ja (= Aj /A;, where Aj is the summed abundance at site j of
all species common to both sites and A; is the summed abundance of all species at site j —
Chao et al., 2004). Asymmetric measures were chosen to reflect the possibility of one site’s
assemblage being largely nested within another (Baselga, 2010). To see the relevance for this
asymmetric metric, consider a hypothetical land use in which the assemblages have 50% of
the species found in primary vegetation and no additional species. Any organisms found in
these sites are bound to belong to species also found in primary vegetation, so should
contribute towards compositional similarity; a symmetric measure of compositional similarity
would fail to recognise this nestedness. Both measures are zero if two sites share no taxa in
common, one if all taxa at site j are also present at site /, and undefined (and hence dropped

from analysis) if neither site had any organisms sampled.

These asymmetric metrics, Jr and Ja, are affected by changes in richness or abundance of
species in site /i but are more strongly shaped by the presence and abundance of unique
species in site j (i.e., species reported from site j but not from site i). Low Jr or Ja values are
mainly the result of a high number or high abundance of novel species in site j increasing the
denominators in the calculations. Many metrics of compositional similarity are available (Koleff
et al., 2003; Tuomisto, 2010; Newbold et al., 2016b). These were chosen because they are
used to estimate the Biodiversity Intactness Index (Newbold et al., 2016a; Purvis et al., 2018),
so significant island/mainland differences in their responses to land use will feed directly into

this indicator being systematically mis-estimated.

I made both forward and reverse comparisons between every pair of sites within each study
(i.e., sampling method within a data source in the PREDICTS database — Hudson et al., 2014);
comparing sites from different studies would be inappropriate due to their methodological
differences. Four studies included sites in different islands, meaning that just under 1% of
comparisons (13,480 out of 1,469,538) of island sites were between rather than within islands;

dropping these comparisons did not change any models qualitatively.

2.3.2.2 Explanatory variables

Statistical models included four explanatory variables as follows. (1) Geographic distance
between sites i and j (to account for distance-decay), calculated from the sites’ coordinates

using the ‘distHaversine’ function in the ‘geosphere’ package ver. 1.5-7 (Hijmans, 2017). (2)
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The environmental distance between the sites (to account for decay of similarity with
environmental distance), estimated as the Gower (1971) dissimilarity between sites based on
site-level data for altitude and four bioclimatic variables (maximum and minimum temperature
and precipitation of wettest and driest month) at 1-km spatial resolution (Hijmans et al., 2005);
| used the ‘gower _dist function in the ‘gower package ver. 0.1.2 (van der Loo, 2017). (3) Land-
use contrast (a 49-level factor indicating the land uses/intensities of sites j and j:, e.g. PriMin-
Cropland). All 49 levels had sample sizes > 3000 on both islands and mainlands, except for
PriMin-Urban on islands (Table B.1). Only two island studies in the PREDICTS database
sampled in both PriMin and urban sites; | address this issue in the next section (Modelling).
(4) Whether the pair of sites was on an Island or a Mainland; all studies in the PREDICTS
database are either on a mainland or one or more islands, so no island site was ever compared

with a mainland site.

Although all data were used in fitting models, | focus on only two sets of land-use contrasts in
my results and discussion. The set of seven contrasts in which site i was PriMin allows
estimation of how the species composition of minimally-disturbed sites is affected by change
to each other land use. The set of seven contrasts where both sites are in the same land-
use/intensity class allow estimation of how similar communities are among sites facing similar
pressures. Hence, | discuss the effects of 13 land-use contrasts (Table B.1; PriMin-PriMin is
in both sets) on compositional similarity on islands and mainlands. Results for all land-use

contrasts are reported in Table B.5.

2.3.2.3 Models of land-use effects on island vs. mainland assemblages

Richness-based (Jr) and abundance-based (Ja) compositional similarity were modelled
separately as linear mixed-effect models (Zuur et al., 2009) using the ‘i/me4’ package ver. 1.1-
15 (Bates et al., 2017), to deal with the great methodological heterogeneity among studies
(see Chapter 1) which might affect comparisons but whose effects are not themselves of

interest.

The four explanatory variables listed in the previous section were treated as fixed effects, with
two-way interactions between an Island/Mainland term and the other three fitted to test for
different effects on islands and mainlands. Study was included as a random intercept. The
PriMin-PriMin contrast was used as the intercept level in the models, since this contrast reflects
the natural spatial turnover of species, making it a natural baseline against which to compare

the other land-use contrasts.

Compositional similarity estimates were logit-transformed prior to analysis, which has

advantages in power and interpretability over other transformations of proportional data
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(Warton & Hui, 2011). | used an adjustment of 0.01 to avoid values of -~ and « that arise from
logit transformation of 0 and 1 (Warton & Hui, 2011). Previous analyses of the PREDICTS
database have used log-transformation for compositional similarity estimates, which produced
well-behaved residuals (Newbold et al., 2016a; 2016b); however, such transformation does

not account for the possible range of compositional similarity estimates.

Environmental and geographic distances were transformed, because both included extreme
values (Zuur et al., 2007). | chose for each variable the transformation that most closely
approached a normal distribution. Environmental distance was transformed using cube root.
Geographic distance was first rescaled by dividing it by the median of sites’ maximum linear
extents, and then log-transformed; as a result, a transformed geographic distance of zero
corresponds to sites separated by their median linear dimension, i.e., adjacent sites. This
contrasts with previous methods in Newbold et al. (2016a, 2016b), where geographic distance
was log-transformed, meaning that sites were implicitly separated by 1 m (because distances
were measured in meters and log 1 = 0), an arbitrary distance. These transformations
improved model fit, as judged by the Akaike Information Criterion (AIC; see Table B.4), and

model diagnostics suggest that data treatment was adequate (Figure B.5).

These matrix regression models — using all pairwise comparisons — inevitably have extensive
pseudo-replication, because pairwise comparisons that involve the same site are not
independent. The non-independence means that standard statistical approaches cannot be
used to simplify the fixed effects of the models. | therefore used permutation tests to determine
whether fixed-effects of the models could be simplified without losing explanatory power. My
permutation tests are conceptually identical to the treatment of non-independence in multiple
regression on distance matrices (MRM) (Lichstein, 2007), an extension of partial Mantel

analysis (Smouse et al., 1986).

To perform backwards stepwise model simplification, | first performed normal likelihood ratio
tests for my full model against the reduced model. As a second step, | permuted the model
dataset (using the ‘permute’ package ver. 0.9-4: Simpson, 2013) by randomly shuffling the
compositional similarity data within studies (i.e., rows of the response variable within each
study) while holding all explanatory variables constant. | then fitted the full and reduced models
with the permuted dataset and performed a likelihood ratio test. | repeated this permutation
process 199 times to generate null distributions for the likelihood ratios. This number of
permutations was enough to get distributions approaching normality. The p-values were
calculated by performing a “greater” hypothesis test, where | compared the likelihood ratio from
my models (observed value) against the distribution of the null likelihood ratios (comparison of

200 values: observed value + 199 null likelihood ratios), using the ‘as.randtest’ function from
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the ‘ade4’ package ver. 1.7-10 (Dray et al., 2007). This test analysed whether the likelihood
ratio of my models was higher than expected based on a model comparison with the same
difference in degrees of freedom but no real loss of explanatory power. In most cases (see
exceptions below), the test was required only for the three interaction effects in my models
since model simplification was not possible; i.e., all interaction effects showed significant p-
values (0.005 in most cases, meaning that the observed effect always exceeded every
permutation trial). The statistical significance of interactions between island/mainland and the
other explanatory variables was tested in the same way, except that comparisons between
model coefficients and the coefficients obtained from the permutation trials were two-tailed.
Interaction coefficients that do not differ from the null distributions indicate no real difference

between the effects of the different variables for islands and mainlands.

The overall model intercepts estimate (logit-transformed) Jr and Ja, for PriMin-PriMin contrasts
on islands when (transformed) environmental and geographic distances were zero. Estimates
for (logit-transformed) compositional similarity of each land-use contrast on islands were
obtained by adding the model intercept to the contrast coefficients for islands; comparable
values for mainlands were obtained by adding the model intercept and the PriMin-PriMin
mainland coefficient to the contrast coefficients for mainlands plus each of the same island
contrast coefficient. Calculating the inverse logit for these final island and mainland values

converted them back to the original scale from 0 to 1.

Only two of the island studies included the PriMin-Urban contrast, which is too few for random
effects to be estimated reliably (Bolker et al., 2009). Therefore, | also estimated this coefficient
indirectly, as the product of estimated PriMin-Secondary and Secondary-Urban compositional
similarities (in a 0 to 1 scale) — as coefficients for these contrasts could be estimated from 38
and 10 island studies, respectively (enough for reliable estimation: Bolker et al., 2009). The
indirect estimates were logit-transformed and the respective model’s intercept (PriMin-PriMin
island contrast) was subtracted to transform these values into model coefficients (Table B.5).
Good agreement between the two estimates of the PriMin-Urban compositional similarity on
islands would have suggested that the original estimate was reasonable; but there was a
strong disagreement (Table B.5) indicating the need for caution in interpreting it. Although
based on more data, this second estimate makes the additional assumption that assemblages
in secondary vegetation are directly between assemblages in primary minimal and urban sites
on a straight line through multidimensional compositional space; this assumption means that
this second approach is likely to underestimate the true similarity between PriMin and Urban
to some degree. Given the uncertainty around the original estimate, | have tentatively used the

indirect estimate.
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Finally, | modelled Jr and Ja, in animal and plant/fungal assemblages separately (i.e., four
additional models) to obtain a more detailed view of how species composition changes on
islands and mainlands; further taxonomic subdivision was not feasible. These taxon-specific
models were fitted as above. The plant/fungal data included mainly vascular plants but also
additional taxa of sessile species; i.e., mosses, fungi and slime moulds. Two mainland studies
in my final data that sampled both animal and plant species were excluded from these models
since pairs of sites could not be classified as animal or plant data (i.e., data for all species was
combined within the sites). Numbers of pairs of sites were reasonable for each land-use
contrast category within animal and plant/fungal data when islands and mainlands are
separated (Table B.7). Nevertheless, in the case of the plant/fungal dataset, data for some
land-use contrasts including PriMin as baseline came from only two or three studies; | point
out this issue in my results section. In the plant/fungal dataset, there was also no data for the
PriMin-Urban and Urban-Urban contrasts on islands (Table B.7); therefore, | excluded all
contrasts including Urban sites from the plant/fungal data before running the models. My final
models for plant/fungal and animal assemblages fulfilled homogeneity and normality

assumptions (Figure B.6).

2.3.2.4 Models including island area and isolation

As a final step, | tested whether Jr or Ja, between island sites was predicted by island area
(km?) and two measures of island isolation (from Weigelt et al., 2013): distance to the nearest
mainland (distance in km from the island’s centroid to the mainland coast) and a metric of
surrounding landmass around the island perimeter (sum of the proportions of landmass within
buffer distances of 100, 1,000 and 10,000 km). Using only the within-island comparisons from
the data set described above, | averaged Jr and Ja, for each land-use contrast within each
study. This approach removes the widespread pseudoreplication that using all pairs of sites
would have caused, and has no cost because all the pseudoreplicated comparisons would

have the same area and isolation values.

Two studies in my datasets (conducted in New Zealand and the Azores Islands) included
within-island comparisons but across several islands; therefore, in these cases, | chose to only
include data for the island that included most comparisons. This led to the exclusion of five
islands (out of 37 — Table B.9) from the datasets. Studies conducted in Australia were also
excluded from these models since Weigelt et al., 2013 did not include data for Australia (as it

is usually not considered as an island).

| modelled the average Jr and Jx of each land-use contrast within each study as a function of

the land-use contrast class, island area and each of the two isolation metrics in turn, including
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the interaction in each of the six models to test whether the land-use effect varied with island
area and isolation. Island area and distance to the nearest mainland were square-root
transformed, which normalized the distributions better than log-transformation. The datasets
included all land-use contrasts, but | only focus on results of the same land-use contrasts as
previously. Average Jr and Ja, values were weighted by the number of pairs of sites from which
they were estimated, with weights rescaled within each study so that the study’s maximum
weight was 1; this approach greatly improved model fit. Models that included study as random
intercept were preferred over models with both study and island as random intercepts, as
judged by Akaike’s Information Criterion (AIC) for models with the full fixed-effects structure
(Zuur et al., 2009). The fixed-effects structure of the models was assessed using backwards
stepwise model simplification based on likelihood ratio tests. | used post hoc analysis (using
the package ‘phia’ ver. 0.2-1 — De Rosario-Martinez, 2015) to test whether the coefficients of
the interaction between the land-use contrasts of interest and the area and isolation metrics
were significantly non-zero. The diagnostic plots showed that the models fulfiled homogeneity
and normality assumptions (e.g., Figure B.12). There were insufficient data to repeat the

isolation analyses using the plant/fungal and animal subsets.

2.4 RESULTS

The final data for modelling included a total of 490 studies — 339 from mainlands (14,922 sites;
25,312 species) and 151 from islands (7,157 sites; 11,793 species) (Table B.2). The island
studies came from 37 different islands (Table B.9), of which 34 were in 18 different
archipelagos. For both islands and mainlands, various tropical and temperate forest biomes
were best represented in my data, though my final dataset included mainland studies from all
14 terrestrial biomes and island studies from 10 (Table B.3). Classifying Australia as a
mainland did not qualitatively change the results when modelling all taxa (see Table B.6); |
therefore present the results from the (more balanced) models in which Australia was classified

as an island.

2.4.1 Effects of distance and land use on island vs. mainland assemblages

In the models that included all taxa, all highest-order interactions were statistically significant.
For both richness-based and abundance-based compositional similarity (Jz and Ja,
respectively) between sites, similarity decreased as geographic and environmental distance
increased, but the decline with environmental distance was steeper on islands whereas the

decline with geographic distance was steeper on mainlands (Figure B.2; Table B.5).
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When these effects of distance are controlled for, sites in minimally-disturbed primary
vegetation (i.e., PriMin sites) were more compositionally similar to each other than to sites in
other land uses (especially the human-dominated land uses — plantations, croplands, pastures
and urban), on both islands and mainlands (Figure 2.1). Relative to the baseline similarity

between PriMin sites, land use had a greater impact on Ja (Figure B.3) than on Jg.

The significance for differences between island and mainland changes (e.g., whether the
difference between similarity of PriMin-PriMin and PriMin-Cropland contrasts is bigger on
islands than mainlands) was calculated based on values on a logit scale (i.e., model
coefficients). However, | present compositional similarity of land-use contrasts in a 0 to 1 scale
to ease understanding (e.g. Figure 2.1). Because the relationship between logit and back-
transformed values for compositional similarity is not linear, the changes on a logit scale might
have unexpected effects on back-transformed values (because the effect of a given change in
the logit depends on the starting value), which led to non-equivalent results for magnitude of

change on islands and mainlands in a few cases.
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Figure 2.1. Jr estimates for land-use contrasts where site i is in PriMin. Solid lines show the magnitude
of change in Jr driven by change to different land uses; the baseline is compositional similarity between
PriMin sites on islands and mainlands respectively (dashed lines). The grey circle in the PriMin-Urban
contrast for islands shows the original estimate from the model (0.56), while the displayed value
corresponds to the estimate that was calculated indirectly. Significance (indicated by stars) is shown for
island/mainland differences for Jr changes from PriMin-PriMin on a logit scale. Significance for PriMin-
Urban is not shown since it could not be estimated using island coefficients that were caculated
indirectly. When using the original coefficients, islands and mainlands showed significant differences for
PriMin-Urban. Significance codes: ** p < 0.05, *** p= 0.005.
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Importantly, in most cases land use reduces compositional similarity to PriMin significantly
more on mainlands than on islands, especially for Jr (Figure 2.1, Figure B.3). This difference
is most evident in pastures and plantations, for both Jrz and Ja. Only croplands and primary
vegetation reduce compositional similarity to PriMin significantly more on islands than on
mainlands for Ja (Figure B.3). Although my models suggested that the similarity of urban
assemblages to PriMin assemblages was very different between islands and mainlands, this
result is not robust as only two studies in my dataset directly compared urban and PriMin sites
on islands; indirect estimates of this comparison for islands (see Methods) were closer to the

model estimates for mainlands (Figure 2.1, Figure B.3).

In comparisons of sites within the same land use, pairs of sites within most human-dominated
land uses tend to have assemblages that are less similar than pairs of PriMin sites, both on
islands and — especially — on mainlands (Figure 2.2 and Figure B.4), contrary to the
expectation that these land uses reduce spatial beta diversity. The exceptions were land uses
with forest cover (i.e., primary, secondary and plantation) on islands and urban sites on
mainlands. Most but not all of these within-land-use similarities differed significantly between

islands and mainlands (Figure B.4).

Richness based

. Islands . Mainlands

o
@
@

®
— @
o

B :
o-

Compositional similarity

®
o
B :

o o
(42 1%,
(=] t

o
=
(4]

*

*

*

*

*

*

*

*

*
*
*
*

*

*

*

*

*

*
*
*
*+

PriMin
Primary
Plantation
Cropland
Pasture
Urban

Land-use contrast (within land use)
Figure 2.2. Jr estimates for sites within the same land use on islands and mainlands. Each category
corresponds to a land-use contrast (i.e., Cropland= Cropland-Cropland). Solid lines show the magnitude
of change in Jr for islands and mainlands, using compositional similarity between PriMin sites as
baseline (dashed lines). Significance connotation and codes as in Figure 2.1.
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2.4.1.1 Effects of distance and land use on plant/fungal vs animal assemblages

The plant/fungal models differed markedly from the all-taxa models (Figures 2.3 and 2.5).
Environmental distance did not interact significantly with the Island/Mainland term (Table B.8),
and had a relatively shallow pooled slope (-0.18 for Jz and -0.11 for Js; Figure B.7b). Both Jr
and Ja for plant/fungal assemblages decayed with geographic distance about 50% more
rapidly on islands than on mainlands (Figure B.7b). Controlling for these distance effects,
effects of land use differed significantly between islands and mainlands, with secondary
vegetation and plantations showing a significantly greater change in both Jg and Ja on islands
(Figure 2.3 and Figure B.8). Although the other land uses also showed marked differences
between islands and mainlands, their estimates for islands or mainlands came from three or

fewer studies (Table B.7) so should not be viewed as robust.
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Figure 2.3. Jr estimates for plant/fungal assemblages in land-use contrasts where site i is in PriMin.
Solid lines show the magnitude of change in Jr on islands and mainlands driven by change to different
land uses. Circles in grey indicate contrasts with limited data (i.e., from three or less studies). PriMin-
Urban results are not shown since no plant/fungal data was available for this contrast for islands.
Significance connotation and codes as in Figure 2.1.

The models for the animal data could not be simplified, and were similar to the all-taxa models
(Figures 2.4 and B.9). Compositional similarity decays more rapidly with environmental
distance on islands than on mainlands, whether based on Jr (slopes of -1.2 against -0.8) or Ja

(slopes of -1.5 against -0.8); but decays more rapidly with geographic distance on mainlands
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than on islands (Jr -0.07 against -0.04; Ja -0.08 against -0.05) (Figure B.7a). As with
plants/fungi, compositional similarity of animal assemblages (to PriMin) is affected differently
by land use on islands and mainlands. Plantations and pastures showed a significantly greater
change in Jr on mainlands (but the effects of the other land uses on Jr did not differ significantly
between islands and mainlands — Figure B.9); however, islands showed significantly larger
changes in Ja than mainlands in primary and secondary vegetation, croplands and pastures
(Figure 2.4). When comparing sites within the same land use, only urban sites on mainlands
and land uses with forest cover on islands showed evidence of reduced beta diversity (Figure
B.10).
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Figure 2.4. Ja estimates for animal assemblages in land-use contrasts where site i is in PriMin. Solid
lines show the magnitude of change in Ja on islands and mainlands driven by change to different land
uses. The grey circle in the PriMin-Urban island contrast shows the original estimate from the model
(0.77), while the displayed value corresponds to the estimate that was calculated indirectly. When using
the original coefficients, islands and mainlands showed significant differences for PriMin-Urban.
Significance connotation and codes as in Figure 2.1.

These models suggest that land use might reduce spatial beta diversity (i.e., drive biotic
homogenisation) more in plant/fungal than in animal assemblages. In the plant/fungal models,
most land uses on both mainlands and islands showed higher average (distance-controlled)
pairwise Jr and Jx than did PriMin sites (Figure 2.5 and Figure B.11), the exceptions being
secondary vegetation and croplands on islands. The effect is strongest in primary vegetation,

plantations and pastures on islands, especially for Jr (Figure 2.5).
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Figure 2.5. Jr estimates for plant/fungal assemblages of sites within the same land use on islands and
mainlands. Solid lines show the magnitude of change in Jr for islands and mainlands using
compositional similarity between PriMin sites as baseline (dashed lines). Urban-Urban results are not
shown since no plant/fungal data was available for this contrast for islands. Significance connotation
and codes as in Figure 2.1.

2.4.2 Influence of island area and isolation on land-use effects

Isolation metrics seldom correlated significantly with compositional similarity between island
sites (Tables B.10 and B.11). The only exception was that surrounding landmass interacted
significantly with land-use contrast in the model of abundance-based similarity (P= 0.02, d.f.=
48, Type Il Wald Chi Square test) although it was not significant as a main effect (P > 0.1, d.f.=
1, Type Il Wald Chi Square test). Only one contrast had an interaction coefficient differing
significantly from zero: compositional similarity between croplands and PriMin decreases as

the surrounding landmass around the island perimeter increases (Figure B.13).

Island area only had a significant effect on Jr between island sites (Tables B.10 and B.11),
interacting significantly with land-use contrast (P= 0.04, d.f.= 48 , Type Il Wald Chi Square
test) without being significant as a main effect (P > 0.1, d.f.= 1, Type Il Wald Chi Square test).
However, none of the land-use contrasts of interest had interaction coefficients that differed

significantly from zero in post-hoc tests.
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2.5 DISCUSSION

Previous studies established that human-dominated land uses support drastically different
assemblages from minimally disturbed-primary vegetation (Hawes et al., 2009; De Lima et al.,
2013; Newbold et al., 2016b). My analyses add that land use affect community composition
differently on islands and mainlands. Differences between human pressure effects on islands
and mainlands should therefore be accounted for in global models aiming to develop
biodiversity projections under different land-use change scenarios. Such an approach would
lead to less biased estimates of the geographic pattern in the intactness of local ecological

assemblages.

According to the all-taxa models, there are greater compositional differences between
minimally-disturbed primary vegetation and most human-dominated land uses (especially
pastures and plantations) on mainlands than on islands, contrary to the hypothesis that island
assemblages would be more susceptible to change (Simberloff, 2000; Denslow, 2003; PySek
& Richardson, 2006). There are two possible — and non-exclusive — explanations for these

results.

First, agriculture and plantation forest might tend to be more intensive on mainlands than on
islands. For example, Ramankutty et al. (2008) calculated that the percentage of land area
with pastures or croplands tends to be especially high in some mainland regions such as North
America, Europe and Asia. Less intense land use might mainly characterise islands with low
economic development or remote islands with a more recent human colonization — other
islands, such as the UK, are farmed very intensively. Although data limitations means that use
intensity could not be incorporated as an explanatory variable, inspection of the use intensity
recorded in the PREDICTS database partly supports this suggestion, with mainland sites being
more likely to have higher use intensity within many land uses (Figure B.1). A lower use
intensity on islands might enable land uses such as pastures and plantation forests to retain
more natural conditions (e.g., patches of natural vegetation and canopy cover) and to harbour
more native species, which could limit the establishment of novel species (Kennedy et al.,
2002). Particularly, the low intensity of island pastures in my dataset (Figure B.1) might be
caused by the prevalence of rangelands (i.e., land where native vegetation consists mainly of
grasses and shrubs and therefore is used for grazing— Lund, 2007; Allen et al., 2011) on some
islands that are well represented in my data; e.g., Australia, Tierra del Fuego and South Island-
New Zealand (Ellis & Ramankutty, 2008). Around 60% of pasture sites included in island
comparisons of PriMin vs pastures are in these islands, where grasslands, savannas and
shrublands are naturally widespread (Olson et al., 2001). Rangelands can develop in these

ecosystems since the natural vegetation can tolerate grazing (Allen et al., 2011); therefore, the
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production of grazing livestock in these regions usually does not involve high impacts from
land use (Ellis & Ramankutty, 2008).

The second explanation is that mainland settings are more likely than islands to provide larger
numbers of synanthropic species, as a result of their bigger native species pools (Herben,
2005) increasing the chances of finding species that are adapted to disturbed conditions (Lep$
et al.,, 2001). Such synanthropic species might be missing from natural sites but can be
assembled into novel human-dominated ecosystems (Silc, 2010), resulting in communities that
are less nested within natural assemblages. Compared to mainland assemblages, there are
two reasons why island assemblages may be invaded less often by synanthropes, even if they
are more intrinsically invasible (Denslow, 2003): the small pool of native species on islands
(Herben, 2005) may not include many that are successful in disturbed sites, and invasions by
alien species are less likely on islands than on mainlands (assuming a species—isolation
relationship — MacArthur & Wilson, 1963). Considering that islands have been pointed out as
hotspots of alien species (e.g., Capinha et al., 2017; Dawson et al., 2017; Dyer et al., 2017a)
and that it is unlikely that many island natives are able to colonise disturbed sites, it is likely
that novel species in human-dominated land uses on islands are mainly introduced species,
while on mainlands assemblages of these sites could be composed by both alien and native
synanthropic species. Larger and less isolated islands would be expected to show more similar
patterns to those in mainlands, providing larger numbers of synanthropic species. Against this,
my models including island area and isolation do not support the hypotheses that bigger
islands harbour larger numbers of synanthropic species (Chown et al., 1998) or that less
isolated islands are invaded more often by these species. However, my island dataset may be
too biased (mainly including data for bigger and less isolated islands such as Australia and
Great Britain) or too small for powerful tests of these hypotheses. Alternatively, economic
isolation of islands — not considered here — could be a more relevant measure, as a result of
anthropogenic processes obscuring the the species—isolation relationship (Helmus et al.,
2014).

The plant/fungal and animal models revealed effects of human-dominated land uses on island
assemblages that were masked in the models including all taxa. Plant/fungal assemblages in
secondary vegetation and plantations (Jr and Ja) and animal assemblages in croplands,
pastures and primary and secondary vegetation (Ja) showed greater compositional changes
on islands than on mainlands. These abundance-based results for animal assemblages
suggest that in some cases, even if fewer novel species invade disturbed sites on islands than
on mainlands, these few species may reach higher abundances than on mainlands perhaps
due to islands’ species poverty and reduced competition from native species (Sax & Brown,

2000; Roderick & Vernon, 2009). Unfortunately, my plant/fungal data is very limited for some
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land-use contrasts, which impedes drawing strong conclusions about whether plant/fungal
assemblages could change more drastically due to land-use change on islands than on
mainlands. However, previous studies have found cases where alien plants have become
extremely successful on islands (e.g., Sax et al., 2002; Lugo & Helmer, 2004), especially in

severely disturbed sites (Rodgers & Parker, 2003).

Three linked limitations of the data make it difficult to estimate the importance of species
introductions. First, | use spatial comparisons of sites in different land uses to estimate the
temporal effect of land-use change, because true before-vs-after comparisons are much less
common in the literature (De Palma et al., 2018b; Purvis et al., 2018). Consequently, the
composition of assemblages in present-day minimally-impacted primary vegetation can differ
from the original composition of assemblages at sites where land use has changed. Second,
even assemblages in minimally-used primary vegetation are likely to have experienced, in the
past and/or currently, some human impact (e.g. Watson et al., 2016) that could change
community composition. Lastly, these analyses have not separated native from alien species
in the island or mainland studies. Although sufficiently complete and detailed distributional data
are available for some taxonomic groups, and a few of my data sources provide this
information, it is not in general possible to test the assumption that species inhabiting
minimally-impacted primary vegetation on islands or mainlands are natives, or to estimate what
fraction of species found in human-dominated land uses, but not at natural sites, are aliens.
An analysis focusing on studies where species can be separated in this way would help to
clarify the importance of introduced species in driving the effects seen here. Such an analysis
will require collation of distributional information from many sources, though databases of alien
species occurrences are increasingly becoming available (e.g., Dyer et al., 2017b; Threatened
Island Biodiversity Database Partners, 2017; van Kleunen et al., 2019). These limitations may
have combined to bias my inferences of the impacts of land use on ecological assemblages.
In particular, widespread invasive species may have become established even in more natural

habitats on many islands, reducing the inferred effect of land use.

The pattern of similarity between sites in the same land use differs strongly between mainlands
and islands: mainlands show more self-similarity within cropland, pasture and urban land uses;
whereas islands show more in forested land uses. | found little evidence of homogenization at
the scale of sites within studies in models including all taxa (which mainly reflected responses
of animal assemblages); however, forested land uses on islands and urban sites on mainlands
were exceptions, where pairs of sites have assemblages that are more similar than pairs of
PriMin sites. This combination of results is hard to explain without speculation. A possible
explanation for the apparent lack of homogenization of animal assemblages within most

human-dominated land uses is that the addition of novel species does not always increase
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compositional similarity among human-altered sites (Socolar et al., 2016). Heterogeneity of
animal assemblages across disturbed sites — within most land uses on islands and mainlands
— might be caused by the invasion of a variety of alien species or native synanthropic species,
which do not become ubiquitous (Socolar et al., 2016); for example, some alien arthropods
can be habitat specialists that form heterogeneous communities in disturbed sites (Florencio
et al., 2015). Animal assemblages within some human-dominated land uses might also be
more heterogeneous than assemblages in minimally-disturbed sites if formerly ubiquitous
species characteristic of communities in natural habitats disappear from all or some of the
disturbed sites (Socolar et al., 2016).

The homogenization in urban sites on mainlands agrees with previous studies that have
suggested that urbanization is one of the strongest factors driving homogenization of species
assemblages (McKinney, 2006; Newbold et al., 2018), considering that only a few species can
thrive in such disturbed conditions. On the other hand, a possible explanation for the
homogenization of animal assemblages within forested land uses on islands draws on the
‘taxon cycle’ hypothesis (a model of evolutionary change on islands — Wilson, 1961; Ricklefs
& Cox, 1972; Ricklefs & Bermingham, 2002). | suggest that forested land uses on islands are
likely to harbour fewer novel species than are more marginal or significantly disturbed habitats.
More species in the source pool might be able to colonise the most disturbed sites where
competition is reduced (Wilson & Tilman, 1993) —or very limited in the case of islands
(Denslow, 2003)—; successively, fewer novel species would be expected towards more intact
and more competitive habitats. These fewer species in forested land uses, could become
widespread if natives are replaced, creating homogenous communities. Alternatively,
assemblages within forested land uses on islands might become homogeneous if rare and
sensitive species disappear or decline across sites within these land uses (while ubiquitous

species persist) (Socolar et al., 2016).

Plant/fungal assemblages showed evidence of homogenization across most land uses on both
islands and mainlands; i.e., sites within the majority of the land uses have plant/fungal
assemblages that are more similar than assemblages within PriMin sites. My plant/fungal data
is limited; however, these results might be driven by responses of highly invasive plant species
such as grasses and weeds, which are very successful colonizers and spread widely across
disturbed habitats (Westbrooks, 1998). A few of these invasive species could displace a wide

set of species and become highly abundant across disturbed sites within most land uses.

| assessed homogenization within land uses based on the reduction in spatial turnover (beta
diversity) of species assemblages. Alternative approaches have also been used: in a global

analysis, Newbold et al. (2018), concluded that land-use change homogenizes assemblage
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composition across space since assemblages in disturbed habitats have more widespread
species on average. My approach has limitations since the effects of habitat conversion on
composition of assemblages can be scale-dependent (McGill et al., 2015); e.g., the partial
conversion of natural habitat might cause an increase in beta diversity of assemblages at a
local scale but a decrease at larger scales (Newbold et al., 2018). However, interpreting
results from analyses of species ranges is also not straightforward if range completeness (i.e.,
the extent to which the recorded occurrences of a species fill its geographic distribution: Meyer
et al., 2015) differs between islands and mainlands or between animals and plants, which is

not unlikely.

My compositional similarity estimates showed a much wider range than estimates from the
most recent global analysis of assemblage turnover caused by land use change (Newbold et
al., 2016a). Although my data set is slightly expanded, the difference is more likely to be driven
by methodological differences. For example, Newbold et al. (2016a) used logarithmic
transformation for compositional similarity data; this approach is commonly adopted and
yielded well-behaved residuals; however, it does not reflect the boundedness of the response
variable. | opted for logit transformation which captures this boundedness. The baseline
representing natural habitats also differs between the studies; whereas | used minimally-
disturbed primary vegetation, Newbold et al. (2016a) included all use intensities of primary
vegetation as baseline sites for comparisons. In Chapter 5, | discuss in detail these two

methodological differences and assess their relative effects.

My analyses provide the first global evidence that land use, geographic distance and
environmental distance together shape the compositional turnover of ecological assemblages
in ways that differ systematically between islands and mainlands. | suggest that the difference
between compositional changes of island and mainland assemblages results mainly from a)
differences in land-use intensity which determines the severity of native species declines and
the opportunities for the establishment of novel species; and b) differences in species pools,
determining the number of available synanthropic species on islands and mainlands that can
assemble in disturbed sites. | highlight particular cases where land-use change causes larger
compositional changes in island than mainland assemblages, and suggest that they result from
islands’ species poverty and vulnerability of native species, since both factors ease the
establishment of novel species. Despite their ongoing importance in studies of ecology,
evolution and conservation, islands have not previously been contrasted with mainlands in
global biodiversity models. My results suggest that this omission risks systematically mis-

estimating the status of island biodiversity.
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CHAPTER 3

Land use and related pressures have reduced biotic
integrity more on islands than on mainlands

3.1 ABSTRACT

Tracking progress towards biodiversity targets requires indicators that are sensitive to changes
at policy-relevant scales, can easily be expressed at any spatial scale and are simple to
understand. The Biodiversity Intactness Index (Bll), which estimates the average abundance
of a diverse set of organisms in a given area relative to their reference populations, was
proposed in 2005 in response to this need. A new implementation of Bll was developed as
part of the PREDICTS project in 2016 and has been adopted by GEO BON, IPBES,
Biodiversity Indicators Partnership and CBD. The previous global models used in estimating
Bll could not accommodate pressures having different effects in different settings. Islands are
a setting of particular interest: many are home to a disproportionate number of endemic
species; oceanic islands may have relatively low overall species diversity because of their
isolation; and the pattern and timing of human pressures can be very different from that seen
on mainlands. Here, | test whether land use and related pressures have compromised biotic
integrity — as estimated by Bll — more severely on islands than mainlands. | refine the methods
previously used to estimate Bl globally (Newbold et al., 2016a) to allow pressure effects to
differ between islands and mainlands, while also implementing some other recent
improvements in modelling. | estimate BIl for islands and mainlands by combining global
models of how two aspects of biodiversity — overall abundance, and compositional similarity to
minimally-impacted sites — have been affected by human pressures. | use these models to
project high-resolution (~1km?) global maps of Bl for the year 2005. | calculate average BlI for
island and mainland biomes, countries, IPBES regions and biodiversity hotspots; and repeat
my analyses using a richness-based variant of BIl. Bll on both islands and mainlands has
fallen below the values proposed as safe limits across most regions, biomes and biodiversity
hotspots. Average BIl does not differ strongly between islands and mainlands, but richness-
based BIl has fallen by more on islands. It appears that native species are more negatively
affected by rising human population density and road development on islands than mainlands.

My results highlight the parlous state of biodiversity native to islands.

52



3.2 INTRODUCTION

Biodiversity is continuing to decline and the pressures driving the declines are not easing
(Butchart et al., 2010; Tittensor et al., 2014). The loss of biodiversity from ecosystems can
compromise their functioning (Hooper et al., 2012) and therefore their capacity to contribute to
human wellbeing (Diaz et al., 2018). Ongoing debates have tried to identify a set of suitable
indicators to inform about the state of biodiversity and progress towards biodiversity targets
such as the Aichi 2020 Targets. The Convention on Biological Diversity (CBD) established a
set of criteria that indicators of biodiversity change should satisfy; for example, indicators
should be sensitive to changes at policy-relevant spatial and temporal scales, be easily
aggregated and disaggregated to any spatial scale, allow comparisons with a baseline
situation and be affordable and simple to understand (UNEP, 2003; Scholes & Biggs, 2005).

The Biodiversity Intactness Index (BIl) was proposed by Scholes & Biggs (2005) with these
criteria in mind, defining it as “the average abundance of a large and diverse set of organisms
in a given geographical area, relative to their reference populations”. The index estimates
biodiversity loss as a result of human pressures by focusing on the status of originally present
species relative to a reference condition, which is represented by minimally-disturbed sites
(since historical data are very rare: Scholes & Biggs, 2005). Decreases in an ecosystem’s Bl
—i.e., the loss or population decline of originally present species — may imply decreases in its
resilience and ability to continue to meet societal needs: e.g., when facing disturbances, a high
diversity ensures the persistence of at least a few species which might continue delivering
ecosystem services — Biggs et al., 2012). Bll initially only incorporated the effects of land use
— among the main drivers of biodiversity loss (Maxwell et al., 2016; Brummitt et al., 2015) —

without taking into account other related pressures such as human population growth.

Bll has been proposed as a metric for assessing biotic integrity in the Planetary Boundaries
framework (Steffen et al., 2015), which aims to define a safe operating space for humanity
(Rockstrom et al., 2009; Steffen et al., 2015). This framework places a precautionary safe limit
at 10% reduction of BlI, but acknowledges this limit to be highly uncertain: a less conservative
estimate lies at 70% reduction (Steffen et al., 2015). The proposed safe limit is intended to
reflect the biotic integrity needed to ensure the long-term maintenance of large-scale

ecosystem function (Mace et al., 2014; Steffen et al., 2015).

Bll began as an index that relied on carefully-pooled expert opinion and focused on specific
geographical areas instead of global analyses, because suitable empirical data were lacking
(Scholes & Biggs, 2005). The PREDICTS (Projecting Responses of Ecological Diversity In
Changing Terrestrial Systems) project has recently implemented Bll (Purvis et al., 2018) by
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modelling a global collation of site-level biodiversity in sites facing different land uses and
related pressures. This implementation leads to the estimation of local BIl, which can be
averaged for any larger spatial scale (e.g., globally, by countries, biodiversity hotspots or
biomes). This approach also permits the exploration of temporal changes in Bll under observed
recent (De Palma et al., 2018a) or projected future changes in land use and other pressures
(Hill et al., 2018) to inform policy. Local Bll estimates are therefore relevant for global
biodiversity assessments such as those developed by the Group on Earth Observations
Biodiversity Observation Network (GEO BON) and the Intergovernmental Science-Policy

Platform on Biodiversity and Ecosystem Services (IPBES).

PREDICTS'’ first global estimate of Bll (Newbold et al., 2016a) estimated that land use and
related pressures have reduced local biodiversity intactness below the planetary boundary
across at least 58% of the world’s land surface. Newbold et al. (2016a) noted that data
limitations precluded biome- or clade-specific models, so made no attempt to accommodate
possible different responses to pressures in different ecological systems, such as islands and

mainlands.

Island and mainland systems can differ greatly in species assemblages and human pressures,
with the result that islands might be suffering a greater decline of native species than
mainlands — but that this will be missed by BIl as currently implemented. Islands’ small size
can facilitate access to undisturbed areas, promoting a fast acceleration of habitat loss (Kier
et al., 2009), and islands’ isolation can prevent the recovery of declining populations through
natural immigration (Lomolino, 1986). Moreover, island endemic species usually lack the
potential to face disturbances in their habitat since evolutionary isolation often leads to the loss
of traits that ease populations’ recovery after disturbances; for example, many island species
present low reproductive output (Adler & Levins, 1994; Meiri et al., 2012) and poor dispersal
abilities (Gillespie et al., 2008). Islands are also more vulnerable to the establishment of alien
species than mainlands (Sax & Brown, 2000, Whittaker & Fernandez-Palacios, 2007), perhaps
related to their species poverty (a result of island isolation and low colonisation rates: Whittaker
& Fernandez-Palacios, 2007) or high resource availability (Denslow, 2003). The introduction
of alien species has led to extreme declines of island native populations (Whittaker &
Fernandez-Palacios, 2007). Any decline of biotic integrity on islands is especially alarming
since it might involve the loss of a large number of endemic species with unique evolutionary
histories (Whittaker & Fernandez-Palacios, 2007).

Here | refine and improve the Bll estimates from Newbold et al. (2016a), allowing island and
mainland assemblages to respond differently to drivers. | test whether biodiversity intactness

has decreased more severely on islands than mainlands, as a result of larger decreases of
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local diversity and larger changes in species composition in human-dominated land uses. |
also compare the intensity of land use and related pressures on islands and mainlands to

determine whether this factor contributes to island/mainland differences in BII.

| estimate BIl for islands and mainlands by combining models of how land use, human
population density and distance to roads affect local biodiversity with models of how land use
affects the similarity of species assemblages to assemblages in minimally-disturbed sites. |
use estimates based on abundance and richness data and generate fine-scale (~1km?) global
maps for Bll estimates that address some previous criticisms of Bll (see Rouget et al., 2006
and Faith et al., 2007). | also implement other methodological improvements that allow more

efficient use of data and a more principled error structure than in Newbold et al. (2016a).

3.3 METHODS

All the models used data on species abundance and occurrence extracted in October 2016
from the PREDICTS database (Hudson et al., 2017 and described in Chapter 1). | classified
each site in the database as a mainland or island site (see Chapter 2 for details); Australia
and all smaller land polygons were classified as islands. Treating Australia as an island helped
to improve the balance between island and mainland sites in my analyses (though | also

assessed the influence of this decision on my findings; see below).

3.3.1 Statistical modelling

Biodiversity Intactness Index

PREDICTS’ approach for estimating Bll requires combining two statistical models (detailed
below): a model of how land use and related pressures affect overall abundance or species
richness at a site, and a model of how land use affects compositional similarity of assemblages
to baseline assemblages (minimally-disturbed primary vegetation experiencing minimal values
of any other pressures incorporated in the model). Scholes & Biggs (2005) explicitly excluded
alien species from the calculation of BIl; since it is usually difficult to classify species (except
for vertebrates) into natives and aliens, models of compositional similarity are instead used to
correct for the species that are not present in minimally-disturbed primary vegetation (here

referred as novel species).

Following Scholes & Biggs (2005), | estimated BIl based on species abundance. However, |
also calculated a species-richness-based variant of Bll to address the criticism that
abundance-based BIl might overlook species losses and calculate overoptimistic estimates if

the abundance of the remaining species in disturbed sites increases (Faith et al., 2007). Using
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abundance-based and richness-based estimates also provides information about different
consequences of Bll decline for ecosystem functions and services. For example, abundance-
based metrics give more weight to common species; therefore, the use of total abundance
might be more appropriate when analysing the amount of ecosystem service provision
(Winfree et al., 2015). However, richness-based metrics give equal weight to rare and common
species, which might be more relevant for stability of ecosystem service provision (Hautier et
al., 2015; Dee et al., 2019).

All statistical analyses were performed using R Version 3.2.3 (R Core Team, 2017). The
analyses are based on Generalized mixed-effect models (GLMMs), which were fitted using the
‘Ime4’ package ver. 1.1-15 (Bates et al., 2017). | use GLMMs to deal with the methodological
heterogeneity among studies (i.e., sampling method within a data source — Hudson et al.,
2014) in the PREDICTS database (see Chapter 1) and with biotic differences among spatial
blocks. GLMMs allow to quantify the variation among studies (random-effects) without directly
considering their effect in the analysis (Bolker et al., 2009). The detailed account of the
modelling (below) emphasises where | improved the approach compared to that of Newbold
et al. (2016a). The improvements are fully discussed in Chapter 5, where | also analyse their

contribution to differences between my BIl estimates and those of Newbold et al. (2016a).

3.3.1.1 Modelling total abundance and species richness

As site-level measures of biodiversity, | calculated each site’s total abundance (sum of
abundances of all present taxa) and species richness (number of unique present taxa). Where
the sampling effort varied among sites in one study, total abundance was divided by the

sampling effort to make data comparable among the study’s sites.

Sites in the database had previously been classified into 10 land-use categories and three
land-use intensities (Minimal, Light and Intense) within each land use (details on all categories
in Hudson et al., 2017). The ten land-use categories were collapsed into six final classes
(primary vegetation, secondary vegetation, plantation forest, cropland, pasture and urban) to
give reasonable sample sizes for both islands and mainlands. | created an additional site
variable by combining land use and use intensity of each site (LUI), giving 18 categories (Table
C.1). Primary vegetation with minimal use (henceforth PriMin) was used as the baseline in

modelling.

| obtained site-level data for human population density (HPD) and distance to the nearest road
(DistRd). HPD (for the year 2000) was obtained from the Global Rural-Urban Mapping Project,
Version 1 (GRUMPv1): Population Density (CIESIN, 2011), whereas DistRd was extracted
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from the Global Roads Open Access Data Set, Version 1 (QROADSv1) (CIESIN, 2013). Sites

missing data for any of the human pressure variables were excluded from these models.

To model the responses of overall abundance on islands and mainlands, | fitted an initial
maximal model where total abundance was analysed as a function of site-level land use and
intensity category (LUI), human population density, distance to the nearest road and
Island/Mainland classification (fixed-effects). | included two-way interactions between the
Island/mainland term and the three human pressures, plus three-way interactions between the
Island/Mainland term, land use and either HPD or DistRd. Not all abundance data were counts
of individuals, meaning they could not be analysed with discrete error distributions such as
Poisson. Given that, prior to analysis | rescaled total abundance to a 0-1 scale within each
study, reducing the variance among studies caused by differences in the taxonomic focus and
sampling effort. The rescaled total abundance was then square-root transformed (as this gave
a better residual distribution than log transformation: Figure C.1) and modelled using a
Gaussian error structure. My transformation for total abundance differs from that in Newbold
et al. (2016a), where no rescaling was performed and abundance only was log-transformed.
HPD and DistRd were log transformed and then rescaled to a zero-to-one scale to reduce the
effects of extreme values and to reduce collinearity. HPD and DistRd were fitted as quadratic

orthogonal polynomials in the models.

Akaike’s Information Criterion (AIC) was used to determine the best random-effects structure
for the maximal model fitted using Restricted Maximum Likelihood (REML) (Zuur et al., 2009).
All three random-effects structures considered included random intercepts of study (to
account for methodological differences among studies) and block within study (to account for
spatial structure of sites within many studies). The three models that were compared
additionally included either: (i) random slopes for land uses within study, (ii) random slopes for
land uses + use intensity within study, or (iii) no random slopes. The random slopes account
for the variation among studies in the relationships of sampled biodiversity with land use and
land-use intensity. The fixed-effects structure of the final model was determined using
backwards stepwise model simplification with the model fitted using Maximum Likelihood (Zuur
et al., 2009).

Species richness, which was always a count, was not rescaled within studies. | modelled it in
the same way as abundance except that | used a Poisson error structure with a log link and
used Maximum Likelihood (ML). | tested for overdispersion in the richness model using the
‘dispersion_glmer function in the ‘blmeco’ package ver. 1.2 (Korner-Nievergelt et al., 2018),

which indicated that overdispersion was not present.
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For both abundance and richness models, prior to modelling, | assessed multicollinearity for
all explanatory variables using Generalized Variance Inflation Factors (GVIFs) (Zuur et al.,
2009). All values for both models were below 3, indicating that there was no strong collinearity
within the sets of explanatory variables (Zuur et al., 2009). Model diagnostics for the final
abundance and richness models showed that both models fulfilled homogeneity and normality

assumptions (Figures C.1b and C.2).

3.3.1.2 Modelling abundance- and richness-based compositional similarity

| used the models fitted in Chapter 2 to extract estimates of compositional similarity between
assemblages in different land uses and those in minimally-disturbed primary vegetation on
islands and mainlands. | used the abundance-based and richness-based models including all
taxa, which modelled compositional similarities between pairs of sites as a function of the land
use where both sites were located (i.e., land-use contrast), the geographic distance between
them, the environmental differences between them, and the Island/Mainland location of the

pair of sites.

To calculate Bll, | exclusively used the model estimates for compositional similarity between
minimally-disturbed primary vegetation and seven land uses (Table C.8). Only these estimates
are needed to correct the estimates of the richness and abundance models by excluding the
proportion of species or total abundance (respectively) that correspond to species that are not
present in minimally-disturbed primary vegetation. Because only studies that include PriMin
sites can contribute, data limitations meant that | was not able to use LUI categories for the

land-use contrasts.

Table C.8 shows the backtransformed values (on a scale from 0 to 1) for compositional
similarity of island and mainland land-use contrasts, which in this case were rescaled so that
the contrast of PriMin against itself had a value of 1 on both islands and mainlands; this was
done to avoid conflating natural spatial turnover with the effects of land use (Newbold et al.,
2016a). In the case of the PriMin-Urban contrast for islands, Table C.8 also shows the
estimates that were calculated indirectly (product of estimated PriMin-Secondary and

Secondary-Urban compositional similarities; Chapter 2).

The biggest conceptual changes to how Bll is estimated are to be found in these compositional
similarity models. Newbold et al. (2016a) constructed sets of independent pairs of sites within
studies and averaged the coefficients of 100 models fitted with 100 different sets of randomly-
chosen pairwise comparisons. This random selection meant that land uses found in relatively
few sites could be contrasted with the baseline land use (representing natural habitats) even

more rarely, leading to small sample sizes and greatly restricting the complexity of models that
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could be fitted. My approach (Chapter 2), using all possible pairwise comparisons within
studies and performing permutation tests to overcome the resulting nonindependence, allows
the use of all available data in a single model. This more efficient use of data enabled another
conceptual improvement. Whereas Newbold et al. (2016a) had to combine all primary
vegetation sites as their baseline condition (taken to represent the natural habitat), | was able
to use only the sites with minimally-disturbed primary vegetation (PriMin) as a more stringent
baseline for the contrasts. A third change to the compositional similarity models is how data
were transformed. Newbold et al. (2016a) log transformed all variables, including
compositional similarity data which is bounded between 0 and 1. | transformed explanatory
variables to optimise their distributions and logit-transformed the compositional similarity

estimates, in line with their possible range (Chapter 2).

3.3.1.3 Calculation of Bll and spatial projections

To project Bll and estimate global values, | first separately map the modelled responses of
overall abundance, species richness and compositional similarity (abundance-based and
richness based). | used global pressure data at a resolution of 30 arc sec (~1 km?) for each of
the human pressure variables. | used the land use maps from Newbold et al. (2016a), which
were generated by downscaling (Hoskins et al., 2016) the harmonized land-use dataset for
2005 (Hurtt et al., 2011). No map was available for plantation forests since global land-use
layers rarely distinguish this land use from other forests. Therefore, following Newbold et al.
(2016a), | modelled biodiversity responses to plantation forest but | omitted this effect when
performing the global projections and therefore from Bll calculation. Land-use intensity maps
were generated using the statistical models in Newbold et al. (2015). Under this approach, the
Global Land Systems dataset (van Asselen & Verburg, 2013) is reclassified into land-use and
use-intensity combinations and models are fitted to estimate how the proportion of each 0.5
degree grid cell under each land use-intensity combination depends on the proportion of the

grid cell under a particular land use, human population density and United Nations sub-region.

The gridded map for human population density (for the year 2000) and a vector map of the
world’s roads were obtained from NASA’'S Socioeconomic Data and Applications Centre
(CIESIN, 2011 and CIESIN, 2013). Following Newbold et al. (2016a), | computed the gridded
map of distance to nearest road using a Python code written for the arcpy module of ArcMap
Version 10.3 (ESRI, 2011). The vector map was first projected onto an equal-area (Behrmann)
projection to then calculate the average distance to the nearest road within each 782-m grid
cell using the ‘Euclidean Distance’ function. Finally, the map was reprojected back to a WGS

1984 projection at 30 arc sec resolution.
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The resulting global maps of human pressures were separated into island and mainland maps,
by clipping to island and mainland shapefiles derived from OpenStreetMap (OpenStreetMap
Contributors, 2015). These maps were used to separately drive the four statistical models of
how island and mainland biodiversity respond to pressures. For projections of the abundance
and richness models, | constrained the maps of HPD and DistRd to not exceed the maximum
values in the modelled datasets to avoid extrapolations beyond my data. The HPD and DistRd
maps were log-transformed and rescaled as in the models. For projections of total abundance
and species richness, the values were back-transformed and expressed relative to minimally-
disturbed primary vegetation with zero human population and at a distance to the nearest road
equal to the maximum value in the final data used in the models (195.3 km). For compositional
similarity projections (abundance-based and richness-based), | used models that included the
indirect (rather than the direct — Table B.5) estimate for the PriMin-Urban contrast on islands
(given the uncertainty around the original estimate — Chapter 2). Compositional similarity
values were back-transformed and expressed relative to compositional similarity among
minimally-disturbed primary vegetation sites with zero environmental distance and a
geographic distance equal to the median sampling extent in the dataset (i.e., adjacent sites —
see Chapter 2). Abundance- and richness-based BIl were calculated for islands and mainlands
by multiplying these spatial projections; e.g., island abundance-based Bll is the product of
island projections for responses of overall abundance and abundance-based compositional

similarity. | present my Bll estimates in a 0 to 1 scale where 1 = 100% intactness.

| calculated average BIl values separately for island and mainland areas within each
biome (Olson et al., 2001), IPBES region (Brooks et al., 2016), country and Conservation
International biodiversity hotspot (Myers et al., 2000). | also calculated average Bll values for
each island listed in the Global Island Database, ver. 2.1 (UNEP-WCMC, 2015). Values were
calculated by averaging modelled Bll values across all cells intersecting the corresponding
region shapefiles after reprojecting the BIl maps and the shapefiles to a Behrmann equal-area
projection. The intersection of the maps was performed using the separated island/mainland
Bll maps and separated island/mainland maps for countries and biomes (the global shapefiles
were clipped using island and mainland shapefiles). This step was necessary because 23,460
cells (around 0.1% of the island cells) intersected with both island and mainland shapefiles
(see Figure C.9) and so were in both Bll maps; the different models for islands and mainlands
mean that Bll estimated for these cells will differ between island and mainland maps, even
though the pressure data will be the same. | used the global shapefiles for IPBES regions and
hotspots for the intersection with the island and mainland Bll maps since these regions are
very broad. In the case of the shapefile from the Global Island Database, | added Australia as

an additional polygon before intersecting it with the island BIl maps. | calculated average BII
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for islands using the unique island ID code (id_gid) in the Global Island Database; averages
for Australia were calculated using an exclusive code for the polygon. The standard deviation

for Bll averages was calculated as a measure of spatial heterogeneity.

Using the projected Bll maps (Behrmann equal-area projection), | calculated the percentage
of land surface on islands and mainlands that is below the recommended safe limit for
reduction of biodiversity intactness: beyond 10% decrease —i.e., below 0.9 on my 0 to 1 scale
— for abundance based Bll (according to the proposed planetary boundary — Steffen et al.,
2015) and beyond 20% decrease — below 0.8 in my scale — for richness-based Bll (according
to the limit used in Newbold et al., 2016a, based on Hooper et al., 2012). | also calculated the
percentage of land surface under each land-use and use-intensity combination on islands and
on mainlands, to enable exploration of reasons behind any island-mainland differences. |
likewise compared the distributions of HPD and DistRd on island and mainland maps. For
these calculations | used projected (Behrmann equal-area) land-use intensity, HPD and DistRd
maps for islands and mainlands, including only those cells that had a defined value in the final

Bll maps.

Since the classification of Australia as an island is debatable, as a sensitivity analysis, |
calculated island average Bll values and the percentage of land surface under the safe limits
using Bll island maps where Australia (only the landmass considered as mainland Australia)
was excluded. Considering that a high percentage of land surface in my original island maps
corresponded to Australia, | also recalculated the percentage of land surface under each land-

use and use-intensity combination using island use-intensity maps excluding Australia.

3.4 RESULTS

The final data for models of total abundance and species richness are described in Tables
C.1-C.3; the data for models of compositional similarity are described in Chapter 2.

All models showed significant differences between island and mainland responses to human
pressures. The abundance model could be simplified since DistRd, though significant as a
main effect, did not interact significantly with any other variable (Figure C.4). No other
interactions could be dropped (Table C.5). The richness model retained all terms (Table C.7).
For both models, the best random-effects structure included land use and use intensity as
random slopes, as well as random intercepts of study and block within study (Tables C.4 and
C.6). However, due to convergence issues, in the final richness model | did not include use
intensity as random slope. For some LUI (Figures C.3 and C.6) and particular combinations of

human pressures (Figures C.5, C.7 and C.8), the models suggested a steeper decline of total
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abundance and species richness on islands than on mainlands, but this trend was not
universal. Confidence intervals were sometimes very wide (e.g., Figure C.3).

Based on the rescaled compositional similarity estimates (Table C.8), similarity of
assemblages in human-dominated land uses to those in minimally-disturbed sites was not
always lower on islands than on mainlands: compared to mainlands, islands showed lower
abundance-based compositional similarity to PriMin assemblages only in primary vegetation,
secondary vegetation and croplands; whereas islands’ richness-based compositional
similarity to PriMin assemblages was lower only primary vegetation, croplands and urban
sites.

When projected globally, Bll is lower, and slightly less spatially heterogeneous, for islands than
for mainlands based on both total abundance and species richness (Figure 3.1). The difference
is slight for abundance-based Bll (0.71 (s.d. = 0.13) for islands compared with 0.73 (s.d. =
0.19) for mainlands) but greater for richness-based BII (0.62 (s.d.= 0.16) for islands compared
with 0.71 (s.d.= 0.19) for mainlands).

Figure 3.1. Global maps of biodiversity intactness. a) Abundance-based Bll. b) Richness-based BII. BlI
values are shown in a 0 to 1 scale (1= 100% intactness).
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On both islands and mainlands, the average local abundance and species richness of originally
present species have fallen below the values proposed as safe limits (0.9 for abundance and
0.8 for richness: Steffen et al., 2015; Newbold et al., 2016a). Around 88.6% of the island area
is below the recommended abundance-based safe limit, and 85.9% transgresses the richness-
based safe limit. On mainlands, 76.5% of the land is below the abundance-based boundary

and 59.7% below the richness-based limit.

Comparing the land-use intensity maps for islands and mainlands, islands have a higher
proportion of minimally-used primary vegetation than do mainlands (~38% vs 28%) (Table 3.1).
On the other hand, a higher fraction of island than mainland is given over to pasture or urban
use (most use intensities — Table C.11). Mainlands showed a higher percentage of land
surface with secondary vegetation and croplands (all use intensities ) than islands (Table 3.1).
Islands tended to have more low values of HPD and high values for DistRd (Figure C.10, Table

C.12) when compared to mainlands.

Excluding Australia from the island maps changed some the island percentages markedly; in
particular, minimally-used primary vegetation (increasing to ~45%), primary vegetation (from
~9% to ~16% —Table 3.1 ) and pastures (e.g., light-use pasture decreased from ~30% to ~10%
— Table C.11). Excluding Australia from the island Bll maps slightly increased estimated Bl
(abundance-based Bll to 0.73 and richness-based Bll to 0.67) and decreased the percentage
of island area below proposed safe limits (to 77.1% for abundance-based Bll and 71.8% for
richness-based BIl; these percentages were still higher than those found for mainlands).
Distribution of DistRd did not change markedly when Australia was excluded from the island
map; however, HPD data was less skewed towards low values and land with low HPD (values
between 0 and 0.3 on a 0 to 1 scale) constituted a higher fraction of mainland (77%) than
island area (70%) (Figure C.10, Table C.12).

Table 3.1. Percentage of land surface under different land-use and use-intensity combinations (LUI) in
the island and mainland Bll maps. LUI classes are collapsed as in the compositional similarity models
(see Chapter 2). Percentages for all LUI classes (each land use with different use intensities ) are shown
in Table C.11.

LU Pergentage on Percgntage on Percentgge on islapds
islands mainlands excluding Australia
Primary Vegetation Minimal use 38.45 28.48 45.21
Primary Vegetation 9.38 9.73 16.47
Secondary Vegetation 10.30 24.42 13.27
Cropland 8.98 12.29 11.77
Pasture 32.38 24.68 12.46
Urban 0.49 0.39 0.84
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Figure 3.2 shows how average Bll varies among biomes on islands and mainlands. On
mainlands, grassland biomes tend to have the lowest values, whereas various forest biomes
show the lowest island values. Tundra and boreal forests are the least affected on both islands
and mainlands. Tundra is the only biome within safe limits for average BIl (both abundance-
based and richness-based) on both islands and mainlands; boreal forests on mainlands also
have average Bll above the safe limits.

a)
Islands
Safe limit Abundance Richness Safe limit

Temperate Broadleaf and Mixed Forests
Tropical and Subtropicaj Dry Broadleaf Forests
Mediterranean Forests| Woodlands and Scrub

Temperate Grasslands, Savannas and Shrublands

Tropical and Subtropiéal Coniferous Forests

Flooded Grasslands and Savannas

Montane Grasslands and Shrublands

Tropical and Subtropical Moist Broadleaf Forests
Tropical and Subtropical Grasslands, Savannas and Shrublands
Deserts and Xeric Shrublands
Mangfroves
Temperate Conifer Forests
Boreal Foﬂests/Taiga
Tundra
1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

b)
Mainlands

Safe limit Abundance Richness Safe limit
Temperate Grasslands, Savannas and Shrublands
Montane Grasslands and Shrublands
Mediterranean Forests; Woodlands and Scrub
Flooded Grasslands and Savannas

Tropical and Subtropical Grasslands, Savannas and Shrublands
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Figure 3.2. BIl averages (abundance-based and richness-based) for biomes on a) islands and b)
mainlands. The figures are replicas of those in Newbold et al. (2016a) to ease comparisons. Colours
indicate major biome type (green: forests, yellow: grasslands, pink: other).
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Average BIl also varies among biodiversity hotspots on islands and mainlands. For islands,
the Mediterranean Basin has the lowest Bll average, followed closely mainly by tropical
hotspots (e.g., Coastal Forests of Eastern Africa, Caribbean Islands and Madagascar and the
Indian Ocean Islands), with the Tumbes-Chocé-Magdalena hotspot being least impacted
(Figure 3.3a). On mainlands, temperate hotspots are the worst impacted, with the Succulent
Karoo having the lowest average BIl while Indo-Burma and Sundaland are the least affected
(Figure 3.3b). For both islands and mainlands, abundance- and richness-based BIl averages

for all hotspots were below their respective safe limits.

Figure 3.4 shows the variation in average Bll among countries; across regions, European
countries have the lowest median values, for both islands and mainlands. For islands,
countries in Oceania (abundance-based) and Asia (richness-based) have the highest median
values. For mainlands, the highest median value for average Bll was for American countries.
Within each region, median country-level Bll was lower on islands than on mainlands (Figure
3.4). In the case of IPBES regions, island average Bll values are lowest for Africa and highest
for the Americas, while mainland values are lower for the Asia-Pacific region than for the other

three regions (Table 3.2).

Table 3.2. Average BIl (abundance-based and richness-based) for IPBES regions on islands and
mainlands. s.d. are shown within parenthesis. Results for Areas Beyond National Jurisdiction (ABNJ)
are not shown. Results here differ from those in Figure 3.4, since these values correspond to averages
for regions while Figure 3.4 uses averages for countries that are grouped into UN geographic regions
and highlights the median values.

IPBES region Average Bl (abundance-based) | Average BlI (richness-based)
Islands Mainlands Islands Mainlands
Africa 0.58 (0.06) 0.75 (0.18) 0.49 (0.05) 0.70 (0.17)
Americas 0.88 (0.14) 0.75 (0.20) 0.86 (0.18) 0.74 (0.20)
Asia-Pacific 0.68 (0.09) 0.67 (0.17) 0.57 (0.08) 0.64 (0.15)
Europe-Central Asia  0.75 (0.21) 0.75 (0.18) 0.72 (0.24) 0.75 (0.20)

Estimated average Bl for the 3,602 islands for which pressure data was available and whose
name was listed in the Global Island Database plus Australia are publicly available at:
https://doi.org/10.1101/576546. Roosevelt Island (U.S.A.) has the lowest Bll average (~0.2 for
both abundance-based and richness-based Bll). The islands with the highest Bll averages

(~0.98) are mainly located in Greenland, Canada and Russia.
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Figure 3.3. Bll averages (abundance-based and richness-based) for biodiversity hotspots on a) islands
and b) mainlands. Colours indicate whether hotspots are in the tropical (orange) or temperate (blue)
realms.
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Figure 3.4. Average BIl (abundance-based and richness-based) at the country level across different
regions (UN geographic regions) on islands and mainlands. Lines within boxes show the median value,
boxes show data within the 25th to 75th percentiles, whiskers show points that are up to 1.5 times the
interquartile range of the data and points show countries that fall outside of these limits.

3.5 DISCUSSION

Although the Biodiversity Intactness Index (BIl) was originally proposed nearly 15 years ago
(Scholes & Biggs 2005), it has become a more prominent indicator in recent years because of
two developments. First, the Planetary Boundaries framework (Steffen et al., 2015) proposed
its use as a provisional metric to assess whether loss of biotic integrity exceeds safe limits.
Second, as a result of the first development, the PREDICTS project has implemented BlI
based on global (Newbold et al., 2016a; Hill et al., 2018) or biome-specific (De Palma et al.,
2018a) statistical models fitted using a large global database (Hudson et al., 2017). These
models have not so far allowed different ecological systems to respond differently to human
pressures, relying instead on the underpinning data being reasonably representative across
higher taxa and major biomes (Hudson et al., 2017; Purvis et al., 2018). However, islands can
be very distinct from mainlands, both ecologically (Whittaker & Fernandez-Palacios, 2007;
Gillespie et al., 2008; Delgado et al., 2017) and socioeconomically (e.g., Turvey, 2007),
meaning that comparing Bll between islands and mainlands is likely to be invalid. This chapter
presents comparisons based on statistical models that, for the first time, allow island and
mainland assemblages to have different distance-decay relationships of compositional

similarity and to respond differently to human drivers.

| estimate the global average Bl to be lower on islands than on mainlands, both for abundance-
based (0.71 vs 0.73) and richness-based BIl (0.62 vs 0.71, though the island value rises to
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0.67 if Australia is excluded). The Bll averages within countries and IPBES regions are also
consistently lower for islands than mainlands in most regions (Figure 3.4; Table 3.2); though

the Americas (IPBES region) are an exception (Table 3.2).

The island-mainland differences, though not large, suggest that island assemblages may be
more sensitive and/or more exposed to human pressures than are mainland assemblages. In
terms of sensitivity, increasing human population density from very low values and decreasing
distance to roads both reduce species richness steeply in primary vegetation on islands but
not on mainlands (Figures C.7 and C.8); and human population density also affects overall
abundance in much the same fashion (Figure C.5). Habitats with primary vegetation would be
likely to be the last refuges of any native species that are highly sensitive to human pressures,
and it may be that such species still persist on islands whereas mainlands do not have them,
either because they never did (i.e., mainland species have broader tolerances than island
species: Delgado et al., 2017; Whittaker & Fernandez-Palacios, 2007) or because such
species have already been lost from the whole system (e.g., due to mainlands’ longer history
of human settlement: Keegan & Diamond, 1987) with only the more resilient species having
persisted through the ‘extinction filter’ (Balmford,1996). Other coefficients in the models tend

to be similar between islands and mainlands (Figures C.3-C.8; Table C.8).

Island-mainland differences in exposure are complex, with the sign of many differences
changing if Australia is excluded. For example, around 37% of mainland area is cropland,
pasture or urban; for islands, the corresponding figure is 42% if Australia is included but only
25% if it is excluded (Table 3.1). If Australia is excluded, the fractions that are cropland, urban
or intensely used (the classes usually associated with lowest abundance and species richness
in my models) are similar between islands and mainlands. Additionally, the fraction of ‘people-
free’ land (e.g., low human population density) on islands decreases from 84% to 70% and as
a result, mainlands show a higher fraction of area (77%) with low human population density
than islands. However, minimally-used primary vegetation constitute a higher fraction of island
than mainland area (however Australia is treated: Table 3.1); remote high-latitude islands are
likely to contribute largely to the fraction of island area that is minimally disturbed and underpin
the high average Bll estimated for islands in the Americas region. Previous reports of strong
human pressures on islands have highlighted how islands’ small size can facilitate access to
remaining primary vegetation (Kier et al., 2009) and brings a higher human population density
in close proximity to natural habitats (Delgado et al., 2017). Ramankutty et al. (2008)
suggested that some island-rich regions, such as Southeast Asia and the Pacific, have a high
percentage of croplands and pastures (among the land uses with the most severe changes
from natural habitats: Foley et al., 2005; McKinney, 2006; Chapter 2). Kier et al., (2009)

reported that islands tended to have higher values of the Human Impact Index (Sanderson et
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al., 2002) than did mainlands. Some island-native species may have greater need than
mainland species of ‘people-free space’; but there is little indication from my data on pressures

that they get it.

On both islands and mainlands, average Bll is below the proposed ‘safe limits’ (Steffen et al.,
2015; Newbold et al., 2016a), globally, for every IPBES region (apart from islands in the
Americas using richness-based Bll), for every biome except for tundra and boreal forest, and
for every biodiversity hotspot. These results are much less optimistic than those of Newbold et
al. (2016a), who estimated that only 9 of the 14 terrestrial biomes and 22 of the 34 terrestrial
biodiversity hotspots have on average transgressed the safe limits for Bll. Especially for
islands, my BIl estimates are much lower than those from Newbold et al. (2016a), where global
averages were ~0.85 and ~0.77 for abundance-based and richness-based BlI, respectively. |

analyse the causes of these differences in Chapter 5.

My modelling approach still has some of the limitations of other implementations of Bll
discussed previously (Newbold et al., 2016a; Purvis et al., 2018; De Palma et al., 2018a). |
might still be overestimating Bll by 1) ignoring lagged responses; 2) not considering the effects
of climate change or any other drivers with a different spatial pattern than the human pressures
in my models; 3) the likely presence of human pressures on many sites in the reference class
(assumed as minimally-disturbed); and 4) shortcomings in pressure data for some regions
(most obviously, the lack of plantation forests in land-use maps, and bias and incompleteness
in currently available road maps such as gROADS — Meijer et al., 2018). Effects of roads on
islands might be underestimated if island roads are less likely to be recorded than those on
mainlands. A further limitation more specific to this study is that many more studies are
available for mainlands than islands (Table C.1), particularly within some biomes (Table C.2).
Less confidence can also be placed in results for biomes that are relatively poorly
represented in my data such as taiga, tropical and subtropical coniferous forests in islands;
and tundra, mangroves and flooded grassland and savanna in both islands and mainlands
(Table C.2).

| chose to perform my analyses based only on human pressure data from 2005 so that | could
also focus on comparing my Bll estimates for islands and mainlands with those of Newbold et
al. (2016a) (see Chapter 5), who used the same pressure data. More recently, De Palma et
al. (2018a) estimated annual change in BII for tropical forest biomes between 2001 and 2012,
and Hill et al. (2018) predicted possible future impacts to biodiversity intactness at a global
scale. Both studies implemented the modelling improvements that | use here — and discuss in
Chapter 5 — but have gone further in making projections using time-varying pressure data.

Additionally, De Palma et al. (2018a) included human population density and roads in their
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models of compositional similarity, increasing their ability to account for the effect of habitat
degradation; and Hill et al. (2018) used refined land use classes (Land-Use Harmonization 2
— Hurtt et al., in prep.) which differentiate rangelands from pastures; this can lead to higher

levels of Bll across regions where rangelands are common such as Australia.

Despite its limitations, my study marks an important technical improvement in the estimation
of Bll, and shows that biotic integrity worldwide has been much more seriously diminished —
especially on islands — than previously estimated (Newbold et al., 2016a). Some species native
to islands appear much less able than mainland species to persist in the face of rising human
population density and road development. My results highlight the need for stronger efforts to
arrest the loss of native island biodiversity in order to achieve biodiversity targets, especially
in the endemic-rich and heavily impacted island-based biodiversity hotspots (Myers et al.,
2000).
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CHAPTER 4

Effects of land-use change and related pressures on
alien and native subsets of island communities

4.1 ABSTRACT

Studies assessing the different effects of human pressures on native and alien assemblages
on islands are scarce, despite many suggestions that island species and habitats are
particularly vulnerable to human disturbances, and accumulating evidence that anthropogenic
changes are overwriting natural biogeographic patterns seen among islands. In this chapter, |
model how land-use change and related pressures affect diversity (species-richness and
summed abundance) of alien and native species on islands. | also test whether richness and
abundance of alien species is predicted by island size and isolation — as has often been shown
for native species — and GDP per capita as a proxy for the intensity of trade-mediated species
introductions. Finally, fitting models of compositional similarity, | evaluate the turnover among
natives and aliens caused by land-use change on islands and estimate how homogeneous
native and alien communities are among sites within the same land use. My results suggest
that, on islands, land use and — to a lesser extent — human population density and proximity to
roads reduce both richness and abundance of natives, whereas the number and abundance
of alien species are high in sites on human-dominated land uses. Moreover, more isolated
islands have a higher number of alien species across most land uses than less isolated islands.
Finally, alien species have a major role in the turnover and homogenization in island
assemblages. The declines of native assemblages of islands in the face of human pressures,
and the proneness to invasions of even the more remote islands, highlight the importance of
stronger efforts to lower the intensity of human pressures on islands and to prevent the

establishment of alien species for island biodiversity conservation.

4.2 INTRODUCTION

Previous chapters have shown that land use and related pressures strongly shape the diversity
within and turnover between local ecological assemblages, in ways that differ significantly
between islands and mainlands. This chapter focuses on island sites, and models how these

pressures affect two subsets of the ecological assemblages: natives and aliens. Studying alien
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and native responses to human pressures on islands is important for two main reasons. First,
many species native to islands have characteristics — e.g., narrow-range endemism, small
population size — that make them both particularly vulnerable to human disturbances and
irreplaceable (Paulay, 1994; Simberloff, 2000; Sakai et al., 2002; Chapter 1). Second, islands
have been highlighted as hotspots of alien species (Capinha et al., 2017; Dyer et al., 2017a)
and as systems at higher risk of invasions (Simberloff, 1995a; Sax & Brown, 2000; Denslow,
2003; Dalmazzone & Giaccaria, 2014).

Natural and anthropogenic factors combine to make island, and their site-level communities,
prone to invasion. Islands — especially remote islands — may have a relatively small source
pool of native species (Herben, 2005) from which their communities are assembled, resulting
in low species richness for their area (Whittaker et al., 2017), which is hypothesised to result
in more available resources (Sax & Brown, 2000), low pressures from predators or pathogens,
and disharmonic communities (Denslow, 2003; Gillespie et al., 2008). Additionally, native
species often have low competitive ability (Denslow, 2003), and have evolved reduced
dispersal abilities (Gillespie et al., 2008) and reproductive output (Adler & Levins, 1994; Siliceo
& Diaz, 2010; Meiri et al., 2012). These natural factors combine to facilitate establishment by
alien colonists, especially in disturbed sites (e.g; Borges et al., 2006; Meijer et al., 2011; Marini
et al., 2012). Many land uses involve site-level disturbance, favouring the establishment of
alien species (often good dispersers that reproduce rapidly and tolerate to a broad range of
conditions: Sakai et al., 2001; Hamilton et al., 2005; Cadotte et al., 2006) over natives.
Crucially, humans have directly introduced many alien species to islands, with propagule
pressure (i.e., number of released individuals — Lockwood et al., 2005) and the presence of
other groups of introduced species (Redding et al., 2019) both influencing the probability of
establishment. In contrast, disturbed habitats can represent novel environments for some
native species, to which they are not adapted (Sax & Brown, 2000). Hence, natives often
cannot tolerate the effects of habitat modification, particularly species with traits related to a
high extinction risk, such as large size (Cardillo et al., 2005; Ripple et al., 2017), low fecundity,
limited dispersal abilities, stenotopy (McKinney & Lockwood 1999) and small range-size
(Collen et al., 2016; Ripple et al., 2017).

Importantly, although some studies have addressed how alien invasions change the
composition of island communities (Sobral et al., 2016; Florencio et al., 2013), the question of
whether compositional changes (e.g., assemblage turnover and homogenization) are mainly
driven by the presence of alien species in disturbed sites or the turnover of native species
(e.g., disturbance favouring more resilient or widespread natives) has not been broadly

explored. This question is important on mainlands as well as on islands, but a practical reason
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dictates that it is easier to address on islands: classifying species as native or alien tends to

be easier for island than mainland sites.

Classifications of species on mainlands are usually based on species distribution at a country
level and uncertainty in native vs non-native status is often unclear. Even though using political
boundaries to determine the status of a species might not be ideal (since they do not reflect
biological or ecological barriers: Richardson et al., 2000; PySek et al., 2004), more precise data
are rarely available, especially for large sets of species, and working at a country level provides
the opportunity of obtaining defined environmental and economic parameters (Pysek et al.,
2004). Efforts to identify alien and invasive species on islands have intensified in recent years
due to programs focusing on the eradication of invasive species on islands to benefit endemic
threatened species (e.g., Holmes et al., 2019). Such sources can provide data on species
status that are less biased towards particular taxonomic groups than is the case for mainlands;
e.g., global data for native vs non-native status is mainly available for a restricted set of taxa
such as birds and plants (see for example The Global Avian Invasions Atlas and The Global

Naturalized Alien Flora — Dyer et al., 2017b; van Kleunen et al., 2019).

If alien species follow the natural patterns of island biogeography, large islands would be
expected to have more alien species than small islands, and isolated islands less alien species
than islands that are closer to continents or other islands (MacArthur & Wilson, 1967).
However, recent studies have suggested that anthropogenic processes have particularly
changed the species—isolation relationship (e.g., Blackburn et al., 2008; Helmus et al., 2014).
Currently, anthropogenic factors such as colonisation pressure (i.e., number of species
introduced to a defined location — Lockwood et al., 2009; Dyer et al., 2017a) or economic

isolation of islands (Helmus et al., 2014) may be more important than geographic isolation.

While metrics such as shipping traffic among islands and mainlands (or among islands
themselves) have been used as direct measurements of islands’ economic isolation (Helmus
et al., 2014) related to the arrival of alien species, these are not available for all islands globally.
Other indicators of islands’ socio-economic development may be more useful in global or multi-
regional analyses aiming to predict alien species diversity. Measures of economic activity are
related to propagule pressure (e.g., trade volumes), ecological disturbances (Westphal et al.,
2008) and infrastructure development (Hulme, 2009) (e.g., roads, railways), all of which ease
the arrival and establishment of alien species (Westphal et al., 2008; Hulme, 2009). For
example, Dyer et al. (2017a) found that at a global scale, the number of alien introductions to
a country was positively correlated with its per capita GDP, while Capinha et al. (2017) found
that regional numbers of established alien amphibian and reptile species were positively

associated with per capita GDP. These patterns have been mainly associated with high levels
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of species trade (e.g., plants and pet trade) and higher trade volumes in high-income countries
(Early et al., 2016; Dyer et al., 2017a). International trade has been pointed out as a primary
source of introduction of alien species (Levine & D'antonio, 2003; Early et al., 2016) since it
leads to the escape or release of imported species into the wild (Reichard & White, 2001;
Hulme et al., 2008) and the introduction of further alien species as stowaways (Helmus et al.,
2014) or contaminants of goods (e.g., pest and pathogens — Hulme et al., 2008). Notably,
based on data from Dalmazzone (2000), Hulme (2009) pointed out that the positive
relationship between alien richness and GDP was stronger for island estates than for
continents, which reflects the greater proportion of imported products that contribute to their
GDP.

In this chapter, | model the effects of land-use change and related pressures on native and
alien communities of islands. This study is the first global analysis of its kind to include a wide
range of taxa while focusing specifically on islands. Based on models of local total abundance
and species richness, | show that native and alien species on islands are affected differently
by three human pressures (land use, human population density and distance to the nearest
road). Additionally, | test whether richness and abundance of alien species is predicted by
island size, geographic isolation and — as an index of economic connectance — GDP per capita.
To evaluate the turnover of native and alien assemblages caused by land-use change on
islands, | estimate how species composition of alien and native communities in minimally-
disturbed sites is affected by land use change. Finally, | estimate how homogeneous

communities of native and alien species are among sites within the same land use.

4.3 METHODS

4.3.1 Data assemblage

All the models used data on species abundance and occurrence extracted from the PREDICTS
database (Hudson et al., 2017) in October 2016; the database is described in detail in Chapter
1. For this study, | only used data for island sites in the PREDICTS database (i.e., sites in
Australia and all land polygons with a smaller area). The name of the island where each site
was located was determined by matching the site coordinates with the Global Island Database,
ver. 2.1 (UNEP-WCMC, 2015). All data processing and statistical analyses were performed
using R Version 3.3.3 (R Core Team, 2017).

Data for island sites in the PREDICTS database includes 17,776 species and 1,339,339
biodiversity records (each one being a single diversity record of a species within a site within

a study). | only attempted to classify species having a curated taxonomic name (i.e., a Latin
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binomial) in the PREDICTS database. 42 of the data sources in the PREDICTS database
(including 51 studies) had already classified the sampled species as aliens or natives at the

sites sampled.

To greatly extend the available data, | collated data from external sources to classify species
based on the island (when possible) or country where they were sampled. | first used three
global databases that could provide island-specific (rather than country-level) species
classifications: the Global Naturalized Alien Flora database (GIoNAF; van Kleunen et al.,
2019); the Global Inventory of Floras and Traits (GIFT; Weigelt et al., 2017), a global set of
regional plant checklists; and the Threatened Island Biodiversity database (TIB; Threatened
Island Biodiversity Database Partners, 2017), which also reports on native and invasive
species on islands. The matching of PREDICTS species names against species in GloNAF
and GIFT databases used the original taxon names in the two databases or taxon names after
correction or standardization using The Plant List database Version 1.1
(http://www.theplantlist.org/). | identified all matching species-island combinations between the
three databases and PREDICTS island data to classify as many species as possible based on

their distribution at an island level.

To further extend the data set, | used additional databases for species status at a country level
which could provide downloadable datasets (six databases — Table D.1) or access to data
through an application programming interface (API). For the latter case, | accessed data from
the IUCN Red List (IUCN, 2017), the Global Invasive Species Database (GISD; Invasive
Species Specialist Group ISSG, 2015) and Flora Europaea (Euro+Med, 2006) using the R
packages ‘rredlist’ ver. 0.5.0 (Chamberlain, 2018) (function ‘rl_occ_country’) and ‘originr' ver.
0.2.0 (Chamberlain & Bartomeus, 2016) (functions ‘gisd’ and ‘is_native’), respectively. | also
used a dataset previously shared by the GLONAF team with the PREDICTS team, which gave
the status of plant species found in both PREDICTS and GLONAF databases for all countries
or regions included in GLONAF database. All matching species-country combinations in these
sources and the PREDICTS island data were used to classify records for species whose status
could not be defined at an island level. Most of these external sources provided a direct
indication of the species status in different locations (e.g. alien, invasive, naturalized, native,
endemic). When databases provided geographic ranges for species (e.g., Red List, AntMaps),
| first extracted the status for the matching species-country combinations, but also classified
species according to the geographic ranges provided by these sources. In particular, if a
species was found in these sources, and the sampling location in my dataset was not included
in the native range of the species, | classified it as alien (i.e., even if the source did not
specifically list the species as alien in that country); where possible, | confirmed such

designations of alien status using additional sources. In a final step, | searched for data
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sources that could help classifying specific species or taxa that were very common in my
dataset (i.e., with many records in island data) but had remained unclassified to this point
(mainly arthropods); these additional sources included taxonomic experts from different
institutions, publications and databases for specific taxa and countries (Table D.1). In total, 27

external sources were used to classify species as aliens or natives (Table D.1).

4.3.2 Statistical modelling

4.3.2.1 Models of total abundance and species richness

Using only records where species were classified as aliens or natives, | calculated each site’s
total abundance (sum of abundances of all present taxa) and species richness (number of
unique present taxa) for alien and native species (i.e., site-level biodiversity measures were
calculated separately for aliens and natives). When sampling effort varied among sites within
a study, total abundance was divided by the sampling effort to make data comparable among

the study’s sites.

To model the responses of alien and native species to human pressures, | fitted models for
total abundance and species richness following the methods for the models that were used to
estimate the Biodiversity Intactness Index (BIl) (Scholes & Biggs, 2005; Newbold et al., 2016a)
in Chapter 3 (generalized mixed-effect models — GLMMs; ‘/me4’ package ver. 1.1-15— Bates
et al., 2017). Total abundance was rescaled to a zero-to-one scale within each study to reduce
the variance among studies, square-root transformed and modelled using a Gaussian error
structure. Species richness was modelled using a Poisson error structure and log link. As fixed-
effects, the two initial models included two-way interactions between each of three human
pressures at a site-level (land use, human population density (HPD) and distance to nearest
road (DistRd)) and the species status (alien/native) plus three-way interactions between
species status, land use and HPD or DistRd. HPD and DistRd were log transformed and
rescaled to a zero-to-one scale prior to modelling to deal with extreme values and to reduce
collinearity. Generalized Variance Inflation Factors (GVIFs) (Zuur et al., 2009) did not indicate
strong collinearity among the explanatory variables. For these models, the 10 land-use
categories and three land-use intensities within each land use in the PREDICTS database
(Hudson et al., 2017) were collapsed into seven final land use/use intensity classes: 1) Primary
vegetation with minimal use (henceforth PriMin and considered as a baseline representing
minimally disturbed sites), 2) Primary vegetation (light and intense use combined), 3)
Secondary vegetation, 4) Plantation forest, 5) Cropland, 6) Pasture and 7) Urban (last five
classes including all use intensities). These collapsed classes gave reasonable sample sizes

(at least 100 sites) within each land-use class for both alien and native data (Table D.5). The
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best random-effects structure was identified using the Akaike’s Information Criterion (AIC),
with the initial models fitted using Restricted Maximum Likelihood (REML) for total abundance
and Maximum Likelihood (ML) for species richness. | assessed two possible random-effects
structures: (i) random slopes for land uses within study + random intercepts of study and block
within study and (ii) random intercepts of study and block within study. The richness model
was not overdispersed, so did not need an observation-level random effect (Harrison, 2014).
Finally, | tried to simplify the fixed-effects structure of the models using backwards stepwise
model simplification and likelihood ratio tests with models fitted using Maximum Likelihood.
Model diagnostics showed that the final abundance and richness models fulfilled homogeneity

and normality assumptions (Figure D.1).

4.3.2.2 Models including island traits as predictors

Using only the data for alien species, | fitted GLMMs to test whether island area, isolation and
(two estimates of) GDP per capita predicted total abundance and richness of aliens. Island
area (in km?) was calculated using a global layer of land polygons taken from OpenStreetMap
(OpenStreetMap Contributors, 2015) in cylindrical equal area projection. To estimate island
isolation, | used Weigelt et al.’s (2013) values for the sum of the proportions of landmass within
buffer distances of 100, 1,000 and 10,000 km around the island (henceforth, surrounding
landmass). This metric has previously shown to be the isolation metric that best explains
diversity of certain taxa (e.g., plants — Weigelt & Kreft, 2013) on islands at a global scale. Data
for three Japanese islands and Australia (Table D.9) were missing from Weigelt et al. (2013),
so these four islands were not included in these models. | used two estimates of GDP per
capita (in current US dollars for the year 2005, World Data Bank). Country-level GDP per capita
(henceforth, country GDP) was taken from World Data Bank. To estimate island-level GDP per
capita (henceforth, island GDP), | divided the product of the island area and country GDP by
the country’s land area (World Data Bank). Although this metric might not be completely
accurate to reflect islands’ socio-economic development, it is a proxy that could be estimated
using reliable data available for all countries and islands in my dataset. Where a single island
represented almost the total territory of a country (i.e., Australia, Puerto Rico, Sri Lanka and
Madagascar — Table D.9), | used the country’s GDP per capita as the estimate for the island.
When an island was politically divided among several countries (i.e., Ireland, Borneo, New
Guinea, Tierra del Fuego), | used the GDP per capita and area of the country with the biggest
percentage of territory in the island. For example, Borneo GDP per capita was calculated

based on Indonesia.

| fitted a total of eight models — four of total abundance of aliens and four of alien species

richness — using the same modelling approach as in the previous section except as follows.
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As fixed effects, each initial model included one two-way interaction between land use and one
of the four island traits (i.e., island area, surrounding landmass, country GDP and island GDP).
Because island area, country GDP and island GDP included extreme values, | transformed
them (Zuur et al., 2007), choosing the transformation that most closely approached a normal
distribution and that yielded well-behaved residuals (Figures D.7 and D.9). Island area was
square-root transformed, while both country and island GDP per capita were log-transformed.
Surrounding landmass did not require transformation. | considered two possible random-
effects structures for the models: (i) random intercepts of study (ii) random intercepts of study
and island. | performed post hoc analysis (package ‘phia’ ver. 0.2-1 — De Rosario-Martinez,
2015) to test whether the coefficients of the interaction between the land uses and the metrics

for the island traits were significantly non-zero.

4.3.2.3 Models of compositional similarity

| adapted the methods used in Chapter 2 to model how land-use change on islands affected
the turnover of native and alien assemblages. Compositional similarity was calculated,
separately for alien and native data, for all possible pairwise comparisons between sites within
each study using the abundance-based (Js) and richness-based (Jr) asymmetric Jaccard
Index. | then used linear mixed-effect models to model both Ja and Jr as a function of the sites’
land uses (referred to as the land-use contrast; e.g, PriMin-Pasture), the geographic and
environmental distance between the sites and the species status (native or alien). Land-use
contrast was a 49-level factor; however, as in Chapter 2, | only focus on results for 13 land-
use contrasts grouped in two sets (Table D.14): a) the set of contrasts with site / in PriMin,
estimating how the composition of native and alien species of minimally-disturbed sites is
affected by change to each other land use, and b) the set of contrasts with both sites in the
same land use, estimating how similar communities are among sites facing similar pressures.
For both alien and native data, most of the land-use contrasts of interest had sample sizes
>1900 and included data from five or more studies (Table D.14); the only exception was PriMin-
Urban, for which sample sizes were <60 (Table D.14) and data only came from one study for
aliens and two studies for natives. | do not report results for this contrast since the estimates
are unreliable; however, model coefficients for all land-use contrasts are shown in Table D.16.
Unlike in Chapter 2, | did not attempt to perform an indirect calculation for compositional
similarity estimates of PriMin-Urban, because sample sizes for the Secondary-Urban contrasts

were also small (2 studies for aliens and 5 studies for natives).

As fixed effects, the models included two-way interactions between species status
(alien/native) and each of the other three explanatory variables (geographic and environmental

distances between sites and land-use contrast). | included study identity as a random intercept.
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As in Chapter 2, | used the PriMin-PriMin contrast as the intercept level in the models, since it
is an indicator of the natural spatial turnover of species and therefore, a baseline against which
to compare the other land-use contrasts. Data transformations are as in Chapter 2:
compositional similarity was logit-transformed, while environmental distance was transformed
using cube root, and geographic distance was divided by the median maximum linear extents
of the sites in the dataset and then log-transformed. Permutation tests were used to assess
significance of terms during backwards stepwise model simplification and statistical
significance of interactions between alien/native status and the other explanatory variables,
again as in Chapter 2. The final models for Jx and Jr fulfiled homogeneity and normality

assumptions (Figure D.11).

4.4 RESULTS

4.4.1 Species status

Of the 17,776 species recorded from island sites in the PREDICTS database, 3,059 were
already classified as native or aliens at particular sites, these data coming from 42 data
sources. This number includes 1,503 species without a curated Latin binomial; 5,217 other
species similarly without a binomial could not be checked against other databases. For species
having a curated Latin binomial in the PREDICTS database, there were 13,060 unique
combinations of species and island, of which 1,109 (for 1,039 species) could be classified
using the island-specific databases (i.e., GLONAF, GIFT and TIB); and 10,968 unique
combinations of species and country, of which 2,160 (for 1,866 species) could be classified

using the country-level external sources.

This matching process produced a dataset with 799 alien species (Table D.2) (from 4,799
sites in 99 studies, 38 islands and 21 countries) and 5,522 native species (Table D.2) (from
7,354 sites, in 157 studies, 79 islands and 29 countries). In total, | was able to classify ~52%
of the island biodiversity records in the PREDICTS database as native or alien (Table D.3),
with more coming from the PREDICTS database than from other sources (Table D.4). The
dataset retained ~70% of the island studies and ~75% of island sites in the PREDICTS

database.

4.4.2 Effects of human pressures on native and alien species

The best random-effects structure for the abundance and richness models (judged by AIC)
included random slopes for land uses within study and random intercepts of study and block

within study (Table D.6); however, | used a richness model without random slopes due to
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convergence issues. For both overall abundance (Table D.7) and species richness (Table D.8),

aliens and natives responded very differently to human pressures.

On average, ~17% of the species and total abundance in sites in minimally-disturbed primary
vegetation corresponded to alien species (and ~83% to native species) (Figures D.5. and D.6).
Relative to this baseline of primary vegetation with minimal use, three land uses had significant
negative impacts on overall abundance of natives: pastures (-33%), plantation forests (-24%)
and secondary vegetation (-13%) (Figure 4.1). By contrast, relative to the same baseline, all
land uses increase the overall abundance of aliens (Figure 4.1), by more than 100% in
secondary vegetation, and by even more in human-dominated land uses (~260% increase in
croplands, ~420% in plantations, ~430% in pastures and ~650% in urban sites). The effects
of DistRd on total abundance of natives and aliens were weaker and less clear (and in this
case the three-way interaction between species status, land use and DistRd was not significant
— Table D.7); however, total abundance of native species tended to increase with DistRd
(Figure D.2). In the case of HPD, native species showed a decline in total abundance as HPD
increased mainly in human-dominated land uses (Figure 4.2). The effects of HPD on natives’
total abundance was less clear in less disturbed or forested land uses (Figure 4.2). Total
abundance of alien species increases with HPD mainly in pastures; effects were less clear

across the rest of the land uses (Figure D.3).

Numbers of native species were lower in most human-dominated land uses than in the PriMin
baseline, with particularly severe reductions in croplands (-45%), pastures (-29%) and
plantation forests (-25%) (Figure 4.3). In contrast, the numbers of alien species are significantly
higher in pastures (~270%), urban sites (~130%), plantation forests (~90%) and croplands
(~80%) (Figure 4.3). HPD has only weak effects on numbers of native (Figure 4.4) and alien
(Figure D.4) species within most land uses, but the number of native species tends to decline
across some land uses as HPD increases (Figure 4.4). The number of alien species tends to
decrease slightly as DistRd increases (with the main exception of urban sites —Figure 4.5);
whereas numbers of native species tends to increase with DistRd in human-dominated land

uses (i.e., plantation forests, pastures, croplands and urban sites —Figure 4.5).
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Figure 4.1. Response of total abundance of aliens and natives to land use. Values indicate decrease or
increase in percentage of total abundance using minimally-used primary vegetation as baseline (dashed

line). Bars indicate 95% confidence intervals. The inset shows results for natives, which are not clearly
visible in the main plot.
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Figure 4.2. Response of total abundance of natives to human population density (HPD) across land
uses. The x limits of each coloured line indicate the 2.5th and 97.5th percentiles for the values of HPD
represented in each land use in the model dataset. For clarity, the error bars show half the standard
error. HPD values are shown on a rescaled axis (as fitted in the models). Abundance is shown on a

zero-to-one scale (as fitted in the models; i.e., abundance rescaled within studies).
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Figure 4.4. Response of richness of natives to human population density across land uses. Values of
human population density are shown on a rescaled axis (as fitted in the models).
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Figure 4.5. Response of richness of aliens and natives to distance to the nearest road. Distance to road
values are shown on a rescaled axis (as fitted in the models).

4.4.3 Island traits as predictors of alien abundance and richness

The abundance models for alien species which included island area or GDP per capita metrics
used data from 85 studies in 30 islands, whereas the corresponding species-richness models
used data from 99 studies and 39 islands. Analyses involving surrounding landmass were
based on fewer data: 65 studies from 26 islands in the model of abundance, and 76 studies
from 35 islands in the richness model (Table D.9). Most of these models used more data than
the previous abundance and richness models, as | only excluded data for sites without a
defined land use or where data were not available for the surrounding landmass from Weigelt
et al. (2013).

For all eight models, the best random-effects structure (judged by AIC) included random
intercepts of study and island (Tables D.10 and D.12). None of the models could be simplified,
because land use interacted significantly with each island characteristic (Tables D.11 and
D.13). However, only a few land uses had significant interaction coefficients (Figures D.8 and
D.10), especially in the richness models, so few clear patterns could be discerned. The clearest
pattern was seen in the effects of surrounding land mass on site-level species richness (Figure
4.6): as the surrounding landmass increases, the number of alien species decreases
significantly within most land uses (but not pastures or plantation forests), especially in primary

vegetation and urban sites.
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Figure 4.6. Effects of surrounding landmass on richness of alien species across land uses. For clarity,
the error bars show half the standard error. Slopes that are significantly different from zero: Primary
minimal (-2.875, P= <0.001), Primary vegetation (-2.254, P= <0.01), Secondary vegetation (-1.182,
P=0.05), Cropland (-1.594, P= <0.05) and Urban (-2.479, P= <0.001). Rugs along the horizontal
margins show the values of surrounding landmass represented (across land uses) in the model data set
(rugs for minimally-used primary vegetation, primary vegetation and croplands in the top margin and the
rest of the land uses in the bottom margin). Rugs for land uses can overlap, therefore some data is not
visible.

4.4.4 Effects of land use on native vs alien assemblages

The final data for models of compositional similarity included 91 studies: 60 including data for
alien species (2,780 sites; 597 species) and 90 including data for native species (4,293 sites;
3,199 species). Data for alien species came from 25 different islands and data for natives from
32 islands. All interactions in the two models were significant (Table D.15). For both Ja and Jg,
the decline in similarity with geographic distance is significantly steeper for alien species than
for native, whereas the reverse is true for the decline in similarity with environmental distance
(Table D.16 and Figure D.12).

Once distance-decay effects are controlled for, land use affects compositional similarity to
PriMin (i.e., the presence and abundance of novel species in land uses other than PriMin)
significantly more in alien assemblages than in native assemblages, for both Js and Jr
(Figures 4.7 and D.13). Alien assemblages of sites within PriMin were more compositionally
similar to each other than to assemblages of sites in other land uses (particularly croplands,

plantations and pastures). In contrast, native assemblages of PriMin sites were slightly less
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similar to each other than to assemblages of sites in most other land uses. Only primary
vegetation and pastures seemed to reduce compositional similarity to PriMin for native

assemblages .

Moving to compositional similarity within a land use, pairs of sites within most land uses tend
to have assemblages that are more similar than are pairs of PriMin sites, for both alien and
native assemblages and for both Js and Jr (Figures 4.8 and D.14). The only exceptions to this
pattern are urban sites and croplands. Most of these within-land-use similarities differed
significantly between alien and native assemblages; the reduction of spatial beta diversity
(when compared to similarity between PriMin sites) is stronger for alien assemblages,
particularly in primary vegetation and plantation forests, but also, for Jr, in pastures and urban
sites. Native assemblages only showed a slightly stronger reduction of spatial beta diversity

than alien assemblages in models for Ja in secondary vegetation and pastures (Figure D.14).
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Figure 4.7. Jr estimates for land-use contrasts where site i is in PriMin. Solid lines show the magnitude
of change in Jr driven by change to different land uses; the baseline is compositional similarity between
PriMin sites for alien and native assemblages respectively (dashed lines). Significance (indicated by
stars) is shown for alien/native differences for Jr changes from PriMin-PriMin on a logit scale (results
from permutation tests and two-tailed tests comparing the coefficients for interaction between
alien/native and land-use contrast to null distributions). Results for the PriMin-Urban contrast are not
shown because sample sizes for this contrast were very small (but see the coefficients in Table D.16)
Significance code: 0.005***
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Figure 4.8. Jr estimates for alien and native assemblages in sites within the same land use. Each
category corresponds to a land-use contrast (i.e., Cropland= Cropland-Cropland). Solid lines show the
magnitude of change in Jr using PriMin-PriMin compositional similarity as baseline (dashed lines).
Significance connotation and codes as in Figure 4.7.

4.5 DISCUSSION

Human-dominated land uses markedly decrease the total abundance and richness of native
species on islands while dramatically increasing the abundance and richness of alien species.
These findings are in line with previous suggestions that habitat modification tends to have
negative impacts on natives (McKinney & Lockwood 1999; Scholes & Biggs, 2005) or narrow-
range species (Newbold et al., 2018), and with the hypothesis that alien species can be very
successful in disturbed habitats (Sax & Brown, 2000; Catford et al., 2012; Lembrechts et al.,
2016). My results also agree with the global pattern that agriculture is among the main causes
of biodiversity loss (Maxwell et al., 2016; Brummitt et al., 2015): croplands and pastures
showed the strongest declines in numbers of native species; and pastures also showed the
strongest decline in their abundance. The lack of a strong decline in overall abundance of
natives in croplands was more surprising, but such a pattern is common in initial phases of
habitat modification (Gonzalez & Chaneton, 2002), when the species being lost tend to be
those at low initial abundance with more resilient native species persisting and even increasing

in abundance.
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Most sites in minimally-disturbed primary vegetation have very few alien species with a low
total abundance of aliens (although there are exceptions — Figures D.5 and D.6); such a low
baseline contributes to the extreme percentage increases seen in human-dominated land
uses. In my final dataset, fewer than 10% of the species and total abundance in most
minimally-disturbed sites corresponded to alien species (mean percentage across all these
sites was ~17%). Absolute (rather than relative) values for total abundance and species
richness are shown in the plots of the effects of human population density and distance to road
(e.g., Figures 4.2 and 4.5)

Alien species are much more common on human-dominated land uses than on more natural
land uses (especially minimally-used primary vegetation), which was expected given their
tolerance to disturbed conditions and the fact that introduced species are expected to colonise
sites that are altered by human activities instead of minimally-disturbed sites where they would
need to displace native species (Sax & Brown, 2000). Alien species seem to be particularly
successful in pastures and urban sites, although estimates for the latter are highly uncertain
because of small sample size (Figures 4.1 and 4.3). Previous studies have highlighted that
aliens can be very common or abundant in pastures (Meijer et al., 2011; Pouteau et al., 2015)
and especially in cities (PySek, 1998; Mcintyre, 2000; McKinney, 2002), where they have often
been intentionally introduced (e.g., for livestock forage —Monroe et al., 2017 — or trade in cities
— Kowarik, 2011). Moreover, once introduced, aliens can become very successful if they can
tolerate the extreme conditions of these drastically altered habitats (McKinney, 2006). Overall,
the positive effects of land-use change on aliens’ diversity was stronger for total abundance,
suggesting that the number of alien species arriving and establishing in disturbed sites might
not be particularly high, but those species can be very successful in these sites and reach
relatively high abundances (PySek & Richardson, 2007), perhaps reflecting the lack of
competition by native species in human-dominated land uses (Sax & Brown, 2000), particularly

on islands (Denslow, 2003).

Human population density, which can be related to land-use intensity (Lambin et al., 2001),
has negative effects on natives (although this effect is not very strong) but no clear effects on
aliens. Although my models suggest that in some cases aliens might particularly thrive where
the human population is high (McKinney, 2001; Marini et al., 2012) (see especially the case of
pastures — Figures D.3 and D.4), in other cases, richness or abundance of aliens was higher
where human population density was intermediate or low (Figures D.3 and D.4). Island natives
seem to have a greater need of ‘people-free land’ (Cincotta, 2011; McKee et al., 2013;
McCreless et al., 2016). While in most human-dominated land uses, the increase in human
population density seems to worsen the decline in native diversity, this negative effect was

also seen in minimally-used primary vegetation. Cincotta (2011) suggested that, even without
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considering the relationship between human populations and habitat modification or invasive
species, human populations in natural ecosystems represent a threat to native species,
especially considering the negative effects of hunter-gathering (Cincotta, 2011; Maxwell et al.,
2016). However, the effect of human populations in natural habitats is less severe than
expected based on the results from Chapter 3, for reasons that are unclear. One possibility is
that the difference arises from the exclusion of many species that could not be classified as

aliens or natives.

The number of alien species tends to increase with proximity to the nearest road decreases
across most land uses, while the richness of island natives tends to show the opposite trend
within human-dominated land uses. These effects, though not particularly strong, were as
expected; the development of roads or other infrastructure involves a direct traffic of vehicles
and goods as well as severe modification of natural habitats (Spellerberg, 1998; Trombulak &
Frisell, 2000; Hulme, 2009), all of which can promote the arrival and establishment of alien
species (Trombulak & Frisell, 2000; Westphal et al., 2008; Hulme, 2009). Additionally, the
development of roads can worsen the conditions of sites that have seen land conversion, can
fragment habitats (Andrews, 1990) and can lead to collisions with vehicles, all of which
increase mortality (Spellerberg, 1998; Trombulak & Frisell, 2000) so can lead to the loss of

vulnerable native species.

The only island characteristic significantly associated with alien diversity was surrounding land
mass: more isolated islands have higher numbers of alien species across most land uses. This
pattern was also found for abundance of aliens but only in primary vegetation (Figure D.8).
These results agree with previous studies suggesting that island biogeography of exotic
species is not defined by the natural species—isolation relationship (Blackburn et al., 2008;
Helmus et al., 2014). They also support a recent suggestion that island remoteness promotes
invasions by alien species worldwide (Moser et al., 2018). This pattern can be in part attributed
to location-level factors driving the success of establishment, such as features of communities
of the recipient location; for example, Redding et al. (2019) recently found that the presence
of other groups of introduced species (but also climatic suitability) at the introduction location
is one of the main determinants of successful establishment. In this case, the reduced diversity
of remote islands (MacArthur & Wilson, 1967), can also make them more invasible (Roderick
& Vernon 2009; Helmus et al., 2014; but see Lonsdale, 1999), e.g., due to their high resource
availability, missing functional groups and/or low pressures from competitors, pathogens or
predators (Denslow, 2003; Gillespie & Baldwin, 2010). A particularly relevant result in this
context was the rapid decrease of alien richness and abundance in minimally-disturbed
primary vegetation as surrounding landmass (and hence the source pool of natural colonists)

increases, suggesting that intact assemblages of native species are able to stem the influx of
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aliens (Kennedy et al., 2002). Isolated islands are expected to have particularly small species
pools as a result of a restricted immigration (MacArthur & Wilson, 1967), leading to lower
species richness per unit area and smaller samples from the set of potential species that can
survive in different conditions (Herben, 2005). Through its influence on the size of the species
pool, isolation may tip the balance between natives and aliens in terms of which species

colonise disturbed sites.

In addition to factors affecting establishment, factors related to the initial arrival or introduction
of alien species also need to be taken into account. Anthropogenic factors might be more
important drivers of the pattern for remote islands; alien introductions by humans have gained
importance by breaking geographical barriers and are now masking the natural negative
species-isolation relationship (Helmus et al., 2014). In particular, propagule and/or colonisation
pressure — positively related to the establishment of aliens (Dyer et al., 2017a; Redding et al.,
2019) — might be higher in remote islands (Blackburn et al., 2008), where there can be more
intentional releases of alien species and high levels of imports (Dalmazzone & Giaccaria,
2014), because isolated islands often harbour a low diversity of native species that can be
used for farming, hunting, as sources of fuel and fibre or for other economic purposes
(Denslow, 2003; Blackburn et al., 2008). This argument is consistent with the observed higher

number of alien species in human-dominated land uses of isolated islands.

Composition of alien assemblages on islands is more dramatically changed than that of natives
by conversion of land from minimally-used primary vegetation to other land uses. This is
because the low number and abundance of alien species in natural habitats (Figures D.5 and
D.6) means that other land uses are less likely to have alien species in common with minimally-
disturbed sites. These results again suggest that alien species are more likely to establish in
disturbed sites (Sax & Brown, 2000; Rodgers & Parker, 2003), especially those with more
extreme conditions (Catford et al., 2012), such as croplands (Figure 4.7). Novel species in
most land uses did not cause such marked changes in native assemblages when compared
with  communities in minimally-disturbed sites. In disturbed sites on islands, native
assemblages are likely to be nested subsets of undisturbed communities (Baselga, 2010),
given the small source pool of potential native colonisers, their lack of adaptation to disturbed
sites, and their poor competitiveness (Denslow, 2003; Herben, 2005; Whittaker and
Fernandez-Palacios 2007). Pastures seem to be an important exception: my results suggest
the presence of native novel species in this land use. Most pasture sites compared in the
PriMin-Pasture land-use contrast have either minimal or light use intensity (133 of 141 sites);
these pastures might be mainly rangelands (i.e., ecosystems where the native vegetation has
the potential to be grazed — Allen et al., 2011), since many of the sites are in areas where

rangeland is common, such as the South Island of New Zealand, Australia, Madagascar and
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Tierra del Fuego (Ellis & Ramankutty, 2008). Resilient species among the natives may be able

to establish in such rangelands and other low-intensity grazed sites.

My results suggest that most land uses reduce spatial beta diversity for both alien and native
assemblages, relative to the beta diversity between minimally-disturbed sites. The effect is
stronger for alien assemblages, which agrees with previous studies focusing on particular
human-dominated land uses (La Sorte et al., 2014) and suggests that the gain of alien species
in disturbed sites might be the main cause of assemblage homogenization on islands
(McKinney, 2004; La Sorte et al., 2014). Addition of alien species drives homogenization if the
same species become widespread in more disturbed sites but are absent from natural habitats
(Socolar et al., 2016). Although my results suggest this process may be in force in forested
land uses (i.e., plantations and primary vegetation with light or intense use), alien
assemblages in croplands are more heterogeneous than assemblages within minimally-
disturbed sites. This means that the new alien species in this land use are not ubiquitous
across sites (Florencio et al., 2015; Socolar et al., 2016), perhaps due to a higher diversity of
alien species being introduced (e.g., different aliens with different crops) and establishing
across sites this particular land use. The relatively weak homogenization pattern for native
assemblages across land uses might be the result of a subtractive homogenization, caused
by the loss or decline of different species from different sites (Socolar et al., 2016) and the
persistence of common species; the exception seems to be urban sites, where perhaps even
formerly common species are lost, resulting in subsets of native assemblages that remain

distinct across sites (La Sorte et al., 2014).

Although | was able to include around half of the island biodiversity records in the PREDICTS
database and most of the island sites and studies, the restricted data in the sources that | used
to classify species as alien or natives mean that the dataset used in this chapter is much more
limited than the island datasets used in previous chapters (Table D.2). This limitation may at
least partly underlie one of the ambiguous results discussed above (e.g., effects of human
population density or roads). Expanding the dataset to more islands with more different
characteristics would increase the power of the models using island characteristics as
explanatory variables. However, it is also possible that the characteristics used in these
models truly do not have an important effect on alien diversity: e.g., any effect of island area
on the number of abundance of alien species might simply be outweighed by anthropogenic
factors such as colonisation pressure. Island and country per capita GDP were expected to be
stronger predictors of alien diversity, since a high economic activity is usually expected to ease

the arrival and establishment of alien species (Dalmazzone, 2000; Capinha et al., 2017; Dyer
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et al., 2017a); however, country-level values may not reflect island attributes well, while my

estimates of island GDP are crude.

Despite data limitations, my results support previous suggestions that natives can be replaced
by alien or invasive species in degraded habitats (Irwin et al., 2010; Catford et al., 2012) and
that, on islands, species turnover caused by land-use change might be driven mainly by novel
alien species rather than novel native species. These results could provide an explanation for
the patterns seen in Chapter 2 (which did not separate natives from aliens), where mainland
assemblages showed greater compositional differences between minimally-used primary
vegetation and most human dominated land uses (when including all taxa in the models) than
island assemblages. Of the hypothesis Chapter 2 proposed to explain the island/mainland
differences, the one best supported by this chapter is that mainland settings tend to provide
more species that could establish in disturbed sites than do islands. Among these species are
resilient natives (i.e., mainlands’ larger species pools mean higher probabilities of finding more
competitive or more adapted species — Herben, 2005). Hence, the big changes that were found
for mainland assemblages might be driven by both alien and native synanthropic species
missing from natural habitats but assembling into novel human-dominated ecosystems; on
islands, changes in assemblages could be smaller if they are driven only by the presence of

aliens in disturbed sites.

A question that remains is whether land use change is the main driver of native species decline
or if its effects interact with the presence of alien species (Didham et al., 2007). | did not
account for the effects of alien richness or abundance on native communities, but previous
studies have pointed out habitat modification as the main driver of biodiversity decline,
outcompeting other drivers such as invasive species or climate change (Maxwell et al., 2016).
However, some studies have highlighted that alien species are important drivers of native
extinctions, particularly on islands (Gurevitch & Padilla, 2004; McCreless, 2016). More
comprehensive analyses (e.g., evaluating interactions between environmental variables and
different human pressures) are needed to disentangle the importance of different threats in

driving losses of island biodiversity.
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CHAPTER 5

Testing and refining the Biodiversity Intactness Index

5.1 ABSTRACT

How best to estimate the Biodiversity Intactness Index (BIl) has recently become a subject of
debate due to its adoption as a core indicator for biodiversity global assessments. In Chapter
3, I improved on the methods previously used to estimate Bll globally (Newbold et al., 2016a),
while also allowing pressure effects to differ between islands and mainlands. My Bll estimates
are lower globally and within all biodiversity hotspots and most biomes than those in Newbold
et al. (2016a). Detailed analysis of these differences shows that they arise mostly from a
combination of improvements to the modelling framework, especially from more sensitive
modelling of compositional similarity. To assess my implementation of Bll, | use estimates of
responses of island native species to human pressures generated in Chapter 4 and project
new high-resolution global maps of the status of island native biodiversity for the year 2005.
These new maps (abundance- and richness-based) were compared to island Bll maps from
Chapter 3 and Newbold et al. (2016a). The global average for abundance-based intactness of
island natives (0.6), was more similar to the Bll average for islands calculated in Chapter 3
(~0.1 higher) than to the average calculated from Newbold et al.’s (2016a) maps (~0.2 higher).
Average richness-based intactness of island natives was very similar to the BIl richness-
average for islands from Newbold et al. (2016a) and slightly higher (~0.1) than the average
from Chapter 3. | discuss the factors that might drive the differences between biodiversity
intactness estimates from the three different implementations. Importantly, island Bll maps
from Chapter 3 correlate more strongly with maps for island natives. After comparing three
different ways of calculating biodiversity intactness, my results suggest that Bll estimates
calculated with the new modelling approach (Chapter 3) are not far from reflecting the

intactness of native biodiversity.

5.2 INTRODUCTION

The Biodiversity Intactness Index (BIl) (Scholes & Biggs, 2005; Newbold et al., 2016a) became
prominent conceptually since it was proposed as a metric for assessing biotic integrity in the
Planetary Boundaries framework (Steffen et al., 2015). The index — initially relying on carefully-

pooled expert opinion (Scholes & Biggs, 2005) — offered a promising approach for the
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assessment of the status of different ecosystems, and for identifying regions that have crossed
the ‘safe limit’ (Steffen et al., 2015) for loss of biotic integrity. As a response for the need of a
robust, and scientifically based approach (Steffen et al., 2015), the PREDICTS project
implemented BIl based on a global collation of site-level biodiversity (Purvis et al., 2018). Such
implementation —transparent, data-based, spatially and temporally resolved and scientifically
credible — has been adopted as a core indicator for biodiversity global assessments such as
the one recently developed by the Intergovernmental Science-Policy Platform on Biodiversity
and Ecosystem Services (IPBES, 2019).

To date, PREDICTS’ implementation of Bll (Newbold et al., 2016a; Purvis et al., 2018) is the
only framework that allows the estimation of effects of land-use change and related pressures
on biodiversity intactness at a global scale, but based on local data and including a wide range
of taxa (Newbold et al., 2019). Limitations of PREDICTS’ implementation that can cause
an overestimation of Bll have been previously acknowledged (Newbold et al., 2016a; Purvis
et al., 2018; De Palma et al., 2018a; Chapter 3). Since the publication of the first global BlI
estimates in Newbold et al. (2016a), the modelling framework for Bll calculation has been
under a continuous assessment by the PREDICTS research group. This has led to the
identification of additional limitations of the models used for BIl calculation and the
development of new framework (Chapter 3; De Palma et al., 2018a; Hill et al., 2018). The new
implementation of BIl has allowed more refined projections of biodiversity intactness for
specific systems, such as islands and mainlands (Chapter 3) and specific biomes such as
tropical and subtropical forests (De Palma et al., 2018a), which had not been possible
previously. The improvements in the modelling approach were in part possible due to the
expansion of PREDICTS database in recent years (Hudson et al.,, 2017), allowing the
development of models that could not have been fitted previously. However, the refinement of
Bll projections has also been made possible by changes in various modelling steps for Bll
calculation, as a result of a thorough re-evaluation of the framework. These methodological
improvements allow more efficient use of data and a more principled error structure than in
Newbold et al. (2016a), creating an approach that can be used with smaller datasets, enabling

future analyses of Bl for particular biomes or clades.

Given the current high profile of B, different concerns about PREDICTS’ implementation have
been recently discussed. In particular, Martin et al. (2019) argued that Newbold et al.’s (2016a)
Bll estimates were overoptimistic for many geographic regions and particularly for biodiversity
hotspots. As a response, Newbold et al. (2019) briefly discussed some details about the new
implementation of Bll that have led to estimates that begin to address previous limitations.
However, to date, there has been no detailed analyses on the contribution of the different

improvements to differences between results in Newbold et al. (2016a) and the more recent —
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generally lower — Bll estimates (Chapter 3; De Palma et al., 2018a). Such an analysis is
needed to clarify whether previous limitations have been overcome and to direct the continuing
improvement of the modelling framework. Additionally, the most recent Bll estimates need to

be evaluated to examine whether they address the current concerns and criticisms.

All PREDICTS’ implementations estimate Bll by combining models of abundance or richness
and abundance- or richness-based compositional similarity, but the validity of this strategy has
not been tested directly. The strategy carries two assumptions. First, a species’ response to
land-use change is assumed to be independent of its initial abundance. This assumption is
called into question by Newbold et al.’s (2018) finding that naturally-widespread species tend
to increase in abundance in human-dominated land uses whereas narrow-ranged endemic
species tend to decrease; but the magnitude of any effect on BIl estimates is not known. The
second assumption is that all species present in sites in the land-use class representing natural
habitats (e.g., minimally-used primary vegetation) are species that were originally present in
the area under consideration. However, such sets of species might not represent accurately
native assemblages, especially if such sites have already suffered human impacts and harbour
non-native species. Classifying species as natives or aliens is often difficult since available
data is usually limited for many taxonomic groups and regions (Chapter 4), and uncertainty in
classifications is often unclear — for example, if classifications are based on political boundaries
(PySek et al., 2004) or on species distributions that already have been altered by human
transportation. Islands — with their sharply defined geographical and ecological boundaries —
can offer a higher certainty for alien and native classifications, so can be used to test this
second assumption specifically as well as enabling more accurate comparisons between Bll
as estimated indirectly through combining two models (as in the rest of this thesis) and more

directly, through modelling the abundance of native species on islands.

In this chapter, for each modelling step needed to calculate Bll, | summarize the changes made
to methods in Newbold et al. (2016a), which were implemented in Chapter 3. To understand
the sources of the difference between BIl estimates (i.e. higher values in Newbold et al.
(2016a)), | use a series of model comparisons to quantify the contributions of more data, more
sensitive modelling of compositional similarity, and permitting different responses on islands
and mainlands. Finally, | perform global projections for intactness of island native communities
and test whether Bll projections from Chapter 3 and Newbold et al. (2016a) show similar

patterns to those found by projecting models fitted to data for native species only.
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5.3 METHODS

5.3.1 Quantifying the effects of changes in how Bll is modelled

As explained fully in Chapter 3, PREDICTS’ approach for estimating BIl combines a model of
how land use and related pressures affect overall abundance or species richness at a site
level, and a model of how land use affects compositional similarity of assemblages to baseline
assemblages in natural habitats. Compositional similarity models are used to correct the
estimates of the richness or abundance models by excluding the proportion of species or total
abundance (respectively) that correspond to species that are not present in natural habitats
(Purvis et al., 2018); this is done as an alternative to specifically excluding alien species from

Bll calculation as originally performed by Scholes & Biggs (2005).

In this section, | compare models and results for islands and mainlands (Chapters 2 and 3)
against Newbold et al.’s (2016a) results for each of the three steps involved in Bll calculation:
1) abundance and richness modelling, 2) compositional similarity modelling, 3) projections and

calculation of BII.

5.3.1.1 Comparing abundance and richness models

| first compared models of total abundance and species richness (Chapter 3). The main
differences between my models and those in Newbold et al. are the inclusion of an
island/mainland term to test for different responses from island and mainland assemblages,
the use of bigger datasets and — as a result — more land-use classes in my models, plus the
random-effect structures that were used (Table 5.1). The abundance models had bigger
differences since they used different data transformations for total abundance (i.e., my
transformation — Table 5.1 — aiming to reduce the variance among studies caused by
methodological and taxonomic differences) and Newbold et al.’s minimum-adequate model
(MAM) did not include distance to the nearest road (Table 5.1), since this variable was dropped

during model simplification.

To compare my results against those in Newbold et al. (2016a), | focused on the coefficients
for responses of total abundance and species richness to the different land use and use
intensity categories (LUI). By plotting my island and mainland coefficients against the
corresponding global coefficients from Newbold et al. (2016a) and calculating the correlation
(Pearson's r) between them, | assessed whether previous global estimates were more similar

to the island or mainland coefficients.
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Table 5.1. Comparison of the models for total abundance and species richness (minimum adequate models) fitted in Newbold et al. (2016a), Chapter 3 (islands
vs mainlands) and Chapter 4 (natives vs aliens on islands). All models were used for calculation of biodiversity intactness using different approaches. All
abundance models were fitted using a Gaussian error structure (identity link) and Restricted Maximum Likelihood and richness models using a Poisson error
structure (log link) and Maximum Likelihood. LandUse, LU and LUI refer to land use/use intensity combinations but they all include different classes (i.e.,
according to the way land-use and use-intensity classes were collapsed); the classes for each one of these variables are listed under the table. HPD= human
population density; DistRd= distance to the nearest road; SS= study within data source; SSB= block within study; SSBS= site.

Abundance models

Richness models

Newbold et al.

Islands/mainlands

Island natives/aliens

Newbold et al.

Islands/mainlands

Island natives/aliens

6,636 sites

7,609 sites

Data 18,659 sites (7’72836’?32 rf('jti?tes) (6f,24§ sites with data 18,659 sites (8’62268’7352 rféti?tes) (7,232 sites with data for
or island natives) island natives)
16 classes= All
combinations
between six land 7 classes = Collapsed

Land-use uses and three use 18 classes = All combinations land uses (LU): use 16 classes 18 classes 7 classes
classes intensities (LUI), between six land uses and three intensity only us’ed for (as in abundance (as in abundance model) (as in abundance model)

excluding Secondary use intensities (LUI). defining PriMin model)

vegetation- intense ’

use and Urban- light

use
LU LUI Lu
LUl ﬁlllaeS/Natlve Island/Mainland ﬁlllaeS/Natlve
Island/Mainland DistRd LUI HPD DistRd

Model terms LUI HPD LU x Alien/Native HPD DistRd . LU x Alien/Native
(Fixed-effects) | DistRd HPD x Alien/Native DistRd LUI x Island/Mainland HPD x Alien/Native
in minimum- LUI x Island/Mainland HPD x Island/Mainland

HPD x LandUse . HPD x LU HPD x LandUse HPD x LU
adequate HPD x Island/Mainland HPD x LU x Allen/Native || DistRd x LandUse | oo * banduse HPD x LU x Alien/Native
model HPD x LandUse HPD x LandUse x Island/Mainland

HPD x LandUse x Island/Mainland

DistRd x Alien/Native
DistRd x LU

DistRd x Island/Mainland
DistRd x LandUse
DistRd x LandUse x Island/Mainland

DistRd x Alien/Native
DistRd x LU
DistRd x LU x Alien/Native

Random effects

(1+LandUse|SS) +
(1/SSB)

(1+LandUse+Uselntensity|SS) +
(1/SSB)

(1+LUJISS) + (1/SSB)

(1+LandUse|SS) +
(1]SSB) + (1/SSBS)

(1+LandUse|SS) + (1|SSB)

(1/SS) + (1|SSB)

Transformation Rescaled to a 0-1 scale within Rescaled to a 0-1 scale

for response Log-transformation study + square-root within study + square- - - -

variable transformation root transformation

Transformation Log-transformation Log-transformation

for HPD and and rescaled to a 0-1 As in Newbold et al. As in Newbold et al. and rescaled to a 0-1 As in Newbold et al. As in Newbold et al.
DistRd scale scale

LandUse= Primary vegetation, Secondary vegetation, Plantation forest, Cropland, Pasture, Urban

LU= Primary vegetation- minimal use, Primary vegetation, Secondary vegetation, Plantation forest, Cropland, Pasture, Urban

LUI= Primary vegetation- minimal use, Primary vegetation- light use, Primary vegetation- intense use, and three levels with the three use intensities for Secondary vegetation, Plantation forest, Cropland, Pasture, Urban (18
classes). Newbold et al. (2016) collapsed Secondary vegetation with intense use and light use (referred as Secondary-light use) and Urban with light use and minimal use (referred as Urban-minimal use).
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Table 5.2. Comparisons of the compositional similarity models fitted in Newbold et al. (2016a) and in Chapter 2 (islands vs mainlands). The conditions were
used for both abundance-based and richness-based models. Under both approaches, as response variable, similarity between sites was calculated using the
same asymmetric version of the Jaccard Index (Chapter 2). EnvDist= Environmental distance between pairs of sites; GeogDist= Geographic distance between

sites; SS= study within data source

Compositional similarity models

Newbold et al.

Islands/mainlands

Dataset

Independent pairs of sites within studies (randomly-chosen)

All possible pairwise comparisons within studies

Modelling approach

Averaging coefficients of 100 models fitted with 100 different sets
of randomly-chosen pairwise comparisons

Fitting a single model and performing permutation tests to
address the dataset’s pseudo-replication

Baseline in land-use contrasts

Primary vegetation

Primary vegetation- minimal use

Model terms (Fixed-effects) in
minimum-adequate model

Land-use contrast
EnvDist
GeogDist

Land-use contrast

EnvDist

GeogDist

Island/Mainland

Land-use contrast x Island/Mainland
EnvDist x Island/Mainland

GeogDist x Island/Mainland

Random effects

(118S)

(118S)

Transformation for response variable

Log-transformation

Logit transformation

Transformation for EnvDist and
GeogDist

Log-transformation

EnvDist: Cube-root transformation
GeogDist: Divided by the median maximum linear extent of
sites + log-transformation
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5.3.1.2 Comparing compositional similarity models

The biggest change to how BlIl is estimated is the modelling of compositional similarity
(Chapter 2, Table 5.2). Newbold et al.’s (2016a) approach was to average the coefficients from
100 models using different sets of randomly-chosen pairwise comparisons (sets of
independent pairs of sites within studies), combine all primary vegetation sites as their baseline
condition and log transform all variables in the models (Table 5.2). In my models (Chapter 2),
all possible pairwise comparisons within studies were used and permutation tests were
performed to overcome the resulting nonindependence; since data was used more efficiently,
minimally-disturbed primary vegetation (henceforth PriMin) could be used as baseline for the
contrasts. Additionally, | transformed explanatory variables to optimise their distributions
(Table 5.2) and logit-transformed the compositional similarity data, which better reflects the
bounded nature of the compositional similarity estimates (Warton & Hui, 2011) than does the

log-transformation used by Newbold et al. (2016a).

Using the abundance-based model (Chapter 2), | assessed how using the new baseline and
different data transformations (focusing on logit transformation for compositional similarity
data) affected compositional similarity estimates. For this assessment | used a subset of 30%
of the pairwise comparisons of my abundance-based compositional similarity data (randomly
sampling 30% of comparisons within each study); this percentage was enough to replicate my
results while facilitating tests by reducing the time and computational power needed to run the
models. To assess the effects of logit transformation and the baseline on compositional
similarity estimates, | re-fitted my model using different combinations of baselines and data
transformations. | first fitted my model log-transforming all the variables but without changing
the land-use contrasts to extract estimates of contrasts using PriMin as baseline (Table E.1).
In a second test, before running the model, | collapsed land-use contrasts using PriMin and
Primary vegetation (since my dataset included all possible land-use contrasts) to replicate
Newbold et al.’s (2016a) baseline. | then ran a model using my data transformations and a
second one using Newbold et al.’s (2016a) (Table E.2). Using the mainland coefficients from
each of these models, | calculated the average compositional similarity for the land-use
contrasts of interest within each model (Tables E.1 and E.2: contrasts using either PriMin or
primary vegetation as baseline, according to the model). The averages were calculated using
back-transformed similarity values (0 to 1 scale), rescaled so that the contrast of PriMin against
itself (or Primary against itself) had a value of 1 (Tables E.1 and E.2). | also calculated this
average for my original abundance-based model from Chapter 2 to first evaluate the magnitude
of difference between this average and the one from the model replicating the conditions of
models in Newbold et al. (2016a). Finally, based on averages from models with intermediate

conditions (i.e. model with PriMin baseline + log transformation and model with Primary



baseline + logit transformation) | defined whether the new baseline or the logit transformation
was the main factor driving differences between my estimates and estimates generated by
following methods from Newbold et al. (i.e., which model average was more similar to the

average from my original model) (Table 5.3).

5.3.1.3 Comparing BIl averages

Using the BIl projections from Chapter 3 and Newbold et al. (2016a), | examined differences
between my Bll estimates for islands and mainlands and the global Bll estimates from Newbold
et al. (2016a). | first mapped the differences between the estimates by subtracting my
abundance and richness global Bll maps (joining island and mainland maps — Figure 5.1) from
Newbold et al.’s (2016a) corresponding global maps. With these maps | aimed to identify
areas were Bll estimates from Newbold et al. were lower, higher or very similar to mine. | also
separated Newbold et al.’s (2016a) global Bll maps into island and mainland maps, enabling
me to compare their average Bll estimates for islands and mainlands with my averages.
Finally, | compared my average BII values for biomes and biodiversity hotspots for islands and

mainlands against the biomes and hotspots global averages.

5.3.2 Testing BIll: comparisons with intactness of native species

In order to test whether Bl estimates (using the two different implementations) are comparable
to estimates of intactness of native communities, | used island Bll maps from Chapter 3 and
Newbold et al. (2016a) to examine their similarity to new maps projected from models that
specifically evaluated responses of island native species to human pressures.

| used the models for alien and native species richness and total abundance from Chapter 4
to extract the estimates for responses of island native species to land-use change and related
pressures. These models differ from those in Chapter 3 and in Newbold et al. (2016a) mainly
in terms of their complexity (Table 5.1). Models for alien/native species needed to be simpler
due to data limitations (i.e., the many species that could not be classified as alien or natives
were excluded from these models), so they had simpler land-use classes and random-effect

structures (Table 5.1).

Using the estimates for responses of island natives to human pressures, | projected high-
resolution global maps of the status of island native biodiversity for the year 2005. The
projections were performed following the same methods in Chapter 3, except that | only
projected the responses of overall abundance and species richness of island natives; there
was no need to use compositional similarity models, because results from the models

correspond exclusively to responses of native communities and so provide a more direct
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estimate of Bll than has been possible previously. | compared these maps of island native
community intactness (abundance-based and richness-based) with the maps of island BIl from
Chapter 3 and the island part of Newbold et al.’s (2016a) global BIl maps. | mapped the
differences between the estimates from the different maps by pairing them and subtracting
one map’s values from the other (Figure 5.5). Additionally, | calculated the correlation
(Pearson's r) between estimates from the different maps and compared the averages for

islands’ biodiversity intactness calculated from the three maps.

5.4 RESULTS

5.4.1 Effects of changes in Bll modelling

Each of the statistical models that | fitted in Chapter 3 for Bll calculation produced some
marked differences from Newbold et al.’s (2016a) models. In the models of how LUI affects
total abundance and species richness, several of Newbold et al.’s (2016a) global coefficients
are very similar to my corresponding coefficients for mainlands but less similar to my island
coefficients (Figures E.1 and E.2). Newbold et al.’s (2016a) abundance-model coefficients
were less well correlated with island (r= 0.54, P= 0.03) than with mainland-abundance
coefficients (r= 0.63, P= 0.01); their richness-model coefficients correlated strongly with both
of these two (r= 0.89, P= <0.001 with island-richness coefficients and r=0.86, P=<0.001 with
mainland coefficients). My abundance-model coefficients tended to be more different from
(and usually lower than) Newbold et al.’s (2016a) than did the coefficients in my richness

models.

My estimates for compositional similarity of assemblages in different land uses to those in
natural habitats (see Table C.8) were much lower (for both islands and mainlands) — and
showed a wider range — than those in Newbold et al. (2016a) (available at:
https://doi.org/10.5519/0073893). These differences are driven by both the logit- (rather than
log-) transformation of compositional similarity data and the use of minimally-disturbed primary
vegetation (rather than all primary vegetation) as the baseline representing undisturbed
habitats. When fitting models of abundance-based compositional similarity with different
conditions, | found that the highest compositional similarity values (i.e., final rescaled values)
came from models that use a baseline of collapsed primary vegetation (Tables E.1 and E.2).
Of the two conditions that were tested, the use of minimally-disturbed primary vegetation as
baseline appears to be more important, driving almost the entire difference from Newbold et
al.’s (2016a) models (i.e., a model using log transformation but only Primary- Minimal sites as
a baseline gives an average for land-use contrasts ten times as near to my original model —
Chapter 2— than to a model with the structure of Newbold et al. (2016a): Table 5.3).
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Table 5.3. Average compositional similarity for the land-use contrasts of interest in models using
different baselines and data transformations. The cell on the left extreme shows the average for
estimates from the abundance-based model from Chapter 2 (using PriMin as baseline for land-use
contrasts and logit transformation for compositional similarity). The cell on the right extreme shows the
average for estimates from the model where the baseline was collapsed primary vegetation (all use
intensities) and compositional similarity was log-transformed (as in Newbold et al., 2016a). Cells in
between show the averages for estimates from models with intermediate conditions. For the models
where PriMin was used as baseline for land-use contrasts, | did not include the estimate for PriMin-
Primary vegetation to calculate the averages in order to have the same number of land-use contrasts
(i.e, six contrasts) across all models.

PriMin + Log Primary + Logit Primary + Log

0.776 0.825 0.836

My average BII values for islands (0.71 and 0.62 for abundance-based and richness-based
Bll, respectively) and mainlands (0.73 and 0.71 respectively) calculated in Chapter 3, were
lower than the averages obtained by splitting Newbold et al.’s (2016a) map into islands (for

which the corresponding values are 0.79 and 0.76) and mainlands (values are 0.85 and 0.77).

Mapping the differences between Newbold et al.’s (2016a) Bll estimates and mine (Figure 5.1)
shows that my estimates are lower in most regions, with the main exceptions being Australia
(abundance-based), the Scandinavian peninsula, Russia (richness-based) and the Sahara
desert (abundance-based and richness-based). Differences are more pronounced on islands,
in North America and in South Africa. My abundance-based BIl estimates were particularly
lower than those of Newbold et al. (2016a), with much of Europe, Africa and Asia showing big

differences.

My average Bll estimates for both islands and mainlands were lower than Newbold et al.’s
(2016a) global averages within most biomes (Figures 5.2 and E.3) and in all hotspots (Figures
5.3 and E.4). Mainland averages for biomes and hotspots were more similar to the global

averages (especially in the case of richness-based Bll — Figure E.3 and E.4).
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Figure 5.1. Mapped differences between BII estimates from Newbold et al. (2016a) and Chapter 3. a)
Abundance-based BlI, b) Richness-based Bll. Maps were produced by subtracting my global Bll maps
(island + mainland maps) from the global maps from Newbold et al. The maps that were used included
Bll estimates in a 0 to 1 scale where 1 = 100% intactness. Positive values (shown in red and orange)
indicate cases where my estimates are lower than those in Newbold et al. Negative values (shown in
green) indicate cases where my estimates are higher than previously. The yellow areas show cases
where estimates from both studies differ minimally (maximum by 0.03).
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: Deserts and Xeric Shrublands
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Figure 5.2. Bll estimates (abundance-based) for biomes on islands and mainlands compared with global
estimates from Newbold et al. (2016a). Colours indicate major biome type. Values from 0 to 1
correspond to Bll (1= 100% intactness).
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Ja : Japan

Ma : Madagascar and the Indian Ocean Islands
Mr : Madrean Pine-Oak Woodlands
Mp : Maputaland-Pondoland-Albany
Md : Mediterranean Basin

Me : Mesoamerica

Mc : Mountains of Gentral Asia

Ms : Mountains of Southwest China
Nc : New Caledonia

Nz : New Zealand

Ph : Philippines
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Su : Sundaland

Tr : Tropical Andes

Tu : Tumbes-Choco-Magdalena
Wa : Wallacea
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Figure 5.3. BIll estimates (abundance-based) for biodiversity hotspots on islands and mainlands
compared with global estimates from Newbold et al. (2016a). Some hotspots are exclusively located on
islands or mainlands. Colours indicate whether hotspots are in the tropical or temperate realms. Values
from 0 to 1 correspond to Bll (1= 100% intactness).

5.4.2 Bll vs intactness of native biodiversity on islands

My maps of intactness of native biodiversity on islands are shown in Figure 5.4. The

abundance-based average of 0.6 (s.d.= 0.13) is about 0.1 lower than the abundance-based

Bll average for islands calculated in Chapter 3 and about 0.2 lower than Newbold et al.’s

(2016a) maps. The richness-based average intactness of 0.75 (s.d.= 0.1) is very similar to the
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richness-based Bll average calculated from Newbold et al.’s maps (0.76), but about 0.1 higher

than the average calculated in Chapter 3.

The intactness maps from Figure 5.4 are compared with corresponding Bll estimates in Figure
5.5, which maps the pairwise differences between estimates. In terms of abundance-based
Bll, the natives model estimates correlate strongly with Bll estimates from Chapter 3 but are
generally lower; Newbold et al.’s (2016a) Bll estimates do not correlate strongly with either of
these two and are generally higher. The three estimates of richness-based intactness correlate
strongly — although correlation between the natives model estimates and Newbold et al.’s
(2016a) is slightly weaker. The richness-based estimates for natives were generally higher
than Bll estimates from Chapter 3 but still lower than those from Newbold et al. (2016a), except

for parts of Australia and Madagascar — (Figure 5.5).
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Figure 5.4. Global maps of intactness of island native biodiversity. a) Abundance-based intactness. b)
Richness-based intactness. Values are shown in a 0 to 1 scale (1= 100% intactness).
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Figure 5.5. Differences between the estimates (abundance- and richness-based) from island Bll maps
from Newbold et al. (2016a), island Bll maps from Chapter 3 (referred as Bll islands) and island maps
of intactness of native biodiversity (referred as island natives). The correlation (Pearson's r) between

estimates from the different maps is also shown.
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5.5 DISCUSSION

As Chapter 3 highlighted, the Bll estimates calculated using the new implementation are much
lower than those from Newbold et al. (2016a), especially for islands. Here, | have shown that
the main reason why my Bl estimates are lower is that my estimates of compositional similarity
are lower. Whereas Newbold et al.’s (2016a) estimates for abundance- and richness-based
similarity between other land uses and PriMin were never below 0.9, my estimates reached as
low as ~0.6 for abundance-based similarity and ~0.5 for richness-based similarity, for both
islands and mainlands (see Table C.8). These lower estimates of similarity seem to arise
almost entirely from using minimally-disturbed primary vegetation as a baseline for sites’
comparisons (whereas Newbold et al. (2016a) included all primary vegetation sites in the
baseline). This suggests that when modelling assemblage turnover among land uses, using
minimally-disturbed primary vegetation as the baseline accounts better for disturbance of
natural habitats (Newbold et al., 2019), while using all sites in primary vegetation —experiencing
different levels of degradation— means using a more ‘shifted’ baseline that can lead to the

overestimation of similarity between assemblages in different land uses and natural habitats.

Although Newbold et al.’s (2016a) global maps also have lower average Bl for islands than
mainlands, islands stand out clearly on ‘difference maps’ that compare my Bll estimates with
the earlier ones (Figure 5.1), suggesting that previous global estimates may have been biased
towards the mainland picture, as the PREDICTS database has many more mainland than
island studies. Not allowing island assemblages to respond differently from mainland
assemblages appears to have led to optimistic estimates of Bll for these vulnerable but less

data-rich systems, relative to the estimates for mainland assemblages.

My BIl estimates are lower than those published in 2016 not only globally, but also within all
biodiversity hotspots and within most biomes; island Bll averages across these different
regions were particularly lower than those from Newbold et al. (2016a) (Figures 5.2 and 5.3).
My results address some of the recent criticisms and concerns about Bll being too optimistic,
especially for biodiversity hotspots (Martin et al., 2019), which have lost 70% or more of their
original primary vegetation (Myers et al., 2000). Martin et al. (2019) especially pointed out how
Newbold et al.’s high Bll estimates for hotspots entirely or mostly made of islands such as the
Madagascar, Sundaland and Philippines hotspots — ~0.9 and ~0.8 for abundance- and
richness-based BII, respectively — contrast with Myers et al.’s (2000) suggestion that these
hotspots have only retained around 10% or less of their primary vegetation. My island BII
averages for these three hotspots are ~0.6 (abundance-based) and ~0.5 (richness-based).
Although this is still markedly higher than the suggested intact area of primary vegetation, the

higher value may partly reflect the fact that other land uses retain some originally-present

107



biodiversity. It seems that both the modelling improvements and accounting for differences
between island and mainland responses have led to more realistic estimates for biotic integrity

across geographical regions, considering the human pressures that they have faced.

Although the new BIl implementation has improved estimates for biotic integrity, my findings
do not invalidate any of the major conclusions of Newbold et. al (2016a). Their study suggested
that Bll was already below the proposed Planetary Boundary (Steffen et al., 2015) across most
of the world’s land surface; moreover, they were careful to phrase their conclusions
conservatively, recognising that there were several possible reasons why their estimates might
be too high (Newbold et al., 2016a; Newbold et al., 2019) and highlighting that certain taxa and
geographic regions were particularly underrepresented in their data, which did not allow to fit

models allowing for different ecological systems to respond differently to human pressures.

Differences between estimates of intactness of native biodiversity and BIl were expected
considering that under these different implementations, different (though not independent)
datasets (Tables 5.1, E.3 and E.4) and models (Table 5.1) are used. However, the estimates
from island Bll maps (abundance- and richness-based) that are based on the new
implementation (Chapter 3) correlate strongly with estimates from maps of intactness of island
natives; furthermore, the intactness global averages (abundance- and richness-based)
calculated from these maps only differ moderately (by ~0.1). Hence, allowing island
assemblages to respond differently and producing more accurate compositional similarity
estimates has also led to Bll estimates that reflect patterns for native diversity more accurately
than previous estimates from Newbold et al. (2016a), which are generally higher and less well
correlated with estimates from maps of native intactness (Figure 5.5). In general, Newbold et
al’s (2016a) Bll appears underestimate the decline of native diversity caused by human
pressures, mainly due to their high compositional similarity estimates, which fail to discount an
accurate fraction of overall abundance or species that is made up of species not present in

minimally-disturbed primary vegetation.

Determining the specific sources of the differences between biodiversity intactness estimates
produced by the three different approaches (Figure 5.5) is difficult because of the multiple
factors at play; however, | provide a few possible non-exclusive explanations. The abundance-
based projections for intactness of native biodiversity on islands suggest a bigger decline of
biotic integrity compared to Bll estimates from either my (Chapter 3) or — especially — Newbold
et al.’s (2016a) implementations (Figure 5.5). There are several differences in the abundance
models (Table 5.1) underpinning the three different projections for biodiversity intactness that
could have led to this difference. Newbold et al.’s abundance model (MAM) did not include

distance to the nearest road and in the model from Chapter 3 (MAM) this variable was only
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significant as a main effect (Table 5.1). In contrast, in the abundance model (MAM) from
Chapter 4 (aliens/natives), distance to the nearest road had stronger effects, interacting
significantly (but separately) with land use and alien/native status of species (Table 5.1); i.e.,
suggesting that decreasing distance to the nearest road tends to affect negatively total
abundance of species in particular land uses and that, in general, this pressure tends to cause
a decrease in total abundance of natives (see Figure D.2). In the case of human population
density, only Newbold et al.’s (2016a) model did not find negative effects of this pressure on
total abundance of species (with the exception of urban sites). Not accounting for the effects
of distance to the nearest road and the lack of a negative effect of human population density
could have contributed to the particularly high abundance-based Bl estimates in Newbold et
al. (2016a) and their low correlation with estimates from the other projections (Figure 5.5).
Modelling the specific responses of native species seems to have captured particular negative
responses to human pressures that were lost in models including all taxa — particularly the
global model in Newbold et al. (2016a) not accounting for different responses between island
and mainland assemblages. This could also be evidence for island natives being particularly
sensitive to some pressures compared to mainland natives, as it was suggested previously in
Chapter 3 — based on results for primary vegetation, assuming that this land use could be the

last refuge of any native species—.

In contrast, when compared to my BIl estimates (Chapter 3), projections for richness-based
intactness of native biodiversity are slightly more optimistic, perhaps because the model for
native species does not have strong effects of human population density and distance to roads.
In Chapter 3, | highlighted how increasing human population density and decreasing distance
to roads both seem to reduce species richness steeply in primary vegetation on islands. Why
does richness of island native species not show this strong pattern? One obvious possibility is
the loss of data for many species (Table E.4) — i.e., all those not classified as native or non-
native — across taxonomic groups, and therefore the loss of many sites (Table E.3). Although
Newbold et al.’s (2016a) projections for richness-based Bll were higher than my projections
for native assemblages, all three different richness-based projections show strong
intercorrelation (Figure 5.5). This similarity may be because all the richness models have
similar structure: they all included land use, human population density and distance to the
nearest road and used the same error structure (Table 5.1). However, as in the abundance
model, Newbold et al. (2016a) did not find marked decreases for species richness with
increased pressures of human population density and roads, perhaps because the mainland

data ‘swamped’ the island data in the model-fitting.

Finally, an additional factor that can contribute to differences between estimates of intactness

of native assemblages and BIl (abundance- and richness-based) is the exclusion of use
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intensity in the native-only models (Table 5.1), forced by data limitations. Whereas models and
projections in Newbold et al. (2016a) and Chapter 3 used land-use classes that include
different levels of use intensity, those for native species only considered use intensity for
identifying minimally-used primary vegetation (Table 5.1). This means that projections for
intactness of native assemblages cannot account for differences in use intensity across
different areas, instead using a single estimate for each land use that can over- or under-
estimate abundance or richness in different areas according to their use intensity. For example,
while Bl projections would tend to show higher values for biodiversity intactness in areas with
minimal or light use (Chapter 3; Newbold et al., 2016a), projections for native assemblages in

lightly-used regions could be too low and those for intensively-used regions too high.

In this chapter, | have compared three ways for estimating biodiversity intactness. My new
implementation of Bll (Chapter 3), which uses the more sensitive modelling of compositional
similarity (developed in Chapter 2), has allowed analyses focusing on smaller datasets (e.g.,
islands or particular biomes). As a consequence, | have been able to develop models that
allow different systems to respond differently to human pressures, and models with a more
stringent baseline for estimating compositional turnover between various land uses and natural
habitats. These improvements yield Bll estimates that address most of the recent criticisms
towards the index (Martin et al., 2019), correlate strongly with estimates of intactness of native
assemblages on islands, and produce global averages that are very similar to those for native
biodiversity intactness. The new approach might still overestimate Bll since even minimally-
disturbed primary vegetation can represent a “shifted-baseline”; e.g., assemblages in these
sites are likely to have experienced some human impact (Watson et al., 2016) and harbour
alien species — as results from Chapter 4 suggested, since on average, ~17% of the species
and total abundance in sites in minimally-disturbed primary vegetation corresponded to alien
species —. The ideal situation would be to go beyond the two-model approach to estimate Bll:
if all species across more taxonomic groups could be classified as natives or non-natives,
complex models could permit different responses between ecological systems and the use of
more precise land-use categories. Given the ongoing Wallacean shortfall (Hortal et al., 2015),
the two-model approach is likely to be required for some time. According to my results, the
two-step estimation of Bll that | have developed in this thesis represents a clear improvement
on the previous implementation of BIl (Newbold et al., 2016a) and produces a robust

provisional metric to assess loss of biotic integrity.

In this last chapter, | have developed the first comprehensive test for Bll; my results show the
big impact of the recent improvements to methods in Newbold et al. (2016a) and contribute to
the validation of this index which currently plays an important role in global biodiversity

assessments and therefore can contribute to urge stronger efforts to halt biodiversity loss.
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CHAPTER 6

Conclusions and general discussion

In this thesis | have used data from the PREDICTS database to (i) model how land-use change
and related human pressures affect local terrestrial biodiversity on islands and mainlands
(Chapter 2 and 3), (ii) model how land-use change and related pressures affect diversity of
alien and native species on islands (Chapter 4) and (iii) improve previous methods to estimate
the Biodiversity Intactness Index (BIl) and validate this new implementation (Chapter 5). In this
final chapter, | recap my main findings for these three major topics within the thesis, while
highlighting what they add to previous studies. Finally, | discuss some general limitations of

my analyses and possible future research.

Effects of land-use change on island and mainland biodiversity

The effects of land-use change on island and mainland biodiversity were compared in
Chapters 2 and 3, based on changes in the composition of natural species assemblages and
the Biodiversity Intactness Index (BIl) (Scholes & Biggs, 2005; Newbold et al., 2016a),
respectively. These two chapters represent the first comprehensive global analyses — including
a wide range of taxa — to compare the biodiversity responses of island and mainland
assemblages to land-use change. Both chapters showed that the effects of land-use change
on local biodiversity differ between islands and mainlands, with island assemblages tending to
suffer more severe changes when facing land-use change. Both chapters suggest that omitting
the possibility of different responses of island and mainland assemblages to human pressures
in global biodiversity models can lead to a mis-estimation — specifically, an overoptimistic

estimation — of the status of island biodiversity.

Land-use change drives important changes in the community composition on both islands and
mainlands, as a consequence of the addition of novel species (i.e., species not present in
minimally-disturbed habitats) in human-dominated land uses. When plant and animal
assemblages were analysed separately, | found that some land-use changes had bigger
impacts on species assemblages (especially animal assemblages) on islands than on
mainlands, mainly because of novel species becoming abundant in human-dominated land
uses — which might be facilitated by islands’ species poverty and reduced competition from

native species (Chapter 1 reviews these topics). Importantly, Chapter 2 also found evidence
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of biotic homogenization for plant assemblages within most land uses on islands and
mainlands and for island animal assemblages within forested land uses. The island-mainland
differences in this chapter could not be explained unambiguously because changes in the
composition of assemblages could have been caused by the presence of both novel native or
alien species (not separated in these analyses) in human-dominated land uses. However, this
chapter: 1) represents the first global synthesis showing the different effects of land-use
change on plant and animal assemblages of islands and mainlands; 2) points out the islands’
characteristics that can make them more vulnerable than mainlands to both assemblage
turnover and biotic homogenization when facing human pressures (although these conclusions
are mainly speculative); and 3) indirectly suggests that — though further work is needed —
islands could be facing higher rates of invasions by alien species than mainlands (especially
in disturbed sites), in line with the hypothesis that islands are more susceptible than mainlands
to the establishment alien species (Simberloff, 1995a; Sax & Brown, 2000; Denslow, 2003;
Pysek & Richardson, 2006).

Importantly, Chapter 3 showed clear island-mainland differences in sensitivity and exposure
to human pressures. | showed that on average, land-use change and related pressures have
reduced biotic integrity (i.e., reducing species richness of originally present species) more on
islands than on mainlands. | showed that this pattern mainly results from a higher sensitivity of
island native species to rising human population density and road development (based on
responses of species in primary vegetation on islands, assuming these species to be island
natives). To date, this is the first global analysis including many different taxa to show that
islands are suffering a more severe biodiversity loss than mainlands (a pattern that is
consistent across different geographic regions), mainly as a consequence of the sensitivity of
their native species to particular pressures. Such sensitivity can be driven by the restricted
geographic ranges and small population sizes of island species, and traits such as poor
dispersal abilities and stenotopy (Paulay, 1994; Simberloff, 2000; Sakai et al., 2002; Gillespie
et al., 2008; Chapter 1) which lower their potential to disperse to undisturbed sites or recover
after facing human pressures. Previous studies discussing human impacts on islands have
mainly highlighted cases for specific islands or island-rich regions that have suffered a strong
habitat and biodiversity loss (e.g., Paulay, 1994; Myers et al., 2000; Whittaker & Fernandez-
Palacios, 2007; Johnson et al., 2017). However, there are no other studies comparing island
and mainland responses to specific human pressures, and the hypothesis that island natives
are generally more sensitive than mainland natives (discussed in Chapter 1) has not been

broadly tested with empirical data.

In terms of island and mainland exposure to human pressures, | reported the fraction of island

and mainland area given over different land uses, use intensities and with low or high values
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of human population density and proximity to the nearest road. This goes beyond the only
previous global assessment focusing on human pressures on islands and mainlands (Kier et
al., 2009), which only compared the overall amount of habitat loss and the ‘Human Impact
Index’ (Sanderson et al., 2002) on islands and mainlands; my analysis provides much more
detail. Notably, Kier et al. (2009) pointed out a higher ‘Human Impact Index’ for islands than
for mainlands, while | found that islands have a lower fraction of area with low human
population density than mainlands. Results from both studies highlight islands’ high exposure

to different human pressures.

Effects of land-use change on native and alien communities of islands

In Chapter 4, unlike in previous chapters, | was able to separate alien from native species in
many of the island studies in the PREDICTS database. By performing a global analysis
focusing specifically on islands, | showed that land-use change reduces both richness and
total abundance of island native species but that the number and abundance of alien species
are very much higher in sites with human-dominated land uses than in minimally-disturbed
primary vegetation. These results provide further — and more direct — evidence for the
sensitivity of island natives to human pressures (particularly agriculture), which was suggested
by results from Chapter 3 but based on data including all species. Furthermore, they show the
widespread establishment of alien species on islands, particularly on disturbed habitats,
suggesting that land-use change may facilitate a ‘true colonization’ (see Rosindell & Harmon,
2013) following the immigration of alien species to an island. The results from this chapter
therefore contribute to literature and previous syntheses on island native biodiversity and its
threats (e.g., Paulay, 1994; Simberloff, 2000; Whittaker & Fernandez-Palacios, 2007; Gillespie
et al., 2008; Delgado et al., 2017).

My findings reinforce previous studies suggesting that habitat modification has negative
impacts on natives or narrow-range species (e.g., McKinney & Lockwood 1999, Scholes &
Biggs, 2005; Newbold et al., 2018), and that alien species tend to be successful in disturbed
habitats (Sax & Brown, 2000; Catford et al., 2012; Lembrechts et al., 2016). Previous studies
focusing on particular islands found much the same patterns that | found for total abundance
and richness of alien and native species in disturbed sites (e.g., Borges et al., 2006; Meijer et
al., 2011); however, my results provide a new insight into the effects of land-use change on
island assemblages, since | also showed that the addition of alien species on human-
dominated land uses has a major role in the turnover and homogenization of island
assemblages. These results resolve some of the questions left unanswered in Chapter 2,
where the observed patterns for changes in composition of natural assemblages could not be

attributed only to the introduction of species. | suggest that, while on mainlands these
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compositional changes could be caused by the presence of both alien and native synanthropic
species on disturbed sites (as a result of mainlands’ larger native species pool — Herben,

2005), they might be mainly or entirely driven by alien species on islands.

Importantly, Chapter 4 also showed that richness of alien species, in absolute terms, tends to
be higher in sites (across different land uses) on remote islands than on less isolated islands.
This finding supports previous island biogeographic studies that have highlighted how
anthropogenic factors are changing natural biographic patterns of islands (e.g., Helmus et al.,
2014; Nakamura et al., 2015), with even isolated islands now seeming to be highly exposed to
invasions by alien species (e.g., Blackburn et al., 2008; Moser et al., 2018). | have suggested
that sites in remote islands could harbour more alien species than sites in less isolated islands
as a result of: 1) remote islands’ reduced diversity and small species pool (i.e., a location-level
factor — Redding et al., 2019) that can make them more invasible (Roderick & Vernon, 2009;
Helmus et al., 2014; but see Lonsdale, 1999), and 2) a possible higher propagule and/or
colonisation pressure in remote islands, where more species need to be introduced for
economic purposes due to their low diversity of native species (Denslow, 2003; Blackburn et
al., 2008; Dalmazzone & Giaccaria, 2014). Even though Chapter 4 did not explore whether
islands are more invasible than mainlands, | have synthesised evidence of biological invasions

on islands worldwide, and shown that these can be strongly driven by human pressures.

Estimation and validation of the Biodiversity Intactness Index (Bll)

While developing this thesis, | was strongly involved in the assessment and refinement of the
PREDICTS’ modelling framework for the calculation of BIl. My main contribution to the
improvement of previous methods to estimate Bll (Newbold et al., 2016a) is the development
of a new approach to fit the compositional similarity models (Chapter 2) needed for BII
calculation. This improvement allows a more efficient use of data meaning that, for the first
time, PREDICTS’ Bll implementation can be used with smaller datasets. It has already allowed
more refined projections of Bll for islands and mainlands (Chapter 3) and tropical and
subtropical forests (De Palma et al., 2018a), and will enable further analyses of BII for other
ecological systems or particular clades. All of the chapters of this thesis have contributed to
the development of the methodological improvements for Bll calculation (chapters 2 and 3)

and the validation of the index (chapters 4 and 5).

In Chapter 3, | calculated BIl for islands and mainlands implementing the modelling
improvements, but also using models accounting for differences between island and mainland
responses (an approach that had not been used before). This new approach led to lower Bll

estimates for both islands and mainlands than those in Newbold et al. (2016a), globally and
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within all biodiversity hotspots and most biomes. Importantly, in Chapter 5, | showed that these
differences arise mainly from the new and more sensitive modelling of compositional similarity
(Chapter 2), especially as a result of using minimally-disturbed primary vegetation as a
baseline for sites’ comparisons (a more stringent baseline than the one used in Newbold et al.
(2016a)). Chapter 5 also showed that previous global estimates were biased towards the
mainland picture; it seems that previous global models, which did not allow island assemblages
to respond differently from mainland assemblages, led to optimistic Bll estimates for islands.
Therefore, | emphasize that many other vulnerable systems might end up with overoptimistic
Bll estimates in global projections if global models do not allow them to respond differently to

human pressures.

I have highlighted that previous methods to calculate Bll (Newbold et al., 2016a) led to
generally optimistic estimates of biodiversity intactness. For example, whereas | found that
average Bll is below the proposed ‘safe limits’ (Steffen et al., 2015; Newbold et al., 2016a) for
all biodiversity hotspots on both islands and mainlands (Chapter 3), Newbold et al. (2016a),
suggested that only 22 of the 34 terrestrial biodiversity hotspots have on average transgressed
the safe limits for Bll. Newbold et al.’s (2016a) high Bll estimates for some biodiversity hotspots
were criticised by Martin et al. (2019); | provided more realistic Bll estimates for the biodiversity
hotspots, considering the human pressures that they have faced (Myers et al., 2000).
Therefore, my Bll implementation also yields Bll estimates that address some of the recent
criticisms towards the index; hence, my results formed part of the reply to Martin et al.’s
criticism (Newbold et al., 2019).

Importantly, based on projected biodiversity intactness for islands, | also developed the first
stringent validation test of PREDICTS’ Bll implementation (Chapter 5). Estimates of responses
of island native species to human pressures (generated in Chapter 4) allowed me to project
high-resolution global maps of the status of island native biodiversity, providing an alternative
way of estimating Bl (for islands at least) that makes far fewer assumptions than the approach
used in Chapter 3. Comparing these maps of island native community intactness against both
my maps of island Bll developed in Chapter 3 and the island part of Newbold et al.’s (2016a)
global Bll maps, revealed that my island Bll maps correlate more strongly with estimates from
maps of intactness of island natives. Therefore, | conclude that using models allowing island
and mainland assemblages to respond differently to human pressures, and implementing the
improvements for Bll modelling, have led to Bll estimates that reflect patterns for native
diversity more accurately than estimates generated with the previous implementation of Bll
(Newbold et al., 2016a).
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According to my new BlI projections, the global average for abundance-based Bll is 0.76, while
the richness-based Bll average is 0.73. These estimates suggest that biotic integrity (average
local abundance and richness of originally present species) globally has fallen by around 25%
relative to the baseline level expected in the absence of land-use change and related
pressures. Even this reduction is optimistic compared with the picture from vertebrate species
presented in the most recent Living Planet Report (WWF, 2018). Based on the Living Planet
Index (LPI: Loh et al., 1998) — which analyses global population trends of vertebrate
abundance to measure changes in the state of biodiversity through time (Loh et al., 2005) —
this global assessment reported “an overall decline of 60% in species population sizes
between 1970 and 2014”; i.e., an average reduction in vertebrate population size of more than
half in less than 50 years (WWF, 2018). On the other hand, my Bll estimates are less optimistic
than results from Dornelas et al. (2014), where no net loss of a diversity (measured by 10
different metrics) was found when analysing 100 ecological assemblage time series (global
data including different biomes and taxa, representing a time interval from ~1900 to ~2000).
However, Dornelas et al. (2014) found changes in community composition through time; for
example, based on the Jaccard similarity index they estimated that per decade there was an
average change in community composition of 10% of the species. This temporal turnover
evidences a loss of biotic integrity (i.e., assemblages are suffering a substitution of their

species) as suggested by my results for BII.

The lack of evidence for a net loss of a diversity in Dornelas et al. (2014) has been attributed
to biases in their dataset, which was “not spatially representative of species diversity or human
impacts” across the planet (Gonzalez et al., 2016). In the case of LPI, it is known that the data
underpinning this index (Living Planet Database — www.livingplanetindex.org) is biased
towards data for birds, mammals, temperate regions (Collen et al., 2009) and threatened
species of particular taxa (McRae et al., 2017); therefore, LPI estimates may be biased towards
negative population trends of threatened or rare species (McRae et al., 2017). It seems that
Bll estimates calculated with the new PREDICTS’ implementation are somewhere in between

these scenarios of no net loss of local diversity and extreme species population declines.

Limitations and future perspectives

Specific limitations for the different analyses that | performed were listed in each chapter.
However, a general limitation of all the analyses included in this thesis is the use of the
approach known as the space-for-time substitution (De Palma et al., 2018b). All analyses
based on PREDICTS data (Hudson et al., 2017) try to estimate the temporal effect of land-use
change on biodiversity based on spatial comparisons of nearby sites with different land uses

and related pressures (Purvis et al., 2018) (e.g., comparing minimally-disturbed primary
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vegetation against human-dominated land uses). The main problem with this approach is that
the composition of assemblages in present-day minimally-disturbed primary vegetation can be
different from the original composition of assemblages at sites where land use has changed.
Therefore, this approach can result in misleading estimates of how site-level biodiversity is
affected by pressures if the control site (i.e., minimally-disturbed sites) does not accurately
represent the conditions of the disturbed site prior to the land-use change it underwent.
Additionally, by relying on spatial comparisons rather than analysing time-series data, models
based on PREDICTS data might be capturing only a glimpse of the whole process of
biodiversity change (De Palma et al., 2018b), since the full effects of land-use change can
sometimes take many years to unfold — i.e., biotic lag (Tilman et al., 1994; Wearn et al., 2012).
However, the PREDICTS project has relied on spatial comparisons because before-vs-after
comparisons for sites that have faced land-use change are much less common in the literature
(De Palma et al., 2018b; Purvis et al., 2018), and the taxonomic, geographic and ecological
coverage of the database would be much more restricted if the project would only aim to collate
time-series data. Even where time-series data are available, they are only rarely from an
experimental design that allows for unbiased estimation of the effect of land-use change (i.e.,
a true manipulative experiment having a Before-After-Control-lmpact design: De Palma et al.,
2018b).

My analyses comparing island and mainland responses to land-use change and related
pressures were in part possible due to the expansion of the PREDICTS database in recent
years (Hudson et al., 2017), partly through my own addition of several island-based studies.
Nonetheless, many fewer studies were available for islands than mainlands, and data for
some taxa and biomes was extremely limited or not available for islands (e.g., Tables C.2, and
C.3). Furthermore, whereas studies on bigger islands in developed nations (e.g., Australia,
Great Britain, South Island) are reasonably common in PREDICTS database, there is a
shortage of data from smaller, poorer and tropical islands. This restricted island data evidences
a shortfall for island studies sampling biodiversity across disturbed sites, and suggests a need

for further efforts to develop biodiversity surveys across islands in less developed countries.

There are several ways in which my biodiversity models and BIl projections for islands and
mainlands could be refined and extended. Two relevant approaches that the PREDICTS
project has already explored are the use of more refined land-use classes and the
development of projections to predict possible future impacts to biodiversity intactness. Most
of my models analysed the effects of six land uses (and three use intensities) on biodiversity
(i.e., primary vegetation, secondary vegetation, plantation forests, croplands, pastures and
urban). This set of land-use classes is based on the classes defined in the harmonized land-

use data developed by Hurtt et al. (2011) (but adding plantation forests), and was chosen to
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facilitate global spatial and temporal projections of PREDICTS models (Purvis et al., 2018).
However, Hurtt et al. (Land-Use Harmonization 2 (LUH2) — in prep) have more recently
expanded the harmonized land-use data by refining their land-use classes; importantly,
agricultural land is now split more finely, for example by subdividing croplands according to
crop types and differentiating rangelands from managed pastures. Using these refined land-
use classes could lead to more accurate estimates and projections of the state of island and
mainland biodiversity. However, currently, developing models for island/mainland biodiversity
including more land-use classes might not be possible, due to the restricted island data in the
PREDICTS database, which would likely lead to small sample sizes (i.e., data from few sites)
for several land-use classes. Provisionally, certain subcategories that are likely to cause
important changes in spatial projections and biodiversity estimates could be tested; for
example, by differentiating rangelands from pastures, island and mainland regions where

rangelands are common would likely exhibit higher Bll estimates.

Recently, Hill et al. (2018) re-curated sites in the PREDICTS database for them to be
compatible with the refined land-use classes used by Hurtt et al. (in prep.). This allowed them
to develop projections for possible future impacts to biodiversity intactness (estimated by Bll)
at a global scale under different socio-economic scenarios, incorporating for the first time the
five Shared Socio-economic Pathway scenarios (SSPs: Riahi et al., 2017) that have been
developed by the current round of Intergovernmental Panel on Climate Change (IPCC) reports.
By following this approach, | could evaluate whether the Bll island-mainland differences that |
estimated for the year 2005, could be accentuated in the future; i.e., whether the possible
future trajectories of Bll under different scenarios would continue to show a more reduced

biotic integrity on islands than mainlands.

Final remarks

Most of my chapters highlight the parlous state of island native biodiversity. For the first time,
I have estimated the global reduction of local island biodiversity caused by land use and related
pressures, based on empirical data spanning many taxonomic groups and regions. Based on
my results, | conclude that island species assemblages might be suffering more severe
changes (e.g., compositional changes and loss of originally present species) than mainland
assemblages because of a combination of their great exposure to human pressures, their more

sensitive native species and their greater proneness to the establishment of alien species.

The results in this thesis represent important contributions towards understanding how human
pressures affect island biodiversity. By analysing the island-mainland differences in responses

to human pressures, | have highlighted the unique characteristics of island assemblages and
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their particular responses. Even though islands have been used as model systems in ecology
(Warren et al., 2015), their assemblages might not reflect biological communities in general,
but instead might often exhibit exceptional ecological dynamics, especially when facing human

pressures.

My work will hopefully eventually help to publicly highlight island vulnerability to human
pressures. In particular, considering the current high profile of Bll, my results for biodiversity
intactness may help to emphasise in global biodiversity assessments the alarming state of
island biodiversity, lending weight to the development of stronger efforts to lower the intensity
of human pressures on islands and to prevent the establishment of alien species to protect

islands’ unique biodiversity.

119



Bibliography

Adler, G. H., & Levins, R. (1994). The island syndrome in rodent populations. The Quarterly
Review of Biology, 69(4), 473—-490.

Allen, V. G., Batello, C., Berretta, E. J., Hodgson, J., Kothmann, M., Li, X., ... Sanderson, M.
(2011). An international terminology for grazing lands and grazing animals. Grass and
Forage Science, 66(1), 2-28.

Anderson, L. G., Rocliffe, S., Haddaway, N. R., & Dunn, A. M. (2015). The Role of Tourism
and Recreation in the Spread of Non-Native Species: A Systematic Review and Meta-
Analysis. PLOS ONE, 10(10), e0140833.

Andrews, A. (1990). Fragmentation of Habitat by Roads and Utility Corridors: A Review.
Australian Zoologist, 26(3—4), 130-141.

Atkinson, I. A. E., & Cameron, E. K. (1993). Human influence on the terrestrial biota and biotic

communities of New Zealand. Trends in Ecology & Evolution, 8(12), 447—451.

Balmford, A. (1996). Extinction filters and current resilience: the significance of past selection

pressures for conservation biology. Trends in Ecology & Evolution, 11(5), 193—196.

Barbaro, L., & van Halder, I. (2009). Linking bird, carabid beetle and butterfly life-history traits
to habitat fragmentation in mosaic landscapes. Ecography, 32(2), 321-333.

Bartholomé, E., & Belward, A. S. (2005). GLC2000: a new approach to global land cover
mapping from Earth observation data. International Journal of Remote Sensing, 26(9),
1959-1977.

Baselga, A. (2010). Partitioning the turnover and nestedness components of beta diversity.
Global Ecology and Biogeography, 19(1), 134—143.

Bates, D., Maechler, M., Bolker, B., Walker, S. (2017). ‘Ime4’ package ver. 1.1-15.

Bellard, C., Cassey, P., & Blackburn, T. M. (2016). Alien species as a driver of recent
extinctions. Biology Letters, 12(2), 20150623.

120



Biggs, R., Schliter, M., Biggs, D., Bohensky, E. L., BurnSilver, S., Cundill, G., ... West, P. C.
(2012). Toward Principles for Enhancing the Resilience of Ecosystem Services. Annual

Review of Environment and Resources, 37(1), 421-448.

Blackburn, T. M., & Duncan, R. P. (2001). Determinants of establishment success in
introduced birds. Nature, 414(6860), 195-197.

Blackburn, T. M., Cassey, P., & Lockwood, J. L. (2008). The island biogeography of exotic bird
species. Global Ecology and Biogeography, 17(2), 246—-251.

Blackburn, T. M., Cassey, P., Duncan, R. P., Evans, K. L., & Gaston, K. J. (2004). Avian
Extinction and Mammalian Introductions on Oceanic Islands. Science, 305(5692), 1955—
1958.

Bolker, B. M., Brooks, M. E., Clark, C. J., Geange, S. W., Poulsen, J. R., Stevens, M. H. H., &
White, J.-S. S. (2009). Generalized linear mixed models: a practical guide for ecology and
evolution. Trends in Ecology & Evolution, 24(3), 127-135.

Borges, P. A. V, Lobo, J. M., Azevedo, E. B., Gaspar, C. S., Melo, C., & Nunes, L. V. (2006).
Invasibility and species richness of island endemic arthropods: a general model of

endemic vs. exotic species. Journal of Biogeography, 33(1), 169-187.

Bowen, L., & Vuren, D. Van. (1997). Insular Endemic Plants Lack Defenses Against
Herbivores. Conservation Biology, 11(5), 1249-1254.

Britton, J. R., & Gozlan, R. E. (2013). How many founders for a biological invasion? Predicting

introduction outcomes from propagule pressure. Ecology, 94(11), 2558—-2566.

Brook, B. W., Sodhi, N. S., & Ng, P. K. L. (2003). Catastrophic extinctions follow deforestation
in Singapore. Nature, 424(6947), 420-423.

Brook, B., Sodhi, N., & Bradshaw, C. J. A. (2008). Synergies among extinction drivers under
global change. Trends in Ecology & Evolution, 23(8), 453—460.

Brooks, T. M., Akgakaya, H. R., Burgess, N. D., Butchart, S. H. M., Hilton-Taylor, C., Hoffmann,
M., ... Young, B. E. (2016). Analysing biodiversity and conservation knowledge products

to support regional environmental assessments. Scientific Data, 3(1), 160007.

121



Brooks, T. M., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B., Rylands, A. B.,
Konstant, W. R., ... Hilton-Taylor, C. (2002). Habitat Loss and Extinction in the Hotspots
of Biodiversity. Conservation Biology, 16(4), 909-923.

Brown, J. H. (1984). On the Relationship between Abundance and Distribution of Species. The
American Naturalist, 124(2), 255-279.

Brown, J. H., & Kodric-Brown, A. (1977). Turnover Rates in Insular Biogeography: Effect of
Immigration on Extinction. Ecology, 58(2), 445—-449.

Brummitt, N. A., Bachman, S. P., Griffiths-Lee, J., Lutz, M., Moat, J. F., Farjon, A., ... Nic
Lughadha, E. M. (2015). Green Plants in the Red: A Baseline Global Assessment for the
IUCN Sampled Red List Index for Plants. PLOS ONE, 10(8), e0135152.

Butchart, S. H. M., Walpole, M., Collen, B., van Strien, A., Scharlemann, J. P. W., Almond, R.
E. A, ... Watson, R. (2010). Global Biodiversity: Indicators of Recent Declines. Science,
328(5982), 1164—-1168.

Cadotte, M. W., Murray, B. R., & Lovett-Doust, J. (2006). Ecological Patterns and Biological
Invasions: Using Regional Species Inventories in Macroecology. Biological Invasions,
8(4), 809-821.

Capinha, C., Seebens, H., Cassey, P., Garcia-Diaz, P., Lenzner, B., Mang, T., ... Essl, F.
(2017). Diversity, biogeography and the global flows of alien amphibians and reptiles.
Diversity and Distributions, 23(11), 1313-1322.

Cardillo, M. (2003). Biological determinants of extinction risk: why are smaller species less

vulnerable? Animal Conservation, 6(1), 63-69.

Cardillo, M., Mace, G. M., Jones, K. E., Bielby, J., Bininda-Emonds, O. R. P., Sechrest, W., ...
Purvis, A. (2005). Multiple causes of high extinction risk in large mammal species.
Science, 309(5738), 1239-1241.

Cardinale, B. J., Duffy, J. E., Gonzalez, A., Hooper, D. U., Perrings, C., Venail, P., ... Naeem,
S. (2012). Biodiversity loss and its impact on humanity. Nature, 486(7401), 59-67.

Carlquist, S. (1966). The Biota of Long-Distance Dispersal. I. Principles of Dispersal and
Evolution. The Quarterly Review of Biology, 41(3), 247-270.

122



Catford, J. A., Daehler, C. C., Murphy, H. T., Sheppard, A. W., Hardesty, B. D., Westcott, D.
A., ... Hulme, P. E. (2012). The intermediate disturbance hypothesis and plant invasions:
Implications for species richness and management. Perspectives in Plant Ecology,
Evolution and Systematics, 14(3), 231-241.

Chamberlain, S. (2018). ‘rredlist’ package ver. 0.5.0.

Chamberlain, S. & Bartomeus, |. (2016). ‘originr’ package ver. 0.2.0.

Chao, A., Chazdon, R. L., Colwell, R. K., & Shen, T.-J. (2004). A new statistical approach for
assessing similarity of species composition with incidence and abundance data. Ecology
Letters, 8(2), 148-159.

Charrette, N. A., Cleary, D. F. R., & Mooers, A. &. (2006). Range-restricted, specialist Bornean
butterflies are less likely to recover from ENSO-induced disturbance. Ecology, 87(9),
2330-2337.

Chen, C., Chen, C., & Wang, Y. (2019). Ecological correlates of extinction risk in Chinese
amphibians. Diversity and Distributions, 25(10), 1586—1598.

Chown, S. L., Gremmen, N. J., & Gaston, K. J. (1998). Ecological biogeography of southern
ocean islands: species-area relationships, human impacts, and conservation. The
American Naturalist, 152(4), 562-575.

CIESIN - Columbia University, and Information Technology Outreach Services - ITOS -
University of Georgia. (2013). Global Roads Open Access Data Set, Version 1
(JROADSV1). Palisades, NY: NASA Socioeconomic Data and Applications Center
(SEDAC). https://doi.org/10.7927/H4VDEWCT

CIESIN - Columbia University, International Food Policy Research Institute - IFPRI, The World
Bank, and Centro Internacional de Agricultura Tropical - CIAT. (2011). Global Rural-
Urban Mapping Project, Version 1 (GRUMPv1): Population Density Grid. Palisades, NY:
NASA Socioeconomic Data and Applications Center (SEDAC).
https://doi.org/10.7927/H4R20Z293

Cincotta, R. P. (2011). The Biological Diversity That is Humanly Possible: Three Models
Relevant to Human Population’s Relationship With Native Species. In R. P. Cincotta, L.
Gorenflo (Eds.), Human Population. Its Influences on Biological Diversity (Vol. 214, pp.

61-73). Berlin, Germany: Springer-Verlag Berlin Heidelberg.

123



Cincotta, R. P., Wisnewski, J., & Engelman, R. (2000). Human population in the biodiversity
hotspots. Nature, 404(6781), 990-992.

Clavero, M., Brotons, L., Pons, P., & Sol, D. (2009). Prominent role of invasive species in avian
biodiversity loss. Biological Conservation, 142(10), 2043-2049.

Cody, M. L., & Overton, J. M. (1996). Short-Term Evolution of Reduced Dispersal in Island
Plant Populations. The Journal of Ecology, 84(1), 53—61.

Cohen, J. E. (2003). Human Population: The Next Half Century. Science, 302(5648), 1172—
1175.

Collen, B., Dulvy, N. K., Gaston, K. J., Gardenfors, U., Keith, D. A., Punt, A. E., ... Akgakaya,
H. R. (2016). Clarifying misconceptions of extinction risk assessment with the IUCN Red
List. Biology Letters, 12(4), 20150843.

Collen, B., Loh, J., Whitmee, S., McRae, L., Amin, R., & Baillie, J. E. M. (2009). Monitoring
Change in Vertebrate Abundance: the Living Planet Index. Conservation Biology, 23(2),
317-327.

Dalmazzone, S. (2000). Economic factors affecting vulnerability to biological invasions. In C.
Perrings, S. Dalmazzone, M.H. Williamson (Eds.), The economics of biological invasions
(pp. 17-30). Cheltenham, UK: Edward Elgar Publishing.

Dalmazzone, S., & Giaccaria, S. (2014). Economic drivers of biological invasions: A worldwide,

bio-geographic analysis. Ecological Economics, 105, 154—165.

Darwin, C. (1859). On the origin of species by means of natural selection, or preservation of

favoured races in the struggle for life. London, UK: John Murray.

Dawson, W., Moser, D., van Kleunen, M., Kreft, H., Pergl, J., PySek, P., ... Essl, F. (2017).
Global hotspots and correlates of alien species richness across taxonomic groups. Nature
Ecology & Evolution, 1(7), 0186.

De Lima, R. F., Dallimer, M., Atkinson, P. W., & Barlow, J. (2013). Biodiversity and land-use
change: understanding the complex responses of an endemic-rich bird assemblage.
Diversity and Distributions, 19(4), 411-422.

124



De Palma, A., Abrahamczyk, S., Aizen, M. A., Albrecht, M., Basset, Y., Bates, A., ... Purvis,
A. (2016). Predicting bee community responses to land-use changes: Effects of

geographic and taxonomic biases. Scientific Reports, 6(1), 31153.

De Palma, A., Hoskins, A., Gonzalez, R. E., Newbold, T., Sanchez-Ortiz, K., Ferrier, S., &
Purvis, A. (2018a). Changes in the Biodiversity Intactness Index in tropical and
subtropical forest biomes, 2001-2012. BioRxiv, 311688.

De Palma, A., Kuhimann, M., Roberts, S. P. M., Potts, S. G., Borger, L., Hudson, L. N, ...
Purvis, A. (2015). Ecological traits affect the sensitivity of bees to land-use pressures in

European agricultural landscapes. Journal of Applied Ecology, 52(6), 1567—1577.

De Palma, A., Sanchez-Ortiz, K., Martin, P. A., Chadwick, A., Gilbert, G., Bates, A. E., ...
Purvis, A. (2018b). Challenges With Inferring How Land-Use Affects Terrestrial
Biodiversity: Study Design, Time, Space and Synthesis. In D. A. Bohan, A. J. Dumbrell,
G. Woodward, M. Jackson (Eds.), Advances in Ecological Research (Vol. 58, pp. 163—
199). San Diego, United States: Academic Press.

De Rosario-Martinez, H. (2015). ‘phia’ package ver. 0.2-1.

Dee, L. E., Cowles, J., Isbell, F., Pau, S., Gaines, S. D., & Reich, P. B. (2019). When Do
Ecosystem Services Depend on Rare Species? Trends in Ecology & Evolution, 34(8),
746-758.

Delgado, J. D., Riera, R., Rodriguez, R. A., Gonzalez-Moreno, P., & Fernandez-Palacios, J.
M. (2017). A reappraisal of the role of humans in the biotic disturbance of islands.
Environmental Conservation, 44(4), 371-380.

Denslow, J. S. (2003). Weeds in Paradise: Thoughts on the Invasibility of Tropical Islands.
Annals of the Missouri Botanical Garden, 90(1), 119-127.

Diaz, S., Pascual, U., Stenseke, M., Martin-Lépez, B., Watson, R. T., Molnar, Z., ...
Shirayama, Y. (2018). Assessing nature’s contributions to people. Science, 359(6373),
270-272.

Didham, R. K., Ewers, R. M., & Gemmell, N. J. (2005). Comment on" avian extinction and

mammalian introductions on oceanic islands". Science, 307(5714), 1412.

125



Didham, R. K., Tylianakis, J. M., Gemmell, N. J., Rand, T. A., & Ewers, R. M. (2007). Interactive
effects of habitat modification and species invasion on native species decline. Trends in
Ecology & Evolution, 22(9), 489—-496.

Dornelas, M., Gotelli, N. J., McGill, B., Shimadzu, H., Moyes, F., Sievers, C., & Magurran, A.
E. (2014). Assemblage Time Series Reveal Biodiversity Change but Not Systematic Loss.
Science, 344(6181), 296—299.

Dray, S., Dufour, A. B., Thioulouse, J. (2007). ‘ade4’ package ver. 1.7-10.

Duncan, R. P., Blackburn, T. M., Rossinelli, S., & Bacher, S. (2014). Quantifying invasion risk:
the relationship between establishment probability and founding population size. Methods
in Ecology and Evolution, 5(11), 1255-1263.

Dyer, E. E., Cassey, P., Redding, D. W., Collen, B., Franks, V., Gaston, K. J., ... Blackburn,
T. M. (2017a). The Global Distribution and Drivers of Alien Bird Species Richness. PLOS
Biology, 15(1), e2000942.

Dyer, E. E., Redding, D. W., & Blackburn, T. M. (2017b). The global avian invasions atlas, a
database of alien bird distributions worldwide. Scientific Data, 4(1), 170041.

Early, R., Bradley, B. A., Dukes, J. S., Lawler, J. J., Olden, J. D., Blumenthal, D. M., ... Tatem,
A. J. (2016). Global threats from invasive alien species in the twenty-first century and

national response capacities. Nature Communications, 7(1), 12485.

Ellis, E. C., & Ramankutty, N. (2008). Putting people in the map: anthropogenic biomes of the
world. Frontiers in Ecology and the Environment, 6(8), 439—-447.

Elton, C. S. (1958). The ecology of invasions by animals and plants. Chicago, United States:

University of Chicago Press.

ESRI (2011). ArcGIS Desktop: Release 10. Redlands, CA: Environmental Systems Research

Institute.

Euro+Med (2006). Euro+Med PlantBase - the information resource for Euro-Mediterranean

plant diversity. Published on the Internet http://ww2.bgbm.org/EuroPlusMed/

Faith, D. P., Ferrier, S., & Williams, K. J. (2007). Getting biodiversity intactness indices right:
ensuring that ‘biodiversity’ reflects ‘diversity.” Global Change Biology, 14(2), 207-217.

126



Florencio, M., Cardoso, P., Lobo, J. M., de Azevedo, E. B., & Borges, P. A. V. (2013).
Arthropod assemblage homogenization in oceanic islands: the role of indigenous and
exotic species under landscape disturbance. Diversity and Distributions, 19(11), 1450—
1460.

Florencio, M., Lobo, J. M., Cardoso, P., Almeida-Neto, M., & Borges, P. A. V. (2015). The
Colonisation of Exotic Species Does Not Have to Trigger Faunal Homogenisation:
Lessons from the Assembly Patterns of Arthropods on Oceanic Islands. PLOS ONE,
10(5), e0128276.

Flynn, D. F. B., Gogol-Prokurat, M., Nogeire, T., Molinari, N., Richers, B. T., Lin, B. B, ...
DeClerck, F. (2009). Loss of functional diversity under land use intensification across

multiple taxa. Ecology Letters, 12(1), 22-33.
Foley, J. A. (2005). Global Consequences of Land Use. Science, 309(5734), 570-574.

Fordham, D. A., & Brook, B. W. (2010). Why tropical island endemics are acutely susceptible
to global change. Biodiversity and Conservation, 19(2), 329-342.

Forsyth, D. M., & Duncan, R. P. (2001). Propagule Size and the Relative Success of Exotic
Ungulate and Bird Introductions to New Zealand. The American Naturalist, 157(6), 583—
595.

Gaston, K. J., Blackburn, T. M., & Lawton, J. H. (1997). Interspecific Abundance-Range Size
Relationships: An Appraisal of Mechanisms. The Journal of Animal Ecology, 66(4), 579—
601.

Gibson, L., Lee, T. M., Koh, L. P., Brook, B. W., Gardner, T. A., Barlow, J., ... Sodhi, N. S.
(2011). Primary forests are irreplaceable for sustaining tropical biodiversity. Nature,
478(7369), 378-381.

Gillespie, R. G. (2005). The Ecology and Evolution of Hawaiian Spider Communities: The
diversification of Hawaiian spiders illustrates universal principles behind community

assembly on evolutionary and ecological scales. American Scientist, 93(2), 122-131.

Gillespie, R. G. (2007). Oceanic Islands: Models of Diversity. In S. A. Levin (Ed.), Encyclopedia
of Biodiversity (Vol. 1, pp. 590-599). San Diego, United States: Academic Press.

127



Gillespie, R. G., & Baldwin, B. G. (2010). Island biogeography of remote archipelagoes. In J.
B. Losos, R. E. Ricklefs (Eds.), The theory of island biogeography revisited (pp. 358—

387). Princeton, United States: Princeton University Press.

Gillespie, R. G., Claridge, E. M., & Roderick, G. K. (2008). Biodiversity dynamics in isolated
island communities: interaction between natural and human-mediated processes.
Molecular Ecology, 17(1), 45-57.

Gonzalez, A., & Chaneton, E. J. (2002). Heterotroph species extinction, abundance and
biomass dynamics in an experimentally fragmented microecosystem. Journal of Animal
Ecology, 71(4), 594-602.

Gonzalez, A., Cardinale, B. J., Allington, G. R. H., Byrnes, J., Arthur Endsley, K., Brown, D.
G., ... Loreau, M. (2016). Estimating local biodiversity change: a critique of papers

claiming no net loss of local diversity. Ecology, 97(8), 1949-1960.

Gossner, M. M., Lewinsohn, T. M., Kahl, T., Grassein, F., Boch, S., Prati, D., ... Allan, E.
(2016). Land-use intensification causes multitrophic homogenization of grassland
communities. Nature, 540(7632), 266—269.

Gower, J. C. (1971). A General Coefficient of Similarity and Some of Its Properties. Biometrics,
27(4), 857-871.

Grimm, N. B., Faeth, S. H., Golubiewski, N. E., Redman, C. L., Wu, J., Bai, X., & Briggs, J. M.
(2008). Global Change and the Ecology of Cities. Science, 319(5864), 756—760.

Gurevitch, J., & Padilla, D. (2004). Are invasive species a major cause of extinctions? Trends
in Ecology & Evolution, 19(9), 470-474.

Hamilton, M. A., Murray, B. R., Cadotte, M. W., Hose, G. C., Baker, A. C., Harris, C. J., &
Licari, D. (2005). Life-history correlates of plant invasiveness at regional and continental
scales. Ecology Letters, 8(10), 1066—1074.

Harrison, X. A. (2014). Using observation-level random effects to model overdispersion in

count data in ecology and evolution. Peerd, 2, e616.

Hautier, Y., Isbell, F., Borer, E. T., Seabloom, E. W., Harpole, W. S., Lind, E. M., ... Hector, A.
(2018). Local loss and spatial homogenization of plant diversity reduce ecosystem

multifunctionality. Nature Ecology & Evolution, 2(1), 50-56.

128



Hautier, Y., Tilman, D., Isbell, F., Seabloom, E. W., Borer, E. T., & Reich, P. B. (2015).
Anthropogenic environmental changes affect ecosystem stability via biodiversity.
Science, 348(6232), 336—340.

Hawes, J., da Silva Motta, C., Overal, W. L., Barlow, J., Gardner, T. A., & Peres, C. A. (2009).
Diversity and composition of Amazonian moths in primary, secondary and plantation
forests. Journal of Tropical Ecology, 25(3), 281-300.

Helmus, M. R., Mahler, D. L., & Losos, J. B. (2014). Island biogeography of the Anthropocene.
Nature, 513(7519), 543-546.

Henle, K., Davies, K. F., Kleyer, M., Margules, C., & Settele, J. (2004). Predictors of Species
Sensitivity to Fragmentation. Biodiversity and Conservation, 13(1), 207-251.

Herben, T. (2005). Species pool size and invasibility of island communities: a null model of

sampling effects. Ecology Letters, 8(9), 909-917.

Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis, A. (2005). Very high
resolution interpolated climate surfaces for global land areas. International Journal of
Climatology, 25(15), 1965-1978.

Hijmans, R. J., Williams, E., Vennes, C. (2017). ‘geosphere’ package ver. 1.5-7.

Hill, S. L. L., Gonzalez, R., Sanchez-Ortiz, K., Caton, E., Espinoza, F., Newbold, T., ... Purvis,
A. (2018). Worldwide impacts of past and projected future land-use change on local

species richness and the Biodiversity Intactness Index. BioRxiv, 311787.

Holmes, N. D., Spatz, D. R., Oppel, S., Tershy, B., Croll, D. A., Keitt, B., ... Butchart, S. H. M.
(2019). Globally important islands where eradicating invasive mammals will benefit highly
threatened vertebrates. PLOS ONE, 14(3), e0212128.

Hooper, D. U., Adair, E. C., Cardinale, B. J., Byrnes, J. E. K., Hungate, B. A., Matulich, K. L.,
... O'Connor, M. I. (2012). A global synthesis reveals biodiversity loss as a major driver
of ecosystem change. Nature, 486(7401), 105—108.

Hortal, J., de Bello, F., Diniz-Filho, J. A. F., Lewinsohn, T. M., Lobo, J. M., & Ladle, R. J. (2015).
Seven Shortfalls that Beset Large-Scale Knowledge of Biodiversity. Annual Review of
Ecology, Evolution, and Systematics, 46(1), 523-549.

129



Hoskins, A. J., Bush, A., Gilmore, J., Harwood, T., Hudson, L. N., Ware, C., ... Ferrier, S.
(2016). Downscaling land-use data to provide global 30" estimates of five land-use
classes. Ecology and Evolution, 6(9), 3040-3055.

Hudson, L. N., Newbold, T., Contu, S., Hill, S. L. L., Lysenko, I., De Palma, A., ... Purvis, A.
(2017). The database of the PREDICTS (Projecting Responses of Ecological Diversity In
Changing Terrestrial Systems) project. Ecology and Evolution, 7(1), 145-188.

Hudson, L. N., Newbold, T., Contu, S., Hill, S. L. L., Lysenko, I., De Palma, A., ... Purvis, A.
(2014). The PREDICTS database: a global database of how local terrestrial biodiversity
responds to human impacts. Ecology and Evolution, 4(24), 4701-4735.

Hulme, P. E. (2009). Trade, transport and trouble: managing invasive species pathways in an
era of globalization. Journal of Applied Ecology, 46(1), 10-18.

Hulme, P. E., Bacher, S., Kenis, M., Klotz, S., Kihn, I., Minchin, D., ... Vila, M. (2008). Grasping
at the routes of biological invasions: A framework for integrating pathways into policy.
Journal of Applied Ecology, 45(2), 403—-414.

Humphreys, A. M., Govaerts, R., Ficinski, S. Z., Nic Lughadha, E., & Vorontsova, M. S. (2019).
Global dataset shows geography and life form predict modern plant extinction and
rediscovery. Nature Ecology & Evolution, 3(7), 1043—-1047.

Hurtt, G. C., Chini, L. P., Frolking, S., Betts, R. A., Feddema, J., Fischer, G., ... Wang, Y. P.
(2011). Harmonization of land-use scenarios for the period 1500-2100: 600 years of
global gridded annual land-use transitions, wood harvest, and resulting secondary lands.
Climatic Change, 109(1-2), 117-161.

Hurtt, G. C., Chini, L. P., Sahajpal, R., Frolking, S. E., Fisk, J., Bodirsky, B., Calvin, K. V.,
Fujimori, S., Goldewijk, K., Hasegawa, T., Havlik, P., Heinimann, A., Humpendder, F.,
Kaplan, J. O., Krisztin, T., Lawrence, D. M., Lawrence, P., Mertz, O., Popp, A., Riahi, K,
Stehfest, E., van Vuuren, D., de Waal, L., Zhang, X. Harmonization of global land-use

change and management for the period 850-2100. (In prep.)

Invasive Species Specialist Group ISSG. (2015). The Global Invasive Species Database.
Version 2015.1.

IPBES (2019). IPBES Global Assessment on Biodiversity and Ecosystem Services.

Chapter 2. Status and trends; indirect and direct drivers of change. Secretariat of the

130



Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services,

Bonn, Germany.

Irwin, M. T., Wright, P. C., Birkinshaw, C., Fisher, B. L., Gardner, C. J., Glos, J., ... Ganzhom,
J. U. (2010). Patterns of species change in anthropogenically disturbed forests of
Madagascar. Biological Conservation, 143(10), 2351-2362.

IUCN (2017). IUCN Red List of Threatened Species. Version 2017-1 <www.iucnredlist.org>

Jeschke, J., Gobmez Aparicio, L., Haider, S., Heger, T., Lortie, C., PySek, P., & Strayer, D.
(2012). Support for major hypotheses in invasion biology is uneven and declining.
NeoBiota, 14, 1-20.

Johnson, C. N., Balmford, A., Brook, B. W., Buettel, J. C., Galetti, M., Guangchun, L., &
Wilmshurst, J. M. (2017). Biodiversity losses and conservation responses in the
Anthropocene. Science, 356(6335), 270-275.

Keegan, W. F., & Diamond, J. M. (1987). Colonization of Islands by Humans: A
Biogeographical Perspective. In M. B. Schiffer (Ed.), Advances in Archaeological Method
and Theory (Vol. 10, pp. 49-92). San Diego, United States: Academic Press.

Kennedy, T. A., Naeem, S., Howe, K. M., Knops, J. M. H., Tilman, D., & Reich, P. (2002).
Biodiversity as a barrier to ecological invasion. Nature, 417(6889), 636—638.

Keppel, G., Morrison, C., Meyer, J.-Y., & Boehmer, H. J. (2014). Isolated and vulnerable: the
history and future of Pacific Island terrestrial biodiversity. Pacific Conservation Biology,
20(2), 136-145.

Kier, G., Kreft, H., Lee, T. M., Jetz, W., Ibisch, P. L., Nowicki, C., ... Barthlott, W. (2009). A
global assessment of endemism and species richness across island and mainland
regions. Proceedings of the National Academy of Sciences, 106(23), 9322-9327.

Kleunen, M., PySek, P., Dawson, W., Essl, F., Kreft, H., Pergl, J., ... Winter, M. (2019). The
Global Naturalized Alien Flora (GloNAF) database. Ecology, 100(1), e02542.

Koleff, P., Gaston, K. J., & Lennon, J. J. (2003). Measuring beta diversity for presence-absence
data. Journal of Animal Ecology, 72(3), 367—-382.

Korner-Nievergelt, F., Roth, F., von Felten, S., Guelat, J., Almasi, B., Korner- Nievergelt , P.

(2018). ‘blmeco’ package ver. 1.2.

131



Kowarik, 1. (2011). Novel urban ecosystems, biodiversity, and conservation. Environmental
Pollution, 159(8-9), 1974—1983.

La Sorte, F. A., Aronson, M. F. J., Williams, N. S. G., Celesti-Grapow, L., Cilliers, S., Clarkson,
B. D., ... Winter, M. (2014). Beta diversity of urban floras among European and non-

European cities. Global Ecology and Biogeography, 23(7), 769-779.

Lambin, E. F., Turner, B. L., Geist, H. J., Agbola, S. B., Angelsen, A., Bruce, J. W, ... Xu, J.
(2001). The causes of land-use and land-cover change: moving beyond the myths. Global
Environmental Change, 11(4), 261-269.

Lande, R. (1999). Extinction risks from anthropogenic, ecological, and genetic factors. In L. F.
Landweber, A. P. Dobson (Eds.), Genetics and the extinction of species: DNA and the
conservation of biodiversity (pp. 1-22). Princeton, United States: Princeton University

Press.

Laurance, W. F., Sayer, J., & Cassman, K. G. (2014). Agricultural expansion and its impacts

on tropical nature. Trends in Ecology & Evolution, 29(2), 107-116.

Lembrechts, J. J., Pauchard, A., Lenoir, J., Nuiiez, M. A., Geron, C., Ven, A,, ... Milbau, A.
(2016). Disturbance is the key to plant invasions in cold environments. Proceedings of
the National Academy of Sciences, 113(49), 14061-14066.

Lenzen, M., Lane, A., Widmer-Cooper, A., & Williams, M. (2009). Effects of Land Use on
Threatened Species. Conservation Biology, 23(2), 294-306.

Leps, J., Brown, V. K., Diaz Len, T. A., Gormsen, D., Hedlund, K., Kailova, J., ... van der
Putten, W. H. (2001). Separating the chance effect from other diversity effects in the
functioning of plant communities. Oikos, 92(1), 123—134.

Levine, J. M., & D’Antonio, C. M. (2003). Forecasting Biological Invasions with Increasing

International Trade. Conservation Biology, 17(1), 322-326.

Lichstein, J. W. (2007). Multiple regression on distance matrices: a multivariate spatial analysis
tool. Plant Ecology, 188(2), 117-131.

Liping, C., Yujun, S., & Saeed, S. (2018). Monitoring and predicting land use and land cover
changes using remote sensing and GIS techniques—A case study of a hilly area, Jiangle,
China. PLOS ONE, 13(7), e0200493.

132



Lockwood, J. L., Cassey, P., & Blackburn, T. (2005). The role of propagule pressure in

explaining species invasions. Trends in Ecology and Evolution, 20(5), 223-228.

Lockwood, J. L., Cassey, P., & Blackburn, T. M. (2009). The more you introduce the more you
get: the role of colonization pressure and propagule pressure in invasion ecology.
Diversity and Distributions, 15(5), 904-910.

Loh, J., Green, R. E., Ricketts, T., Lamoreux, J., Jenkins, M., Kapos, V., & Randers, J. (2005).
The Living Planet Index: using species population time series to track trends in
biodiversity. Philosophical Transactions of the Royal Society B: Biological Sciences,
360(1454), 289-295.

Loh, J., Randers, J., MacGillivray, A., Kapos, V., Jenkins, M., & Groombridge, B. (1998). Living
Planet Report, 1998. Gland, Switzerland: WWF International.

Lomolino, M. V. (1986). Mammalian community structure on islands: the importance of
immigration, extinction and interactive effects. Biological Journal of the Linnean Society,
28(1-2), 1-21.

Lonsdale, W. M. (1999). Global Patterns of Plant Invasions and the Concept of Invasibility.
Ecology, 80(5), 15622—-1536.

Losos, J. B., & Ricklefs, R. E. (2009). Adaptation and diversification on islands. Nature,
457(7231), 830-836.

Lozon, J. D., & Maclsaac, H. J. (1997). Biological invasions: are they dependent on

disturbance? Environmental Reviews, 5(2), 131-144.

Lugo, A. E., & Helmer, E. (2004). Emerging forests on abandoned land: Puerto Rico’s new
forests. Forest Ecology and Management, 190(2-3), 145-161.

Lund, H. G. (2007). Accounting for the world’s rangelands. Rangelands, 29(1), 3—-11.

MacArthur, R. H., & Wilson, E. O. (1963). An Equilibrium Theory of Insular Zoogeography.
Evolution, 17(4), 373-387.

MacArthur, R. H., & Wilson, E. O. (1967). The theory of island biogeography. Princeton, United

States: Princeton University Press.

133



Mace, G. M., Norris, K., & Fitter, A. H. (2012). Biodiversity and ecosystem services: a
multilayered relationship. Trends in Ecology & Evolution, 27(1), 19—-26.

Mace, G. M., Reyers, B., Alkemade, R., Biggs, R., Chapin, F. S., Cornell, S. E., ... Woodward,
G. (2014). Approaches to defining a planetary boundary for biodiversity. Global
Environmental Change, 28, 289-297.

Marini, L., Battisti, A., Bona, E., Federici, G., Martini, F., Pautasso, M., & Hulme, P. E. (2012).
Alien and native plant life-forms respond differently to human and climate pressures.
Global Ecology and Biogeography, 21(5), 534-544.

Martin, P. A., Green, R. E., & Balmford, A. (2019). The biodiversity intactness index may
underestimate losses. Nature Ecology & Evolution, 3(6), 862—863.

Matthews, T. J., Rigal, F., Triantis, K. A., & Whittaker, R. J. (2019). A global model of island
species—area relationships. Proceedings of the National Academy of Sciences, 116(25),
12337-12342.

Maxwell, S. L., Fuller, R. A., Brooks, T. M., & Watson, J. E. M. (2016). Biodiversity: The ravages
of guns, nets and bulldozers. Nature, 536(7615), 143—145.

Mayr, E. (1965). Avifauna: turnover on islands. Science, 150(3703), 1587-1588.

McCreless, E. E., Huff, D. D, Croll, D. A, Tershy, B. R., Spatz, D. R., Holmes, N. D, ... Wilcox,
C. (2016). Past and estimated future impact of invasive alien mammals on insular

threatened vertebrate populations. Nature Communications, 7(1), 12488.

McCune, J. L., & Vellend, M. (2013). Gains in native species promote biotic homogenization
over four decades in a human-dominated landscape. Journal of Ecology, 101(6), 1542—
1551.

McGill, B. J., Dornelas, M., Gotelli, N. J., & Magurran, A. E. (2015). Fifteen forms of biodiversity
trend in the Anthropocene. Trends in Ecology & Evolution, 30(2), 104—113.

Mclintyre, N. E. (2000). Ecology of Urban Arthropods: a Review and a Call to Action. Annals of
the Entomological Society of America, 93(4), 825-835.

McKee, J., Chambers, E., & Guseman, J. (2013). Human Population Density and Growth
Validated as Extinction Threats to Mammal and Bird Species. Human Ecology, 41(5),
773-778.

134



McKinney, M. L. (2001). Effects of human population, area, and time on non-native plant and
fish diversity in the United States. Biological Conservation, 100(2), 243—-252.

McKinney, M. L. (2002). Urbanization, Biodiversity, and Conservation: The impacts of
urbanization on native species are poorly studied, but educating a highly urbanized
human population about these impacts can greatly improve species conservation in all
ecosystems. BioScience, 52(10), 883-890.

McKinney, M. L. (2004). Measuring floristic homogenization by non-native plants in North

America. Global Ecology and Biogeography, 13(1), 47-53.

McKinney, M. L. (2006). Urbanization as a major cause of biotic homogenization. Biological
Conservation, 127(3), 247-260.

McKinney, M. L., & Lockwood, J. L. (1999). Biotic homogenization: a few winners replacing

many losers in the next mass extinction. Trends in Ecology & Evolution, 14(11), 450-453.

McRae, L., Deinet, S., & Freeman, R. (2017). The Diversity-Weighted Living Planet Index:
Controlling for Taxonomic Bias in a Global Biodiversity Indicator. PLOS ONE, 12(1),
e0169156.

Meijer, J. R., Huijbregts, M. A. J., Schotten, K. C. G. J., & Schipper, A. M. (2018). Global
patterns of current and future road infrastructure. Environmental Research Letters, 13(6),
064006.

Meijer, S. S., Whittaker, R. J., & Borges, P. A. V. (2011). The effects of land-use change on
arthropod richness and abundance on Santa Maria Island (Azores): unmanaged

plantations favour endemic beetles. Journal of Insect Conservation, 15(4), 505-522.

Meiri, S., Brown, J. H., & Sibly, R. M. (2012). The ecology of lizard reproductive output. Global
Ecology and Biogeography, 21(5), 592-602.

Meyer, C., Kreft, H., Guralnick, R., & Jetz, W. (2015). Global priorities for an effective

information basis of biodiversity distributions. Nature Communications, 6(1), 8221.

Meyer, W. B., & Turner, B. L. (1992). Human population growth and global land-use/cover

change. Annual review of ecology and systematics, 23(1), 39-61.

Monroe, A. P., Hill, J. G., & Martin, J. A. (2017). Spread of exotic grass in grazed native grass

pastures and responses of insect communities. Restoration Ecology, 25(4), 539-548.

135



Moser, D., Lenzner, B., Weigelt, P., Dawson, W., Kreft, H., Pergl, J., ... Essl, F. (2018).
Remoteness promotes biological invasions on islands worldwide. Proceedings of the
National Academy of Sciences, 115(37), 9270-9275.

Murphy, G. E. P., & Romanuk, T. N. (2014). A meta-analysis of declines in local species

richness from human disturbances. Ecology and Evolution, 4(1), 91-103.

Myers, N. (1988). Threatened biotas: “Hot spots” in tropical forests. The Environmentalist, 8(3),
187-208.

Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B., & Kent, J. (2000).
Biodiversity hotspots for conservation priorities. Nature, 403(6772), 853—858.

Nakamura, A., Burwell, C. J., Lambkin, C. L., Katabuchi, M., McDougall, A., Raven, R. J., &
Neldner, V. J. (2015). The role of human disturbance in island biogeography of arthropods
and plants: an information theoretic approach. Journal of Biogeography, 42(8), 1406—
1417.

Nekola, J. C., & White, P. S. (1999). The distance decay of similarity in biogeography and
ecology. Journal of Biogeography, 26(4), 867—-878.

Newbold, T., Hudson, L. N., Amell, A. P., Contu, S., De Palma, A., Ferrier, S., ... Purvis, A.
(2016a). Has land use pushed terrestrial biodiversity beyond the planetary boundary? A
global assessment. Science, 353(6296), 288—291.

Newbold, T., Hudson, L. N., Contu, S., Hill, S. L. L., Beck, J., Liu, Y., ... Purvis, A. (2018).
Widespread winners and narrow-ranged losers: Land use homogenizes biodiversity in
local assemblages worldwide. PLOS Biology, 16(12), e2006841.

Newbold, T., Hudson, L. N., Hill, S. L. L., Contu, S., Gray, C. L., Scharlemann, J. P. W., ...
Purvis, A. (2016b). Global patterns of terrestrial assemblage turnover within and among
land uses. Ecography, 39(12), 1151-1163.

Newbold, T., Hudson, L. N., Hill, S. L. L., Contu, S., Lysenko, I., Senior, R. A,, ... Purvis, A.
(2015). Global effects of land use on local terrestrial biodiversity. Nature, 520(7545), 45—
50.

136



Newbold, T., Sanchez-Ortiz, K., De Palma, A., Hill, S. L. L., & Purvis, A. (2019). Reply to ‘The
biodiversity intactness index may underestimate losses.” Nature Ecology & Evolution,
3(6), 864—-865.

Newbold, T., Scharlemann, J. P. W., Butchart, S. H. M., Sekercioglu, C. H., Alkemade, R.,
Booth, H., & Purves, D. W. (2013). Ecological traits affect the response of tropical forest
bird species to land-use intensity. Proceedings of the Royal Society B: Biological
Sciences, 280(1750), 20122131.

O’Dowd, D. J., Green, P. T., & Lake, P. S. (2003). Invasional “meltdown” on an oceanic island.
Ecology Letters, 6(9), 812—-817.

Olson, D. M., Dinerstein, E., Wikramanayake, E. D., Burgess, N. D., Powell, G. V. N.,
Underwood, E. C., ... Kassem, K. R. (2001). Terrestrial Ecoregions of the World: A New
Map of Life on EarthA new global map of terrestrial ecoregions provides an innovative

tool for conserving biodiversity. BioScience, 51(11), 933-938.

OpenStreetMap Contributors (2015). OpenStreetMap. URL
http://openstreetmapdata.com/data/land-polygons. Accessed October 2016.

Ordonez, A., Wright, I. J., & OIff, H. (2010). Functional differences between native and alien

species: a global-scale comparison. Functional Ecology, 24(6), 1353—1361.

Paulay, G. (1994). Biodiversity on Oceanic Islands: Its Origin and Extinction 1. American
Zoologist, 34(1), 134-144.

Pimm, S. L. (1991). The balance of nature? Ecological issues in the conservation of species

and communities. Chicago, United States: University of Chicago Press.

Pouteau, R., Hulme, P. E., & Duncan, R. P. (2015). Widespread native and alien plant species
occupy different habitats. Ecography, 38(5), 462—471.

Purvis, A., Gittleman, J. L., Cowlishaw, G., & Mace, G. M. (2000). Predicting extinction risk in
declining species. Proceedings of the Royal Society of London. Series B: Biological
Sciences, 267(1456), 1947-1952.

Purvis, A., Newbold, T., De Palma, A., Contu, S., Hill, S. L. L., Sanchez-Ortiz, K., ...
Scharlemann, J. P. W. (2018). Modelling and Projecting the Response of Local Terrestrial
Biodiversity Worldwide to Land Use and Related Pressures: The PREDICTS Project. In

137



D. A. Bohan, A. J. Dumbrell, G. Woodward, M. Jackson (Eds.), Advances in Ecological
Research (Vol. 58, pp. 201-241). San Diego, United States: Academic Press.

PySek, P. (1998). Alien and native species in Central European urban floras: a quantitative

comparison. Journal of Biogeography, 25(1), 1565—163.

Pysek, P., & Richardson, D. M. (2006). The biogeography of naturalization in alien plants.
Journal of Biogeography, 33(12), 2040-2050.

Pysek, P., & Richardson, D. M. (2007). Traits Associated with Invasiveness in Alien Plants:
Where Do we Stand? In W. Nentwig (Ed.), Biological Invasions (Vol. 193, pp. 97-125).
Berlin, Germany: Springer-Verlag Berlin Heidelberg.

Pysek, P., Jarosik, V., Hulme, P. E., Kuhn, I., Wild, J., Arianoutsou, M., ... Winter, M. (2010).
Disentangling the role of environmental and human pressures on biological invasions
across Europe. Proceedings of the National Academy of Sciences, 107(27), 12157—-
12162.

Pysek, P., Richardson, D. M., Rejmanek, M., Webster, G. L., Williamson, M., & Kirschner, J.
(2004). Alien plants in checklists and floras: towards better communication between
taxonomists and ecologists. TAXON, 53(1), 131-143.

R Core Team (2017). R: A language and environment for statistical computing. R Foundation

for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/

Ramankutty, N., Evan, A. T., Monfreda, C., & Foley, J. A. (2008). Farming the planet: 1.
Geographic distribution of global agricultural lands in the year 2000. Global
Biogeochemical Cycles, 22(1), GB1003.

Redding, D. W., Pigot, A. L., Dyer, E. E., Sekercioglu, C. H., Kark, S., & Blackburn, T. M.
(2019). Location-level processes drive the establishment of alien bird populations
worldwide. Nature, 571(7763), 103—106.

Reichard, S. H., & White, P. (2001). Horticulture as a Pathway of Invasive Plant Introductions
in the United States: Most invasive plants have been introduced for horticultural use by

nurseries, botanical gardens, and individuals. BioScience, 51(2), 103—-113.

Riahi, K., van Vuuren, D. P., Kriegler, E., Edmonds, J., O’Neill, B. C., Fujimori, S., ... Tavoni,

M. (2017). The Shared Socioeconomic Pathways and their energy, land use, and

138



greenhouse gas emissions implications: An overview. Global Environmental Change, 42,
153-168.

Richardson, D. M., PySek, P., Rejmanek, M., Barbour, M. G., Panetta, F. D., & West, C. J.
(2000). Naturalization and invasion of alien plants: concepts and definitions. Diversity and
Distributions, 6(2), 93—107.

Ricklefs, R. E., & Bermingham, E. (2002). The concept of the taxon cycle in biogeography.
Global Ecology and Biogeography, 11(5), 353-361.

Ricklefs, R. E., & Cox, G. W. (1972). Taxon Cycles in the West Indian Avifauna. The American
Naturalist, 106(948), 195-219.

Ricklefs, R. E., & Cox, G. W. (1978). Stage of Taxon Cycle, Habitat Distribution, and Population
Density in the Avifauna of the West Indies. The American Naturalist, 112(987), 875-895.

Ripple, W. J., Wolf, C., Newsome, T. M., Hoffmann, M., Wirsing, A. J., & McCauley, D. J.
(2017). Extinction risk is most acute for the world’s largest and smallest vertebrates.
Proceedings of the National Academy of Sciences, 114(40), 10678—10683.

Rockstrém, J., Steffen, W., Noone, K., Persson, A., Chapin, F. S. I., Lambin, E., ... Foley, J.
(2009). Planetary Boundaries: Exploring the Safe Operating Space for Humanity. Ecology
and Society, 14(2), art32.

Roderick, G.K. & Vernon P. (2009). Biological invasions. In R. G. Gillespie, D. A. Clague (Eds.),
Encyclopedia of Islands (pp. 475—480). Berkeley, United States: University of California

Press.

Rodgers, J. C., & Parker, K. C. (2003). Distribution of alien plant species in relation to human
disturbance on the Georgia Sea Islands. Diversity and Distributions, 9(5), 385-398.

Rosindell, J., & Harmon, L. J. (2013). A unified model of species immigration, extinction and

abundance on islands. Journal of Biogeography, 40(6), 1107-1118.

Rouget, M., Cowling, R. M., Vlok, J., Thompson, M., & Balmford, A. (2006). Getting the
biodiversity intactness index right: the importance of habitat degradation data. Global
Change Biology, 12(11), 2032-2036.

Sadler, J. P. (1999). Biodiversity on oceanic islands: a palaeoecological assessment. Journal
of Biogeography, 26(1), 75-87.

139



Sakai, A. K., Allendorf, F. W., Holt, J. S., Lodge, D. M., Molofsky, J., With, K. A., ... Weller, S.
G. (2001). The Population Biology of Invasive Species. Annual Review of Ecology and
Systematics, 32(1), 305-332.

Sakai, A. K., Wagner, W. L., & Mehrhoff, L. A. (2002). Patterns of Endangerment in the
Hawaiian Flora. Systematic Biology, 51(2), 276-302.

Sala, O. E. (2000). Global Biodiversity Scenarios for the Year 2100. Science, 287(5459),
1770-1774.

Sanderson, E. W., Jaiteh, M., Levy, M. A., Redford, K. H., Wannebo, A. V., & Woolmer, G.
(2002). The Human Footprint and the Last of the WildThe human footprint is a global map
of human influence on the land surface, which suggests that human beings are stewards
of nature, whether we like it or not. BioScience, 52(10), 891-904.

Sax, D. F., & Brown, J. H. (2000). The paradox of invasion. Global Ecology and Biogeography,
9(5), 363-371.

Sax, D. F., & Gaines, S. D. (2008). Species invasions and extinction: the future of native
biodiversity  on islands. Proceedings  of  the  National = Academy  of
Sciences, 105(Supplement 1), 11490-11497.

Sax, D. F., Gaines, S. D., & Brown, J. H. (2002). Species Invasions Exceed Extinctions on
Islands Worldwide: A Comparative Study of Plants and Birds. The American Naturalist,
160(6), 766—783.

Scholes, R. J., & Biggs, R. (2005). A biodiversity intactness index. Nature, 434(7029), 45-49.

Silc, U. (2010). Synanthropic vegetation: Pattern of various disturbances on life history traits.
Acta Botanica Croatica, 69(2), 215-225.

Siliceo, I., & Diaz, J. A. (2010). A comparative study of clutch size, range size, and the
conservation status of island vs. mainland lacertid lizards. Biological Conservation,
143(11), 2601-2608.

Simberloff, D. (1995a). Why Do Introduced Species Appear to Devastate Islands More Than
Mainland Areas? Pacific Science, 49(1), 87-97.

Simberloff, D. (1995b). Habitat fragmentation and population extinction of birds. Ibis, 137(s1),
S105-S111.

140



Simberloff, D. (2000). Extinction-proneness of island species - Causes and management

implications. Raffles Bulletin of Zoology, 48(1), 1-9.

Simpson, G.L. (2013). ‘permute’ package ver. 0.9-4.

Smouse, P. E., Long, J. C., & Sokal, R. R. (1986). Multiple Regression and Correlation
Extensions of the Mantel Test of Matrix Correspondence. Systematic Zoology, 35(4),
627-632.

Sobral, F. L., Lees, A. C., & Cianciaruso, M. V. (2016). Introductions do not compensate for
functional and phylogenetic losses following extinctions in insular bird assemblages.
Ecology Letters, 19(9), 1091-1100.

Socolar, J. B., Gilroy, J. J., Kunin, W. E., & Edwards, D. P. (2016). How Should Beta-Diversity
Inform Biodiversity Conservation? Trends in Ecology & Evolution, 31(1), 67—80.

Sodhi, N. S., Brook, B. W., & Bradshaw, C. J. (2009). Causes and consequences of species
extinctions. In S. A. Levin (Ed.), The Princeton guide to ecology (pp. 514-520).

Princeton, United States: Princeton University Press.

Spatz, D. R,, Zilliacus, K. M., Holmes, N. D., Butchart, S. H. M., Genovesi, P., Ceballos, G,, ...
Croll, D. A. (2017). Globally threatened vertebrates on islands with invasive species.
Science Advances, 3(10), e1603080.

Spellerberg, I. (1998). Ecological effects of roads and traffic: a literature review. Global Ecology
and Biogeography Letters, 7(5), 317-333.

Steffen, W., Richardson, K., Rockstrom, J., Cornell, S. E., Fetzer, |., Bennett, E. M., ... Sorlin,
S. (2015). Planetary boundaries: Guiding human development on a changing planet.
Science, 347(6223), 1259855.

Stork, N. E., Coddington, J. A., Colwell, R. K., Chazdon, R. L., Dick, C. W., Peres, C. A, ...
Willis, K. (2009). Vulnerability and Resilience of Tropical Forest Species to Land-Use
Change. Conservation Biology, 23(6), 1438—1447.

Threatened Island Biodiversity Database Partners. (2017). The Threatened Island Biodiversity
Database: developed by Island Conservation, University of California Santa Cruz Coastal
Conservation Action Lab, BirdLife International and IUCN Invasive Species Specialist

Group. Version 2017 <www.tib.islandconservation.org>

141



Tilman, D., May, R. M., Lehman, C. L., & Nowak, M. A. (1994). Habitat destruction and the
extinction debt. Nature, 371(6492), 65-66.

Tittensor, D. P., Walpole, M., Hill, S. L. L., Boyce, D. G., Britten, G. L., Burgess, N. D., ... Ye,
Y. (2014). A mid-term analysis of progress toward international biodiversity targets.
Science, 346(6206), 241-244.

Trevino, H. S., Skibiel, A. L., Karels, T. J., & Dobson, F. S. (2007). Threats to Avifauna on
Oceanic Islands. Conservation Biology, 21(1), 125-132.

Triantis, K. A., Vardinoyannis, K., Tsolaki, E. P., Botsaris, |., Lika, K., & Mylonas, M. (2006).
Re-approaching the small island effect. Journal of Biogeography, 33(5), 914-923.

Trimble, M. J., & van Aarde, R. J. (2012). Geographical and taxonomic biases in research on

biodiversity in human-modified landscapes. Ecosphere, 3(12), 1-16.

Trombulak, S. C., & Frissell, C. A. (2000). Review of Ecological Effects of Roads on Terrestrial
and Aquatic Communities. Conservation Biology, 14(1), 18-30.

Tuomisto, H. (2010). A diversity of beta diversities: straightening up a concept gone awry. Part

2. Quantifying beta diversity and related phenomena. Ecography, 33(1), 23—45.

Turvey, R. (2007). Vulnerability Assessment of Developing Countries: The Case of Small-
island Developing States. Development Policy Review, 25(2), 243-264.

UNEP (2003). Monitoring and indicators: designing national level monitoring programmes and
indicators. UNEP/CBD/SBSTTA/9/A0. United Nations Environment Programme,

Montreal.

UNEP-WCMC (2015). Global distribution of islands. Global Island Database (version 2.1,
November 2015). Based on Open Street Map data (© OpenStreetMap contributors).
Cambridge (UK): UNEP World Conservation Monitoring Centre.

van Asselen, S., & Verburg, P. H. (2013). Land cover change or land-use intensification:
simulating land system change with a global-scale land change model. Global Change
Biology, 19(12), 3648-3667.

van der Loo, M. (2017). ‘gower’ package ver. 0.1.2.

142



van Kleunen, M., PySek, P., Dawson, W., Essl, F., Kreft, H., Pergl, J., ... Winter, M. (2019).
The Global Naturalized Alien Flora (GloNAF) database. Ecology, 100(1), e02542.

Warren, B. H., Simberloff, D., Ricklefs, R. E., Aguilée, R., Condamine, F. L., Gravel, D., ...
Thébaud, C. (2015). Islands as model systems in ecology and evolution: prospects fifty
years after MacArthur-Wilson. Ecology Letters, 18(2), 200-217.

Warton, D. I., & Hui, F. K. C. (2011). The arcsine is asinine: the analysis of proportions in
ecology. Ecology, 92(1), 3-10.

Watson, J. E. M., Shanahan, D. F., Di Marco, M., Allan, J., Laurance, W. F., Sanderson, E.
W., ... Venter, O. (2016). Catastrophic Declines in Wilderness Areas Undermine Global
Environment Targets. Current Biology, 26(21), 2929-2934.

Wearn, O. R., Reuman, D. C., & Ewers, R. M. (2012). Extinction Debt and Windows of
Conservation Opportunity in the Brazilian Amazon. Science, 337(6091), 228-232.

Webb, T. J., & Gaston, K. J. (2000). Geographic range size and evolutionary age in birds.
Proceedings of the Royal Society of London. Series B: Biological Sciences, 267(1455),
1843-1850.

Weigelt, P., & Kreft, H. (2013). Quantifying island isolation - insights from global patterns of
insular plant species richness. Ecography, 36(4), 417—-429.

Weigelt, P., Jetz, W., & Kreft, H. (2013). Bioclimatic and physical characterization of the world’s
islands. Proceedings of the National Academy of Sciences, 110(38), 15307-15312.

Weigelt, P., Kénig, C. & Kreft, H. (2017) The Global Inventory of Floras and Traits (GIFT)
database. Available at: http://gift.uni-goettingen.de

Westbrooks, R. G. (1998). Invasive plants: changing the landscape of America. Washington,
D.C., United States: Federal Interagency Committee for the Management of Noxious and

Exotic Weeds.

Westphal, M. ., Browne, M., MacKinnon, K., & Noble, I. (2008). The link between international
trade and the global distribution of invasive alien species. Biological Invasions, 10(4),
391-398.

Whitehead, D. R., & Jones, C. E. (1969). Small Islands and the Equilibrium Theory of Insular
Biogeography. Evolution, 23(1), 171-179.

143



Whittaker, R. J., Fernandez-Palacios, J. M., Matthews, T. J., Borregaard, M. K., & Triantis, K.
A. (2017). Island biogeography: Taking the long view of nature’s laboratories. Science,
357(6354), eaam8326.

Whittaker, R.J. & Fernandez-Palacios, J.M. (2007). Island biogeography. Ecology, evolution

and conservation. New York, United States: Oxford University Press.

Wilford, G. E., & Brown, P. J. (2017). Maps of late Mesozoic-Cenozoic Gondwana break-up:
some palaeogeographical implications. In R. S. Hill (Ed.), History of the Australian
Vegetation: Cretaceous to Recent (pp. 5-13). Adelaide, Australia: University of Adelaide

Press.

Williams, J. N. (2013). Humans and biodiversity: population and demographic trends in the
hotspots. Population and Environment, 34(4), 510-523.

Wilson, E. O. (1961). The Nature of the Taxon Cycle in the Melanesian Ant Fauna. The
American Naturalist, 95(882), 169—-193.

Wilson, S. D., & Tilman, D. (1993). Plant Competition and Resource Availability in Response
to Disturbance and Fertilization. Ecology, 74(2), 599-611.

Winfree, R., W. Fox, J., Williams, N. M., Reilly, J. R., & Cariveau, D. P. (2015). Abundance of
common species, not species richness, drives delivery of a real-world ecosystem service.
Ecology Letters, 18(7), 626—635.

Wright, D. H. (1983). Species-Energy Theory: An Extension of Species-Area Theory. Oikos,
41(3), 496-506.

WWF (2016). Living Planet Report 2016. Risk and resilience in a new era. Gland, Switzerland:
WWEF International.

WWEF (2018). Living Planet Report 2018: Aiming Higher. Gland, Switzerland: WWF

International.

Zobel, M. (1997). The relative of species pools in determining plant species richness: an
alternative explanation of species coexistence? Trends in Ecology & Evolution, 12(7),
266—-269.

144



Zuur, A. F., leno, E. N., Walker, N. J., Anatoly, A. S., Smith, G. M. (2009). Mixed Effects Models
and Extensions in Ecology with R. New York, United States: Springer Science & Business
Media.

Zuur, A., leno, E. N., & Smith, G. M. (2007). Analyzing ecological data. New York, United

States: Springer Science & Business Media.

145



Appendices

146



APPENDIX A

Supplement for Chapter 1

147



Table A.1. Land use and land-use intensity definitions used to classify sites in the PREDICTS database (taken from Hudson et al., 2014; see publication for

further details)

(indeterminate
age)

depend on structural complexity of
the vegetation as described in the
paper, with the time since the site
became secondary vegetation
being a reasonable proxy.

Land Use General definition Minimal use Light use Intense use
Primary Native vegetation that is not known
Vegetation or inferred to have ever been
(Forest) completely destroyed, before the
year in which the biodiversity was
Primar sampled, by human actions or by
Y extreme natural events that do not
Vegetation .
normally play a role in ecosystem
(Non-Forest) d .
ynamics.
Mature Where the original primary
Secondary vegetation was completely
Vegetation destroyed. This could be by human One or more disturbances of One or more disturbances that is
Intermediate actions  (including fire), and . . - . . . severe enough to markedly change the
S d includes where sites are recoverin Any disturbances identified are | moderate intensity (e.g., selective nature of the ecosystem; this includes
Veco? t'ary to a natural state following a eriog very minor (e.g., a trail or path) or | logging) or breadth of impact (e.g., clear-felling of a):t of,the site too
egetation of human-dominated g n dp use | Ve limited in the scope of their | bushmeat extraction), which are not recentl fgr mucr;h recovery to have
oo (cropland lantation forest effect (e.g., hunting of a particular | severe enough to markedly change occurrgd Primary sites in 1¥ull urban
Secondary pland, — p "SS5 | species  of limited ecological | the nature of the ecosystem. Primary b y y
Vegetation pasture or urban). The decision | . L . settings should be classed as Intense
: . importance). sites in suburban settings are at least
whether to classify Secondary sites Liaht use use.
as Young Secondary, Intermediate 9 ’
S d Secondary, Mature Secondary or
econaary Secondary (Indeterminate) should
Vegetation

Plantation forest

Previously cleared areas that
people have planted with crop
trees or crop shrubs for commercial
or subsistence harvesting of wood
and/or fruit. The species planted
may or may not be native. Planting
an area with native woody plants
for habitat restoration rather than
for goods does not constitute
plantation forest

Extensively managed or mixed
timber, fruit/coffee, oil-palm or
rubber plantations in which native
understorey and/or other native
tree species are tolerated, which
are not treated with pesticide or
fertiliser, and which have not been
recently (< 20 years) clear-felled.

Monoculture fruit/coffee/rubber
plantations with limited pesticide
input, or mixed species plantations
with significant inputs. Monoculture
timber plantations of mixed age with
no recent (< 20 years) clear-felling.
Monoculture oil-palm plantations
with no recent (< 20 years) clear-
felling.

Monoculture

fruit/coffee/rubber

plantations with significant pesticide

input.

Monoculture timber plantations with
similarly aged trees or timber/oil-palm
plantations with extensive recent (< 20

years) clear-felling.




Cropland

Land that people have planted with
herbaceous crops, even if these
crops will be fed to livestock once
harvested. Sites described as
“fields”, “arable”, “ploughed” or
“tilled” all qualify as cropland.

Low-intensity farms, typically with
small fields, mixed crops, crop
rotation, litle or no inorganic
fertiliser use, little or no pesticide
use, little or no ploughing, little or
no irrigation, little or no
mechanisation.

Medium intensity farming, typically
showing some but not many of the

following: large fields, annual
ploughing, inorganic fertiliser
application, pesticide application,

irrigation, no crop rotation,
mechanisation, monoculture crop.
Organic farms in  developed
countries often fall within this
category, as may high-intensity
farming in developing countries.

High-intensity monoculture farming,
typically showing many of the following
features: large fields, annual ploughing,
inorganic fertiliser application, pesticide
application, irrigation, mechanisation,
no crop rotation.

Pasture

Land where livestock is known to
be grazed regularly or
permanently. The plant species
may be predominantly native (as in
rangelands) or strongly associated
with humans (as in European-style
pastures).

Pasture with minimal input of
fertiliser and pesticide, and with
low stock density (not high enough
to cause significant disturbance or
to stop regeneration of vegetation).

Pasture either with significant input
of fertiliser or pesticide, or with high
stock density (high enough to cause
significant disturbance or to stop
regeneration of vegetation).

Pasture with significant input of fertiliser
or pesticide, and with high stock density
(high enough to cause significant
disturbance or to stop regeneration of
vegetation).

Urban

Areas with human habitation
and/or buildings, where the primary
vegetation has been removed, and
where such vegetation as is
present is predominantly managed
for civic or personal amenity.

Extensive managed green spaces;
villages.

Suburban (e.g. gardens), or small
managed or unmanaged green
spaces in cities.

Fully urban with no significant green
spaces.
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Table B.1. Final dataset for compositional similarity models including all taxa. The table shows the
number of pairs of sites per each land-use contrast generated from pairwise comparisons within studies
in the PREDICTS database. Numbers in brackets show the number of studies from which data came
from. Only land-use contrasts of interest are shown.

Land-use contrast Islands Mainlands
PriMin- PriMin 19950 (45) 391994 (118)
PriMin- Primary 6147 (16) 15047 (53)
PriMin- Secondary 13757 (38) 16563 (80)
PriMin- Cropland 4338 (14) 7375 (23)
PriMin- Pasture 9094 (13) 19317 (42)
PriMin- Plantation 14494 (27) 3755 (42)
PriMin- Urban 59 (2) 8636 (12)
Primary-Primary 67331 (31) 30315 (72)

Secondary- Secondary 285330 (82) 120720 (164)
Cropland - Cropland 8899 (14) 201053 (86)

Pasture - Pasture 444906 (39) 629932 (91)
Plantation - Plantation =~ 62113 (34) 70060 (68)
Urban - Urban 38530 (17) 15317 (30)
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o
@
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Figure B.1. Number of sites (on islands and mainlands) per land use/use intensity combination in the
dataset used for the all-taxa compositional similarity models. The figure only shows human-dominated
land uses, which are the ones that are addressed in the discussion. The number of sites in Urban Intense
on mainlands is 26 and number of sites in Cropland Minimal on islands is 17.
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Table B.2. Numbers of species (by major taxonomic group) included in the island and mainland data
used for the all-taxa compositional similarity models.

Taxon Islands | Mainlands
Vertebrates 1135 3239
Amphibia 33 289
Aves 857 2398
Mammalia 96 319
Reptilia 149 233
Invertebrates 6266 13952
Annelida 54 136
Arachnida 632 2320
Archaeognatha 9 4
Blattodea 37 19
Chilopoda 48 46
Coleoptera 1713 3196
Collembola 50 130
Dermaptera 9 10
Diplopoda 80 72
Diplura 2 1
Diptera 397 1027
Embioptera 2 2
Ephemeroptera 2 2
Hemiptera 837 713
Hymenoptera 1379 3294
Isoptera 17 90
Lepidoptera 602 2203
Malacostraca 51 45
Mantodea 5 25
Maxillopoda 1 0
Mecoptera 1 2
Megaloptera 0 1
Mollusca 195 79
Nematoda 1 308
Neuroptera 14 34
Odonata 2 4
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Onychophora 3 0
Orthoptera 37 152
Pauropoda 2 2
Phasmida 1 1
Phthiraptera 1 1
Platyhelminthes 4 1
Plecoptera 6 0
Protura 1 1
Psocodea 33 3
Raphidioptera 0 1
Siphonaptera 1 1
Symphyla 5 1
Thysanoptera 25 18
Trichoptera 5 6
Zoraptera 1 0
Zygentoma 1 1
Plants 3863 7945
Bryophyta 15 495
Cycadopsida 0 2
Equisetopsida 3 1
Gnetopsida 13 6
Liliopsida 781 1303
Lycopodiopsida 16 9
Magnoliopsida 2807 5986
Marattiopsida 1 1
Pinopsida 12 30
Polypodiopsida 207 111
Psilotopsida 8 1
Fungi 474 2
Ascomycota 41 2
Basidiomycota 413 0
Glomeromycota 20 0
Protozoans 2 0
Mycetozoa 2 0
Not specified 53 174
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Table B.3. Number of island and mainland studies (per biome) which were included in the dataset used

for the all-taxa compositional similarity models.

Biome Islands Mainlands
Tundra 0 1
Boreal Forests/Taiga 0 18
Temperate Conifer Forests 7 11
Temperate Broadleaf & Mixed Forests 72 103
Montane Grasslands & Shrublands 5 11
Temperate Grasslands, Savannas & Shrublands 11 16
Mediterranean Forests, Woodlands & Scrub 7 29
Deserts & Xeric Shrublands 5 13
Tropical & Subtropical Grasslands, Savannas & Shrublands 10 23
Tropical & Subtropical Coniferous Forests 0 6
Flooded Grasslands & Savannas 0 1
Tropical & Subtropical Dry Broadleaf Forests 3 17
Tropical & Subtropical Moist Broadleaf Forests 42 120
Mangroves 1 6

Table B.4. Akaike’s information criterion (AIC) values for all-taxa compositional similarity models using
transformed and untransformed explanatory variables. AAIC values are shown relative to the best

model.
Richness-based Abundance-based
d.f. AIC AAIC | d.f. AIC AAIC
Transformed variables 104 16897868 -- 104 17575011 --
Untransformed variables 104 16899902 2034 | 104 17577713 2702

Table B.5. Coefficients from the all-taxa compositional similarity models (abundance-based and
richness-based). Mainland coefficients (i.e., interaction coefficients) are expressed as the difference
from the island coefficients. Significance (indicated by stars) is shown for the land-use contrasts of
interest (first section of the table), for which “two-tailed” tests were performed to compare the observed
values against null distributions. Although | only reported significance for the interaction coefficients, |
also tested for significance of island coefficients (baseline in model). The two coefficients for PriMin-Urb
of islands correspond to the original coefficients from the models and coefficients that were calculated
indirectly (inside brackets). The coefficients in brackets for PriMin-Urb of mainlands correspond to the
difference from the island coefficients that were calculated indirectly. Significance for PriMin-Urban is
not shown since it could not be estimated using island coefficients that were caculated indirectly.

Significance codes: >0.05,<0.05**, and 0.005***

Richness-based model

Abundance-based model

Islands Mainlands Islands Mainlands
PriMin- PriMin 0.603 *** 0.403 *** 1.439 *** 0.501 ***
Geographic distance -0.050 *** -0.029 *** -0.055 *** -0.037 ***
Environmental distance -1.204 *** 0.289 *** -1.511 *** 0.534 ***
PriMin-Primary -0.357 *** -0.077 ** -0.460 *** -0.079 **
PriMin-Secondary -0.100 *** -0.140 *** -0.287 *** 0.060 -
PriMin-Plantation -0.576 *** -0.687 *** -0.745 *** -0.740 ***
PriMin-Cropland -0.920 *** -0.142 *** -1.231 *** -0.114 **
PriMin-Pasture -0.889 *** -0.645 *** -1.330 *** -0.539 ***

PriMin-Urban

-0.370 (-1.360)  -0.934 (0.055)
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Primary-Primary 0.843 *** -1.084 *** 0.931 *** -1.301 ***
Secondary-Secondary 0.622 *** -1.056 *** 0.656 *** -1.274 ***
Plantation-Plantation 0.767 *** -1.225 *** 0.832 *** -1.505 ***
Cropland-Cropland -0.619 *** 0.506 *** -0.776 *** 0.581 **
Pasture-Pasture -0.223 *** 0.072 *** -0.191 *** -0.009 ~
Urban-Urban -0.246 *** 0.680 *** -0.315 *** 0.732 ***
Cropland-Pasture -0.528 -0.004 -0.592 -0.015
Cropland-Plantation -0.964 -0.286 -1.142 -0.748
Cropland-PriMin -1.289 0.197 -1.463 0.188
Cropland-Primary -0.366 -0.915 -0.440 -1.053
Cropland-Secondary -1.062 0.356 -1.230 0.225
Cropland-Urban -1.085 0.110 -1.163 -0.136
Pasture-Cropland 0.078 -0.181 -0.053 -0.170
Pasture-Plantation -1.633 0.502 -1.730 -0.263
Pasture-PriMin -0.609 -0.898 -0.864 -0.996
Pasture-Primary -1.210 0.031 -1.322 -0.183
Pasture-Secondary -1.595 0.815 -1.751 0.609
Pasture-Urban 0.243 -0.304 0.182 -0.386
Plantation-Cropland -0.289 -1.350 -0.561 -1.622
Plantation-Pasture -1.702 -0.352 -1.810 -0.849
Plantation-PriMin -0.532 -0.218 -0.669 -0.372
Plantation-Primary -0.743 0.102 -0.732 -0.075
Plantation-Secondary -0.008 -0.858 -0.111 -1.068
Plantation-Urban -0.729 -0.146 -0.811 -0.506
Primary-Cropland -0.060 -0.861 -0.028 -1.119
Primary-Pasture -0.265 -0.844 -0.360 -1.069
Primary-Plantation 0.663 -1.392 0.061 -1.003
Primary-PriMin -0.294 -0.291 -0.459 -0.302
Primary-Secondary 0.192 -0.820 0.007 -0.862
Primary-Urban -1.246 0.677 -1.440 0.538
Secondary-Cropland -0.361 -0.308 -0.679 -0.295
Secondary-Pasture -0.548 -0.385 -0.695 -0.610
Secondary-Plantation 0.030 -0.769 -0.149 -0.862
Secondary-PriMin -0.142 0.106 -0.258 0.256
Secondary-Primary 0.534 -1.293 0.535 -1.514
Secondary-Urban -0.585 -0.526 -0.660 -0.706
Urban-Cropland -0.152 -0.702 -0.330 -0.686
Urban-Pasture -0.001 -0.468 -0.069 -0.518
Urban-Plantation -0.501 -0.279 -0.567 -0.351
Urban-PriMin -0.315 -0.999 -0.350 -1.188
Urban-Primary -0.880 0.276 -1.363 0.590
-0.573 -0.169 -0.649 -0.336

Urban-Secondary
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Figure B.2. Effects of geographic and environmental distance between sites on compositional similarity
of island (green) and mainland (purple) assemblages. The two figures in panel A show the results for
the richness-based model and the figures in panel B results for abundance-based model. The rugs in
the figures show the distribution of data for islands and mainlands. Significance (indicated by stars)
corresponds to p-values calculated from “two-tailed” tests using the interaction coefficients (to compare
the observed values against null distributions) to test for significant differences between responses of
islands and mainlands. Significance code: 0.005***
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Figure B.3. Ja estimates for land-use contrasts where site i is in PriMin. Solid lines show the magnitude
of change in Ja driven by change to different land uses, the baseline is compositional similarity between
PriMin sites on islands and mainlands respectively (dashed lines). The grey circle in the PriMin-Urban
contrast for islands shows the original estimate from the model, while the displayed value corresponds
to the estimate that was calculated indirectly. Significance (indicated by stars) is shown for
island/mainland differences for Ja changes from PriMin-PriMin on a logit scale. Significance for PriMin-
Urban is not shown since it could not be estimated using island coefficients that were caculated
indirectly. When using the original coefficients islands and mainlands showed significant differences for
PriMin-Urban. Significance codes: <0.05**, and 0.005***
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Figure B.4. Ja estimates for sites within the same land use on islands and mainlands. Each category
corresponds to a land-use contrast (i.e., Cropland= Cropland-Cropland). Solid lines show the magnitude
of change in Ja for islands and mainlands, using compositional similarity between PriMin sites as
baseline (dashed lines). Significance connotation and codes as in Figure B.3.

Table B.6. Coefficients from the all-taxa compositional similarity models where Australia was classified
as mainland. The table only shows land-use contrasts of interest and significance (indicated by stars)
for the interaction coefficients (i.e, mainland coefficients). The two coefficients for PriMin-Urb on islands
correspond to the original coefficients from the models and coefficients that were calculated indirectly
(inside brackets). The coefficients in brackets for PriMin-Urb of mainlands correspond to the difference
from the island coefficients that were calculated indirectly. Significance codes: >0.05",<0.05**, and
0.005***

Richness-based model Abundance-based model

Islands Mainlands Islands Mainlands
PriMin- PriMin 0.584 0.430 *** 1.439 0.499 ***
Geographic distance -0.050 -0.030 *** -0.055 -0.039 ***
Environmental distance -1.067 0.069 ~ -1.354 0.274 ***
PriMin- Primary -0.414 -0.009 ~ -0.535 0.011~
PriMin- Secondary -0.087 -0.147 *** -0.285 0.063 ~
PriMin- Plantation -0.571 -0.521 *** -0.746 -0.568 ***
PriMin- Cropland -0.866 -0.178 ** -1.181 -0.137 ***
PriMin- Pasture -0.897 -0.629 *** -1.352 -0.494 ***
PriMin- Urban -0.354 (-1.369) -0.921 (0.094) | -0.302 (-1.354) -1.361 (-0.309)
Primary- Primary 1.101 -1.360 *** 1.231 -1.627 ***
Secondary- Secondary 0.662 -1.070 *** 0.682 -1.256 ***
Plantation- Plantation 0.893 -1.329 *** 0.970 -1.606 ***
Cropland-Cropland -0.597 0.481 *** -0.758 0.572 ***
Pasture- Pasture -0.218 0.064 ** -0.193 0.002 ~
Urban- Urban -0.269 0.714 *** -0.358 0.800 ***
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Figure B.5 . Diagnostic plots for the final compositional similarity models including all taxa.

Table B.7. Final datasets for the animal and plant/fungal compositional similarity models. The table
shows the number of pairs of sites per each land-use contrast generated from pairwise comparisons
within studies in the PREDICTS database. Numbers in brackets show the number of studies from which
data came from. Only land-use contrasts of interest are shown.

Animal data Plant/fungal data

Land-use contrast Islands Mainlands Islands Mainlands
PriMin- PriMin 10900 (35) 63078 (94) | 9050 (10) 326660 (23)
PriMin- Primary 398 (13) 13969 (47) | 5749 (3) 1078 (6)
PriMin- Secondary 8587 (28) 14968 (68) | 5170 (10) 1595 (12)
PriMin- Cropland 2415 (8) 6982 (21) 1923 (6) 393 (2)
PriMin- Pasture 3997 (10) 9740 (35) 5097 (3) 745 (6)
PriMin- Plantation 8143 (20) 3393 (38) 6351 (7) 362 (4)
PriMin- Urban 59 (2) 8198 (10) 0 438 (2)
Primary-Primary 62229 (26) 26445 (63) | 5102 (5) 3870 (9)
Secondary- Secondary 277105 (70) 94171 (138) | 8225 (12) 26477 (25)
Cropland - Cropland 6377 (9) 200535 (81) | 2522 (5) 518 (5)
Pasture - Pasture 424876 (32) 585927 (75) | 20030 (7) 10333 (15)
Plantation - Plantation ~ 42253 (27) 66307 (55) | 19860 (7) 3753 (13)
Urban - Urban 38530 (17) 11599 (26) 0 3712 (3)

Table B.8. Significance of the interaction terms in the compositional similarity models for plant/fungal
assemblages. Significance of environmental distance as main effect was also tested since this variable
did not interact significantly with the Island/Mainland term. Values correspond to p-values calculated by
performing a “greater” hypothesis test, where | compared the likelihood ratio for my observed models
(maximum model and model excluding each interaction) against a distribution of null likelihood ratios
generated from comparisons of models using permuted datasets.

Interaction term Richness-based model | Abundance-based model
Geographic distance x Island/Mainland 0.005 0.005
Environmental distance x Island/Mainland 0.115 0.5

Land-use contrast x Island/Mainland 0.005 0.005
Environmental distance 0.005 0.005
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Figure B.6 . Diagnostic plots for the final compositional similarity models for animals and plants/fungi.
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Figure B.7. Effects of geographic and environmental distance between sites on compositional similarity
of animal and plant/fungal assemblages. Islands results are shown in green and mainlands in purple.
The four figures in panel A show the results for the richness-based and abundance-based models for
animals and the four figures in panel B show results for richness-based and abundance-based models
for plants/fungi. The rugs in the figures show the distribution of data for islands, mainlands or all data
(grey). Significance (indicated by stars) corresponds to p-values calculated from “two-tailed” tests using
the interaction coefficients (to compare the observed values against null distributions) to test for
significant differences between responses of islands and mainlands. In the case of plant/fungal models,
p-values for environmental distance were calculated for the single term since this variable did not interact
significantly with the Island/Mainland term. Significance codes: <0.05**, 0.005***

160



Plants/fungi dataset: Abundance based

omp -~ @@ - - [ meep e nmeeeee o &
075
>
2 070f - - - - @ ______ RN 0.7 IR I = [ = e = ==
&
E
E oes é
T
5 060
B
8 055
£
Q
O 050
045 @
0.40
035 ®
*kk *k%k *kk *kk *k%k *kk

A . 0y qon 3 e
w‘\m\n_w\“““ ?ﬂ\\l\'\\'\_PY\“‘aW ” N\.\“_secof‘da Pr\m‘“_P\a(\‘a“O P‘M\n.cvov\a“ Pr,\M-\n_PasN‘

Land-use contrast
Figure B.8. Ja estimates for plant/fungal assemblages in land-use contrasts where site i is in PriMin.
Solid lines show the magnitude of change in Jaon islands and mainlands driven by change to different
land uses. Circles in grey indicate contrasts with limited data (i.e., data from three or less studies).
PriMin-Urban results are not shown since no plant/fungal data was available for this contrast for islands.
Significance connotation and codes as in Figure B.3.
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Land-use contrast
Figure B.9. Jr estimates for animal assemblages in land-use contrasts where site i is in PriMin. Solid
lines show the magnitude of change in Jr on islands and mainlands driven by change to different land
uses. The grey circle in the PriMin-Urban island contrast shows the original estimate from the model,
while the displayed value corresponds to the estimate that was calculated indirectly. When using the
original coefficients, islands and mainlands showed significant differences for PriMin-Urban.
Significance connotation and codes as in Figure B.3.
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Figure B.10. Jr= and Ja estimates for animal assemblages of sites within the same land use on islands
and mainlands. Each category corresponds to a land-use contrast (i.e., Primary= Primary-Primary).
Solid lines show the magnitude of change in Jr and Ja for islands and mainlands using compositional
similarity between PriMin sites as baseline (dashed lines). Significance connotation and codes as in
Figure B.3.
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Figure B.11. Ja estimates for plant/fungal assemblages of sites within the same land use on islands
and mainlands. Solid lines show the magnitude of change in Ja for islands and mainlands using
compositional similarity between PriMin sites as baseline (dashed lines). Urban-Urban results are not
shown since no plant/fungal data was available for this contrast for islands. Significance connotation
and codes as in Figure B.3.
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Table B.9. Islands included in the all-taxa compositional similarity models. The islands marked with NAs
are those that were excluded from the models evaluating the effects of island area and isolation on
compositional similarity. The country or countries listed for each island correspond to where sites in the

PREDICTS database are located.

Distance to SIL;rr:gumnadslgg
Island Country mainland Area (km?) d
(km) (summe
proportions)

Anijima Japan NA NA NA
Australia Australia NA NA NA
Bioko Equatorial Guinea 73.03 1950.46 1.148
Borneo Indonesia/Malaysia 1104.78 725098.05 0.501
Chichijima Japan NA NA NA
Cuba Cuba 422.54 106901.26 0.423
Cyprus Cyprus 113.75 9267.65 1.097
Faial Portugal NA NA NA
Flores Portugal NA NA NA
Grande Comoro Comoros 307.45 1021.61 0.736
Great Britain United Kingdom 441.35 219236.05 0.858
Hainan China 115.16 34042.9 0.946
Hawai'i United States 3727.76 10457.22 0.245
Honshu Japan 756.22 227522.73 0.573
Ireland Ireland 582.2 84037.84 0.692
Kolombangara Solomon Islands 1492.05 693.85 0.384
Luzon Philippines 930.47 104973.97 0.478
Madagascar Madagascar 780.51 590547.38 0.46
Negros Philippines 1506.29 12796.25 0.648
New Guinea Papua New Guinea 616.21 773633.97 0.38
North Island New Zealand 2201.51 114253.63 0.171
North Uist United Kingdom 756.37 330.66 0.776
Palawan Philippines 1041.98 11456.92 0.494
Puerto Rico Puerto Rico 765.49 8728.54 0.381
Santa Catharina Brazil 8.09 424.89 1.203
Santa Maria Portugal NA NA NA
Sao Tome Sao Tome and Principe 283.63 854.8 0.753
Shikoku Japan 420.87 18313.93 0.832
Shimono-shima Japan 357.35 1.53 1.231
Sjaelland Denmark 62.53 7080.12 1.526
South Island New Zealand 1868.86 150576.24 0.163
Sulawesi Indonesia 1423.52 169020.98 0.51
Sumatra Indonesia 287.22 429003.21 0.557
Tasmania Australia 320.86 64363.4 0.346
Terceira Portugal 1537.24 400.56 0.46
Tierra del Fuego Argentina 153.75 47732.31 0.59
Wight United Kingdom 107.93 387.76 1.394
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Table B.10. ANOVA table for richness-based compositional similarity models including island area or
island isolation metrics as explanatory variables. The table shows results for the full models since none
of the isolation metrics or area were significant as main effect when the models were simplified. LUc=
Land-use contrast, Dist= Distance to the nearest mainland, Land= Surrounding landmass. Stars indicate
the level of significance (Sig): <0.05%, <0.01** and <0.001***

Term x? d.f. Sig
Model including distance to the nearest mainland
LUc 156.8931 48 i
Dist 1.1041 1
LUc * Dist 34.6093 48
Model including surrounding landmass
LUc 162.2306 48 i
Land 0.6024 1
LUc * Land 56.3036 48
Model including area
LUc 165.8644 48 b
Area 0.1377 1
LUc * Area 66.7575 48 *

Table B.11. ANOVA table for abundance-based compositional similarity models including island area or
island isolation metrics as explanatory variables. Acronyms and significance codes as in Table B.10.

Term x? d.f. Sig
Model including distance to the nearest mainland
LUc 189.6315 48 i
Dist 1.5048 1
LUc * Dist 37.0433 48
Model including surrounding landmass
LUc 199.222 48 b
Land 0.793 1
LUc * Land 69.708 48 *
Model including area
LUc 198.273 48 i
Area 0.173 1
LUc * Area 61.577 48
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Figure B.12 . Diagnostic plot for the model where average Ja of each land-use contrast within each study
was modelled as a function of land-use contrast and landmass surrounding the island.
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Figure B.13. Effects of surrounding landmass on compositional similarity to PriMin (abundance-based).
Only one slope is significantly different from zero: PriMin-Cropland (-8.12, P=0.006). The rugs in the
figure show the landmass values represented in the model dataset (exclusively for land-use contrasts
where site i is in PriMin).
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Table C.1. Final datasets for the abundance and richness models that were used to estimate Bll. The
table shows the number of sites on islands and mainlands across land use/use intensity categories (LUI)
and the total number of island and mainland sites in the datasets (bottom row). Numbers in brackets
show the number of studies from which data came from. The abundance dataset included island data
from 63 different islands, while the richness dataset included data from 74 different islands.

LUI Abundance dataset Richness dataset

Islands Mainlands Islands Mainlands

Primary Vegetation Minimal use 1012 (85) 3299 (212) || 1370 (100) 3778 (245)
Primary Vegetation Light use 467 (38) 1486 (108) 520 (43) 2026 (130)
Primary Vegetation Intense use 252 (9) 295 (35) 266 (12) 351 (41)
Secondary Vegetation Minimal use 801 (82) 1792 (166) 944 (90) 2200 (185)
Secondary Vegetation Light use 633 (47) 772 (90) 715 (54) 985 (97)

Secondary Vegetation Intense use 393 (23) 285 (41) 414 (28) 314 (44)

Pasture Minimal use 911 (24) 666 (53) 911 (24) 673 (57)
Pasture Light use 1165 (38) 1074 (66) 1173 (40) 1104 (72)
Pasture Intense use 228 (22) 1226 (22) 241 (24) 1232 (23)
Plantation forest Minimal use 133 (20) 354 (52) 198 (24) 507 (61)
Plantation forest Light use 664 (30) 686 (51) 714 (36) 722 (55)
Plantation forest Intense use 76 (10) 377 (28) 90 (12) 389 (31)
Cropland Minimal use 49 (18) 622 (50) 51 (20) 659 (54)
Cropland Light use 78 (11) 1111 (65) 78 (11) 1291 (69)
Cropland Intense use 291 (17) 1077 (45) 292 (18) 1176 (48)
Urban Minimal use 147 (18) 218 (20) 149 (19) 251 (27)
Urban Light use 412 (21) 221 (26) 428 (22) 273 (33)
Urban Intense use 74 (8) 38 (13) 74 (8) 196 (20)
Total sites and studies 7786 (202) 15599 (432) | 8628 (225) 18127 (490)
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Table C.2. Number of island and mainland sites per biome in the final datasets for the abundance and
richness models that were used to estimate BIl.

Biome Abundance dataset Richness dataset
Islands Mainlands | Islands Mainlands

Boreal Forests/Taiga 0 1049 0 1075
Deserts & Xeric Shrublands 55 210 55 218
Flooded Grasslands & Savannas 0 39 0 51
Mangroves 6 24 6 24
Mediterranean Forests, Woodlands & Scrub 303 1422 304 1614
Montane Grasslands & Shrublands 485 277 485 488
Temperate Broadleaf & Mixed Forests 3764 6790 4051 7607
Temperate Conifer Forests 98 422 98 512
Temperate Grasslands, Savannas & Shrublands 280 271 456 704
Tropical & Subtropical Coniferous Forests 0 277 0 367
Tropical & Subtropical Dry Broadleaf Forests 82 400 82 430
Tropical & Subtropical Grasslands, Savannas & Shrublands 545 1386 571 1721
Tropical & Subtropical Moist Broadleaf Forests 2168 3011 2520 3266
Tundra 0 21 0 50

Table C.3. Numbers of species (by major taxonomic group) included in the island and mainland data
for the abundance and richness models that were used to estimate BII.

Taxon Abundance dataset Richness dataset

Islands Mainlands || Islands Mainlands

Vertebrates 1547 4340 1635 4815
Amphibia 136 291 136 317
Aves 1012 3383 1077 3792
Mammalia 216 427 225 463
Reptilia 183 239 197 243

Invertebrates 8552 16430 9289 17017

Annelida 160 136 160 136
Arachnida 973 2554 974 2555
Archaeognatha 9 4 9 4
Blattodea 37 19 40 19
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Chilopoda
Coleoptera
Collembola
Dermaptera
Diplopoda
Diplura
Diptera
Embioptera
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Siphonaptera

Symphyla 5 1 5 1
Thysanoptera 25 18 25 18
Trichoptera 5 6 5 6
Zoraptera 1 0 1 0
Zygentoma 1 1 2 1
Plants 4170 8268 5651 10482
Bryophyta 271 918 302 1139
Cycadopsida 0 2 0 2
Equisetopsida 3 1 4 6
Gnetopsida 13 5 13 5
Liliopsida 785 1348 993 1623
Lycopodiopsida 16 9 18 11
Magnoliopsida 2853 5825 4053 7479
Marattiopsida 1 1 1 1
Pinopsida 12 33 23 45
Polypodiopsida 208 125 234 170
Psilotopsida 8 1 10 1
Fungi 902 720 903 930
Ascomycota 469 340 470 400
Basidiomycota 413 369 413 519
Glomeromycota 20 11 20 11
Protozoans 2 1 2 1
Mycetozoa 2 1 2 1
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Figure C.1. Diagnostic plots for the abundance model that was used to estimate BIl. a) Minimum
adequate model (MAM) using log transformation for rescaled total abundance. b) MAM using square
root transformation for rescaled total abundance (final model).

Table C.4. Akaike’s information criterion (AIC) values for models of total abundance (for Bll estimation)
using the three random-effects structures that were tested. AAIC values are shown relative to the best
model. SS= study, SSB= block within study.

Random-effects structure d.f. AIC AAIC

(1+LandUse+Uselntensity|SS)+(1|SSB) 122 -13073.31 --
(1+LandUse|SS)+(1|SSB) 107 -12738.73 334.58

(11SS)+(1|SSB) 87 -10771.61 2301.7

Table C.5. ANOVA table for the minimum adequate model of total abundance that was used to estimate
BIl. LUI= land use/use intensity, HPD= human population density, DistRd= distance to the nearest road.
Stars indicate the level of significance (Sig): <0.05%, <0.01** and <0.001***

Term x> df Sig
LUI 96.23 17 ***
Island/Mainland 0.1 1

HPD 2571 2 v
DistRd 15.67 2 ***
LUI x Island/Mainland 2928 17 *
HPD x Island/Mainland 169 2
LandUse x HPD 47.38 10 ***

LandUse x HPD x Island/Mainland 48.82 10 ***
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Figure C.2. Diagnostic plot for the minimum adequate model of species richness that was used to

estimate BI.

Table C.6. AIC values for models of species richness (for Bll estimation) using the three random-effects
structures that were tested. AAIC values are shown relative to the best model. SS= study, SSB= block

within study.

Random-effects structure d.f. AIC AAIC

(1+LandUse+Uselntensity|SS)+(1|SSB) 121 156923.5 --
(1+LandUse|SS)+(1|SSB) 106 157851.2 927.7

(11SS)+(1|SSB) 86 163368.6 6445.1

Table C.7. ANOVA table for the minimum adequate model of species richness that was used to estimate
BIl. LUI= land use/use intensity, HPD= human population density, DistRd= distance to the nearest road.
Stars indicate the level of significance (Sig): <0.05%, <0.01** and <0.001***

Term x° d.f. p-value
LUI 404.30 17 i
Island/Mainland 2.92 1

HPD 0.08 2

DistRd 1542 2 ok
LUI x Island/Mainland 70.29 17 i
HPD x Island/Mainland 28.02 2 b
LandUse x HPD 147.39 10 ok
DistRd x Island/Mainland 4.31 2

LandUse x DistRd 80.11 10 i

LandUse x HPD x Island/Mainland 64.25 10 ek

LandUse x DistRd x Island/Mainland 55.18 10 ek
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Figure C.3. Response of total abundance to land use/use intensity on islands and mainlands. Values

indicate decrease or increase in percentage of total abundance using minimally-used primary vegetation
as baseline (dashed line). Bars indicate 95% confidence intervals.
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Figure C.4. Response of total abundance to distance to the nearest road (DistRd). The error bar shows
half the standard error. In the abundance model that was used for Bll estimation, DistRd was significant
as a main effect but did not interact significantly with any other variable. DistRd values are shown on a
rescaled axis (as fitted in the models). Abundance is shown on a zero-to-one scale (as fitted in the
models; i.e., abundance rescaled within studies).
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Figure C.5. Response of total abundance to human population density (HPD) across land uses on a)
islands and b) mainlands. The x limits of each coloured line indicate the 2.5th and 97.5th percentiles for
the values of HPD represented in each land use in the model dataset. For clarity, the error bars show
half the standard error. HPD values are shown on a rescaled axis (as fitted in the models). Abundance
is shown on a zero-to-one scale (as fitted in the models; i.e., abundance rescaled within studies).
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Figure C.8. Response of species richness to distance to the nearest road across land uses on a) islands
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models).
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Table C.8. Compositional similarity between minimally-disturbed primary vegetation (PriMin) and other
land uses on islands and mainlands. The estimates (from abundance- and richness-based models in
Chapter 2) are expressed relative to compositional similarity between adjacent sites in PriMin with
identical environments. For islands, PriMin-Urban compositional similarity inside brackets corresponds
to the estimates that were calculated indirectly (product of estimated PriMin-Secondary and Secondary-
Urban compositional similarities — see Chapter 2— that in this case is expressed relative to PriMin-
PriMin).

Abundance-based model | Richness-based model
Islands Mainlands Islands Mainlands

PriMin- PriMin 1 1 1 1

PriMin- Primary 0.898 0.917 0.866 0.871
PriMin- Secondary 0.939 0.969 0.963 0.931
PriMin- Plantation 0.823 0.696 0.780 0.590
PriMin- Cropland 0.679 0.734 0.647 0.659
PriMin- Pasture 0.648 0.587 0.658 0.500
PriMin- Urban 0.93 (0.647) 0.635 0.86 (0.486) 0.576

a)

Figure C.9. Example of shared cells between islands and mainlands in the final Bll maps. Two small
islands (<1km?) are located close to the mainland coast. The yellow polygons correspond to the
mainland shapefile and the small islands are shown in orange. Grey cells show the final BIl maps for a)
mainlands and b) islands; in this case, two cells of the Bll maps are shared between islands and
mainlands, since they intersect with both island and mainland shapefiles.
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Table C.9. Average BIl (abundance-based and richness-based) for terrestrial biomes of islands and
mainlands. s.d. are shown within parenthesis. BIl values are shown in a 0 to 1 scale (1= 100%
intactness).

Biome Abundance-based Bl Richness-based BlI

Islands Mainlands Islands Mainlands

Temperate Grasslands, Savannas and

Shrublands 0.62 (0.12) | 0.49 (0.13) | 0.52 (0.10) | 0.48 (0.12)

Mediterranean Forests, Woodlands and Scrub 0.59 (0.11) | 0.61 (0.12) || 0.51 (0.09) | 0.57 (0.12)

Montane Grasslands and Shrublands 0.65 (0.08) | 0.60 (0.16) || 0.55 (0.10) | 0.58 (0.15)

Tropical and Subtropical Grasslands, Savannas

and Strublands 0.70 (0.05) | 0.67 (0.13) | 0.59 (0.05) | 0.62 (0.12)

Flooded Grasslands and Savannas 0.63 (0.08) | 0.65 (0.16) || 0.55 (0.10) | 0.61 (0.15)

Temperate Broadleaf and Mixed Forests 0.59 (0.13) | 0.69(0.13) || 0.52 (0.12) | 0.66 (0.13)

Tropical and Subtropical Dry Broadleaf Forests 0.59 (0.07) | 0.69 (0.11) || 0.49 (0.07) | 0.67 (0.10)

Deserts and Xeric Shrublands 0.70 (0.05) | 0.73 (0.21) || 0.56 (0.04) | 0.71 (0.18)
Tropical and Subtropical Coniferous Forests 0.62 (0.07) | 0.71 (0.12) || 0.52 (0.07) | 0.68 (0.13)
Mangroves 0.71 (0.09) | 0.74 (0.13) || 0.62(0.11) | 0.70 (0.11)
Temperate Conifer Forests 0.71 (0.11) | 0.76 (0.14) || 0.67 (0.14) | 0.75 (0.15)

Tropical and Subtropical Moist Broadleaf Forests | 0.69 (0.09) | 0.83 (0.15) || 0.60 (0.11) | 0.79 (0.15)

Boreal Forests/Taiga 0.77 (0.09) | 0.90 (0.06) || 0.75 (0.11) | 0.92 (0.07)

Tundra 0.96 (0.03) | 0.92 (0.05) | 0.97 (0.04) | 0.97 (0.03)
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Table C.10. Average Bll (abundance-based and richness-based) for biodiversity hotspots of islands and
mainlands. s.d. are shown within parenthesis. Bll values are shown in a 0 to 1 scale (1= 100%

intactness).
Hotspot Abundance-based BlI Richness-based BlI
Islands Mainlands Islands Mainlands
Atlantic Forest 0.68 (0.06) | 0.67 (0.11) [l 0.57 (0.06) | 0.61 (0.11)
California Floristic Province 0.75(0.1) | 0.69(0.17) || 0.65 (0.12) | 0.68 (0.18)
Cape Floristic Region -- 0.45 (0.12) -- 0.44 (0.1)
Caribbean Islands 0.58 (0.06) -- 0.49 (0.07) --
Caucasus 0.69 (0.06) | 0.64 (0.12) [ 0.57 (0.04) | 0.6 (0.11)
Cerrado -- 0.62 (0.12) -- 0.59 (0.11)
Chilean Winter Rainfall and Valdivian Forests 0.77 (0.05) | 0.78 (0.12) [l 0.65 (0.05) | 0.76 (0.12)
Coastal Forests of Eastern Africa 0.56 (0.08) | 0.72(0.09) [l 0.49 (0.05) | 0.65 (0.08)
East Melanesian Islands 0.74 (0.04) -- 0.66 (0.3) --
Eastern Afromontane -- 0.75 (0.1) -- 0.68 (0.1)
Guinean Forests of West Africa 0.66 (0.04) | 0.74(0.1) | 0.57 (0.03) | 0.68 (0.1)
Himalaya - 0.68 (0.16) - 0.65 (0.14)
Horn of Africa 0.6 (0.07) 0.66 (0.1) [ 0.49 (0.06) | 0.61 (0.1)
Indo-Burma 0.64 (0.09) | 0.79(0.13) [l 0.52 (0.08) | 0.77 (0.12)
Irano-Anatolian -- 0.66 (0.09) -- 0.6 (0.09)
Japan 0.64 (0.09) -- 0.55 (0.08) --
Madagascar and the Indian Ocean Islands 0.58 (0.06) -- 0.49 (0.05) --
Madrean Pine-Oak Woodlands -- 0.7 (0.13) -- 0.67 (0.14)
Maputaland-Pondoland-Albany 0.63 (0.06) | 0.59 (0.15) [| 0.5(0.06) | 0.56 (0.12)
Mediterranean Basin 0.55(0.08) | 0.61(0.11) [ 0.47 (0.07) | 0.57 (0.11)
Mesoamerica 0.68 (0.06) | 0.75(0.1) | 0.57 (0.06) | 0.7 (0.12)
Mountains of Central Asia -- 0.61 (0.12) -- 0.56 (0.12)
Mountains of Southwest China -- 0.66 (0.13) -- 0.61 (0.13)
New Caledonia 0.7 (0.04) -- 0.68 (0.07) --
New Zealand 0.58 (0.1) -- 0.5 (0.1) --
Philippines 0.62 (0.07) -- 0.5 (0.06) --
Polynesia-Micronesia 0.64 (0.09) -- 0.54 (0.1) --
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Southwest Australia 0.6 (0.1) -- 0.52 (0.07) --

Succulent Karoo 0.67 (0.03) | 0.4 (0.14) [ 0.57 (0.05) | 0.43 (0.13)
Sundaland 0.68 (0.09) | 0.8(0.11) | 0.59(0.11) | 0.78 (0.1)
Tropical Andes 0.72 (0.01) | 0.77(0.1) | 0.58 (0.01) | 0.74 (0.12)
Tumbes-Choco-Magdalena 0.8 (0.09) 0.76 (0.1) |[ 0.75(0.12) | 0.71 (0.1)
Wallacea 0.69 (0.06) -- 0.59 (0.08) --

Western Ghats and Sri Lanka 0.66 (0.07) | 0.75(0.13) || 0.54 (0.06) | 0.72 (0.09)

Table C.11. Percentage of land surface under each land use /use intensity category (LUI) in the island
(including and excluding Australia) and mainland Bll maps.

LU Pergentage on Percgntage on Percentgge on islapds
islands mainlands excluding Australia

Primary Vegetation Minimal use 38.45 28.48 45.21
Primary Vegetation Light use 8.35 8.79 14.40
Primary Vegetation Intense use 1.03 0.94 2.07
Secondary Vegetation Minimal use 7.40 16.75 8.21
Secondary Vegetation Light use 2.29 6.15 3.84
Secondary Vegetation Intense use 0.61 1.52 1.22
Cropland Minimal use 1.14 2.65 1.91
Cropland Light use 2.99 4.24 4.19
Cropland Intense use 4.85 5.40 5.67
Pasture Minimal use 0.29 0.1 0.25
Pasture Light use 29.74 21.61 9.62
Pasture Intense use 2.35 2.96 2.59

Urban Minimal use 0.32 0.23 0.54

Urban Light use 0.01 0.0007 0.01

Urban Intense use 0.16 0.16 0.29
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Figure C.10. Data distribution for a) human population density (HPD) and b) distance to the nearest
road (DistRd) in island (including and excluding Australia) and mainland Bll maps. Frequency indicates
number of cells in the maps. HPD and DistRd are shown on rescaled axes (as fitted in the models); the
0 to 1 scales are the same for island and mainland datasets. The high frequency of cells with a high
value for distance to road might evidence the lack of data in gROADSv1 maps for some regions,

especially for islands.
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Table C.12. Percentage of land surface with different values of human population density (HPD) and
distance to the nearest road (DistRd) in the island (including and excluding Australia) and mainland BII
maps. Three classes with different range of values were established for HPD and DistRd: Low (0 - 0.3),
Medium (0.3 - 0.6) and High (0.6 - 1). Note that the ‘High’ category means a higher pressure intensity
for HPD but a lower pressure for DistRd.

Human population density

Percentage on islands

Percentage on islands Percentage on mainlands excluding Australia
Low 84.30 77.48 69.10
Medium 13.47 20.19 26.51
High 2.24 2.33 4.39

Distance to the nearest road

Low 13.42 12.80 15.41
Medium 43.49 49.23 35.81
High 43.09 37.98 48.78
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Table D.1. External sources that were used to determine the status of species in the PREDICTS database at either island or country level.

worldwide. Scientific data, 4, 170041.

_A database_of_alien_bird_distributions_worldwide/4234850 [Accessed
May 2017]

Source Citation/Description Access to data Spemgs
acronym status in
Australian Government Department of Agriculture and Water | Search for specific species at:
AGDAWR Resources. http://www.agriculture.gov.au/ [Accessed March 2017] Country
. . Search for specific species at:
ALA Atlas of Living Australia. https://www.ala.org.au/ [Accessed March 2017] Country
Janicki, J., Narula, N., Ziegler, M., Guénard, B. Economo, E.P.
(2016). Visualizing and interacting with large-volume biodiversity - . .
. . - MR, - Search for specific species at:
AntMaps | data using client-server web-mapping applications: The design . Country
. . . h . http://antmaps.org/ [Accessed March 2017]
andimplementation of antmaps.org. Ecological Informatics 32: 185-
193.
AntWeb | AntWeb v8.0.5 Search for specific species at: Count
e https://www.antweb.org [Accessed May 2017] g
s . Downloaded from:
BirdLife Australia. http://birdlife.org.au/conservation/science/taxonomy [Accessed April 2015] Country
BirdLife Downloaded from:
BirdLife International. http://datazone.birdlife.org/species/search [Accessed March 2017] Country
(Search for endemic species in countries included in PREDICTS database)
C.Vink,
Canterbury Taxonomic expert at Canterbury Museum, New Zealand Direct coptact with taxonomic expert to classify species from the order Country
Museum, Araneae in New Zealand
NZ
CITES UNEP (2017). The Species + Website. Nairobi, Kenya. Compiled | Downloaded from: Count
by UNEP-WCMC, Cambridge, UK. https://www.speciesplus.net/species [Accessed March 2017] vy
CMS UNEP (2017). The Species + Website. Nairobi, Kenya. Compiled | Downloaded from: Count
by UNEP-WCMC, Cambridge, UK. https://www.speciesplus.net/species [Accessed March 2017] g
. . Search for specific species at:
DLO Discover Life. http://discoverlife.org [Accessed March 2017] Country
Flora Europaea. e . Lo
FEO Euro+Med (2006). Euro+Med PlantBase - the information resource I\D/Iaatril;r? Z%?]S;]ed through R package ‘originr" function ‘is_native’) [Accessed Country
for Euro-Mediterranean plant diversity. Published on the Internet.
. Downloaded from:
Dyer, E. E., Redding, D. W., & Blackburn, T. M. (2017). The global e . . . )
GAVIA avian invasions atlas, a database of alien bird distributions https://figshare.com/articles/Data_from_The_Global_Avian_Invasions_Atlas_: Country
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Weigelt, P., Konig, C. & Kreft, H. (2017) The Global Inventory of

GIFT Floras and Traits (GIFT) database. Available at: http://gift.uni- | Data provided by the GIFT team (July, 2017) Island
goettingen.de
IUCN Invasive Species Specialist Group (ISSG) (2015). The Global — o
GISD Invasive Species Database. Version 2015.1. Data accessed through R package 'originr' function 'gisd') [Accessed March Country
- . ) . 2019]
(http://www.iucngisd.org/gisd)
van Kleunen, M., Pysek, P., Dawson, W., Essl, F., Kreft, H., Perg|,
J., ... & Lenzner, B. (2019). The Global Naturalized Alien Flora .
GIloNAF (GloNAF) database. Ecology, 100(1), €02542. Data provided by the GIoNAF team (July 2017) Island
van Kleunen, M., Pysek, P., Dawson, W., Essl, F., Kreft, H., Perg|,
GloNAF- | J., ... & Lenzner, B. (2019). The Global Naturalized Alien Flora | Data provided by the GIoNAF team (September 2015) Count
country (GloNAF) database. Ecology, 100(1), e02542. g
Pagad, S., Genovesi, P., Carnevali, L., Schigel, D., & McGeoch, M. | Downloaded from:
GRIIS A. (2018). Introducing the global register of introduced and invasive | http://www.griis.org/ [Accessed May 2017] Country
species. Scientific data, 5, 170202. (Selected terms: "terrestrial", "freshwater", "verified record")
. . . Data accessed through R package 'rredlist' function 'rl_occ_country’
IUCN The IUCN Red List of Threatened Species. Version 2017-1. [Accessed March 2019] Country
Knight, W. J. (1974). Leaf hoppers of New Zealand: Subfamilies
Knight Aphrodinae, Jassinae, Xestocephalinae, Idiocerinae, and | Data taken from publication Count
(1974) Macropsinae (Homoptera: Cicadellidae). New Zealand journal of vy
zoology, 1(4), 475-493.
Search for specific species at:
LCR-NzZ Landcare Research New Zealand. https://www.landcareresearch.co.nz/science/plants-animals-fungi [Accessed Country
May 2017]
N.Wyatt, . . . . Direct contact with taxonomic expert to classify species from the order
NHM, UK Taxonomic expert at the Natural History Museum, United Kingdom. Diptera in different countries Country
o Search for specific species at:
NZTCS New Zealand Threat Classification System. https://nztcs.org.nz/ [Accessed March 2017] Country
Search for specific species at:
OSF Orthoptera Species File. http://orthoptera.speciesfile.org/HomePage/Orthoptera/HomePage.aspx Country
[Accessed May 2017]
. . Search for specific species at:
TEARA Te Ara: The encyclopedia of New Zealand. https://teara.govt.nz/en [Accessed March 2017] Country
Threatened Island Biodiversity Database Partners. (2017). The
Threatened Island Biodiversity Database: developed by Island .
TIBD-IAS | Conservation, University of California Santa Cruz Coastal Data provided by the TIB team (May 2017) Island

Conservation Action Lab, BirdLife International and IUCN Invasive
Species Specialist Group. Version 2017.

(Invasive species on islands)
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Threatened Island Biodiversity Database Partners. (2017). The
Threatened Island Biodiversity Database: developed by Island .
TIBD-TSpl | Conservation, University of California Santa Cruz Coastal I(:.ﬁffeg:gxffg tglcfgs (;FrllBiStI(Zirgs()May 2017) Island
Conservation Action Lab, BirdLife International and IUCN Invasive P
Species Specialist Group. Version 2017.
. . Search for specific species at:
WCSP World Checklist of Selected Plant Families. http://wesp.science.kew.org [Accessed March 2017] Country
WPB Checklist of the Western Palaearctic Bees (Hymenoptera: Apoidea: | Search for specific species at: Count
Anthophila). http://westpalbees.myspecies.info. [Accessed March 2017] vy
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Table D.2. Number of alien and native species (by major taxonomic group) included in the island data

in the PREDICTS database.

Taxon Native species | Alien species
Vertebrates 1248 112
Amphibia 107 2
Aves 794 84
Mammalia 183 22
Reptilia 164 4
Invertebrates 2125 384
Annelida 13 1
Arachnida 63 51
Archaeognatha 3 0
Blattodea 2 0
Chilopoda 12 2
Coleoptera 1315 185
Collembola 1 0
Dermaptera 1 2
Diplopoda 5 13
Diptera 190 26
Hemiptera 54 23
Hymenoptera 232 26
Lepidoptera 73 33
Malacostraca 5 0
Mollusca 45 9
Neuroptera 3 0
Odonata 61 0
Onychophora 2 0
Orthoptera 30 5
Pauropoda 1 0
Psocodea 8 5
Thysanoptera 4 3
Trichoptera 2 0
Plants 2149 303
Bryophyta 5 0
Equisetopsida 4 0
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Gnetopsida 11 0
Liliopsida 551 86
Lycopodiopsida 5 0
Magnoliopsida 1450 210
Pinopsida 18 5
Polypodiopsida 99 1
Psilotopsida 6 1

Table D.3. Number of biodiversity records per species status for island data in the PREDICTS database.

Status Number of records
Alien 89472
Native 607586
Not classified 642281

Table D.4. Number of biodiversity records that were classified by external sources or data sources in
the PREDICTS database. The table shows the number of records classified by each external source
(first row shows the total records classified by all external sources), but only the total records classified
by all PREDICTS data sources (bottom row). Full names of the external sources are provided in Table
D.1. If a source in Table D.1 is not listed, there were no matches for the species-country combinations
in that data source or matching combinations were classified first by other sources.

Source Records
All external sources 281981
AGDAWR 52
ALA 20
AntMaps 281
AntWeb 1934
BirdLife 33704
C.Vink, Canterbury Museum, NZ 1830
CITES 10399
CMS 735
DLO/NzZH 86
GAVIA 3833
GIFT 122833
GISD 13612
GIloNAF 11508
GloNAF-Nature 1165
GRIIS 16497
IUCN 58467
Knight (1974) 20
LCR-NZ 360
N.Wyatt, NHM, UK 2326
NZTCS 236
OSF 754
TEARA 360
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TIBD-IAS 440

TIBD-TSpl 379
WCSP 10
WPB 140
PREDICTS data sources 415077

Table D.5. Final datasets for the abundance and richness models for alien and native species. The table
shows the number of sites and (in parentheses) studies including alien and native data across land
use/use intensity categories (LUI).

LUI Abundance dataset Richness dataset

Alien Native Alien Native

Primary Vegetation Minimal use 772 (43) 833 (64) | 1077 (52) 1171 (75)

Primary Vegetation 398 (18) 486 (32) | 464 (22) 553 (37)
Secondary Vegetation 1065 (51) 1564 (91) | 1239 (58) 1797 (102)
Plantation forest 596 (22) 669 (39) | 719(30) 792 (47)
Cropland 188 (14) 328(30) | 197 (16)  338(33)
Pasture 724 (26) 1893 (44) | 912 (28) 2090 (47)
Urban 137(8) 473 (13) 155 (9) 491 (14)

Table D.6. Akaike’s information criterion (AIC) values for the initial models of total abundance and
richness of aliens and natives using the two different random-effects structures that were tested. AAIC
values are shown relative to the best model. SS= study, SSB= block within study.

Random-effects structure d.f. AIC AAIC
Abundance model
(1+LandUse|SS)+(1|SSB) 100 -3193.219 -

(11SS)+(1|SSB) 73 -3025.870 167.349
Richness model

(1+LandUse|SS)+(1|SSB) 99 47739.72 --

(11SS)+(1|SSB) 72 48949.59 1209.87
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Figure D.1. Diagnostic plots for the minimum adequate models of total abundance and species richness
of alien and native species.

Table D.7. ANOVA table for the minimum adequate model of total abundance of alien and native
species. LUI= land use/use intensity, HPD= human population density, DistRd= distance to the nearest
road. Stars indicate the level of significance (Sig): <0.05%, <0.01** and <0.001***

Term a d.f. Sig
LUI 13.868 6 *
Alien/Native 4914.875 1 i
HPD 4.222 2
DistRd 0.250 2

LUI x Alien/Native 355.756 6
HPD x Alien/Native 28.354 2
LUI x HPD 24.401 12 =
DistRd x Alien/Native 42.792 2
LUI x DistRd 31.945 12 =

LUl x HPD x Alien/Native ~ 306.764 12 ***
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Figure D.2. Response of total abundance of aliens and natives to distance to the nearest road. The
figure at the bottom shows the overall effect of distance to road on total abundance across land uses
(the effects of this interaction did not differ for alien and native species —i.e., three-way interaction was
dropped from the model (Table D.7)). For clarity, the error bars show half the standard error. The values
of distance to road are shown on a rescaled axis (as fitted in the models). Abundance is shown on a
zero-to-one scale (as fitted in the models; i.e., abundance rescaled within studies).
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Figure D.3. Response of total abundance of aliens to human population density (HPD). The x limits of
each coloured line indicate the 2.5th and 97.5th percentiles for the values of HPD represented in each
land use in the model dataset. For clarity, the error bars show half the standard error. HPD values are
shown on a rescaled axis (as fitted in the models). Abundance is shown on a zero-to-one scale (as fitted

in the models; i.e., abundance rescaled within studies).

Table D.8. ANOVA table for the minimum adequate model of richness of alien and native species. LUI=
land use/use intensity, HPD= human population density, DistRd= distance to the nearest road. Stars
indicate the level of significance (Sig): <0.05*, <0.01** and <0.001***

Term x? d.f. Sig
LUI 230.962 6
Alien/Native 17615.899 1 i
HPD 29.366 2
DistRd 1.260 2

LUI x Alien/Native 1117428 6  ***
HPD x Alien/Native 1249.040 2 ¥
LUl x HPD 146.637 12
DistRd x Alien/Native 213.849 2
LUI x DistRd 106.856 12
LUI x HPD x Alien/Native 868.620 12
LUI x DistRd x Alien/Native ~ 176.951 12
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Figure D.5. Percentage of individuals that are aliens in sites in minimally-disturbed primary vegetation.
Percentages were calculated using exclusively data for alien and native species; species that could not
be classified were excluded from these calculations. Only sites that were included in the abundance
model are shown. Sites with higher percentages were the last to be plotted, so that they would be
highlighted. Histograms show the percentage of individuals that are aliens and natives across sites in
minimally-disturbed primary vegetation.
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Figure D.6. Percentage of species that are aliens in sites in minimally-disturbed primary vegetation.
Percentages were calculated using exclusively data for alien and native species; species that could not
be classified were excluded from these calculations. Only sites that were included in the richness model
are shown. Histograms show the percentage of species that are aliens and natives across sites in
minimally-disturbed primary vegetation.
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Table D.9. Islands included in the models for abundance and richness of aliens using island traits as explanatory variables. Islands marked with a star were
included in the abundance and richness models, the rest were only included in richness models. The four islands with missing data for surrounding landmass
(i.e., no data in Weigelt et al., 2013) were not included in the models including this variable. The country listed for each island corresponds to where sites (with
data for aliens) in the PREDICTS database are located; i.e., only sites in Borneo were located in two different countries.

. Country per capita GDP .
Island Country Island area (km?) Surrounding Iandmass (curren:yUpS dollgrs —year Calculated |slgnd GDP per

(summed proportions) 2005) capita
Anijima * Japan 7.879 NA 37217.649 0.805
Anjouan Comoros 426.580 0.706 1068.600 244.945
Australia * Australia 7588924.738 NA 33961.682 33961.682
Balambangan Malaysia 103.175 0.704 5593.823 1.757
Banggi Malaysia 431.372 0.723 5593.823 7.344
Bintan Indonesia 1169.873 0.806 1260.929 0.814
Borneo * Malaysia 732289.104 0.501 5593.823 509.704
Borneo * Indonesia 732289.104 0.501 1260.929 509.704
Chichijima * Japan 23.757 NA 37217.649 2.426
Faial * Portugal 172.857 0.46 18784.949 35.499
Flores * Portugal 140.943 0.438 18784.949 28.945
Grande Comoro * Comoros 1015.564 0.736 1068.600 583.145
Great Britain * United Kingdom 218670.015 0.858 41732.641 37720.320
Hainan * China 34023.685 0.946 1753.418 6.355
Hawai'i United States 10431.594 0.245 44307.921 50.448
Honshu * Japan 227947.264 0.573 37217.649 23274.791
llha das Rosas * Brazil 3.066 1.644 4770.184 0.002
Ireland * Ireland 83531.769 0.692 50878.640 61692.303
Kolombangara * Solomon Islands 693.585 0.384 880.875 21.828
Madagascar * Madagascar 587926.700 0.46 274.820 274.820
Mallawalli Malaysia 38.321 0.785 5593.823 0.652
New Guinea * Papua New Guinea 777319.960 0.38 770.565 1322.650
Nishi-jima * Japan 0.484 NA 37217.649 0.049
North Island * New Zealand 113707.769 0.171 27750.725 11983.871
Osel Estonia 2891.685 1.548 10338.313 705.241
Palawan * Philippines 11448.371 0.494 1194.697 45.871
Principe * Sao Tome and Principe 138.754 0.86 804.128 116.225
Puerto Rico * Puerto Rico 8703.443 0.381 21959.323 21959.323
Pulau Mangalum Malaysia 5.165 0.739 5593.823 0.088
Pulau Mantanai Besar Malaysia 2.118 0.857 5593.823 0.036
Santa Catharina * Brazil 422.290 1.203 4770.184 0.241
Santa Maria * Portugal 96.926 0.459 18784.949 19.905
Sao Tome * Sao Tome and Principe 849.266 0.753 804.128 711.374
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South Island * New Zealand 150437.674 0.163 27750.725 15854.903
Sri Lanka * Sri Lanka 65724.996 0.569 1250.005 1250.005
Sulawesi* Indonesia 168821.235 0.51 1260.929 117.507
Tasmania * Australia 63584.062 0.346 33961.682 281.091
Terceira * Portugal 400.714 0.46 18784.949 82.294
Tierra del Fuego * Argentina 47419.119 0.59 5076.884 485.670
Wight * United Kingdom 381.948 1.394 41732.641 65.886
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Table D.10. AIC values for models of total abundance of aliens (including island traits) using the two
different random-effects structures that were tested. AAIC values are shown relative to the best model.

SS= study.

Random-effects structure d.f. AIC

AAIC

Model including area

(11SS) + (1|Island) 17 -81.232
(11SS) 16 -76.872
Model including surrounding landmass
(11SS) + (1|Island) 17 -341.808
(11SS) 16 -341.005
Model including country GDP per capita
(11SS) + (1|Island) 17 -177.543
(11SS) 16 -174.4930
Model including island GDP per capita
(11SS) + (1|Island) 17 -183.346
(11SS) 16 -181.993

1.353

Table D.11. ANOVA tables for models of total abundance of aliens including island traits as explanatory
variables. LUI= land use/use intensity. Stars indicate the level of significance (Sig): <0.05%, <0.01** and

<0.001***

Term x? d.f. Sig
Model including area
LUI 126.799 6  ***
Area 0.004 1
LUI x Area 56.117 6
Model including surrounding landmass
LUI 138.127 6  ***
Landmass 0.005 1

LUl x Landmass 73.056 6 b

Model including country GDP per capita

LUI 126.937 6  ***
Country GDP 0.013 1
LUl x Country GDP  65.277 6  ***

Model including island GDP per capita

LUI 127386 6  ***
Island GDP 0.277 1
LUI x Island GDP 79.678 6  ***
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Figure D.7. Diagnostic plots for the four models of total abundance of aliens including the different island
traits as explanatory variables.
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Figure D.8. Effects of island area, surrounding landmass, country-level and island-level GDP per capita
on total abundance of aliens. For clarity, the error bars show half the standard error. Rugs along the
horizontal margins show values of the explanatory variables represented (across land uses) in the model
data set (rugs for minimally-used primary vegetation, primary vegetation and croplands along the top
margin and rugs for the rest of the land uses along the bottom margin). Rugs for land uses can overlap,
therefore some data is not visible. The slopes that are significantly different from zero in each model
are: Urban (-9.935 e-4, P= <0.05) in model including island area; Primary minimal (-0.302, P=<0.05)
and Primary Vegetation (-0.776, P= <0.001) in model including surrounding landmass; Pasture (-0.098,
P=<0.001) and Urban (-0.284, P= <0.01) in model including country GDP; Pasture (-0.042, P= <0.001)

and Urban (-0.053, P=<0.01) in model including island GDP.

201



Table D.12. AIC values for models of alien species richness (including island traits) using the two
different random-effects structures that were tested. AAIC values are shown relative to the best model.

Random-effects structure d.f. AIC AAIC
Model including area

(1|SS) + (1|Island) 16 11734.18 --

(11SS) 15 11816.31 82.13
Model including surrounding landmass

(1|SS) + (1|Island) 16 8721.123 --

(11SS) 15 8798.617  77.494
Model including country GDP per capita

(1|SS) + (1|Island) 16 11726.16 --

(11SS) 15 11818.45 92.96
Model including island GDP per capita

(1|SS) + (1|Island) 16 11703.97 --

(11SS) 15 11754.98 51.01

Table D.13. ANOVA tables for models of alien species richness including island traits as explanatory
variables. LUI= land use/use intensity. Stars indicate the level of significance (Sig): <0.05*, <0.01** and
<0.001***

Term x? d.f. Sig
Model including area

LUI 501121 6 ™

Area 0.385 1

LUI x Area 64.541 6
Model including surrounding landmass

LUI 496.870 6  ***

Landmass 5.207 1 *

LUI x Landmass 67.668 6
Model including country GDP per capita
LUI 484492 6  ***

Country GDP 0.058 1

LUI x Country GDP  74.280 6
Model including island GDP per capita

LUI 498.715 6  ***

Island GDP 0.102 1

LUI x Island GDP 95903 6  ***
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Figure D.9. Diagnostic plots for the four models of alien species richness including the different island
traits as explanatory variables.
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Figure D.10. Effects of island area, country-level and island-level GDP per capita on species richness
of aliens. Rugs along the horizontal margins show values of the explanatory variables represented
(across land uses) in the model data set (rugs for minimally-used primary vegetation, primary vegetation
and croplands along the top margin and rugs for the rest of the land uses along the bottom margin).
Rugs for land uses can overlap, therefore some data is not visible. No slopes were significantly different
from zero in the models including island area or island GDP. In the model including country GDP only
Pasture (-0.255, P= <0.05) had a slope significantly different from zero.

204



Table D.14. Final dataset for the compositional similarity models for alien and native assemblages. The
table shows the number of pair of sites per each land-use contrast generated from pairwise comparisons
within studies in the PREDICTS database. Numbers inside brackets show the number of studies from
which data came from. Only land-use contrasts of interest are shown.

Land-use contrast Aliens Natives

PriMin- PriMin 11038 (21) 19053 (35)
PriMin- Primary 4139 (8) 5627 (12)
PriMin- Secondary 6405 (19) 12847 (32)
PriMin- Cropland 2712 (7) 3477 (9)
PriMin- Pasture 8390 (6) 9066 (10)
PriMin- Plantation 8994 (11) 10718 (17)
PriMin- Urban 2(1) 50 (2)
Primary-Primary 13046 (7) 22714 (18)
Secondary- Secondary 11736 (29) 31379 (53)
Cropland - Cropland 3720 (5) 4975 (6)
Pasture - Pasture 19108 (15) 117488 (25)
Plantation - Plantation 28163 (15) 33374 (22)
Urban - Urban 1901 (6) 14906 (10)

Abundance-based model Richness-based model
. il Reslﬂ_ual_w predicted I Residlua\ vs. predicted
QQ plot residuals quantile lines should be QQ plot residuals quantile lines should be
horizontal lines at 0.25, 0.5, 0.75 M
3 : L
00 DI2 04 08 D‘B 10 -6 -4 -2 0 ] 4 |):(1 Dr? ﬂ'-l ('IIG O]R 1.0
Expected Predicted value Expected Predicted value

Figure D.11. Diagnostic plots for the minimum adequate models of abundance-based and richness-
based compositional similarity for alien and native assemblages.
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Table D.15. Significance of the interaction terms in the compositional similarity models (abundance-
based and richness-based) for native and alien assemblages. p-values were calculated by performing
a “greater” hypothesis test, where | compared the likelihood ratio for my observed models (maximum
model and model excluding each interaction) against a distribution of null likelihood ratios generated
from comparisons of models using permuted datasets (model comparisons with the same difference in
degrees of freedom as my observed models, but representing no real loss of explanatory power). LUc=
Land-use contrast, EnvDist= Environmental distance, GeogDist= Geographic distance.

Interaction term Abundance-based model | Richness-based model
LUc x Alien/Native 0.005 0.005

EnvDist x Alien/Native 0.005 0.01
GeogDist x Alien/Native 0.005 0.005

Table D.16. Coefficients from the final compositional similarity models (abundance-based and richness-
based) for native and alien assemblages. Coefficients for native species (i.e., interaction coefficients)
are expressed as the difference from the alien coefficients. Significance (indicated by stars) is shown
for the coefficients of interest (first section of the table), for which “two-tailed” tests were performed to
compare the observed values against null distributions. Although | only reported significance for the
interaction coefficients, | also tested for significance of alien coefficients (baseline in model).
Significance codes: >0.05 ~,<0.05**, and 0.005***

Abundance-based model Richness-based model

Aliens Natives Aliens Natives
PriMin-PriMin 0.422 *** 0.658 *** -0.104 *** 0.635 ***
Geographic distance -0.125 *** 0.064 *** -0.1 *** 0.042 ***
Environmental distance -0.987 *** -0.925 *** -1.212 *** -0.205 **
PriMin-Primary -0.655 *** 0.237 *** -0.476 *** 0.21 ***
PriMin-Secondary -0.976 *** 1.071 *** -0.644 *** 0.724 ***
PriMin-Plantation -1.729 *** 2.074 *** -1.46 *** 1.736 ***
PriMin-Cropland 22,7671 *** 2.876 *** -2.526 *** 2.663 ***
PriMin-Pasture -1.361 *** 0.285 *** -0.747 *** -0.003 -
PriMin-Urban 0.191~ -1.26 - -0.271 - -0.839 -
Primary-Primary 0.814 *** -0.726 *** 1.032 *** -0.822 ***
Secondary-Secondary -0.02 - 0.155 *** 0.206 *** -0.027 -
Plantation-Plantation 1.916 *** -1.339 *** 1.737 *** -1.198 ***
Cropland-Cropland -0.326 *** 0.323 *** -0.222 *** 0.299 ***
Pasture-Pasture 0.153 *** 0.131 *** 0.284 *** -0.182 ***
Urban-Urban -0.455 *** 0.132 - 0.159 - -0.396 ***
Cropland-Pasture 1.783 -3.52 2.159 -3.792
Cropland-Plantation -0.751 0.408 -0.506 0.17
Cropland-PriMin -1.224 0.134 -0.971 -0.101
Cropland-Primary 3.89 -4.285 4.08 -4.426
Cropland-Secondary -0.839 0.05 -0.607 -0.15
Cropland-Urban -0.016 -1.571 0.397 -1.967
Pasture-Cropland 0.577 -1.446 0.94 -1.789
Pasture-Plantation -0.271 -1.504 0.002 -1.701
Pasture-PriMin -0.376 -0.728 -0.07 -0.729
Pasture-Primary -0.097 -0.69 0.096 -0.633
Pasture-Secondary -0.553 -0.801 0.045 -1.191
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Pasture-Urban 0.409 -1.077 0.956 -1.547
Plantation-Cropland -1.288 1.815 -1.144 1.711

Plantation-Pasture -0.122 -0.46 0.558 -1.08
Plantation-PriMin -0.591 0.175 -0.28 -0.166
Plantation-Primary -1.922 1.491 -1.371 1.075
Plantation-Secondary 0.506 -0.444 0.729 -0.66

Plantation-Urban 0.311 0.516 1.112 -0.327
Primary-Cropland 0.076 -0.426 0.272 -0.677
Primary-Pasture -0.076 -0.497 0.166 -0.542
Primary-Plantation -1.95 1.944 -1.685 1.751

Primary-PriMin -0.493 0.078 -0.338 0.149
Primary-Secondary 0.686 -0.717 0.92 -0.814
Primary-Urban 0.302 -1.969 2.582 -4.019
Secondary-Cropland -2.221 2.833 -2.022 2.686
Secondary-Pasture -0.981 0.015 -0.23 -0.352
Secondary-Plantation -0.913 1.485 -0.604 1.126
Secondary-PriMin -0.006 -0.196 0.165 -0.405
Secondary-Primary -0.045 -0.151 0.2 -0.247
Secondary-Urban -3.182 3.192 -2.065 2.15

Urban-Cropland 1.121 -1.288 1.82 -1.89

Urban-Pasture 0.781 -1.077 1.833 -2.046
Urban-Plantation 0.889 -1.02 1.088 -1.166
Urban-PriMin 0.656 -1.253 2.975 -3.494
Urban-Primary 0.297 -2.574 0.194 -2.049
Urban-Secondary -5.428 4.899 -3.843 3.409

Effects on compositional similarity abundance-based Effects on compositional similarity richness-based
; o ; g : .
Adjusted geographic distance Adjusted geographic distance
Effects on compositional similarity abundance-based Effects on compositional similarity richness-based
£ g o
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Figure D.12. Effects of geographic and environmental distance between sites on compositional similarity
(Ja and JR) of alien (orange) and native (blue) assemblages. The rugs in the figures show the distribution
of data for aliens and natives. Significance (indicated by stars) corresponds to p-values calculated from
“two-tailed” tests using the interaction coefficients (to compare the observed values against null
distributions) to test for significant differences between responses of aliens and natives. Significance

code: <0.05**, 0.005***

207



Abundance based

. Aliens Natives
0.9
0.8
0.7
061 ~ - @ -------------------------------------------
0.5

04

Compositional similarity

03

®
o

0.0 *kk %k k% * k% *kk *kk

PriMin-PriMin PriMin-Primary PriMin-Secondary  PriMin-Plantation PriMin-Cropland PriMin-Pasture
Land-use contrast
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PriMin. Solid lines show the magnitude of change in Ja driven by change to different land uses; the
baseline is compositional similarity between PriMin sites for alien and native assemblages respectively
(dashed lines). Significance (indicated by stars) is shown for alien/native differences for Ja changes
from PriMin-PriMin on a logit scale (results from “two-tailed” tests comparing the coefficients for
interaction between alien/native and land-use contrast to null distributions). Results for the PriMin-Urban
contrast are not shown because sample sizes for this contrast were very small (but see the coefficients
in Table D.16) Significance code: 0.005***
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Figure D.14. Ja estimates for alien and native assemblages in sites within the same land use. Each
category corresponds to a land-use contrast (i.e., Cropland= Cropland-Cropland). Solid lines show the
magnitude of change in Ja using PriMin-PriMin compositional similarity as baseline (dashed lines).
Significance connotation and codes as in Figure D.13.

208



APPENDIX E

Supplement for Chapter 5

209



204

Islands/ Mainlands

-304

=201

[>
\’ @

>

LandUse

£ Cropland Intense use
Cropland Light use
Cropland Minimal use

@& Pasture Intense use

»
»

@ Pasture Light use

‘ Pasture Minimal use

‘ Plantation forest Intense use

.. Plantation forest Light use
Plantation forest Minimal use

. Primary Vegetation Intense use
Primary Vegetation Light use

8 Secondary Vegetation Light use

M Secondary Vegetation Minimal use

‘ Urban Intense use

Urban Minimal use

@ Mainlands
A Islands

-50

-40 30 -20 -10 0

Newbold et al., 2016

Figure E.1. Response of total abundance to land use/use intensity: Island and mainland estimates are
compared against global estimates from Newbold et al. (2016a). Values indicate decrease or increase
in percentage of total abundance using minimally-used primary vegetation as baseline. Secondary
vegetation with intense use and Urban with light use are not included in the comparisons since in
Newbold et al. (2016a) these land-use classes were collapsed with Secondary vegetation with light use
and Urban with minimal use, respectively.
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Figure E.2. Response of species richness to land use/use intensity: Island and mainland estimates are
compared against global estimates from Newbold et al. (2016a). Values indicate decrease or increase
in percentage of species richness using minimally-used primary vegetation as baseline.
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Table E.1. Results from the compositional similarity model (abundance-based) using log transformation
for all variables but keeping PriMin as baseline in the land-use contrasts. The table shows
backtransformed values (0 to 1 scale) for compositional similarity and rescaled values (so that the
contrast of PriMin against itself had a value of 1). Only results for mainlands and land use contrasts of
interest are shown.

Log transformation

Compositional similarity Rescaled compositional similarity

PriMin-PriMin 0.832 1

PriMin-Primary 0.720 0.865
PriMin-Secondary 0.791 0.952
PriMin-Plantation 0.591 0.710
PriMin-Cropland 0.594 0.714
PriMin-Pasture 0.539 0.648
PriMin-Urban 0.524 0.630

Table E.2. Results from compositional similarity models (abundance-based) using collapsed primary
vegetation as baseline in the land-use contrasts. The table shows the results of two models: a model
using log transformation for all variables (as in Newbold et al. (2016a)) and a model using data
transformations from Chapter 2 (referred as Logit transformation). The table shows backtransformed
(0 to 1 scale) compositional similarity values and rescaled values (so that the contrast of Primary against
itself had a value of 1). Only results for mainlands and land use contrasts of interest are shown.

Logit transformation Log transformation
- Rescaled - Rescaled
Compositional " Compositional "

AT compositional AT compositional

similarity I similarity S
similarity similarity

Primary-Primary 0.842 1 0.785 1
Primary-Secondary 0.806 0.957 0.742 0.945
Primary-Plantation 0.715 0.849 0.665 0.847
Primary-Cropland 0.642 0.762 0.595 0.758
Primary-Pasture 0.531 0.630 0.551 0.702
Primary-Urban 0.635 0.754 0.598 0.762
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: Tropical and Subtropical Moist Broadleaf Forests

: Tundra

Figure E.3. Bl estimates (richness-based) for biomes on islands and mainlands compared with global
estimates from Newbold et al. (2016a). Colours indicate major biome type. Values from 0 to 1

correspond to Bll (1= 100% intactness).
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Figure E.4. Bll estimates (richness-based) for biodiversity hotspots on islands and mainlands compared
with global estimates from Newbold et al. (2016a). Some hotspots are exclusively located on islands or
mainlands. Colours indicate whether hotspots are in the tropical or temperate realms. Values from 0 to
1 correspond to BIl (1= 100% intactness).
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Table E.3. Number of island sites per biome in the final datasets for the abundance and richness models
fitted for BIl calculation (Chapter 3) and for estimation of alien/native responses (Chapter 4). For the
latter model only data for native species is shown. For a few biomes, there were more sites in the dataset
for island natives than in the island dataset used for models fitted for Bl calculation. This is the result of
the exclusion of sites without a defined use intensity in the Bll models; use intensity was not included in
models for responses of island natives.

Biome Abundance models Richness models
Island natives Island natives
Island data in Bl data in Island data in data in
model alien/native Bll model alien/native
model model

Boreal Forests/Taiga 0 0 0 0

Deserts & Xeric Shrublands 55 64 55 64

Flooded Grasslands &

Savannas 0 0 0 0

Mangroves 6 3 6 3

Mediterranean Forests,

Woodlands & Scrub 303 82 304 83

Montane Grasslands &

Shrublands 485 260 485 260

Temperate Broadleaf & Mixed

Forests 3764 3059 4051 3346

Temperate Conifer Forests 98 86 98 86

Temperate Grasslands,

Savannas & Shrublands 280 190 456 542

Tropical & Subtropical 0 0 0 0

Coniferous Forests

Tropical & Subtropical Dry

Broadleaf Forests 82 82 82 82

Tropical & Subtropical

Grasslands, Savannas & 545 537 571 563

Shrublands

Tropical & Subtropical Moist 2168 1883 2520 2203

Broadleaf Forests

Tundra 0 0 0 0
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Table E.4. Numbers of species by Phylum represented in the final datasets for the abundance and
richness models fitted for BIl calculation (Chapter 3) and for estimation of alien/native responses
(Chapter 4). For the latter model only data for native species is shown.

Taxon Abundance models Richness models
Island data in Island natives data in Island data in Island natives data in
BIl model alien/native model Bll model alien/native model

Annelida 160 13 160 13
Arthropoda 7819 1974 8556 2057
Ascomycota 469 0 470 0
Basidiomycota 413 0 413 0
Bryophyta 271 0 302 5
Chordata 1547 1185 1635 1248
Glomeromycota 20 0 20 0
Mollusca 195 45 196 45
Mycetozoa 2 0 2 0
Nematoda 380 0 380 0
Onychophora 3 2 3 2
Platyhelminthes 4 0 5 0
Tracheophyta 3914 1419 5371 2144
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