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Abstract 

 
This thesis develops a novel modelling strategy depicted JSPM (joint-shell punching 
model) for simulating punching failure of reinforced concrete (RC) slabs in which non-
linear joint elements are combined with nonlinear 2-D shell elements. Punching failure 
of the nonlinear joint is governed by the failure criterion of the critical shear crack theory 
(CSCT) of Muttoni (2008). A notable feature of the JSPM is that joint punching re-
sistance is continually updated during the analysis in terms of the slab sector rotation 
calculated at the previous load step. This feature enables the JSPM to accurately simu-
late the slab-column connection behaviour from the initial load stage, occurrence of 
punching (peak), followed by a transition to post-punching stage without the need of 
post-processing. This modelling strategy has been implemented in the nonlinear struc-
tural analysis program ADAPTIC (Izzuddin, 1991). 
Throughout the thesis, the proposed JSPM has been extended to simulate various prac-
tical scenarios, including punching of: slabs supported on elongated column, slabs sub-
jected to eccentric loading (both monotonic and reversed-cyclic), and slabs with shear 
reinforcement. In total, 90 internal slab-column connections from test database were 
simulated to verify the proposed JSPM. In addition, NLFEA based on 3-D solid elements 
were simulated in ATENA (Cervenka et al., 2018) to provide an objective comparison 
(benchmark). The JSPM is shown to produce accurate predictions of the measured slab-
column connection behaviour while requiring significantly less computation time than 
the NLFEA with solid elements.  
The analysis and comparison of the numerical and test data were used to inform design 
procedures: including: a) shear-field method to design slabs supported on elongated col-
umn or wall; b) simplified analytical method to determined drift-induced punching for 
slabs subjected to reversed-cyclic loading. 
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Notations 

 

General notations 
(𝑟𝑐/𝑑)𝑟𝑒𝑓  reference for column to depth ratio to derive 𝑘𝑒𝑚𝑜𝑑  (𝑟𝑠/𝑑)𝑟𝑒𝑓  reference for slab slenderness to derive 𝑘𝑒𝑚𝑜𝑑  𝑏0𝑟𝑒𝑑  reduced control perimeter length due to the presence of eccentricity 
𝑒𝑢𝑓𝑎𝑖𝑙  level of eccentricity where punching failure is expected to occur 

𝑘𝑒𝑚𝑜𝑑  modified coefficient of eccentricity which takes into account the influence 
of slab slenderness and column to depth ratio 𝑚𝐸𝑑𝑚𝑎𝑥 maximum average moment per unit length (hogging side) for calculation 
of the flexural reinforcement in the support strip at the column face 𝑚𝐸𝑑𝑚𝑖𝑛 minimum average moment per unit length (sagging side) for calculation of 
the flexural reinforcement in the support strip at the column face 𝑚𝑅𝑑ℎ𝑜𝑔 design average flexural strength per unit length in the support strip for 

hogging moment 𝑚𝑅𝑑𝑠𝑎𝑔 design average flexural strength per unit length in the support strip for 

sagging moment 
√𝑣𝑥𝑧2 + 𝑣𝑦𝑧2  resultant of shear force per unit length along the diagonal part of the con-

trol perimeter 𝜀�̂�𝑘′𝑓   total value of fracturing strain which corresponds to the maximal fractur-
ing strain reached during the loading process 𝜀𝑝̅̅̅ ̅̅ ̅  cumulative equivalent plastic strain in ADAPTIC 𝜆𝑉 𝐿𝑜𝐴 𝐼 (𝑠𝑖𝑚) ratio of punching resistance to shear demand calculated according to LoA 

I (resistance) and simplified method (demand) 
√𝜏𝑥𝑧2 + 𝜏𝑦𝑧2  resultant of out-of-plane shear stress along the diagonal part of the control 

perimeter ℎ𝑖  vertical distance between the tip of the crack and the point where the 
shear reinforcement crosses the critical shear crack 𝐴𝑠𝑖  cross-sectional area of the shear reinforcement intersected by the critical 
shear crack 𝐴𝑥, 𝐴𝑦 sum of the projections of the contact surfaces between the aggregate par-
ticles and cement matrix to calculate aggregate interlock contribution 𝐶𝐴, 𝐶𝐵  regression coefficients to estimate 𝐶𝑝 𝐶𝑝  the proportion of load resisted by the DLw region 

𝐶𝑝𝑙  value of nominal shear stress calculated according to plastic limit analysis 
𝐷𝑓𝑓   size effect factor for flexural mode (flexural capacity approach) 
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𝐷𝑓𝑠  size effect factor for shear mode (flexural capacity approach) 
𝐸𝑐  Young’s modulus of concrete 𝐸𝑠  Young’s modulus for flexural reinforcement bars 𝐺𝑐  compressive energy absorbed by the concrete during crushing failure 𝐺𝑓   fracture energy which defines the amount of energy absorbed per unit 

crack area in opening the crack to a specific crack width limit 𝐺𝑡  tangent shear modulus of concrete 𝐼1, 𝐽2  stress invariants representing interaction between each component of nor-
mal and shear stresses at biaxial plane in ADAPTIC 𝐿𝑐  crush band size of concrete under compression analogous to crack band 
size in tension 𝐿𝑡  characteristic length (crack band size) for concrete in tension to ensure 
mesh objectivity 𝐿𝑥, 𝐿𝑦  slab span measured between column centerlines in x- and y-direction re-
spectively 𝑀𝐶𝑅  the value of critical bending moment according to the cantilever “teeth” 
model 𝑀𝐹𝐿 the value of bending moment at full flexural capacity according to the 
cantilever “teeth” model 𝑀𝑟𝑎𝑑(𝜑𝑖, 𝑟0) radial moment for a sector element at angle 𝜑 and 𝑟 = 𝑟0 𝑀𝑟𝑎𝑑(𝜑𝑖, 𝑟𝑠) radial moment for a sector element at angle 𝜑 at the perimeter of sector 
element (𝑟 = 𝑟𝑠) calculated based on effective beam width method or taken 
as zero for isolated slab-column connections 𝑀𝑡𝑎𝑛 2  tangential moment on each side of the sector elements 𝑀𝑡𝑒𝑠𝑡/𝑀𝑐𝑎𝑙𝑐 ratio of measured to predicted unbalanced moment at failure 𝑀𝑡𝑜𝑟(𝜑𝑖, 𝑟0) torsional moment for a sector element at angle 𝜑 and 𝑟 = 𝑟0 𝑀𝑡𝑜𝑟(𝜑𝑖, 𝑟𝑠) torsional moment for a sector element at angle 𝜑 at the perimeter of sector 
element (𝑟 = 𝑟𝑠) calculated based on effective beam width method or taken 
as zero for isolated slab-column connections 𝑀𝑡𝑜𝑟(𝜑 ± 𝛥𝜑2 )torsional moment on each side of the sector elements 𝑃𝑐𝑟  level of applied load to sufficiently trigger cracking (plasticity approach) 𝑃𝑢  predicted failure load 𝑃𝑢  sliding resistance according to plasticity approach of Hoang (2006) 𝑅𝑓𝑠 additional refinement factor for calculating ultimate capacity of shear 
mode (flexural capacity approach) 𝑉1_𝑤𝑎𝑦  proportion of total load carried by one-way shear mechanism outside the 
𝑏0,3𝑑 region 

𝑉2_𝑤𝑎𝑦  proportion of total load carried by two-way shear mechanism within the 
𝑏0,3𝑑 region 

𝑉𝐷,𝑚𝑎𝑥 maximum dowelling action 
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𝑉𝑅,𝑐𝑟𝑢𝑠ℎ maximum punching capacity for slabs fail due to crushing of compressive 
strut near the column face 𝑉𝑅,𝑐𝑦𝑐  punching resistance for slabs subjected to cyclic loading (eccentric) 

𝑉𝑅,𝑖𝑛  punching capacity for slabs fail within the shear-reinforced region 𝑉𝑅,𝑚𝑜𝑛𝑜 punching resistance for slabs subjected to monotonic loading (eccentric) 
𝑉𝑅,𝑜𝑢𝑡  punching capacity for slabs fail outside the shear-reinforced region 
𝑉𝑅  punching resistance of an axisymmetric slab with uniform sector rotation 𝑉𝑅𝑐,0  maximum achievable punching strength calculated based on limit analysis 𝑉𝑅𝑑,𝑐 (𝐶𝐹𝑟𝜌ℎ) punching resistance calculated according to CSCT closed-form expression 

with LFEA parameters for wall-slab model with high reinforcement ratio 𝑉𝑅𝑑,𝑐 (𝐶𝐹𝑟𝜌𝑙) punching resistance calculated according to CSCT closed-form expression 

with LFEA parameters for wall-slab model with low reinforcement ratio 𝑉𝑅𝑑,𝑐 (𝐶𝐹𝑑𝜌ℎ) punching resistance calculated according to CSCT closed-form expression 
with default parameters for wall-slab model with high reinforcement ratio 𝑉𝑅𝑑,𝑐 (𝐶𝐹𝑑𝜌𝑙) punching resistance calculated according to CSCT closed-form expression 
with default parameters for wall-slab model with low reinforcement ratio 𝑉𝑅𝑑,𝑐(𝐼) punching resistance calculated according to LoA I MC2010 

𝑉𝑅𝑑,𝑐(𝐸𝐶2𝜌ℎ) punching resistance calculated according to EC2 (2004) for wall-slab model 
with high reinforcement ratio 𝑉𝑅𝑑,𝑐(𝐸𝐶2𝜌𝑙) punching resistance calculated according to EC2 (2004) for wall-slab model 
with low reinforcement ratio 𝑉𝑅𝑑,𝑐(𝐼𝐼𝐼𝜌ℎ) punching resistance calculated according to LoA III MC2010 for wall-slab 
model with high reinforcement ratio 𝑉𝑅𝑑,𝑐(𝐼𝐼𝐼𝜌𝑙) punching resistance calculated according to LoA III MC2010 for wall-slab 
model with low reinforcement ratio 𝑉𝑅𝑑,𝑐  design punching resistance provided by concrete alone 

𝑉𝑅𝑖  individual joint element resistance 𝑉𝑅𝑥, 𝑉𝑅𝑦  strengths calculated using CSCT failure criterion with 𝜓𝑥 and 𝜓𝑦 𝑉𝑐  concrete contribution to resist punching capacity 𝑉𝑐𝑜𝑟  proportion of total load resisted by the wall-corner 𝑉𝑓𝑙𝑒𝑥 shear force associated with full yielding of all radial and tangential flexural 
reinforcements 𝑉𝑔𝑟𝑎𝑣  shear force due to gravity load 

𝑉𝑖  joint shear force at current step 𝑖 in JSPM algorithm 𝑉𝑖−1  joint shear force at previous step 𝑖 − 1 in JSPM algorithm 𝑉𝑘, 𝑀𝑘 total shear force and bending moment to check global equilibrium of all 
sector elements at load step 𝑘 for slabs subjected to unbalanced moment 𝑉𝑝𝑝  post-punching resistance of joint element 

𝑉𝑠  contribution of shear reinforcement to resist punching capacity 
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𝑉𝑡𝑒𝑠𝑡/𝑉𝑐𝑎𝑙𝑐 ratio of measured to predicted shear forces at failure 𝑊𝐿  wall length measured from the outer to outer wall face 𝑊𝑠  wall-slab span length measured from the wall face to the centroid of pe-
rimeter column 𝑏0,3𝑑  effective control perimeter length where the straight segments of the con-
trol perimeter  is limited to 3𝑑 for each edge 𝑏0,𝑒𝑙𝑎𝑠𝑡  effective control perimeter length calculated using shear-field approach 𝑏0,𝑜𝑢𝑡  length of the effective control perimeter measured at 𝑑/2 from the position 
of the outermost shear reinforcement perimeter and considering the limit 
of 4.0𝑑 as the maximum tangential spacing between adjacent shear rein-
forcement bars 𝑏0  length of a basic control perimeter with rounded corners at 𝑑/2 from the 
column face 𝑏0(𝛥𝜑) length of the control perimeter belongs to the sector element with maxi-
mum rotation 𝑏𝑐  compressive interaction parameter which provides best-fit results against 
experimental test data in ADAPTIC 𝑏𝑐𝑜𝑙  perimeter of loaded area (column) 𝑏𝑛  net width of the beam 𝑏𝑝𝑐  diameter of assumed punching cone 

𝑏𝑠  width of support strip according to MC2010 𝑏𝑢  diameter of a circle with the same surface area as the origin inside the 
basic control perimeter 𝑏𝑥, 𝑏𝑦  lengths of the control perimeter belonging to x- and y-axis respectively 

𝑐1, 𝑐2 constants for calculating concrete residual tensile stress according to 
Hordijk (1991) 𝑐ℎ  cohesive concrete strength 𝑐𝑓   lower-bound constant limiting the minimum reduced strength 

𝑐𝑚𝑎𝑥   longer dimension of the column side 𝑐𝑚𝑖𝑛  shorter dimension of the column side 𝑑0  diameter of the support according to plasticity approach of Hoang (2006) 𝑑0 reference transitional size (empirical, 60 mm according to database regres-
sion) to consider size effect 𝑑𝑏  flexural bar diameter 𝑑𝑑𝑔  a constant represents crack roughness 

𝑑𝑔  maximum aggregate size (used) 
𝑑𝑔0  reference aggregate size equal to 16 mm 
𝑑𝑣  shear-resisting effective depth which takes into account for pullout of shear 

reinforcement or the penetration depth of the supported area 𝑑𝑤  diameter of the shear reinforcement 
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𝑒𝑢  eccentricity of the resultant of shear forces with respect to the centroid of 
the basic control perimeter in the direction investigated 𝑓12  stiffness component of shell element related to in-plane membrane shear 𝑓𝑐  specified concrete compressive strength 𝑓𝑐0  onset of the nonlinear behaviour of concrete under compression 𝑓𝑐𝑑  concrete design compressive strength 𝑓𝑐𝑒𝑓   reduced concrete compressive strength due to the presence of transverse 
tensile strain 𝑓𝑐𝑘  concrete characteristic compressive strength 𝑓𝑐𝑝  plastic compressive strength of concrete in uniaxial compression 

𝑓𝑐𝑢  specified concrete compressive strength (cube) 𝑓𝑡  concrete tensile strength 𝑓𝑡𝑒𝑓  effective plastic tensile strength of concrete which governs the formation 
of cracking 𝑓𝑦  yield strength of flexural reinforcement bars 

𝑓𝑦𝑑  design yield strength of flexural reinforcement bars 
𝑓𝑦𝑤  yield strength of transverse reinforcement bars 
𝑓𝑦𝑥  yield strength of flexural reinforcement bars in x-direction 
𝑓𝑦𝑦  yield strength of flexural reinforcement bars in y-direction 
𝑘𝑒𝑙𝑖𝑚  the lower bound limit of 𝑘𝑒𝑚𝑜𝑑 considering the yielding of sector element 
𝑘1, 𝑘2 empirical constants to calculate punching capacity based on fracture me-

chanics approach 𝑘𝑏  a parameter to consider the effective depth-to-control perimeter ratio 𝑘𝑑𝑒𝑔  descending stiffness of joint element in Stage III 
𝑘𝑒 coefficient of eccentricity to reduce the length of basic control perimeter 

due to the presence of stress concentration (non-uniform stress distribution) 𝑘𝑖  tangent stiffness at current step 𝑖 in JSPM algorithm 𝑘𝑖𝑛𝑐  linear elastic stiffness of joint element in Stage I 𝑘𝑙𝑖𝑛  linear joint stiffness for LFEA 𝑘𝑚 a factor whose value depends on the level of refinement used to estimate 
the acting bending moment (1.2 for refined analysis or 1.5 otherwise) 𝑘𝑟𝑒𝑑  a modifier to reduce the out-of-plane shear stiffness of joint element due 
to cracking 𝑘𝑠𝑦𝑠  parameter affecting the maximum punching shear capacity which depends 
on the shear reinforcement type and detailing according to MC2010 𝑙𝑠  spacing between adjacent joint elements 𝑙𝑤  length of the shear reinforcement 𝑚12  stiffness component of shell element related to plate twisting 𝑚𝑅  design average flexural strength per unit width of the support strip 𝑚𝑓   concrete frictional strength 
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𝑚𝑟(𝜑)  radial moment per unit width  𝑚𝑠    average design moment for designing the flexural reinforcement per unit 
width in the support strip 𝑛𝑏  number of bars 𝑛𝑝 degree of polynomial used to approximate the integrated function within 
the finite element formulation 𝑛𝑟  number of radii of shear reinforcement 𝑛𝑟1, 𝑛𝑟2 number of radii for the 1st and 2nd layers of shear reinforcement respectively 𝑛𝑠  number of sector elements 𝑟0 radial distance between the axis of the column and the critical shear crack 
at the level of the flexural reinforcement  𝑟𝑐  coefficient representing the lower-bound reduction of residual post-crush-
ing strength in ADAPTIC 𝑟𝑐  radius of the column 𝑟𝑞  radius of the load introduction at the perimeter 

𝑟𝑠,𝑥  length of 𝑟𝑠 in x-direction 
𝑟𝑠,𝑦  length of 𝑟𝑠 in y-direction 
𝑟𝑠  position where the radial bending moment is zero with respect to the sup-

port axis 𝑠0  distance between the first row of shear reinforcement and the column face 𝑠1  distance between two adjacent reinforcements at the same radius 𝑠𝑐  coefficient representing the start of compressive nonlinearity in ADAPTIC 𝑠𝑓   spacing between tangential cracks 
𝑠𝑚  out-of-plane stiffness modifier 𝑣1−𝑤𝑎𝑦(𝑑𝑟𝑒𝑓) average one-way shear forces/length along the one-way region (demand) 

acquired from LFEA (refined method) 𝑣1−𝑤𝑎𝑦(𝑑𝑠𝑖𝑚) shear forces/length along the one-way region (demand) calculated based 
on 𝐶𝑝 and DLw (simplified method) 𝑣1−𝑤𝑎𝑦(𝑑𝑚𝑖𝑛) minimum one-way resistance (forces/length) in design format 

𝑣2−𝑤𝑎𝑦(𝑑𝑠𝑖𝑚) shear forces/length around the wall-corner (demand) calculated based on 
𝐶𝑝 (simplified method) 

𝑣𝑅(𝑠)  shear resistance per unit length 𝑣𝑅(𝜑)  shear force per unit length for individual sector element 𝑣𝑎𝑣𝑒(𝑏0,3𝑑) average shear force per unit length along the reduced control perimeter 𝑏0,3𝑑 𝑣𝑐_𝑚𝑖𝑛  minimum (one-way) shear resistance per unit length 𝑣𝑒𝑙,𝑚𝑎𝑥  the magnitude of maximum shear force per unit length acting perpendic-
ular to the perimeter 𝑣𝑓  effectiveness factor which considers the fact that concrete is not perfectly 
rigid-plastic 
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𝑣𝑚𝑎𝑥(𝑏0,3𝑑) maximum shear force per unit length along the reduced control perimeter 𝑏0,3𝑑 𝑣𝑛𝑜𝑟𝑚  normalised shear stress 𝑣𝑠 contribution of transverse reinforcement on providing confining vertical 
compression to calculate the contribution of compression zone 𝑣𝑤𝑎𝑙𝑙−𝑎𝑣𝑒 average shear forces resisted by both straight and rounded segments of the 
control perimeter around wall-corner 𝑣𝑤𝑎𝑙𝑙−𝑝𝑒𝑎𝑘 peak shear forces calculated as the average shear forces along the rounded 
segment around wall-corner 𝑣𝑥𝑧  shear force per unit length for elements parallel to the global y-axis 𝑣𝑦𝑧  shear force per unit length for elements parallel to the global x-axis 

𝑤𝑏𝑖  relative displacement of the crack lips parallel to the shear reinforcement 𝑤𝑑  crushing (critical compressive) displacement for post-peak behaviour of 
concrete under compression 𝑤𝑙𝑖𝑚  crack opening limit for tensile stress calculation of deformed bars 𝑤𝑡  crack opening displacement as a function of crack band size and inelastic 
cracking strains 𝑤𝑡𝑐  crack width limit where concrete tensile strength equals zero 𝑥0𝑐  reference compression zone height 𝑥𝑐  height of compression zone at linear elastic stress conditions 𝛼𝑠  parameter expressing the shear softening relative to the softening in nor-
mal stresses in ADAPTIC 𝛼𝑡  material softening parameter that controls the slope of the descending 
branch for concrete under tension in ADAPTIC 𝛽𝑖  angle between the shear reinforcing bar and the slab plane 𝛽𝑠  elastic shear retention factor to reduce in-plane shear stiffness in ADAPTIC 𝛾0 angle between the critical shear crack and vector of displacements due to 
shear deformation at z-axis 𝛾𝑐  partial material safety factor for concrete 𝛾𝑒, 𝛾𝑖𝑒  effective and ineffective out-of-plane shear strains respectively 𝛾𝑠  normalised shear softening relative to direct tensile softening in ADAPTIC 𝛾𝑠 angle between the critical shear crack and vector of displacement due to 
shear 𝛾𝑡  concrete shear strain where residual shear stress approaches zero in ADAP-
TIC 𝛾𝑥𝑦𝑐0+ , 𝛾𝑥𝑦𝑐0−  maximum shear strains accumulated up to the start of the current equi-
librium step for the positive and negative shear respectively in ADAPTIC 𝛿𝑏𝑖  relative displacement of the crack lips perpendicular to the shear reinforce-
ment 𝛿𝑠   sliding due to shear deformation 𝜀1  principal strain in direction-1 
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𝜀2  principal strain in direction-2 𝜀𝑐  concrete strain 𝜀𝑐  concrete strain at maximum compressive strength in ADAPTIC 𝜀𝑐𝑝  value of plastic strain at the maximum concrete compressive strength 𝜀𝑐𝑝𝑢 critical tangential compression strain at the column edge due to bending 
moment 𝜀𝑒𝑞𝑝   concrete strain under uniaxial compression 

𝜀𝑓   inelastic cracking strains 𝜀𝑣  tensile strain in transverse direction 𝜀𝑤𝑖, 𝜎𝑤𝑖 strain and stress (respectively) developing at individual shear reinforce-
ment as a function of crack opening displacement and bond properties 𝜀𝑥𝑐, 𝜀𝑦𝑐, 𝛾𝑥𝑦𝑐 strains for concrete under tension in ADAPTIC 

𝜀𝑥𝑐0 , 𝜀𝑦𝑐0   maximum crack strains accumulated up to the start of the current equi-
librium step in ADAPTIC 𝜀𝑦  yield strain of flexural reinforcement bars 

𝜀𝑧, 𝜎𝑧 out-of-plane strain and stress components of shell element formulation re-
spectively 𝜁𝑖  define the location of concrete layer 𝑖 within the depth of the shell element 𝜃𝑠  deviatoric polar angle 𝜆𝑉𝐶𝐹 (𝑠𝑖𝑚𝜌ℎ) ratio of punching resistance to shear demand calculated according to 

CSCT closed-form expression (resistance) with default parameters and 
simplified method (demand) for wall-slab model with high reinforcement 
ratio 𝜆𝑉𝐶𝐹 (𝑠𝑖𝑚𝜌𝑙) ratio of punching resistance to shear demand calculated according to 

CSCT closed-form expression (resistance) with default parameters and 
simplified method (demand) for wall-slab model with low reinforcement 
ratio 𝜆0 empirical parameter characterizing the fracture energy of the material and 
the shape of the structure 𝜆𝑉   ratio of provided punching capacity (resistance) to the shear demand 𝜆𝑖  additional degree of freedom for Arc-Length method (nonlinear solution 
procedure) 𝜆𝑙𝑤  modification factor for lightweight concrete 𝜉𝑠  hydrostatic stress 𝜌ℎ𝑜𝑔  flexural reinforcement ratio to resist hogging moment 

𝜌𝑏𝑜𝑡  bottom flexural reinforcement ratio 𝜌𝑠  deviatoric stress 𝜌𝑠𝑎𝑔  flexural reinforcement ratio to resist sagging moment 
𝜌𝑡  transverse reinforcement ratio 𝜌𝑡𝑜𝑝  top flexural reinforcement ratio 
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𝜌𝑤  transverse reinforcement ratio 𝜌𝑥  flexural reinforcement ratio in x-direction 𝜌𝑦  flexural reinforcement ratio in y-direction 
𝜎2  intermediate principal stress 𝜎𝑎𝑔𝑔 normal stress developing along the cracks to calculate aggregate interlock 

contribution 𝜎𝑐  current compressive strength of concrete 𝜎𝑐1  principal stress in direction-1 𝜎𝑐2  principal stress in direction-2 𝜎𝑛  applied average compressive membrane stress (- sign for compression) 𝜎𝑝𝑢  compressive plastic strength of the cement matrix 
𝜎𝑥, 𝜎𝑦, 𝜏𝑥𝑦  normal stress in x- and y-direction and in-plane shear stress in ADAPTIC 
𝜎𝑥𝑡, 𝜎𝑦𝑡, 𝜎𝑥𝑦𝑡 biaxial stresses for concrete under tension in ADAPTIC  
𝜏𝑎𝑔𝑔 shear (sliding) stress developing along the cracks to calculate aggregate 

interlock contribution 𝜏𝑏  bond strength 𝜏𝑥𝑧  out-of-plane shear stress for solid elements parallel to the global y-axis 𝜏𝑦𝑧  out-of-plane shear stress for solid elements parallel to the global x-axis 
𝜓(𝑠)  slab rotation for individual sector element 
𝜓(𝜑) slab rotation as a function of 𝜑 (angle between the centroid of sector ele-

ment and the axis of applied unbalanced moment) 𝜓𝑐𝑜𝑙  column rotation 𝜓𝑐𝑠𝑐  rotation of the slab that is concentrated at the critical shear crack 𝜓𝑖  paired radial sector rotation of individual joint element 𝜓𝑖−1  monitored slab rotation at previous step 𝑖 − 1 in JSPM algorithm 𝜓𝑚𝑎𝑥  maximum slab rotation 𝜓𝑚𝑖𝑛  minimum slab rotation 𝜓𝑛𝑜𝑟𝑚  normalised slab rotation 𝜓𝑟𝑎𝑑  radial rotation of monitored joint elements relative to the centre of rota-
tion 𝜓𝑟𝑒𝑓   refined slab rotation due to the presence of compressive membrane stress 

𝜓𝑠𝑐𝑐  slab-column connection rotation 𝜓𝑠𝑜  component of slab rotation due to deformation of the slab outside a radius 
	= 0.22  𝜓𝑠𝑡  building inter-storey drift 𝜓𝑥  slab rotation in x-axis 𝜓𝑥, 𝜓𝑦, 𝜓𝑧 global rotation components of monitored joint elements 

𝜓𝑦  slab rotation in y-axis 
𝜙𝑠  factor scaling direct tensile stresses for shear interaction in ADAPTIC 
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DLw disturbed length of the wall where downward compressive forces concen-
trate at wall-corner followed by a short region with uplift (tension) reac-
tions 

GSR gravity shear ratio that is calculated as the ratio of gravity shear forces to 
concrete punching resistance under concentric scenario ℎ  slab thickness 

SF  coefficient used to define the relationship between the normal and shear 
crack stiffness in ATENA 

UF  unloading factor that controls the crack closure stiffness in ATENA 
ULw  undisturbed length of the wall calculated by subtracting DLw from total 

wall length 𝐴𝑠1, 𝐴𝑠2 smeared shear reinforcement area for the 1st and 2nd layers of shear rein-
forcement respectively 𝐴𝑠𝑡𝑜𝑡𝑎𝑙  total smeared shear reinforcement ratio for slabs with different number of 
radii in the first two rows 𝐵  slab specimen width 𝐾(𝑝)  stiffness matrix in nonlinear solution procedure 

  slab span measured between column centrelines 𝑃   applied load 𝑉   total applied load when calculating shear stress along the control perimeter 𝑊𝑎𝑙𝑙𝑟𝑒𝑎𝑐𝑡 total vertical wall reaction calculated based on tributary area (simplified 
method) 𝑎  ratio between acting shear force and average moment in the support strip 𝑎  shear span 𝑎/𝑑  shear span to depth ratio 𝑏  width of the beam (gross) 𝑐  column side dimension 𝑑  average flexural effective depth of the slab 𝑒  eccentricity which describes the out-of-roundness of the deviatoric trace 𝑓(𝑝)  vector of internal joint forces (nonlinear solution procedure) 𝑘  a constant obtained by fitting of the calculated shear strengths for one-
way shear formulation 𝑚  side length of the cubic element for typical mesh configuration 𝑚𝑐  normalised strain increment beyond strain at peak 𝜀𝑐 in ADAPTIC 𝑛  number of joint elements around the control perimeter 𝑝  deformation of structure prior to load increment in nonlinear solution pro-
cedure 𝑞  vector of total applied joint loads in nonlinear solution procedure 𝑟  polar radius as a function of deviatoric polar angle and eccentricity 𝑡  wall thickness 𝑢, 𝑣  radial and vertical components projection of 𝛿 respectively 
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𝑣  Poisson’s ratio 𝑣  shear force per unit length 𝑤  crack width opening 𝑥  depth of neutral axis 𝑥  horizontal projection of the conical crack surface 𝛥  displacement parallel to the face of the critical shear crack 𝛥𝑉𝑖 shear force carried by the sector element 𝑖 calculated based on moment 
equilibrium in the radial direction 𝛥𝑑𝑖  relative joint displacement at current step 𝑖 in JSPM algorithm 𝛥𝑇   bond forces developing between the flexural tension bars and the concrete 𝛥𝑝  deformation increment due to loading increment in nonlinear solution pro-
cedure 𝛼  angle between the vertical axis and the displacement vector 𝛿 𝛼  angle of the critical shear crack to the horizontal plane 𝛾  equivalent shear strain for notional joint length calculation 𝛿  crack sliding 𝛿  relative vertical deformation of the joint element between nodes 1 and 2 𝛿 a vector sum (total) of the displacements normal and parallel to the face 
of the critical shear crack 𝜂  scalar variable by the Line-search method (nonlinear solution procedure) 𝜃  size effect factor 𝜅  a constant which relates the slab rotation to crack opening for slabs with 
shear reinforcement 𝜆  multiplier relating the concrete punching capacity to maximum punching 
capacity (governed by the failure of compressive strut) 𝜇  coefficient of friction 𝜉  size effect parameter to calculate the contribution of compression chord 𝜌  flexural reinforcement ratio 𝜏   maximum shear strength transferred between concrete cracked surfaces 𝜓  slab rotation 

  
Additional notations for punching provision in ACI 318-14 (2014) 𝐴𝑣 sum of the area of all legs of reinforcement on one peripheral line that is 

geometrically similar to the perimeter of the column section 𝐽𝑐  property of assumed critical section analogous to polar moment of inertia 𝑀𝑠𝑐 moment transferred between the slab and column 𝑏0 control perimeter taken at distance 0.5𝑑 from the loaded or supported area; 
its corner shape follows the shape of the column 𝑏1 width of the critical section in the direction perpendicular to the moment 
vector 𝑏2  width of the critical section in the direction parallel to the moment vector 



43 
 

𝑐1, 𝑐2 side length of the column perpendicular and parallel to the axis of applied 
unbalanced moment respectively 𝑓𝑦𝑡  shear reinforcement yield strength 

𝑣𝑐  contribution of plain concrete on resisting shear of two-way members 𝑣𝑠  the contribution of nominal shear resistance from shear reinforcement 𝑣𝑢 maximum shear stress at the critical section for connections subjected to 
unbalanced moment according to linear eccentric shear model 𝜆𝑓  proportion of moment 𝑀𝑠𝑐 transferred through flexure 

𝜆𝑣  proportion of moment 𝑀𝑠𝑐 transferred through eccentric shear 𝑠 spacing of the peripheral lines of shear reinforcement in the direction per-
pendicular to the column face (radial spacing) 𝛷  reduction factor for shear 𝛽  ratio of long to short side of the column 

 

Additional notations for punching provision in Eurocode 2 (2004) 𝐴𝑠𝑤  area of one perimeter of shear reinforcement around the column 𝑊1 a parameter reflects the distribution of shear and is a function of the basic 
control perimeter 𝑢1 𝑐1, 𝑐2 side length of the column perpendicular and parallel to the axis of applied 
unbalanced moment respectively 𝑓𝑦𝑤𝑑,𝑒𝑓   effective design strength of the punching shear reinforcement 

𝑓𝑦𝑤𝑑  design yield strength of the shear reinforcement 
𝑘𝑚𝑎𝑥 a factor limiting the maximum capacity that can be achieved by applica-

tion of shear reinforcement  𝑠𝑟  radial spacing of perimeters of shear reinforcement 𝑢1 basic control perimeter that may normally be taken at a distance 2.0𝑑 
from the loaded area and should be constructed to minimise its length 𝑣𝐸𝑑  design shear stress 𝑣𝑅𝑑,𝑐 design value of the punching shear resistance of a slab without punching 
shear reinforcement along the control section 𝑢1 𝑣𝑅𝑑,𝑐𝑠 the nominal shear resistance of the control perimeter takes into account 
the contribution of both concrete and shear reinforcement 𝑣𝑅𝑑,𝑚𝑎𝑥 design value of the maximum punching shear resistance along the column 
perimeter 𝜌𝑙𝑥, 𝜌𝑙𝑦 bonded tension steel ratio in x- and y-directions respectively that is calcu-
lated as mean values taking into account a slab width equal to the column 
width plus 3𝑑 on each side 𝑎  angle between the shear reinforcement and the plane of the slab 𝑘  size effect factor 
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𝑘 a parameter controls the proportion of unbalanced moment transferred 
through eccentric shear and is a function of column aspect ratio 𝛽 a parameter to take into account an increase of design shear stress due to 
stress concentration 

 

Additional notations for punching provision in MC2010 (2013) ∑ 𝐴𝑠𝑤 sum of the cross-sectional area of all shear reinforcement suitably anchored, 
or developed, and intersected by the potential failure surface (conical sur-
face with angle 45o) within the zone bounded between 0.35𝑑𝑣 and 𝑑𝑣 from 
the edge of the supported area 𝑉𝐸𝑑 design shear forces acting on a basic control perimeter 𝑉𝑅𝑑,𝑐  design shear resistance attributed to the concrete 

𝑉𝑅𝑑,𝑠  design shear resistance attributed to the shear reinforcement 
𝑉𝑅𝑑  design punching shear resistance 𝑏0 shear-resisting control perimeter which takes into account non-uniform 

stress distribution arising from several possible design scenarios 𝑏1 basic control perimeter taken at a distance 0.5𝑑𝑣 from the loaded or sup-
ported area and the shape should be determined in order to minimise its 
length and the length of the control perimeter is limited by slab edges 𝑑𝑣 shear-resisting effective depth that is calculated as the distance from the 
centroid of the reinforcement layers to the supported area 𝑒𝑢,𝑖 eccentricity of the resultant shear forces with respect to the centroid of 
the basic control perimeter in the direction investigated 𝑓𝑏𝑑  design bond strength of the shear reinforcement 𝑓𝑦𝑤𝑑  design yield strength of the shear reinforcement 

𝑘𝑠𝑦𝑠 a parameter accounts for the performance of punching shear reinforcing 
system to control shear cracking and to suitably confine compression struts 
at the soffit of the slab 𝑣𝑝𝑒𝑟𝑝,𝑑,𝑚𝑎𝑥 maximum shear force per unit length perpendicular to the basic control 
perimeter acquired from linear (elastic) finite element analysis 𝛷𝑤  diameter of the shear reinforcement 𝜎𝑠𝑤𝑑  stress that is activated in the shear reinforcement that is also a function 
of slab rotation 𝜓𝐿𝑜𝐴 𝐼  slab rotation calculated according to LoA I 𝜓𝐿𝑜𝐴 𝐼𝐼  slab rotation calculated according to LoA II 𝜓𝐿𝑜𝐴 𝐼𝐼𝐼  slab rotation calculated according to LoA III 𝛼  angle between shear reinforcement orientation and horizontal plane 
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Abbreviations 
 

ACI  American Concrete Institute 
C  reversed-cyclic loading type 
CMA  compressive membrane action 
CoV  coefficient of variation 
CSC  critical shear crack 
CSCT  critical shear crack theory 
CSM  crack sliding model 
DIC  digital image correlation 
DLw  disturbed length of the wall 
DOF  degree of freedom 
DSFM  disturbed stress field model 
EBM  effective beam method 
EC2  Eurocode 2 
ES  end span 
FE  finite element 
FEA  finite element analysis 
GSR  gravity shear ratio 
IPLS  in-plane lateral stiffness 
JSPM  joint-shell punching model 
JSPMEcc joint-shell punching model eccentric 
LFEA  linear finite element analysis 
LL  live load 
LoA  level of approximation 
M  monotonic loading type 
MC2010 Model Code 2010 
MCFT  modified compression field theory 
MS  mid span 
NLFEA nonlinear finite element analysis 
N-R  Newton-Raphson 
PTFE  polytetrafluoroethylene 
RC  reinforced concrete 
RHPC  rapid hardening Portland cement 
SF  shear factor 
SIDL  superimposed dead load 
SW  self-weight 
T/R  tangential to radial strain ratio 
TA  tributary area 
TST  tangential strain theory 
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1 Introduction 

1.1 Flat slabs and punching phenomenon 

Reinforced concrete (RC) flat slabs are commonly used in building structures because of 
their practical advantages which include reduced construction time, ease of construction 
(simpler formwork and reinforcement arrangement), and architectural flexibility. In ad-
dition, having a flat soffit minimises the overall floor-to-floor height resulting in an in-
creased number of floors in high rise buildings of prescribed height. Currently, flat slabs 
are one of the most common forms of concrete frame construction for both residential 
and commercial buildings in the United Kingdom. 
Failures of isolated slab-column connections in flat slab buildings can be classified as 
either flexural or punching. Flexural failure is typically preceded by large deformation 
with behaviour mainly controlled by the yielding of flexural bars. On the other hand, 
punching failure, which is characterised by the formation of diagonal shear cracks close 
to the column face, occurs suddenly, with little if any warning. Consequently, punching 
is a particularly dangerous failure mode.  
One of the most notable examples of catastrophic punching failure was the collapse of 
Sampoong Department Store in 1995 (see Fig. 1-1(a)). According to Gardner et al. 
(2002), more than 500 persons were killed due to building owners/occupiers failing to 
act on signs of serious structural distress before the collapse. The main causes of the 
accident according to the investigating committee were design errors, many construction 
faults, poor construction quality control, reduction in cross section of the columns sup-
porting the failed 5th floor and roof and change of use of the fifth floor from a roller 
skating rink to a restaurant area (Gardner et al., 2002). 
Another serious issue regarding flat slab system is its poor seismic performance. It is 
generally recognised that during seismic events, a flat slab system undergoes larger ine-
lastic lateral deformations than a conventional beam-column-frame system. These defor-
mations induce uneven shear at slab-column connections, which in turn may increase 
the likelihood of so-called drift-induced punching. Ghali and Megally (2000) reported 
that 91 flat slab buildings collapsed and another 44 buildings suffered significant damage 
during the 1985 Mexico City earthquake. More recently, the Northridge earthquake in 
1994 caused extensive building damage throughout the southern California region (see 
Fig. 1-1(b)). Most of the damaged buildings were concrete moment frames and flat slab 
buildings without proper seismic detailing (Hueste and Wight, 1999). Unfortunately, this 
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matter has not yet gained sufficient international attention. This is reflected in a lack of 
codified design guidance (outside the United States) for flat slabs in seismic hazard zones. 
 

 

Figure 1-1. Collapse of flat slab buildings: (a) Sampoong Department Store in 
Seoul, South Korea (1995); (b) Section of collapsed low-rise apartment 
buildings during Northridge earthquake (1994). 

 
Owing to its complexity, punching failure is still the subject of considerable experimental 
and theoretical research. The majority of experimental studies into punching resistance 
have considered symmetrically loaded isolated slab-column subassemblies intended to be 
representative of an internal slab-column connection (see Fig. 1-2(a)). The free edges of 
such isolated slabs are considered to represent the elastic line of radial moment contra-
flexure under gravity load in a continuous floor system. According to a database collected 
by Einpaul (2016), more than 500 such classical tests have been performed. Design pro-
cedures for checking punching shear in codes of practice typically comprise empirical 
formulae developed on the basis of such experiments.  
In addition, recent advancement of computer simulation allows the use of finite element 
analysis (FEA) to realistically reproduce laboratory tests of punching failure (see Fig. 
1-2(b)). Nonlinear FEA (NLFEA) is capable of accurately capturing the punching ca-
pacity of isolated slabs in global level and also crack patterns and strain distribution in 
local level (Genikomsou and Polak, 2015; Shu et al., 2017). However, isolated punching 
tests do not realistically capture punching failure in continuous floor systems (Einpaul, 
2016; Soares and Vollum, 2016) due to the neglect of flexural continuity and compressive 
membrane action. Simulating the behaviour of a continuous (full) floor system using 3-
D solid elements is too computationally demanding for practical use. Consequently, this 

(a) 

Source: wikipedia.org (open access) 

(b) 

Source: wikipedia.org (open access) 



49 
 

thesis develops an alternative efficient yet accurate modelling strategy for simulating 
punching shear failure in flat slab buildings.  
 

 
Figure 1-2.  (a) Typical isolated test on internal slab-column connection (repro-

duced from Einpaul, 2016); (b) A quarter of isolated slab-column con-
nection simulated using finite element analysis (3-D solid model).  

  Image reproduced with permission of the rights holder, Jurgen Einpaul (1‐2a) 
  

1.2 Research aims and objectives 

This research aims to develop a numerically efficient strategy for accurately simulating 
punching failure of RC slabs. The method is intended to be a practical alternative to 3-
D solid element modelling. The modelling strategy incorporates the use of nonlinear joint 
elements and nonlinear reinforced concrete shell elements. The joint elements are em-
ployed to model punching failure which limits force transfer from slabs to supporting 
columns whereas shell elements are used to simulate slab flexural behaviour. The shear 
resistance of individual joint elements is calculated using the critical shear crack theory 
(CSCT) of Muttoni (2008) which relates shear resistance to slab rotation. The proposed 
modelling strategy is used to carry out a thorough investigation into punching of slabs 
with various boundary conditions and loading scenarios. After gaining a better under-
standing of the problem, various simplified design recommendations are proposed. To 
achieve this, several objectives were set, primarily comprising: 

 Review previous studies into punching, focusing on fundamental research that 
“shaped” the development of current state of the art punching provisions. 

 Perform finite element analysis using 3-D solid elements in ATENA (Cervenka et 
al., 2018) to gain a better understanding of punching failure in: 1) isolated internal 
slab-column subassemblies slabs without shear reinforcement; 2) influence of sup-

(a) (b) 
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port elongation on punching resistance; 3) influence of eccentric loading, both mon-
otonic and reversed-cyclic; 4) punching failure in slabs with transverse reinforce-
ment. 

 Develop and verify a novel modelling strategy for simulating punching failure of 
representative isolated internal slab-column connections without shear reinforce-
ment subjected to concentric loading.  

 Making reference to laboratory tests and stress distributions obtained with 3-D 
solid analysis, refine and validate the proposed modelling strategy to provide a 
more general algorithm that works for various boundary conditions, loading sce-
narios, support shapes and sizes. 

 The analysis and comparison of the numerical and test data were used to inform 
design procedures, including: a) shear-field method to design slabs supported on 
elongated column or wall; b) simplified analytical method to determine drift-in-
duced punching for slabs subjected to reversed-cyclic loading. 

 

1.3 Scope 

 All analyses of 3-D solid elements in this thesis were performed using ATENA in 
conjunction with GiD v. 11.0.8 (pre-processor) but the results and their interpre-
tation should be generally applicable. 

 Only internal slab-column connections are considered in this thesis. However, the 
modelling approaches adopted are also applied to edge and corner slab-column 
connections. 

 The development of the proposed modelling strategy and design guideline is based 
on the CSCT of Muttoni (2008). According to this theory, punching resistance is 
expressed in a function of slab bending deformation (rotation). The CSCT was 
chosen due to its mechanical basis and versatility (e.g. post-punching, non-sym-
metric, post-tensioned, shear reinforcement, continuity and compressive membrane 
action, etc.). The method is implemented in Model Code 2010 (fib, 2013) and Swiss 
Code SIA 262 (SIA, 2013) as well as the latest draft revision to Eurocode 2 
(CEN/TC 250, 2018) due for publication in 2023. 

 This thesis considers reinforced concrete flat slabs made mainly of normal strength 
concrete (excluding ultra-high-performance and fiber-reinforced concretes). The de-
tailing of reinforcement (bar spacing, development lengths and anchorage) is as-
sumed to comply with the design codes. Thus, failure modes associated with an-
chorage or bond failures are neglected. 
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1.4 Outline of the thesis 

This thesis consists of eight chapters, which are structured as follows: 

 Chapter 1 describes the research problem and summarises the research objectives 
and scope. 

 Chapter 2 reviews previous research into punching. The review covers crack kine-
matics, shear transfer actions, main parameters affecting punching behaviour, me-
chanical models, and punching provisions in current design codes. 

 Chapter 3 describes the basis of the adopted finite element analysis (FEA), con-
stitutive models, and nonlinear FEA solution procedures. The chapter covers both 
FEA modelling using solid elements in ATENA and shell elements in ADAPTIC 
(Izzuddin, 1991). 

 Chapter 4 describes the development of a novel joint-based modelling strategy for 
simulating punching shear. The model is validated for isolated internal slab-column 
subassemblies with square columns and no shear reinforcement. Several boundary 
conditions, reinforcement and loading arrangements are investigated. 

 Chapter 5 describes an investigation into punching failure of slabs supported on 
an elongated column or wall. The joint-based modelling strategy of Chapter 4 is 
extended to include elongated supports. The joint model is refined on the basis of 
stress distributions obtained using 3-D solid elements. The refined model is vali-
dated using experimental data from punching tests on slabs with elongated sup-
ports. Design recommendations are made for checking punching capacity of slabs 
at large supports including wall-ends and wall-corners. 

 Chapter 6 describes an investigation into the punching failure of slabs without 
shear reinforcement subjected to eccentric loading, under both monotonic and re-
versed-cyclic loading. The joint modelling strategy of Chapter 4 is extended to 
include the simulation of punching failure under both monotonic and cyclic eccen-
tric loading. The refined model is validated against test results. A simplified pro-
cedure for estimating the drift limit under seismic loading is presented. 

 Chapter 7 extends the modelling strategy of Chapter 4 to include the contribution 
of shear reinforcement.  

 Chapter 8 provides a recapitulation of the whole research. Main findings from 
three major aspects are summarised: 1) 3-D solid investigation; 2) proposed joint 
modelling strategy; 3) proposed design guidelines. Recommendations for future 
work are presented. 
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2 State-of-the-art 

2.1 Introduction 

This chapter begins with a description of crack kinematics in reinforced concrete two-
way spanning slabs without shear reinforcement failing in punching. Thereafter, shear 
transfer actions in cracked reinforced concrete are described. This is followed by a de-
scription of the key parameters which influence punching resistance. The discussion of 
physical attributes of punching failure is followed by a review of several mechanically 
based punching shear models from the literature. Emphasis is placed on the Critical 
Shear Crack Theory (CSCT) of Muttoni (2008) since it is incorporated in the joint model 
proposed in this thesis. This chapter concludes with a brief description of the punching 
provisions in several design codes. 
 

2.2 Crack kinematics of reinforced concrete two-way slabs without 
shear reinforcement failing in punching 

One of the key obstacles to understanding punching failure is that cracks form internally 
within the slab and cannot be observed externally as in beam tests. Knowledge of inter-
nal cracking at punching failure is largely based on saw-cutting specimens after testing. 
Saw-cutting provides information on the final crack pattern but not the process of crack 
formation which is crucial to fully understanding the failure mechanism. To circumvent 
this, Einpaul et al. (2018) developed an innovative measuring technique that tracks the 
formation and development of cracks inside punching specimens. Based on the compre-
hensive results provided by Einpaul et al. (2018) and other investigators, Simoes et al. 
(2018) classified punching shear cracks into several categories based on their origin. Si-
moes et al. (2018) also describe the various ways in which the different crack types 
coalesce to eventually form the failure crack.  

2.2.1. Internal crack measurement reported by Einpaul et al. (2018) 
Einpaul et al. (2018) used a novel measuring technique to monitor cracking in six isolated 
full-scale punching specimens without shear reinforcement. All six slabs had 250 mm 
thickness (with average flexural effective depth around 210 - 218 mm) with octagonal 
shape and no shear reinforcement. The slabs were loaded through eight openings located 
close to the edge of the slab by applying downward forces by means of four hydraulic 
jacks (see Fig. 2-1). The slabs were supported on a central steel plate with a circular 
shape of various diameters: 166, 330, and 660 mm. The flexural reinforcement ratio was 
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either 0.75% or 1.50% with average rebar yield strength around 538 - 542 MPa. Concrete 
compressive strength for all slabs were between 36.7 and 44.1 MPa. 
All the slabs were heavily instrumented to allow the formation of internal cracks to be 
monitored. Several types of measurement devices (Fig. 2-1) were used in each test: 

(a) Load cells: 4 units on the load distribution elements and another 4 units between 
the strong floor and the hydraulic jacks to measure applied load; 

(b) Four inclinometers on the main axes on the top surface close to the edges of the 
slab to measure slab rotation; 

(c) LVDT on the east-west (E-W) axis to monitor slab displacement profiles; 
(d) Three vertical LVDTs to measure column settlement and rotation; 
(e) Strain gauges with the base length of 50 mm glued on the concrete surface on the 

bottom face of the slab to measure tangential and radial concrete strains. 
 
The internal crack width measurements were performed with a commercial coordinate 
measuring arm (FaroArm Quantum) that could determine the location of its probe in 
space by measuring the rotations of its seven axes. In order to follow the development 
of internal cracking, a number of holes were drilled with a 10 mm drill bit in the bottom 
surface (soffit) of the specimens. After the holes had been cleaned of concrete dust, small 
steel cylinders with conical sockets as measurement points were glued in the ends of each 
hole.  
After failure, all slabs were cut along the E-W axis. The saw cut revealed a distinct 
failure crack in all specimens. In general, the failure crack extended from the edge of the 
column plate in the slab soffit to the level of tensile reinforcement bars. Regarding the 
deformation of the slab soffit, initially, the slab curved both in both the tangential and 
radial directions, as represented by linear-elastic slab theory. After concrete cracks due 
to radial moments, radial curvature concentrates in a short region close to the support 
with no further increase of radial strain observed in the outer part. At this stage, the 
deformation of the slab is accurately represented by the sector model of Kinnunen and 
Nylander (1960) in which slab sectors outside the critical shear crack deform as a rigid 
body. A more detailed discussion about the mechanical model of Kinnunen and Nylander 
(1960) is presented in Section 2.5.5.1. In addition, experimental measurements also 
showed a slight penetration of the column into the slab at early stages of loading. How-
ever, this was a local phenomenon which is claimed not to affect the radial soffit strains 
further from the column edge. Close to failure, the radial strain in the soffit started to 
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decrease (soften). This was also observed in other experimental tests (Kinnunen and 
Nylander, 1960; Guandalini et al., 2009; Ferreira et al., 2014).  
 

 
Figure 2-1.  Geometry and instrumentation of the specimens: (a) plan view of the 

soffit of the specimen; (b) section view of the specimen (only LVDTs, 
inclinometers and internal points shown); (c) coordinate measurement 
points close to the column on the slab soffit; (d) section cut of the 
specimen through the internal coordinate measurement points, dimen-
sions in mm (reproduced from Einpaul et al., 2018). 
Image reproduced with permission of the rights holder, ICE Publishing  

 
The crack widths and opening directions were measured and reported at several load 
stages. In general, it was found that the direction of crack opening did not change sig-
nificantly between load steps with the direction approximately perpendicular to the crack 
lips. This measurement indicates that, in terms of magnitude, the opening of the crack 
(perpendicular) is more dominant than the sliding of the crack (parallel) as load increases. 
However, according to Einpaul et al. (2018), the crack widths are calculated as projec-
tions on a vertical plane and some variability may thus be related to the actual variations 
in crack angles between measurement points. Crack widths at punching failure were 
greatest in slabs with lower reinforcement ratios where rotations were greatest. This 
suggests that the crack widths were mainly governed by rotation due to flexural defor-
mation. This was the case because the slabs considered in this study were relatively 
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slender. However, as recently reported by Kueres et al. (2018) and Simoes et al. (2018), 
the crack opening in compact slabs (e,g. footings) is not only affected by slab bending 
deformation but may also be dominantly affected by shear deformation. 
Interestingly, Einpaul et al. (2018) observed two types of cracks in most of the specimens 
which they depicted: a) critical shear crack (CSC); b) failure crack. In some slabs, the 
failure crack developed from the CSC but in other cases, the failure crack was a new 
crack that formed independently of the CSC close to the failure load. The critical shear 
cracks were of flexural origin (forming initially at the top face of the slab) and propagated 
toward the compression zone. When failure did not develop from the CSC, the final 
failure crack formed due to splitting (unstable manner) with a lower inclination than the 
pre-existing CSC. In addition, the experimental results also showed that the failure 
cracks appeared in some slab sectors at lower load levels than in the others, in some 
cases already at 75-80% of the failure load. 

2.2.2. Classification of different crack types and their combination reported by Si-
moes et al. (2018) 

Simoes et al. (2018) used measurements and observations from previous experimental 
investigations (including Einpaul et al., 2018) to classify the nature of observed cracks 
and to address their interaction and development on the final punching failure surface. 
According to Simoes et al. (2018), cracks forming in slabs failing in punching can be 
classified as follows (see Fig. 2-2 for schematic illustrations of each cracks type): 

 Crack type A is strongly associated with flexural cracking. These cracks originate 
from the tension face of the slab and propagate downwards toward the compression 
zone near the column face. This type of crack forms diagonally due to the presence 
of shear forces.  

 Crack type B is associated with the formation of a shear band with several parallel 
cracks which coalesce into a single crack around the concrete compression zone 
(soffit of the slab). Unlike crack type A, which may form quite early during loading 
(after flexural cracking), crack type B only develops near failure.  

 Crack type C is flexural in origin and subsequently merges with a previously 
formed crack type A. Usually, type C cracks have a shallower inclination and form 
further from the support than type A cracks. 

 Crack type D forms as a result of delamination of concrete top cover due to the 
activation of dowel action of tensile bars.  
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 Crack type E was originally identified by Cavagnis et al. (2015) in one-way shear 
tests. This type of crack may form from pre-existing cracks type A at mid-height 
of the member due to high local aggregate interlock stresses.  

 Crack type F and F’ correspond to unstable splitting cracks forming near the 
supported area and propagating toward the level of flexural reinforcement at the 
top side of the slab. Crack type F originates from the shear band (cracks type B) 
whereas crack type F’ may independently form without originating from any pre-
existing cracks. 

 

 
Figure 2-2.  Schematic illustration of different cracking types observed in a saw-

cut of a punching test (reproduced from Simoes et al., 2018). 
 Image reproduced with permission of the rights holder, Wiley 
 
In reality, the various crack types do not form in isolation but in a combined manner 
(see Fig. 2-3). According to the visual observation of cracks formation observed from 
saw-cuts, several findings were stated by Simoes et al. (2018): 
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 Crack type A originate from a flexural crack and extend from the tension side to 
the compression side in an inclined manner. 

 Crack type C may govern the shape of the critical shear crack (CSC) when merging 
to other flexural cracks (see slab PG29 and PF21 in Fig. 2-3). However, in other 
cases, it can also be observed that the CSC is governed by crack type A, indicated 
with a steeper crack inclination (see slab PE9 in Fig. 2-3).  

 Crack type B is observed in most of the saw-cuts and is associated with the devel-
opment of a shear band just above the slab soffit. In some cases, the failure crack 
forms as a result of a type B crack connecting the column face to a type A crack 
(see slab PG-3 and PG20 in Fig. 2-3). However, in other cases, failure is governed 
by the propagation of crack type F or F’ (see slab PE6 and PE9 in Fig. 2-3) despite 
the formation of type B cracks.  

 Cracks of type B commonly have a steeper inclination than crack type A and C 
(see PG-3, PG20 and PE6 in Fig. 2-3). 

 Crack type E may be triggered due to the shape of the upper part (quasi-horizontal 
branch) of the CSC that is favourable to activate aggregate interlock action (see 
slab PE10 in Fig. 2-3).  

 Crack type D is typically observed around the level of flexural bars at the top face 
of the slab caused by the delamination of concrete cover due to dowel action (see 
slab PG20 and PG29 in Fig. 2-3).  

 
As pointed out by Einpaul et al. (2018), the final punching crack is not necessarily the 
critical shear crack (CSC). When the failure crack coincides with the CSC, the final 
crack is formed by the merging of type B cracks at the column edge and either type A 
or C cracks which propagate downwards from the tension face of the slab (see slab PG20 
in Fig. 2-3). In cases where the failure crack forms independently of the CSC, the final 
crack may develop from the shear band (crack type F as in slab PE9 in Fig. 2-3) or 
develop within a region near the supported area without the complete development of 
the shear band (crack type F’ as in slab PF21 in Fig. 2-3).  
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Figure 2-3. Saw-cuts of tested slabs: (a) pictures and (b) interpretation of ob-

served crack patterns; specimens (𝑩/𝒅 = 8.6-14.9; 𝒓𝒒/𝒅  = 4.3-7.5; 𝒅 
= 0.201-0.456 m; 𝒄 = 0.22-0.52 m, 𝒓𝒄 = 0.083-0.166 m): PG3 (Guan-
dalini et al., 2011); PG20 and PG29 of Guidotti (2010); PE6, PE9, 
and PE10 of Einpaul (2016) and PF21 of Clement (2012) (reproduced 
from Simoes et al., 2018). 

 Notes: 𝐵 is the slab specimen width; 𝑑 is the average flexural effective depth; 𝑟𝑞 is the radius of 
applied load from slab centreline; 𝑐 is the side dimension of the column (square); 𝑟𝑐 is the radius 
of the column (circular). 

  Image reproduced with permission of the rights holder, Wiley 

 

2.3 Shear transfer actions 

It is important to remark here that shear transfer actions that will be described hereafter 
apply generally for one- and two-way reinforced concrete members. A better understand-
ing of these shear transfer actions provides a valuable tool to identify a failure mechanism 
and find the root cause of it. According to fib bulletin 12 (2001), shear transfer actions 
are distinguished between the action in cracked tension zone and action in the compres-
sion zone. In the cracked tension zone of a reinforced concrete member the following 
shear transfer actions are mobilised: 
(1) Cantilever action of concrete “teeth” 
(2) Friction stresses along cracks (or more generally known as aggregate interlock) 
(3) Dowel action of tension chord 
(4) Residual tensile stresses across cracks 
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On the other hand, shear transfer actions engaged within the compression zone include: 

(5) Shear stress carried by the inclined compression chord 
(6) Arching action (although this action could be considered rather differently than 

the remaining actions, as will be described later) 
 
The contribution of each shear transfer action is sensitively affected by the shape, loca-
tion and kinematics of the crack. Even similarly tested reinforced concrete members may 
develop different crack kinematics which resulting in different proportion of shear trans-
fer actions (Campana et al., 2013). The various shear resisting mechanisms are briefly 
described below.  

2.3.1. Cantilever action of concrete “teeth” 
The concept of cantilever action of concrete “teeth” was proposed by Kani (1964). This 
model assumes that there is an intact concrete body located in between two adjacent 
flexural cracks that behaves like a cantilever beam (see Fig. 2-4). This cantilever is 
supported on the concrete compression zone and loaded close to its opposite end by the 
bond forces (𝛥𝑇 ) developing between the flexural tension bars and the concrete (see Fig. 
2-4).  
 

 
Figure 2-4. Illustration of cantilever action of concrete teeth (adapted from Kani, 

1964). 
  Image reproduced with permission of the rights holder, ACI 

 
Concrete tooth failure is assumed to take place when the maximum tensile stress induced 
by the bond forces equals the concrete tensile strength. According to a formulation de-
rived by Kani (1964), the critical bending moment when the teeth break is linearly 
proportional to the shear span to depth ratio (𝑎/𝑑) (see Fig. 2-5). As can be seen in Fig. 

P

C
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2-5, the value of critical bending moment (𝑀𝐶𝑅) increases with increasing 𝑎/𝑑 until at 
some point the full flexural capacity of the cross section is achieved (𝑀𝐹𝐿).   
 

 
Figure 2-5. Capacity of concrete teeth as a function of shear span to depth ratio 

and limited by the maximum flexural capacity (adapted from Kani, 
1964). 

  Image reproduced with permission of the rights holder, ACI 
 
After the concrete teeth break, the bond forces disappear and this transforms the beam 
into a tied arch where the tensile force in the reinforcement bars along the beam is 
constant. 

2.3.2. Aggregate interlock 
When a diagonal crack forms, the cracked surfaces are usually not smooth owing to some 
coarse aggregates protruding from the surface hence providing resistance against sliding. 
This action is known as aggregate interlock and has been generally acknowledged as an 
important mode of shear transfer across cracks (Fenwick and Paulay, 1968). To quantify 
the capacity of aggregate interlock to transfer shear across a crack, push-off tests (see 
Fig. 2-6) are usually performed, as done by Mattock et al. (1975), Walraven and Rein-
hard (1981), Hamadi (1976) and Sagaseta and Vollum (2011) amongst others. 
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Figure 2-6. Illustration of typical push-off tests to evaluate the aggregate inter-

lock capacity (reproduced from Sagaseta and Vollum, 2011). 
 Image reproduced with permission of the rights holder, ICE Publishing 
 
Although many push-off test results have been reported in the past, one of the main 
challenges is to formulate an analytical model that can predict these experimental results 
accurately. One of the most notable analytical developments was the one proposed by 
Walraven (1981) that is commonly depicted as the “two-phase model”. The model of 
Walraven is notable for its generality and physical basis. The main contribution of this 
model is that it allows estimating both normal (𝜎𝑎𝑔𝑔) and shear stress (𝜏𝑎𝑔𝑔) developing 

along the cracks as a function of crack opening (𝑤) and crack sliding (𝛿). In addition, 
the model also considers the geometrical considerations of the crack surfaces and the 
associated contact areas between the aggregate particles and the cement matrix. The 
interface stresses can be determined as: 
 
 𝜎𝑎𝑔𝑔 = 𝜎𝑝𝑢. (𝐴𝑥 − 𝜇. 𝐴𝑦) (1) 

 
and 
 
 𝜏𝑎𝑔𝑔 = 𝜎𝑝𝑢. (𝐴𝑦 + 𝜇.𝐴𝑥) (2) 
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where 𝜎𝑝𝑢 is the compressive plastic strength of the cement matrix that can be taken as 

6.39𝑓𝑐𝑢0.56 where 𝑓𝑐𝑢 is the concrete compressive strength (cube), 𝜇 is a coefficient of fric-
tion that can be taken as 0.4 and 𝐴𝑥 and 𝐴𝑦 are the sum of the projections 𝑎𝑥 and 𝑎𝑦 
of the contact surfaces between the aggregate particles and the cement matrix (see Fig. 
2-7(a)). The value of 𝑎𝑥 and 𝑎𝑦 could be determined as a function of crack opening, 

sliding and the maximum aggregate size, 𝑑𝑔. 
 

 
Figure 2-7. (a) Contact zone between aggregate and cement matrix and aggregate 

interlock stresses; (b) projections areas according to the kinematics of 
the two-phase model by Walraven (1981) (reproduced from Cavagnis 
et al., 2017). 

 Image reproduced with permission of the rights holder, Wiley  
 
One of the simplification made by Walraven (1981) is that the crack opening 𝑤 develops 
completely prior to the crack sliding 𝛿 (see Fig. 2-7(b)). A simplified method was pro-
posed by Walraven and Reinhardt (1981) where a best fit method was used to relate the 
parameters from the original (refined) model of Walraven (1981) to experimental data 
as expressed below: 
 

 𝜏𝑎𝑔𝑔 = − 𝑓𝑐𝑢30 + [1.8𝑤−0.80 + (0.234𝑤−0.707 − 0.20)𝑓𝑐𝑢]. 𝛿 (𝜏𝑎𝑔𝑔 > 0) (3) 

 

 𝜎𝑎𝑔𝑔 = − 𝑓𝑐𝑢20 + [1.35𝑤−0.63 + (0.191𝑤−0.552 − 0.15)𝑓𝑐𝑢]. 𝛿 (𝜎𝑎𝑔𝑔 > 0) (4) 

 
The relation described in Eq. 3 and 4 is shown in Fig. 2-8 for concrete cube strength of 
37.6 and 56.1 MPa with normal weight concrete. The straight line represents the best 
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fit expression whereas the dots represent experimental test results. Comparing two dif-
ferent concrete strengths, it could be clearly observed that higher concrete strength leads 
to higher shear and normal stresses for the same crack opening and sliding (represented 
by a steeper gradient in Eq. 3 and 4).   
 

 
Figure 2-8. Relationship between normal - shear stress and crack sliding - opening 

for normal weight concrete with compressive strength of: (a) 37.6 MPa; 
(b) 56.1 MPa (reproduced from Walraven and Reinhardt, 1981).  

  Image reproduced with permission of the rights holder, HERON 

 
By knowing or assuming the crack shape kinematics, the interlock stresses 𝜎𝑎𝑔𝑔 and 𝜏𝑎𝑔𝑔 
can be determined for each point along the crack and the integration of these stresses 
gives vertical and horizontal components of the aggregate interlock forces. 

2.3.3. Dowel action 
Dowel action depicts the contribution of reinforcing bars to transfer shear forces across 
crack through dowelling that is activated when the bars follow a transversal displace-
ment (perpendicular to their axis). Several studies in the past have been conducted in 
order to gain a better understanding about dowel action and to quantify its contribution 
using several test setups: direct dowel setups (Fig. 2-9(a)); divided beam tests (Fig. 2-
9(b)) and beam end tests (Fig. 2-9(c)). The first two test setups enable study of dowel 
action with little or almost no axial force in the bars whereas the last test setup allows 
study of the interaction between tensile forces and dowel forces (Cavagnis, 2017).  
Direct dowel tests as shown in Fig. 2-9(a) demonstrate two possible failure modes: 1) 
failure of dowelling action is governed by the splitting failure around the bars (Fenwick 
and Paulay, 1968); or 2) crushing of concrete or yielding of the reinforcement prior to 

(a) (b) 
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splitting (Rasmussen, 1962). Another research performed by Vintzeleou and Tassios 
(1986) found out that these two different failure modes, for specimen without transverse 
reinforcement, are mainly dictated by the provided concrete cover. When concrete cover 
is greater than 6-7 times the diameter of the bar, crushing of concrete occurs but the 
formation of splitting cracks governs when small concrete cover is used. 

 
Figure 2-9. Various test setups to investigate the contribution of dowel action: (a) 

direct dowel tests; (b) divided beam tests; (c) beam end tests (repro-
duced from Cavagnis, 2017). 

 Image reproduced with permission of the rights holder, Francesco Cavagnis 
 
Baumann and Rusch (1970) used divided beam tests (Fig. 2-9(b)) to investigate the 
influence of tensile strength of concrete, beam net width and bar diameter. Typical re-
sults from the test performed by Baumann and Rusch (1970) are presented in Fig. 2-10. 
They found that the capacity of dowel action increases as these three parameters increase. 
In addition, it can be observed that dowelling action is activated at low values of vertical 
displacement and then is maintained with a more or less constant resistance at higher 
level of vertical displacement (see Fig. 2-10). According to Baumann and Rusch (1970), 
the maximum dowelling action can be estimated as: 
 
 𝑉𝐷,𝑚𝑎𝑥 = 1.64. 𝑏𝑛. 𝑑𝑏. 𝑓𝑐1/3  (5) 

 
where 𝑏𝑛 is the net width of the beam that is calculated as: 
 
 𝑏𝑛 = 𝑏 − 𝑛𝑏. 𝑑𝑏 (6) 

 
where 𝑏 is the width of the beam (gross), 𝑛𝑏 is the number of bars, 𝑑𝑏 is the bar diameter 
and 𝑓𝑐 is the compressive strength of concrete.  
Sharma (1969) and Kemp and Wilhelm (1977) investigated dowel action using beam end 
tests (Fig. 2-9(c)). They both found that dowel capacity reduces as the axial tensile 
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stresses in the bars increases. In reality, almost in all structural element, dowel action 
occurs simultaneously with the axial forces and hence this last test setup is the most 
representative one. 
 

 
Figure 2-10. Typical results of divided beam tests reported by Bauman and Rusch 

(1970) (reproduced from Cavagnis, 2017).  
  Image reproduced with permission of the rights holder, Francesco Cavagnis 

 

2.3.4. Residual tensile stresses across cracks 
Hillerborg et al. (1976) introduces the well-known fictitious crack model which catego-
rises the three stages of crack opening: 1) uncracked; 2) process-zone; 3) cracked (see 
Fig. 2-11). In the first stage, a linear stress-strain relationship is used to describe the 
tensile behaviour. The maximum possible tensile stress in this state is the concrete tensile 
strength (𝑓𝑡). Beyond this point, cracking initiates and the tensile stress gradually de-
creases as the crack opening (width) increases. This process takes place within the pro-
cess-zone state. As the crack opens wider, there is a limit point where the crack can no 
longer transmit tensile stresses that is represented by the cracked state (stress-free crack). 
Consequently, during the first and second stages, concrete may still transfer forces 
through the crack.  
The concrete softening behaviour, relating stress and crack opening, can be described 
using several approaches. Amongst these, one of the most widely used models is that of 
Hordijk (1991). The proposed equation is expressed as: 
 

 
𝜎𝑐𝑓𝑡 = {1 + (𝑐1 𝑤𝑡𝑤𝑡𝑐)

3} exp(−𝑐2 𝑤𝑡𝑤𝑡𝑐) − 𝑤𝑡𝑤𝑡𝑐 (1 + 𝑐13) exp(−𝑐2) (7) 

 
with  
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 𝑤𝑡𝑐 = 5.14𝐺𝑓𝑓𝑡  , 𝑐1 = 3, 𝑐2 = 6.93 (8) 

 
where 𝜎𝑐 is the stress normal to the crack, 𝑐1 and 𝑐2 are constants, and 𝑤𝑡𝑐 is the crack 
width limit where tensile strength approaches zero at the end of the fracture process 
zone.  
 

 
Figure 2-11. (a) Tensile load-deformation response of a concrete specimen; (b) il-

lustration of the fracture process zone around the top of the crack: 
micro-cracks (1-2); micro-cracks coalesce into a macro crack in the 
post-peak tensile softening region (2-3) according to Karihaloo (1995) 
(reproduced from Cavagnis, 2017). 

  Image reproduced with permission of the rights holder, Francesco Cavagnis 
 
Consideration of the critical shear crack kinematics in a typical one-way shear member 
shows that residual tensile stress can transmit substantial force along the quasi-horizon-
tal branch of the critical shear crack close to the compression zone where the crack is 
characterised by a pure mode I opening response (Cavagnis et al., 2015; Cavagnis et al., 
2017). The integration of this residual stress along the crack is then projected to the 
vertical axis to give the proportion of vertical load carried by this shear transfer action 
in the free body of the critical shear crack. 

2.3.5. Shear stress carried by the inclined compression chord 
Mari et al. (2014) shows the sequence of crack propagation of the typical slender element 
without stirrups failing in shear as shown in Fig. 2-12. It was explained that at a certain 
load level prior to failure, the width of the critical shear crack in the web is moderate 

(a) (b) 
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(see Fig. 2-12(a)) and hence aggregate interlock and residual tensile stress would con-
tribute quite significantly on carrying the load. However, under subsequent loading, the 
crack grows wider followed by the formation of a new crack branch in the compression 
zone of the beam (Fig. 2-12(b) and (c)). This induces a combination of both shear and 
compression stresses in the compression chord. Finally, failure is triggered when the 
capacity of the compression chord under multi-axial loading is reached (see Fig. 2-12(d)). 
Thus, it was stated by Mari et al. (2014) that the role of compression zone on carrying 
shear is pivotal because it dictates the formation of final failure mechanism. However, 
as pointed out by Cavagnis et al. (2017) based on their detailed experimental measure-
ments (Cavagnis et al., 2015), the contribution of inclined compression chord is sensi-
tively affected by the position of the critical shear crack relative to the loading or support 
plate. For example, for relatively compact members, critical shear crack originates near 
the intermediate support region. In this scenario, a stable crack development was ob-
served and the crack did not penetrate within the theoretical compression strut. From 
Digital Image Correlation (DIC) measurements reported by Cavagnis et al. (2015), it 
was observed that, for these typical specimens, the principal compressive strains at max-
imum load was inclined (favourable). On the other hand, for slender members, the crit-
ical crack does not develop close to the intermediate support but farther away from it. 
In this scenario, the direction of the principal compressive strains at failure load is almost 
horizontal. Thus, only very small proportion of the load is carried by the inclined com-
pression chord whereas aggregate interlock carries the majority of the load. 
Mari et al. (2014) assume that the resistance of the compression zone is governed by 
Kupfer’s biaxial failure envelope. It is considered that failure is triggered when the prin-
cipal stresses of the first fiber in compression zone violates the Kupfer’s failure surface. 
It is assumed that the depth of the uncracked zone equals the neutral axis depth (𝑥). 
The contribution of compression chord can be estimated using the simplified expression 
provided by Mari et al. (2014) as: 
 
 𝑣𝑐 = 𝜉 [(0.88 + 0.70𝑣𝑠) 𝑥𝑑  + 0.02]   (9) 

 
with 

 
 𝜉 = 1.2 − 0.2𝑎 ≥ 0.65 (𝑎 𝑖𝑛 𝑚𝑒𝑡𝑟𝑒𝑠) (10) 
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where 𝜉 is the size effect parameter for the compression chord, 𝑑 is the average flexural 
effective depth, 𝑎 is the shear span and 𝑣𝑠 is the contribution of transverse reinforcement 
on providing confining vertical compression that is expressed as: 
 

 𝑣𝑠 = 0.85𝜌𝑤
𝑓𝑦𝑤𝑓𝑡  (11) 

 
where 𝜌𝑤 is the transverse reinforcement ratio, 𝑓𝑦𝑤 is the yield strength of the transverse 

reinforcement and 𝑓𝑡 is the concrete tensile strength based on Eurocode 2 (BSI, 2004) 
equation. For beam without stirrups, 𝑣𝑠 should be taken as 0. As observed in Eq. 9, the 
capacity of compression zone is proportional to the neutral axis depth (𝑥) hence the 
higher the longitudinal reinforcement ratio, the higher the contribution of compression 
zone. 
 

 
Figure 2-12. Sequence of cracking evolution in a shear failing element (reproduced 

from Mari et al., 2014). 
  Image reproduced with permission of the rights holder, Taylor Francis Online 

 
A similar method was used by Cavagnis et al. (2017) to estimate the contribution of the 
compression zone based on measured principal stress from experimental results (the 
principal stress directions are assumed to be parallel to the principal strain directions). 
For uncracked concrete, the effective concrete compressive strength 𝑓𝑐,𝑒𝑓𝑓  is derived on 
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the basis of the Kupfer’s biaxial failure criterion accounting for the interaction between 
tension and compression stresses. The concrete failure surface in the combined tension-
compression regime is simplified by a bilinear law. The slope of this bilinear curve is 
determined by that of the Mohr-Coulomb failure envelope, using a friction angle  of 
37°. However, for some of their beam tests where smeared cracking was observed around 
the compression region, the tensile strength of concrete is entirely neglected and the 
effective compressive strength is reduced based on the compression softening law pro-
posed by Vecchio and Collins (1986) as: 
 

 𝑓𝑐,𝑒𝑓𝑓 = 𝑓𝑐. 10.8 + 170𝜀1 ≤ 𝑓𝑐 (12) 

 
where 𝑓𝑐 is the uniaxial concrete compressive strength and 𝜀1 is the principal tensile 
strain (transverse). Shear stress can be then determined based on the principal strains 
and principal stress directions. Finally, integration of shear stress along this compression 
zone would give the proportion of vertical load carried by this action in the free body of 
the critical shear crack.  

2.3.6. Arching (direct strut) action 
Arching action is an alternative shear transfer action that may develop in reinforced 
concrete beams due to the loss of bond between longitudinal bars and concrete hence 
constant tensile forces is expected along the beam as explained by Kani (1964). It is 
important to mention that this shear transfer action is sensitively affected by the slen-
derness (inclination of the strut) of the element and the position of the critical shear 
crack. In general, it is widely agreed that arching action is more dominant for compact 
members than for slender members. In order to investigate how the formation of cracks 
affect the strut action, experimental tests were performed by Leonhardt and Walther 
(1962) and Muttoni and Thurlimann (1986) amongst others.  
Leonhardt and Walther (1962) studied thoroughly the influence of bond properties be-
tween flexural reinforcement and the concrete matrix. Two identical beams were tested, 
EA1 with deformed bars whereas EB1 with smooth bars (see Fig. 2-13(a)). For specimen 
with deformed bars (i.e. bond develops between concrete and reinforcement bars), diag-
onal cracks develop through the compression strut resulting in failure capacity of just 
around 50% of its flexural strength. On the other hand, specimen EB1 with smooth bars 
only experienced few flexural cracks hence the compression strut was effectively trans-
ferring the load to the support, with minimum disturbance. In EB1, the capacity was 
closer to the plastic strength and much higher than specimen EA1. 
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Further evidence on the strong influence of crack formation to the effectiveness of strut 
action is shown by Muttoni and Thurlimann (1986) where two beam specimens with 
geometrically identical shear spans were tested. BP0 had only longitudinal reinforcement 
whereas BP2 was reinforced with additional spiral reinforcement in the region close to 
the loading plate where the critical shear crack developed (see Fig. 2-13(b)). Beam BP0 
only reached around 50% of the plastic strength whereas flexural capacity of specimen 
BP2 was achieved at failure. This is because the additional spiral in specimen BP2 
effectively controlled the opening of the cracks within the inclined compression strut 
hence the strut capacity can be maintained. 
 

 
Figure 2-13. (a) Influence of bond on the shear strength and crack patterns around 

strut of test by Leonhardt and Walther (1970); (b) Influence of crack 
width on shear strength of test by Muttoni and Thurlimann (1986) 
(adapted from Muttoni and Fernandez Ruiz, 2008). 

  Image reproduced with permission of the rights holder, ACI 
 
According to Muttoni and Fernandez Ruiz (2008), it was concluded that the arching 
action is observed to be the dominant (reliable) shear-transfer action when: 1) one-way 
slabs or beams with limited shear slenderness (𝑎/𝑑 < 2.5, in agreement with previous 
observation made by Kani, 1964); 2) members with unbonded longitudinal reinforcement 
where bond is not mobilised along the beam; 3) prestressed members or members with 
large compressive normal forces where the crack opening disturbing the strut action 
could be minimised. 
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2.4 Parameters affecting punching capacity 

Considering punching as a complex failure phenomenon, in reality it must be affected 
by inseparable interaction of many parameters. However, for the purpose of providing a 
review in this chapter, only some selected parameters are presented. These selected pa-
rameters are mainly parameters that have been widely investigated from past research, 
including: 1) concrete strength; 2) flexural reinforcement ratio; 3) size effect; 4) in-plane 
forces; 5) continuity; 6) reversed-cyclic loading (seismic scenario). The influence of sup-
port shape (including size and aspect ratio) and shear reinforcement to punching capac-
ity are presented in Chapter 5 and 7 respectively hence they are not described here. 

2.4.1. Influence of concrete strength 
Marzouk and Hussein (1991) tested 17 reinforced concrete slabs with high-strength con-
crete in order to investigate their deformation and strength characteristics. The tested 
specimens had different slab depths and flexural reinforcement ratio ranging between 
0.49 and 2.33 percent. Slab thickness was varied between 90 and 150 mm with column 
size ranging between 150 and 300 mm. The concrete mix used coarse aggregate in a form 
of crushed quartzite sandstone with maximum size of 20 mm. The concrete mix was 
designed to achieve a compressive strength of around 70 MPa (measured at 28-day 
strength). In general, their results revealed that high-strength concrete exhibits more 
brittle failure than normal-strength concrete. Interestingly, the observed angles of the 
failure surface were rather different for normal- and high-strength concrete. Normal-
strength concrete had an inclination of around 26-30 degree whereas the high-strength 
had steeper angle of around 32-38 degree. Regarding the relationship between concrete 
strength and punching capacity, it was reported that a cubic root expression provides a 
better agreement than the square root expression. The use of square root expression was 
found to overestimate punching capacity of high-strength concrete slabs. 
In the same year, Hallgren and Kinnunen (1991) reported test results on 2 circular high 
strength concrete slabs without shear reinforcement. The concrete strength measured on 
150 mm cubes was around 110 MPa. Punching tests previously performed by Tolf (1988) 
using identical slab specimen but with 30 MPa concrete strength were used to provide 
comparison. Diameter of the tested slabs was 2540 mm, slab thickness was 240-245 mm 
and diameter of the column was 250 mm. Flexural bars consisted of 16 mm bar diameter 
giving a reinforcement ratio of 0.008. The concrete mix design consisted of coarse aggre-
gate with size between 8-18 mm (crushed aggregate) and finer aggregate with size of 0 - 
8 mm. Both slabs failed in a distinct punching failure mode with punching capacity 
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around 60-70% higher than the 30 MPa slabs without shear reinforcement and 8-20% 
higher than normal-strength slabs with shear reinforcement. In terms of concrete strain 
measured at the soffit of the slab at 60 mm away from the column face, it was found 
that both radial and tangential concrete strains for high-strength concrete increased 
slower than for the normal-strength. Similar decrease of radial strain (drop) was found 
both for high- and normal-strength close to failure, in some cases the strain became even 
tensile. Regarding the deformation capacity, it was found that high-strength slabs 
achieved higher deformation at failure, even achieving similar levels of deformation to 
normal-strength slabs with shear reinforcement. 
Ramdane (1996) reported test results on 18 circular slabs subjected to concentric loading 
to investigate the influence of concrete strength to punching capacity. All the slabs had 
125 mm thickness and 1700 mm in diameter and loaded through a thick steel disk with 
a diameter of 150 mm situated in the centre beneath the slab. The flexural reinforcement 
ratio was varied also with concrete cube strengths varying from 33 to 127 MPa. The 
concrete was made with limestone (10 mm), gravel (10-20 mm) or Lytag (6-12 mm) 
aggregates along with Rapid Hardening Portland Cement (RHPC). The water cement 
ratio ranged between 0.6 for normal-strength and 0.25 for high-strength. Ramdane (1996) 
also noticed that compressive strains in the radial and tangential directions were delayed 
for high-strength specimens hence also delaying the crack formation. It was also observed 
that the deformation capacity of slabs with high-strength concrete increases compared 
to the normal strength one. Ramdane (1996) also showed similar finding with Marzouk 
and Hussein (1991) regarding the appropriateness of a cubic concrete strength relation-
ship for punching capacity, both for normal and high-strength specimens.   

2.4.2. Influence of flexural reinforcement ratio 
In the majority of experimental tests performed in the past, most of the slab specimens 
were deliberately designed as heavily reinforced in order to avoid the formation of flex-
ural mechanism prior to punching. This might be necessary to solely achieve the objec-
tive of the test itself but at the same time, may lead to the use of unrealistic reinforce-
ment ratios much higher than used in practice. 
Guandalini et al. (2009) reported a test campaign of 11 slabs that were categorised into 
three different groups with slab thickness of: 125 mm (half-scale); 250 mm (full-scale); 
and 500 mm (double-scale). This was done in order to also investigate the influence of 
size effect. However, the discussion regarding the size effect from this test series will be 
presented later in Section 2.4.3. The amount of flexural reinforcement ratio was varied 
between 0.22 and 1.50% in tension face whereas the reinforcement in compression face 
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was kept constant around 0.2% except for the half-scale specimens. Considering the 
trend observed while comparing the punching capacity to flexural reinforcement ratio, 
it was reported that the punching capacity increases with higher flexural reinforcement 
ratio. However, the deformation capacity is lower for higher reinforcement ratio and 
failure is more brittle manner. Although all slabs were reported to fail in punching, two 
distinct situations were observed: for slabs with relatively higher reinforcement ratio 
(0.75 - 1.50%), punching occurred with limited yielding of flexural bars (concentrated 
around the column region); for slabs with relatively lower reinforcement ratios (0.22 - 
0.33%), all specimens had reached their plastic plateau when punching occurred (indi-
cated with large plastic deformation) except for slab PG-3 (0.33%) with slab thickness 
of 500 mm that still failed in a brittle manner due to size effect.  
Rizk et al. (2011) reported test results on 10 full-scale two-way slabs with different 
reinforcement ratios (some slabs were made of high-strength concrete). The reinforce-
ment ratio was ranging between 0.40 and 2.68%, consisting of bar diameter between 10 
and 25 mm and rebar spacing between 100 and 250 mm. Similarly as found by Guan-
dalini et al. (2008), some slabs with lowest reinforcement ratio within the series failed in 
a ductile manner indicated by large deformation after overall yield of the flexural rein-
forcement took place. In general, the ductility, defined as the ratio of the deflection at 
ultimate load to the deflection at first yielding of the flexural reinforcement, decreases 
as the reinforcement ratio increases. For example, increasing the reinforcement ratio 
from 0.65% to 1.65% decreased the ductility by 55% and energy absorption by 66% (i.e. 
area below the load-deflection curve).  
More recently, discussion regarding the influence of flexural reinforcement ratio to 
punching capacity was reported by Hawkins and Ospina (2017). They comprehensively 
discussed the limitation of ACI 318-14 (2014) on evaluating the punching capacity for 
the slabs having reinforcement ratio in the immediate vicinity of the column less than 
1% and for slabs having effective depths greater than 250 mm. The latter category would 
be discussed in Section 2.4.3 for size effect. Hawkins and Ospina (2017) reported that 
for some slabs with lower reinforcement ratio found from the database, the measured 
shear stress at failure can be lower than the predicted shear capacity by ACI 318-14 
(flexure-driven punching). This makes the prediction of ACI 318-14 becomes unsafe. In 
order to avoid the occurrence of flexure-driven punching shear issue, the amount of 𝜌𝑓𝑦 
for the slab flexural tension reinforcement within 1.5ℎ of the perimeter of the column or 

concentrated load area should be equal to or greater than (𝑏0𝜆𝑙𝑤√𝑓𝑐𝛼𝑠)960𝑑  for slabs without 
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shear reinforcement, where 𝜌 is the flexural reinforcement ratio, 𝑓𝑐 is the specified con-
crete compressive strength, 𝑓𝑦 is the yield strength of the flexural reinforcement bars, 𝑏0 
is the control perimeter located at 0.5𝑑 from the column face according to ACI 318 
standard, 𝜆𝑙𝑤 is modification factor for lightweight concrete, 𝛼𝑠 is defined in Section 
22.6.5.3 of ACI 318-14 that is taken as 40 for internal, 30 for edge, and 20 for corner 
columns, and 𝑑 is the average flexural effective depth of the slab. 

2.4.3. Influence of size effect 
In materials that exhibit plastic behaviour (like steel), the nominal stress does not change 
when the size of the element is changed and the behaviour can be simply described by 
limit analysis. On the other extreme, for a very brittle material that can be approximated 
by linear fracture mechanics theory, the stress at failure linearly reduces (with slope of 
-12 in double log-scale graph) as the size of the element increases (see Fig. 2-14). Concrete 
is categorised as a quasi-brittle material and lies in between these two extremes. Concrete 
shows brittle behaviour for a very large size but can behave almost like a plastic material 
for a very small size. 
 

 
Figure 2-14. Size effect law (adapted from Fernandez Ruiz and Muttoni, 2017). 
  Image reproduced with permission of the rights holder, Wiley 

 
In concrete, failure occurs progressively where the failure zone propagates across the 
structure, with the energy dissipation localised into the cracking front (Bazant and Cao, 
1987). Size effect is considered as one of many important aspects in designing reinforced 
concrete members that still requires further research. Alarmingly, some codified design 
provisions for punching were derived using test results from scaled-down specimens. 
Consequently, these design provisions may be unsafe when used to design full-scale slabs 
with dimensions commonly found in practice. 
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One of the first pioneering studies investigating the influence of size effect on punching 
was reported by Bazant and Cao (1987). To check the size effect, three reinforced circular 
slabs for each of three different thicknesses (25.4 mm; 50.8 mm; 101.6 mm) were tested 
resulting in 9 specimens in total. The maximum aggregate size was 6.35 mm and maxi-
mum sand size was 1.59 mm. All the slabs were designed to fail in distinct punching 
mode with sufficiently high flexural reinforcement ratio. It was reported that failure of 
all specimens with three different sizes were indicated by a brittle failure with sharp 
peak and gradual softening. Slabs with larger thickness experienced steeper softening 
branch after punching was triggered. By plotting the measured failure load to the size 
(depth) of the specimen, a decreasing shear stress with increasing size is observed but 
milder (weaker) than the prediction of linear fracture mechanics. 
Birkle and Dilger (2008) reported a test campaign consisting of 3 series and 9 slab-
column connections in total. Series 1 considers slabs without shear reinforcement; Series 
2 considers slabs with shear reinforcement designed to fail inside the shear-reinforced 
zone; Series 3 considers slabs with shear reinforcement designed to fail outside the shear-
reinforced zone. Three variations of slab thicknesses were investigated: 160; 230; and 300 
mm. The flexural reinforcement ratio was around 1.1-1.54% to achieve pure punching 
failure prior to reaching a flexural mechanism. The test results reveal a significant de-
crease in shear stress at failure with increasing slab thickness for slabs both with and 
without shear reinforcement. For the series without shear reinforcement, it was found 
that slab with 300 mm thickness only achieved 89% of the nominal resistance calculated 
according to ACI 318-05. This suggests that ACI 318-05 equation which neglects the 
influence of size effect could be unsafe when used for designing thicker slabs. Comparing 
the behaviour of slabs with and without shear reinforcement, it was observed that slabs 
with shear reinforcement showed a smaller decrease of the shear resistance with increas-
ing slab depth (i.e. the size effect still exists but is weaker). This is to be expected 
because in slabs with shear reinforcement, after the critical shear crack opens, load is 
transferred to the shear reinforcement thereby reducing the influence of concrete con-
trolled shear resisting mechanisms.   
Donmez and Bazant (2017) updated their study of the size effect in punching based on 
assessment of an expanded experimental database along with supplemental results from 
finite element analysis undertaken with the microplane model M7 (developed at North-
western University). The database (based on existing ACI 445-C database) that was 
assessed in this study contains 440 tests reported in 60 previous experimental studies 
with square, rectangular, circular, or octagonal simply supported boundaries (isolated). 
The effective depth 𝑑 ranging between 30 and 668 mm; the mean concrete strength 𝑓𝑐 
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ranging between 8 and 118 MPa and longitudinal reinforcement ratio 𝜌 between 0.1 and 
7.3%. Before assessing the database, Donmez and Bazant (2017) did a filtering process 
in order to remove sampling bias and allow a clearer trend to be observed. The filtering 
process was done by removing some data points autonomously (without human inter-
vention) by giving the objective to a computer program to remove outliers in order to 
achieve “the greatest possible reduction of the sum of squared deviations of the size 
interval means of the secondary variables from certain chosen values”. The secondary 
variables may include reinforcement ratio and geometric slab ratio (perimeter of col-
umn/slab effective depth or column dimension/perimeter of column). The filtered data-
base reveals a clearer pattern about the size effect and it was shown that the influence 
of size effect, gives a declining curve that has slightly milder slope than the linear fracture 
mechanics law (− 12). They proposed a size-effect reduction factor to reduce the punching 
capacity as the slab depth increases as: 
 

 
𝜃 = 1

√1 + 𝑑𝑑0
 

(13) 

 
where 𝑑 is the average flexural effective depth of the slab and 𝑑0 is the reference transi-
tional size (empirical, 60 mm according to database regression). This size-effect reduction 
factor was endorsed by ACI Committee 446 (Fracture Mechanics of Concrete). This size-
effect factor provides a relatively good fit to the filtered database. Finite element analysis 
based on microplane model M7 was calibrated and used to perform further parametric 
analysis with varying slab depth. The results from the M7 model also, once again, showed 
good agreement with the proposed size effect factor. 
More discussion regarding the size effect was recently provided by Fernandez Ruiz and 
Muttoni (2017) from the perspective of the critical shear crack theory (CSCT). This 
study describes comprehensively the difference between the influence of size effect on 
simple structure and actual structures with redundancy. It was demonstrated that in 
real structures, redistribution takes place which causes the relationship between shear 
forces and crack width to be nonlinear. Consequently, the size effect influence becomes 
milder than predicted by LFEM. This is especially true for punching where the behaviour 
of slab-column connections failing in punching is highly nonlinear for isolated slabs due 
to the presence of tension stiffening effect and redistribution between radial and tangen-
tial moment. For continuous slabs, nonlinearity also arises from the influence of conti-
nuity which redistributes moment between support (hogging) and mid span (sagging). 
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Thus, it is clear that the behaviour cannot be estimated with LFEM. When tension 
stiffening is considered along with the CSCT failure criterion, a size effect curve is pro-
duced with a slope of − 13 which is realistic since it behaves milder than the LFEM as 
found by Bazant and Cao (1987) and Donmez and Bazant (2017) earlier. 
A short review is given here based on previous test campaign by Guandalini et al. (2009) 
and discussion by Hawkins and Ospina (2017). According to Guandalini et al. (2009), 
the behaviour of half-scale, full-scale and double-scale showed a remarkably different 
behaviour even when the reinforcement ratio was the same for all three. Slab PG-3 
(double scale) with low reinforcement ratio (0.33%) failed in a brittle manner whereas 
slabs PG-5 and PG-8 (around 0.33% reinforcement ratio but full-scale and half-scale 
respectively) failed in a ductile manner (large deformation) with significant rebar yield-
ing was observed before failure. According to discussion by Hawkins and Ospina (2017), 
in order to enhance the safety of ACI 318 provision, shear capacity for slabs with effective 
depths 𝑑 larger than 250 mm should be reduced in proportion to: 
 

 
1.4

√1 + 𝑑250
 (𝑑 𝑖𝑛 𝑚𝑚) (14) 

 

2.4.4. Influence of in-plane forces 
The in-plane forces discussed here are ones introduced externally by a post-tensioned 
system. The contribution of internal self-confinement like compressive membrane action 
(CMA) is discussed in Section 2.4.5 along with continuity.  
Ramos et al. (2011) carried out an experimental campaign at reduced-scale in order to 
investigate punching failure of slabs subject to in-plane forces. The presented test results 
include two series: 1) 6 specimens (AR2 to AR7) tested by Ramos (2003) with reduced 
scale; 2) 7 specimens tested by Regan (1983) with both uniaxial tension and compression 
forces. In general, the test results from these two series reveal several important findings 
(findings 1-3 from Ramos series; 4 from Regan series): 1) the presence of in-plane com-
pression forces reduces strain in flexural bars; 2) the presence of in-plane compressive 
forces delays the beginning of inclined cracking, the crack starts to develop at about 40% 
of the experimental failure load of control specimen AR2 and at around 60-70% of the 
failure of other slabs with in-plane forces; 3) the vertical deflection of slabs with in-plane 
forces are smaller relative to the control specimen since the occurrence of cracking is 
delayed; 4) slabs with in-plane compression forces experienced higher failure loads 
whereas slabs with in-plane tension forces failed at lower loads. 
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More recently, Clement et al. (2014) reported a test campaign consisting of three series 
of 15 full-scale slab tests subject to different loading conditions, including external 
(clamping) in-plane forces, edge-restraint (i.e. providing edge moment) and bonded ten-
dons. The individual test series are briefly described below: 

(1) Series M investigated the influence of external moment (specimens PC1 - PC4) 
(2) Series N investigated the influence on pure in-plane compression forces with no 

eccentricity with 1.25, 2.5 and 5.0 MPa target compressive stress (specimens PC5 
- PC10) 

(3) Series P investigated the influence of bonded post-tensioning tendons that considers 
both in-plane forces and external moment simultaneously (specimens PC11 - PC13). 

 
In addition, slabs PG19 and PG20 were tested as control specimens with no in-plane 
forces. All slabs had dimensions of 3000 mm x 3000 mm with thickness of 250 mm and 
effective depth around 200-210 mm. Two values of tension reinforcement ratios were 
investigated: 0.75 and 1.50%. Details of the test setup, loading procedure, and measure-
ments are given by Clement et al. (2014) so are not presented here.  
Results of the M series reveal that the applied moment (opposite to bending due to 
vertical load) reduced the slab rotations and deflections significantly. Punching strength 
also increased compared to the reference specimen, both for 0.75 and 1.50% reinforce-
ment ratio. For slab series N, the punching capacity was also increased but the rotations 
at failure are more similar to the reference specimen, unlike test series M. From results 
of series P, the behaviour was more similar to slab at series M with external moment 
with an increase of punching capacity and reduction of slab rotation at failure. In general, 
it can be concluded that the presence of bending moment, in-plane force or simultaneous 
action produces a stiffer response that delays opening of flexural cracks thereby increas-
ing punching resistance above that of the control specimen.  

2.4.5. Influence of continuity 
The test series reviewed here include a test on a continuous floor slab system and various 
isolated tests but with modified boundary conditions that attempt to replicate important 
features of actual continuous systems (e.g., with modified edge restraint or with perim-
eter edge beam). 
Taylor and Hayes (1965) attempted to investigate the influence of edge restraint on 22 
plain and reinforced concrete square slabs tested to fail in punching. All slabs measured 
900 mm x 900 mm x 76.2 mm with three different reinforcement ratios: 1) plain (no 
rebar); 2) 1.57%; 3.14%. The effect of horizontal restraint was simulated by placing the 
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slab inside a rigid steel frame. From the test results, it was deduced that edge restraint 
generally increased punching capacity of the tested slab. For slabs that failed relatively 
close to flexural failure, the edge restraint provided around 24-60% increase relative to 
the control specimen. By contrast, specimen that failed much below the flexural capacity 
only achieved 0-16% increase. Taylor and Hayes (1965) further described that punching 
failure can be considered as a shear-compression failure where the governing condition 
is the failure of compression zone. Thus, it was not surprising that providing sufficient 
lateral restraint increases the effective concrete compression zone of concrete to resist 
the shear. 
Chana and Desai (1992b) investigated the influence of compressive membrane action 
(CMA) based on a series consists of 5 full panel specimens with the dimension of 9000 
mm x 9000 mm x 250 mm. The slabs were loaded by equal 8 loading points along the 
distance of 1200 mm radius from the column while simply supported along its outer 
edges. Specimen (FPS1) had no shear reinforcement whereas the remaining specimens 
(FPS2 - FPS5) were reinforced with stirrups. To objectively evaluate the influence of 
CMA, several isolated slab specimens (3000 mm x 3000 mm) tested earlier and reported 
in Chana and Desai (1992a) were compared with the full panel specimens tested in this 
series. The crack width, measured on the slab tension face (radial cracks), in the contin-
uous specimen at the proximity of failure was measured as 0.15 mm compared to the 
isolated pair as 0.3 mm crack. The full panel specimen (continuous) deflected much less 
than the isolated slab showing the benefit of CMA on controlling slab deflection. The 
failure load of the continuous specimen without shear reinforcement (FPS1) was around 
40% greater than that of the isolated slab (Specimen 1). 
Kuang and Morley (1992) reported test results of 12 approximately one-fifth scale square 
reinforced concrete slab specimens that were supported and restrained on all four sides 
by edge beams. All slabs had the span of 1200 mm x 1200 mm whereas the thickness 
was either 40 or 60 mm. Three different reinforcement ratios were used: 0.3; 1.0; 1.6% 
in both directions. The edge beam was designed to behave elastically when the slabs fail 
in punching to provide sufficient edge restraint for the slabs. Beam with three different 
widths were used: 70; 140; 280 mm. It was clearly observed that the punching capacity 
of the slab increased as the degree of edge restraint increased (wider edge beam). The 
increase of punching capacity from 70 to 280 mm edge beam was around 46% for the 40 
mm thick slabs and 64% for the 60 mm thick slabs. Regarding the deflection of the slab, 
smallest deflection was measured for slabs with the widest edge beam. The cracks were 
fine but large in number for a strongly restrained slab whereas the cracks were wider 
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but fewer in number for a weakly restrained slab which indicates that compressive mem-
brane forces play an important role on controlling the cracking of the slabs. 
Gardner and Shao (1996) presented experimental test results for a two-bay-by-two-bay 
flat reinforced concrete slab system with span length of 2743 mm and slab thickness of 
140 mm and effective depth of 120 mm. Two different column shapes were used: square 
and circular. Initial failure was detected at an internal connection followed by subsequent 
failure at edge and corner columns. The failure mode was reported as a combination of 
flexure and shear mode. Surprisingly, Gardner and Shao (1996) concluded that the be-
haviour of continuous specimen can be approximated accurately with the behaviour of 
isolated punching test.  
More recently, Choi and Kim (2012) developed a novel test setup in which edge restraint 
system was used to realistically simulate moment redistribution and boundary conditions 
of a continuous flat slab system. In total, three slab specimens were tested (MRA, MRB, 
MRC) where all parameters were identical except for the proportion of reinforcement 
ratio installed in the support and mid span. All the slabs measured 4200 mm x 4200 mm 
x 152 mm. The effective depths of the end spans and mid spans were about 116 and 121 
mm, respectively. Slab MRA had 65% end span (ES) moment and 35% mid span (MS) 
moment relative to the total static moment; MRB had 50% ES and 50% MS and MRC 
had 35% ES and 65% MS. From the test results, it was observed that there is no clear 
trend of decreasing punching capacity as the reinforcement ratio in the support becomes 
smaller as anticipated by design codes like EC2 (2004). Choi and Kim (2012) concluded 
that this happened because of the positive contribution of moment redistribution. It can 
be explained that the increase of the amount of sagging reinforcement and compressive 
membrane action (self-confining) in specimens tested by Choi and Kim (2012) were suf-
ficient to compensate for the decrease of hogging moment capacity. Consequently, all 
three slabs failed in similar punching capacity, regardless of the percentage of reinforce-
ment ratio installed at the support. 

2.4.6. Influence of reversed-cyclic loading 
In high-seismicity regions, the primary lateral force resisting system of flat slab buildings 
should consist of stiff elements such as a perimeter frame, braced-frame or shear walls. 
Although not designated as the primary lateral resisting system, slab-column connections 
of the flat slab system must be designed to resist the lateral deformation induced by 
earthquakes without losing their capability of carrying the service gravity loads. Conse-
quently, the ductility of slab-column connections is one of the most important parame-
ters to be carefully considered in design. Ductility is defined as the capability of the 



81 
 

connection to undergo significant inelastic deformation prior to punching. It is well 
known that ductility of slab-column connections is significantly affected by the level of 
gravity load applied to the slab, known as the gravity shear ratio (GSR). In general, 
GSR can be defined as the ratio of the shear forces induced by the gravity load to the 
resistance of concrete alone to resist concentric punching (in the absence of moment 
transfer).  
Pan and Moehle (1989) were amongst the first to investigate the influence of GSR on 
slab-column connection behaviour. To achieve this, they collected a database of previous 
tests of slab-column connections (23 slabs in total) subject to reversed-cyclic loading 
(only 5 of them were tested under monotonic lateral loading) without shear reinforce-
ment. From the evaluation of this database, Pan and Moehle (1989) reported that lateral 
drift limit (i.e. taken as lateral drift at peak unbalanced moment) reduces gradually as 
the GSR increases hence also reducing the ductility (see Fig. 2-15(a)). It was reported 
that for specimens having GSR > 0.4, the ductility equals 1 which means that there is 
almost no inelastic deformation observed at failure (see Fig. 2-15(b)). Pan and Moehle 
(1989) recommended to limit the magnitude of gravity loads and lateral inter-storey 
drifts in order to maintain the integrity of slab-column connections during earthquakes. 
For a design purpose, it was suggested to maintain the GSR below 0.4 in order to achieve 
a minimum of 1.5% lateral drift capacity.  
 

 
Figure 2-15. Influence of gravity shear ratio to: (a) lateral drift (%); (b) displace-

ment ductility (reproduced from Pan and Moehle, 1989). 
  Image reproduced with permission of the rights holder, ACI 
 
Megally and Ghali (1994) reported that concrete shear strength under reversed-cyclic 
loading condition is less than the strength under monotonic loading. This is because the 
plastic strain in the reinforcing bars accumulated during successive cycles which hinders 
the cracks in concrete to recover when the loading is reversed. Consequently, cracks 

(a) (b) 
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continue to grow (open wider) as the cycle continues resulting in a reduction of aggregate 
interlock to carry shear between cracked surfaces. This situation is typically worsened 
by the influence of Bauschinger effect whereby the reinforcement bars yield at a lower 
stress that their initial yield strength under cyclic loading.  
Most recent and relevant studies on the influence of reversed-cyclic loading to punching 
was reported by Drakatos et al. (2016). In total, 13 slabs were tested but the discussion 
presented here focuses only on the 5 identical pairs which were tested under both mon-
otonic and reversed-cyclic loading. This allows a direct evaluation of the influence of 
cyclic degradation. In addition, two additional main parameters were investigated: GSR 
and top (tension) flexural reinforcement ratio. The GSR ranged between 0.38 and 0.80 
while the top reinforcement ratio was either 0.75 or 1.50%. All the slabs had dimensions 
of 3000 mm x 3000 mm x 250 mm and were centrally supported on a 390 mm square 
steel plate. From the test results, these main findings were obtained: 1) The influence of 
GSR in general was detrimental as determined previously by Pan and Moehle (1989) 
since it reduces both the unbalanced moment capacity and deformation capacity of slab-
column connections; 2) increasing the amount of flexural reinforcement ratio maintains 
higher lateral stiffness and unbalanced moment capacity (except for specimen with low-
est GSR where the increase of peak moment is almost negligible) but simultaneously 
reducing the deformation capacity (especially for specimen with lowest GSR); 3) regard-
ing the influence of cyclic loading, it was found that all specimens subject to cyclic 
loading failed at lower unbalanced moment and earlier drift level. Interestingly, the de-
gree of reduction is not the same. Slabs with relatively lower GSR and/or lower rein-
forcement ratio were found to be more susceptible to cyclic degradation. 
 

2.5 Mechanical models to predict punching capacity 

In this section, several (selected) mechanical models proposed by previous researchers 
are briefly described. The selection of the presented models was mostly based on its 
relevance to this present study. The system of model classification used here follows the 
one used in fib bulletin 12 “Punching of structural concrete slabs” (2001). Regarding the 
critical shear crack theory (CSCT), only a brief review is presented in this section since 
a detailed discussion regarding its derivation, extension, and development to a closed-
form expression is presented in Section 2.6. 
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2.5.1. Flexural capacity approach 
The punching strength of reinforced concrete slabs was initially either derived from the 
flexural capacity or somehow related to it. Some examples of models belong to this 
category were proposed by Rankin and Long (1987) and Rankin and Long (2018).  
Rankin and Long (1987) proposed a method for predicting the punching strength of 
conventional (isolated) slab-column specimens based on consideration of the various 
modes of failure. Two major failure modes are distinguished (two-phase approach), each 
with its independent capacity: 1) flexure; 2) punching shear. The flexural punching 
strength was assumed to lie in between the yield-line capacity (for slabs with low rein-
forcement ratio) and the load required to cause a localised compression failure near the 
column (for slabs with high reinforcement ratio). The ultimate shear capacity was de-
rived using a semi-empirical relationship. The predicted punching strength is given by 
the lesser of either ultimate flexural or shear capacity. 
Rankin and Long (2018) proposed a modification factor to improve their previous pro-
posal (Rankin and Long, 1987) by taking into account the size effect for slab depth of 
larger than 200 mm. Based on statistical analysis, the size effect factor for flexural mode 
was empirically derived as: 
 

 𝐷𝑓𝑓 = 1.07 ( 𝑑200)−0.10
 (15) 

 
The size effect modifier for the shear mode is given by: 
 

 𝐷𝑓𝑠 = 0.92( 𝑑200)−0.18
 (16) 

 
where 𝑑 is the average flexural effective depth of the slab. By introducing this modifica-
tion factor, the tendency to underestimate the measured punching capacity from the 
previous two-phase model was remedied. Regarding the empirically-based shear capacity, 
additional refinement factor was statistically derived as: 
 

 𝑅𝑓𝑠 = 0.89(𝜌. 𝑓𝑐𝑓𝑦 )−0.05
 (17) 

 
where 𝜌 is the flexural reinforcement ratio (tension), 𝑓𝑐 is the specified concrete com-
pressive strength and 𝑓𝑦 is the yield strength of flexural reinforcement bars. 
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2.5.2. Plasticity approach 
The theory of plasticity has been used to predict an upper-bound punching capacity by 
Nielsen et al. (1978) amongst others. Three basic assumptions are adopted in the plas-
ticity approach: 

(1) Concrete is a perfectly plastic material. 
(2) Failure criterion is governed by Coulomb’s law considering cohesion and friction 

angle. 
(3) Concrete tensile strength is set very low. Optimal results can be achieved by cal-

culating the tensile strength as 1/400 of its compressive strength. 
 
The main concept of the plasticity approach is based on equivalent work between the 
fracture (internal) energy of the conical shell forming at failure with the external work 
done by the applied loads. According to the upper-bound theorem of plasticity, the 
actual failure load cannot be higher than the load calculated with any of the kinemati-
cally admissible mechanisms. Hence, to determine the governing failure load, a mecha-
nism has to be selected that produces the lowest failure load. 
A model based on concrete plasticity was developed originally by Zhang (1997) for beam 
shear problems and then further extended by Hoang (2006) to deal with punching shear 
in slabs without shear reinforcement. The model is referred to as the crack sliding model 
(CSM). According to the CSM, the position of the critical yield line can be determined 
by combining a cracking criterion with a crack sliding criterion. The first criterion serves 
to determine the required load to develop a certain shear crack whereas the second 
criterion is used to evaluate the possibility of having sliding failure in the same crack. If 
the sliding resistance is equal to the cracking load, a shear failure may take place imme-
diately after cracking occurs on the slab. However, if the sliding resistance is higher, it 
suggests that the crack is not critical so failure is not triggered.  
An upper bound to the punching load can be determined by use of the work equation 
by assuming the cracked concrete obeys the modified Coulomb failure criterion and the 
normality condition of plastic theory. The solution is provided by Hoang (2006) as: 
 
 𝑃𝑢 = 𝜋2 𝑣𝑓𝑓𝑐(𝑑0 + 𝑥)[(𝑥2 + ℎ2)0.5 − 𝑥] (18) 

 
where 𝑓𝑐 is the specified uniaxial concrete compressive strength, 𝑑0 is the diameter of 
the support, 𝑥 is the horizontal projection of the conical crack surface, and ℎ is the slab 
thickness (see Fig. 2-16(a)).  
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𝑣𝑓  represents the effectiveness factor which considers the fact that concrete is not per-

fectly rigid-plastic as assumed and it also considers the reduced sliding strength of cracks 
compared to the behaviour of uncracked concrete. The effectiveness factor can be calcu-
lated as: 
 

 𝑣𝑓 = 0.44𝑓𝑐0.5 [1 + 1ℎ0.5] (1 + 26𝜌) (19) 

 
where 𝑓𝑐 is in MPa and ℎ is in metres and 𝜌 is the flexural reinforcement ratio. In the 
case of two-way spanning slab, 𝜌 is calculated as √𝜌𝑥𝜌𝑦 where 𝜌𝑥 and 𝜌𝑦 are the rein-

forcement ratio in x- and y-directions respectively. 
To trigger punching through sliding, an existing crack has to exist prior to failure. Hence, 
the sliding may only take place at the level of load that is sufficient to produce crack. 
The cracking load is calculated assuming the cracking mechanism shown in Fig. 2-16(b) 
where a circumferential shear crack is accompanied by a system of radial flexural cracks 
to ensure a geometrically possible mechanism. The cracking load for this mechanism is 
calculated as: 
 

 𝑃𝑐𝑟 = 2𝜋𝑎 𝑓𝑡𝑒𝑓 [(𝑥2 + ℎ2) (𝑑04 + 𝑥3) + ℎ2 (𝑎2 − 𝑥3)] (20) 

 
where 𝑎 is the shear span (distance from column face to applied load), and 𝑓𝑡𝑒𝑓  is the 

effective plastic tensile strength of concrete which governs the formation of cracking and 
according to Zhang (1997) could be determined as: 
 

 𝑓𝑡𝑒𝑓 = 0.156𝑓𝑐
23  ( ℎ0.1)−0.3

 (21) 

 
Punching failure is assumed to take place when the level of load that is require to pro-
duce crack 𝑃𝑐𝑟 equals to the sliding resistance 𝑃𝑢. This iteration process can be sche-
matically illustrated as in Fig. 2-17. 
From Fig. 2-17, it can be seen that at smaller load in the y-axis, cracking can be formed 
with a steeper angle hence smaller 𝑥 but at this point the sliding resistance is higher, 
hence no failure is triggered. When the load increases to 910 kN, the amount of load 
required to form the crack equals the sliding resistance hence the punching crack is 
triggered with a horizontal projection of conical crack surface at around 600 mm from 
the column face. It is important to remark here that there is an upper and lower bound 
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of the possible value of 𝑥, it cannot be larger than the shear span 𝑎 while cannot be 
smaller than 0.75ℎ according to the lower-bound of internal angle of friction (normality 
condition of plastic theory).  
 

 
Figure 2-16. (a) Punching mechanism in a slab without shear studs according to 

crack sliding model (CSM); (b) Assumed cracking mechanism (repro-
duced from Hoang and Pop, 2016).   

 Image reproduced with permission of the rights holder, ICE Publishing 
 

 
Figure 2-17. Determination of failure point based on sliding resistance and cracking 

load according to CSM for slab PV1 of Lips et al. (2012) (reproduced 
from Hoang and Pop, 2016). 

  Image reproduced with permission of the rights holder, ICE Publishing 

 
 

(a) (b) 
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2.5.3. Control surface approach 
As in the traditional design procedure for reinforced concrete beams, punching shear 
design for flat slabs can also be based on a nominal shear stress (uniform) over a section 
of the member. The nominal shear stress is determined by normalising the load 𝑉  with 
the total length of a specified control perimeter 𝑏0 at a certain distance from the column 
face. This method was initially introduced by Talbot (1913) who found that nominal 
shear strength of square footings centrally loaded by square columns were similar to the 
ultimate shear strength of simple beams without shear reinforcement. The punching 
capacity is usually checked by comparing this nominal shear stress to a shear resistance 
that is traditionally associated to concrete tensile strength. This method has been applied 
widely for many years because of the simplicity and practicality. Even current design 
codes like ACI 318-14 and EC2 (2004) still use design expressions based on this assump-
tion. Differences between code design provisions mostly relate to the position of the 
control perimeter, the shape of the control perimeter (square or rounded edge), and 
parameters considered when estimating the shear resistance. Detailed discussion regard-
ing the application of the control surface in ACI 318-14 and EC2 (2004) is presented in 
Section 2.7. 

2.5.4. Fracture mechanics approach 
As has been explained earlier in the size effect section, according to Bazant and Cao 
(1987), punching failure of reinforced concrete slabs is initiated by cracks which propa-
gate across the structure with energy dissipation localised at the cracking front. The 
most important aspect of punching shear predictions based on fracture mechanics is that 
the nominal stress at failure decreases as the depth of the slab increases. Bazant and 
Cao (1987) proposed a formula to predict the nominal stress at failure as: 
 

 𝑣𝑢 = 𝐶𝑝𝑙 (1 + ℎ𝜆0. 𝑑𝑔)
−12

 (22) 

 
where 𝐶𝑝𝑙 is the value of nominal shear stress calculated according to plastic limit anal-
ysis as: 
 

 𝐶𝑝𝑙 = 𝑘1𝑓𝑐 (1 + 𝑘2 ℎ𝑏𝑝𝑐)  (23) 
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where 𝑘1 and 𝑘2 are empirical constants, ℎ is the slab thickness, 𝑓𝑐 is the specified con-
crete strength, 𝑑𝑔 is the maximum aggregate size, 𝜆0 is an empirical parameter charac-

terising the fracture energy of the material and the shape of the structure, 𝑏𝑝𝑐 is the di-

ameter of assumed punching cone. Evaluation of test database was performed using 
the proposed equation but scatter was very large so that no conclusion could be clearly 
made. 
More recently, Donmez and Bazant (2017) updated this formula on the basis of a sta-
tistical evaluation of a filtered ACI 445 database with 440 tests and also supplemented 
by finite element (FE) analysis using the microplane model M7 developed at North-
western University. For slabs without shear reinforcement, the punching capacity of 
the slabs is expressed as: 
 
 𝑉𝑐 = 𝑏0. 𝑑. 𝑣𝑐 (24) 

 
with 

 
 𝑣𝑐 = 𝑣0. 𝜃 (25) 

 

 𝑣0 = 𝜆𝑙𝑤√𝑓𝑐(100𝜌)0.3 ( 𝑑𝑏𝑐𝑜𝑙)
0.2 ( 𝑐𝑏𝑐𝑜𝑙)

0.4
 (26) 

 

 
𝜃 = 1

√1 + 𝑑𝑑𝑜
 

(27) 

 
where 𝑏0 is the length of the control perimeter according to ACI 318, 𝑑 is the average 
flexural effective depth of the slab, 𝜆𝑙𝑤 is the modifier to take into account lightweight 
concrete, 𝑓𝑐 is the specified concrete strength, 𝜌 is the flexural reinforcement ratio, 𝑏𝑐𝑜𝑙 
is the perimeter of loaded area (column), 𝑐 is the side length (or short edge) of square 
(or rectangular) column or diameter of circular column, 𝜃 is the size effect factor, 𝑑𝑜 is 
the transitional size which equals to materials characteristic lengths time structure shape 
parameters and could be taken as 60 mm based on empirical fitting (database regression). 
The power of 0.2 and 0.4 for 𝑑𝑏 and 𝑐𝑏 respectively were obtained by least-square optimi-
sation of the fit of entire test database.  
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2.5.5. Sector model approach 

2.5.5.1. Kinnunen and Nylander (1960) model 
The derivation of the Kinnunen and Nylander model was based on the test results of 61 
slab-column connections with circular shape supported on circular column. The models 
proposed by Kinnunen and Nylander (1960) can be considered as one of the first yet 
most influential models that attempts to predict punching behaviour based on the slab 
kinematics. This kinematic model predicts the deformation by discretising the structure 
into elements, so-called sector elements. Each of sector element is bounded by radial 
cracks on its sides and in the front by tangential crack (see Fig. 2-18(a)). This sector 
element is assumed to act like a rigid body, supported by a conical shell (see Fig. 2-
19(a)) and it rotates relatively to a centre of rotation located in the root of the shear 
crack (see Fig. 2-19(b)). 
The sector model describes the behaviour of a hogging moment region around the column 
that is isolated from the rest of the slab by the line of radial moment contraflexure as in 
typical isolated laboratory test specimens. Based on their observations of test results, 
the deformation of the slab around the support (bounded by a tangential crack) was 
assumed to be spherical with curvature equal in the tangential and radial directions and 
proportional to the slab rotation 𝜓. On the other hand, the deformed shape of the sector 
element outside the tangential crack was assumed to be a truncated cone with zero radial 
curvature and tangential curvature proportional to the slab rotation and its relative 
distance (radius) from the centre of rotation (see Fig. 2-18(b)). 
 

 
Figure 2-18. (a) Illustration of sector element; (b) Deformation of the sector ele-

ment following the assumption of truncated cone (reproduced from 
Einpaul, 2016). 

  Image reproduced with permission of the rights holder, Jurgen Einpaul (2‐18b) 
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The load-rotation response of the slab (𝑉 − 𝜓) could be determined by solving moment 
equilibrium equation of a sector element, where the tangential and radial moments are 
calculated from the curvatures using non-linear moment-curvature laws. The failure cri-
terion is defined by the ultimate shear expansion of the concrete at the bottom surface 
of the slab at level of strain, 𝜀𝑐 = −1.96‰.  
 

 
Figure 2-19. Illustration of the: (a) compressed conical shell governing the failure; 

(b) assumed axis of rotation at the root of the shear crack (adapted 
from fib bulletin 12, 2001). 

 Image reproduced with permission of the rights holder, fib 

 

2.5.5.2. Tangential Strain Theory (TST) by Broms (2016) 
The tangential strain theory (TST) of Broms (2016) can be considered as an extension 
of the model of Kinnunen and Nylander (1960). The TST treats punching failure simi-
larly to the Kinnunen and Nylander sector model but using the stress and strain that 
was derived based on a generally recognised value (uniaxial compressive test of a con-
crete cylinder). In addition, unlike the Kinnunen and Nylander model, the size effect is 
considered as well as a brittleness factor for higher concrete strength. 

(a) 

(b) 

Compressed conical
shell
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The TST assumes that the shear force applied to the slab is transferred to the column 
through a single compression strut (i.e. running below the shear crack) which squeezes 
an inner part of the slab near to the column vicinity (see Fig. 2-20). Initially, the hori-
zontal force component of this strut is balanced by the reaction force from the inner part. 
However, when the concrete within the inner part reaches “yield level” in compression, 
an increasing part of this squeezing part is anchored back (to maintain horizontal force 
equilibrium) to surrounding concrete which resulting in radial tensile strain around the 
soffit of the slab. This tensile strain reduces the compressive strain at the soffit due to 
bending. Eventually, the radial strain shifts from compression to tension which leads to 
the formation of a tensile crack in the slab soffit. According to the TST, this tensile 
crack initiates punching failure. When this drop of radial strain takes place, the tangen-
tial compressive strain around the column vicinity is assumed to reach a critical value 
hence the failure criterion of TST is based on this critical tangential strain limit. 
 

 
Figure 2-20. Transfer of load between slab and column through a single compres-

sion strut below the critical crack (adapted from Broms, 2016). 
 Image reproduced with permission of the rights holder, ACI 
 
The TST treats the kinematic response of the slab in two different phases. The first 
phase is assumed to govern the behaviour of the slab from the initial load stage to the 
level of load when reinforcement bars close to column vicinity yield. The behaviour of 
slab on this first phase is described using the theory of elasticity. The second phase starts 
after yielding of the bars and continues until the occurrence of failure (either punching 
or flexure). In this second phase, the behaviour is described using the rigid body assump-
tion of the Kinnunen and Nylander (1960) sector model.  
Broms (2016) assumed that generally, it can be assumed that the critical tangential 
strain limit when the radial strain drops to zero is 1.0‰. This critical tangential strain 
is assumed to be valid for a compression zone height of 150 mm. A modification factor 
is provided to take account for the size effect and brittleness of higher strength concrete. 
The final formulation of the tangential strain limit is expressed as: 

Column capital

Inclined compression 
force (strut)

“Squeezing force” 
(horizontal projection)
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 𝜀𝑐𝑝𝑢 = 0.001(𝑥0𝑐𝑥𝑐 )13 (10𝑓𝑐𝑘)
0.1  [𝑀𝑃𝑎] (28) 

 
where 𝜀𝑐𝑝𝑢 is the critical tangential compression strain at the column edge due to the 

bending moment, 𝑥0𝑐 is the reference compression zone height equals 150 mm, 𝑥𝑐 is the 
height of compression zone at linear elastic stress conditions, 𝑓𝑐𝑘 is cylinder compression 
strength of concrete (characteristic value). The chosen exponent (power) of the size effect 
of 13 in Eq. 28 is to take into consideration that the stress distribution of reinforced 
concrete structure is highly nonlinear hence the influence of size effect is milder than the 
one assumed in linear fracture mechanics (12). It is also further described by Broms (2016) 
that the choice of compression zone height as a reference dimension for the size effect is 
a natural consequence of assuming the hypothesis that punching occurs is triggered due 
to the collapse of the concrete compression zone. The step-by-step calculation procedure 
to predict both the punching capacity of the slab and the level of rotation at failure can 
be consulted directly to Broms (2016). The procedure distinguished whether punching 
failure happens before yielding of any reinforcement bars, after partial yielding of flexural 
bars in column vicinity or after full yielding of the bars. 
The method was validated against large number of slab tests from the literature. The 
TST method was found to give reasonably accurate predictions of resistance with aver-
age of measured to predicted punching capacity of 1.08 and coefficient of variation of 
0.09. This level of accuracy is comparable to that of the CSCT (Muttoni, 2008) and EC2 
(2004). The ultimate rotation determined by the TST method is compared to the CSCT 
method for slabs with effective depth of 200 mm in Fig. 2-21. It is interesting to notice 
that TST follows the shape of the CSCT curve reasonably well, indicating the reduction 
of punching capacity as ultimate rotation increases (as for slabs with lower flexural 
reinforcement ratio).  
Further discussion regarding the comparison of TST and CSCT prediction was reported 
by Broms (2016). One of the main difference is that TST assumes that punching failure 
is initiated by the tensile crack at the soffit due to radial decompression whereas the 
CSCT assumes that punching is initiated from initial crack forming at the tension fibre 
which propagates toward the concrete compression zone. Broms raised the issue that 
concrete creep and drying shrinkage increase the rotation but have no effect on punching 
capacity according to experimental observations made by Moe (1961). This observation 
appears at odds with the CSCT which predicts the increase in rotation due to creep to 
reduce punching capacity. One possible explanation for punching resistance not reducing 
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under long-term loading is that creep has little influence on the tensile strain in the 
flexural reinforcement (Mari et al., 2019) and hence critical shear crack width. The in-
crease in depth of the flexural compression zone due to creep is also likely to have a 
beneficial influence on punching resistance. Consequently, some refinements are needed 
to the CSCT failure criterion to make it suitable for assessing the influence of long-term 
loading on punching resistance. 
 

 
Figure 2-21. Predicted punching capacity of TST vs CSCT as a function of ulti-

mate rotation (reproduced from Broms, 2016). 
 Image reproduced with permission of the rights holder, ACI 
 

2.5.5.3. Critical Shear Crack Theory (CSCT) by Muttoni (2008) 
The basis of CSCT is consistent with the original sector model of Kinnunen and Nylander 
(1960) where parts of the slab outside the critical shear crack (sector elements) deform 
like a truncated cone with the punching capacity ultimately dictated by the kinematics 
of the slab. However, the failure criterion used in the CSCT is much simpler than that 
adopted by Kinnunen and Nylander (1960). The CSCT assumes that the shear strength 
of the slab is reduced by the presence of the critical shear crack which propagates through 
the slab into the inclined compression strut that transfers load from the slab to the 
support (see Fig. 2-22(a)). This diagonal crack enforces the formation of an elbow-
shaped strut positioned below the crack in order to keep maintaining the shear transfer 
action (see Fig. 2-22(c)). This elbow-shaped strut requires a horizontal tie at the soffit 
to achieve equilibrium. It is believed that this horizontal tie is responsible for producing 
radial tensile strain at soffit close to the proximity of failure (Muttoni, 2008). 
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The CSCT assumes that the opening of the critical shear crack gradually reduces the 
strength of the inclined compression strut and leads to punching failure. According to 
Muttoni and Schwartz (1991), the width of the critical crack can be assumed to be 
proportional to the product of slab rotation and slab effective depth 𝜓 ∗ 𝑑 (see Fig. 2-
22(b)). The amount of shear that can be transferred through the crack is assumed to 
depend on the crack roughness of the crack hence aggregate size. Based on these several 
assumptions, failure criterion of CSCT relating the shear resistance to crack opening can 
be expressed as: 
 

 
𝑉𝑅𝑏0𝑑√𝑓𝑐

= 0.75
1 + 15 𝜓𝑑𝑑𝑔0 + 𝑑𝑔

 (𝑆𝐼 𝑢𝑛𝑖𝑡𝑠) (29) 

 
where 𝑏0 is the length of the control perimeter taken at 0.5𝑑 from the column face with 
rounded corner, 𝑓𝑐 is the specified concrete compressive strength, 𝑑𝑔0 is the reference 

aggregate size equal to 16 mm and 𝑑𝑔 is the maximum aggregate size (used).  

The criterion was validated against a database of isolated slab-column connections with-
out shear reinforcement as shown in Fig. 2-23. It can be seen in Fig. 2-23 that the 
criterion is in  excellent agreement with the test data with measured to predicted punch-
ing capacity of 1.05 and CoV of 0.16 for slabs with isotropic reinforcement and mean of 
1.03 and CoV of 0.10 for slabs with orthotropic reinforcement (for this scenario the crack 
width was calculated based on the direction with maximum slab rotation). Fig. 2-23 
also shows that the ACI 318-05 predictions is unsafe for slabs failing with a normalised 
rotation (x-axis) larger than 0.1. This category may belong to slab with either low rein-
forcement ratio or large effective depth (size effect). Unlike ACI 318, the CSCT formu-
lation considers the influence of size effect through the crack opening term 𝜓 ∗ 𝑑  which 
gives larger crack openings for thicker slabs at any given slab rotation. 
Implementation of the CSCT requires the load-rotation response as well as the CSCT 
criterion given in Eq. 29. The failure point is defined as the intersection between the 
load-rotation and CSCT resistance curves. Muttoni (2008) proposed an analytical ex-
pression to relate the applied load to slab rotation based on the axis-symmetric sector 
model and either a bilinear or quadrilinear moment-curvature law. The quadrilinear law 
considers: concrete cracking, tension stiffening, and yielding of flexural bars whereas the 
simplified bilinear law only considers the transition to yielding state with no tension 
stiffening (i.e. concrete is assumed to be fully cracked from the initial state). The kine-
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matics of the slab (relationship between slab rotation and tangential and radial curva-
tures) is assumed to follow the original sector model of Kinnunen and Nylander (1960). 
For further details of the load-rotation response the reader is referred to Muttoni (2008). 
 

 
Figure 2-22. (a) Formation of diagonal shear crack disturbing the load transfer 

through compressive strut; (b) opening of crack width as a function 
of slab rotation and effective depth; (c) formation of elbow-shaped 
strut and a horizontal tie triggering tensile radial strain at slab soffit 
(adapted from Muttoni, 2008). 

  Image reproduced with permission of the rights holder, ACI 

 

 
Figure 2-23. Validation of CSCT failure criterion against test results (reproduced 

from Muttoni, 2008). 
 Image reproduced with permission of the rights holder, ACI 
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2.6 Critical shear crack theory (background, extension for various 
design scenarios and development of closed-form design expres-
sion) 

2.6.1. Background of CSCT 
The background of the analytical derivation of CSCT was first provided by Guidotti 
(2010). It was mostly based on the simplified assumption of shape and kinematics of the 
failure surface for slender members. Guidotti (2010) considers the critical shear crack 
(CSC) as a conical surface with an inclination of 45 degree relative to the horizontal 
plane and the centre of rotation is assumed to be located at the tip of the crack (column 
perimeter) and a constant value of shear deformation (see Fig. 2-24(a)). By assuming 
this simplified shape and kinematics, the resistance of a given crack opening is calculated 
based on a numerical integration of aggregate interlock and residual tensile strength 
contribution along the assumed failure surface. A complete resistance curve can be ac-
quired by gradually increasing the crack opening and repeating the integration process. 
This treatment, however, is believed to be mostly applicable to thin and slender slabs 
with medium to low amounts of flexural reinforcement where the opening of the CSC is 
mainly controlled by bending deformation. However, when the depth of the compression 
zone is relatively large (e.g. prestressed slabs or slabs with fairly large reinforcement 
ratio), these assumptions need to be refined. 
Further refinement was proposed by Clement (2012) who considers the CSC to be com-
prise two conical surfaces with different responses. The border between these conical 
surfaces was considered to be given by the height of the plastic compression zone so it 
may consider the influence of prestressing force and flexural reinforcement ratio (see Fig. 
2-24(b)). For the upper conical surface, the behaviour is the same as defined by Guidotti 
(2010) whereas the bottom part is formulated based on limit analysis proposed by 
Braestrup et al. (1976) which takes into account an effective concrete compressive 
strength as a function of the bending deformations. According to Simoes et al. (2018), 
one limitation of the model proposed by Clement (2012) is that it introduces a discon-
tinuous displacement field along the failure surface. 
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Figure 2-24. Mechanical models consistent with the theoretical principles of the 

CSCT proposed by: (a) Guidotti (2010); (b) Clement (2012) (repro-
duced from Simoes et al., 2018). 

 Image reproduced with permission of the rights holder, Wiley 
 
This section reviews the recent work by Simoes et al. (2018) which further develops the 
failure criterion of the CSCT. The model is intended to be applicable to slabs with both 
high and low levels of flexural deformation. The principles of the model proposed by 
Simoes et al. (2018) are outlined in the following bullet points: 

 Primary and secondary tangential cracks due to bending develop in tension side of 
the slab. The kinematics of the slab outside this tangential crack is assumed to 
follow rigid body assumption with zero radial curvature. Spacing between tangen-
tial cracks is assumed to be constant (𝑠𝑓). 

 A critical shear crack (CSC) develops from the tension part of the slab and prop-
agates downward to the compression zone. The critical shear crack consists of two 
main parts: the upper part (discrete crack) where the behaviour is governed by a 
mixed mode opening-sliding (localised cracking) and the bottom part is within the 
compression zone where a shear band exists (smeared crack type B described in 
Section 2.2.2 earlier).  

 The kinematics of the CSC accounts for two components: 1) rotation around the 
centre of rotation due to bending (flexural) deformation; 2) shear deformation rep-
resented by a constant displacement between both faces of the CSC. The behaviour 
is assumed to initially be controlled by the flexure till close to punching failure 
where shear deformations develop.  

(a) (b) 
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 The location of the CSC at the level of flexural reinforcement (𝑟0) is considered to 
be variable.  

 
Fig. 2-25 illustrates the kinematics of CSC assumed by Simoes et al. (2018) along with 
the assumed geometrical parameters and crack types. According to Simoes et al. (2018), 
punching strength can be calculated “on the basis of the capacity of the CSC to transfer 
shear forces, by integration of the internal stresses developed along it based on the 
adopted kinematics and considering suitable fundamental laws for the shear-transfer 
actions”.  
According to the mechanical model of Simoes et al. (2018), the slab is divided into three 
different portions: the inner and outer portions of the slab and a wedge-shaped region 
between them (see Fig. 2-26). The inner part of the slab is assumed to deform in a 
spherical manner whereas the outer part deforms as a rigid body (truncated cone) as 
assumed by Kinnunen and Nylander (1960). The wedge-shaped region (denoted as ”de-
formable body” in Fig. 2-26) is considered as a deformable body whose height is con-
trolled by the depth of neutral axis ensuring compatibility conditions associated with 
the rotations of the slab. The geometry of the CSC is assumed to follow a third-degree 
polynomial allowing different inclination at different elevation of the CSC. One of the 
main assumptions regarding the kinematics of the assumed CSC is that the displacement 
due to bending at the level of top reinforcement bars must be perpendicular (normal) to 
the crack lips. However, Simoes et al. (2018) stated that the punching resistance is not 
very sensitive to the function adopted for the CSC. The distance between the lips of the 
CSC to column axis is allowed to vary between 𝑟𝑐 + 1.5𝑑 and 𝑟𝑐 + 1.75𝑑 with 𝑟𝑐 is the 
radius of the column and 𝑑 is the average flexural effective depth of the slab. This upper- 
and lower-bound were determined based on experimental observations in the saw-cuts 
of tested specimens.  
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Figure 2-25. Hypotheses of the mechanical model and description of potentially 

different phenomenological behaviours and cracking types (reproduced 
from Simoes et al., 2018).  

  Image reproduced with permission of the rights holder, Wiley 
 
Having defined the location of the intersection of the CSC with flexural reinforcement 
(𝑟0) and the shape of the CSC (third-degree polynomial function), the kinematics and 
displacement field along the CSC can be considered. According to Simoes et al. (2018), 
the kinematics of the CSC at punching failure consists of two main components (see Fig. 
2-27): 

1. A flexural deformation defined by a rotation 𝜓𝑐𝑠𝑐  
2. A shear deformation characterized by a sliding 𝛿𝑠 with an angle 𝛾0 with respect to 

the steepest region of the CSC.  
 

 
Figure 2-26. Definition of portions of the slab and description of adopted 

 behaviours (reproduced from Simoes et al., 2018). 
Image reproduced with permission of the rights holder, Wiley 



100 
 

 
Figure 2-27. Definition of displacements: (a) flexural and shear deformations; (b) 

notation (reproduced from Simoes et al., 2018).  
 Image reproduced with permission of the rights holder, Wiley 
 
where: 

 𝑤 refers to a crack opening, that is, displacement normal to the face of the CSC 
  is a displacement parallel to the face of the CSC 
 𝛿 represents a vector sum of the displacements normal and parallel to the face of 

the CSC (resultant of flexural and shear components) 
 𝛾 defines the angle between the face of the CSC and the displacements vector sum 
 𝑢 and 𝑣 are respectively the radial and vertical components projection of 𝛿 
 𝛼 is the angle between the vertical axis and the displacement vector 𝛿 
 
Displacement along the CSC due to flexural component is assumed to be controlled by: 
1) slab rotation and 2) position of the centre of rotation. The centre of rotation is radially 
located at the edge of the column and at the height of the neutral axis associated with 
the tangential bending moment at 𝑟0. The slab rotation developing exclusively within 
the CSC is calculated as the total slab rotation divided by the number of primary tan-
gential flexural cracks. 
Regarding the shear deformation, it is assumed that it is fully localised at the CSC. The 
displacement field is characterised by the total constant displacement 𝛿𝑠 and angle of 
sliding 𝛾𝑠 that is variable due to different inclination along CSC. A lowest angle of dila-
tancy is defined at the edge of the column where the steepest inclination of CSC exists 
and it equals to 27o. Thus, by knowing these two parameters (constant displacement and 
angle of sliding), two corresponding displacements that are parallel and normal to the 
CSC can be computed. Finally, the final displacement profile along the CSC can be 

(a) (b) 
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computed by adding the parallel and normal crack displacement from flexural and shear 
components. 
Knowing the displacement profile along the CSC, internal stresses developing along the 
CSC can be computed using prescribed constitutive laws governing the shear transfer 
actions. To be consistent with the earlier definition regarding the crack zone, different 
phenomenological responses occur along the CSC. The zone in the tension side (above 
the neutral axis) behaves in a mixed-mode opening-sliding response due to the develop-
ment of a discrete crack whereas the compression side behaves as a shear band (smeared 
crack) whose behaviour is governed by the multi-axial stress states. 
In the region of the CSC where deformation is localised in a single crack (opening-sliding 
mixed-mode behaviour), it is assumed that the shear resistance is provided by the resid-
ual tensile strength and aggregate interlock stresses. Displacement profile (opening and 
sliding) defined earlier is used to compute the residual tensile stress, normal and shear 
stresses from aggregate interlock at each point along this single crack region. Total shear 
resistance contributed from this single crack can be then computed by integrating the 
stresses along this region. 
In the region where shear band behaviour exists, the resistance is determined based on 
the multi-axial stress state within the band. The width of the band is considered to be 
related to the size of the aggregate. When analyzing the behaviour of a concrete panel 
representing an element of shear band, two distinct effects have to be considered: 1) the 
favourable effect of a potential tangential compression on the peak compressive strength 
and deformation capacity; 2) the potential unfavourable influence of the transverse ten-
sile strain. A simplified manner was used by Simoes et al. (2018) to take into account of 
1) by increasing the peak compressive strength of concrete due to confining effect by the 
factor of 1.1. To take into account 2), the compressive strength of concrete is assumed 
to be gradually weaken as the transverse tensile strain increases. The stress-strain curve 
is also updated to follow a softer response while transverse tensile strain exists. Normal 
and shear stresses parallel to the axis of the shear band are calculated as a function of 
the principal compressive stress in the smeared cracking region (considering the influence 
of 1) and 2)) and the principal directions of deformations. In addition to the shear re-
sistance carried by the discrete and smeared (shear band) regions, the contribution of 
dowel action is also considered in the model of Simoes et al. (2018).  
Finally, the punching capacity of the slab is calculated by summing the contribution of 
shear resistance along the CSC (discrete and smeared crack) that is parallel to the ver-
tical z-axis plus the contribution from the dowel action. Each point of the resistance 
curve is numerically determined by assuming a certain value of slab rotation 𝜓 while 
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iterating the constant shear deformation 𝛿𝑠 in order to maximise the calculated shear 
resistance. As in Muttoni (2008), failure point then could be determined by intersecting 
the load-rotation response of the slab by this total shear resistance contributed from 
smeared and discrete cracks along CSC and dowel action.  
In general, the contribution of each components of shear resisting mechanism is affected 
by various geometrical and material parameters. For example, when concrete strength 
increases, the reduction of normalised shear resistance (defined as 𝑉𝑅𝑏0.𝑑.√𝑓𝑐 where 𝑉𝑅 is 

the shear resistance) is mainly due to the decrease of shear resistance contributed from 
the smeared cracking region. This is because the brittleness effect becomes dominant for 
higher strength concrete leading to an increased stress gradient along the CSC at failure. 
Conversely, for slabs with higher flexural reinforcement ratios, the contribution of the 
smeared cracking region increases at higher rate than the localised cracking due to larger 
extent of the region with smeared cracking behaviour. In general, the contribution of 
dowel action is low because the flexural bars around the critical shear crack are already 
yielding when punching occurs. Consequently, only for slabs with very small rotation 
(compact member) or members with sufficiently high reinforcement ratio show observa-
ble contribution from the dowel action. 
Fig. 2-28(a) shows shear resistances plotted against for resistances predicted using the 
refined model by Simoes et al. (2018) (shown as dots representing 133 numerical results), 
Muttoni (2008) (denoted as “hyperbolic failure criterion”) and the power-law expression 
given by Eq. 30. The power-law expression is discussed in Section 2.6.3 which describes 
the development of a closed-form design expression for the CSCT. 
 

 𝑉𝑅𝑏0. 𝑑. √𝑓𝑐
= 0.55( 𝑑𝑑𝑔25. 𝜓. 𝑑)23  ≤ 0.55 (30) 

 
where 𝑑𝑑𝑔 represents the reference value of roughness of the failure surface that is calcu-

lated as: 
 

 𝑑𝑑𝑔 = 16 + 𝑑𝑔. min ((60𝑓𝑐)
2 , 1) ≤ 40 𝑚𝑚 (31) 

 
where 𝑑𝑔 is the maximum aggregate size (used) and 𝑓𝑐 is the specified concrete compres-

sive strength.  
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Figure 2-28. (a) Comparison of different CSCT approaches to predict slab punch-

ing capacity; (b) relationship between slab rotation and crack opening 
(reproduced from Simoes et al., 2018). 

 Image reproduced with permission of the rights holder, Wiley 
 
From Fig. 2-28(a), it could be seen that both the hyperbolic and power-law failure 
criteria are in excellent agreement with the predicted numerical results acquired using 
the refined CSCT model of Simoes et al. (2018). Finally, the simplified assumption made 
by Muttoni (2008) regarding the relationship between crack opening and relationship 
was also validated based on the more refined model of Simoes et al. (2018) and the 
results are presented in Fig. 2-28(b). It can be seen from Fig. 2-28(b) that there is, 
once again, a good correlation between the simplified assumption of Muttoni (2008) and 
the predicted crack opening based on refined model of Simoes et al. (2018). 

2.6.2. Extension of the CSCT method 
The CSCT has been used to assess numerous punching scenarios but discussion here is 
limited to i) the non-axis-symmetric punching scenario considered by Sagaseta et al. 
(2011) and ii) the eccentric loading scenario considered by Drakatos et al. (2018). These 
two selected studies were deemed to be most relevant to current study.  

2.6.2.1. Non-axis-symmetric punching scenario (Sagaseta et al., 2011) 

Under axis-symmetric loading, the slab behaves in axisymmetric fashion so that both 
the slab rotation along the tangential axis of each sector element and its corresponding 
shear stress are uniform. However, as pointed out by Sagaseta et al. (2011), in practice, 
there are many instances where loading, geometry and reinforcement around internal 

(a) (b) 
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columns differ significantly from this ideal axisymmetric assumption. In order to realis-
tically model non-axis-symmetric punching, non-uniform rotation and shear stress along 
the control perimeter must be explicitly considered. The main novelty of the method 
proposed by Sagaseta et al. (2011) is that it allows sector elements failing in shear to 
redistribute shear to adjacent sector elements yet to fail resulting in higher punching 
capacity than the maximum rotation assumption of Muttoni (2008). 
To study the behaviour of slabs failing in non-symmetric punching, Sagaseta et al. (2011) 
performed several tests on slabs with different flexural reinforcement ratios in each or-
thogonal direction (𝜌𝑥 ≠ 𝜌𝑦). From their test results, it was found that, at failure, slab 

rotation for slabs with non-symmetric reinforcement is different for each orthogonal di-
rection, especially for slabs with lower reinforcement ratios. From the saw-cut of these 
slabs, it was observed that the crack patterns were strongly non-symmetrical. The incli-
nation of the critical shear crack was steeper (close to 45o) for the direction with lower 
reinforcement ratio whereas the stiffer direction (with higher reinforcement ratio) had a 
shallower critical shear crack with an angle of around 25o. This experimental observation 
persuaded Sagaseta et al. (2011) that punching shear in slabs with orthotropic reinforce-
ment cannot be physically treated in axisymmetric fashion. The most realistic approach 
of Sagaseta et al. (2011) is to explicitly consider individual slab sector rotations along 
the control perimeter (coupled - denoted as “refined method”). However, as shown by 
Sagaseta et al. (2011) this procedure can be simplified, without losing substantial accu-
racy, by treating the slab rotation in x- and y-directions individually (uncoupled - de-
noted as “simplified method”).  
According to the main assumption of CSCT, shear resistance is controlled by crack 
opening which is directly related to slab rotation. Hence, for slabs with non-uniform slab 
rotation (as in slabs with non-equal reinforcement ratio), the resistance will also vary 
along the control perimeter. For example, some parts of the control perimeter where the 
slab sector rotation is smaller would have larger shear resistance and vice versa. Conse-
quently, even if shear stress is assumed to be uniform (although in reality the shear 
stress is most likely to be non-uniform as well), the sector with larger rotation will fail 
earlier due to smaller shear resistance while the other sector elements with smaller rota-
tion would still possess some reserve strength before failure occurs. This leads to soften-
ing of shear resistance at failing sector (section A) while redistributing the shear stresses 
internally to adjacent sectors resulting in a faster increase of shear stress (section B), 
until another sector failure happens (see Fig. 2-29). This so-called shear redistribution 
allows the slab-column connection to achieve higher punching and deformation capacity 
than the axisymmetric assumption with maximum slab rotation (Muttoni, 2008).  
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Figure 2-29. Shear stress redistribution from segments of the control perimeter 

with largest slab rotations (shear softening) to segments with lowest 
slab rotations (increase in shear) (reproduced from Sagaseta et al., 
2011). 

 Image reproduced with permission of the rights holder, ICE Publishing 
 
According to Sagaseta et al. (2011), in this scenario, the punching strength can be de-
termined by integrating the nominal strength along the control perimeter as expressed 
below: 
 

 𝑉𝑅 = ∮ 𝑣𝑅(𝑠) 𝑑𝑠𝑐𝑝
 (32) 

 
with 

 

 𝑣𝑅(𝑠) = 0.75(𝑑. 𝑓𝑐
12)

1 + 15 [ 𝜓(𝑠). 𝑑𝑑𝑔0 + 𝑑𝑔]
 (33) 

 
where 𝑣𝑅(𝑠) is the shear resistance per unit length and 𝜓(𝑠) is the slab rotation for cor-

responding sector element (different rotation for each sector along the control perimeter). 
The most straight-forward way to obtain the varying rotation along the control perim-
eter is through the use of FEA from which nodal rotations can be extracted at several 
points along the control perimeter. Manual discretisation is required to determine the 
length of each segment and representative coordinate of point where slab rotation is 
measured for each segment.  
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To provide a further simplification, Sagaseta et al. (2011) proposed to fully uncouple the 
calculation of shear resistance for the x- and y-directions. This was done by dividing the 
control perimeter into four segments - two segments for each orthogonal direction (see 
Fig. 2-30. 
 

 
Figure 2-30. Simplified discretisation of control perimeter into x-y segments; dis-

tribution of nominal shear strength and general notation (reproduced 
from Sagaseta et al., 2011). 

 Image reproduced with permission of the rights holder, ICE Publishing  
 
Based on this simple discretisation, the punching resistance can be calculated as the 
summation of shear resistance for each direction, proportional to the length of each 
segment to the total length of the control perimeter as: 
 

 𝑉𝑅 = 𝑣𝑅𝑥𝑏𝑥 + 𝑣𝑅𝑦𝑏𝑦 = 𝑉𝑅𝑥𝑏0 𝑏𝑥 + 𝑉𝑅𝑦𝑏0 𝑏𝑦 (34) 

 
where 𝑉𝑅𝑥 and 𝑉𝑅𝑦 are punching resistance calculated according to CSCT resistance 

curve of Muttoni (2008) based on 𝜓𝑥 and 𝜓𝑦 respectively and 𝑏𝑥 and 𝑏𝑦 are the length 

of control perimeter belongs to x- and y-directions respectively. Parameters 𝜓𝑥 and 𝜓𝑦 
are slab rotations measured individually along the x- and y-directions respectively. The 
total length of 𝑏𝑥 and 𝑏𝑦 can be generally taken as half of the rounded arc (𝜃𝑙𝑖𝑚𝑖𝑡 = 45o 

shown in Fig. 2-30). 
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2.6.2.2. Eccentric punching scenario (Drakatos et al., 2018) 
Drakatos et al. (2018) extended the CSCT to consider punching under eccentric loading 
for both for monotonic and cyclic loading. The model of Drakatos et al. considers three 
load-transfer actions between slab and column subject to unbalanced moment: eccentric 
shear, flexure, and torsion. Muttoni’s (2008) quadrilinear load-rotation response was 
modified to include the variation of slab sector rotation along the tangential axis under 
unbalanced moment. To take into account the contribution of slab rotation outside the 
contraflexure region (outside 0.22𝐿 where 𝐿 is the distance between adjacent column 
centreline), an effective beam width model is used. Further detail regarding the effective 
beam width model can be found in Drakatos et al. (2018) so are not described here.  
In order to build a complete moment-rotation response of a slab-column connection 
within the 0.22𝐿 region, the slab is firstly divided into an even number 𝑛𝑠 of sector 
elements and the region inside the shear crack. For concentric punching, the state can 
be idealised as axisymmetric hence the formulation of equilibrium can be reduced to only 
one sector element (Muttoni, 2008). However, for slabs subject to unbalanced moment, 
rotation of sector elements along the tangential axis is no longer uniform hence both 
local and global equilibrium formulations are required by considering internal forces on 
each sector element across the entire slab. Local equilibrium is formulated first for a 
sector element and then followed by global equilibrium for the entire slab.  
Based on experimental observations, the rotation of sector elements is assumed to vary 
sinusoidally with minimum and maximum sector rotations occurring in the sagging-half 
and hogging-half of the slab respectively. Using this assumption, the rotation of each 
individual sector element can be expressed in terms of angle 𝜑 as: 
 

 𝜓(𝜑) = 𝜓𝑚𝑎𝑥 + 𝜓𝑚𝑖𝑛2 + 𝜓𝑚𝑎𝑥 − 𝜓𝑚𝑖𝑛2 sin (𝜑) (35) 

 
where 𝜓𝑚𝑎𝑥 is the maximum slab rotation for 𝜑 = 𝜋2 and 𝜓𝑚𝑖𝑛 is the minimum slab ro-
tation for 𝜑 = 3𝜋2 . Additionally, based on experimental observations, Drakatos et al. 
(2018) assume that the distance of the tangential crack (critical shear crack) to column 
axis 𝑟0 equals: 
 
 𝑟0 = 𝑒𝑢 ≥ 𝑟𝑐 + 𝑑 (36) 

  
where 𝑒𝑢 is the level of eccentricity calculated as the ratio of applied unbalanced moment 
and shear forces (𝑒𝑢 = 𝑀/𝑉 ), 𝑟𝑐 is the column radius and 𝑑 is the average slab effective 
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depth. This assumption leads to the distance of the critical crack (region with spherical 
behaviour) from the column increasing with eccentricity.  
The internal forces for a sector element are shown in Fig. 2-31. Drakatos et al. (2018) 
further assumes that: 1) no shear transfer occurs between adjacent sector elements; 2) 
torsional moment on each side of the sector elements 𝑀𝑡𝑜𝑟 2  is also neglected.  
 

 
Figure 2-31. Internal forces acting on different slab elements: (a) outside critical 

shear crack (hogging slab half); (b) inside critical shear crack (repro-
duced from Drakatos et al., 2018). 

 Image reproduced with permission of the rights holder, ACI 
 
Parameters 𝑀𝑡𝑎𝑛(𝜑 − 𝛥𝜑2 ) and 𝑀𝑡𝑎𝑛(𝜑 + 𝛥𝜑2 ) are the integrals of the tangential mo-
ments at the faces of each sector element. This integration can be performed numerically 
as proposed by Einpaul (2016) or analytically as proposed by Muttoni (2008) using 
quadrilinear moment-curvature law. It is important to point out that when performing 
the integration of tangential moments, the value of slab rotation 𝜓 for each sector ele-
ment varies as a function of 𝜑 and the radius of the critical shear crack 𝑟0 also varies 
for different level of eccentricity (i.e. particularly relevant for loading scenario where 
shear forces are constant but eccentricity is increasing hence different value of 𝑟0 may 
be used at different load stages). The integral of radial moment for a sector element at 
angle 𝜑 and 𝑟 = 𝑟0 can be expressed as: 
 
 𝑀𝑟𝑎𝑑(𝜑, 𝑟0) = 𝑚𝑟(𝜑)𝑟0𝛥𝜑 (37) 

 

(a) (b) 
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where 𝑚𝑟(𝜑) is the radial moment per unit width at 𝑟 = 𝑟0 as a function of the radial 
curvature.  
If 𝜑𝑖 is the angle formed between the axis of bending and the bisector of the 𝑖-th sector 
element, the shear force carried by this sector element can be derived based on moment 
equilibrium in the radial direction with respect to the centre of the column with radius 
𝑟𝑐 as: 
 

 
𝛥𝑉𝑖 = 1𝑟𝑞 − 𝑟𝑐 {𝑀𝑟𝑎𝑑(𝜑𝑖, 𝑟0) − 𝑀𝑟𝑎𝑑(𝜑𝑖, 𝑟𝑠)

+ [𝑀𝑡𝑎𝑛 (𝜑𝑖 + 𝛥𝜑2 ) + 𝑀𝑡𝑎𝑛 (𝜑𝑖 − 𝛥𝜑2 )] sin (𝛥𝜑2 } 
(38) 

 
where 𝑟𝑞 is the radius of the applied load from the centre of the column and 𝑟𝑠 is the 

radius of contraflexure line from the centre of the column. In addition, the moment 
equilibrium in tangential direction of individual sector element gives the torsional mo-
ment that is carried by individual sector as: 
 

 
𝑀𝑡𝑜𝑟(𝜑𝑖, 𝑟0) = [𝑀𝑡𝑎𝑛 (𝜑𝑖 + 𝛥𝜑2 ) − 𝑀𝑡𝑎𝑛 (𝜑𝑖 − 𝛥𝜑2 )] cos(𝛥𝜑2 )

+ 𝑀𝑡𝑜𝑟(𝜑𝑖, 𝑟𝑠) (39) 

 
where 𝑀𝑟𝑎𝑑(𝜑𝑖, 𝑟𝑠) and 𝑀𝑡𝑜𝑟(𝜑𝑖, 𝑟𝑠) are radial and torsional moments at the perimeter 
of each sector element and are obtained using an effective beam width method for con-
tinuous specimen or taken as zero for isolated slab-column connections. After obtaining 
the shear force and torsional moment carried by individual sector element, global equi-
librium of entire slab can be determined. Firstly, the equilibrium of shear forces at load 
step 𝑘 at the column edge can be formulated as: 
 

 𝑉𝑘 = ∑𝛥𝑉𝑖
𝑛

𝑖=1
 (40) 

 
and moment equilibrium at the column edge gives the total acting moment on the con-
nection (parallel to the unbalanced moment) for the load step 𝑘 is expressed as: 
 

 𝑀𝑘 = ∑[𝑀𝑟𝑎𝑑(𝜑𝑖, 𝑟0) sin(𝜑𝑖) + 𝑀𝑡𝑜𝑟(𝜑𝑖, 𝑟0) cos(𝜑𝑖) + 𝛥𝑉𝑖𝑟𝑐sin (𝜑𝑖)] 𝑛
𝑖=1

 (41) 
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The three terms of Eq. 41 indicates the contribution of flexure, torsion, and eccentric 
shear for to the unbalanced moment, respectively.  
The following step-by-step procedure is required to build a complete moment-rotation 
response that fulfills both local and global forces equilibrium: 

1. For each load step 𝑘, pick a certain value of maximum sector rotation 𝜓𝑚𝑎𝑥 
2. For this given maximum rotation, assume an initial arbitrary rotation 𝜓𝑚𝑖𝑛 ≤𝜓𝑚𝑎𝑥 
3. Discretise the slab into 𝑛𝑠 number sector elements and determine the rotation of 

each sector element in terms of 𝜓𝑚𝑎𝑥 and 𝜓𝑚𝑖𝑛 using Eq. 35 
4. For the initial load stage, estimate 𝑟0 = 𝑟𝑐 + 𝑑 but it can be updated later as ec-

centricity increases 
5. Calculate shear force and torsional moment at each sector element using Eq. 38 

and 39 respectively 
6. Check the equilibrium of vertical force and moment using Eq. 40 and 41 respec-

tively. The total vertical forces from all sector elements must be equal to the total 
applied vertical load (𝑉 ) whereas the internal moment must equal to the applied 
external unbalanced moment (𝑀 = 𝑉 . 𝑒𝑢). 

7. If both equilibrium conditions in step 6 are not fulfilled, update the value of 𝜓𝑚𝑖𝑛 
from step 2 and redo step 3-6 until equilibrium conditions are fulfilled. 

8. Calculate the relative slab-column rotation 𝜓𝑠𝑐𝑐 as: 
 

 𝜓𝑠𝑐𝑐 = 𝜓𝑚𝑎𝑥 − 𝜓𝑚𝑖𝑛2  (42) 

 
9. Continue to the next step 𝑘 + 𝑖 with larger value of 𝜓𝑚𝑎𝑥 and update parameter 

𝑟0 (largest between 𝑟𝑐 + 𝑑 and 𝑒). 
 
After obtaining the complete moment-rotation response, the remaining task is to deter-
mine the failure point based on the CSCT. According to the eccentric model of Drakatos 
et al. (2018), failure scenarios for monotonic and reversed-cyclic loading are distinguished 
based on the contribution of shear redistribution.  
For monotonic loading scenario, it is assumed that failure occurs when the sum of the 
shear forces acting on the sector elements in the hogging slab half (0 ≤ 𝜑 ≤ 𝜋) equals 
the sum of the resistances of the sector elements calculated as: 
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 𝑉𝑅,𝑚𝑜𝑛𝑜 = ∫ 𝑣𝑅(𝜑)(𝑟𝑐 + 𝑑2 (𝜑)𝜋
0

) 𝑑𝜑 (43) 

 
with 

 

 𝑣𝑅(𝜑) = 0.75 𝑑(𝜑)√𝑓𝑐
1 + 15𝜓(𝜑)𝑑(𝜑)𝑑𝑔0 + 𝑑𝑔

 (44) 

 
where 𝑟𝑐 is the nominal column radius for shear calculation which for square columns is 
adjusted to give the same perimeter that is 𝑟𝑐 = 2𝑐𝜋  where 𝑐 is the side length of the 
square column and 𝑣𝑅(𝜑) is the shear resistance per unit length in MN/m. Note that 
the effective depth is also expressed as a function of 𝜑 but for simplification, it can be 
taken as the average effective depth value for all sector elements. 
For cyclic loading scenario, it is assumed that the shear redistribution contribution is 
neglected. This is considered reasonable because under the influence of cyclic loading, 
plastic rebar strain accumulates which leads to an increase in crack opening with each 
cycle. To consider this scenario, Drakatos et al. (2018) assumes that punching under 
cyclic loading is governed by the failure of the single sector element subject to larger 
sector rotation at 𝜑 = 𝜋2. The shear resistance of sector element with maximum sector 
rotation could be determined as: 
 

 𝑉𝑅,𝑐𝑦𝑐 = 0.75. 𝑏0(𝛥𝜑)𝑑(𝜋2)√𝑓𝑐
1 + 15𝜓𝑚𝑎𝑥. 𝑑(𝜋2)𝑑𝑔0 + 𝑑𝑔

 (45) 

 
where 𝑏0(𝛥𝜑) is the length of the control perimeter belongs to the sector element with 
maximum rotation. 

2.6.3. Development of closed-form design expression based on CSCT 
Recently, Muttoni et al. (2018) proposed a closed-form design expression based on the 
CSCT. The main objective was to provide a simple design expression based on CSCT 
similar to the existing empirical formulations in ACI 318 and EC2 (2004). This recent 
development of closed-form expression is one step forward from the implementation of 
CSCT in Model Code 2010 (2013). As will be discussed later, although Model Code 2010 
offers several level of approximation to estimate the punching capacity, only LoA I can 
be used in a straight-forward manner whereas LoA II, III, and IV requires an iterative 
solution procedure and even finite element analysis (linear for LoA III and nonlinear for 
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LoA IV). Although simple to implement, LoA I can be very conservative as shown in 
Chapter 5 of this thesis. Conversely, the closed-form design expression is shown in 
Chapter 5 to be both simple to use and of comparable accuracy to LoA III and LoA IV. 
To facilitate the solving of the equations of the CSCT, Muttoni et al. (2018) expressed 
the original hyperbolic failure criterion in terms of the following power-law function 
which is applicable to both slender and compact members. 
 

 𝑉𝑅𝑐 = 𝑉𝑅𝑐,0. ( 𝑑𝑑𝑔25𝜓𝑑)23  ≤  𝑉𝑅𝑐,0  (46) 

 
where 𝑉𝑅𝑐,0 is the maximum achievable punching strength that was derived based on 

limit analysis (i.e. considering concrete as plastic material that is reduced by a global 
effectiveness factor). The comparison of the hyperbolic and power-law curves is shown 
in Fig. 2-28(a).  
The load-rotation response of a slab can be expressed in a parabolic form as: 
 

 𝜓 = 𝑘𝑚. 𝑟𝑠𝑑 . 𝑓𝑦𝐸𝑠 (𝑚𝑠𝑚𝑅)3/2
 (47) 

 
where 𝑟𝑠 refers to the distance between the axis of the supported area and the line of 
contraflexure, 𝑓𝑦 is the yield strength of flexural reinforcement bars, 𝐸𝑠 is Young’s mod-

ulus of reinforcement bars, 𝑚𝑠 is the average acting bending moment in the support 
strip, 𝑚𝑅 is the average moment capacity in the support strip, and 𝑘𝑚 is a factor whose 
value depends on the level of refinement used to estimate the acting bending moment 
(value of 1.2 for refined analsysis or 1.5 otherwise given according to MC2010). To de-
velop a closed-form expression, the load-rotation response of Eq. 47 is equated to the 
CSCT power-law curve in Eq. 46 assuming that 𝑚𝑠𝑚𝑅 = 𝑉𝑅𝑐𝑉𝑓𝑙𝑒𝑥. This gives: 

 

 𝑉𝑅𝑐 = 𝑉𝑅𝑐,0. (𝑉𝑓𝑙𝑒𝑥𝑉𝑅𝑐 ) ( 𝑑𝑑𝑔25. 𝑘𝑚. 𝑑 . 𝑑𝑟𝑠 . 𝐸𝑠𝑓𝑦 )23 ≤  𝑉𝑅𝑐,0 (48) 

 
which leads to: 
 

 𝑉𝑅𝑐 = √𝑉𝑅𝑐,0. 𝑉𝑓𝑙𝑒𝑥. ( 𝑑𝑑𝑔25. 𝑘𝑚. 𝑟𝑠 . 𝐸𝑠𝑓𝑦 )13 ≤ 𝑉𝑅𝑐,0 (49) 
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where 𝑉𝑓𝑙𝑒𝑥 is shear force associated with full yielding of all radial and tangential flexural 

reinforcement. For design purpose, the calculation of 𝑉𝑓𝑙𝑒𝑥 can be simplified assuming a 

simple relationship between the flexural strength and moment capacity as: 
 
 𝑉𝑓𝑙𝑒𝑥 = 𝑎.𝑚𝑅 (50) 

 
where 𝑎 is a coefficient relating the flexural strength to sectional moment capacity which 
can be taken as 8 for internal slab-column connections. 𝑚𝑅 can be calculated as: 
 

 𝑚𝑅 = 𝑑2. 𝜌. 𝑓𝑦. (1 − 𝜌. 𝑓𝑦2. 𝑓𝑐𝑝) (51) 

 
where 𝜌 is the top reinforcement ratio and 𝑓𝑐𝑝 refers to the plastic compressive strength 

of concrete in uniaxial compression that can be calculated as 𝑓𝑐𝑝 = 𝑓𝑐(30𝑓𝑐)13 ≤  𝑓𝑐. Mo-

ment resistance 𝑚𝑅 could be further simplified as: 
 
 𝑚𝑅 = 𝑘1. 𝑑2. (𝜌. 𝑓𝑦)𝑘2. 𝑓𝑐1−𝑘2 (52) 

 
with 𝑘1 = 0.75 and 𝑘2 = 0.9. Combining the expressions given in Eq. 50 and 52, the 
flexural strength can be further simplified as: 
 
 𝑉𝑓𝑙𝑒𝑥 = 𝑎. 0.75. 𝑑2. 𝜌0.9. 𝑓𝑦0.9. 𝑓𝑐0.1 (53) 

 
Furthermore, by replacing Eq. 53 into 49 yields: 
 

 

𝑉𝑅𝑐𝑏0. 𝑑 = (0.55 . 0.75)0.5. 𝑏0−0.5. 𝑑0.5. 𝑓𝑐0.25𝑎0.5(𝜌. 𝑓𝑦)0.45 

. 𝑓𝑐0.05. (25. 𝑘𝑚. 𝑓𝑦)−13. (𝑑𝑑𝑔𝑟𝑠 . 𝐸𝑠)1/3 ≤ 0.55√𝑓𝑐 
(54) 

 
which eventually leads to: 
 

 𝑉𝑅𝑐𝑏0. 𝑑 = 𝑘3√𝑎. 𝑑𝑏0 . (𝐸𝑠. 𝜌. 𝑓𝑐. 𝑑𝑑𝑔𝑟𝑠 )13 ≤ 0.55√𝑓𝑐 (55) 

 
with 𝑘3 can be approximated as 0.225 and by considering 𝐸𝑠 = 200,000 MPa, Eq. 55 
can be finally written as: 
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 𝑉𝑅𝑐 = 𝑘𝑏. (100𝜌. 𝑓𝑐. 𝑑𝑑𝑔𝑟𝑠 )13 . 𝑏0. 𝑑 ≤ 0.55. 𝑏0. 𝑑. √𝑓𝑐 (56) 

 
where the coefficient 𝑘𝑏 can be computed as: 
 

 𝑘𝑏 = √8. 𝑎. 𝑑𝑏0 ≥ 1.0 (57) 

 
Parameter 𝑘𝑏 takes into account the effective depth-to-control perimeter ratio as well as 
parameter 𝑎. The effect of 𝑘𝑏 is to enhance the unitary shear strength for small column 
sizes and to decrease it for large column sizes. Further modifications of the closed-form 
expression shown in Eq. 56 for: 1) compact slabs take into account the flexure-shear 
interaction which reduces the flexural strength; 2) continuous slabs with the contribution 
of continuity and compressive membrane action are provided and can be directly con-
sulted to Muttoni et al. (2018). 
This closed-form expression has been validated against wide range of test results from 
database by Muttoni et al. (2018) and it was shown that it produces an excellent agree-
ment for both slender and squat members without transverse reinforcement. More im-
portantly, the influence of different mechanical and geometrical properties is shown to 
be consistently considered by the proposed expressions. This strongly suggests that alt-
hough the closed-form expression seems to be mathematically simple (even it is now 
more similar to the expression of typical empirically-based models), it still does not “lose” 
its rationality. 
 

2.7 Design codes 

In this last section, punching provision from selected design codes are presented, includ-
ing: ACI 318-14; Eurocode 2 (2004) and Model Code 2010. Only provisions related to 
internal slab-column connection with and without shear reinforcement, that are most 
relevant to current research, are included (no discussion regarding edge, corner connec-
tion, or slab with prestressing). 

2.7.1. ACI 318-14 (ACI, 2014) 
Nominal shear strength for two-way members without shear reinforcement shall be cal-
culated by: 
 
 𝑣𝑛 = 𝑣𝑐 (58) 
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where 𝑣𝑐 is the contribution of plain concrete on resisting shear of two-way members 
that should be determined as the least of (Eq. 59-61): 
 

 𝑣𝑐1 = 13 𝜆𝑙𝑤√𝑓𝑐 (59) 

 𝑣𝑐2 = 112(2 + 4𝛽)𝜆𝑙𝑤√𝑓𝑐 (60) 

 𝑣𝑐3 = 112(2 + 𝛼𝑠𝑑𝑏0 ) 𝜆𝑙𝑤√𝑓𝑐 (61) 

 
where 𝜆  is the factor accounting for concrete density and it can be taken as 1.0 for 
normal-density concrete, 𝑓𝑐 is the specified concrete compressive strength (cylinder), 𝛽 
is the ratio of long side to short side of the column, concentration load, or reaction area, 
𝛼𝑠 is 40 for interior columns, 30 for edge columns, and 20 for corner columns. Generally, 
𝑣𝑐1 governs for square columns with practical size relative to the slab effective depth 

whereas 𝑣𝑐2 and 𝑣𝑐3 may govern the two-way shear capacity for scenarios with elongated 
(rectangular) and for slabs with large supported area respectively. The critical section 
(𝑏0) for two-way shear in slab without shear reinforcement is taken at a distance of 0.5𝑑 
from the column face with 𝑑 is the average flexural effective depth of the slab. The 
corner shape of the control perimeter follows the shape of the column (straight corner is 
permitted for square and rectangular columns).  
Based on Section 8.4.2.3 of ACI 318-14, slab-column connections resist gravity load, 
wind, earthquake, or other effects that cause a transfer of moment between the slab and 
column, a fraction of 𝑀𝑠𝑐 shall be transferred by flexure and eccentric shear stress. The 
fraction of factored slab moment resisted by the column, 𝜆𝑓𝑀𝑠𝑐 shall be assumed to be 

transferred by flexure, where 𝜆𝑓  shall be calculated by: 

 

 
𝜆𝑓 = 1

1 + (23) √𝑏1𝑏2
 

(62) 

 
where 𝑏1 is the width of the critical section in the direction perpendicular to the moment 
vector whereas 𝑏2 is the width of the critical section perpendicular to 𝑏1. It is stated that 
the effective slab width resisting this additional bending moment shall be taken as the 
width of the column parallel to the axis of applied unbalanced moment plus 1.5ℎ on 
either side of the column, where ℎ is the thickness of the slab. The rest of the unbalanced 
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moment which has not been transferred through flexural action is assumed to be trans-
ferred fully through eccentric shear mechanism 𝜆𝑣𝑀𝑠𝑐 that shall be applied at the cen-
troid of the critical section, where: 
 
 𝜆𝑣 = 1 − 𝜆𝑓  (63) 

 
The maximum factored shear stress 𝑣𝑢 at the critical section for internal slab-column 
connections subject to unbalanced moment may be calculated from: 
 

 𝑣𝑢 = 𝑉𝑏0. 𝑑 + 𝜆𝑣𝑀𝑠𝑐𝑐𝐽𝑐  (64) 

 
where 𝑉  is the total applied shear forces, 𝑏0 is the length of the control perimeter, 𝑐 is 
the distance from the centroid of the support to the face of critical section of the control 
perimeter (𝑐𝐴𝐵 in Fig. 2-32), and 𝐽𝑐 is the property of assumed critical section analo-
gous to polar moment of inertia that for internal column can be determined as: 
 
 𝐽𝑐 = 𝑑(𝑐1+𝑑)36 + (𝑐1+𝑑)𝑑3

6 + 𝑑(𝑐2+𝑑)(𝑐1+𝑑)22  (65) 
 
where 𝑐1 and 𝑐2 are the side length of the column perpendicular and parallel to the axis 
of applied unbalanced moment, respectively (see Fig. 2-32). For internal connection 
subject to concentric forces then 𝑣𝑢 = 𝑉𝑏0.𝑑 where the shear stress is assumed to be uni-

form along the whole control perimeter. 
 

 
Figure 2-32. Critical section (control perimeter) of ACI 318 and corresponding 

shear stress distribution for internal column subject to shear and un-
balanced moment. 
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As can be seen from Fig. 2-32 and Eq. 64, ACI 318-14 treats the critical shear stress as 
the summation of the shear forces due to vertical load (gravity) and linear shear stress 
varying relative to the centroid of the critical section due to unbalanced moment. Shear 
reinforcement is required if it was found that 𝑣𝑢 ≥ 𝛷𝑣𝑛 with 𝛷 is the reduction factor 
for shear equal to 0.75.  
For two-way members with shear reinforcement other than shearheads, nominal shear 
strength shall be calculated as: 
 
 𝑣𝑛 = 𝑣𝑐 + 𝑣𝑠 (66) 

 
where 𝑣𝑠 is the contribution of nominal shear resistance from shear reinforcement. When 
shear reinforcement is used, 𝑣𝑐 in Eq. 66 must be limited to 16 𝜆√𝑓𝑐 for stirrups (for 
both failure modes within and outside the shear-reinforced region) and 14 𝜆√𝑓𝑐 for con-
trol perimeter within the shear-reinforced region and 16 𝜆√𝑓𝑐 for control perimeter out-
side the shear-reinforced region when headed studs are used. The value of 𝑣𝑛 in Eq. 66 
cannot exceed 12 √𝑓𝑐 for stirrups and 23 √𝑓𝑐 for headed studs. The contribution of shear 
reinforcement according to ACI 318-14 is calculated assuming a diagonal crack with 45o 

angle as: 
 

 𝑣𝑠 = 𝐴𝑣. 𝑓𝑦𝑡𝑏0. 𝑠  (67) 

 
where 𝐴𝑣 is the sum of the area of all legs of reinforcement on one peripheral line that 
is geometrically similar to the perimeter of the column section, 𝑓𝑦𝑡 is the shear reinforce-

ment yield strength and 𝑠 is the spacing of the peripheral lines of shear reinforcement in 
the direction perpendicular to the column face (radial spacing). Detailing of the shear 
reinforcement and the extension length of the shear-reinforced region could be directly 
consulted to ACI 318-14. 

2.7.2. Eurocode 2 (BSI, 2004) 
Based on Section 6.4.2 of Eurocode 2 (EC2, 2004), the basic control perimeter 𝑢1 may 
normally be taken to be at a distance 2.0𝑑 from the loaded area and should be con-
structed so as to minimise its length (rounded diagonal corner for square or rectangular 
column shape). The design procedure for punching shear is based on checks at the face 
of the column and at the basic control perimeter 𝑢1. The following design shear stresses 
(MPa) along the control sections, are defined as: 
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(1) 𝑣𝑅𝑑,𝑐 is the design value of the punching shear resistance of a slab without punching 

shear reinforcement along the control section considered; 
(2) 𝑣𝑅𝑑,𝑚𝑎𝑥 is the design value of the maximum punching shear resistance along the 

control section considered. 

The following checks should be carried out: 

(a) At the column perimeter, of the perimeter of the loaded area, the maximum punch-
ing shear stress should not be exceeded: 

 
 𝑣𝐸𝑑 ≤ 𝑣𝑅𝑑,𝑚𝑎𝑥 (68) 

 
where 𝑣𝐸𝑑 is the design shear stress and 𝑣𝑅𝑑,𝑚𝑎𝑥 is the design value of the maxi-

mum shear force which can be sustained by the member, limited by crushing of 
the compression struts. The recommended value for 𝑣𝑅𝑑,𝑚𝑎𝑥 is: 

 

 𝑣𝑅𝑑,𝑚𝑎𝑥 = 0.4 [0.6(1 − 𝑓𝑐𝑘250)] 𝑓𝑐𝑑 (69) 

 
where 𝑓𝑐𝑘 and 𝑓𝑐𝑑 are the characteristic and design compressive strength of con-
crete (cylinder) respectively. 

(b) Punching shear for slabs without shear reinforcement (checked along 𝑢1) should 
fulfill: 
 

 𝑣𝐸𝑑 ≤ 𝑣𝑅𝑑,𝑐 (70) 
 

where the design punching shear resistance for slabs without shear reinforcement 
and no prestressing force is determined as follows: 

 
 𝑣𝑅𝑑,𝑐 = 𝐶𝑅𝑑,𝑐𝑘(100𝜌1𝑓𝑐𝑘)13 (71) 
 

with 
 

 𝐶𝑅𝑑,𝑐 = 0.18𝛾𝑐  (72) 

 

 𝑘 = 1 + √200𝑑 ≤ 2.0;  𝑑 𝑖𝑛 𝑚𝑚 (73) 
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 𝜌1 = √𝜌𝑙𝑥. 𝜌𝑙𝑦 ≤ 0.02 (74) 
 

where 𝛾𝑐 is partial safety factor for concrete material properties and can be taken 
as 1.5, 𝜌𝑙𝑥 and 𝜌𝑙𝑦 relate to the bonded tension steel in x- and y-directions respec-

tively. The reinforcement ratio should be calculated as mean values taking into 
account a slab width equal to the column width plus 3𝑑 on each side. Parameter 𝑘 
represents the size effect factor.  

 
Where the support reaction is eccentric with regard to the control perimeter, the maxi-
mum shear stress should be taken as: 
 

 𝑣𝐸𝑑 = 𝛽 𝑉𝐸𝑑𝑢1. 𝑑 (75) 

 
where parameter 𝛽 represents an increase of design shear stress due to stress concentra-
tion and it could be determined as: 
 

 𝛽 = 1 + 𝑘 𝑀𝐸𝑑𝑉𝐸𝑑 . 𝑢1𝑊1 (76) 

 
where 𝑊1 corresponds to a distribution of shear and is a function of the basic control 
perimeter 𝑢1 and for rectangular column could be determined as: 
 

 𝑊1 = 𝑐122 + 𝑐1𝑐2 + 4𝑐2𝑑 + 16𝑑2 + 2𝜋𝑑𝑐1 (77) 

 
where 𝑐1 and 𝑐2 are the column dimension perpendicular and parallel to the axis of ap-
plied unbalanced moment respectively. Parameter 𝑘 in Eq. 76 is a coefficient dependent 
on the ratio between the column dimensions 𝑐1 and 𝑐2 whose value is a function of the 
proportions of the unbalanced moment transmitted by uneven shear and by bending and 
torsion. For square column, the value of 𝑘 equals 0.6 and for other aspect ratios, it can 
be consulted to Table 6.1 of Eurocode 2 (2004). Unlike ACI with linear shear variation, 
EC2 (2004) assumes plastic distribution of shear stress due to unbalanced moment as 
shown in Fig. 2-33.  
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Figure 2-33. Distribution of shear stress at internal column subject to unbalanced 

moment according to EC2 (2004). 
 

According to EC2 (2004), when 𝑣𝐸𝑑 exceeds the value 𝑣𝑅𝑑,𝑐 for the control perimeter 

considered, punching shear reinforcement should be provided. When shear reinforcement 
is used, the nominal shear resistance of the control perimeter shall be calculated as: 
 

 𝑣𝑅𝑑,𝑐𝑠 = 0.75𝑣𝑅𝑑,𝑐 + 1.5( 𝑑𝑠𝑟) 𝐴𝑠𝑤𝑓𝑦𝑤𝑑,𝑒𝑓 [ 1𝑢1. 𝑑] sin 𝑎  ≤ 𝑘𝑚𝑎𝑥. 𝑣𝑅𝑑,𝑐 (78) 

 
where 𝐴𝑠𝑤 is the area of one perimeter of shear reinforcement around the column, 𝑠𝑟 is 
the radial spacing of perimeters of shear reinforcement, 𝑓𝑦𝑤𝑑,𝑒𝑓  is the effective design 

strength of the punching shear reinforcement that shall be calculated as: 
 
 𝑓𝑦𝑤𝑑,𝑒𝑓 = 250 + 0.25𝑑 ≤ 𝑓𝑦𝑤𝑑 (79) 

 
where 𝑓𝑦𝑤𝑑 is the design yield strength of the shear reinforcement, 𝑎 is the angle between 

the shear reinforcement and the plane of the slab, 𝑘𝑚𝑎𝑥 is the factor, limiting the maxi-
mum capacity that can be achieved by application of shear reinforcement and the rec-
ommended value is 1.5. If a single line of bent-down bars is provided, then the ratio 𝑑𝑠𝑟 
in Eq. 78 may be given the value 0.67. Detailing of the shear reinforcement and the 
extension length of the shear-reinforced region could be directly consulted to EC2 (2004). 

2.7.3. Model Code 2010 (fib, 2013) 
In Model Code 2010 (MC2010), the design shear force with respect to punching 𝑉𝐸𝑑 is 
calculated as the sum of design shear forces acting on a basic control perimeter 𝑏1. The 
shear-resisting effective depth of the slab 𝑑𝑣 is the distance from the centroid of the 
reinforcement layers to the supported area and generally could be taken equal to 𝑑. The 
basic control perimeter 𝑏1 may be normally taken at a distance 0.5𝑑𝑣 from the supported 
area and the shape should be determined in order to minimise its length (rounded corner 
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for square or rectangular column) and the length of the control perimeter is limited by 
slab edges.  
For calculating the punching shear resistance, a shear-resisting control perimeter 𝑏0 is 
used. This resisting perimeter is normally shorter than the basic control perimeter 𝑏1 if 
non-uniform distribution of shear forces exists. There are several scenarios where non-
uniform stress distribution needs to be carefully considered, including: 

(1) Large supported area: for slabs with large supported area, the length of straight 
segments of the basic perimeter 𝑏1,𝑟𝑒𝑑 shall not be taken larger than 3𝑑𝑣 for each 

edge. 
(2) Geometrical and static discontinuities: in presence of openings and inserts, the 

basic perimeter 𝑏1,𝑟𝑒𝑑 is reduced according to the rules given in Figure 7.3-26 of 

MC2010. 
(3) Moment transfer between the slab and the supported area: the influence of 

eccentricity on shear stress could be considered by multiplying the length of the 
reduced basic control perimeter 𝑏1,𝑟𝑒𝑑 by the coefficient of eccentricity: 

 

 𝑏0 = 𝑘𝑒. 𝑏1,𝑟𝑒𝑑 (80) 
 

with 
 

 𝑘𝑒 = 1
1 + 𝑒𝑢𝑏𝑢

 (81) 

 
where 𝑒𝑢 is the eccentricity of the resultant of shear forces with respect to the 
centroid of the basic control perimeter and 𝑏𝑢 is the diameter of a circle with the 
same surface as the region inside the basic control perimeter.  

(4) Presence of significant loads near the supported area: in cases where significant 
concentrated loads (≥ 0.2𝑉𝐸𝑑) are applied near the supported area (closer than 3𝑑𝑣 
from the edge of the supported area), 𝑏0 should be calculated according to the 
detailed shear-field analysis as: 
 

 𝑏0 = 𝑉𝐸𝑑𝑣𝑝𝑒𝑟𝑝,𝑑,𝑚𝑎𝑥 (82) 
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where 𝑣𝑝𝑒𝑟𝑝,𝑑,𝑚𝑎𝑥 is the maximum shear force per unit length perpendicular to the 
basic control perimeter acquired from linear (elastic) finite element analysis 
(LFEA). 
 

The punching shear resistance, 𝑉𝑅𝑑, for slabs without shear reinforcement is calculated 
as: 
 
 𝑉𝑅𝑑 = 𝑉𝑅𝑑,𝑐 ≥ 𝑉𝐸𝑑 (83) 

 𝑉𝑅𝑑,𝑐 is the design shear resistance attributed to the concrete and could be determined 
as: 
 

 𝑉𝑅𝑑,𝑐 = 𝑘𝜓 √𝑓𝑐𝑘𝛾𝑐 𝑏0. 𝑑𝑣 (84) 

 
with 

 

 𝑘𝜓 = 11.5 + 0.9𝑘𝑑𝑔𝜓𝑑 ≤ 0.6 (85) 

 

 𝑘𝑑𝑔 = 3216 + 𝑑𝑔 ≥ 0.75 (86) 

 
where 𝑓𝑐𝑘 is the concrete characteristic compressive strength (cylinder), 𝛾𝑐 is the partial 
material safety factor for concrete taken as 1.5, 𝜓 is the slab rotation around the sup-
ported area and 𝑑𝑔 is the maximum aggregate size used. For high strength and light-

weight concrete the aggregate particles may fracture, resulting in a reduced aggregate 
interlock contribution hence 𝑑𝑔 shall be taken as 0. If 𝑉𝑅𝑑,𝑐 ≤ 𝑉𝐸𝑑 then shear reinforce-

ment should be used (𝑉𝑅𝑑 = 𝑉𝑅𝑑,𝑐 + 𝑉𝑅𝑑,𝑠) and its contribution 𝑉𝑅𝑑,𝑠 may be generally 

expressed as: 
 
 𝑉𝑅𝑑,𝑠 = ∑𝐴𝑠𝑤𝑘𝑒𝜎𝑠𝑤𝑑 sin 𝛼 (87) 

 
with 

 

 𝜎𝑠𝑤𝑑 = 𝐸𝑠𝜓6 (sin 𝛼 + cos 𝛼). (sin 𝛼 + 𝑓𝑏𝑑𝑓𝑦𝑤𝑑
𝑑𝛷𝑤) ≤ 𝑓𝑦𝑤𝑑 (88) 
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Where ∑ 𝐴𝑠𝑤 is the sum of the cross-sectional area of all shear reinforcement suitably 
anchored, or developed, and intersected by the potential failure surface (conical surface 
with angle 45o) within the zone bounded between 0.35𝑑𝑣 and 𝑑𝑣 from the edge of the 
supported area, 𝜎𝑠𝑤𝑑 is the stress that is activated in the shear reinforcement that is also 
a function of slab rotation, 𝛼 is the angle between shear reinforcement orientation and 
horizontal plane, 𝐸𝑠 is the Young’s modulus of shear reinforcement, 𝑓𝑏𝑑 is the bond 
strength that for corrugated bars could be taken as 3 MPa for design, 𝑓𝑦𝑤𝑑 is the design 

yield strength of the shear reinforcement and 𝛷𝑤 is the diameter of the shear reinforce-
ment. In order to ensure sufficient deformation capacity, for slabs with shear reinforce-
ment, a minimum amount of shear reinforcement is required to fulfill: 
 
 ∑𝐴𝑠𝑤𝑘𝑒𝑓𝑦𝑤𝑑 ≥ 0.5𝑉𝐸𝑑 (89) 

 
The maximum punching shear resistance is limited by crushing of the concrete struts in 
the supported area that is calculated as: 
 

 𝑉𝑅𝑑,𝑚𝑎𝑥 = 𝑘𝑠𝑦𝑠𝑘𝜓 √𝑓𝑐𝑘𝛾𝑐 𝑏0. 𝑑𝑣 ≤ √𝑓𝑐𝑘𝛾𝑐 𝑏0. 𝑑𝑣 (90) 

 
where the coefficient 𝑘𝑠𝑦𝑠 accounts for the performance of punching shear reinforcing 

system to control shear cracking and to suitably confine compression struts at the soffit 
of the slab. In absence of other data, and provided that reinforcement is detailed as per 
the provisions of Subclause 7.13.5.3 of MC2010, a value 𝑘𝑠𝑦𝑠 = 2.0 can be adopted. 

Detailing of the shear reinforcement and the extension length of the shear-reinforced 
region could be directly consulted to MC2010. 
In order to get the failure point, the design shear resistance curve must be intersected 
with the load-rotation curve. Four different level of approximation (LoA I - LoA IV) are 
available in MC2010.   
 LoA I 

“For a regular flat slab designed according to an elastic analysis without significant 
redistribution of internal forces, a safe estimate of the rotation at failure is:” 
 

 𝜓𝐿𝑜𝐴 𝐼 = 1.5 𝑟𝑠𝑑 𝑓𝑦𝑑𝐸𝑠  (91) 
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where 𝑟𝑠 denotes the position where the radial bending moment is zero with respect 
to the support axis. The value of 𝑟𝑠 can be approximated as 0.22 𝐿𝑥 or 0.22 𝐿𝑦 for 

the x- and y-directions, respectively, for regular flat slabs where the ratio of the 
spans (𝐿𝑥𝐿𝑦) is between 0.5 and 2.0. In LoA I, the maximum value of 𝑟𝑠 has to be 

considered. 
 LoA II 

In cases where significant bending moment redistribution is considered in the de-
sign, the slab rotation can be calculated as: 

 

 𝜓𝐿𝑜𝐴 𝐼𝐼 = 1.5 𝑟𝑠𝑑 𝑓𝑦𝑑𝐸𝑠 . (𝑚𝐸𝑑𝑚𝑅𝑑)
1.5

 (92) 

 
where 𝑚𝐸𝑑 is the average moment per unit length for calculation of the flexural 
reinforcement in the support strip (for the considered direction) and, for internal 
column, it can be expressed as a function of design shear forces 𝑉𝐸𝑑 as: 

 

 𝑚𝐸𝑑 = 𝑉𝐸𝑑 (18 + ∣𝑒𝑢,𝑖∣2. 𝑏𝑠 ) (93) 

 
where 𝑒𝑢,𝑖 refers to the eccentricity of the resultant of shear forces with respect to 

the centroid of the basic control perimeter in the direction investigated, 𝑏𝑠 is the 
width of the support strip that is calculated as: 

 
 𝑏𝑠 = 1.5√𝑟𝑠,𝑥. 𝑟𝑠,𝑦 ≤ min (𝐿𝑥, 𝐿𝑦) (94) 

 
where 𝑟𝑠,𝑥 and 𝑟𝑠,𝑦 are the value of 𝑟𝑠 for x- and y-directions, respectively and 𝑚𝑅𝑑 
is the design average flexural strength per unit length in the support strip (for the 
considered direction). The rotation has to be calculated along the two main direc-
tions of the reinforcement and typically for design, the direction with larger slab 
rotation (maximum rotation) shall be used.  

 LoA III 
LoA III is recommended for irregular slabs or for flat slabs where the ratio of the 
span lengths (𝐿𝑥𝐿𝑦) is not between 0.5 and 2.0. The rotation could be determined as: 
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 𝜓𝐿𝑜𝐴 𝐼𝐼𝐼 = 1.2 𝑟𝑠𝑑 𝑓𝑦𝑑𝐸𝑠 . (𝑚𝐸𝑑𝑚𝑅𝑑)
1.5

 (95) 

 
The value of 𝑟𝑠 and 𝑚𝐸𝑑 should be calculated using a linear elastic (uncracked) 
model. Parameter 𝑚𝐸𝑑 has to be calculated consistently with the method used for 
determining the flexural reinforcement and is to be determined at the edge of the 
supported area maximising 𝑚𝐸𝑑.  

 LoA IV 
The rotation in LoA IV can be calculated on the basis of a nonlinear analysis of 
the structure and accounting for cracking, tension-stiffening effects, yielding of the 
reinforcement and any other nonlinear effects relevant for providing an accurate 
assessment of the structure. 

 
2.8 Concluding remarks 

Based on the detailed review presented in this chapter, it can be concluded that punching 
is a complex phenomenon where several possibilities of crack development may govern 
the failure mechanism. Thus, one key to better understand punching is through an in-
vestigation into crack kinematics. From this type of investigation, it is generally agreed 
that different proportion of load carried by each shear transfer action is expected for 
different crack kinematics (including the geometry, shape, and position of the crack). 
Thus, considering the complexity of the problem, the most feasible way to realistically 
predict punching behaviour is by utilising a mechanical/theoretical model. 
Several models have been presented in this chapter where different perspectives were 
used to “picture” punching. From this review, it was decided that the most versatile and 
practical mechanically-based model is the critical shear crack theory (CSCT) of Muttoni 
(2008). This decision was made considering the rationality of the derivation, accuracy of 
the prediction, versatility, and one factor that is most relevant to the current research 
is its compatibility to finite element framework. One current limitation of CSCT appli-
cation is that it may only consider the punching of a single connection but not a full 
floor system where failure may propagate to multiple connections. This limitation pro-
vides the motivation for the current research which attempts to implement CSCT into 
a numerical algorithm which is compatible with general finite element simulation. Thus, 
the resulting model would allow the possibility of extending the usability of CSCT to 
predict global building behaviour. 
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3 Nonlinear finite element analysis of isolated slab-
column connections using 3-D solid and 2-D shell 
elements 

 

3.1 Introduction 

This chapter describes the finite element analysis (FEA) procedures which were used to 
obtain a better understanding of the mechanics of punching failure of reinforced concrete 
slabs. FEA is a numerical method for solving problems of engineering and mathematical 
physics. Analytical solutions to such problems typically require the solution of boundary 
value problems using partial differential equations whereas FEA approximates the solu-
tion using a system of algebraic equations. FEA works by subdividing a large continuum 
body/system into smaller, discrete parts that are called finite elements. The simple equa-
tions that model these finite elements are then re-assembled into a larger system of 
equations that models the entire problem. FEA then uses variational methods from the 
calculus of variations to approximate a solution by minimising an associated error func-
tion. Nonlinearity in finite elements can arise from either geometric or material nonlin-
earity; this study focuses on the latter one.  
A carefully-planned methodology was developed to ensure that the results acquired from 
FEA were sufficiently accurate and, as importantly, reliable. First, a sensitivity study 
was performed to find the most suitable mesh configuration (e.g. size, shape, arrange-
ment) and boundary conditions. Subsequently, material calibration was performed on 
selected specimens to find a suitable set of material parameters for use in the remainder 
of the study. Validation was then performed using various isolated slab-column connec-
tions from an experimental database to ensure the appropriateness of the previously 
chosen parameters. In this study, NLFEA was carried out using the commercial software 
(ATENA) as well as the in-house software (ADAPTIC) developed at Imperial College 
London (Izzuddin, 1991). ATENA (Cervenka et al., 2018) was exclusively used to sim-
ulate punching problem using 3-D solid elements whereas 2-D shell idealisation was used 
in ADAPTIC. This chapter describes the basis of the FEA, followed by the calibration 
and validation processes performed in both ATENA and ADAPTIC. The pros and cons 
of modelling punching using 3-D solid and 2-D shell elements are discussed. 
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3.2 FEA based on 3-D solid element (ATENA) 

3.2.1. Finite elements in ATENA 
ATENA incorporates various 1-D to 3-D finite elements. Reinforcement is modelled with 
the 1-D truss element depicted “CCIsoTruss” (Fig 3-1(a)). Slabs are modelled with 
hexahedral elements (Fig. 3-1(b)) depicted “CCIsoBrick” while experimental apparatus, 
including support and loading plates, are modelled with tetrahedral elements (Fig. 3-
1(c)) depicted “CCIsoTetra”. 
 

 
Figure 3-1. Geometry of: (a) CCIsoTruss; (b) CCIsoBrick; (c) CCIsoTetra ele-

ments (adapted from ATENA’s Theory Manual). 
 Image reproduced with permission of the rights holder, Cervenka Consulting 

 
All elements incorporate an isoparametric formulation wherein the same shape functions 
are used to define both the geometry and displacements within the element. Internal 
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stresses are integrated by a Gauss integration scheme that ensures 𝑛𝑝(𝑛𝑝 − 1) order ac-

curacy, where 𝑛𝑝 is the degree of polynomial used to approximate the integrated function. 

Either linear or quadratic interpolation (shape) function can be adopted for each type 
of element. 

3.2.2. Concrete material idealisation in ATENA 
In ATENA, several concrete models are available, but this study consistently employed 
the so-called “CC3DNonLinCementitious2”. This concrete model combines constitutive 
models for tensile (fracturing) and compressive (plastic) behaviour. The fracture model 
is based on the classical orthotropic smeared crack formulation and the crack band model 
proposed by Bazant and Oh (1983). Either fixed or rotating crack models can be used 
in conjunction with the Rankine tensile failure criterion and exponential softening. Plas-
ticity for concrete in compression is controlled by the Menetrey-William failure surface 
(Menetrey and William, 1995). The model uses return mapping algorithm for the inte-
gration of constitutive equations. One important feature of the model is that it allows 
the two models (fracture and plastic) to be developed and formulated separately. The 
concrete model is relatively versatile since it can be used to simulate concrete cracking, 
crushing under high confinement, and crack closure due to crushing in other material 
directions.  

3.2.2.1. Discrete vs smeared crack approach 
The fracture process of concrete can be modelled as either discrete or smeared. 
 

 
Figure 3-2. Deformed meshes for single-notched shear beam at final stage mod-

elled using: (a) discrete; (b) smeared crack approach (reproduced from 
Rots and Blaauwendraad, 1989). 

 Image reproduced with permission of the rights holder, HERON 
 

(a) (b) 



129 
 

The discrete crack concept simulates crack formation by introducing a discontinuity 
between two adjacent solid elements (Fig. 3-2(a)). This approach is more computation-
ally demanding than the smeared crack approach since it requires a continuous change 
in nodal connectivity. For example, when the nodal force at the node ahead of the crack 
tip surpasses the tensile strength criterion, crack formation is simulated by splitting the 
tip node into two separate nodes. This process is repeated as the load increases and the 
tensile strength criterion is violated at successive nodes (de Borst et al., 2004). In addi-
tion, the discrete crack approach requires the user to predefine the path along the ele-
ment edges where cracks are assumed to form. On the other hand, the smeared crack 
concept (Fig. 3-2(b)) models a cracked solid as a continuum in which cracks are uni-
formly distributed within the material volume (Rots and Blaauwendraad, 1989). The 
main idea is to represent the cracked state by transforming the initial isotropic stress-
strain law to an orthotropic law upon crack formation, with the axes of orthotropy being 
determined according to a condition of crack initiation. The latter concept is found to 
be more attractive by most researchers because it preserves the topology of the element 
(without introducing discontinuity) and it does not impose restrictions with respect to 
the orientation of the crack planes. 
The smeared crack approach can be further categorised into: 1) fixed crack; 2) rotating 
crack models. The main differences between these two models are highlighted below. 
 Fixed crack model 
In the fixed crack model, the crack direction is determined by the direction of the prin-
cipal stress when the first crack forms. As the applied load increases, the initial crack 
direction is fixed and it represents the material axis of the orthotropy (Fig. 3-3(a)). 
However, the principal strain direction simultaneously rotates and thus deviation be-
tween axis of orthotropy and principal strain starts to exist. Consequently, owing to 
shear stress along the crack, stresses normal and parallel to the crack plane are no longer 
principal stresses.  
Previous studies show that the predictions of the fixed crack model can be overly sensi-
tive to the assumed shear stiffness. In this case, significantly different behaviours (e.g. 
load-deformation response, failure load and failure modes) may arise when the shear 
stiffness is changed. In reality, the shear stiffness should gradually reduce as the crack 
opens wider and thus the aggregate interlock between the two cracked planes degrades.  
In ATENA, a shear factor (SF) coefficient is used to define the relationship between the 
normal and shear crack stiffness. The default value of SF is 20 in which case the shear 
stiffness equals to 20 times the minimum normal stiffness. The normal stiffness is a 
function of the remaining concrete tensile strength and the crack strain as discussed in 
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Section 3.2.2.2. The maximum shear strength (𝜏) of cracked concrete is determined 
using the Modified Compression Field Theory of Vecchio and Collins (1986) as expressed 
below: 
 

 𝜏 ≤ 0.18√𝑓𝑐0.31 + 24𝑤𝑑𝑔 + 16 (96) 

 
with 𝑓𝑐 is the peak concrete compressive strength in MPa, 𝑑𝑔  is the maximum aggregate 

size in mm and 𝑤 is the maximum crack width in mm at the given location. This model 
is activated in ATENA by specifying the maximum aggregate size as an input parameter. 
Otherwise, the maximum, shear stress on a crack surface is limited to the concrete tensile 
strength. 
 

 
Figure 3-3. (a) Fixed crack model; (b) Rotating crack model along with the strain-

stress state (adapted from ATENA’s Theory Manual). 
Image reproduced with permission of the rights holder, Cervenka Consulting 

 
 Rotating crack model 
The rotating crack model assumes that the direction of the crack simultaneously rotates 
after its first formation and it always coincides with the direction of the principal strain 
axes. Consequently, stresses normal and perpendicular to the crack are principal stresses 
(Fig. 3-3(b)). This approach is more attractive from an engineering point of view be-
cause users can suffice to specifying any applicable nonlinear stress-strain curves for the 
principal directions only, without having to resort to abstract theories to describe shear 
stress in the crack plane (Rots and Blaauwendraad, 1989). In order to ensure co-axiality 
of the principal strain axes with the material axes, the tangent shear modulus 𝐺𝑡 is 
calculated according to Crisfield and Wills (1989) as: 
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 𝐺𝑡 = 𝜎𝑐1 − 𝜎𝑐22(𝜀1 − 𝜀2) (97) 

 
where 𝜎𝑐1 and 𝜎𝑐2 is the principal stress in direction-1 and -2 respectively whereas 𝜀1 
and 𝜀2 is the principal strain in direction-1 and -2 respectively with direction-1 is per-
pendicular to the crack and direction-2 is parallel to the crack plane. The rotating crack 
model does not require as shear factor (SF) since no shear stress develops along cracks. 

3.2.2.2. Tensile (fracture) behaviour 
The process of crack formation can be categorised into three main stages: a) uncracked; 
b) process zone; c) cracked state as illustrated in Fig. 3-4.  
 

 
Figure 3-4. Stages of crack opening (adapted from ATENA’s Theory Manual). 

Image reproduced with permission of the rights holder, Cervenka Consulting 
 
In the first state, a linear stress-strain relationship is used to describe the tensile behav-
iour of concrete. The maximum possible tensile stress in this state is the concrete tensile 
strength (𝑓𝑡). Beyond this point, cracking initiates and the tensile stress gradually de-
creases as the crack opening (width) increases. This process takes place within the pro-
cess zone state. As the crack opens wider, there is a limit point where the crack can no 
longer transmit tensile stresses and this is represented by the cracked state with zero 
residual stress (Hillerborg et al., 1976).  
As there is a stress to be overcome when the crack opens, there will be an amount of 
cracking energy that needs to be absorbed. This energy is well-known as the fracture 
energy, 𝐺𝑓 , which defines the amount of energy absorbed per unit crack area in opening 

the crack from zero to a specific crack width limit (𝑤𝑡𝑐) as illustrated in Fig. 3-5. If no 
specific treatment is provided in this softening part, localisation of damage in finite 
elements may occur. This problem arises from the dependency of the magnitude of 
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released fracture energy on the mesh size. For example, if the finite element mesh size is 
coarse, the consumed fracture energy is higher than for a finer mesh. To assure mesh 
independent results, the total consumed fracture energy must be independent of the 
mesh size. This can be achieved through the introduction of the so-called characteristic 
length, 𝐿𝑡 , which is calculated by projecting the mesh size into the crack direction 
(Figure 3-5). This approach assumes that the damage is only localised in a row of 
elements. Thus, the material constitutive law needs to be adjusted such that the area 
under the uniaxial tensile stress (softening branch), which is limited by 𝑤𝑡𝑐, is equal to 
an experimentally determined constant fracture energy. 
 

 
Figure 3-5. Tensile softening and characteristic length based on crack band model 

(adapted from Bazant and Oh, 1983). 
  Image reproduced with permission of the rights holder, Cervenka Consulting 
 
According to Fig. 3-5, the crack opening displacement (𝑤𝑡) is expressed as: 
 
 𝑤𝑡 = 𝜀𝑓𝐿𝑡 (98) 

 
where 𝜀𝑓  is the inelastic cracking strains and 𝐿𝑡 is the crack band size that is determined 
as the projection of the element size into the direction perpendicular to the crack. In 
ATENA, the softening branch for concrete in tension is calculated using the formula 
proposed by Hordijk (1991): 
 

 
𝜎𝑐𝑓𝑡 = {1 + (𝑐1 𝑤𝑡𝑤𝑡𝑐)

3} exp(−𝑐2 𝑤𝑡𝑤𝑡𝑐) − 𝑤𝑡𝑤𝑡𝑐 (1 + 𝑐13) exp(−𝑐2) (99) 

 
with 

 

 

  

 finite element 
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 𝑤𝑡𝑐 = 5.14𝐺𝑓𝑓𝑡  , 𝑐1 = 3, 𝑐2 = 6.93 (100) 

 
where 𝜎𝑐 is the stress normal to the crack, 𝑐1 and 𝑐2 are constants, and 𝑤𝑡𝑐 is the crack 
width limit where tensile strength approaches zero at the end of the fracture process 
zone.    

3.2.2.3. Compressive (plastic) behaviour 
The plasticity of concrete under compression is controlled by the Menetrey-William fail-
ure surface (Menetrey and William, 1995) which is expressed in terms of three independ-
ent stress invariants: hydrostatic stress (𝜉𝑠), deviatoric stress (𝜌𝑠), and deviatoric polar 
angle (𝜃𝑠). The failure criterion combines the traditional Rankine criterion of maximum 
tensile strength with the Mohr-Coulomb hypothesis of shear strength. It considers both 
cohesive strength representing the strength of the cement paste and frictional adhesion 
of aggregate interaction. The resulting triaxial strength criterion is defined as: 
 

 𝐹(𝜉𝑠, 𝜌𝑠, 𝜃𝑠) = [√1.5 𝜌𝑠𝑓𝑐]
2 + 𝑚𝑓 [ 𝜌𝑠√6 𝑓𝑐

𝑟(𝜃𝑠, 𝑒) + 𝜉√3𝑓𝑐
] − 𝑐ℎ = 0 (101) 

 
with 

 

 𝑚𝑓 = 3 [(𝑓𝑐2 − 𝑓𝑡2𝑓𝑐𝑓𝑡 )( 𝑒𝑒 + 1)] (102) 

   

 𝑟 = 4(1 − 𝑒2) cos2 𝜃𝑠 + (2𝑒 − 1)2
2(1 − 𝑒2) cos 𝜃𝑠 + (2𝑒 − 1)[4(1 − 𝑒2) cos2 𝜃𝑠 + 5𝑒2 − 4𝑒]12 (103) 

   

 𝑐ℎ = (𝑓𝑐(𝜀𝑒𝑞𝑝 )𝑓𝑐 )2
 (104) 

   
where 𝑐ℎ and 𝑚𝑓  are measures of cohesive and frictional strength, 𝑓𝑐 designates the uni-

axial concrete compressive strength, 𝜀𝑒𝑞𝑝  is the concrete strain under uniaxial compres-

sion, and 𝑟 is the polar radius that is expressed as a function of the deviatoric polar 
angle and eccentricity (𝑒) which describes the out-of-roundness of the deviatoric trace. 
The cohesive parameter (𝑐ℎ) is independent of the stress function (uncoupled) and thus 
it can be used to model the isotropic loss of cohesive strength, when 𝑐ℎ = 0. In addition, 
parameter 𝑚𝑓  is also independent and it can be conveniently used to simulate frictional 



134 
 

hardening/softening phenomenon. According to the formulation, only three main param-
eters are simply required to define this criterion:𝑓𝑐, 𝑓𝑡, and 𝑒. The shape of the deviatoric 
section may change from triangular to circular form with increasing confining pressure, 
as illustrated in Fig. 3-6. 

 
Figure 3-6. Elliptic function for 𝟎. 𝟓 ≥ 𝒓 (𝜽𝒔, 𝒆) ≥ 𝟏 (adapted from Menetrey and 

William, 1995). 
 Image reproduced with permission of the rights holder, ACI 
 
This failure criterion considers the intermediate principal stress (𝜎2) and it has smooth 
and convex criterion everywhere, except at the point of equi-triaxial extension where 
discontinuity of the gradient is observed. One advantage of this criterion is that it may 
be readily generalised to a large number of well-known failure criteria, including: the 
Huber-Mises, the Drucker-Prager, the Rankine, and the Mohr-Coulomb. 
For the uniaxial stress-strain relationship, the behaviour is represented by an elliptical 
and linear curve for the ascending and descending branch, respectively (Fig. 3-7). 
The stress-strain relationship (𝜎 - 𝜀𝑒𝑞𝑝 ) for the ascending branch is expressed as: 
 

 𝜎 = 𝑓𝑐0 + (𝑓𝑐 − 𝑓𝑐0)√1 − (𝜀𝑐𝑝 − 𝜀𝑒𝑞𝑝
𝜀𝑐𝑝 )2  (105) 

 
where 𝑓𝑐0 is the onset of the nonlinear behaviour and 𝜀𝑐𝑝 is the value of plastic strain at 
maximum concrete compressive strength (𝑓𝑐). As shown in Fig. 3-7, the approach used 
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to model compressive softening is similar to that used for tension. In the case of com-
pression, the softening branch is expressed in terms of a crushing displacement (𝑤𝑑). It 
is assumed that crushing is localised within a so-called crush band with dimension 𝐿𝑐. 
The constitutive for the linear softening branch is based on experimental research by 
Van Mier (1986). 
 

 
Figure 3-7. Constituve relationship for the uniaxial concrete material under: (a) 

hardening; (b) softening branch (adapted from ATENA’s Theory 
Manual). 

 Image reproduced with permission of the rights holder, Cervenka Consulting 

 

3.2.2.4. Interaction of tensile and compressive behaviour 
After concrete cracks, the compressive strength in the direction parallel to the cracks is 
reduced using a similar relationship to that implemented in the Modified Compression 
Field Theory of Vecchio and Collins (1986). However, in ATENA, this relationship is 
described in a form of Gauss function which allows the user to flexibly adjust the effect. 
The function is expressed as: 
 
 𝑓𝑐𝑒𝑓 = 𝑟𝑐𝑓𝑐 , 𝑟𝑐 = 𝑐𝑓 + (1 − 𝑐𝑓) 𝑒−(128𝜀𝑣)2 (106) 

 
where 𝑓𝑐𝑒𝑓  is the reduced concrete compressive strength, 𝑐𝑓  is the lower-bound constant 

limiting the minimum reduced strength, and 𝜀𝑣 is the tensile strain in transverse direc-
tion (perpendicular to the considered compressive strength). Under zero transverse strain, 
the value of 𝑓𝑐𝑒𝑓  equals the uniaxial concrete compressive strength (𝑓𝑐) and the strength 
is gradually reduced as the transverse strain increases (Fig. 3-9). 
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Figure 3-8. Compressive strength reduction of cracked concrete according to 

Gauss function (adapted from ATENA’s Theory Manual). 
 Image reproduced with permission of the rights holder, Cervenka Consulting 

 

3.2.3. Reinforcement bars idealisation 
Reinforcement bars can be modelled using either a discrete or smeared approach. The 
discrete approach models each individual bar (idealised as 1D-truss element) by assign-
ing the area of each bar and position the bar in a specific coordinate within the concrete 
element. On the other hand, smeared approach assumes that the reinforcement bars are 
uniformly distributed over a whole concrete element area for which an average stress-
strain relationship is considered. In this study, the former approach is considered since 
it is better suited to modelling concrete slabs with varying reinforcement arrangement. 
To model reinforcement bars, ATENA uses an embedded technique in which the nodes 
of the bar elements are linked to the displacement of the adjacent solid (concrete) nodes. 
The method can be used in conjunction with a user-defined bond model to represent slip 
due to bond failure between the bars and the concrete interface. For the constitutive 
relationship, the “CCReinforcement” type is used. This model may consider either bilin-
ear (Fig. 3-9(a)) or multi linear law (Fig. 3-9(b)). The bilinear model only considers 
the initial elastic stage (controlled by steel Young’s modulus and yield strength) and the 
post-yield stage whereas the multi linear model considers four linear curves which allow 
simulation of all four stages of steel behaviour: elastic, yield plateau, hardening and 
fracture.  
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Figure 3-9. Constitutive relationship of reinforcement bars: (a) bilinear; (b) multi 

linear law used (adapted from ATENA’s Theory Manual). 
Image reproduced with permission of the rights holder, Cervenka Consulting 

 

3.2.4.  Solution of nonlinear equations 
ATENA provides several methods to solve the nonlinear equations, including: a) Full 
Newton-Raphson; b) Modified Newton-Raphson; and c) Arc-Length method.  

3.2.4.1. Full Newton-Raphson Method 
By considering a relationship between internal resistance and external load applied in a 
structure, a following set of nonlinear equations can be expressed in terms of incremen-
tal step by step analysis as: 
 
 𝐾(𝑝)𝛥𝑝 = 𝑞 − 𝑓(𝑝) (107) 

 
where 𝑞 is the vector of total applied joint loads, 𝑓(𝑝) is the vector of internal joint 
forces,  𝛥𝑝 is the deformation increment due to loading increment, 𝑝 is the deformation 
of structure prior to load increment, and 𝐾(𝑝) is the stiffness matrix. The right hand 
side of Eq. 107 represents out-of-balance forces during a load increment. The nature of 
Eq. 107 is nonlinear due to inherent nonlinear properties of the internal forces (material 
properties). This suggests that one suitable way to solve this equation is by performing 
an iteration procedure until some convergence criteria are satisfied (e.g. deformation, 
force, energy, and forces in terms of maximum components). The concept of solving the 
nonlinear equation set by Full Newton-Raphson (N-R) method is illustrated in Fig. 3-
10(a). 
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Figure 3-10. Solving set of nonlinear equations using: (a) Full Newton-Raphson; (b) 

Modified Newton-Raphson method (adapted from ATENA’s Theory 
Manual). 
Image reproduced with permission of the rights holder, Cervenka Consulting 

 
As shown in Fig. 3-10(a), at each iteration, the stiffness matrix (indicated by the tan-
gent line) is recalculated. This is less favourable from the computation perspective be-
cause recalculating the stiffness matrix is time consuming. Secondly, when the set of 
nonlinear equations includes a softening branch (with negative tangent stiffness), either 
snap back or snap through, typically Newton-Raphson is unable to find any converging 
solution. 

3.2.4.2. Modified Newton-Raphson Method 
As mentioned previously, one drawback of the full N-R method is the need to recalculate 
the stiffness matrix at each iteration. The Modified Newton-Raphson method was devel-
oped to overcome this limitation. The modified method uses the stiffness matrix from 
the very first iteration of the step as shown in Fig. 3-10(b). Comparison of both Newton-
Raphson methods, shows that the modified one requires more iterations to reach the 
solution. However, each iteration of the modified method requires less computation time. 
Consequently, it typically converges faster. Although providing faster computation time, 
the modified method is less robust (exhibits worse convergence). It is also unable to 
handle softening. 

3.2.4.3. Arc-Length Method 
The Arc-Length method is mostly used in this study. The method is well established for 
solving problems with geometric and material nonlinearity. The method is not only ro-
bust but also computationally efficient which assures good predictions even for cases 
where traditional Newton-Raphson methods fail. The method can be used to predict 
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scenarios like snap back or snap through arising from geometric nonlinearity or material 
nonlinearity. The success of the method results from its flexibility in changing the load 
condition and reduce the incremental load step as required. To facilitate this, a new 
parameter, depicted 𝜆𝑖, is introduced into the formulation to represent the additional 
degree of freedom. Eq. 107 can be rewritten in terms of 𝜆𝑖 as: 
 
 𝐾(𝑝)𝛥𝑝 = 𝜆𝑖𝑞 − 𝑓(𝑝) (108) 

 
In addition, another scalar (𝜂) variable is introduced by the Line-search method that is 
used to accelerate solutions in cases of well-behaved load-deformation relationships or to 
damp possible oscillations, if convergence problems arise (e.g. near bifurcation and ex-
treme points). The Arc-Length method is illustrated in Fig. 3-11. 
 

 
Figure 3-11. Solving set of nonlinear equations using Arc-Length method (repro-

duced from ATENA’s Theory Manual). 
Image reproduced with permission of the rights holder, Cervenka Consulting 

 
Thanks to its additional degree of freedom 𝜆𝑖, the Arc-Length method is able to handle 
complex scenarios by iterating both the displacement and the load vector. This is, how-
ever, adding additional unknown to be solved. Corrections are required to correct both 
displacement and load vector until convergence is achieved.  
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3.2.5. Sensitivity study in ATENA 
 Mesh type (shape) 
In the current study, concrete slabs are modelled using linear, 8-noded hexahedral (cubic) 
elements. Tetrahedral elements were not chosen since, compared with hexahedral ele-
ments of the same size, the former typically produce a stiffer response. Consequently, a 
finer mesh is needed with tetrahedral elements to produce accurate predictions. In addi-
tion, all the simulated slabs in this study were rectangular slab and hence easily meshed 
with cubic elements. Other studies into punching with 3-D solid element also typically 
use cubic elements (Genikomsou and Polak, 2015; Shu et al., 2017; Goh and Hrynyk, 
2018). 
 Mesh size 
For validation purposes, an isolated internal slab-column connection without transverse 
reinforcement depicted PT22 from Sagaseta et al. (2011) was simulated. The slab meas-
ured 3000 mm x 3000 mm x 250 mm and was centrally supported on a 260 mm square 
steel plate. The specimen was loaded concentrically at eight points positioned at a radius 
of 1500 mm from the slab centre. The top reinforcement ratio was 0.82% whereas the 
bottom reinforcement ratio was 0.32%.  
By utilising symmetry, only a quarter of the slab was modelled in ATENA (Fig. 3-12). 
Three different uniform mesh sizes were simulated: 25; 35; and 50 mm. These mesh sizes 
respectively give: 10; 7; and 5 elements through the slab thickness. In addition to the 
three uniform mesh sizes depicted earlier, additional model was built by combining 25 
and 50 mm element. The smaller element (25 x 25 x 25 mm) was used in the critical 
region at a distance of 2.0𝑑 from the support face where stress concentration was ex-
pected to occur while a coarser mesh (25 x 50 x 25; 50 x 25 x 25; 50 x 50 x 25) was used 
elsewhere. All input parameters for the concrete model were default values (Table 3-1). 
Fully-rotating crack model was used. Reinforcement bars were modelled with 1-D truss 
elements assuming perfect bond. A bilinear stress-strain curve with very minimal strain 
hardening was used.  
Two possible ways of modelling the support and applied load were considered in ATENA. 
The first method is done by applying area restraint and area load (pressure) directly to 
the surface of the concrete volume whereas the second method is done by explicitly 
modelling the actual support and loading plates using elastic material model. In this 
study, the latter was consistently adopted. Support and loading plates were modelled 
using elastic steel material model with tetrahedral shaped elements. In terms of building 
and generating the mesh for the model, this approach is more convenient because the 
concrete slab can be simply modelled as a single volume element. In addition, modelling 
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the loading plate explicitly allows the load to be applied in a form of point load (instead 
of surface pressure/area load) which is also more convenient to monitor and post-process 
afterwards. The bottom surface of the support plate was vertically restrained. Fixed 
contact was implemented to ensure mesh compatibility between the concrete slab surface 
and corresponding plates. The two point loads were modelled as a downward point force 
applied at the centre of each loading plate. Loading was applied incrementally through 
a force-controlled procedure in conjunction with the Arc-Length iterative method. The 
maximum number of iterations for each step was limited to 100. The convergence toler-
ance was set at 1% for displacement, residual, and absolute residual error and 0.1% for 
energy error. Two monitoring points were put close to the slab free edges to measure the 
slab vertical deflection on each direction. Slab rotation was post-processed manually by 
subtracting these two deflection values and dividing the result with the distance between 
these two points (typically around 100 - 150 mm apart). The adopted mesh boundary 
conditions and loading are shown in Fig. 3-12.  
 
 

 
Figure 3-12. Quarter of slab PT22 modelled in ATENA with combined 25 and 50 

mm mesh size. 
 
Fig. 3-13(a) compares the experimental and predicted load-rotation (i.e. average rota-
tion) responses of slab PT22. Changing the mesh size is seen to slightly affect both the 
load rotation response and the predicted failure load. The load-rotation response of 
model with coarser mesh is softer than the model with finer mesh size, especially at post-
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cracking stage. In addition, there is a clear trend where the predicted failure load be-
comes slightly higher as finer elements were used. This pattern is consistent with the 
results of numerical study reported by Cervenka et al. (2016). This study mentioned 
that the difference of the predicted failure load with different mesh sizes is mainly con-
tributed from the tension stiffening effect. In the model with relatively large mesh size, 
the concrete residual tensile strength contribution is less due to a large volume of cracked 
concrete thus producing softer response. For uniform mesh arrangement, the optimum 
results (in terms of accuracy of predictions and required computation time) were ac-
quired by the 35 mm mesh model. The prediction is pretty much similar to the model 
with combined 25 and 50 mm mesh. The latter was chosen because the finer mesh around 
the column region produces smoother stress and strain variation than the former one. 
 

 
Figure 3-13. Load-rotation response of slab PT22 (Sagaseta et al., 2011) simulated 

with: (a) various mesh sizes; (b) linear vs quadratic shape function. 
 
 Mesh interpolation order (shape function) 
In ATENA, either linear or quadratic shape functions can be used. Quadratic type ele-
ments have 10 nodes for tetrahedral shape and 20 nodes for hexahedral shape. To inves-
tigate the use of higher order elements, the previous model with uniform mesh size of 35 
mm was reanalysed but using the quadratic 20-noded hexahedral element for the con-
crete slab. An additional model was also simulated with quadratic shape function but 

(a) (b) 
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coarser mesh size (70 mm) that is more comparable to the 35 mm linear model in terms 
of total number of nodes. The support and loading plates were still modelled as linear 
tetrahedral element. The comparison of the predicted response of linear vs quadratic 
elements is shown in Fig. 3-13(b). It could be seen from Fig. 3-13(b) that the quadratic 
shape function produces relatively smaller failure load than its identical pair with linear 
order element. For the 70 mm quadratic model, the load-rotation response after cracking 
was significantly softer than the measured response. The analysis of this model was 
terminated earlier because large numbers of unconverged steps were identified even be-
fore reaching the proximity of expected failure load. In general, the quadratic model 
requires almost 4-5 times longer computation time due to higher number of iterations to 
reach convergence for each step. This is because the conditions for quadratic meshes to 
converge faster usually require smoothness of the solution of some degree where it is 
violated by discontinuities like cracks. Thus, it was decided to consistently use the linear 
hexahedral element for further analysis. 

3.2.6. Material calibration in ATENA 
The default material parameters and solution strategy used in ATENA are presented in 
Table 3-1. In this study, only a few parameters from Table 3-1 related to the concrete 
constitutive model were studied with remaining parameters kept at their default value. 
The investigated parameters were: fixed vs rotating crack model; critical compressive 
displacement (𝑤𝑑), and limit of compressive strength reduction (𝑐).  
 Fixed vs rotating crack model 
To the author’s knowledge, there is still no general consensus on which crack model is 
best for predicting the experimental response. It is generally known that the accuracy of 
these crack models is case-dependent. To determine the best crack model to simulate 
punching, an initial investigation was performed by simulating slab PT22 with both 
fixed and rotating crack models. As discussed earlier, the fixed crack model in ATENA 
requires the user to define a so-called shear factor (SF) which represents the ratio of the 
shear stiffness to the minimal normal crack stiffness. For example, the default value is 
20 which means that the shear stiffness is calculated as 20 times the minimal normal 
crack stiffness at current step. This allows the shear stiffness to be gradually reduced as 
the normal stiffness degrades (cracks open wider). Three different SF were studied here: 
20; 0.2; and 0.002. Fig. 3-14 compares load-rotation responses for the rotating and fixed 
crack models with various SF. 
Fig. 3-14 shows that shear factor significantly influences both the slope of the load-
rotation response and the predicted failure load. Increasing the value of SF produces 
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stiffer response and higher punching capacity. Only when the fixed crack model was used 
with a SF of around 0.2 does it produce predictions comparable to both the experimental 
test result and the rotating crack model. The sensitivity of the fixed crack prediction to 
the adopted shear factor assumption makes it less preferable. Thus, it was decided to 
use the rotating crack model for subsequent analyses. 
 

 
Figure 3-14. Influence of rotating vs fixed crack model (with various SF) to the 

load-rotation response of slab PT22 (Sagaseta et al., 2011). 
 
 Critical compressive displacement (𝒘𝒅) 
The softening branch of concrete in compression is modelled linearly in ATENA with 
deformation expressed in terms of displacement to ensure mesh objectivity (Fig. 3-7(b)). 
The compressive displacement at which the compressive stress reaches zero is defined as 
the critical compressive displacement (𝑤𝑑). The default value of 𝑤𝑑 is 0.5 mm based on 
the experimental study of Van Mier (1986). Increasing 𝑤𝑑 is equivalent to increasing the 
amount of compressive energy (𝐺𝑐) absorbed by the concrete during compressive failure. 
To study the sensitivity of the prediction to 𝑤𝑑, an additional slab with 𝑤𝑑 = 2 mm was 
simulated and the result is presented in Fig. 3-15(a). 
Fig 3-15(a) shows that the model with higher 𝑤𝑑 overestimated the punching capacity 
of slab PT22. In addition, the failure mode of the model with 𝑤𝑑 = 2.0 mm is overly 
ductile compared with the measured response. On the other hand, the default value of 
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𝑤𝑑 = 0.5 mm produces reasonably good predictions. Consequently, it was decided to 
consistently use the default value for further analyses. 
 

 
Figure 3-15.  Influence of (a) critical compressive displacement; (b) limit of com-

pressive strength reduction to the load-rotation response of slab PT22 
(Sagaseta et al., 2011). 

 
 Limit of compressive strength reduction due to cracking (𝒄𝒇) 

As shown in Fig. 3-8, ATENA allows users to select the lower limit to the reduction in 
compressive strength due to cracking. The default value is 0.8 based on the study of 
Dyngeland (1989) which means that no matter how severe the concrete cracks, its com-
pressive strength cannot degrade below 80% of its original peak compressive strength 
(𝑓𝑐). A study by Kollegger and Mehlhorn(1988) proposed that 𝑐𝑓  should be taken around 

0.45. To investigate this, an additional analysis with 𝑐𝑓  = 0.5 was simulated and the 

result is presented in Fig. 3-15(b).  
It can be seen from Fig 3-15(b) that the prediction with lower limit of compressive 
strength reduction as 0.5 actually produced better prediction of the failure load of slab 
specimen PT22. However, numerous other analyses performed by the author show that 
the influence of 𝑐𝑓  is case-dependent. Although not shown here, the majority of analyses 

(a) (b) 
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conducted with 𝑐𝑓  = 0.5 typically underestimated the measured load from test results. 

Thus, the default value of 𝑐𝑓  = 0.8 was kept for further analyses. 

 
Table 3-1. Default material parameters and solution strategy used in ATENA 

(acquired from ATENA’s Theory Manual). 
 
No. Parameter Value/Reference 

Concrete constitutive model  
A1 Concrete elastic modulus fib Model Code 2010 
A2 Fracture energy fib Model Code 2010 
A3 Concrete tensile strength fib Model Code 2010 
A4 Smeared crack model Fully rotating crack 
A5  Critical compressive displacement 0.5 mm 
A6 Limit of compressive strength reduction 

due to cracking (MCFT)  
0.8𝑓𝑐 

A7 Eccentricity (defining the shape of the 
failure surface) 

0.52 

A8 Volume dilatation plastic factor 0 
 Reinforcement bar model  
B1 Stress-strain relationship Bilinear 
B2 Bond-slip model Perfect bond 
 Loading procedure and convergence 

criteria 
 

C1 Loading procedure Static (force-controlled) 
C2 Iteration method  Arc-length method 
C3 Convergence criteria for displacement, 

residual, and absolute residual error 
1% 

C4 Convergence criteria for energy error 0.1% 
 

3.3 FEA based on 2-D shell element (ADAPTIC) 

All descriptions presented below are referred to the original work of Izzuddin et al. (2004). 

3.3.1. Finite elements in ADAPTIC (csl4 element) 
The shell element in ADAPTIC is capable of modelling either conventional RC slabs or 
composite RC slabs with steel deck. However, the descriptions presented here consider 
only the former application. These following assumptions are made for the shell formu-
lation: 

 Plane section remain plane after deformation, but not necessarily normal to the 
element mid surface (Reissner-Mindlin hypothesis) 

 Out-of-plane stresses are negligible 
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 Concrete cover depth is uniform 
 Steel reinforcement is modelled as an equivalent uniform thickness plate acting 

uniaxially along a specific direction (smeared approach) 
 Only in-plane reinforcement is considered 
 Perfect bond is assumed between concrete and reinforcement bars 

A layered approach, with quadrilateral mesh shape, is used to account for the nonlinear 
variation of material stress through the slab thickness. Each shell element is discretised 
into several in-plane layers along the thickness of the slab, with each layer having a 
prescribed number of gauss points (2 x 2 by default). These gauss points are used to 
integrate the local layer stresses through the slab thickness to obtain the sectional force 
resultants. The layered approach used in ADAPTIC is illustrated in Fig. 3-16. 
 

 
Figure 3-16. (a) Reissner-Mindlin deformation assumptions; (b) layered-shell mod-

elling approach along with its discretisation used in ADAPTIC. 
 
Both geometric and material nonlinearity are considered within the shell element formu-
lation. The geometric nonlinearity is formulated based on a local co-rotational system in 
which geometrically nonlinear transformations between the local and global reference 
systems are taken into account. This co-rotational approach, proposed by Izzuddin 
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(2002), provides exceptional benefits for structural problems with rotational degrees of 
freedom, particularly when taking into account large rigid body rotations.  

3.3.2. Concrete material idealisation in ADAPTIC (con11 material type) 
The formulation of concrete material considers the influence of both tensile cracking and 
compressive nonlinearity, including softening effects. Nonlinearity is considered for the 
biaxial planar stress, but the out-of-plane shear response is assumed to be linear elastic. 
A correction factor of 5/6 is considered to relate the out-of-plane shear strains to shear 
stresses to represent the actual stress distribution over the depth of the slab that is closer 
to a parabolic curve than the constant form assumed by standard finite element discreti-
sation (Zienkiewicz and Taylor, 1991). This elastic out-of-plane shear treatment is con-
sidered sufficiently realistic to simulate bending (flexural) behaviour of floor slabs that 
do not exhibit punching failure. This is one of the main limitations that will be discussed 
in more detail later.  

3.3.2.1. Crack model and tensile behaviour 
A fixed crack model (smeared) is used in ADAPTIC. In order to simplify the presenta-
tion of the model, the biaxial response of concrete is considered only in crack plane, 
where the first crack is assumed to run orthogonal to the local element x-axis. However, 
in the more general case, constant geometric transformations can be employed to link 
the biaxial strains/stresses in the crack plane to those in the local element x-y reference 
system. The shear retention factor can be adjusted as an input parameter to reduce the 
in-plane shear stiffness in ADAPTIC. The shear retention factor, however, only considers 
a constant value (i.e. there is no proportionality to the normal crack opening as assumed 
in ATENA). 
The tensile behavior of concrete is modelled by means of a separate strength envelope 
for the biaxial stresses (𝜎𝑥𝑡, 𝜎𝑦𝑡, 𝜎𝑥𝑦𝑡 ) as a function of their corresponding strains 

(𝜀𝑥𝑐, 𝜀𝑦𝑐, 𝛾𝑥𝑦𝑐) as shown in Fig. 3-17 and 3-18. In Fig. 3-17, 𝜀𝑥𝑐0  and 𝜀𝑦𝑐0  are the maxi-

mum crack strains accumulated up to the start of the current equilibrium step, 𝛼𝑡 is a 
material softening parameter that controls the slope of the descending branch, and 𝜀𝑡  is 
the concrete strain where residual tensile stress approaches zero. Both 𝑓𝑡 and 𝛼𝑡 are user 
defined parameters which are selected in the input file. In Fig. 3-18, 𝛾𝑥𝑦𝑐 is expressed 

as a function of 𝜎𝑥𝑦𝑡 which represents the limiting shear stress accounting for the inter-

action of the shear stresses and normal stresses (𝜎𝑥 and 𝜎𝑦). 𝛾𝑥𝑦𝑐0+  and 𝛾𝑥𝑦𝑐0−  are the max-

imum shear strains accumulated up to the start of the current equilibrium step for the 
positive and negative shear respectively, 𝛼𝑠 is a parameter expressing the shear softening 
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relative to the softening in normal stresses, and 𝛾𝑡 is the concrete shear strain where 
residual shear stress approaches zero. It can be seen that the envelope for positive and 
negative shear is treated separately so that considerable shear resistance for positive 
direction can still be maintained even when the negative shear experiences significant 
damage.  
 

 
Figure 3-17. Separate tensile envelopes for normal stresses in x- and y-direction 

(adapted from Izzuddin et al., 2004). 
Image reproduced with permission of the rights holder, ASCE 

 

 
Figure 3-18. Tensile envelopes for shear stresses (adapted from Izzuddin et al., 

2004). 
Image reproduced with permission of the rights holder, ASCE 
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3.3.2.2. Compressive behaviour (biaxial stress interaction) 
The behaviour of concrete in compression is formulated in terms of a biaxial stress rela-
tionship using the principles of plasticity, where an evolving plastic interaction surface 
is employed, as defined by the constraint: 
 

 𝐶(𝜎𝑥, 𝜎𝑦, 𝜏𝑥𝑦) = √2[(1 − 𝑏𝑐3 ) 𝐼12 + (2 + 𝑏𝑐)𝐽2] + 𝜎𝑐𝐼1  ≤  𝜎𝑐 (109) 

 
with 

 𝐼1 = 𝜎𝑥 + 𝜎𝑦 (110) 
 

 𝐽2 = 13 (𝜎𝑥2 − 𝜎𝑥𝜎𝑦 + 𝜎𝑦2) + 𝜏𝑥𝑦2  (111) 

 
where 𝜎𝑥, 𝜎𝑦, and 𝜏𝑥𝑦 are normal stress in x- and y- direction and in-plane shear stress 

respectively, 𝜎𝑐  is current compressive strength of concrete, 𝑏𝑐 is compressive interaction 
parameter which provides best-fit results against experimental test data and as default 
taken as 0.6, 𝐼1 and 𝐽2 are stress invariants which represent interaction between each 
component of normal and shear stresses at biaxial plane. For uniaxial compression, both 
compression hardening and softening are defined following the expression: 
 

 𝜎𝑐 =
⎣⎢
⎢⎡𝑠𝑐 + (1 − 𝑠𝑐) 𝜀𝑝̅̅̅ ̅̅ ̅𝜀𝑐 (2 + 𝑟𝑐1 − 𝑟𝑐

𝜀𝑝̅̅̅ ̅̅ ̅𝜀𝑐)
1 + (1 − 𝑠𝑐1 − 𝑟𝑐) (𝜀𝑝̅̅̅ ̅̅ ̅𝜀𝑐)

2
⎦⎥
⎥⎤𝑓𝑐 (112) 

 
with 

 

 𝜀𝑐 = 𝑓𝑐𝐸𝑐 (113) 

 
where 𝜀𝑝̅̅̅ ̅̅ ̅ is the cumulative equivalent plastic strain, 𝜀𝑐  is the concrete strain at maxi-

mum concrete compressive strength 𝑓𝑐, 𝑠𝑐  and 𝑟𝑐  are non-dimensional material parame-
ters used to represent the start of compressive nonlinearity and the lower-bound limit of 
residual post-crushing strength, respectively. Both the evolution of plastic surface bound-
aries in biaxial plane and uniaxial compression stress-strain relationship are shown in 
Fig. 3-19. 
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Figure 3-19. Plasticity-based compressive response of concrete and its uniaxial 

stress-strain representation (adapted from Izzuddin et al., 2004). 
Image reproduced with permission of the rights holder, ASCE 

 

3.3.3. Reinforcement bars idealisation in ADAPTIC 
As mentioned earlier, reinforcement bars are modelled in ADAPTIC using a smeared 
approach in both the local x- and y-axis of the shell element. More than one reinforce-
ment layer is allowed to be specified at different height, through the slab thickness (Fig. 
3-16(b)). It is assumed that the perfect bond exists between the bars and the concrete 
interface. Constitutive relationship of the reinforcement bar is represented by a bilinear 
curve similarly as shown in Fig. 3-9(a) used in ATENA. The input parameter includes 
the initial stiffness (steel Young’s modulus), yield stress, and the post-yield stiffness 
represented as a stiffness ratio relative to the initial elastic stiffness. 

3.3.4. Solution of Nonlinear Equations 
Similarly to ATENA, either Newton-Raphson (full or modified) or Arc-Length method 
can be used in ADAPTIC. It is also possible to combine these two methods in a single 
analysis by defining different suitable load intervals. For example, the N-R method can 
be used up to peak load with the Arc-Length method used subsequently to model sof-
tening. These two methods can be used in conjunction with either displacement or force-
controlled procedure. Various convergence criteria are available in ADAPTIC, including: 
force, moment, displacement, rotation, and work reference. The force and moment ref-
erence are based on the out-of-balanced norm, the displacement and rotation reference 
are based on the maximum iterative displacement increment, and the work reference is 
based on the energy norm.  
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3.3.5. Sensitivity study in ADAPTIC 
 Mesh type (shape) 
In the current version of ADAPTIC, the only available shell element is a quadrilateral 
element type (4-noded linear element), depicted csl4 (Fig. 3-16(b)). This is sufficient for 
the present study since it only considers rectangular RC slabs. To obtain optimum re-
sults, square elements were used throughout. This treatment enforces the use of uniform 
mesh size.  
 Mesh size (uniform) 
For validation purposes, specimen PT22 from Sagaseta et al. (2011) was simulated. 
Three different mesh sizes were used: 25; 50; and 150 mm. By utilising symmetry, only 
a quarter of the slab was modelled in ADAPTIC. The support plate (steel) was modelled 
by restraining the slab shell nodes within the support region in the vertical z-direction. 
However, it is important to mention here that the exact support plate dimension (130 x 
130 mm - quarter) cannot be modelled with the chosen mesh size and thus the dimension 
was rounded up to 150 x 150 mm for all three mesh sizes. In order to evaluate the effect 
of rounding up the plate size to 150 x 150 mm, an additional model of specimen PT22 
was analysed in ADAPTIC with uniform mesh size of 65 mm which gives an exact 
support plate dimension of 130 x 130 mm (quarter). The plot of load-rotation response 
of this additional model is plotted along in Fig. 3-21(a) so that it can be compared to 
the chosen model with 50 mm uniform mesh size. Comparing the load-rotation response 
of these two models (50 mm vs 65 mm) in Fig. 3-21(a), it could be seen that the 
difference is almost negligible. The model with 50 mm mesh size was chosen because it 
allows more punching joints to be inserted along the control perimeter (discussed in more 
detail in Chapter 4). In addition, the position of the punching control perimeter for 
typical slabs modelled in this study was around 100 mm from the column face which 
means that it can be exactly modelled with 50 mm mesh size.  
Translational and rotational restraints were applied at each slab edge to represent the 
line of symmetry. The two point loads were modelled as a downward point force applied 
directly to the shell nodes. The illustration of the slab FE model with 50 mm mesh size 
along with its boundary condition is shown in Fig. 3-20. The full Newton-Raphson 
method was used in conjunction with the force-controlled procedure to simulate the 
applied load to around 50% of the measured failure load. Subsequently, the simulation 
was continued using displacement-control in conjunction with the Arc-Length method. 
This was done to achieve better numerical convergence at higher load levels. The con-
vergence criteria was chosen based on the work reference (energy norm) with 10 itera-
tions limit for each load step. The current material parameters were determined based 
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on default parameters provided by previous studies (Elghazouli and Izzuddin (2004); 
Vollum and Tay (2007)). The shell element was, by default, discretised into ten internal 
layers with 2 x 2 gauss points. 
 

 
Figure 3-20. Quarter of slab PT22 (Sagaseta et al., 2011) modelled in ADAPTIC 

with 50 mm mesh size along with its boundary conditions. 
 

The first model with 25 mm mesh size had 3600 quadrilateral elements in total, whereas 
the model with 50 and 150 mm mesh size had 900 and 100 total elements, respectively. 
To compare the performance of the different mesh sizes, both the accuracy of the load-
rotation response and the required computation time were extracted. The rotation was 
extracted from the shell nodes located at the slab free edges to obtain the maximum 
value. Load-rotation response of all three models are compared with the measured re-
sponse (average rotation) in Fig. 3-21(a) while the required computation time is shown 
in Fig. 3-21(b). 
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Figure 3-21. (a) Load-rotation response of slab PT22 (Sagaseta et al., 2011) simu-

lated with various mesh sizes; (b) required computation time vs mesh 
size. 

 
Fig. 3-21(a) shows that the load rotation responses obtained with the 25 mm and 50 
mm mesh sizes are virtually identical as well as being in excellent agreement with the 
measured response. However, the model with coarsest mesh (150 mm) is overly stiff at 
higher loads. Observing Fig. 3-21(b), it is clear that the model with finest mesh size (25 
mm) required significantly longer computation time than the model with 50 and 150 mm 
mesh size (9 and 95 times longer computation time, respectively). From these results, it 
was decided that the model with 50 mm mesh size is suitable for use as a reference model 
owing to its accuracy and relatively efficient computation time. 
 Number of internal layers and gauss point 
As previously mentioned, users have flexibility in ADAPTIC to determine the discreti-
sation of the shell element through the slab thickness by adjusting the number of internal 
layers. In addition, users can also adjust the number of gauss point used to integrate the 
internal stresses to get resultant forces. By default, ten internal layers with 2 x 2 gauss 
points configuration was used. Several simulations were performed here by either in-
creasing the number of internal layers or gauss point further to see whether there is any 
difference in terms of the accuracy of the load-rotation prediction. For the first series, 

(a) (b) 
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two additional models with 20 and 30 internal layers were simulated, while keeping the 
2 x 2 gauss points. For the second series, the gauss points were increased from 2 x 2 to 
3 x 3 and 4 x 4 while keeping the internal layers to be equal as ten layers. Both were 
simulated with 50 mm mesh size. The load-rotation responses produced by different 
number of internal layer and gauss point are shown in Fig. 3-22(a) and (b), respectively. 
 

 
Figure 3-22. Influence of: (a) number of internal layers; (b) number of gauss point 

to the load-rotation response of slab PT22 (Sagaseta et al., 2011). 
 
From Fig. 3-22(a) and (b), it is clear that increasing either the number of internal layer 
or gauss point does not affect the results. Thus, it was decided to keep the default input 
by using 10 internal layers and 2 x 2 gauss points. 

3.3.6. Material calibration in ADAPTIC 
As done in ATENA, the calibration of the material properties in ADAPTIC was per-
formed by initially evaluating the appropriateness of the default con11 parameter sug-
gested by Elghazouli and Izzuddin (2004). The concrete model in ADAPTIC (con11) 
requires 37 input parameter in total. However, only 12 of them are related to the concrete 
mechanical properties whereas the remaining (25) are temperature dependent parameters. 
Only concrete parameters related to the mechanical properties are discussed here. The 

(a) (b) 



156 
 

default mechanical parameters for the concrete model in ADAPTIC are presented in 
Table 3-2. 
 
Table 3-2. Default material parameters (mechanical) for con11 model in ADAP-

TIC (Elghazouli and Izzuddin, 2004). 
 

No. Parameter Value/Ref 
Con11 material model  

A1 Young’s modulus ATENA 
A2 Poisson’s ratio 0.2 
A3 Tensile strength (𝑓𝑡) Vollum and 

Tay (2007) A4  Tensile softening slope (𝑎𝑡) 
A5 Compressive strength (𝑓𝑐) Exp test 
A6 Normalised initial compressive strength (𝑠𝑐) 0.4 
A7 Normalised residual compressive strength (𝑟𝑐) 0.4* 
A8 Normalised strain increment beyond strain at peak 𝜀𝑐  (𝑚𝑐) 1.0 
A9 Factor for biaxial compressive interaction (𝑏𝑐) 0.6 
A10 Elastic shear retention factor (𝛽𝑠) 0.1* 
A11 Factor scaling direct tensile stresses for shear interaction (𝜙𝑠) 0.4 
A12 Normalised shear softening relative to direct tensile softening (𝛾𝑠) 0.0 

* the original value of 𝑟𝑐 is 0.2 and 𝛽𝑠 is 0.5 but they are adjusted in this study as the value presented on the table 

 
The normalized residual compressive strength (𝑟𝑐) was increased from its original value 
of 0.2 to 0.4 to provide better numerical convergence. The shear retention factor (in-
plane) was reduced from its default value of 0.5 to 0.1 according to the recommendation 
provided by Sagaseta and Vollum (2009) and Eder et al. (2010). From previous results 
presented in Fig. 3-21(a), it could be seen that default material parameters accurately 
predicted the load-rotation response. However, it is still important to explore and un-
derstand how changing some parameters may sensitively affect the prediction. Below are 
discussed some parameters that were investigated further. 
 Tensile concrete properties (tensile strength and tensile softening slope) 
The default parameters for the tensile strength and the tensile softening slope were de-
termined based on the suggestion of Vollum and Tay (2007). This study proposed that 
the concrete tensile strength for the shell element should be reduced by the half of the 
measured value whereas the tensile softening slope should be carefully chosen to produce 
a zero tensile stress at strain level equals to 0.001. The illustration of the proposal by 
Vollum and Tay (2007) is shown in Fig. 3-23. 
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Figure 3-23.  Tensile strength and tensile softening slope proposed by Vollum and 

Tay (2007). 
 
To investigate these two parameters further, additional simulations were performed in 
ADAPTIC. The first series considers concrete model with the full and quarter of the 
measured tensile strength (𝑓𝑡 and 0.25𝑓𝑡) but with default softening slope rule. The 
second series considers zero tensile stress at strain level of 0.0005 and at 0.002 but with 
the default tensile strength. The load-rotation responses of slab PT22 are shown in Fig. 
3-24(a) and (c) for various tensile strength and various tensile softening slope. 
Fig. 3-24(a) shows that changing the tensile strength significantly affects the cracking 
load but the load-rotation response is less affected at higher load levels. It can be seen 
that the default parameter produced the most accurate prediction, with respect to the 
measured response. In Fig. 3-24(c), it can be seen that the model with shallower tensile 
softening slope (0.002) possessed higher tension stiffening which produces a smoother 
transition from pre- to post-cracking stage, but an overly stiff response compared to the 
measured one. Comparing all three models, it could be seen that, once again, the default 
parameters predict the experimental result most accurately.  
It is important to remark here that the influence of tensile strength and tensile softening 
slope on the load-rotation response depends also on the flexural reinforcement ratio. As 
the flexural reinforcement ratio becomes higher, the proportion of tensile forces carried 
by the concrete relative to the reinforcing bars decreases, hence the contribution of 
concrete tension stiffening becomes less significant compared to slabs with lower flexural 
reinforcement ratio. To illustrate how the accuracy of the predicted rotations varies with 
flexural reinforcement ratio, additional analyses were performed using slab PT31. Slab 
PT31 had exactly the same geometry and test setup as slab PT22 but the flexural 

0.5  

 

_ 0.001   0  
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reinforcement ratio was doubled. The influence of tensile strength and tensile softening 
slope to the load-rotation response of slab PT31 are plotted in Fig. 3-24(b) and (d), 
respectively. Comparing the response of slab PT22 and PT31 with various tensile 
strength and tensile softening slope in Fig. 3-24, it could be seen that slightly stronger 
influence of concrete tensile properties was found in slab PT22 with lower flexural 
reinforcement ratio. Although the prediction is a bit stiffer for slab PT31, in general, the 
shell model with chosen tensile properties reasonably captures the load-rotation response 
of both slabs. 
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Figure 3-24. Influence of (a),(b) tensile strength; (c),(d) tensile softening slope to 

the load-rotation response of slab PT22 (𝝆𝒕𝒐𝒑 =0.82%) and PT31 
(𝝆𝒕𝒐𝒑=1.48%) of Sagaseta et al. (2011), respectively. 

 
 

(a) (b) 

(c) (d) 
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 Initial and residual compressive strength 
The normalised initial compressive strength (𝑠𝑐) controls the start of nonlinearity at the 
ascending branch whereas the normalised residual compressive strength (𝑟𝑐) controls the 
lower-bound of the reduction of concrete compressive strength at post-peak regime. Ad-
ditional simulations were performed using the value of 𝑠𝑐  and 𝑟𝑐 equal to half (0.2) and 
double (0.8) the original value. The load-rotation responses of slab PT22 are shown in 
Fig. 3-25(a) and (b) for different values of initial and residual compressive strength. 
Fig. 3-25(a) and (b) show that changing the compressive behaviour, both at pre- and 
post-peak regime, does not significantly affect the load-rotation response of the slab. 
Comparison of Fig. 3-25 and Fig. 3-24, shows that the tensile concrete parameters have 
a significantly greater influence than the compressive parameters on the flexural behav-
iour of the slab. All the results presented here suggest that all default concrete parame-
ters in Table 3-2 can be used. The appropriateness of all parameters are being validated 
in the next section using several tested slabs from previous studies. 

 

 
Figure 3-25. Influence of (a) normalised initial compressive strength; (b) normal-

ised residual compressive strength to the load-rotation response of slab 
PT22 (Sagaseta et al., 2011). 

  

(a) (b) 
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3.4 Initial validation of FEA performed using ATENA and ADAP-
TIC 

Several test categories were simulated for the initial validation purpose, including: 

(a) Concentric test (symmetric reinforcement arrangement) 
(b) Concentric test (non-symmetric reinforcement arrangement) 
(c) Eccentric test (constant eccentricity) 
 
Explanation regarding the brief detail of the test setup and the FEA predictions are 
presented below. 

3.4.1. Concentric test (symmetric reinforcement arrangement) 

Two specimens with symmetric reinforcement arrangement were simulated: PG-5 from 
Guandalini et al. (2009) and PT31 from Sagaseta et al. (2011) with 0.33% and 1.48% 
top reinforcement ratio, respectively. The geometry of the specimen and the test setup 
were exactly the same as specimen PT22 explained earlier. Due to symmetry, only a 
quarter of the slab model was modelled. The mesh configuration used in ATENA is 
similar to the one used for specimen PT22, with the finest mesh size of 25 x 25 x 25 mm. 
In ADAPTIC, the mesh size was uniformly taken as 50 mm. Load-rotation response 
predicted using ATENA and ADAPTIC is presented in Fig. 3-26 for both slabs.  
Fig. 3-26 shows that both ATENA and ADAPTIC predicted the load-rotation response 
accurately. ATENA and ADAPTIC produced similar but slightly stiffer load-rotation 
response for slab PT31. For slab PG-5, ADAPTIC predicted the load-rotation response 
more accurately than ATENA. Regarding the prediction of the failure load, ATENA 
produces very good prediction for slab PT31 while slightly overestimating the failure 
load of slab PG-5. 
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Figure 3-26. Results of ATENA and ADAPTIC initial validation for concentric test 

with symmetric reinforcement arrangement (left: PG-5 of Guandalini 
et al., 2009; right: PT31 of Sagaseta et al., 2011). 

 

3.4.2. Concentric test (non-symmetric reinforcement arrangement) 

Another two slabs from the PT series (PT32 and PT33) of Sagaseta et al. (2011) were 
reproduced. Slab PT32 had a reinforcement ratio of 1.46% in x-direction and 0.75% in 
y-direction, respectively whereas slab PT33 had a reinforcement ratio of 0.76% in x-
direction and 0.32% in y-direction, respectively. The geometry of the slab and the test 
setup were exactly the same as slab PT22. Thus, the boundary conditions and mesh 
configuration for these slabs were simulated in the same manner with the slabs in previ-
ous series. To evaluate the accuracy of the FEA predictions, predicted load-rotation 
response in both strong and weak axes are compared to the measured response in Fig. 
3-27. 
Fig. 3-27 shows that both ATENA and ADAPTIC predicts the load-rotation response 
of slabs with non-symmetric reinforcement arrangement accurately. For slab PT32, 
ATENA produced slightly softer and lower punching capacity whereas the load-rotation 
responses from ADAPTIC are in good agreement, both for the strong and weak axes. 
For slab PT33 with lower reinforcement ratio, the predicted responses are slightly stiffer 
and ATENA also predicted higher punching capacity but with a reasonable margin.  



163 
 

 

 
Figure 3-27. Results of ATENA and ADAPTIC validation for concentric test with 

non-symmetric reinforcement arrangement (left: PT32; right: PT33, 
both of Sagaseta et al., 2011). 

 

3.4.3. Eccentric test (constant eccentricity) 

Experimental tests performed by Krueger et al. (2000) were reproduced. The test cam-
paign focused on investigating the influence of loading eccentricity at interior slab-col-
umn connections, with and without shear reinforcement. For the validation purpose here, 
only specimens without shear reinforcement were modelled. The dimensions of all the 
slabs were 3000 x 3000 mm (square) with 150 mm thickness and supported by a square 
column with a dimension of 300 x 300 mm. The slabs were simply supported on all their 
edges. Both slabs had the same top reinforcement ratio of 1.0% and no compression 
reinforcement. The first specimen (P16A) was subjected to load with eccentricity (𝑒𝑢) 
of 160 mm whereas the second specimen (P30A) had eccentricity of 320 mm. An addi-
tional stub, where the vertical loading was applied, was attached to the main column to 
introduce the eccentricity to the slabs. The complete test setup is shown in Fig. 3-28. 
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Figure 3-28. Experimental test setup with constant eccentric load (reproduced from 

Krueger et al., 2000). 
Image reproduced with permission of the rights holder, Gaston Krueger 

 
Both in ATENA and ADAPTIC, only half of the slab was modelled by utilising the 
symmetry. The finest mesh size used in ATENA was 15 x 15 x 15 mm for region within 
the distance of 2.0𝑑 from the column face. In ADAPTIC, uniform quadrilateral mesh 
size of 30 x 30 mm was used. Slab deflection was measured at several points along the 
slab but only the maximum one is compared here as a function of the applied load. The 
comparison of measured vs predicted load-deflection response of slab P16A and P30A is 
presented in Fig 3-29. 
As can be seen in Fig. 3-29, ADAPTIC produced a reasonably accurate load-deflection 
response for slab P16A but a slightly too stiff response for slab P30A. The ATENA 
response is overly stiff for both slabs. The failure load predicted acquired from ATENA 
is slightly too high for slab P16A but reasonably accurate for slab P30A. 
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Figure 3-29. Results of ATENA and ADAPTIC validation for eccentric test - con-

stant eccentricity (left: P16A; right: P30A, both of Krueger et al., 
2000). 

 

3.4.4. Summary of the initial FEA validation 

Table 3-3 summarises all the listed slab specimens that were reproduced in this valida-
tion stage along with their geometry and material parameters. Table 3-4 summarises 
ATENA predictions, both in terms of load and deformation capacity of all simulated 
slabs. The deformation capacity is expressed in terms of maximum rotation (weak axis) 
for the concentric series and maximum vertical deflection for the eccentric series. 
Table 3.4 shows that ATENA predicted the measured behaviour accurately, both in 
terms of punching load and deformation capacity with relatively small variation (scatter). 
Observing Fig. 3-26, 3-27, and 3-29, it could be seen that ADAPTIC also produced 
very good predictions in terms of the load-rotation response at every load stages (i.e. 
uncracked, post-cracking, and yielding stage). Thus, it can be concluded that the bound-
ary conditions, chosen mesh size, and all calibrated material parameters used in both 
ATENA and ADAPTIC are appropriate and they can be kept further to perform subse-
quent analysis.



Table 3-3. Summary of all slabs used for the initial FEA validation. 
 

 
 
 

Series Specimen Source 

Slab 
dimen
sions 
(mm) 

Column 
(mm x 
mm) 

Effective 
depth 
(𝒅) 

(mm) 

Eccentr
icity 
(𝒆𝒖) 
(mm) 

Concrete Reinforcement bars 

𝒇𝒄 
(MPa) 

maximum 
aggegate 
size (𝒅𝒈) 

(mm) 

𝝆𝒙 
(%) 

𝝆𝒚  
(%) 

𝒇𝒚𝒙 
(MPa) 

𝒇𝒚𝒚 
(MPa) 

Concentric 
(symmetric) 

PG-5 
Guandalini 

et al. 
(2009) 

3000 x 
3000 x 

250 
260 x 260 

210 - 29.3 

16 

0.33 0.33 555 555 

PT31 

Sagaseta et 
al. (2011) 

212 - 66.3 1.48 1.48 540 540 

Concentric 
(non-

symmetric) 

PT32 215 - 40 1.46 0.75 540 558 

PT33 212 - 40.2 0.76 0.32 558 533 

Eccentric 
(constant 

eccentricity) 

P16A 
Krueger et 
al. (2000) 

3000 x 
3000 x 

150 
300 x 300 

121 160 38.6 1.00 1.00 460 460 

P30A 121 320 30.4 1.00 1.00 460 460 
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Table 3-4. Summary of measured/predicted failure load and deformation capacity from ATENA. 
 

Series Specimen Source 
Measured 

failure load 
(kN) 

Measured deformation 
capacity (mRad or 

mm) 

Measured / Predicted 
(ATENA) 

Failure load 
Deformation 

capacity 

Concentric 
(symmetric) 

PG-5 
Guandalini et al. 

(2009) 
550 24.7 (mRad) 0.95 1.03 

PT31 

Sagaseta et al. 
(2011) 

1433 11.6 (mRad) 1.06 1.13 

Concentric 
(non-symmetric) 

PT32 1157 12 (mRad) 1.15 0.86 

PT33 602 30.2 (mRad) 0.96 0.94 

Eccentric 
(constant 

eccentricity) 

P16A 
Krueger et al. 

(2000) 

332 18.75 (mm) 0.85 1.06 

P30A 270 13.93 (mm) 0.99 1.37 

    
Mean 0.99 1.07 

    
Standard deviation 0.09 0.16 

    
CoV 0.09 0.15 
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3.5 Discussion of advantages and limitation of current ATENA and 
ADAPTIC simulations 

NLFEA performed using 3-D solid elements allows the user to more realistically 
represent the boundary conditions and loading applications. In addition, only analysis 
with 3-D solid elements may provide complete information regarding the stress 
distribution in all three dimensional spaces. However, when modelling bending behaviour 
of relatively slender or thin element like slabs, ”locking” problem might hinder the use 
of 3-D solid element. Locking problem occurs in lower order elements (such as 8-noded 
brick) since their shape function is not ”rich” enough to simulate the kinematics of the 
deforming body. For example, when linear brick element is used to model bending, this 
mode of deformation unexpectedly activates a spurious shear strain which increases the 
overall stiffness of the system. To anticipate this problem, either higher order elements 
or further refining the mesh through the element thickness is necessary. However, either 
of this treatment enforces larger number of nodes hence more equations to be solved 
which eventually leads to inefficient computation time. This makes the 3-D solid model 
most suitable for the analysis of structural sub-assemblages (such as: beam-column, or 
slab-column connection) but less efficient for assessing the behaviour of complete 
building structures. 
On the other hand, FEA using 2-D shell idealisation is significantly less time demanding 
than the former approach. Thanks to its rotational degree of freedom, bending 
deformation can be accurately simulated without having locking problem. However, the 
main limitation of conventional nonlinear shell elements is their inability to capture out-
of-plane shear failure which is crucial to simulate punching failure. Without out-of-plane 
behaviour modification, nonlinear shell will always reach a flexural limit. The next 
chapter describes a novel modelling strategy in which joint elements are used to simulate 
punching failure in shell element models. 
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4 Novel modelling strategy to simulate punching failure 
based on 2-D shell and joint elements 

 
This chapter, based on a paper published in Engineering Structures (Setiawan et al., 
2019b), describes the development of a novel procedure for modelling punching failure 
in slabs modelled with nonlinear shell elements. The proposed modelling strategy is, 
henceforth, depicted JSPM (joint-shell punching model) for ease of reference. 
 
4.1 Previous studies proposing 2-D shell modification 

Classical shell elements typically consider concrete nonlinearity for in-plane biaxial stress 
and linear elastic behaviour for the out-of-plane shear response. As shown in Chapter 3, 
this treatment realistically captures the flexural response of RC slabs but not punching 
shear failure. Attempts at modifying classical shell elements can be classified into two 
major approaches: a) internal; b) external modification. The first approach modifies the 
behaviour of the shell element by internally incorporating a nonlinear constitutive law 
for the transverse shear direction. For example, Polak (2005) developed a layered-shell 
element, based on the modified compression field theory (MCFT) of Vecchio and Collins 
(1986). This element considers the interaction between flexure and transverse shear to 
capture both flexure and punching failure mode. The out-of-plane strain component (𝜀𝑧) 
cannot be found directly from the displacement field of the finite element formulation. 
Consequently, it is determined by imposing an equilibrium state where the normal stress 
(𝜎𝑧) in the out-of-plane direction equals zero. A constant transverse strain distribution 
is adopted through the slab thickness and the shear modulus is assumed to linearly 
decrease as a function of the principal tensile strain (perpendicular to the crack). The 
occurrence of punching failure is indicated by the state where the transverse shear stiff-
ness approaches zero. It is important to remark that the predictions of the proposed 
model are very sensitive to the chosen shear modulus parameter (Polak, 2005). For 
example, the choice of too great a shear stiffness can cause the model to incorrectly 
predict flexural failure instead of punching failure. On the other hand, the choice of too 
low a shear stiffness results in the predicted punching resistance being underestimated. 
Polak (2005) also mentions that the adoption of a very low value of shear stiffness can 
cause convergence issues. Consequently, the formulation appears to be overly sensitive 
to the choice of shear stiffness.  
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Recently, Hrynyk and Vecchio (2015) improved the model of Polak by employing the 
disturbed stress field model (DSFM) developed by Vecchio (2000) and parabolic strain 
variation through the slab thickness. The main difference between the MCFT and the 
DSFM is that the latter explicitly considers the local behaviour at crack locations. The 
DSFM accounts for the influence of localised stress conditions, variable or changing crack 
widths, and crack-slip deformations along crack surfaces. Unlike the MCFT, the DSFM 
includes rigid body slip along cracks in the element compatibility. In addition, the pre-
vious assumption of constant shear strain from Polak was modified with a parabolic 
distribution which was deemed more representative of the actual strain distribution (Fig. 
4-1).   
 

 
Figure 4-1. Modification of the out-of-plane shear strain distribution (reproduced 

from Hrynyk and Vecchio, 2015). 
Image reproduced with permission of the rights holder, ASCE 

 
Hrynyk and Vecchio (2015) developed a method for modifying the out-of-plane strain 
distribution without the need to modify the element displacement field. The method 
distinguishes the contribution of effective and ineffective shear strain to the total out-
of-plain strain as expressed below: 
 
 𝛾𝑥𝑧,𝑖 = 𝛾𝑥𝑧,𝑖𝑒 + 𝛾𝑥𝑧,𝑖𝑖𝑒 = 𝛾𝑥𝑧,𝑖(1 − 𝜁𝑖2) + 𝛾𝑥𝑧,𝑖(𝜁𝑖2) (114) 

 
 𝛾𝑦𝑧,𝑖 = 𝛾𝑦𝑧,𝑖𝑒 + 𝛾𝑦𝑧,𝑖𝑖𝑒 = 𝛾𝑦𝑧,𝑖(1 − 𝜁𝑖2) + 𝛾𝑦𝑧,𝑖(𝜁𝑖2) (115) 

 
where 𝛾𝑒 and 𝛾𝑖𝑒 depict the effective and ineffective out-of-plane shear strains respec-
tively, 𝜁𝑖 is used to define the location of concrete layer 𝑖 within the depth of the shell 
element (Fig. 4-1). By definition, the effective shear strain is assumed to depend on 
material response and may be composed of net strains, elastic offsets, plastic offsets, and 
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slip-strain offsets. On the other hand, ineffective shear strains are independent of the 
material response. They are computed according to an assumed out-of-plane strain dis-
tribution and treated as additional elastic offsets. The model has been validated using 
various large-scale RC slabs subjected to either pure out-of-plane shear (Jaeger and 
Marti, 2009) or combined in- and out-of-plane shear (Adebar and Collins, 1991). The 
proposed formulation was found to give improved accuracy whilst maintaining the sim-
plicity of the finite element formulation. However, it is important to remark that neither 
of the Polak model nor the Hrynyk and Vecchio model explicitly consider post-punching 
behaviour which typically controls the global failure of flat slab systems with multiple 
slab-column connections. Thus, these models are suitable for modelling punching failure 
of isolated slab-column connections but not for simulating progressive collapse of flat 
slab buildings. 
The second approach (external) does not necessarily require any modification to the 
finite element formulation but instead works by introducing a connector element between 
the nodes of the shell elements. Connector element failure is triggered locally in accord-
ance with a prescribed failure criterion. An example of this approach is a recent study 
by Keyvani et al. (2014). In this study, a modelling strategy was developed in Abaqus 
v.6.9-2 to simulate the progressive collapse scenario of a flat slab system. The slab was 
modelled with classical general-purpose shell elements of type S4R. Punching was simu-
lated using connector elements that were distributed around the region where punching 
shear cracks were expected to form. The connectors comprised three dimensional Carte-
sian-Cardan connector elements with six degrees of freedom. Four different types of 
connector elements were used to represent: 1) slab-cone connector; 2) integrity rebar-
concrete connector; 3) tensile-rebar concrete connector for breakout mode; 4) tensile-
rebar concrete connector for spalling mode. The slab-cone connector is used to trigger 
the initiation of punching failure. Its resistance is assigned prior to the analysis based on 
the shear resistance calculated according to the CSCT failure criterion of Muttoni (2008). 
After the punching failure is triggered, the contribution of first connector element is 
gradually reduced while activating connector type 2 - 4, indicating a transition from 
punching to post-punching state. The resistance provided by each individual connector 
element (2-4) is determined using a mechanical model proposed by Mirzaei (2010). The 
model was used to simulate the progressive collapse of various flat slab floor systems. 
Compressive membrane action (CMA) was modelled using a simplified relationship pro-
posed by Bresler and Pister (1958) which considers a parabolic interaction between axial 
and shear stresses. Final punching resistance of the connector element was calculated as 
the summation of the resistance from the CSCT failure criterion (i.e. assuming isolated 
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condition) with the additional contribution of CMA according to Bresler and Pister 
model. Although the model was proved to produce accurate predictions of both pre- and 
post-peak behaviour, the punching shear resistance of the slab-cone connector needs to 
be determined in advance of the analysis without consideration of the actual slab kine-
matics during loading. This is unrealistic for continuous flat slabs where the punching 
resistance is affected by changes in the position of the line of radial contraflexure during 
loading (Einpaul, 2016; Soares and Vollum, 2016). 
More recently, Liu et al. (2015a) employed a similar technique in Abaqus (external mod-
ification) to model punching. They used two beam connector elements per column side 
to study the progressive collapse of flat slab buildings. The beam element incorporated 
six uncoupled six degrees of freedom to simulate flexure, torsion, shear, and axial com-
ponents within the critical punching region. Each connector beam is assigned a length 
of 𝑑/2, a depth of ℎ, and a width of 𝑏 = 0.5(𝑐+𝑑), where 𝑑 is the slab effective depth, ℎ 
is the slab thickness, and 𝑐 is the column width. Similarly Keyvani et al. (2014), Liu et 
al. (2015a) used the CSCT failure criterion to determine the peak resistance of the beam 
element for out-of-plane shear. However, the model did not incorporate post-punching 
resistance in its formulation. Thus, the slab-column connection is assumed to fail com-
pletely after punching failure is triggered. This is done by removing the failed element 
from the analysis in subsequent load steps. Liu et al. (2015a) remark that the model is 
most suitable for the simulation of older flat slab buildings where the slab bottom rein-
forcements (integrity bars) are neither continuous through the column cage nor anchored 
properly. Another limitation of the model is that it neglects shear redistribution. This is 
because all connector elements are removed simultaneously following failure of the first 
connector element. In addition, when the model was implemented to assess progressive 
collapse scenario in global level, the shear capacity of each connector element was pre-
determined from an identical isolated slab-column connection. As acknowledged by Liu 
et al. (2015b), this treatment neglects the increase in punching resistance arising from 
the reduction in rotation, and hence critical shear crack width, caused by movement of 
the line of radial contraflexure towards the column. 
 

4.2 Proposal of the novel modelling strategy 

4.2.1. Introduction 
This study develops a novel external modification modelling strategy which addresses 
the limitations of the models of Keyvani et al. (2014) and Liu et al. (2015a). The pro-
posed model simulates punching by combining nonlinear layered shell elements with 
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discrete joint elements. Joint elements incorporating the failure criterion of the CSCT 
are distributed uniformly around a rectangular control perimeter, located at 𝑑/2 from 
the column face. The joint element algorithm includes a procedure for monitoring slab 
rotation at user defined positions. The monitored slab rotations are used to update the 
joint shear resistance at the subsequent load step. This avoids the need to pre-define the 
punching resistance of connector elements in advance of the analysis as done in the 
models of Keyvani et al. (2014) and Liu et al. (2015a). After failure is detected, joint 
resistance is assumed to soften gradually following the shape of the CSCT curve while 
allowing additional load to be redistributed to adjacent joint elements yet to fail. This 
allows the shear redistribution to be taken into account explicitly within the analysis. 
After the failure of all joints are detected, the transition from the peak to post-punching 
resistance is initiated with the post-peak resistance is determined based on a mechanical 
model of Fernandez Ruiz et al. (2013). The newly developed modelling strategy is de-
picted JSPM (joint-shell punching model). 

4.2.2. Current and proposed formulation of discrete joint elements (jel3) in ADAP-
TIC 

The 6-degree of freedom 3-D joint element (jel3) is used to simulate punching shear 
failure. Each jel3 element consists of two coincident nodes (nodes 1 and 2 in Fig. 4-2(a)). 
The element accounts for geometric nonlinearities and incorporates independent force-
displacement relationships for each DOF (uncoupled). This implies that the local tangent 
stiffness is always a diagonal matrix, with the diagonal terms corresponding to the force-
displacement curve assigned to each corresponding DOF. As illustrated in Fig. 4-2(a), 
two additional nodes (depicted nodes 3 and 4), which can be either structural or non-
structural, are used as references to determine the orientation of joint local axes. The 
initial orientation of local x-axis of the joint element is defined by a vector connecting 
nodes 1 and 3 while the local y-axis lies in a plane defined by the local x-axis and node 
4 as illustrated in Fig. 4-2(a). The element vectors at node 1 define the local orientation 
of the joint whereas the vectors at node 2 define the axes of bending. As the applied load 
increases, node 1 and node 2, which previously coincided, start to separate (compare Fig. 
4-2(a) and Fig. 4-2(b)). The orientation of the local x-axis is updated using the incre-
ments in global rotations at node 1. Once equilibrium is achieved, the bending axes at 
node 2 are reset to a position normal to the new x-axis vector at node 1. The local 
translational displacements of the joint element are a function of the cumulative global 
translational displacements and the joint orientation at node 1, whereas the increment 
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of local joint rotations are determined based on the inclination of the element vectors at 
node 2 relative to the local x-axis vector.     
 

 

Figure 4-2. Configuration and local force components for joint element (jel3): (a) 
before and (b) after joint deformation. 

 
This study modifies the preexisting jel3 formulation. Node 3 is positioned at one of the 
slab nodes (csl4) whereas node 4 is positioned on the column chord, either above or 
below the slab (i.e. it cannot be positioned in the same z-plane as node 3). Instead of 
using node 3 and 4 just to define the initial local vectors, the proposed algorithm extracts 
and saves the information regarding all the global rotation components (𝜓𝑥, 𝜓𝑦, 𝜓𝑧) from 

nodes 3 and 4 at each load step. The global rotations are then transformed into the 
radial rotation (𝜓𝑟𝑎𝑑) based on the relative angle between the local x-axis and global x-
axis (Fig. 4-3(a)) using vector transformations. The centre of rotation is assumed to 
coincide with the centroid of the column for square (with side length 𝑐 less than 3𝑑 
where 𝑑 is the average effective depth of the slab) or circular support areas. The relative 
slab-column rotation, which is needed in the calculation of joint resistance according to 
the CSCT, is obtained from the difference between the radial rotations at nodes 3 and 
4. In order to avoid having an implicit iteration within the algorithm, the joint resistance 
at step 𝑖 is determined based on the monitored slab rotation at previous step, 𝑖-1. This 
treatment was found to produce accurate results so long as the increment of the load 
interval is sufficiently small. 
Joint elements are uniformly spaced around the control perimeter at a distance of 0.5𝑑 
from the column face. Each joint element has an imaginary sector element associated 
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with it (Fig. 4-3(a) and (c)). For best fit with experimental observations, node 3 is 
positioned at a radius of around 0.22𝐿 from the column centreline (where 𝐿 is the slab 
span between column centrelines) as recommended by Soares and Vollum (2015). This 
is done because the deflected shape obtained with shell elements is more rounded adja-
cent to the column than observed in laboratory tests (Soares and Vollum, 2015; Broms, 
2016). In a continuous slab, the radius of 0.22𝐿 corresponds to the line of radial contra-
flexure under axisymmetric condition. For isolated slab-column connections typically 
tested in laboratory, node 3 can be positioned around the slab free edges where radial 
curvature is found to be minimal. In accordance with the CSCT failure criterion, the 
mean punching shear resistance of each individual joint element 𝑉𝑅𝑖 is calculated as 
follows in terms of its paired sector rotation 𝜓𝑖 : 
 

 𝑉𝑅𝑖 = 𝑉𝑅𝑛 = 0.75. 𝑏0. 𝑑. √𝑓𝑐
𝑛(1 + 15 𝜓𝑖. 𝑑𝑑𝑔0 + 𝑑𝑔)

 (116) 

 
where 𝑉𝑅 is the punching resistance of an axisymmetric slab with uniform sector rotation 
𝜓𝑖, 𝑛 is the number of joint elements around the control perimeter, 𝑏0 is the length of a 
basic control perimeter with rounded corners at 𝑑/2 from the column face, 𝑑 is the av-
erage flexural effective depth of the slab, 𝑓𝑐 is the specified concrete compressive strength, 
𝑑𝑔  is the maximum aggregate size, and 𝑑𝑔0 is a reference aggregate size equal to 16 mm. 

Fig. 4-3 shows that the joint elements connect the nodes of the shell elements (csl4) 
within and outside the control perimeter at 𝑑/2 from the column face. As shown in Fig. 
4-3(b), the column is modelled using a line element which is connected to slab shell 
nodes around the column face through rigid links. Node 4 is positioned on the column 
chord, relatively close to the slab-column junction while node 3 is positioned on the free 
edge of isolated slabs or on the line of radial contraflexure in continuous slabs. 
Fig. 4-3(c) illustrates the implementation of the JSPM for a typical quarter slab model. 
It can be seen that in the FE model, joint elements are distributed along a rectangular 
control perimeter of length dictated by the modelled column and mesh size. Although 
the modelled control perimeter length is rounded up or down dependent on the mesh 
size and modelled column size, the joint strength in the JSPM is always calculated in 
terms of the actual column size and effective depth reported in the test. In addition, 
when calculating the joint resistance, the control perimeter is consistently assumed to 
have a rounded corners for consistency with the CSCT. 
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Figure 4-3. Illustration of the proposed modelling strategy: (a) plan view; (b) el-

evation view; (c) implementation of JSPM along with pairing system 
of monitored nodes in ADAPTIC for a quarter slab model. 
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4.2.3. Constitutive behaviour of joint element in out-of-plane DOF 
As previously mentioned, the joint element (jel3) has six degree of freedoms, comprising 
translational forces in x, y, z and rotational forces (moment) in x, y, and z directions. 
All DOFs, except the out-of-plane deformation (direction parallel to local y-axis of the 
joint element) are assumed to be fully rigid. This is necessary to ensure that the transfer 
of force from the load applied at the outer slab region to the inner region through the 
other five DOFs is not affected by the presence of the joint. For the out-of-plane shear 
DOF, a novel 1 dimensional force-deformation relationship was developed. As described 
below, there are three stages to the proposed constitutive behaviour. 

 Stage I (linear ascending branch - initial phase) 
Although the joint element used in ADAPTIC has zero-length, it is still necessary to 
assume a notional spring length in order to derive the out-of-plane stiffness parameter 
for the initial elastic stage. For this purpose, the notional joint length is assumed to 
equal the slab thickness, giving rise to an equivalent shear strain of 𝛾 = 𝛿/ℎ where 𝛿 is 
the relative vertical deformation of the joint element between nodes 1 and 2 and ℎ is the 
slab thickness. Thus, the linear elastic stiffness assigned for the joint element can be 
formulated as: 
 

 𝑘𝑖𝑛𝑐 = 𝑘𝑟𝑒𝑑. 𝐸𝑐2(1 + 𝑣) . 𝑙𝑠 (𝑁/𝑚𝑚) (117) 

 
where 𝑣 is the concrete Poisson’s ratio which is taken as 0.2, and 𝑘𝑟𝑒𝑑  is a modifier to 
reduce the out-of-plane shear stiffness due to cracking and 𝑙𝑠 is the spacing between 
adjacent joint elements. Calibration studies showed that a suitable value for the out-of-
plane shear reduction factor (𝑘𝑟𝑒𝑑) in Eq. 117 is 0.1, as similarly used for the in-plane 
shear stiffness in ADAPTIC (see Chapter 3). As discussed later in Chapter 6, increasing  
𝑘𝑟𝑒𝑑 above 0.1 can overestimate the proportion of unbalanced moment carried by the 
eccentric shear and, hence, underestimate punching resistance. Each joint is assumed to 
behave linearly with stiffness 𝑘𝑖𝑛𝑐 until the joint shear reaches the shear resistance given 
by the CSCT. Subsequently, the joint response is described by Stage II. 
 Stage II (local joint failure - redistribution phase) 
After initial failure, the joint shear resistance is assumed to decrease following the shape 
of the CSCT curve. In this stage, the joint shear force depends on the relative slab-
column rotation. This results in shear force being redistributed from failing joint ele-
ments to joint elements yet to fail allowing the slab to achieve higher punching capacity. 



178 
 

Under axisymmetric punching scenario, the redistribution phase cannot be clearly ob-
served because both shear force and slab rotation are almost uniform in all sector ele-
ments. However, the influence of shear redistribution is more pronounced for non-ax-
isymmetric scenarios (e.g. for slabs with non-symmetric reinforcement or subject to one-
way bending). Stage II ends once all the joint elements fail. 
 Stage III (global connection failure - post-punching phase) 
Subsequent to failure of all joint elements, the vertical joint separation increases abruptly 
since the deformation is no longer restrained by joints yet to fail. In this study, Stage 
III was triggered by a threshold of relative joint deformation of 1 mm. The choice of 1 
mm threshold is somewhat arbitrary but has no influence on the Stage III residual post-
peak punching capacity of isolated slab-column specimens. The choice of triggering dis-
placement may play a more important role in the modelling of complete floor systems 
where delaying failure at one connection directly affects the magnitude of load trans-
ferred to adjacent connections. However, this is still the subject of ongoing research, 
outside the scope of this study, in which a rational basis is being developed for the 
selection of the displacement at which Stage III is triggered. 
Once the vertical joint separation exceeds the displacement threshold, the joint re-
sistance is assumed to reduce linearly with a negative slope of 𝑘𝑑𝑒𝑔 until the post-peak 

resistance is reached. Subsequently, the joint shear resistance remains constant. The 
calibration of 𝑘𝑑𝑒𝑔 is discussed in Section 4.3.1(d). 

The post-peak resistance (𝑉𝑝𝑝) of the joint element is predetermined using the mechan-

ical model of Fernandez Ruiz et al. (2013). This model accounts for the contributions of 
the bottom (integrity) and top reinforcement crossing the punching cone while limiting 
the maximum strength to the concrete pull-out strength. The contribution of the integ-
rity reinforcements at failure (governed by the rupture of the bars) are calculated in 
terms of the number of bars crossing the failure surface, the tensile strength of the bars 
(including the strain hardening phase) and the relative angle of the bars with respect to 
the plane of the slab. The contribution of the flexural reinforcement (top) is calculated 
as the product of the number of bars activated at failure and their dowel strength (due 
to spalling of concrete cover). The model is applicable for various reinforcement details, 
including the use of bent-up bars. For further details, readers are referred to the original 
work by Fernandez Ruiz et al. (2013). The complete force-deformation response of the 
joint element is shown in Fig. 4-4. 
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Figure 4-4. Proposed joint force-deformation relationship in out-of-plane DOF. 
 
The flowchart in Fig. 4-5 summarises the solution procedure used in ADAPTIC to 
determine the joint shear resistance and hence connection punching resistance. The 
newly implemented algorithm was written in FORTRAN. A full description of the code 
is provided in Appendix A.  
The flowchart shows that the joint element subroutine acquires the following parameters 
from the main ADAPTIC program: 1) relative joint displacement at current step 𝛥𝑑𝑖; 
2) monitored slab rotation at previous step 𝜓𝑖−1 and 3) joint shear force from previous 
step 𝑉𝑖−1. Using these inputs the algorithm determines the joint loading stage that is 
currently activated and updates the tangent stiffness 𝑘𝑖 and joint shear force 𝑉𝑖. These 
two parameters are then returned to the main ADAPTIC program to update the global 
stiffness matrix and to perform equilibrium check. Once convergence is achieved, the 
analysis may proceed to the next load step. 
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Figure 4-5. Algorithm of the proposed JSPM implemented in ADAPTIC. 

 

4.3 Verification of the proposed modelling strategy 

The proposed modelling strategy was verified by modelling numerous isolated punching 
tests from the literature with the following loading and boundary conditions: 

1) Series I: Axisymmetric 
(a) Influence of flexural reinforcement ratio: 5 slabs 
(b) Influence of size effect: 5 slabs 
(c) Influence of in-plane compressive forces: 6 slabs 
(d) Post-punching behaviour: 4 slabs 

2) Series II: Non-axisymmetric 
(a) Non-symmetric reinforcement: 4 slabs 
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(b) One-way loading: 1 slab 
3) Series III: Non-standard edge boundary conditions 

(a) In-plane lateral restraint: 4 slabs 
(b) Edge rotational restraint: 3 slabs 
(c) Extended slab with simple support along edges: 1 slab 

 
The following sections briefly describe the test specimens and setup for each test series. 
The predictions of the proposed modelling strategy are compared with the experimental 
results and, where available, 3-D solid element results from ATENA.  

4.3.1. Series I: Axisymmetric 

(a) Influence of flexural reinforcement ratio 
The following five internal slab-column specimens, having three different reinforcement 
ratios, were modelled: 
(1) PG-5 of Guandalini et al. (2009) with 0.33 top flexural reinforcement ratio (𝜌𝑡𝑜𝑝); 
(2) PT22 of Sagaseta et al. (2011) and PG19 of Clement et al. (2014) both with 𝜌𝑡𝑜𝑝 

of around 0.8%; 
(3) PT31 of Sagaseta et al. (2011) and PG20 of Clement et al. (2014) both with 𝜌𝑡𝑜𝑝 

of around 1.50% 
 
The geometry and test set up of these five slabs was similar to that of slab PT22 which 
is described in detail in Chapter 3. All the slabs were uniformly meshed in ADAPTIC 
with 50 mm square elements. Fig. 4-6 shows load-rotation responses and failure loads 
predicted using the proposed model, ATENA where available, and experimentally. In 
addition, the mean CSCT failure criterion is plotted for comparison. The CSCT failure 
load is given by the intersection of the load-rotation response and the resistance curve. 
Fig. 4-6 shows that the proposed model gives conservative estimates of punching re-
sistance which are almost identical to those obtained graphically from the intersection 
of the predicted load-rotation response and the CSCT failure curve. As mentioned earlier, 
these results are to be expected since, for axisymmetric scenarios with 𝑐𝑚𝑎𝑥/𝑑 < ~3 
(where 𝑐𝑚𝑎𝑥  is the maximum column cross section dimension), the increase in resistance 
due to shear redistribution is negligible. Fig. 4-6 also shows that following failure the 
rotation predicted by the JSPM reduced as the shear force decreased. This arises as a 
result of the shell elements unloading to maintain the equilibrium of forces within the 
system. For these slabs, the ATENA predictions are especially accurate and even better 
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than the CSCT predictions. However, it is important to emphasise that the JSPM re-
quired significantly less computation time than ATENA. The computation time for the 
proposed JSPM is very similar to that presented in Chapter 3 for the shell element 
without joints. 
 

 
Figure 4-6. Load-rotation response and failure point of slabs with top flexural 

reinforcement ratio of: (a) 0.33%: PG-5 of Guandalini et al. (2009); 
(b) 0.84%: PT22 (top) of Sagaseta et al. (2011) & PG19 (bottom) of 
Clement et al. (2014); (c) 1.48%: PT31 (top) of Sagaseta et al. (2011) 
& PG20 (bottom) of Clement et al. (2014). 

 
  

(a) 

(b) (c) 



183 
 

(b) Influence of size effect 
The capability of the proposed modelling strategy to simulate the so-called “size effect” 
was verified by modelling the following five half, normal and double size test specimens 
of Guandalini et al. (2009): 
(1) Half-size specimen (1500 mm x 1500 mm x 125 mm): PG-6 and PG-7; 
(2) Normal-size (3000 mm x 3000 mm x 250 mm): PG-1 and PG-11; 
(3) Double-size (6000 mm x 6000 mm x 500 mm): PG-3 
 
The experimental test setups were similar as used for specimen PT22 of Sagaseta et al. 
(2011). The size of the support was: 130×130 mm2; 260×260 mm2; and 520×520 mm2 
for a), b), and c) respectively. The top reinforcement ratio ranged between 0.33 - 1.50% 
as shown in Fig 4-7. The vertical deflection at the support was measured relative to the 
reaction points around the slab perimeter. The uniform mesh size in ADAPTIC was 25 
mm; 50 mm; and 100 mm for half-size, normal-size, and double-size specimens respec-
tively.  
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Figure 4-7. Load-deflection response and failure point of slabs with slab thickness 

of: (a) 125 mm; (b) 250 mm; and (c) 500 mm (Guandalini et al., 2009). 
Fig. 4-7 compares the experimental load deflection responses with calculated responses 
obtained using the JSPM and where available ATENA.As shown in Fig. 4-7, the JSPM 
broadly captures the experimental load-deflection response and failure load for all three 
slab sizes. This is to be expected since the CSCT failure criterion considers the so-called 
“size effect” implicitly within its formulation. According to the theory, the shear stress 
at failure reduces with slab thickness owing to the increase in critical shear crack width 
with slab depth for any given slab. The presented ATENA predictions are also reasona-
ble.  
  

(a) 

(c) 

(b) 
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(c) Influence of in-plane compressive forces 
The ability of the proposed model to simulate punching of slabs with in-plane compres-
sive forces was validated using three pairs of specimens tested by Clement et al. (2014). 
The magnitude of in-plane compressive stress varied as follows: 
(1) PC9 and PC10 with applied edge compressive stress of around 1.25 MPa; 
(2) PC5 and PC6 with applied edge compressive stress of around 2.50 MPa; 
(3) PC7 and PC8 with applied edge compressive stress of around 5.0 MPa 
 
The slabs in each pair were reinforced with 0.75% and 1.50% top reinforcement. Slab 
geometries and test setups were exactly the same as used in PT-22 of Sagaseta et al. 
(2011) apart from the application of in-plane compressive forces. The pre-stressing force 
was applied prior to the application of the vertical load by means of two steel plates 
(500 x 250 mm) arranged per side as illustrated in Fig. 4-8. 
In plane compression increases punching resistance due to it reducing i) the slab rotation 
and ii) the depth of the cracked zone. The first factor is considered implicitly within the 
formulation of the shell element in ADAPTIC which considers the interaction between 
axial load and bending. The second factor can be modelled indirectly within the joint 
formulation using the “refined” approach of Clement et al. (2014) in which the rotation 
is modified as follows: 
 

 𝜓𝑟𝑒𝑓 = 𝜓 + 45(𝜎𝑛𝐸𝑐) ≥ 0 (118) 

 
where 𝜎𝑛 is the applied average compressive membrane stress (- sign for compression), 
𝐸𝑐 is the concrete Young’s modulus.  
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Figure 4-8. Experimental test setups for slabs with in-plane compressive forces 

(reproduced from Clement et al., 2014). 
Image reproduced with permission of the rights holder, Elsevier 

 
All six slabs were modelled in ADAPTIC using a uniform mesh of 50 mm. Fig. 4-9 
compares the experimental load-rotation responses with those obtained using the JSPM 
using 𝜓𝑟𝑒𝑓 . Also shown are CSCT resistances calculated with Eq. 116 using both 𝜓 

(original CSCT) and 𝜓𝑟𝑒𝑓 .   

Fig. 4-9 shows that the proposed JSPM accurately predicts the punching capacity of all 
the tested slabs even though the predicted load-rotation response is stiffer than measured. 
It can also be seen that the use of refined rotation (𝜓𝑟𝑒𝑓 ) in the CSCT failure criterion 

results in better predictions of the measured punching capacity than use of the actual 
slab rotation (𝜓). These results illustrate the adaptability of the joint element formula-
tion as well as its ability to model the influence of complex loading scenarios on punching 
resistance. 
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Figure 4-9. Load-rotation response and failure point of slabs with in-plane com-

pressive stress (𝝈𝒏) of: (a) -1.25 MPa; (b) -2.5 MPa; and (c) -5.0 MPa 
(Clement et al., 2014). 

 

(d) Post-punching behaviour 
The capability of the proposed model to simulate a complete load-deformation response 
including the post-peak response was examined by simulating the following four punch-
ing specimens of Fernandez Ruiz et al. (2013): 
(1) PM3 and PM4 with only top flexural reinforcement bars (no integrity reinforce-

ment); 
(2) PM9 with 4-D8 integrity reinforcement bars; 
(3) PM10 with 4-D10 integrity reinforcement bars 
 

(a) (c) (b) 
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These slabs were selected since they were part of an investigation into post-punching 
resistance. All the slabs measured 1500 x 1500 x 125 mm. The slabs were centrally loaded 
through a stiff steel plate measuring 130 x 130 mm2 and supported at radius of 747 mm 
on eight steel plates which allowed sliding and rotation (PTFE layers were installed over 
supports). The load was applied using a displacement-controlled procedure which al-
lowed accurate measurement of the decrease in applied load during the post-punching 
stage. Most of the tests were stopped when the rupture of reinforcement bars took place. 
The slab geometry and the test setup are presented in Fig. 4-10(a) and (b), respectively. 
 

 
Figure 4-10. Specimen and testing frame for post-punching series: (a) plan view 

and dimensions of specimens; and (b) testing frame (reproduced from 
Fernandez Ruiz et al., 2013). 
Image reproduced with permission of the rights holder, ACI 

 
Specimens PM3, PM9, and PM10 had flexural reinforcement ratios of 0.82% whereas 
specimen PM4 had a reinforcement ratio of 1.41%. The flexural reinforcement consisted 
of 8 mm diameter bars spaced with spacing dependent on the provided reinforcement 
ratio. The top flexural reinforcement was fully anchored in specimens PM3 and PM4 in 
order to ensure post punching resistance. In ADAPTIC, a uniform square mesh of side 
length 25 mm was used for all slabs. Fig. 4-11 compares the experimental load deflection 
responses with those obtained using the proposed JSPM. 
 

(a) (b) 
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Figure 4-11. Complete load-deflection response of slabs in post-punching series: (a) 

no integrity reinforcement; (b) 4-D8 integrity bars; and (c) 4D-10 in-
tegrity bars (Fernandez Ruiz et al., 2013). 

 

(a) 

(c) (b) 
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Fig. 4-11 shows that the proposed JSPM captured both the peak (punching) and resid-
ual (post-peak) capacity reasonably well. The tangent stiffness 𝑘𝑑𝑒𝑔 in Stage III (see Fig. 

4-4) was selected as -500 N/mm, with joint spacing of 25 mm, to match the observed 
load deflection response after punching for this test series (see Fig. 4-11). A more so-
phisticated resistance model is required to capture the variation of post-peak resistance 
with displacement. Nevertheless, the mechanical model of Fernandez Ruiz et al. (2013) 
predicts the maximum post-peak resistance accurately.  

4.3.2. Series II: Non-axisymmetric 

(a) Non-symmetric reinforcement arrangement 
The ability of the proposed modelling strategy to simulate punching failure of slabs 
having non-symmetric reinforcement arrangement was investigated by modelling four 
tested slabs of Sagaseta et al. (2011) subjected to two-way loading as described below: 
(1) PT21 and PT32 had around 1.50% and 0.75% reinforcement ratio in x- and y-axis 

(𝜌𝑥 and 𝜌𝑦), respectively; 

(2) PT23 and PT33 had around 0.75% and 0.30% reinforcement ratio in x- and y-axis, 
respectively 

 
The slab geometry and the experimental test setup were the same as for slab PT22 of 
Sagaseta et al. (2011). A uniform square mesh of 50 mm was adopted for all the slabs in 
ADAPTIC. The main objective in modelling the slabs was to verify the capability of the 
JSPM to realistically capture the punching behaviour of slabs with non-uniform slab 
rotation due to different reinforcement arrangement in orthogonal directions. According 
to Sagaseta et al. (2011), punching resistance is increased by redistribution of shear 
stress from failing parts of the control perimeter (side with maximum slab rotation) to 
adjacent parts of the control perimeter yet to fail (side with minimum slab rotation). 
This is pertinent to slabs PT21, PT23, PT32 and PT33 in which shear resistance is least 
along the sections of the control perimeter perpendicular to the weak reinforcement. In 
these slabs, shear redistribution increases the failure load above that calculated with the 
CSCT in terms of the maximum rotation (CSCT (𝜓𝑚𝑎𝑥)). Fig. 4-12 compares the ex-
perimental response with the predictions of the JSPM, ATENA (3-D solid elements), 
CSCT (𝜓𝑚𝑎𝑥) and the CSCT (𝜓𝑥−𝑦) approach of Sagaseta et al. (2011) which includes 

shear redistribution. 
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Figure 4-12. Load-rotation response and failure point of slabs with non-symmetric 

reinforcement arrangement: (a) 𝝆𝒙  − 𝝆𝒚 = 1.50% - 0.75%; (b) 𝝆𝒙  −
 𝝆𝒚 = 0.75% - 0.30% (Sagaseta et al., 2011). 

 

(a) 

(b) 
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Fig. 4-12 shows that the JSPM predicts both the load-rotation response and the failure 
point reasonably well. The accuracy of the JSPM is comparable to that of the CSCT 
(𝜓𝑥−𝑦) method of Sagaseta et al. (2011). The strength predictions of the JSPM, CSCT 

(𝜓𝑚𝑎𝑥) and CSCT (𝜓𝑥−𝑦) are similar for specimens PT21 and PT32 indicating that the 

influence of shear redistribution is minimal for these specimens. On the other hand, the 
deformation and punching capacity of slabs PT23 and PT33 are higher than predicted 
by CSCT (𝜓𝑚𝑎𝑥) (i.e. intersection of the CSCT failure criterion with the load-rotation 
response at weak axis). This indicates that the strength of slabs PT23 and PT33 was 
increased by shear redistribution. 
To illustrate the capability of the proposed approach to simulate shear redistribution, 
the variation in local joint forces along the control perimeter is plotted in Fig. 4-13(a) 
and (b), respectively for specimens PT32 and PT33. Results are shown at five different 
load stages relative to 𝑃𝑢 (predicted failure load). Comparison of Fig. 4-13(a) and (b) 
shows that the variation in joint forces around the control perimeter is much more uni-
form in slab PT32 than slab PT33. This explains why the predictions of CSCT (𝜓𝑚𝑎𝑥) 
and CSCT (𝜓𝑥−𝑦) are similar for specimen PT32 (i.e. minimal shear redistribution). This 

finding is consistent with the conclusions of Sagaseta et al. (2011). On the other hand, 
Fig. 4-13(b) shows that significant shear redistribution occurred in PT33 between 
0.95𝑃𝑢 and 𝑃𝑢. This is evident from the corresponding decrease in weak-axis joint shear 
forces followed by an abrupt increase in strong-axis joint shear forces. The JSPM pre-
dictions also compare favourably with those of the 3-D solid ATENA model which im-
plicitly considers shear redistribution. 
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Figure 4-13. Variation of local joint shear forces along the quarter of the control 

 perimeter of slabs: (a) PT32 and (b) PT33 (Sagaseta et al., 2011). 
 

(b) One-way loading 
Non-symmetry may also arise from the loading configuration. To validate this scenario, 
slab PT34 of Sagaseta et al. (2011) was modelled. This slab had symmetric reinforcement 
arrangement (𝜌𝑡𝑜𝑝 = 0.74%) but was subjected to one-way loading. The slab geometry 

and test setup were the same as PT22 apart from point loads only being applied on two 

(a) 

(b) 
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opposite edges (axis of bending parallel to x-axis). Slab PT34 was uniformly meshed 
with 50 mm mesh size. Fig. 4-14(a) compares the experimental response with the pre-
dictions of the JSPM, CSCT (𝜓𝑚𝑎𝑥), CSCT (𝜓𝑥−𝑦) and ATENA. The variation of local 

joint forces is shown in Fig. 4-14(b). 
Fig 4-14(a) shows that the best prediction of strength is given by the CSCT (𝜓𝑥−𝑦) 
method. The resistance is significantly underestimated by the CSCT (𝜓𝑚𝑎𝑥) method if 
the measured rotation is used (predicted failure load is given by the intersection of the 
maximum rotation and CSCT resistance curves). However, CSCT (𝜓𝑚𝑎𝑥) gives reason-
able predictions of the measured failure load if the calculated maximum rotation is used 
since the ADAPTIC load-rotation response is overly stiff. The JSPM slightly overesti-
mates the measured failure load but is more accurate than the ATENA prediction. Fig 
4-14(b) shows that shear redistribution occurred near failure as observed in slab PT33, 
(see Fig. 4-13(b)). 
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Figure 4-14. (a) Load-rotation response and failure point of slab PT34 subjected 

to one-way loading; (b) variation of local joint forces along the quarter 
of the control perimeter of slab PT34 (Sagaseta et al., 2011). 

 

 

(a) 

(b) 



196 
 

4.3.3. Series III: Non-standard edge boundary conditions 

(a) In-plane lateral restraint 
Four slabs tested by Peng et al. (2017) were investigated. All the specimens were isolated 
internal slab-column connections constructed at 0.73 scale. The main feature of the test 
series was the presence of in-plane restraint provided by a clevis and steel rod connecting 
the slab edges to a steel reaction frame. The clevises were vertically supported by a steel 
circular tube column that was designed to prevent vertical displacement of the slab edges 
(Fig. 4-15).  
 

 
Figure 4-15. Experimental test setup for slabs with in-plane lateral restraint (re-

produced from Peng et al., 2017). 
Image reproduced with permission of the rights holder, ASCE 

 
Vertical load was applied to the column using a hydraulic ram. All the slabs measured 
1770 mm x 1770 mm x 140 mm with an average effective depth of 114 mm. Each slab 
had a concrete column at its centre measuring 280 x 280 mm. A uniform mesh size of 50 
mm was used to model all the slabs in ADAPTIC. Consequently, the dimension of the 
slab was rounded to 1750 x 1750 mm with the column dimension rounded to 300 x 300 
mm. This is considered acceptable since the predicted load-rotation response was close 
to the measured response as shown in Fig. 4-16. 
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The tests considered reinforcement flexural ratios of 0.64% and 1.0% with and without 
anchoring hooks at the slab edges. The reinforcement anchorage detail was varied to 
study its effect on the post-peak behavior. This study focused on the ability of the JSPM 
to predict influence of in-plane restraint on punching capacity and not the post-peak 
behaviour. Reinforcement was modelled as perfectly bonded. Consequently, the influence 
of poor reinforcement anchorage was neglected. LVDTs were used to monitor the slab 
lateral expansion during loading. The restraining force was measured with load cells and 
strain gauges attached to the rods connecting the clevises to the steel reaction frame. 
These measurements were used to estimate the lateral stiffness of the test setup and, 
hence, to define the spring stiffness used in the ADAPTIC simulation. Below are details 
of the simulated slabs: 
(1) 0.64RE: 𝜌𝑡𝑜𝑝 = 0.64%, with hook anchorage, in-plane lateral stiffness (IPLS) = 17 

kN/mm; 
(2) 0.64RE-NH: 𝜌𝑡𝑜𝑝 = 0.64%, no hook, IPLS = 75.4 kN/mm; 

(3) 0.64RE-NH2: 𝜌𝑡𝑜𝑝 = 0.64%, no hook, IPLS = 21.7 kN/mm; 

(4) 1.0RE: 𝜌𝑡𝑜𝑝 = 1.0%, with hook anchorage, IPLS = 72.6 kN/mm 

 
Fig. 4-16 compares the experimental load-deflection responses of the tested slabs with 
the predictions of the proposed JSPM as well as the macromodel of Liu et al. (2015a) 
which is also based on the CSCT. The best predictions are obtained with the macromodel 
of Liu et al. (2015a) but the JSPM also gives good predictions of the experimental 
response up to failure.  
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Figure 4-16. Load-rotation response and failure point of slabs with in-plane lateral 

restraint: (a) 0.64RE; (b) 0.64RE-NH; (c) 0.64RE-NH2; (d) 1.0RE 
(Peng et al., 2017). 

 

(a) 

(c) 

(b) 

(d) 
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(b) Edge rotational restraint 

Three slab-column connections tested by Choi and Kim (2012) that were rotationally 
restrained at the edge to produce realistic hogging and sagging moments were investi-
gated. All three slabs measured 4200 mm x 4200 mm x 152 mm. The effective depths of 
the end spans and mid spans were about 116 and 121 mm, respectively. Two 10M bottom 
bars (integrity) were installed continuously through the column cage to fulfill the design 
requirement. The slabs were centrally supported by a square column of 356 mm x 356 
mm. All the slabs were designed for the same total static moment but with different 
ratios of support to span moment. Consequently, the ratio of hogging (end span) to 
sagging (mid span) reinforcement varied between the specimens. The ratios of the end 
span and mid span moments to the free moment varied as follows: 
(1) MRA: 65% end span (ES) and 35% mid span (MS); 
(2) MRB: 50% ES and 50% MS; 
(3) MRC: 35% ES and 65% MS 
 
The slab edge rotations were restrained by eight independent frame-type assemblies 
mounted on the top of the slab. Each assembly consisted of two rectangular hollow 
square sections and a connecting horizontal tie rod (Fig. 4-17). A load cell was inserted 
in each tie rod to determine the tie force and, hence, mid span moment. The restraining 
moment at the slab edges was introduced by pre-tensioning the tie rods. 
 

 
Figure 4-17. Experimental test setup for slabs with edge rotational restraint 

(adapted from Choi and Kim, 2012). 
Image reproduced with permission of the rights holder, ACI 
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As shown in Fig. 4-17, the slab edge was vertically restrained with 16 tie rods anchored 
to the strong floor. Each pair of tie rods was connected to a steel hollow section which 
was pinned at its centre to a tie rod connected to the strong floor. This system ensured 
that the restraining forces were equally distributed around the slab edge. Vertical load 
was applied by pushing the lower column upward with a hydraulic jack. The test was 
started by applying a small pretension to the horizontal tie rods of the edge restraint 
system to introduce a small sagging moment at the slab edges. Subsequently, the tem-
porary vertical support was removed allowing the slab to deflect freely under its self-
weight. Finally, vertical loading was applied through the column until punching failure 
occurred. 
One quarter of the slab was modelled in ADAPTIC using a uniform square mesh of 60 
mm side length. This resulted in a column dimension of 360 x 360 mm which is very 
close to the actual column size of 356 mm x 356 mm. The actual test setup was simplified 
in ADAPTIC as follow: 

 The 4 vertical tie rods providing equal vertical restraint on the quarter of the slab 
were substituted with two vertical point restraints positioned along the radius of a 
circle with its perimeter crossing the centroid of the original 4 vertical tie rods (see 
Fig. 4-18). This was necessary to model equal vertical force on each point restraint. 

 It was reported that some rotation occurred at the slab edge in the actual test. 
This was, however, neglected in ADAPTIC by assuming a perfect rotational re-
straint at 3 nodes at the slab edge at the position close to where the rectangular 
hollow section was installed in real test (see Fig. 4-18). 

 In order to apply sagging moment at the slab edge, pre-tension forces were intro-
duced to the horizontal rods in the test which produced compression forces at the 
slab edge. This initial compressive forces were neglected in ADAPTIC. 

Although simplified, it can be seen in Fig. 4-19 that the measured and predicted load-
deflection response compare well. This suggests that the simplifications of the boundary 
conditions are justified. Fig 4-19 also shows the experimental and predicted failure load 
for slabs MRA, MRB and MRC as well as the CSCT predictions of Einpaul (2016) which 
were derived considering both slab edge moment restraint and compressive membrane 
action (CMA). 
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Figure 4-18. Boundary conditions for quarter of slab with edge-restraint system 
(Choi and Kim, 2012) modelled in ADAPTIC. 

 

 
Figure 4-19. Load-rotation response and failure point of slabs with edge rotational 

restraint: (a) MRA; (b) MRB; (c) MRC (Choi and Kim, 2012). 
 

(a) (b) (c) 
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Fig. 4-19 shows that the JSPM gives good predictions of both the load-deflection re-
sponse and the failure load. The predicted failure loads are less than calculated by 
Einpaul (2016) using an analytical approach, based on the CSCT, which accounts for 
the stiffening effects of flexural continuity and CMA. It is interesting to notice that all 
the slabs failed at almost the same level of punching load despite the differences in ratio 
of support to span reinforcement. To investigate this phenomenon further, the contour 
of stress in both top and bottom reinforcement bars in x-direction of all three slabs at 
predicted failure load is shown in Fig. 4-20. 
 

 
Figure 4-20. Contour of stress on top and bottom reinforcement bars in x-direction 

of slabs with edge rotational restraint at predicted failure load: (a) 
MRA; (b) MRB; (c) MRC (Choi and Kim, 2012). 
Notes: grey colour indicates yield stress 
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Fig. 4-20 shows that the spread of yielding on top reinforcement bars was widest for 
slab MRC with the lowest reinforcement ratio on the support. Yielding of bars in the 
support region shifts the contraflexure line closer to the support while redistributing the 
bending moment to mid-span. Consequently, the region with higher stress on bottom 
reinforcement bars close to the mid-span is also widest for slab MRC (see Fig. 4-20(c)). 
In addition, yielding of bars around the support increases lateral expansion of the slab 
hence mobilising greater internal compressive membrane action (CMA).  
These results contradict the predictions of empirical design models like EC2 (2004) which 
calculate punching resistance in terms of the hogging reinforcement ratio at the column 
with no consideration on sagging reinforcement ratio. CSCT-based models, like the 
JSPM and Einpaul’s (2016) model, are able to predict the strength of the Choi and Kim 
slabs since the stiffening effect of the movement of the line of radial contraflexure and 
compressive membrane action are explicitly modelled.  

(c) Extended slab with simple support along edges 
Chana and Desai (1992b) tested five large-scale slabs (FPS 1-5) in punching. The slabs 
measured 9000 mm x 9000 mm x 250 mm and had an effective depth of around 210 mm. 
The slabs were supported at their centre by a 400 mm square column and around their 
edges by block walls which provided continuous simple support. A slip membrane was 
installed in between the blockwork and the slab to allow both rotation and horizontal 
displacement of the slab edges. Vertical loads were applied uniformly through 8 points 
at a radius of 1200 mm from the centreline of the slab through 50 tons hydraulic jacks. 
The hydraulic jacks were connected to a common supply to ensure equal force on each 
loading point. The extension of the slab from the loading points to the edge supports 
was intended to provide confining pressure (membrane action) to the slab region within 
the loading radius. The experimental test setup is presented in Fig. 4-21. Chana and 
Desai compared the strengths of their large scale slabs with the strengths of comparable 
3 m square conventional punching specimens tested previously (Chana and Desai, 1992a). 
Only FPS-1 was simulated in this part since it was the only specimen without shear 
reinforcement while the remaining slabs with shear reinforcement are discussed in Chap-
ter 7. The matching conventional punching specimen to FPS1-1 is Specimen 1 from 
Chana and Desai (1992a). The tension and compression reinforcement consisted of high 
yield deformed steel bars. The hogging reinforcement ratio was 0.86%.  
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Figure 4-21. Experimental test setup for extended slab with simple support along 

edges (adapted from Chana and Desai, 1992b). 
Image reproduced with permission of the rights holder, Chana and Desai 

 
The slab was modelled in ADAPTIC using the proposed JSPM. A uniform square mesh 
with side length of 100 mm was adopted. The resulting load deflection response is com-
pared with the experimental response in Fig. 4-22 which also shows the failure load 
predicted by Einpaul (2016) using his refined model. In addition, to allow a comparison 
between isolated and continuous slab behaviour, Specimen 1, which was identical to slab 
FPS1 apart from plan dimension, was also modelled using JSPM. The result is shown in 
Fig. 4-22. 
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Figure 4-22. Load-deflection response and failure point of slabs FPS1 (Chana and 

Desai, 1992b) with simple support along edges vs Specimen 1  (Chana 
and Desai, 1992a) with no slab extension - isolated. 

 
Fig. 4-22 shows that the predicted load displacement response of specimen FPS1 is 
almost the same as measured but the failure load is slightly overestimated. Slab FPS1 
was significantly stiffer than its 3m square conventional companion (Specimen 1 of 
Chana and Desai, 1992a). The punching capacity of FPS1 was around 40% greater than 
its conventional companion Specimen 1. It is the corresponding reduction in rotation at 
any given load which increases the punching resistance according to the CSCT. The 
increased stiffness of FPS1 comes from flexural continuity and CMA as described by 
Soares and Vollum (2015) and Einpaul (2016). As shown in Fig. 4-22, the JSPM suc-
cessfully simulates the reduction in slab rotation due to the stiffening effect of flexural 
continuity and CMA. Consequently, the JSPM correctly predicts a higher punching ca-
pacity for the continuous than isolated slab. 
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4.4 Verification summary 

Table 4-1 compares ratios of measured to calculated punching resistance for all the slabs 
considered in Section 4.3. Results are presented for the JSPM as well as for the CSCT 
which was implemented as described in the footnotes to the table. Where available, 
ATENA 3-D solid predictions are also given.
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Table 4-1. Summary of predictions of the proposed modelling strategy (JSPM), implemented CSCT method from other studies, 
and ATENA 3-D solid model. 

  

No Category-series Series identity Slab Source 

Measured / Predicted Punching Resistance 

Proposed 
methodology 

(JSPM) 

Implemented 
CSCT method 
reported from 
other studies 

ATENA 

1 

I-a 
Flexural reinforce-

ment ratio 

PG-5 Guandalini et al. (2009) 1.138 1.209 0.953 
2 PT22 

Sagaseta et al. (2011) 
1.059 1.250 0.934 

3 PT31 1.112 1.250 1.061 
4 PG19 

Clement et al. (2014) 
0.988 1.170 - 

5 PG20 1.002 1.050 - 
6 

I-b Size effect 

PG-6 

Guandalini et al. (2009) 

0.943 1.030 - 
7 PG-7 1.089 1.223 0.910 
8 PG-1 1.113 1.216 - 
9 PG-11 0.926 1.119 1.008 
10 PG-3 1.027 1.245 - 
11 

I-c 
In-plane compres-

sive forces 

PC5 

Clement et al. (2014) 

1.243 1.010* - 
12 PC6 1.040 1.060* - 
13 PC7 1.199 1.180* - 
14 PC8 1.086 1.060* - 
15 PC9 1.184 1.110* - 
16 PC10 1.124 1.060* - 
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No Category-series Series identity Slab Source 

Measured / Predicted Punching Resistance 

Proposed 
methodology 

(JSPM) 

Implemented 
CSCT method 
reported from 
other studies 

ATENA 

17 

I-d 
Post-punching be-

haviour 

PM3 

Ruiz et al. (2013) 

1.060# 1.060# - 
18 PM4 1.029# 1.029# - 
19 PM9 0.909# 0.909# - 
20 PM10 0.932# 0.932# - 
21 

II-a 
Non-symmetric re-

inforcement 

PT21 

Sagaseta et al. (2011) 

0.924 0.960$ - 
22 PT23 0.889 0.970$ - 
23 PT32 1.168 1.200$ 1.152 
24 PT33 0.932 0.980$ 0.957 
25 II-b One-way loading PT34 0.944 1.000$ - 
26 

III-a 
In-plane lateral re-

straint 

0.64RE 

Peng et al. (2017) 

0.941 1.032£ - 
27 0.64RE-NH 1.021 1.081£ - 
28 0.64RE-NH2 0.994 0.933£ - 
29 1.0RE 1.082 1.032£ - 
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No Category-series Series identity Slab Source 

Measured / Predicted Punching Resistance 

Proposed 
methodology 

(JSPM) 

Implemented 
CSCT method 
reported from 
other studies 

ATENA 

30 
III-b 

Edge rotational re-
straint 

MRA 
Choi and Kim (2012) 

1.008 0.800& - 
31 MRB 0.984 0.770& - 
32 MRC 1.138 0.820& - 

33 III-c 
Extended slab with 

simple support 
along edges 

FPS1 
Chana and Desai 

(1992b) 
0.861 0.940& - 

    Mean 1.033 1.051 0.996 

    Standard deviation 0.097 0.128 0.079 
 
 

CoV 0.094 0.122 0.079 

 
Notes: 
*: indicates refined CSCT method considering the reduction of cracked effective depth due to the presence of compressive membrane forces proposed by Clement et al. (2013) 
#: indicates the measured to predicted post-punching resistance calculated based on the mechanical model of Fernandez Ruiz et al. (2013) 
$: indicates refined CSCT method considering shear redistribution of non-axisymmetric slabs proposed by Sagaseta et al. (2011) 
£: indicates the prediction of macromodel proposed by Liu et al. (2015a) 
&: indicates the prediction of CSCT post-processing performed by Einpaul (2016)
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Table 4-1 shows that the mean ratio of measured to predicted failure load is close to 1.0 
for all methods. The coefficient of variation (CoV) is least for ATENA followed by the 
JSPM. However, it is important to remark that fewer specimens were analysed with 
ATENA than the JSPM. The JSPM is slightly more accurate than the CSCT-based 
predictions reported from other studies. The results in Table 4-1 show that the imple-
mented algorithm efficiently simulates the behaviour of isolated slab-column connections 
subjected to a wide range of loading and boundary conditions. Consequently, the pro-
posed modelling strategy offers a promising approach for modelling punching failure in 
flat slab structures with multiple columns.  
 

4.5 Conclusion 

This chapter presents a novel approach for simulating punching failure in flat slabs. The 
procedure combines the use of discrete joint elements and conventional shell elements. 
The joint element algorithm has been implemented into the finite element code ADAP-
TIC (Izzuddin, 1991). Joint elements are distributed uniformly along a rectangular con-
trol perimeter located at 0.5𝑑 away from the column face. To detect the occurrence of 
punching, the CSCT failure criterion of Muttoni (2008) is implemented within the for-
mulation of the joint element. The key feature of the model is its ability to continually 
update the joint shear resistance based on the monitored slab rotation extracted from 
the previous step. This is beneficial because it avoids having to determine the joint 
capacity prior to the analysis as done in the numerical models of Keyvani et al. (2014) 
and Liu et al. (2015). In addition, shear redistribution can be explicitly simulated as the 
failure of the first joint is followed by an increase of shear forces at adjacent joint ele-
ments yet to fail. 
In order to verify the proposed modelling strategy, a total of 33 previously tested internal 
isolated slab-column connections without transverse reinforcement were analysed in 
ADAPTIC. The tests were grouped into three categories namely: I) axisymmetric; II) 
non-axisymmetric; III) non-standard edge boundary conditions. Analysis of these slabs 
shows that the proposed modelling strategy is capable of capturing the load-rotation 
response, failure point and the post-punching behaviour accurately. The modelling of 
shear redistribution is shown to produce more realistic predictions for non-axisymmetric 
specimens in Series II. Analysis of Series III, shows that the proposed modelling strategy 
is capable of accurately capturing the response and failure load of slabs with complex 
boundary conditions.  
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The statistics in Table 4-1 show that the accuracy of the proposed JSPM compares very 
favourably with the CSCT predictions from other studies. The advantage of the proposed 
method is that the punching resistance is calculated internally within ADAPTIC without 
the need for complex post processing of results. The proposed JSPM also has the ad-
vantage of being significantly less computationally demanding than the 3-D solid element 
modelling with ATENA which is of comparable accuracy. The computational efficiency 
of the proposed model makes it suitable for the assessment of global building behaviour. 
The extension of the proposed modelling strategy (JSPM) to simulate punching failure 
of slabs with long support, for slabs subjected to eccentric loading, and for slabs with 
shear reinforcement is presented in Chapters 5, 6, and 7. 
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5 Punching mechanism of RC slabs without transverse 
reinforcement supported on elongated column or wall 

 
This chapter, based on a paper submitted in Structures (Setiawan et al., 20xx - under 
review), investigates the influence of support elongation on punching resistance at 
internal slab-column or slab-wall connections without shear reinforcement. An initial 
investigation was performed with NLFEA using 3-D solid elements in ATENA. To 
obtain a better understanding of how punching failure is triggered, local measurements, 
including: crack patterns, plot of principal tensile strain, variation of shear force/length 
and tangential/radial strain along the control perimeter, and contour of support reaction 
were extracted from the NLFEA results. Based on this improved undertanding, the 
JSPM is extended to simulate punching at elongated supports. The extended JSPM 
separates the one- and two-way shear contributions. The extended JSPM model was 
validated using 24 slabs with elongated column from the literature. The predictions of 
the JSPM are compared with those of shear-field analysis which accounts for the 
contribution of one-way shear explicitly. Finally, the practical design scenario of a slab 
supported on a wall-corner is discussed. Both refined and simplified design methods are 
proposed for checking the critical punching region around the wall-corner. 
 
5.1 Previous studies investigating the influence of elongated support 

to punching behaviour 

Design methods for punching shear typically compare the nominal shear stress calculated 
on a code-determined control perimeter around the column with the design shear 
resistance calculated from several combinations of design load. In most practical cases, 
the shear stress around the control perimeter is non-uniform due to asymmetries in 
structural arrangement, loading or reinforcement layout. Besides, the use of an elongated 
column or wall may also induce shear stress concentration around the corner of the 
support which may eventually trigger local brittle failure. This non-uniformity of stress 
needs to be accounted for in design to achieve safe results.  
Notable experimental and theoretical contributions to the understanding of punching of 
slabs supported on elongated column have been made by Oliveira et al. (2004) and 
Sagaseta et al. (2014) amongst others. The essence of the problem is illustrated in Fig. 
5-1 which is adapted from Sagaseta et al. (2014). In Fig. 5-1, the 𝑐 parameter denotes 
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the column cross-section dimension, with 𝑐𝑚𝑎𝑥/𝑐𝑚𝑖𝑛 being maximum and minimum side 
dimensions respectively, and 𝑑 is the average slab effective depth. 
 

 
Figure 5-1. Distribution of nominal shear forces along control perimeter at 

0.5𝒅 from the column face for internal columns with: (a) 𝒄/𝒅 = 1; (b) 𝒄/𝒅 = 4; (c) 𝒄𝒎𝒂𝒙/𝒄𝒎𝒊𝒏 = 4 and 𝒄𝒎𝒊𝒏/𝒅 = 1.24 (adapted from Sa-
gaseta et al., 2014). 
Image reproduced with permission of the rights holder, Elsevier 

 
Fig. 5-1 shows qualitatively, for concentrically loaded columns, the influence of relative 
column size (𝑐/𝑑) and column aspect ratio (𝑐𝑚𝑎𝑥/𝑐𝑚𝑖𝑛) on the variation of shear force 
around a control perimeter at a distance of 0.5𝑑 from the column face. It can be seen in 
Fig. 5-1(a) that the shear stress is uniform for a slab supported on a small square column 
but the non-uniformity of shear stress becomes more pronounced as the column size 
increases (see Fig. 5-1(b)) or the column shape becomes more elongated (see Fig. 5-
1(c)). Fig. 5-1(b) and (c) show that shear stresses tend to concentrate around the corner 
or the shorter region of the support with lower shear stresses observed elsewhere. 
In addition, according to the study of Oliveira et al. (2004), the variation of shear stress 
is also sensitive to the loading arrangement. In their test series, 𝑐𝑚𝑎𝑥/𝑐𝑚𝑖𝑛 was varied 
between 1 and 5. For each column size, three different loading arrangements were used: 
(a) one-way bending parallel to longer column dimension (Fig. 5-2(a); (b) one-way 
bending parallel to shorter column dimension (Fig. 5-2(b)); (c) two-way bending with 
equal loads in both edges (Fig. 5-2(c)). These three loading arrangements are depicted 
as Type A, Type B, and Type C, respectively, for future reference. Finite element anal-
ysis was also performed by Oliveira et al. (2004) to investigate the variation of shear 
stress around the columns. The concentration of shear stress was measured in terms of 
the ratio of peak to average shear stress. It was found that tests of Type A and Type C 

(a) (b) (c) 

d/2 

Control 
perimeter 

Distribution of 
nominal shear forces 
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produced higher shear stress concentration than Type B. Thus, different reduction fac-
tors for each loading type were proposed by Oliveira et al. (2004) to adjust the punching 
resistance. Al-Yousif and Regan (2003) came to a similar conclusion. 
 

  
Figure 5-2. Typical test setups for isolated internal slabs supported on elongated 

column loaded in: (a) one-way parallel to longer column dimension; 
(b) one-way parallel to shorter column dimension; (c) two-way equal 
loads; (d) two-way non-equal loads. 

 
The tests of Oliveira et al. (2004) show that shear failure of slabs supported on elongated 
supports is triggered by local failure at support ends but there is also lesser contribution 
from linear shear over the central part of the column sides greater in length than 3  as 
illustrated in Fig. 5-3(a) and (b) for end of wall and corner of wall, respectively. 
 

 
Figure 5-3. One- and two-way shear forces transferred from the slab to the sup-

port at: (a) end of wall; (b) corner of wall. 
 

(a) (b) 
Type A Type B Type C Type D 

(c) (d) 

(a) (b) 
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The need to account for non-uniformity of shear force distribution around supports under 
concentric loading depends on the proximity of the control perimeter to the column. For 
example, EC2 (BSI, 2004) avoids the problem by positioning the control perimeter at 
2𝑑 from the column face. Consequently, no special provision is commonly required for 
long or large support since the shear force distribution around the control perimeter is 
relatively uniform at 2𝑑, regardless the shape or size of the support as shown by Oliveira 
et al. (2004). In addition, by positioning the punching control perimeter at 2𝑑 from the 
column face, EC2 (2004) is able to use the same shear resistance for concrete loaded in 
both one- and two-way shear. However, many researchers argue that positioning the 
control perimeter at 0.5𝑑 like ACI 318-14 (2014) and Model Code 2010 (2013) is more 
appropriate than at 2𝑑 because the former more realistically captures the physical shear 
stress concentration (demand) around the column region. In addition, from the perspec-
tive of punching resistance (capacity), the increase in shear resistance contributed from 
triaxial compression state from radial and tangential bending is also captured well when 
closer control perimeter is considered. The increase in punching shear resistance is asso-
ciated with the development of large tangential strains of a similar magnitude or even 
greater than the radial strain. This is what mainly distinguishes the behaviour of one-
way and two-way (punching) shear. However, taking the control perimeter at 0.5𝑑 has 
its own consequence when dealing with large or long support because a reduction factor 
is explicitly required to take into account the stress concentration around the shorter or 
corner side. For example, Model Code 2010 (MC2010) deals with the problem by limiting 
the length of the straight segments of the control perimeter (𝑏0) to 3𝑑 for each edge 
(denoted as effective control perimeter length - 𝑏0,3𝑑) as illustrated in Fig. 5-4(a). 
 

 
Figure 5-4. Estimation of effective control perimeter length for slabs supported on 

large or elongated column according to: (a) MC2010; (b) extension of 
the JSPM. 

 
The main purpose of reducing the control perimeter from 𝑏0 to 𝑏0,3𝑑 is to increase the 

average shear stress close to the maximum (peak) value given by an elastic analysis. 
This assumption entirely neglects the contribution of one-way shear outside the effective 

(a) (b) 
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control perimeter. The accuracy of this provision was evaluated by Sagaseta et al. (2014) 
in which 33 concentrically loaded internal slab specimens with elongated columns, for 
which 𝑐𝑚𝑎𝑥/𝑑 varied between 1.11 and 6.25, were assessed. Their analysis showed that 
the use of reduced control perimeter as shown in Fig. 5-4(a) produces reasonably good 
estimates of failure load for the considered range of 𝑐𝑚𝑎𝑥/𝑑. While the treatment of 
MC2010 to limit the effective control perimeter length seems to be quite reasonable and 
simple to use, its validity is questionable for slabs supported on longer columns or walls. 
In this scenario, the contribution of one-way shear is non-negligible. Unfortunately, Sa-
gaseta et al. (2014) did not assess any specimen with longer support. This is, however, 
not surprising because very few slabs with 𝑐𝑚𝑎𝑥/𝑑 > 6.25 could be found in current 
database. 
This chapter extends the analysis of Sagaseta et al. (2014) to slabs with longer supports 
(6 < 𝑐𝑚𝑎𝑥/𝑑 < 10) where linear shear makes a non-negligible contribution to shear re-
sistance. Nonlinear analysis with 3-D solid elements is firstly used to obtain a better 
understanding of punching failure in previously tested slabs with elongated supports. 
Subsequently, parametric studies are carried out to investigate the contribution of linear 
shear for slabs with longer support (6 < 𝑐𝑚𝑎𝑥/𝑑 < 10) for which very few test data are 
available.   
 

5.2 Punching of slabs supported on elongated columns simulated us-
ing 3-D solid elements in ATENA 

5.2.1. Experimental test campaign of Oliveira et al. (2004) and Teng et al. (2004) 

A numerical model was developed in ATENA to investigate punching failure of slabs 
supported on an elongated column. For this purpose, three slabs (L3c, L4c, and L5c) 
tested by Oliveira et al. (2004) and another two slabs (OC13 and OC15) from Teng et 
al. (2004) were simulated and both global and local measurements were extracted from 
the results. The first test series was selected to allow a systematic comparison of the 
behaviour of identical slabs with increasing support length whereas the second series 
were selected because they had the longest support dimension amongst other test series. 
The experimental test setups used in Oliveira et al. (2004) and Teng et al. (2004) are 
shown in Fig. 5-5(a) and (b), (c) respectively. The vertical loads were applied equally 
at eight loading points positioned around the edge of the slab simulating two-way 
bending. The edge of the slab was designed to represent the radial contraflexure line 
under elastic bending moment. All slabs L3c, L4c, and L5c had the same dimension of 
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2280 x 1680 x 130 mm with the central steel plate (support) dimension of 120 x 360, 120 
x 480, and 120 x 600 mm respectively. From Teng et al. (2004) series, slab OC13 
measured 2200 x 2200 x 150 mm with the support dimension of 200 x 600 mm whereas 
slab OC15 had a dimension of 2700 x 2200 x 150 mm with support dimension of 200 x 
1000 mm. Table 5-1 summarises the material properties, reinforcement ratio, and 
geometry of all slab specimens simulated in this section. 
 

  
Figure 5-5. Illustrations of experimental test setup used by: Oliveira et al. (2004); 

(b) and (c) Teng et al. (2004) for OC13 and OC15, respectively (all 
units in mm). 
Image reproduced with permission of the rights holder, ICE Publishing (5‐5a); ACI (5‐
5b & 5‐5c) 

 

(a) 

(b) 

(c) 
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Table 5-1. Summary of properties of slab specimens with elongated column simulated using NLFEA in ATENA. 
 

No. Slab Source 
Slab dimension 

(mm) 

Slab 
thicknes
s (mm) 

𝒄𝒎𝒂𝒙   
(mm) 

𝒄𝒎𝒊𝒏 
(mm

) 

𝒄𝒎𝒂𝒙/𝒄𝒎𝒊𝒏 𝒅  
(mm) 𝒄𝒎𝒂𝒙/𝒅 𝒇𝒄 

(MPa
) 

𝒅𝒈 
(mm) 

𝒇𝒚 
(Mpa) 

𝝆𝒙 𝝆𝒚 

1 L3c 
Oliveira 
et al. 
(2004) 

2280 x 1680 130 

360 120 3.00 106 3.40 54 16 749 1.06 1.03 

2 L4c 480 120 4.00 107 4.49 56 16 749 1.06 1.03 

3 L5c 600 120 5.00 109 5.50 63 16 749 1.06 1.03 

4 OC13 Teng et 
al. 

(2004) 

2200 x 2200 
150 

600 200 3.00 114 5.26 35.81 20 452.5 1.47 1.47 

5 OC15 2800 x 2200 1000 200 5.00 114 8.77 40.15 20 452.5 1.47 1.47 

Notes: 𝑑𝑔 is the maximum aggregate size 
𝑓𝑐 is the concrete compressive strength (cylinder) 𝑓𝑦 is the yield strength of reinforcement bars 
𝜌𝑥 and 𝜌𝑦  are flexural reinforcement ratio in x and y-direction, respectively 
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5.2.2. Numerical methodology in ATENA 

A similar mesh configuration to that used in calibration studies presented in Chapter 3 
was used to model all slabs in this series. The test apparatus, including support and 
loading plates, was modelled using linear tetrahedral (4-noded) elements with elastic 
steel material. Based on the calibration studies, cubic elements with side length 𝑚 = 
ℎ/10 (where ℎ is the slab thickness) were used to model the slab within a distance of 2𝑑 
from the column face. A coarser mesh, on plan, with element sides measuring 2𝑚 x 𝑚 x 
𝑚 (i.e. length x width x thickness), 𝑚 x 2𝑚 x 𝑚, or 2𝑚 x 2𝑚 x 𝑚 was used elsewhere 
(see Fig. 5-6). Only one quarter of the slab was modelled by taking the advantage of 
symmetry. To allow uplift, as in the tests, nonlinear spring elements were used to simu-
late the central support plate. The compression stiffness was assigned with the actual 
stiffness of the steel plate whereas the stiffness in tension was assigned as 1/1000 of the 
compression stiffness as recommended by ATENA’s Theory Manual to model compres-
sion-only behaviour. This treatment allowed direct examination of the effective support 
region used in the contact pressure method of Sagaseta et al. (2014). Vertical loads were 
applied through loading plates in a load-controlled manner using the Arc-Length itera-
tion method. The number of iterations was limited to 100 for each load step with con-
vergence tolerance was set at 1% for displacement, residual, and absolute residual error 
and 0.1% for energy error. Illustration of the FE model along with its mesh configuration 
and boundary conditions is presented in Fig. 5-6 for specimen OC15. 
 

 
Figure 5-6. Mesh configuration and boundary conditions of typical quarter slab 

model in ATENA. 
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5.2.3. NLFEA results 

5.2.3.1. Global behaviour 

Global behaviour was assessed in terms of load versus slab deflection response and the 
failure load. For Oliveira et al. (2004) test series, however, load-deflection was only 
reported for slab L3c so that slab L4c and L5c were validated based on the measured 
failure load only. For slabs OC13 and OC15 from Teng et al. (2004), slab deflections 
were monitored at a distance of 100 mm from the slab free edge for both the strong and 
weak directions. The comparison of measured and predicted load-deflection response and 
failure load of both test series are shown in Fig. 5-7. 
 

 
Figure 5-7. Comparison of measured vs predicted load-deflection response and 

failure load of slabs: (a) L3c; (b) L4c; (c) L5c of Oliveira et al. (2004); 
(d) OC13; and (e) OC15 of Teng et al. (2004). 

 

(a) (b) (c) 

(d) (e) 
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Fig. 5-7 shows that, with the exception of slab OC15, ATENA does not capture either 
the observed failure load or the sudden drop in resistance following failure. Interestingly, 
Milligan and Polak (2019) also observed a similar phenomenon when modelling slabs 
supported by walls where plateau like responses occurred, with no clear drop of resistance. 
To circumvent this, Milligan and Polak decided to base the occurrence of punching 
failure on examination of plots of maximum principal tensile strain and crack patterns. 
In this study, a slightly different approach based on concrete strain limit was adopted 
to justify the occurrence of punching. This strain criterion is justified based on physical 
observations reported by Ferreira et al. (2016), Broms (2016), and Shu et al. (2017) 
where they found that the radial compressive strain in the slab soffit close to the column 
face drops to zero or even goes to tension near failure. In order to verify this criterion, 
slabs PT22 and PT31 of Sagaseta et al. (2011) analysed earlier were further investigated 
by putting additional monitoring points to measure the radial strain at the slab soffit. 
Fig. 5-8 shows the load-rotation and load-strain responses of both slabs. The strain was 
measured at two points on each side of the control perimeter, one at the mid-side and 
the other at the corner of the column. It can be clearly seen in Fig. 5-8 that the 3-D 
solid analysis correctly captured the abrupt drop of concrete compressive radial strain 
exactly at the peak load that is subsequently followed by the drop of resistance in load-
rotation response. Using this criterion, all five slabs presented earlier (L3c - L5c; OC13; 
and OC15) were reassessed and the new failure point was plotted in Fig. 5-7 denoted as 
“failure point (strain limit)”. It could be seen from Fig. 5-7 that the strain-based failure 
criterion gives good predictions of measured failure loads for all considered specimens 
except for specimen L3c where the failure load is overestimated by around 15%. Overall, 
the accuracy of the strain-based predictions is good given the complexity of the failure 
mechanism.  
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Figure 5-8. Load-rotation response along with the plot of radial concrete strain 

around the column face for slabs: (a) PT22 (𝝆𝒕𝒐𝒑 = 0.82%); and (b) 
PT31 (𝝆𝒕𝒐𝒑 = 1.48%) of Sagaseta et al. (2011). 

 

5.2.3.2. Local behaviour 

More detailed parameters can be extracted from the NLFEA results at local level. This 
information is useful to help explaining further the mechanics of failure of slabs 
supported on an elongated column. There are four local measurements investigated here: 
(a) crack patterns, reduction in peak compressive strength, and maximum principal 
tensile strain; (b) variation of shear forces/length; (c) variation of tangential to radial 
strain; (d) contour of support (spring) reaction.  

(a) 

(b) 
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 Crack patterns, reduction in peak compressive strength, and maximum 
principal tensile strain 

Detailed investigation into crack patterns may help to understand how failure takes 
place. It may also reveal important information regarding the failure modes of the slab. 
To illustrate, crack patterns (crack width > 0.1 mm) of slab L5c and OC15, shown from 
the top-view and side-view, at predicted failure load (𝑃𝑢) are shown in Fig. 5-9(a) and 
(b), respectively. In addition, contours of peak compressive strength reduction are pre-
sented along in Fig. 5-9. These contours are a measure of concrete damage since the 
greatest reduction in concrete compressive strength occurs where cracks are widest. 
 

 
Figure 5-9. Plot of crack patterns and peak compressive strength reduction shown 

from the top-view and side-view at 𝑷𝒖 of slab: (a) L5c of Oliveira et 
al. (2004); and (b) OC15 of Teng et al. (2004). 
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It can be seen from Fig. 5-9 that radial cracks predominate near the column corner 
while tangential cracks dominate along the longer side of the support. The edge views 
along the planes of symmetry also show that distinct punching crack (diagonal) formed 
at the centre of the shorter support side whereas flexural-shear crack types were observed 
along the longer side (slab OC15). A similar conclusion can be made by observing the 
plot of peak compressive strength reduction which shows the severely cracked region 
with the blue colour and uncracked region with red colour.  
The localisation of punching failure is clearest in Fig. 5-10 which shows the plot of 
maximum principal tensile strain at the soffit of slab L5c as well as its deformed shape 
from the side saw-cut at predicted failure load. Fig. 5-10(left) clearly shows that tensile 
strain is developed in the bottom surface of the slab at failure owing to the reversal of 
radial strain from compression to tension. However, the interesting part is noticing that 
the tensile strain only concentrates around the shorter side of the support. Further evi-
dence of the localised nature of the punching failure for slabs supported on elongated 
support is provided by the side-view deformations in Fig. 5-10(right) which show that 
out of plane shear deformation only developed along the shorter support side but not at 
the support longer side. 
 

 
Figure 5-10. Plot of maximum principal strain (tensile) of slab L5c of Oliveira et 

al. (2004) at predicted failure load.  
Notes: deformed shape of the slab is magnified 10x for clarity 
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 Variation of shear forces/length 
In order to understand how vertical load is non-uniformly carried along the control pe-
rimeter at a distance of 0.5𝑑 from the column face, shear forces/length was extracted 
from the NLFEA. In order to do that, post-processing was performed in ATENA by 
averaging the shear stress from integration points on each element, through the slab 
thickness. To get the shear forces/length, the average shear stress is then multiplied by 
the slab thickness. In general, the control perimeter can be discretised into four parts: 1) 
shorter side of the support; 2) diagonal (corner); 3) longer side of the support; 4) non-
effective region outside the 𝑏0,3𝑑 defined by MC2010 (see Fig. 5-11). For region 1), the 

component of shear stress that was extracted is 𝜏𝑦𝑧 (with the longer column dimension 

drawn parallel to the global y-axis), for region 3) and 4), the 𝜏𝑥𝑧 component was ex-
tracted. For the corner region (2), the extracted shear stress was calculated as the re-

sultant of shear stress from both directions (√𝜏𝑥𝑧2 + 𝜏𝑦𝑧2 ). 

 

 
Figure 5-11. Regions of control perimeter for extraction of shear forces per unit 

length for slabs: (a) L3c; (b) L5c of Oliveira et al. (2004). 
 

Plots of variation of shear forces/length of slab L3c, L5c, OC13, and OC15 at four 
different load levels relative to the predicted failure load (𝑃𝑢) are presented in Fig. 5-
12. Four main conclusions are drawn from Fig. 5-12. First, it can be observed that shear 
forces are greatest around the corner region of the control perimeter and least along the 
parts of the control perimeter neglected by MC2010. Second, the total shear force that 
is resisted by the parts of the perimeter neglected by MC2010 becomes progressively 
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more significant as the support length increases. Third, shear redistribution is evident in 
Fig. 5-12 since increasing load from 0.9𝑃𝑢 to 𝑃𝑢 caused the shear force to decrease 
within the diagonal (corner) region with simultaneous increase observed along the longer 
side of the control perimeter. Fourth, at predicted failure load (𝑃𝑢), it is observed that 
the shear force per unit length outside the effective control perimeter region was rela-
tively low indicating that failure is triggered locally around the corner region prior to 
full mobilisation of shear resistance elsewhere. 
Fig. 5-12(b) and (c) also show the variation in shear force per unit length beyond the 
strain-based estimate of failure load. The variation of shear force per unit length post 
failure beyond the strain limit is indicated with square green markers in Fig. 5-7(c) and 
(d). Fig. 5-12(b) and (c) show that the increase in load between the failure point based 
on strain-limit to the level of load indicated by green marker is accompanied by: (i) a 
significant increase in shear force along the longer side and discounted region of the 
control perimeter and (ii) a drop in shear force elsewhere. The variation of shear force 
per unit length at this state is relatively much uniform compared to the state at predicted 
peak load (𝑃𝑢). However, it is argued that such an extent of redistribution is unrealistic 
since, in reality, failure occurs due to sudden loss of resistance around the corner regions. 
This justifies that the adoption of the proposed strain-based failure criterion provides a 
more realistic limit on the degree of shear redistribution that may take place in reality. 
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Figure 5-12. Variation of shear force per unit length along the quarter of the control perimeter of slabs: (a) L3c; (b) L5c of 

Oliveira et al. (2004); (c) OC13; (d) OC15 of Teng et al. (2004). 

(a) 

(c) 

(b) 

(d) 
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 Variation of tangential to radial strain ratio (T/R) 
In ATENA, several monitoring points were installed at the bottom surface of the slab 
to measure concrete strains in both x- and y-global directions. Post-processing was per-
formed manually in a spreadsheet to transform these global x-y strains into radial and 
tangential strains based on the position of the monitoring point relative to the centre of 
rotation which is assumed at 1.5𝑑 from the end of the longer column side. The ratio of 
tangential/radial strain (T/R) at each position of the monitoring point is useful to quan-
titatively measure the effectiveness of the two-way load carrying mechanism. For exam-
ple, when T/R indicates high value (close to or larger than 1), this indicates a state 
where the load is effectively carried by two-way mechanism (both radial and tangential 
curvatures exist). On the other hand, when T/R is low and approaching zero, one-way 
mechanism dominates the behaviour, similarly as found in RC beam. The value of T/R 
between 0 and 1 shows a transition between two- and one-way load-carrying mechanisms. 
Fig. 5-13 shows the variation in T/R around the control perimeter of slabs L3c, L5c, 
OC13 and OC15 at the same load stages depicted in Fig 5-12. It could be seen from Fig 
5-13 that T/R is fairly independent of load stages until near failure when the ratio 
increases significantly around the corner and short sides of the control perimeter due to 
radial strain dropping near to zero. By comparing Fig. 5-12 and Fig. 5-13, it can be 
seen that shear resistance is increased from linear to punching by coexistent tangential 
strain. Consequently, the shear resistance (proportional to shear forces per unit length) 
is greatest around the effective MC2010 control perimeter and least along the discounted 
regions where tangential strain is minimal. In slab L3c where the length of non-effective 
region is negligible (𝑐𝑚𝑎𝑥/𝑑 close to 3), the T/R ratio remains almost constant (around 
0.8-1.0) along the whole control perimeter which suggests that the two-way mechanism 
dominates the behaviour. For slabs OC13 and OC15 with longer support, it is interesting 
to notice that a relatively low constant of T/R exists along the discounted region but it 
starts to increase beyond the border of 𝑏0,3𝑑 and reach 1 at the diagonal region. This 

justifies that the border of the effective control perimeter can be reasonably approxi-
mated as 1.5𝑑 from the end of the longer column side as proposed by MC2010. 
This description of behaviour is consistent with the experimental findings of Filatov 
(2017) who investigated the influence of support shape and size on radial and tangential 
strain in the soffit of concentrically loaded internal slab-column punching specimens. 
Filatov (2017) tested four specimens with slab thickness of 140 mm having the following 
support shapes: 1) circular with diameter of 210 mm, 2) 200 mm square, 3) 200 x 500 
mm and 4) 200 x 800 mm. Strains were measured near the support by means of strain 
gauges placed in radial and tangential directions. Close to failure, tangential strains were 
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relatively uniform around the circular column but greatest around the corners of the 
square and rectangular supports. In specimens with a rectangular support, the tangential 
strains along the longer column side reduced with distance from the column corner and 
were a minimum at the slab centreline. In the test with the 200 x 800 mm support, the 
tangential strain at the slab centreline was only about 3.0% of the peak tangential strain 
at the corner. The variation in radial strain was small compared with the variation in 
tangential strain (Filatov, 2017). 
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Figure 5-13. Variation of tangential to radial strain ratio (T/R) along the quarter of the control perimeter of slabs: (a) L3c; (b) 

L5c of Oliveira et al. (2004); (c) OC13; (d) OC15 of Teng et al. (2004).

(a) 

(b) 

(c) 

(d) 
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 Support (spring) reaction 

Sagaseta et al. (2014) inspected the contact pressure in the column in order to get a 
better understanding of concentration of shear stress. They used contact elements with 
non-tension behaviour to model a simple support situation. The total length of the shear-
resisting control perimeter was calculated by adding up the length of the control perim-
eters corresponding to each effective support region (i.e. region of support with compres-
sive stress). This method is illustrated in Fig. 5-14(a) for elongated column and 5-14(b) 
for large supported area. 
 

 
Figure 5-14. Estimation of shear resisting control perimeter based on contact pres-

sure at the column or supported area: (a) for rectangular column with 
𝒄𝒎𝒂𝒙/𝒄𝒎𝒊𝒏 = 𝟒 and 𝒄𝒎𝒊𝒏/𝒅 = 1.12; (b) for an internal square column 
with 𝒄/𝒅 = 5 (adapted from Sagaseta et al., 2014). 
Image reproduced with permission of the rights holder, Elsevier 

 
Similarly, in this study, a simple support condition was simulated using a non-compres-
sion spring installed below the column steel plate. In post-processing stage, plots of 
spring stress of slabs L5c, OC13, and OC15 at predicted failure load (𝑃𝑢) are extracted 
and presented in Fig. 5-15. 
 

(a) (b) 
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Figure 5-15. Contour of support reactions of slab: L5c of Oliveira et al. (2004), 

OC13, and OC15 of Teng et al. (2004) at predicted failure load. 
Notes: LoS denotes as lines of symmetry 

 
The region shown in blue in Fig. 5-15 indicates tension region where the slab moves 
upward relative to the support (uplift). It can be seen from Fig. 5-15 that spring 
compressive stress was not uniform and it is highly concentrated at the corner region of 
the support, as found by Sagaseta et al. (2014) (see Fig. 5-14). The length of the effective 
compressive region for a quarter of the control perimeter is varying between 1.0 - 2.0𝑑. 
Thus, it seems reasonable to define the limit of the effective control perimeter at 1.5𝑑 
from the corner of the support. 

5.2.3.3. Parametric study 

 Influence of 𝒄𝒎𝒂𝒙/𝒅 to the proportion of one-way shear contribution 
A parametric study was carried out to determine the effect of increasing the support 
length beyond that tested by Oliveira et al. (2004). The slab geometry, material param-
eters, and reinforcement arrangement were kept the same as slab L5c but the longer 
column side was increased to 720 mm (L6c), 840 mm (L7c), 960 mm (L8c) and 1080 mm 
(L9c). This gives the column aspect ratio (𝑐𝑚𝑎𝑥/𝑐𝑚𝑖𝑛) between 6 and 9 and 𝑐𝑚𝑎𝑥/𝑑 
between 6.5 and 10. The aim of the study was to determine the influence of support 
length on the proportion of load carried by one- versus two-way shear around a control 
perimeter at 0.5𝑑 from the support face. For consistency with the effective punching 
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perimeter of MC2010, the border between one- and two-way shear was assumed to be 
located at 1.5𝑑 from the corner of the support. The predicted failure load of slabs L6c - 
L9c was determined using the same strain-based criterion, as previously described in 
Section 5.2.3.1. In order to obtain the proportion of one-way contribution, post-pro-
cessing was performed in ATENA to integrate the out-of-plane shear stress (𝜏𝑥𝑧) along 
the discounted region.  
Fig. 5-16(a) and (b) show the load-rotation response of slabs L3c - L9c along with the 
contribution of one-way shear as a function of 𝑐𝑚𝑎𝑥/𝑑. The one-way contribution is 
ploted at the predicted failure load (𝑃𝑢) for all slabs. 
 

 
Figure 5-16. (a) Load-rotation responses; (b) % of one-way shear contribution at 

predicted failure load (𝑷𝒖). 
 
Fig. 5-16(a) shows that as the support length increases the load-rotation response be-
comes stiffer and the failure load increases. Fig. 5-16(b) shows that the contribution of 
one-way shear increases linearly with support length. The reduced control perimeter of 
MC2010 is still applicable for 𝑐𝑚𝑎𝑥/𝑑 < 6 since the contribution of linear shear along 
the neglected parts of the perimeter is less than 5.0%. As 𝑐𝑚𝑎𝑥/𝑑 increases beyond 6, 
the contribution of linear shear becomes progressively more significant, reaching a max-
imum of 13.44% for slab L9c with 𝑐𝑚𝑎𝑥/𝑑 = 9.9. Hence, to produce more accurate and 

(a) (b) 
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consistent estimates of shear resistance for slabs with large 𝑐𝑚𝑎𝑥/𝑑, the contribution of 
linear shear should be taken into account. 
 Influence of clamping down the support (not allowing uplift) vs simple support 
The slab was simply supported by a steel plate in all the punching shear tests considered 
in this paper. Consequently, uplift was free to occur over the central part of the support 
plate unlike in actual flat slab buildings. In reality, vertical forces transferred between 
columns in adjacent floors provide like a clamping effect which prevents uplift of the 
slab. In this series, the influence of clamping the steel plate was investigated by re-
analysing slabs L3c, L5c, L7c and L9c. In order to simulate the clamping condition, two 
steel plates were provided at the top and bottom surfaces of the slab and restrained 
vertically.  
Fig. 5-17 compares the resulting load-rotation responses and failure loads with those 
obtained previously using “non-tension spring” supports. Fig. 5-17 shows that clamping 
does not significantly influence either the stiffness or the failure load. Fig. 5-18 compares 
the shear force per unit length of simple vs clamped slabs. The slabs with clamped 
supports experienced slightly higher shear forces/length around the longer side of the 
control perimeter. Despite this, the results of these analyses suggest that it is justifiable 
to simulate elongated column cross-sections with plates (simple support) in laboratory 
tests. 
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Figure 5-17. Influence of clamping down the column to slab load-rotation response 

and failure load for slabs: (a) L3c; (b) L5c of Oliveira et al. (2004); 
(c) L7c; (d) L9c (virtual slabs from parametric study). 

  

(a) (b) 

(c) (d) 
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Figure 5-18. Influence of clamping down the column to shear forces/length variation at predicted failure load (𝑷𝒖) for slabs: (a) 

L3c; (b) L5c of Oliveira et al. (2004); (c) L7c; (d) L9c (virtual slabs from parametric study).

(a) (b) 

(c) (d) 
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5.3 Adjustment of the proposed joint model (JSPM) to consider 
elongated support scenario 

As previously shown in Chapter 4, the proposed joint model (JSPM) is capable of ac-
curately capturing load-rotation response and failure load of isolated slabs supported on 
square column with various reinforcement ratios, loading arrangements, and boundary 
conditions. In this chapter, a further attempt was made to extend the applicability of 
the JSPM to simulate punching of slabs supported on elongated column. Initially, two 
extreme treatments were tested to calculate the joint capacity for slabs with elongated 
column: 1) by taking the whole control perimeter (𝑏0); 2) by taking only the 𝑏0,3𝑑 while 

fully neglecting the resistance provided by the discounted control perimeter. The first 
approach always overestimates the measured punching capacity. The second approach 
provides reasonably good accuracy for slabs with 𝑐𝑚𝑎𝑥/𝑑  6.0 but underestimates the 
measured punching capacity for slabs with longer support. This is attributed from the 
contribution of one-way shear as shown earlier in Fig. 5-16(b). It was decided to modify 
the JSPM to include the contribution of one-way shear for slabs with 𝑐𝑚𝑎𝑥/𝑑  6.0 in 
order to get more accurate and consistent results. The modification of the JSPM is 
discussed in more detail in Section 5.3.1. Then, the validation of the adjusted JSPM is 
presented in Section 5.3.2 using 24 specimens with elongated column (𝑐𝑚𝑎𝑥/𝑑 > 3) 
found in literature. 

5.3.1. Modification of the JSPM 

5.3.1.1. Treatment of one- vs two-way shear 

From previous NLFEA results with 3-D solid elements, it was consistently found that 
load is transferred from the slab to the support dominantly through two-way (punching) 
mechanism along the effective control perimeter (𝑏0,3𝑑) whereas the remainder of the 

load is resisted through one-way shear along the discounted region. This suggests that 
one-way (linear) and two-way (punching) joint elements are required to realistically 
model punching shear failure at elongated supports. The two-way joint type has been 
defined as in the case of square column in Chapter 4. Regarding the one-way joint, it 
was decided to allocate a nominal one-way shear resistance calculated at flexural yield 
(lower-bound capacity) using the CSCT based failure criterion for one-way member pro-
posed by Cavagnis et al. (2018). The resulting one-way joint shear resistance is given by 
equation below: 
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 𝑉1_𝑤𝑎𝑦 = 𝑣𝑐_𝑚𝑖𝑛. 𝑙𝑠 = 𝑘. 𝑑. √𝑓𝑐
√𝜀𝑦. 𝑑𝑑𝑑𝑔

. 𝑙𝑠 (119) 

 
where 𝑣𝑐_𝑚𝑖𝑛 is the minimum (one-way) shear resistance per unit length, 𝑓𝑐 is the spec-
ified concrete compressive strength, 𝑘 is a constant that can be obtained by fitting of 
the calculated shear strengths (taken as 0.019), 𝜀𝑦 is the flexural reinforcement yield 

strain, 𝑙𝑠 is the spacing between adjacent joint elements, and 𝑑𝑑𝑔 which represents crack 

roughness, is calculated as follows: 
 
 𝑑𝑑𝑔 = min(40 𝑚𝑚, 16 + 𝑑𝑔) for 𝑓𝑐  ≤ 60 MPa (120) 

 

 𝑑𝑑𝑔 = min (40 𝑚𝑚, 16 + 𝑑𝑔 (60𝑓𝑐)
2)  for 𝑓𝑐  > 60 MPa (121) 

 
The decision to allocate the minimum shear resistance to the one-way joint was based 
on the previous 3-D solid results which show that the shear force per unit length is 
relatively small along the discounted region, even at predicted failure load. The load-
deformation relationship for the one-way joint is defined as a bilinear curve with a plastic 
capacity equals 𝑉1_𝑤𝑎𝑦 from Eq. 119 and the same linear elastic stiffness as the two-way 

(punching) joint. Unlike the punching joint defined in Chapter 4, one-way joint capacity 
is thus independent of the slab rotation. All other DOFs are assumed as fully rigid. Fig. 
5-19(a) shows the locations of one- and two-way joints adopted in the modelling of slab 
OC15 in ADAPTIC. As shown in Fig. 5-19(a), dummy joints (i.e. joint element assigned 
with very small resistance) were installed along the 1.5𝑑 “gap” located between the ef-
fective control perimeter and the first one-way joint. This is to be consistent with the 
earlier observation that the contribution of one-way shear is minimal for 𝑐𝑚𝑎𝑥/𝑑  6. 
Thus, in the extended JSPM, one-way contribution is only considered when the longer 
dimension of the support is higher than 6𝑑. 
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Figure 5-19. (a) Location of one-way and two-way joints along a quarter of control 

perimeter; (b) Future proposal to extend JSPM at very elongated col-
umns or walls using “control joint”. 

 

5.3.1.2. Joint pairing system for elongated column scenario 

In addition, Fig. 5-20 illustrates the typical pairing system of two-way joints (pairing 
between 1st and 2nd nodes to 3rd and 4th nodes) installed along the 𝑏0,3𝑑 region. The centre 

of rotation is assumed at 1.5𝑑 from the end of the longer column side. Hence, all global 
rotations from monitoring points are projected relative to this centre of rotation to obtain 
the radial component, which controls the opening of the critical crack, to calculate the 
joint resistance. The radius of contraflexure of each orthogonal direction, denoted 𝑟𝑠,𝑥 

and 𝑟𝑠,𝑦 are used to determine the distance of monitoring points relative to the centre 

of rotation. The variation of radius of contraflexure is assumed to approximate the shape 
of an ellipse (see Fig. 5-20). As mentioned before, the pairing system of one-way joint 
is not regulated because its capacity is independent of the slab rotation.  
For most of specimens presented in Table 5.2, a steel plate or short column stub was 
used in the actual test setup hence the column rotation is negligible. Consequently, in 
ADAPTIC, support was simply modelled by vertically restraining the shell nodes over 
the support area. Then, a ”dummy” line element was added to connect the shell nodes 
located at the assumed centre of rotation to an imaginary node located just above it. 

(a) (b) 
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This imaginary node is the one that was assigned as the 4th node for the joint pairing 
system. It is necessary to ensure the x-y coordinate of the 4th node to be exactly the 
same as the assumed centre of rotation so that the transformation of global to radial 
slab rotation could be done properly. 
 

 
Figure 5-20. Typical joint pairing system of two-way joints for slabs supported on 

elongated column. 
 
5.3.2. Validation of the extended JSPM for slabs with elongated support 

To validate the extended JSPM, a database of 24 isolated internal punching shear tests 
without shear reinforcement and 𝑐𝑚𝑎𝑥/𝑑 > 3 was assessed (see Table 5-2). Four different 
loading arrangements were considered as categorised as Type A - D (see Fig. 5-2). Type 
A depicts one-way bending parallel to the longer support dimension; Type B depicts 
one-way bending parallel to the shorter support dimension; Type C depicts two-way 
bending with equal load applied in both x- and y-direction; Type D is similar to Type 
C but with unequal loads applied in x- and y- direction. Fig. 5-21 shows the influence 
of 𝑐𝑚𝑎𝑥/𝑑 on the measured/predicted failure loads calculated with ACI 318-14, EC2 
(2004), the CSCT with maximum slab rotation (LoA IV - CSCT (𝜓𝑚𝑎𝑥)), the CSCT 
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with the simplified shear redistribution of Sagaseta et al. (2011) (LoA IV - CSCT (𝜓𝑥−𝑦)) 
and the extended JSPM. Load-rotation response of LoA IV was determined with ADAP-
TIC using nonlinear shell elements (no joint). Both CSCT (𝜓𝑚𝑎𝑥) and CSCT (𝜓𝑥−𝑦) 
approaches calculate the resistance based on the reduced control perimeter (𝑏0,3𝑑) of 

MC2010. However, further discretisation of the control perimeter was done for CSCT 
(𝜓𝑥−𝑦). The effective control perimeter was divided into four segments - two segments 

for each orthogonal direction. Consequently, the punching resistance of the slab for 
CSCT (𝜓𝑥−𝑦) is determined as the summation of the resistance contributed from each 

segment. The total shear resistance (𝑉𝑅) is formulated as: 
 

 𝑉𝑅 = 𝑉𝑅𝑥𝑏0,3𝑑 𝑏𝑥 + 𝑉𝑅𝑦𝑏0,3𝑑 𝑏𝑦 (122) 

 
where 𝑉𝑅𝑥 and 𝑉𝑅𝑦 are the strengths calculated using CSCT failure criterion with 𝜓𝑥 

and 𝜓𝑦 (slab rotation in x- and y-axis), respectively. The dimensions 𝑏𝑥 and 𝑏𝑦 are the 

lengths of the control perimeter belonging to x and y direction, respectively. This sim-
plified method assumes that the strengths in x- and y-direction are completely uncoupled. 
For all methods used to predict the punching capacity of the tested slabs, capacity 
reduction and partial safety factors were taken as 1.0. 
Slab specimens in Fig. 5-21 are classified into one- and two-way loading types and 
plotted using different markers. This allows a further comparison regarding the accuracy 
of the prediction when assessing slabs with different loading types. In addition, slabs 
from the previous parametric study (L6c - L9c) were also included in Fig. 5-21 to “fill” 
the gap in actual datasets for slabs with 𝑐𝑚𝑎𝑥/𝑑 > 6. Specifically for the prediction of 
JSPM, predictions from Chapter 4 for slabs with square column (i.e. assessed using the 
original JSPM) is also plotted along in Fig. 5-21(e) denoted as “axis-symmetrical 
(square)” and “non-axis-symmetrical (square)”. The resulting predictions are summa-
rised in Table 5-3 and Fig. 5-21. It is important to mention that statistics shown in 
Table 5-3 and Fig. 5-21 only consider the 24 slabs with elongated column from literature, 
with neither slabs from the parametric study nor with the square column from Chapter 
4. 
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Figure 5-21. Measured/predicted capacity of slabs with elongated column from: (a) ACI 318-14; (b) EC2 (2004); (c) CSCT 

(𝝍𝒎𝒂𝒙); (d) CSCT (𝝍𝒙−𝒚); (e) JSPM (no reduction factor); (f) JSPM (reduction factor of 0.85 for one-way loaded 
slabs).

(a) (b) (c) 

(d) (e) (f) 
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Fig. 5-21(a) shows that although safe ACI 318-14 gives the largest scatter. ACI does 
not show any different trend between the predictions of two-way and one-way loading. 
Fig. 5-21(b) shows that EC2 (2004) predicts the failure of slabs, both from literature 
and parametric study, with good accuracy. The EC2 (2004) predictions, however, are 
slightly unsafe for slabs subjected to one-way loading, as already stated by Oliveira et 
al. (2004). CSCT method with 𝜓𝑚𝑎𝑥 in Fig. 5-21(c) provides reasonable predictions 
with slightly more conservative estimate for slabs with 𝑐𝑚𝑎𝑥/𝑑 > 6 due to neglect of 
one-way shear contribution. Interestingly, since the CSCT formulation takes into ac-
count for the influence of loading type on rotation, it is able to provide similar level of 
accuracy for both one- and two-way loading arrangements, unlike EC2 (2004). CSCT 
with simplified shear redistribution (𝜓𝑥−𝑦) in Fig. 5-21(d) provides better prediction 

than CSCT  (𝜓𝑚𝑎𝑥) for longer column dimension. This is because the neglect of one-way 
shear contribution is compensated by the presence of shear redistribution between the 
strong and weak-axis of the slab. Fig. 5-21(e) shows that the extended JSPM also pro-
duces reasonably accurate and consistent accuracy for all ranges of 𝑐𝑚𝑎𝑥/𝑑 since it ex-
plicitly considers the contribution of one-way shear for longer column. 
Further observing the predictions shown in Fig. 5-21(d) and (e), it is concerning to 
notice that almost all predictions for one-way loading type for CSCT(𝜓𝑥−𝑦) and extended 

JSPM lie below the line (unity) indicating unsafe results. The predictions from the square 
column (original JSPM) with non-axis-symmetrical condition were also slightly below 
the line but it is still within a tolerable error limit (Notes: the specimen with lowest 
measured/predicted value from the original JSPM belongs to slab FPS1 (Chana and 
Desai, 1992b) with continuous edge where the source of error is unknown). These results 
suggest that the contribution of shear redistribution for one-way scenario is overesti-
mated, especially as the column dimension getting longer. Unfortunately, only 9 out of 
24 slabs were loaded in one-way loading which is insufficient derive definitive conclusions. 
In the meantime, when using the extended JSPM, it is suggested that the joint shear 
resistance calculated according to CSCT resistance curve should be reduced by 0.85. 
This procedure gives safe predictions of shear resistance for the slabs in Table 5-2 as 
shown in Fig. 5-21(f). Alternatively, assessment based on 𝜓𝑚𝑎𝑥 shall be performed with-
out considering any contribution from shear redistribution.  
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Table 5-2. Database of selected slab specimens with elongated column. 

No Slab Source 
Loading 

configuration 
𝒄𝒎𝒂𝒙 
(mm) 

𝒄𝒎𝒊𝒏 
(mm) 

𝒄𝒎𝒂𝒙/𝒄𝒎𝒊𝒏 𝒅  
(mm) 

𝒄𝒎𝒂𝒙/𝒅 𝒇𝒄 
(MPa) 

𝒅𝒈 
(mm) 

𝒇𝒚 
(Mpa) 

𝝆𝒙 𝝆𝒚 
1 2 

Hawkins et al. (1971) 

Type A 406.4 203.2 2.00 117.348 3.46 28.06 19 411 1.2 1.04 
2 3 Type A 457.2 152.4 3.00 117.348 3.90 29.92 19 411 1.2 1.04 
3 4 Type A 495.3 114.3 4.33 117.348 4.22 29.3 19 411 1.2 1.04 
4 5 Type A 457.2 152.4 3.00 117.348 3.90 27.44 19 411 1.672 1.595 
5 7 Type D 457.2 152.4 3.00 117.348 3.90 26.06 19 411 0.934 0.815 
6 8 Type D 495.3 114.3 4.33 120.65 4.11 24.68 19 414 0.872 0.783 
7 Slab 1 

Al-Yousif and Regan 
(2003) 

Type A 500 100 5.00 80 6.25 26.3 10 472 1.04 0.92 
8 Slab 2 Type C 500 100 5.00 80 6.25 25.8 10 472 1.04 0.92 
9 Slab 3 Type B 500 100 5.00 80 6.25 23.7 10 472 0.92 1.04 
10 L3b 

Oliveira et al. (2004) 

Type B 360 120 3.00 107 3.36 60 16 749 1.06 1.03 
11 L3c Type C 360 120 3.00 106 3.40 54 16 749 1.06 1.03 
12 L4b Type B 480 120 4.00 106 4.53 54 16 749 1.06 1.03 
13 L4c Type C 480 120 4.00 107 4.49 56 16 749 1.06 1.03 
14 L5b Type B 600 120 5.00 108 5.56 67 16 749 1.06 1.03 
15 L5c Type C 600 120 5.00 109 5.50 63 16 749 1.06 1.03 
16 OC13 

Teng et al. (2004) 

Type C 600 200 3.00 114 5.26 35.81 20 452.5 1.47 1.47 
17 OC13-1.6 Type D 600 200 3.00 114 5.26 32.98 20 452.5 1.47 1.47 
18 OC13-0.63 Type D 600 200 3.00 114 5.26 39.71 20 452.5 1.47 1.47 
19 OC15 Type C 1000 200 5.00 114 8.77 40.15 20 452.5 1.47 1.47 
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No Slab Source 
Loading 

configuration 
𝒄𝒎𝒂𝒙 
(mm) 

𝒄𝒎𝒊𝒏 
(mm) 

𝒄𝒎𝒂𝒙/𝒄𝒎𝒊𝒏 𝒅  
(mm) 

𝒄𝒎𝒂𝒙/𝒅 𝒇𝒄 
(MPa) 

𝒅𝒈 
(mm) 

𝒇𝒚 
(Mpa) 

𝝆𝒙 𝝆𝒚 
20 AM04 Sagaseta et al. (2014) Type C 780 260 3.00 202 3.86 44.6 16 516 0.766 0.829 
21 S13-090 

Teng et al. (2018) 

Type C 600 200 3.00 117 5.13 114 20* 537 0.961 0.961 
22 S13-143 Type C 600 200 3.00 114 5.26 114 20* 501 1.495 1.495 
23 S15-090 Type C 1000 200 5.00 117 8.55 97 20* 537 0.961 0.961 
24 S15-143 Type C 1000 200 5.00 114 8.77 97 20* 501 1.495 1.495 

Notes:  
* indicates slab with high-strength concrete where 𝑑𝑔 for punching and one-way shear calculation is reduced as a function of 𝑓𝑐 as proposed by Cavagnis et al. (2018) 
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Table 5-3. Predictions of punching capacity obtained with various approaches. 
 

No. Specimen Source 
Measured / Predicted Punching Resistance  

ACI 318-14 
EC2 

(2004) 
CSCT 𝝍𝒎𝒂𝒙 CSCT 𝝍𝒙−𝒚 Extended JSPM 

1 2 

Hawkins et al. (1971) 

1.003 0.978 1.007 0.991 0.993 / 1.028* 
2 3 1.106 0.908 0.903 0.859 0.882 / 0.950* 
3 4 1.263 0.907 0.959 0.891 0.930 / 1.014* 
4 5 1.231 0.878 0.961 0.925 0.931 / 1.017* 
5 7 1.139 0.993 1.008 0.995 0.992 
6 8 1.268 0.970 1.002 1.000 1.000 
7 Slab 1 

Al-Yousif and Regan (2003) 
1.120 0.869 1.012 0.870 0.954 / 1.043* 

8 Slab 2 1.450 1.122 1.042 1.020 0.981 
9 Slab 3 1.368 1.044 1.020 0.972 0.917 / 1.016* 
10 L3b 

Oliveira et al. (2004) 

1.252 1.134 1.004 0.922 0.859 / 0.949* 
11 L3c 1.195 1.067 0.968 0.871 0.875 
12 L4b 1.249 1.066 1.025 0.926 0.852 / 0.955* 
13 L4c 1.240 1.062 1.043 0.937 0.964 
14 L5b 1.103 0.950 0.995 0.892 0.834 / 0.912* 
15 L5c 1.178 1.002 1.046 0.951 0.982 
16 OC13 

Teng et al. (2004) 

1.458 1.218 1.248 1.218 1.179 
17 OC13-1.6 1.359 1.119 1.200 1.100 1.130 
18 OC13-0.63 1.109 0.942 0.944 0.939 0.928 
19 OC15 1.348 1.060 1.326 1.262 1.187 
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No. Specimen Source 
Measured / Predicted Punching Resistance  

ACI 318-14 
EC2 

(2004) 
CSCT 𝝍𝒎𝒂𝒙 CSCT 𝝍𝒙−𝒚 Extended JSPM 

20 AM04 Sagaseta et al. (2014) 0.986 0.969 0.995 0.994 0.996 
21 S13-090 

Teng et al. (2018) 

0.778 0.902 1.046 1.016 1.017 
22 S13-143 1.033 1.041 1.180 1.134 1.150 
23 S15-090 0.853 0.890 1.304 1.144 1.137 
24 S15-143 1.037 0.939 1.366 1.218 1.190 

  Mean 1.172 1.001 1.067 1.002 0.994 / 1.025* 

  Standard deviation 0.168 0.091 0.127 0.115 0.109 / 0.088* 

  CoV 0.143 0.090 0.119 0.115 0.110 / 0.086* 
Notes:  
* indicates slabs subjected to one-way loading that were reanalysed using a reduction factor of 0.85 



248 
 

5.3.3. Future modification to JSPM at very elongated columns or walls (proposal) 

As shown by the ATENA analysis, punching failure in slabs supported on elongated 
supports is triggered by localised shear failure around the end of the support prior to 
mobilisation of shear resistance elsewhere. In current extension of JSPM for long column 
scenario described in Section 5.3.1, global failure is accompanied by failure of all joints, 
both one- and two-way. This current treatment is most likely to overestimate the punch-
ing failure of slabs supported on a very elongated support, like wall.  
For future implementation, in order to simulate a more realistic failure mechanism, a so-
called “control joint” could be developed. The control joint would be used to limit the 
extent of shear redistribution so that global connection failure can be triggered directly 
as the last two-way joint around the corner fails, regardless the state of the one-way 
joint. As shown in Fig. 5-19(b), the control joint would be installed at the junction 
between the centroid of the support and the rigid links connecting this centroid to sur-
rounding shell elements located at the support face. The control joint would be “paired” 
to the two-way joint closest to the first dummy joint. After failure of the paired two-
way joint (local failure), an abrupt increase of relative vertical displacement would occur 
which could be used as a defining parameter to trigger the failure of the control joint 
(global failure). 
  

5.4 Proposed refinement of CSCT for elongated supports based on 
shear-field analysis 

5.4.1. Overview 

Fig. 5-16(b) suggests that using the effective control perimeter from MC2010 (𝑏0,3𝑑) 
becomes progressively more conservative as the support length increases beyond 𝑐𝑚𝑎𝑥/𝑑 
= 6. In this event, a shear-field analysis can be carried out according to Vaz Rodrigues 
et al. (2008) for greater accuracy. Vaz Rodrigues et al. (2008) proposed a method based 
on linear elastic analysis to determine the effective control perimeter length based on 
shear-field. The shear-field is a vector field representing the direction and magnitude of 
the principal shear force per unit length in a slab (Vaz Rodrigues et al., 2008). Based on 
the post-processing of this shear-field analysis, they proposed an equation to estimate 
the effective (reduced) control perimeter length as: 
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 𝑏0,𝑒𝑙𝑎𝑠𝑡 = 𝑉𝑣𝑒𝑙,𝑚𝑎𝑥 (123) 

 
where 𝑉  is the total applied load, and 𝑣𝑒𝑙,𝑚𝑎𝑥 is the magnitude of maximum shear force 

per unit length acting perpendicular to the perimeter. This method analogously substi-
tutes the actual non-uniform stress distribution with a constant (uniform) stress, being 
its value equal to 𝑣𝑒𝑙,𝑚𝑎𝑥, along the reduced control perimeter. This method is suitable 

for design purpose since the demand shear stress is derived based on the maximum stress 
value (upper-bound).  
In this study, as done by Vaz Rodrigues et al. (2008), LFEA was performed to obtain 
the variation of shear force per unit length along the effective control perimeter (𝑏0,3𝑑) 
of an elongated support. The procedure is followed by determining the demand shear 
force to perform punching check based on either the peak forces (𝑣𝑚𝑎𝑥(𝑏0,3𝑑)) or the 

average forces (𝑣𝑎𝑣𝑒(𝑏0,3𝑑)). An initial study was performed and it was found that the 

average value predicts the measured punching capacity most accurately. Using the peak 
shear force cancels out the beneficial additive contribution of one-way shear. Further 
discussion regarding the justification of using the average shear force per unit length is 
presented in Section 5.4.3. It should be noted that multiplying 𝑣𝑎𝑣𝑒(𝑏0,3𝑑) by the length 

of the effective control perimeter 𝑏0,3𝑑 gives the total load carried by the effective punch-

ing region (𝑉2_𝑤𝑎𝑦). This procedure explicitly takes into account the contribution of one 

way shear on reducing the demand shear force per unit length in the corner region from 
𝑉𝑏0,3𝑑 (i.e. as done in MC2010) to 𝑉2_𝑤𝑎𝑦𝑏0,3𝑑 . Theoretically, as the support length becomes 

longer, the difference between 𝑉𝑏0,3𝑑 and 𝑉2_𝑤𝑎𝑦𝑏0,3𝑑  becomes more significant due to an in-

crease of one-way shear contribution (𝑉1_𝑤𝑎𝑦).  
It is important to remark that there is one particular issue that requires a careful con-
sideration when using this method. It is related to the fact that the variation of shear 
forces/length is sensitively affected by the out-of-plane shear stiffness of the slab (𝑣𝑥𝑧 
and 𝑣𝑦𝑧 components) adopted in the analysis. For example, if no stiffness modifier is 

used (unreduced stiffness), shear forces tend to highly concentrate at the shorter side of 
the support with either zero or even upward shear forces developing at the discounted 
region hence 𝑉2−𝑤𝑎𝑦 ≈ 𝑉 . This explains why Sagaseta et al. (2014) acquired the length 

of 𝑏0,𝑒𝑙𝑎𝑠𝑡 from shear-field relatively close to 𝑏0,3𝑑 of MC2010 when no shear stiffness 

modifier is used. As the out-of-plane shear stiffness is gradually reduced, the variation 
of shear forces becomes more uniform hence one-way shear starts to make a non-negli-
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gible contribution. In design situation, LFEA with no shear stiffness modifier is recom-
mended to ensure conservative results. However, for assessment purpose where the ob-
jective is to obtain as close a prediction as possible to the measured strength, modifica-
tion of slab shear stiffness is required to more accurately represent the actual variation 
of shear forces around the control perimeter. In section 5.4.2, results from the sensitivity 
study to determine an appropriate slab out-of-plane shear stiffness modifier are presented. 

5.4.2. Sensitivity study of slab shear stiffness (out-of-plane) modifier 

In order to determine an appropriate stiffness modifier, a sensitivity study was performed 
by varying the out-of-plane shear stiffness. The study investigated the influence of shear 
stiffness modifier on the variation of shear forces vary around the length of the control 
perimeter, especially with the region neglected by MC2010 in 𝑏0,3𝑑. To firstly provide a 

schematic (qualitative) illustration, slab OC15 of Teng et al. (2004) was analysed using 
linear elastic analysis in ETABS (CSI, 2017). Only quarter of the slab was modelled with 
uniform square mesh size of 15 mm x 15 mm. The column was modelled using area 
spring (non-tension) similarly to the ATENA analysis. Applied load equal to the meas-
ured failure load was applied to the slab through two equal point loads. Seven values of 
shear stiffness multipliers were evaluated: 1.0 (unreduced); 0.8; 0.6; 0.4; 0.2; 0.15 and 
0.1. The stiffness multiplier was applied to all shell elements across the whole slab. 
Fig. 5-22 shows the contour of shear forces/length in x-z direction (𝑣𝑥𝑧) along the longer 
side of the control perimeter located at 0.5  from the column face for various stiffness 
modifiers. The broken-black line in Fig. 5-22 indicates the discounted region (outside 
𝑏0,3𝑑) whereas the red line indicates the border between downward and upward shear 

forces. From Fig. 5-22, it can be seen that as the shear stiffness is gradually reduced, 
the border between downward and upward shear forces shifts closer to the slab centreline. 
This indicates that the variation of shear forces becomes more uniform along the longer 
side of the control perimeter. The shifting of the border is most pronounce when reducing 
the shear stiffness modifier below 0.4. In the extreme situation where stiffness modifier 
equals 0.1 was used, the border completely disappeared indicating no upward shear forces 
along the control perimeter. At this state, the contribution of one-way shear is highest.
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Figure 5-22. Contours of shear forces/length 𝒗𝒙𝒛 along the longer side of the control perimeter for various stiffness modifiers.
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In order to determine an appropriate stiffness modifier value, the proportion of one-way 
contribution extracted from LFEA with various shear stiffness was compared to the 
results of NLFEA using 3-D solid analysis and extended JSPM model (both serve as 
benchmarks). To provide the proportion of one-way contribution from LFEA, ADAPTIC 
was used to reanalyse slab L6c - L9c (from parametric study) but with reduced shear 
stiffness. Five different stiffness modifiers were evaluated: 1.0; 0.4; 0.2; 0.15 and 0.1. In 
ADAPTIC, out-of-plane shear stiffness of the slab element cannot be modified hence the 
reduction of shear stiffness was represented by putting linear joint element along the 
control perimeter with reduced stiffness. The linear joint stiffness is determined as: 
 

 𝑘𝑙𝑖𝑛 = 𝐸𝑐2(1 + 𝑣) . 𝑠𝑚 . 𝑙𝑠 (124) 

 
where 𝐸𝑐 is concrete elastic modulus, 𝑣 is Poisson’s ratio taken as 0.2, 𝑠𝑚 is the value 
of stiffness modifier and 𝑙𝑠 is the spacing between adjacent joint elements. Fig. 5-23 
shows the influence of shear stiffness modifiers to one-way contribution (%) of slabs L6c 
- L9c analysed with: a) LFEA (various stiffness modifiers); b) NLFEA (3-D solid model) 
and c) NLFEA (extended JSPM). The horizontal axis shows the ratio of applied load to 
the predicted failure load (𝑃/𝑃𝑢). It has been checked that the proportion of one-way 
contribution acquired using ETABS vs ADAPTIC is relatively similar but the decision 
to use ADAPTIC is because it allows easier post-processing of the results.  
Fig. 5-23 reveals three important points: 1) the NLFEA results extracted from the 3-D 
solid analysis show that the contribution of one-way shear is not constant but varies as 
a function of applied load, with lowest contribution at initial uncracked stage (elastic) 
and highest at ultimate state where redistribution of internal forces has already taken 
place; 2) the NLFEA with extended JSPM reasonably approximates the one-way con-
tribution of the 3-D solid model which justifies the additional 1.5𝑑 gap (dummy joint) 
in the model (i.e. otherwise the one-way contribution in extended JSPM would be over-
estimated); 3) the LFEA results show clearly that the contribution of one-way shear is 
strongly affected by the out-of-plane shear stiffness modifiers: ranging from -10% with 
no stiffness modifiers (L6c) to around 20% for stiffness modifier equals 0.1 (L9c). From 
these results, it was decided to consistently use the stiffness modifier equal to 0.2 when 
applying the shear-field method presented in Section 5.4.3. This value was deemed to 
be appropriate since it reasonably estimates the one-way contribution of extended JSPM 
at failure load and slightly lower than the ATENA 3-D solid model. The application of 
the shear-field method to assess punching capacity of selected slabs from the database 
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with long support in conjunction with the chosen stiffness modifier (0.2) is presented in 
Section 5.4.3.
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Figure 5-23. Proportion of one-way contribution (%) as a function of applied load of slabs: (a) L6c; (b) L7c; (c) L8c; (d) L9c 

(virtual slabs from parametric study) acquired using LFEA with various stiffness modifiers and NLFEA (3-D solid 
model and extended JSPM).

(a) (b) 

(c) (d) 
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5.4.2.1. Application of CSCT with shear-field method to predict punching capacity 
of slabs with elongated support 

After determining an appropriate stiffness modifier, the next task is to justify the use of 
average shear force per unit length from the 𝑏0,3𝑑 region as the demand shear. For this 

purpose, slab specimen L9c (with the longest support dimension) will be reassessed using 
three different shear forces/length (demand), calculated as: (a) 𝑉𝑏0,3𝑑 (as current MC2010); 

(b) peak from LFEA shear-field with stiffness modifier of 0.2 (𝑣𝑚𝑎𝑥(𝑏0,3𝑑)); (c) similar to 

(b) but using the average value (𝑣𝑎𝑣𝑒(𝑏0,3𝑑)). The load-rotation response to calculate 

CSCT shear resistance was acquired using NLFEA in ADAPTIC with only shell ele-
ments (no joint). It is important to remark here that the reduction of out-of-plane shear 
stiffness does not affect the slab bending (flexural) behaviour hence the load-rotation 
response can be simply acquired using standard approaches including LoA III, LoA IV 
of MC2010, or using quadrilinear moment-curvature law by Muttoni (2008).  
Fig. 5-24(a) shows the plot of normalised shear stress demand versus normalised slab 
rotation whereas Fig. 5-24(b) shows the global load-rotation response (𝑉 −  𝜓) of slab 
L9c. The normalised shear stress and slab rotation are expressed as: 
 

 𝑣𝑛𝑜𝑟𝑚 = 𝑣𝑑√𝑓𝑐
; 𝜓𝑛𝑜𝑟𝑚 = 𝜓. 𝑑𝑑𝑔0 + 𝑑𝑔 (125) 

 
where 𝑣 is the shear forces/length (calculated based on approach a, b or c), 𝑑 is the 
average slab effective depth, 𝑓𝑐 is the specified concrete compressive strength, 𝜓 is the 
slab rotation, 𝑑𝑔0 is the reference aggregate size equal to 16 mm and 𝑑𝑔 is the maximum 

aggregate size (used). The failure load is given by the intersection of the demand and 
resistance curves as shown in Fig. 5-24(a). Failure loads acquired with three different 
shear stress demands are plotted in Fig. 5-24(b) and compared with the ATENA 3-D 
solid failure load which serves as a benchmark. The horizontal axis of Fig. 5-24(b) is 
also expressed in terms of the normalised slab rotation (𝜓𝑛𝑜𝑟𝑚) as in Fig. 5-24(a). Ro-
tation used in Fig. 5-24 is considered only for the weak axis (maximum rotation). 
Fig. 5-24(a) shows that approach b (peak stress) produces greatest increase of shear 
stress demand (steepest curve) which resulting in earliest punching failure at 𝜓(𝑏). The 
demand curve for approach c has the shallowest inclination which results in the latest 
failure whereas MC2010 prediction (approach a) lies somewhere in between the two. Fig. 
5-24(b) clearly shows that approaches a and b underestimate the ATENA 3-D solid 
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prediction whereas approach c provides the closest approximation. This suggests that 
the use of average forces produces more accurate results whereas use of the maximum 
(peak) shear force gives an even lower prediction than the MC2010 method. In other 
words, the use of maximum (peak) forces completely cancels out the benefit of having 
one-way shear contribution. The consistency of the shear-field prediction based on aver-
age force per unit length is further verified in the next section using slabs from an ex-
perimental database as well as the remaining slabs from the parametric study. 
 

 
Figure 5-24. Application of the proposed shear-field approach using specimen L9c 

(virtual slab from parametric study): (a) demand vs resistance in 𝒃𝟎,𝟑𝒅 
region; (b) load-rotation response. 

 
The proposed shear-field method was used to assess the punching resistance of the slabs 
in Fig. 5-26 with 𝑐𝑚𝑎𝑥/𝑑 > 6. These comprise (i) three slabs in the experimental data-
base and (ii) four from the parametric study. Shear force demand was determined by 
averaging the forces within 𝑏0,3𝑑 from LFEA obtained with 0.2 shear stiffness modifiers. 

Rotations were determined using both MC2010 LoA III and LoA IV (NLFEA). In 
MC2010 LoA III, the slab rotation is calculated as follows: 
 

 𝜓𝐿𝑜𝐴 𝐼𝐼𝐼 = 1.2 𝑟𝑠𝑑  𝑓𝑦𝐸𝑠  (𝑚𝑠𝑚𝑅)1.5 (126) 

(a) (b) 
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where 𝑓𝑦 is the yield strength of reinforcement bars, 𝐸𝑠 is the Young’s modulus of rein-

forcement bars, 𝑟𝑠 denotes the position where radial bending moment is zero with respect 
to the column axis, 𝑚𝑠 is the average design moment for designing the flexural reinforce-
ment per unit width in the support strip, which is of width 𝑏𝑠 = 1.5√𝑟𝑠,𝑥. 𝑟𝑠,𝑦 and 𝑚𝑅 

is the design average flexural strength per unit width of the support strip. The value of 
𝑟𝑠,𝑥, 𝑟𝑠,𝑦 and 𝑚𝑠 were determined using LFEA. The length of 𝑟𝑠,𝑥 and 𝑟𝑠,𝑦 were meas-

ured from the position of contraflexure line on x- and y-direction respectively to the 
centroid of the support. The value of 𝑚𝑠 was determined by averaging the bending mo-
ment/length of shell elements closest to the column face within the width of 𝑏𝑠 from the 
slab centreline. Torsional bending moment (Armer-Wood moment) was also included 
when calculating 𝑚𝑠. The comparison of load-rotation response acquired using LoA III 
and LoA IV for slabs L6c - L8c is shown in Fig. 5-25. It can be seen in Fig. 5-25 that 
LoA III produces comparable estimates of the slab-rotation to LoA IV, especially for the 
weaker axis but slightly softer for the stronger axis. Nevertheless, since all the presented 
analyses in this section were based on maximum slab rotation (no redistribution) hence 
only the weaker axis is relevant. 
 

 
Figure 5-25. Comparison of load-rotation response acquired using LoA III and LoA 

IV for slabs: (a) L6c; (b) L7c and (c) L8c (virtual slabs from paramet-
ric study). 

 
The results of the analyses using the proposed shear-field method (denoted “s.field”) are 
shown in Fig. 5-26(a) and (b) for (i) and (ii) respectively. Also shown are the predictions 

(a) (b) (c) 
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of the CSCT neglecting linear shear (denoted “no one-way”) where the demand shear 
force per unit length was directly taken as 𝑉𝑏0,3𝑑 (MC2010 approach). Predictions of fail-

ure load acquired from 3-D solid (ATENA) and extended JSPM were also included in 
the graph to provide comparison. Fig. 5-26(a) and (b) show that, in general, considering 
the contribution of one-way shear explicitly through shear-field approach increases the 
punching capacity from around 2-10%. This result suggests that the contribution of one-
way shear may be initially small but becoming more significant as the support length 
increases. Predictions obtained with rotations calculated using LoA III and LoA IV are 
relatively similar which is convenient since LoA III only requires LFEA. The prediction 
acquired using shear-field is accurate but slightly lower than the extended JSPM since 
shear redistribution between strong and weak axes is neglected. 
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Figure 5-26. Comparison of classic (no one-way) vs refined approach (shear-field) 

of slabs with 𝒄𝒎𝒂𝒙/𝒅  > 6.5 from: (a) actual slab database; (b) 
parametric study. 

  

(a) 

(b) 
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5.5 Extension of the proposed shear-field method for designing slabs 
supported on wall-corner 

5.5.1. Overview and previous studies related to wall-slab connection 

In current EC2 (2004) provision, design of punching for slabs supported on wall-corner 
is not directly addressed. Typically, designers are only required to check the maximum 
shear stress along the control perimeter at 2𝑑 from the wall face and then compare it 
with the shear resistance. MC2010 provides an additional provision for large support 
areas in which the straight parts of the control perimeter are limited to a length of 1.5𝑑 
from each corner (see Fig. 5-27(a) for wall-end and Fig. 5-27(b) for wall-corner). 
MC2010 also requires the effective control perimeter length to be further reduced by a 
multiple 𝑘𝑒 = 0.75 at wall-corners to take into account the stress concentration. However, 
MC2010 does not clearly state how to determine the shear stress demand from the ap-
plied load. It is concerning that current design codes do not provide clear guidance for 
this scenario which frequently arises in mid- to high-rise residential buildings built in 
non-seismic regions where flat slabs were supported on a large central core wall. This is, 
perhaps unsurprising because very few laboratory tests have been carried out on wall-
slab connections making it difficult to propose any substantial guidance.  
Most of the experimental tests conducted in the past focused on slabs supported on 
various column shapes and sizes (Oliveira et al., 2004; Teng et al., 2004; Sagaseta et al., 
2014; Einpaul, 2016; Teng et al., 2018) but almost none with wall support. Only very 
few tests were found for wall-slab coupling system that were subjected to lateral loading. 
One of them was reported by Schwaighofer and Collins (1977). In this study, a 1/3 
scaled-down model of reinforced concrete wall-slab coupling system was subjected to 
monotonic increasing load (lateral). The main objectives of the study were to identify 
how much the stiffness of the structural system decreases as the lateral load increases 
and to estimate the ultimate load when punching failure around the wall-corner occurs. 
It was found from this test that, at the proximity of failure, a sudden punching crack 
occurs around the wall-slab junction and the load dropped abruptly by around 25% from 
its peak value. Beyond this point, the load required to increase the wall displacement 
further remained essentially constant (plateau) while the shear failure zone spread back 
along the walls. Based on the measured steel strain around the corner of the wall, it was 
observed that the rebar strain concentrates only at a relatively narrow region close to 
the wall-slab junction and diminished at around one corridor width (wall opening) to 
the transverse direction on each side of the wall. Based on the observed crack patterns 
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at failure, this study proposed a 𝑈 -shaped critical section located at 𝑑/2 away from the 
face of the shear wall where 𝑑 is the slab flexural effective depth. The three faces of the 
𝑈 -section are assumed to have the same length equals to (𝑡 + 𝑑) where 𝑡 is the wall 
thickness (see Fig. 5-27(c)). It was assumed that the shear stress around this specified 
control perimeter is uniformly distributed. 
In terms of analytical or numerical study, the situation is not much better with only 
very few studies investigating the behaviour of wall-slab connection available. One of 
them was from Coull and Chee (1983). This study presented a comprehensive elastic 
analysis of the induced bending moments and shear forces in a slab coupling a pair of 
plane shear walls. Contour diagrams and design curves showing the variation of critical 
bending moment factors were presented to enable a rapid evaluation of stress concentra-
tion around the corner of wall-slab junction induced by coupling actions. From the nu-
merical results, it was shown that concentration of forces typically occurs at region close 
to wall-slab junction but diminished rapidly in both longitudinal and transverse direc-
tions, as found by Schwaighofer and Collins (1977). The significant coupling actions, 
indicated by larger bending moments and shear stresses, were only confined to the cor-
ridor area whereas the rest of the slab remains practically unstressed. It was also demon-
strated that the largest proportion of shear forces transferred between wall and the slab 
only occurs over a short length close to the wall-corner. The critical section to conduct 
shear stress check was proposed by Coull and Chee (1983) as a 𝑈 -shaped section located 
at 𝑈  distance from the wall face, where the value of 𝑈  shall be determined based on 
chosen design code (see Fig. 5-27(d)). The corner shape of the control perimeter could 
be taken as either square or rounded with the latter provides a more realistic approxi-
mation of uniform shear distribution. Another numerical study is recently reported by 
Milligan and Polak (2019) where slabs supported on long internal wall based on a virtual 
prototype building were simulated using 3-D solid elements in ABAQUS. The slab-wall 
model was developed based on a hypothetical building with typical column to column 
distance of 6750 mm and internal wall length of 14000 mm. The simulated 3-D model 
was cut along the contraflexure line at a distance of around 2000 mm from the wall 
centreline to represent typical isolated slabs tested in laboratory. Based on the plot of 
maximum principal tensile strain and crack patterns at ultimate load, it was found that 
a distinct punching failure occurred locally around the corner of the wall. Various loading 
arrangements were evaluated: (1) equal plate loads; (2) high short side load; (3) unequal 
load plates; (4) uniformly distributed load. It was found that the loading arrangement 
did not only affect the stiffness (slope) of the load-deflection response but also the 
predicted failure load. For example, as the load applied only around the shorter side of 
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the wall (arrangement 2), both stiffness and failure load were greatly reduced compared 
to model with equal plate loads (arrangement 1) since the former had higher shear stress 
concentration around the end of the wall. Further investigation into the stress 
distribution showed that the peak stress occurs around a relatively short region close to 
the corner part and diminished gradually till reaching a constant/uniform stress at 
farther regions. 
 

 
Figure 5-27. Control perimeter for checking punching shear around the end or 

corner of walls: (a) MC2010 for wall-end and (b) for wall-corner; (c) 
Schwaighofer and Collins (1977); (d) Coull and Chee (1983). 
Image reproduced with permission of the rights holder, ACI (5‐27c); ASCE (5‐27d) 
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From all these previous studies and recent investigation of slabs supported on elongated 
column using 3-D solid elements presented in Section 5.2, two main points are found: 
(1) similarly like in elongated column scenario, it is reasonable to assume that punching 
of wall-end or wall-corner also occurs locally (shear stress diminishes rapidly outside this 
over-stressed region); (2) The control section to perform punching check can be reason-
ably assumed as a 𝑈 -shaped for end of wall like in elongated column and 𝐿-shaped for 
corner of wall and it only extends to a certain effective length from the corner.  
In order to study the variation of shear stress around the wall-corner, a detailed case 
study based on LFEA was conducted here. Details of the hypothetical building used in 
this study is firstly described in Section 5.5.2. A sensitivity study was then performed 
using the hypothetical building and the results are presented in Section 5.5.3. The main 
objective of the sensitivity study was to investigate how the variation of shear forces 
around the wall-corner is affected by the chosen modelling parameters (e.g. mesh size, 
out-of-plane moment restraint and slab stiffness modifiers). Shear force per unit length 
was checked at two different control perimeter positions: 0.5𝑑 and 2𝑑. In terms of esti-
mating the corner (punching) resistance, several methods are compared in Section 5.5.4, 
including: EC2 (2004), MC2010 LoA I and III, and new CSCT closed-form design ex-
pression proposed by Muttoni et al. (2018). The accuracy of these approaches is validated 
against the prediction of the extended joint model (JSPM) and 3-D solid analysis using 
ATENA. All presented analyses requiring LFEA in Section 5.5.3 and 5.5.4 are referred 
as the “refined design method”. Then, in Section 5.5.5, the “simplified design method” 
to provide a quick estimate of shear stress demand is presented. This simplified method 
is deemed to be most suitable for preliminary design stage. Finally, a design example is 
presented in Section 5.5.6 where both refined and simplified methods are applied and 
the results are compared. 

5.5.2. Hypothetical building to study wall-slab behaviour 

The hypothetical building consists of flat slab system supported on a central core wall 
and perimeter frames. The building has a floor plan of 24.5 m x 24.5 m with five equally 
spaced 500 mm square columns placed arounds its perimeter (6 m spacing of column to 
column centreline) as shown for a quarter of the floor in Fig. 5-28(a). The floor-to-floor 
height is designed as 3.25 m (see Fig. 5-28(b)). The central core wall is idealised as a 
500 mm thick tube with outside dimensions of 8 m square on plan (with no opening). 
The slab is 250 mm thick (with effective depth of 200 mm) and spans 8 m between the 
outside face of the wall and the centroid of the perimeter column (see Fig. 5-28(a)). 
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Concrete class for the wall and column is C50/60 whereas for the slab is C30/37, accord-
ing to EC2 (2004) definition. Superimposed dead load (SIDL) and live loads (LL) are 
1.5 kN/m2 and 3 kN/m2 respectively while the external cladding load is 1 kN/m2. Con-
crete self-weight was calculated using a density of 25 kN/m3. Design ultimate load that 
was considered consistently for all analyses presented hereafter is 1.35 (SW + SIDL) + 
1.5 LL where SW is the self-weight of the slab. 
One quarter of the floor plate and supporting vertical structure was modelled in ETABS 
ver. 17 (CSI, student version). Columns were modelled with line elements. Rigid links 
were used to connect the column node to the nodes of surrounding slab elements at 
column face (see Fig. 5-28(b)). Both the core wall and slab were modelled as shell-thick 
element which considers the out-of-plane transverse deformation according to Reissner-
Mindlin plate theory. Both top- and bottom-ends of the wall were restrained in the out-
of-plane direction (translation and rotation) but only the bottom-end was vertically re-
strained to simulate more realistic vertical load path. Top and bottom columns were 
rigidly restrained in all 6-DOFs (see Fig. 5-28(b)).
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Figure 5-28. (a) Plan view and (b) 3-D view of the hypothetical building to study wall-slab behaviour.

(a) (b) 
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5.5.3. Sensitivity study 

The main objective of this sensitivity study is to investigate how the variation of shear 
force per unit length around the wall-corner is affected by various modelling assumptions. 
For the control perimeter located at 0.5𝑑 from the wall face (MC2010 check), the inves-
tigated region for the extraction of shear force per unit length is focused along the 𝑏0,3𝑑 
(effective control perimeter) according to MC2010 as shown in Fig. 5-27(b). To be con-
sistent with the shear-field method proposed by Vaz Rodrigues et al. (2008), the shear 
force per unit length that is considered is the one that is perpendicular to the control 
perimeter. For the straight segments of the control perimeter, either 𝑣𝑥𝑧 or 𝑣𝑦𝑧 is con-

sidered (see Fig. 5-29). For the rounded segment (diagonal) of the control perimeter, 
the perpendicular shear force per unit length was determined as the resultant of both 

force components (√𝑣𝑥𝑧2 + 𝑣𝑦𝑧2 ).  

In the following sections, two different terms of shear forces/length will be frequently 
used, which are: average shear forces/length (𝑣𝑤𝑎𝑙𝑙−𝑎𝑣𝑒) and peak shear forces/length 
(𝑣𝑤𝑎𝑙𝑙−𝑝𝑒𝑎𝑘). The average shear forces/length is determined as the average of perpendic-

ular shear forces resisted by both straight and rounded segments of the control perimeter 
(along the whole 𝑏0,3𝑑). The peak shear forces/length was determined as the average of 

√𝑣𝑥𝑧2 + 𝑣𝑦𝑧2  of several elements along the rounded segment (diagonal region only). For 

example, in Fig. 5-29, the peak forces/length is determined as the average of 

√𝑣𝑥𝑧2 + 𝑣𝑦𝑧2  of elements numbered 1 - 9. This was necessary to smoothen the peak value 

(i.e. to avoid of having a very high value in a single element). For the extraction of shear 
forces/length at the control perimeter located 2𝑑 away from the wall face (EC2 check), 

only single value is considered which is the maximum value of √𝑣𝑥𝑧2 + 𝑣𝑦𝑧2  of any ele-

ments located around the wall-corner. Several modelling parameters are evaluated in the 
next sub-sections, including: 1) mesh size; 2) out-of-plane moment restraint; 3) slab 
stiffness modifier. 
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Figure 5-29. Illustration of typical extraction regions of shear forces/length along 

the MC2010 effective control perimeter (0.5𝒅 from the wall face). 
 

5.5.3.1. Sensitivity to mesh size 

To study the effect of mesh refinement, four different mesh sizes (square shape) were 
investigated: 25; 50; 100 and 200 mm. These mesh sizes were implemented in a slab 
region within 1 m width from the wall face whereas a constant 200 mm x 200 mm 
uniform mesh size was used elsewhere to reduce the required computation time. Mesh 
size for the wall was made the same as the chosen slab mesh size within the 1 m region. 
Both peak and average shear force per unit length from 0.5𝑑 control perimeter were 
extracted using the method described in Section 5.5.3. Fig. 5-30(a) shows the peak and 
average forces for each mesh size for the MC2010 control perimeter. In addition, design 
shear force per unit length according to MC2010 calculated as ( 1𝑘𝑒 ∗ 𝑣𝑤𝑎𝑙𝑙−𝑎𝑣𝑒) was also 

plotted. For the EC2 (2004) control perimeter, only the peak shear force per unit length 
at 2𝑑 distance was extracted and shown in Fig. 5-30(b).  
Observing Fig. 5-30(a) and (b), it could be seen that the magnitude of shear force per 
unit length is sensitively affected by the chosen mesh size around the wall face, with 
finer mesh tends to produce higher shear forces. This trend is more pronounce for 
MC2010 control perimeter at 0.5𝑑 than the EC2 (2004) control perimeter at 2𝑑. It is 
also observed that for both control perimeters at 0.5𝑑 and 2.0𝑑, the mesh size of 200 mm 
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produced unsafe (too low) design shear force. This indicates the importance of mesh 
refinement studies in design. For further analyses, it was decided to consistently use the 
mesh size of 50 mm.  
 

  
Figure 5-30. Influence of mesh size to shear force per unit length at: (a) 0.5𝒅 

(MC2010) and (b) 2𝒅 (EC2, 2004) from the wall face. 

(a) 

(b) 
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In addition, observing the MC2010 design shear forces/length ( 1𝑘𝑒 ∗ 𝑣𝑤𝑎𝑙𝑙−𝑎𝑣𝑒) in Fig. 5-

30(a), it could be seen that it predicts the peak force accurately. This result proves that 
the 𝑘𝑒 value equal to 0.75 as proposed by MC2010 for wall-corner is justifiable and con-
servative in design situation since it approximates the peak force. However, one limita-
tion is that this design shear forces/length could only be determined as average force per 
unit length is known which also requires LFEA. In Section 5.5.5, a simplified method 
that can be performed without LFEA to estimate this peak shear force is presented. 

5.5.3.2. Sensitivity to out-of-plane moment restraint 

In reality, the out-of-plane moment restraint is dictated by the wall out-of-plane bending 
stiffness hence it was decided to vary the wall thickness from 500 mm (reference thick-
ness) to 300; 400; 600 and 700 mm. Only shear forces/length around the MC2010 control 
perimeter was considered in this section. Uniform mesh size of 50 mm was used within 
the 1 m width from the wall face. Fig. 5-31 shows the influence of wall thickness to the 
average and peak shear forces/length around the MC2010 effective control perimeter. 
The design shear forces/length of MC2010 ( 1𝑘𝑒 ∗ 𝑣𝑤𝑎𝑙𝑙−𝑎𝑣𝑒) is also plotted in the same 

graph. 
 

 
Figure 5-31. Influence of out-of-plane moment restraint to shear forces/length at 

MC2010 control perimeter. 
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Fig. 5-31 shows that when the thickness of the wall increases, the shear forces per unit 
length tends to decrease. This suggests that higher out-of-plane moment restraint pro-
duces more uniform force distribution along the wall face. However, for the considered 
range of practical wall thicknesses (300 - 700 mm), the shear force only varies around 
10% at maximum. It can also be seen that, once again, the MC2010 design shear 
forces/length accurately approximates the peak force from LFEA. 

5.5.3.3. Sensitivity to slab stiffness modifiers 

According to previous studies (Vaz Rodrigues et al., (2008); Sagaseta et al., (2011) and 
Sagaseta et al., (2014)) based on elastic shell element, it was proposed to reduce the 
torsional stiffness of the slab by a stiffness modifier of 0.125. In this section, the influence 
of reducing the slab torsional stiffness to shear forces/length distribution is evaluated. 
Regarding the shell element formulation in ETABS, the torsional stiffness is mostly 
related to the stiffness of 𝑚12 (plate twisting) and 𝑓12 (in-plane membrane shear) com-
ponents. Thus, the stiffness reduction was individually applied to either 𝑚12 or 𝑓12 in 
the first and second models respectively and in the third model, both 𝑚12 and 𝑓12 were 
reduced simultaneously. For these presented analysis, only MC2010 control perimeter 
was considered. Uniform mesh size of 50 mm was used within the 1 m width from the 
wall face and wall thickness was assumed as 500 mm (reference). Fig. 5-32(a) shows the 
peak and average shear forces along the effective control perimeter for base model (no 
stiffness reduction) and the other three models with reduced torsional stiffness. It can 
be seen from Fig. 5-32(a) that reducing 𝑓12 did not cause any change to either peak or 
average force per unit length while reducing 𝑚12 component only increases the average 
value by 2% and peak value by 4% from the base model. Thus, it was concluded that 
reducing slab torsional stiffness produce almost no change to design shear force around 
the wall-corner. 
However, it is important to mention here that according to the results shown earlier in 
Section 5.4.2 for elongated column, it was found that reducing the slab out-of-plane 
shear stiffness components (𝑣𝑥𝑧 and 𝑣𝑦𝑧) made significant changes to the distribution of 

shear forces. In order to evaluate the consistency of this previous finding, similar sensi-
tivity study as for elongated column was performed for wall-slab model studied in this 
section. Four out-of-plane slab stiffness modifiers were considered: 0.8; 0.6; 0.4 and 0.2. 
Fig. 5-32(b) shows the influence of reducing the out-of-plane shear stiffness to average 
and peak force per unit length along the MC2010 effective control perimeter. The design 



271 
 

shear forces/length of MC2010 calculated as ( 1𝑘𝑒 ∗ 𝑣𝑤𝑎𝑙𝑙−𝑎𝑣𝑒) is also added in Fig. 5-32(a) 

and (b). 
 

 
Figure 5-32. Influence of slab (a) torsional and (b) out-of-plane stiffness modifiers 

to shear forces/length at MC2010 control perimeter. 
 
Fig. 5-32(b) shows that both peak and average shear force per unit length gradually 
decreases as the slab shear stiffness decreases. This pattern was also observed in the 

(a) 

(b) 
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earlier analysis of an elongated column (see Fig. 5.22 and 5.23). This suggests that 
reducing the slab out-of-plane shear stiffness produces more uniform distribution of shear 
forces/length along the wall face and hence reducing the concentration of forces around 
the corner region (𝑏0,3𝑑). Unlike the elongated column scenario where the stiffness mod-

ifier could be justified by matching the one-way contribution from ATENA 3-D solid 
analysis of real slab tests, it cannot be done for wall-slab scenario due to unavailability 
of test data. Nevertheless, the results shown in Fig. 5-32(b) suggests that, plausibly, 
due to cracking and forces redistribution that happens in reality (represented by smaller 
shear stiffness), the shear forces around the corner region would not be as critical as 
assumed in the design stage using elastic analysis with no stiffness modifier. Until future 
test on wall-slab connection is available, it is suggested to use the unreduced stiffness 
when determining the design shear forces/length to provide most conservative estimate. 
Observing Fig. 5-32(a) and (b), it could be seen that ( 1𝑘𝑒 ∗ 𝑣𝑤𝑎𝑙𝑙−𝑎𝑣𝑒) also correctly ap-

proximates the peak shear force. 

5.5.4. Calculation of punching resistance of slabs supported on wall-corner 

In this section, several approaches to estimate punching resistance on wall-corner are 
evaluated: 1) LoA I MC2010; 2) LoA III MC2010; 3) CSCT closed-form design expression 
with default input parameters (Muttoni et al., 2018); 4) like 3) but refined using LFEA; 
5) EC2 (2004). Approaches number 1, 3 and 5 can be performed with a simple hand 
calculation whereas approaches 2 and 4 requires LFEA. The procedure to calculate 
punching capacity using each approach is presented in the following. 

5.5.4.1. LoA I MC2010 

According to LoA I MC2010, slab rotation at failure is determined as: 
 

 𝜓𝐿𝑜𝐴 𝐼 = 1.5 𝑟𝑠𝑑  𝑓𝑦𝑑𝐸𝑠  (127) 

 

where 𝑟𝑠 denotes the position where the radial bending moment is zero with respect to 
the support axis, 𝑑 is the average slab effective depth, 𝑓𝑦𝑑 is the design yield strength of 

flexural reinforcement bars and 𝐸𝑠 is Young’s modulus of reinforcement bars. According 
to MC2010, the position of zero radial bending moment for regular flat slab buildings 
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can be typically assumed as 0.22𝐿 with 𝐿 is the slab span length, hence for this consid-
ered hypothetical building, 𝑟𝑠  = 0.22*(8000 mm) = 1760 mm, 𝑓𝑦𝑑  is assumed as 

500/1.15=434.78 MPa and 𝐸𝑠 = 200000 MPa, hence: 
 

 𝜓𝐿𝑜𝐴 𝐼 = 1.5 1760200  434.78200000 = 0.029 𝑟𝑎𝑑𝑖𝑎𝑛𝑠 (128) 

 
The design shear resistance attributed to the concrete is calculated as: 
 

 𝑉𝑅𝑑,𝑐 = 𝑘𝜓  √𝑓𝑐𝑘𝛾𝑐  𝑏0 𝑑𝑣 (129) 

 
with 

 

 𝑘𝜓 = 11.5 + 0.9𝑘𝑑𝑔𝜓𝑑 ≤ 0.6 (130) 

 

 𝑘𝑑𝑔 = 3216 + 𝑑𝑔 ≥ 0.75 (131) 

 
where 𝑓𝑐𝑘 is the concrete characteristic compressive strength (30 MPa for the slab), 𝛾𝑐 
is the partial material safety factor for concrete taken as 1.5, 𝑏0 is the control perimeter 
length at 0.5𝑑 from the wall face taken as 𝑏0,3𝑑 for scenario with large supported area, 

and 𝑑𝑣 is the shear-resisting effective depth that in this study is taken as 𝑑, and 𝑑𝑔 is 
the maximum aggregate size that is assumed as 16 mm. Hence, the punching shear 
resistance can be determined as: 
 

 𝑘𝑑𝑔 = 3216 + 16 = 1 (132) 

 

 𝑘𝜓 = 11.5 + 0.9(1)(0.029)(200) = 0.15 (133) 

 

 𝑉𝑅𝑑,𝑐(𝐼) = (0.15) √301.5  (2 ∗ 1.5 ∗ (200) + 0.25𝜋(200))(200) = 82.952 𝑘𝑁  (134) 

 
It must be noted here that the punching resistance estimated using LoA I should serve 
as a lower-bound since the derivation assumes that punching failure takes place as the 
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flexural reinforcement bars along the whole support strip yields. This assumption ne-
glects any possible contribution of surplus reinforcement that may be provided along the 
support strip. 

5.5.4.2. LoA III MC2010 

According to LoA III of MC2010, slab rotation can be determined as a function of applied 
load as: 
 

 𝜓𝐿𝑜𝐴 𝐼𝐼𝐼 = 1.2 𝑟𝑠𝑑  𝑓𝑦𝑑𝐸𝑠  (𝑚𝐸𝑑𝑚𝑅𝑑)
1.5

 (135) 

 
where 𝑚𝐸𝑑 is the average moment per unit length for calculation of the flexural rein-
forcement in the support strip (𝑏𝑠) where the width of the support strip is calculated as: 
 
 𝑏𝑠 = 1.5√𝑟𝑠,𝑥 . 𝑟𝑠,𝑦 (136) 

 𝑚𝑅𝑑 is the design average flexural strength per unit length in the support strip. The 
value of 𝑟𝑠 and 𝑚𝐸𝑑 in Eq. 135 are calculated using a linear elastic (uncracked) model. 
For this purpose, LFEA was performed with the reference hypothetical building with 50 
mm mesh size, 500 mm wall thickness and no slab stiffness modifier. From this analysis, 
firstly the length of 𝑟𝑠 was determined as 1600 mm and hence 𝑏𝑠 = 1.5(1600) = 2400 
mm. Then, averaging of the support bending moment (including the Wood Armer mo-
ment) was performed in the first row of shell element just at the wall face within the 
width of 𝑏𝑠 (0.5𝑏𝑠 to each side from the corner of wall face). The ratio between the 
applied corner load and design moment required in Eq. 135 is calculated as: 
 

 
𝑉𝑐𝑜𝑟𝑚𝐸𝑑 = 2.567 (137) 

 
where 𝑉𝑐𝑜𝑟  is the load transferred to the corner of the wall at ULS state (1.35 
(SW+SIDL)+1.5 LL) that was calculated as: 
 

 𝑉𝑐𝑜𝑟 = 𝑏0,3𝑑 ∗ 𝑣𝑤𝑎𝑙𝑙−𝑎𝑣𝑒 (138) 
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where 𝑣𝑤𝑎𝑙𝑙−𝑎𝑣𝑒 is the average perpendicular shear forces/length along the effective con-
trol perimeter (𝑏0,3𝑑) as determined earlier in Section 5.5.3. 

In this wall-slab scenario, LFEA was also required in order to estimate the required 
reinforcement flexural reinforcement ratio hence 𝑚𝑅𝑑. For LoA III, only top reinforce-
ment is required but for the extended JSPM and ATENA 3-D solid model, information 
on both top and bottom reinforcement ratios are required. To provide an upper- and 
lower-bound range of practical reinforcement ratios, two models were simulated: one is 
the same as the reference model with wall element idealised as a thick-shell and the 
second model assumes that the wall is idealised as membrane element with no out-of-
plane moment restraint (i.e. simply supported). Based on these two models, the top 
reinforcement ratio was estimated as 0.886% and 1.366% and bottom reinforcement ratio 
was 0.352% and 0.436% for shell-thick and membrane wall model, respectively.  
To estimate the punching resistance of wall-corner using LoA III, 𝑚𝐸𝑑 is iteratively in-
creased in Eq. 135 until the resistance curve calculated using Eq. 129-131 is intersected. 
In this study, “goal-seek” analysis was performed in a spreadsheet. The resulting punch-
ing capacities are shown below for high and low reinforcement ratios: 
 
 𝑉𝑅𝑑,𝑐(𝐼𝐼𝐼𝜌𝑙) = 188.29 𝑘𝑁  (139) 

 
 𝑉𝑅𝑑,𝑐(𝐼𝐼𝐼𝜌ℎ) = 218.81 𝑘𝑁  (140) 

 
The punching resistance acquired using LoA III for this wall-slab scenario was much 
higher than given by LoA I.   

5.5.4.3. CSCT closed-form design expression using default parameters (Muttoni et 
al., 2018) 

According to the CSCT closed-form design expression, the punching resistance in design 
format is determined as: 
 

 𝑉𝑅𝑑,𝑐 = 𝑘𝑏𝛾𝑐 (100𝜌. 𝑓𝑐𝑘. 𝑑𝑑𝑔𝑟𝑠 )13 . 𝑏0. 𝑑 ≤ 0.55𝛾𝑐  𝑏0𝑑√𝑓𝑐𝑘 (141) 

 
where the coefficient  can be computed as follows: 
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 𝑘𝑏 = √8𝑎 𝑑𝑏0  ≥ 1.0 (142) 

 
where 𝜌 is the flexural reinforcement ratio (top), 𝑑𝑑𝑔 is the reference value of the rough-

ness of the critical shear crack calculated as: 
 

 𝑑𝑑𝑔 = 𝑑𝑔0 + 𝑑𝑔. min ((60𝑓𝑐)
2 , 1) ≤ 40 𝑚𝑚 (143) 

 
where 𝑓𝑐 is the specified concrete compressive strength (cylinder) and in this study is 
taken as 𝑓𝑐𝑘 hence 𝑑𝑑𝑔 = 32 mm, and 𝑎 is the ratio between acting shear force and av-

erage moment in the support strip (similarly like 𝑉𝑐𝑜𝑟𝑚𝐸𝑑 used earlier in LoA III MC2010). 

Without LFEA, the recommended value of 𝑎 is 2.0 for corner of walls and 𝑟𝑠 is 8𝑑 as 
given in the new draft of EC2 (D3, 2018). Thus, the punching resistance according to 
the CSCT closed-form design expression is determined as: 
 

 𝑘𝑏 = √8(2) (200)2 ∗ 1.5 ∗ (200) + 0.25𝜋(200) = 2.056 (144) 

 

 𝑉𝑅𝑑,𝑐 = (2.056)(1.5) (100(0.886100 𝑜𝑟 1.366100 ) . 30. 32(8 ∗ 200))
13 . (757.08). (200) (145) 

 
 𝑉𝑅𝑑,𝑐 (𝐶𝐹𝑑𝜌𝑙) = 168.10 𝑘𝑁  (146) 

 
 𝑉𝑅𝑑,𝑐 (𝐶𝐹𝑑𝜌ℎ) = 194.24 𝑘𝑁  (147) 

 

5.5.4.4. CSCT closed-form design expression refined using LFEA (Muttoni et al., 
2018) 

Rather than taking the default value for 𝑎 and 𝑟𝑠, the closed-form design expression 
allows more refined procedure to acquire them, for example by using LFEA. Since LFEA 
has been previously performed for LoA III MC2010, the value of 𝑎 and 𝑟𝑠 can be directly 
taken from previous analysis as: 
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 𝑎 = 𝑉𝑐𝑜𝑟𝑚𝐸𝑑 = 2.567 (≥ 2.0 𝑑𝑒𝑓𝑎𝑢𝑙𝑡) (148) 

 
 𝑟𝑠 = 1600 𝑚𝑚 (= 8𝑑 𝑑𝑒𝑓𝑎𝑢𝑙𝑡) (149) 

 
It can be seen that the default estimate of 8𝑑 for 𝑟𝑠 is exactly the same as the one from 
LFEA which suggests that the default parameter works well for regular flat slab layout. 
The value of 𝑎 increases from the default value of 2.0 to 2.567 which resulting in higher 
𝑉𝑅𝑑,𝑐. Using these two parameters from LFEA, the punching resistance according to the 

CSCT closed-form design expression could be calculated as: 
 

 𝑘𝑏 = √8(2.567) (200)2 ∗ 1.5 ∗ (200) + 0.25𝜋(200) = 2.330 (150) 

 

 𝑉𝑅𝑑,𝑐 = (2.330)(1.5) (100(0.886100 𝑜𝑟 1.366100 ) . 30. 36(1600))
13 . (757.08). (200) (151) 

 
 𝑉𝑅𝑑,𝑐 (𝐶𝐹𝑟𝜌𝑙) = 190.46 𝑘𝑁  (152) 

 
 𝑉𝑅𝑑,𝑐 (𝐶𝐹𝑟𝜌ℎ) = 220.07 𝑘𝑁  (153) 

 
It can be seen that the punching resistances estimated with the new closed-form design 
expression, both for low and high reinforcement ratios, with LFEA parameters are very  
similar to those estimated using LoA III of MC2010.  

5.5.4.5. EC2 (2004) 

According to EC2 (2004), punching resistance can be determined as: 
 

 
𝑉𝑅𝑑,𝑐𝑏 = 𝐶𝑅𝑑,𝑐𝑘(100𝜌. 𝑓𝑐𝑘)13. 𝑑 (154) 

 
with 

 

 𝑘 = 1 + √200𝑑 ≤ 2.0 𝑤𝑖𝑡ℎ 𝑑 𝑖𝑛 𝑚𝑚 (155) 
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where 𝐶𝑅𝑑,𝑐 can be taken as 0.18𝛾𝑐 , 𝑘 represents the size effect factor. Since EC2 (2004) 

does not have any specific definition of the effective control perimeter length for large 
supported area, the resistance in Eq. 154 can only be expressed in terms of punching 
resistance per meter length. The punching resistance/length according to EC2 (2004) 
can be calculated as: 
 

 𝑉𝑅𝑑,𝑐−𝐸𝐶2𝑏 = 0.181.5 (1 + √200200) (100 (0.886100 𝑜𝑟 1.366100 ) . 30)13 . (200) (156) 

 

 
𝑉𝑅𝑑,𝑐(𝐸𝐶2𝜌𝑙)𝑏 = 143.24 𝑘𝑁𝑚  (157) 

 

 
𝑉𝑅𝑑,𝑐(𝐸𝐶2𝜌ℎ)𝑏 = 165.51 𝑘𝑁𝑚  (158) 

 
The comparison of the predictions acquired using these five approaches will be presented 
in Section 5.5.6. It must be noted here that the EC2 (2004) shear resistance seems 
relatively smaller than other approaches and this is because the EC2 (2004) control 
perimeter is at 2.0𝑑 from the column face hence the shear demand is also smaller.  

5.5.5. Derivation of a simplified method to estimate peak shear forces/length 

Section 5.5.3 shows that the value of 𝑘𝑒 provided by MC2010 for wall-corner accurately 
estimates the peak shear forces/length extracted from LFEA. However, this calculation 
requires the average shear forces/length to be known in advance, which also requires 
LFEA. To anticipate this, a simplified method was developed based on the results of 
systematic LFEA studies. The final product of this proposed method can be performed 
easily using hand calculation to estimate the design (peak) shear forces/length by know-
ing some geometries of the building. 
This method was developed based on a simplified LFEA model where the wall was 
substituted by a line spring element with no out-of-plane bending stiffness. This was to 
ensure that the condition represents the most unfavourable situation where thin wall is 
used in the building (i.e. minimal moment restraint). Based on the extraction of vertical 
reactions along the spring, a distinct pattern was observed where a short part of the wall 
close to the corner has very huge compressive forces followed by region with downward 
reaction (uplift) (see Fig. 5-33). For future reference, this particular length of the wall 
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is referred as the “disturbed length” (DLw) whereas the remainder is referred as the 
“undisturbed length” (ULw).  
 
 

 
Figure 5-33. Variation of vertical spring reaction indicating the disturbed length 

(DLw) close to the wall-corner. 
 
Additional analyses were done to investigate about this specific reaction pattern further 
by changing the mesh size of the slab and the wall thickness. It was found that the 
summation of vertical reactions along the DLw remains always the same, regardless the 
mesh size and wall thickness. It was consistently found that, when the total reaction of 
this DLw region is normalised by the length of the effective control perimeter (𝑏0,3𝑑), the 

resulting forces/length closely approximates the peak shear forces/length from the direct 
extraction of shell (slab) forces reported earlier in Section 5.5.3. To illustrate this, the 
shear forces/length calculated from the spring reaction along DLw is compared with the 
slab shell stress in Fig. 5-34(a) for various mesh sizes and Fig. 5-34(b) for various wall 
thicknesses. It can be clearly seen from Fig. 5-34(a) and (b) that the simplified spring 
model closely approximates the peak shear forces/length from direct extraction of shell 
forces and the design shear forces of MC2010 ( 1𝑘𝑒 ∗ 𝑣𝑤𝑎𝑙𝑙−𝑎𝑣𝑒). This suggests that the 

simplified method can be used in preliminary design stage to estimate the peak shear 
forces/length.  
To enable designers to conveniently use this method, two parameters must be firstly 
derived: (1) proportion of the total wall load resisted by the DLw region; (2) the disturbed 
length (DLw) to estimate the length of ULw to find the corresponding one-way shear force 
per unit length. In most cases, the first parameter is more crucial than the second because 
one-way shear failure does not usually govern the design as will be shown later in the 
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design example (Section 5.5.6). From initial investigation, it was found that both pa-
rameters are mainly affected by: (a) wall length and (b) wall-slab span length while also 
slightly affected by the slab thickness. A comprehensive parametric study was performed 
to investigate the direct influence of (a) wall length and (b) wall-slab span length on the 
proportion of corner load and length of DLw. To allow faster numerical simulation, it 
was decided to simplify the FE model further by only modelling the floor slab from the 
wall face to the mid span where sagging moment is maximum. Rotational restraint was 
then applied along this edges to mimic the behaviour of the full floor model (see Fig. 5-
36). 
The effect of varying wall-slab span and wall length is illustrated in Fig. 5-35(a) and 
(b) which show the proportion of the total reaction resisted by DLw and the length of 
DLw, respectively. Fig. 5-35(a) shows that the proportion (%) of total reaction carried 
by DLw region increases with slab span but decreases with increasing wall length. For 
example, corner region carries 77-95% of the total reaction in the shortest wall (6 m) 
but only 54-74% in the longest wall (10 m). Fig. 5-35(a) can be used (graphically) to 
determine the proportion of load resisted by DLw by intersecting a vertical line from the 
considered wall-slab span length with the curve of considered wall length (see black line 
in Fig. 5-35(a) for wall-slab span length of 8 meter and wall length of 8 meter). However, 
to provide more exact value, a simple design formula has been derived based on curve 
regression and the final formula relating the proportion of corner load to wall-slab span 
and wall length can be expressed as: 
 

 𝐶𝑝 = (𝐶𝐴)𝑊𝑠 + (𝐶𝐵)100  (159) 

 
 𝐶𝐴 = −0.084(𝑊𝐿)2 + 1.5002(𝑊𝐿) − 1.5912 (160) 

 
 𝐶𝐵 = 767.68(𝑊𝐿)−1.50 (161) 

 
where 𝐶𝑝 is the proportion of load (in decimal) resisted by the DLw region, 𝑊𝑠 is the 

wall-slab span length (in m) measured from the wall face to the centroid of perimeter 
column, 𝑊𝐿 is the wall length (in m) measured from the outer to outer wall face, 𝐶𝐴 
and 𝐶𝐵 are regression coefficients derived as a function of wall length. It is important 
to mention here that when slab thickness changes, the proportion of 𝐶𝑝 may slightly 

change and it is recommended to use the formulation provided in Eq. 159 - 161 only 
for slab thickness  500 mm. Besides, when different wall-slab span or wall length is 
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used in x- and y-direction, it is recommended to take the direction which gives the largest 
𝐶𝑝. 
 

 
Figure 5-34. Comparison of shear forces/length acquired using the simplified 

method and direct extraction of shell (slab) forces for various: (a) 
mesh sizes; (b) wall thicknesses. 

 Note: the result of simplified method was acquired based on a single model with 50 mm slab mesh 
size and spring vertical stiffness equals 500 mm wall thickness. 

(a) 

(b) 
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Figure 5-35. Influence of wall length and wall-slab span length to: (a) proportion 

of load transferred to DLw; (b) disturbed length (DLw) for quarter of 
wall. 

 

(a) 

(b) 
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From Fig. 5-35(b), it can be seen that DLw increases as the wall-slab span length in-
creases but almost independent to wall length. A linear regression was done to express 
the length of DLw (for quarter of wall) to wall-slab span length as: 
 
 𝐷𝐿𝑤 (𝑖𝑛 𝑚) =  0.27𝑊𝑠 + 1 (162) 

 

Alternatively, for simplicity and conservative reason, DLw can be taken directly as 4 
metres. This upper-bound of DLw value would produce the shortest ULw hence largest 
one-way shear forces/length outside the disturbed region. To illustrate the use of this 
proposed method, design example is presented in Section 5.5.6. The prediction of the 
simplified method will be compared with the prediction of refined method described 
earlier in Section 5.5.3 (demand component) and Section 5.5.4 (resistance component). 
Prediction of both methods are then validated against the prediction of extended JSPM 
and ATENA 3-D solid analysis. 

5.5.6. Design example 

To illustrate the implementation of both refined and simplified design methods, a design 
example is presented based on the hypothetical building presented in Section 5.5.2. To 
provide benchmarks for the validation purpose, the extended JSPM model and ATENA 
were used to simulate the same hypothetical wall-slab model. 

5.5.6.1.  JSPM model for wall-slab scenario (1st benchmark) 

A quarter of the floor plan was modelled in ADAPTIC. The model used in ADAPTIC 
was also in a form of the simplified model where the slab is only modelled from the wall 
face till the mid span (maximum deflection). Rotational restraint was applied along the 
slab edge representing the condition at the mid span of a continuous floor system. Uni-
form mesh size of 100 mm was used and vertical loads were applied as uniformly distrib-
uted load (UDL). The wall was modelled using a spring element with vertical, out-of-
plane translational and rotational stiffness (see Fig. 5-36(a)). Two-way joint elements 
were uniformly spaced along the 𝑏0,3𝑑 control perimeter (modelled as square control pe-

rimeter in ADAPTIC). The centre of rotation dictating the pairing system of the two-
way joints was positioned at 1.5  from the end of the wall straight length (see Fig. 5-
36(b)). The monitoring points for measuring slab rotation (3rd node) were distributed 
along the contraflexure line at a distance equals 𝑟𝑠 from the centre of rotation. Wall out-
of-plane rotation was measured from the 4th node. The relative slab-column rotation to 
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calculate punching resistance was acquired by subtracting the absolute slab rotation 
from the 3rd node with the wall out-of-plane rotation from the 4th node. To be consistent 
with the extended JSPM for elongated column proposed earlier, dummy joints were 
installed along the additional 1.5𝑑 gap from the border of 𝑏0,3𝑑. The remainder of the 

control perimeter was modelled with one-way joint with minimum design shear resistance 
calculated using Eq. 164. All material parameters for both concrete and reinforcement 
bars were in design format. Instead of using the CSCT (mean) failure criterion, the 
MC2010 design failure criterion was used to detect the failure of the two-way joint. The 
punching capacity of the extended JSPM was determined manually through post-pro-
cessing by “marking” the level of applied load when the last two-way joint in the 𝑏0,3𝑑 
region fails. Regarding the initial joint stiffness, two different values of 𝑘𝑟𝑒𝑑 were used: 
1 and 0.1. These two values represent two extreme scenarios: 1.0 indicates uncracked 
shear stiffness; 0.1 indicates the lower-bound of cracked shear stiffness. This is necessary 
because different values of 𝑘𝑟𝑒𝑑 would directly affect the proportion of forces resisted by 
one- and two-way joints hence affecting the predicted failure load. For example, when 
initial joint stiffness is not reduced (𝑘𝑟𝑒𝑑=1.0), shear forces concentrates more around 
the corner region hence punching failure around the 𝑏0,3𝑑 region is triggered earlier. 

5.5.6.2. ATENA 3-D solid model for wall-slab scenario (2nd benchmark) 

In addition, the wall-slab model was also simulated using 3-D solid element in ATENA. 
However, to avoid having very large model with excessive number of nodes, it was de-
cided to further simplify the boundary conditions. It was decided to use the same bound-
ary conditions as Milligan and Polak (2019) where the slabs around the wall were cut 
along the contraflexure line. The distance of contraflexure line from the wall face (𝑟𝑠) 
was determined based on LFEA using ETABS. Loading plates were modelled and dis-
tributed uniformly along this line of contraflexure. The length of the modelled slab in 
ATENA was slightly extended from 𝑟𝑠 so that the loading plates were not hanging on 
the edge of the slab. Wall was modelled using two steel plates, one at the top and the 
other one at the bottom surface of the slab. Vertical restraint was applied to the surface 
of both plates. The boundary conditions and mesh configuration of the wall-slab model 
in ATENA is shown in Fig. 5-37(a). Only the wall-slab model with the lower reinforce-
ment ratio is analysed here.  
The failure load from ATENA was determined using the same strain-based criterion as 
in elongated column case. Strain monitoring points were installed at the compression 
face of the slab along the 𝑏0,3𝑑 region. Fig. 5-37(b) and (c) show the crack patterns 



285 
 

(crack width > 0.1 mm) and plot of principal tensile strain at the predicted failure load 
respectively. It can be observed that, at failure, tensile strain developed around a very 
short region of the diagonal segment of the 𝑏0,3𝑑 region. This is in agreement with pre-

vious results on elongated column study which suggests that the failure modes of both 
scenarios are similar where punching is triggered locally around the corner region where 
shear stress highly concentrates. 

5.5.6.3. Design example based on refined method 

In order to perform the refined design method, LFEA should be used to estimate both 
the design shear forces/length and also the punching resistance around the wall-corner. 
According to Section 5.5.3 the average shear forces/length for the reference model (50 
mm mesh size, 500 mm wall thickness and no slab stiffness modifier) is 463 kN/m for 
the MC2010 control perimeter (0.5𝑑) and maximum shear forces/length is 222 kN/m for 
the EC2 (2004) control perimeter (2𝑑).   
 One-way shear check (refined method) 
Although usually not critical, the one-way shear check will be performed in this section 
for the sake of completeness. It is assumed that the one-way shear check was made at 
the same control perimeter distance (0.5𝑑 from the wall face) as for the two-way which 
should provide conservative estimate. From the LFEA, the total vertical wall reaction 
was determined to be 746.62 kN and hence the average one-way shear forces/length was 
determined as: 
 

 𝑣1−𝑤𝑎𝑦(𝑑𝑟𝑒𝑓) = 746.62 − 463(𝑏0,3𝑑)𝑊𝐿 − 2 ∗ 1.5𝑑 = 746.62 − 463(0.757)8 − 2(1.5 ∗ 0.2) = 53.53 𝑘𝑁/𝑚 (163) 

 
The simplest way to perform the one-way shear check is to firstly compare the demand 
shear forces with the minimum one-way shear resistance assuming the yielding of flexural 
bars. According to Cavagnis et al. (2018), minimum one-way shear resistance per unit 
length in design format can be calculated as: 
 

 𝑣1−𝑤𝑎𝑦(𝑑𝑚𝑖𝑛) = 𝑘. 𝑑. √𝑓𝑐𝑘
𝛾𝑐√𝜀𝑦𝑑. 𝑑𝑑𝑑𝑔

= (0.019)(200)(√30)
1.5√ 435200000 . 20032

= 119 𝑘𝑁/𝑚 (164) 
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The minimum one-way shear resistance is much higher than the shear forces demand 
hence it can be concluded that the one-way shear is not critical and no shear reinforce-
ment is required in this region. 
 Two-way shear check (refined method) 
For this refined method, it is assumed that approaches with MC2010 control perimeter 
will be designed based on the average forces/length at 0.5𝑑 whereas EC2 (2004) based 
on the maximum forces/length at 2𝑑. In order to be able to objectively compare EC2 
(2004) and MC2010-based approaches, a new parameter, so-called 𝜆𝑉 , is used. This pa-
rameter represents the ratio of provided punching capacity (resistance) to the shear 
demand. Hence, if 𝜆𝑉   1.0, shear reinforcement must be provided around the wall-
corner region. 
Fig. 5-38 compares the value of 𝜆𝑉  calculated using various approaches presented in 
Section 5.5.4 with the results of the extended JSPM and ATENA 3-D solid results as 
the benchmark. From Fig. 5-38(a) and (b), it can be seen that all approaches predict 
punching to be critical. Consequently, shear reinforcement must be provided around the 
corner of the wall. However, the required shear reinforcement ratio, that should be pro-
portional to 1-𝜆𝑉 , is different for each approach and also different for low or high flexural 
reinforcement ratio. EC2 (2004) provides the highest 𝜆𝑉  which results in the least re-
quired shear reinforcement ratio. LoA III and closed-form expression with refined pa-
rameters from LFEA produced very similar 𝜆𝑉 . The prediction of closed-form expression 
with default parameters is slightly lower than LoA III and the closed-form with LFEA 
parameters. LoA I of MC2010 provides much smaller 𝜆𝑉  relative to all other approaches. 
In general, increasing the top flexural reinforcement ratio from 0.886% to 1.366% in-
creases 𝜆𝑉  by 15-16%. Predictions of LoA III, closed-form design expression both with 
default and LFEA parameters are in excellent agreement with the predictions of JSPM 
and 3-D solid analysis (ATENA). EC2 (2004) prediction is slightly higher than JSPM 
and ATENA predictions whereas LoA I prediction is significantly lower.  
In general, it can be stated that all approaches produce reasonably accurate results 
(using JSPM and ATENA predictions as the benchmark) except LoA I that significantly 
underestimates the punching capacity. EC2 (2004) seems a bit unsafe for wall-corner 
but future studies are required in order to further investigate this phenomenon. Consid-
ering the simplicity and ease of use, CSCT closed-form expression with default parame-
ters is preferable since no LFEA is required to calculate resistance. However, LFEA 
might still be required to calculate the design shear force. The required shear reinforce-
ment ratio shall be calculated according to standard design procedure. Detailing and 
extension of the shear-reinforced zone must be ensured to comply with the adopted 
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design code. The process of calculating and detailing the shear reinforcement are outside 
of the scope of the discussion in this section.
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Figure 5-36. (a) Mesh and boundary conditions of slab-wall model in ADAPTIC; (b) illustration of the positioning of joint 

elements and pairing system of the extended JSPM. 
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Figure 5-37. (a) Mesh and boundary conditions of slab-wall model in ATENA (3D-solid); (b) crack patterns and (c)  plot of 

principal tensile strain at both top and bottom surfaces of the slab.
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Figure 5-38. Comparison of 𝝀𝑽  calculated using various approaches with the re-

sults of extended JSPM and ATENA 3-D solid for: (a) model with 𝝆𝒍𝒐𝒘 and (b) with 𝝆𝒉𝒊𝒈𝒉. 
 Notes: ATENA result is only available for model with  

  

(a) 

(b) 



291 
 

5.5.6.4. Design example based on simplified method 

For the simplified method, it is important to reiterate that the main benefit is that no 
LFEA is required. The first step within the procedure is to estimate the total wall reac-
tions based on the tributary area method. Using the same hypothetical building as pre-
sented earlier in Section 5.2.2, it is known that the total wall length is 8.0 m and wall-
slab span length is 8.0 m. The distance from the wall face to the mid-span can be as-
sumed as 0.46 wall-slab span length which equal to 3.7 m hence the tributary area (TA) 
of the quarter of the wall can be calculated as: 
 
 𝑇𝐴 = 2 ∗ (4 𝑚 ∗ 3.7 𝑚) + (3.7 𝑚 ∗ 3.7 𝑚) = 43.29 𝑚2 (165) 

 

Then, total vertical reactions of the wall considering ULS combination of 1.35 
(SW+SIDL) + 1.5 LL can be determined as: 
 

 𝑊𝑎𝑙𝑙𝑟𝑒𝑎𝑐𝑡 = 𝑇𝐴 ∗ [1.35(25 𝑘𝑁𝑚3 ∗ 0.25 𝑚 + 1.5 𝑘𝑁𝑚2) + 1.5(3 𝑘𝑁𝑚2)]
= 647.73 𝑘𝑁  

(166) 

 

Using Eq. 159, 160 and 161, the proportion of load transferred to DLw can be calculated 
as: 
 
 𝐶1 = −0.084(8)2 + 1.5002(8) − 1.5912 = 5.034 (167) 

 
 𝐶2 = 767.68(8)−1.5 = 33.927 (168) 

 

 𝐶𝑃 = (5.0344)(8) + 33.927100 = 0.742 (169) 

 
The design shear force per unit length for the 𝑏0,3𝑑 region could be determined as: 

 

 𝑣2−𝑤𝑎𝑦(𝑑𝑠𝑖𝑚) = 𝐶𝑝 . 𝑊𝑎𝑙𝑙𝑟𝑒𝑎𝑐𝑡𝑏0,3𝑑 = 0.742 ∗ 647.73 𝑘𝑁0.757 𝑚 = 634.83 𝑘𝑁/𝑚 (170) 

 
Using Eq. 44, the length of DLw for quarter of the wall can be determined as: 
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 𝐷𝐿𝑤 = 0.27(8) + 1.0 = 3.16 𝑚 (171) 

 
Hence 
 
 𝑈𝐿𝑤 = 𝑊𝐿 − 𝐷𝐿𝑤 = 8 𝑚 − 3.16 𝑚 = 4.84 𝑚 (172) 

 
One-way shear forces/length can be estimated as: 
 

 𝑣1−𝑤𝑎𝑦(𝑑𝑠𝑖𝑚) = (1 − 𝐶𝑝) ∗ 𝑊𝑎𝑙𝑙𝑟𝑒𝑎𝑐𝑡𝑈𝐿 = (1 − 0.742) ∗ 647.73 𝑘𝑁4.84 𝑚= 34.53 𝑘𝑁/𝑚 
(173) 

 
 One-way shear check (simplified method) 
The minimum one-way shear resistance is 119 kN/m (see Section 5.5.6.3) which is larger 
than the demand force of 34.53 kN/m, hence no shear reinforcement is required. It is 
important to mention here that the one-way shear demand from the simplified method 
(34.53 kN/m) is smaller than the refined method (53.53 kN/m in Section 5.5.6.3). This 
is because the derivation of the simplified method focuses more on approximating the 
peak shear forces/length for the two-way shear demand hence it consequently produces 
smaller one-way demand forces. However, in typical design scenario, it is quite unlikely 
to have the one-way shear to govern hence the simplified method may still be used safely. 
 Two-way shear check (simplified method) 
When no LFEA is performed, the only available approaches to predict punching capacity 
are LoA I MC2010 and the CSCT closed-form design expression with default parameters. 
From Section 5.5.4, these two capacities have been determined as 82.952 kN for LoA I 
and 168.10 kN and 194.24 kN for CSCT closed-form design expression with 𝜌𝑙𝑜𝑤 and 
𝜌ℎ𝑖𝑔ℎ respectively. Hence, the 𝜆𝑉  parameter can be simply determined as: 

 

 𝜆𝑉 𝐿𝑜𝐴 𝐼 (𝑠𝑖𝑚) = 82.952 𝑘𝑁/ 0.757 𝑚634.83 𝑘𝑁/𝑚 = 0.17 (174) 

 

 𝜆𝑉𝐶𝐹 (𝑠𝑖𝑚𝜌𝑙) = 168.10 𝑘𝑁/ 0.757𝑚634.83 𝑘𝑁/𝑚 = 0.35 (175) 

 

 𝜆𝑉𝐶𝐹 (𝑠𝑖𝑚𝜌ℎ) = 194.24 𝑘𝑁 / 0.757 𝑚634.83 𝑘𝑁/𝑚 = 0.40 (176) 
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In general, it can be seen that the values of 𝜆𝑉  (excluding LoA I) acquired using the 
simplified method are around 30-40% lower than the predictions of the JSPM and 3-D 
solid analysis (see Fig. 5-37(a) and (b)). This magnitude of difference is more or less 
proportional to the ratio of maximum (peak) to average shear forces/length (demand) 
within the 𝑏0,3𝑑 region. This result shows that the simplified method which estimates 

the shear demand based on peak forces is conservative and hence suitable for preliminary 
design stage.  
 

5.6 Conclusion 

This chapter investigates punching phenomenon of slabs with large supported area, in-
cluding elongated columns and walls. Initially, NLFEA with 3-D solid elements was 
performed to get a better understanding of the problem. Results from NLFEA suggest 
that punching failure initiates around the corners of elongated supports and that peak 
resistance is reached prior to full mobilisation of shear resistance around the complete 
control perimeter. Further investigation into variation in shear force per unit length and 
the ratio of tangential to radial concrete strain around the control perimeter suggests 
that there is a transition in shear carrying mechanism from punching to linear at a 
distance of around 1.5𝑑 from the corner of the supports, which justifies MC2010 effective 
control perimeter assumption. NLFEA with 3-D solid elements for elongated column 
scenario did not show a distinct post-peak branch (softening) so it was deemed to be 
most realistic to limit the predicted punching capacity based on a strain criterion. This 
criterion assumes that punching failure occurs when the radial compressive strain in the 
slab soffit first drops to zero at a distance of 0.5𝑑 from the support face. A parametric 
study on notionally identical slabs with increasing support length shows that the contri-
bution of linear shear to peak resistance increases linearly with support length, reaching 
13.4% at 𝑐𝑚𝑎𝑥/𝑑 ≈ 10 but its contribution can be reasonably neglected for 𝑐𝑚𝑎𝑥/𝑑 ≤ 6.0. 
From NLFEA results with 3-D solid elements, it was also found that simply supporting 
the plate (allowing uplift) or clamping down the support did not make any significant 
difference. 
Refinements are made to the joint model (JSPM) previously developed in Chapter 4 by 
distinguishing the contribution of one- and two-way shear mechanisms. The one-way 
joint capacity was limited to the minimum shear resistance assuming yielding of flexural 
bars in order to represent minimal mobilisation of one-way shear resistance when corner 
region fails in punching, as observed in NLFEA with 3-D solid elements. The extended 
JSPM is intended to simulate slabs with 𝑐𝑚𝑎𝑥/𝑑 > 6.0. Validation of the extended JSPM 
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was performed against 24 slabs with 𝑐𝑚𝑎𝑥/𝑑 ranging between 3 and 9. It was found that 
the extended JSPM produced reasonably good and consistent prediction for all consid-
ered support lengths. For future implementation, when very elongated column with 
𝑐𝑚𝑎𝑥/𝑑 > 10 is used, localised failure should be checked around 𝑏0,3𝑑 and shear redistri-

bution can be limited by using the concept of “control joint” as described previously. 
An extension of the CSCT assessment is proposed based on shear-field approach pro-
posed by Vaz Rodrigues et al. (2008). The main idea is to consider the shear stress 
demand for punching check based on the average shear force per unit length within the 
effective control perimeter (𝑏0,3𝑑) only. This approach explicitly takes into account the 

contribution of one-way shear to partly carrying the slab load. An initial sensitivity 
study was done by varying the out-of-plane shear stiffness. It was found that using the 
stiffness modifier of 0.2 for LFEA provides reasonable one-way contribution when com-
pared to the results of 3-D solid elements. The proposed approach was found to provide 
closer punching prediction to the measured capacity than the MC2010 approach with 
no one-way contribution. 
The proposed shear-field method was extended to design slabs supported on wall-corner. 
A hypothetical flat slab building was used to comprehensively investigate the influence 
of some modelling parameters to the design shear force per unit length around the wall-
corner, including: a) mesh size; b) out-of-plane moment restraint and c) slab stiffness 
modifier. Two different methods are then proposed to estimate the design shear 
forces/length: 1) refined method based on direct extraction of shell forces from LFEA 
and 2) simplified method to estimate peak shear forces/length. Comparing the value of 
predicted 𝜆𝑉  (ratio of punching capacity to shear demand), it was found that the refined 
method produces excellent agreement when compared to the prediction of the JSPM and 
3-D solid analysis from ATENA. Meanwhile, the prediction of the simplified method was 
in a range of 30-40% lower than the prediction of JSPM and ATENA which suggests 
that this method has sufficient safety margin hence can be suitably used in preliminary 
design stage. 
The CSCT closed-form design expression that will be adopted in the next generation of 
EC2 (D3, 2018) was found to produce relatively close prediction to current LoA III of 
MC2010. The main benefits of the closed-form design expression are its versatility and 
ease of use. The “versatility” translates to the feature in which the method can be refined 
using LFEA whereas the “ease of use” translates to the situation when default parame-
ters are used, the method can be performed with a simple hand calculation. 
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6 Influence of unbalanced moment and cyclic loading on 
punching resistance 

 
This chapter, based on papers published in the Proceedings of the 16th European Con-
ference on Earthquake Engineering (Setiawan et al., 2018) and Engineering Structures 
(Setiawan et al., 2019a; Setiawan et al., 2019b), considers the influence of monotonic 
and cyclic eccentric loading on punching resistance. 

   

6.1 Overview 

This chapter examines the influence of eccentric loading on the punching resistance of 
eccentrically loaded internal slab-column connections without shear reinforcement. The 
influence of cyclic loading is examined by comparing the responses of matching pairs of 
monotonically and cyclically loaded punching specimens. With the exception of the tests 
of Drakatos et al. (2016) there are virtually no tests which systematically examine the 
influence of cyclic and monotonic loading on matching pairs of punching specimens. 
Drakatos et al. (2016) tested five pairs of full-scale slab-column connections without 
transverse reinforcement subjected to both monotonic and cyclic loading. Three different 
magnitudes of gravity shear ratio (GSR) and two different reinforcement ratios were 
investigated. Based on these tests, Drakatos et al. (2018) extended the Critical Shear 
Crack Theory (CSCT) of Muttoni (2008) to rigorously model the influence of eccentric 
loading on punching resistance. The proposed analytical method distinguishes between 
monotonic and cyclic loading through different treatment of shear redistribution.  
The first part of this chapter presents the results of NLFEA carried out with 3-D solid 
elements in ATENA to simulate the response of the slabs tested by Drakatos et al. 
(2016). Comparisons are made between predicted and experimental crack patterns and 
slab sector rotations. To validate the consistency of the FEA predictions for slabs with 
different boundary conditions and geometries, slab L0.5 from Tian et al. (2008) was also 
simulated. Measured rebar strain from the test report was used to validate the accuracy 
of the FEA predictions. Further parametric studies were then performed in ATENA to 
study the influence of cyclic degradation on behaviour. 
The second part of the chapter describes the extension of the JSPM (so-called JSPMEcc) 
to simulate eccentric punching. The main modification includes the introduction of a so-
called “master joint” that is used to limit the extent of shear redistribution. The ex-
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tended model was validated against 21 internal slab-column connections from the liter-
ature subjected to either monotonic or cyclic eccentric loading. Similarly to Drakatos et 
al. (2018), the JSPMEcc distinguishes between monotonic and cyclic loading by varying 
the limit placed on shear redistribution prior to punching. 
The third part of the chapter makes use of the main findings from the FEA with 3-D 
solid element to develop a simplified analytical method for the prediction of the lateral 
drift capacity of slab-column connections subjected to cyclic loading. The method is a 
synthesis of the analytical method of Drakatos et al. (2018) and the Level of Approxi-
mation II (LoA II) approach of Model Code 2010 (MC2010). Comprehensive parametric 
studies were performed to compare the predictions of the proposed LoA II method with 
those of Drakatos et al. (2018), which serves as a benchmark. The simplified model is 
shown to give good predictions of ultimate drift and unbalanced moment capacity for 
an extensive database of previously tested slabs. The proposed LoA II model is shown 
to give more realistic predictions of ultimate drift than existing empirically-based design 
procedures.  
 

6.2 Investigation of punching shear under monotonic and cyclic load-
ing using 3-D solid elements in ATENA 

6.2.1. Experimental test campaign of Drakatos et al. (2016) and Tian et al. (2008) 

6.2.1.1. Drakatos et al. (2016) series 
The test series consisted of five pairs of full-scale slabs measuring 3000 mm x 3000 mm 
x 250 mm. The slabs had an average effective depth of around 200 mm and were centrally 
supported on 390 mm x 390 mm square column. Two different hogging reinforcement 
ratios (𝜌ℎ𝑜𝑔) of approximately 0.75% and 1.50% were used. In addition, three different 

magnitudes of gravity shear ratio (GSR) representing low, intermediate, and high initial 
shear stress were applied prior to the application of the unbalanced moment. Unbalanced 
moment was introduced through a steel arm connected to the free edges of the slab. The 
distance between the two loading plates at both ends of the steel arm represents the 
span length of a prototype structure with span length (𝐿) of 7200 mm. Prior to the 
application of the unbalanced moment, gravity load was applied uniformly through eight 
loading points positioned at a radius of 1500 mm from the centre of the slab. The un-
balanced moment was introduced by applying equal but opposite forces to the ends of 
the steel arms. The unbalanced moment was controlled by two servo-controlled hydraulic 
actuators, of which the master actuator was displacement-controlled and the other force-
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controlled. For example, under monotonic loading, the master actuator imposed a down-
ward displacement with a velocity of 0.2 mm/s until failure is triggered while the slave 
actuator imposed an equal and opposite force. 

6.2.1.2. Tian et al. (2008) series 
Tian et al. (2008) investigated punching failure of internal slab-column connections un-
der: (1) pure gravity load and (2) combined gravity and reversed-cyclic loading. In ad-
dition, some slabs were subjected to a prescribed lateral drift under reversed-cyclic load-
ing prior to being tested to failure under pure gravity load. Only slab L0.5 which was 
tested under combined gravity and reversed-cyclic loading is simulated in this study. 
Slab L0.5 represented a 2/3-scale model of an internal slab-column connection bounded 
by the slab centrelines (mid-span) of the prototype structure. The specimen measured 
4267 mm x 4267 mm x 152 mm with 127 mm average effective depth and was supported 
on a 406 mm square concrete column. The column extended 1397 mm above the slab 
top surface and 1016 mm below the slab soffit. The top reinforcement ratio was around 
0.5% in the column strip and 0.25% elsewhere. The bottom reinforcement was uniform 
with ratio of 0.3%. The column was heavily reinforced to avoid significant cracking 
during the test. The slab edges were restrained vertically with eight vertical struts. Ini-
tially, gravity load was applied by introducing an upward load using a hydraulic jack 
positioned beneath the column. The GSR of slab L0.5 was intended to simulate dead 
load plus 25% of design live load acting on the floors of the prototype structure as 
commonly specified by seismic design codes. After reaching the intended GSR, the seis-
mic load protocol was simulated by controlling the displacement to targeted drift levels 
at the top of the column through a servo-controlled hydraulic actuator while restraining 
the bottom part of the column laterally. The seismic load protocol for slab L0.5 is shown 
in Fig. 6-11. 
Illustrations of the test setups both for Drakatos et al. (2016) and Tian et al. (2008) test 
series are given in Fig. 6-1. The displacement history of the cyclically loaded specimens 
is shown in Fig. 6-2. Material properties and geometry of the slab specimens used in 
both tests are summarised in Table 6-1. 
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Figure 6-1. Illustration of experimental test setup used by: (a) Drakatos et al. 

(2016); (b) Tian et al. (2008). 
Image reproduced with permission of the rights holder, Elsevier (6‐1a); ACI (6‐1b) 

 

 
Figure 6-2. Displacement history applied for specimens : (a) PD6, PD8, and PD13; 

(b) PD2 and PD11 (reproduced from Drakatos et al., 2016). 
Image reproduced with permission of the rights holder, Elsevier 

(a) 

(b) 

(a) (b) 
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Table 6-1. Summary of properties of slab specimens used for NLFEA validation. 
 

No. Slab Source Type of test* GSR 
 

(MPa) 
 

(mm) 
 

(MPa) 

 

(%) 
 

(%) 
 (mm) 

Slab width 
(m) 

1 PD4 

Drakatos et al. 
(2016) 

M 

0.41 39.0 

 
 

16 

507 0.80 0.35 201 

 
 

3.00 

2 PD5 0.59 37.5 507 0.81 0.35 198 

3 PD3 0.86 34.9 558 0.81 0.34 198 

4 PD12 0.62 35.5 546 1.61 0.72 195 

5 PD10 0.90 32.3 593 1.60 0.72 197 

6 PD8 

C 

0.46 32.7 575 0.81 0.29 198 

7 PD6 0.58 38.3 507 0.81 0.30 199 

8 PD2 0.86 36.9 558 0.81 0.34 198 

9 PD13 0.60 36.5 546 1.61 0.72 196 

10 PD11 0.90 33.1 593 1.60 0.71 196 

11 L0.5 
Tian et al. 

(2008) 
0.23 25.6 9.5 469 0.50 0.25 127 3.657 

Notes: 
 is the specified concrete compressive strength 
 is the maximum aggregate size 
 is the average yield strength of the flexural reinforcement bars 

 is the ratio of flexural reinforcement at slab tension side (hogging) 
 is the ratio of flexural reinforcement at slab compression side (sagging) 

*M indicates monotonic test; C indicates cyclic test
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6.2.2. Numerical modelling in ATENA 

Concrete was modelled using CC3DNonLinCementitious2 as described in Chapter 3. 
Details of the adopted material input parameters are given in Table 6-2. The numerical 
modelling strategy is described for the slabs of Drakatos et al. (2016) but was similar for 
slab L0.5 of Tian et al. (2008). When modelling the slabs of Drakatos et al. (2016), 
advantage was taken of symmetry to only model half of the specimen. This is illustrated 
in Fig. 6-3 for the PD series where, for optimum element aspect ratio, 25 x 25 x 25 mm3 

brick elements were used to model the slab within twice the slab effective depth 𝑑 of the 
column face (giving 10 elements through the slab thickness). A coarser mesh (50 x 25 x 
25 mm3 and 50 x 50 x 25 mm3) was used elsewhere. This is consistent with the optimum 
mesh configuration found from the calibration stages, previously presented in Chapter 
3. The steel arms and loading plates were modelled using linear tetrahedral (4-noded) 
elements with elastic material model. Reinforcement bars were modelled as embedded 
using 1D 2-noded linear truss elements. Perfect bond was assumed between reinforce-
ment and concrete.  
 

 
Figure 6-3. Geometry, boundary conditions, and meshing for slabs of PD series 

tested by Drakatos et al. (2016) analysed using ATENA. 
 
In the test report, Drakatos (2016) only report the yield strength of the reinforcement 
and not the ultimate tensile strength. Closer examination to the test results showed that 
the largest rebar strain measured from the cyclic tests was around 0.004 - 0.005 which 
is relatively close to the yield strain. Consequently, the rebar stress-strain relationship 
was defined in ATENA as elastic-perfectly-plastic (bilinear). For specimens simulated 
with cyclic loading protocol, Bauschinger’s effect was modelled using the approach of 
Menegotto and Pinto (1973) as implemented in ATENA (with default parameters: 
Bauschinger exp-R = 4; Menegotto-Pinto-C1 = 500; Menegotto-Pinto-C2 = 50).  
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Table 6-2. Summary of material parameters and numerical input for the analysis 
of Drakatos et al. (2016) and Tian et al. (2008) slabs in ATENA. 

 
No. Parameter Value/Reference 

Concrete constitutive model  
A1 Concrete elastic modulus Model Code 2010 
A1 Fracture energy Model Code 2010 
A2 Concrete tensile strength Model Code 2010 
A3 Smeared crack model Fully-rotating crack 
A4  Critical compressive displacement 0.5 mm 
A5 Limit of compressive strength reduction due 

to cracking (MCFT)  
0.8  for monotonic; 0.5  for cyclic 

A6 Eccentricity (defining the shape of the failure 
surface) 

0.52 

A7 Volume dilatation plastic factor 0 
A8 Unloading factor for cyclic loading 0 
 Reinforcement bar model  
B1 Stress-strain relationship Bilinear with minimal strain hardening 
B2 
B3 

Bond-slip model 
Cyclic behaviour 

Perfect bond 
Menegotto and Pinto (1973) with 
ATENA default parameters (C1 = 500; 
C2 = 50) 

 Loading procedure and convergence criteria  
C1 Loading procedure for monotonic tests Static (force-controlled) 
C2 Iteration method for monotonic tests Arc-length method 
C3 Loading procedure for cyclic tests Static (displacement-controlled) 
C4 Iteration method for cyclic tests Newton-Raphson method 
C5 Convergence criteria for displacement, 

residual, and absolute residual error 
1% 

C6 Convergence criteria for energy error 0.1% 
 Mesh properties  
D1 Mesh size (finest) 25 x 25 x 25 mm3 for slabs of Drakatos 

et al. (2016) and 15.2 x 15.2 x 15.2 
mm3 for slabs of Tian et al. (2008) 

D2 Mesh element for concrete slab 8-noded hexahedral (linear) 
D3 Mesh element for loading apparatus 4-noded tetrahedral (linear) 
D4 Mesh element for reinforcement bar 2-noded truss element (embedded) 

 
In the actual test, the column plates were clamped to the slab through post-tensioning 
to ensure no rigid body rotation occurred during the application of the unbalanced mo-
ment. To approximate this condition, the external top and bottom faces of the plates 
were modelled as fully restrained. Connection between the slab and the steel plates was 
assumed to be fully rigid (fixed contact). Initial gravity loads were simulated by applying 
equal vertical loads to the four steel plates. Two different treatments were made regard-
ing the application of unbalanced moment for the monotonic and cyclic loading cases. 
For the monotonic case, a pair of equal but opposite forces were applied at both ends of 
the steel arm through force-controlled procedure with Arc-Length method. For the cyclic 
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case, the actual test imposed a prescribed relative slab-column connection rotation but 
neither the displacement nor force on the steel arms corresponding to this prescribed 
rotation was reported. To model this, monotonic simulations were firstly performed for 
each cyclically loaded slab and the relationship between the slab-column rotation and 
steel arm displacement was extracted. Then, the real cyclic simulation was performed 
by imposing equal and opposite arm displacements (according to previous monotonic 
simulation) using displacement-control in conjunction with Newton-Raphson iteration 
method. It is important to remark that this treatment has a limitation since the forces 
applied at both steel arms were not exactly equal. This resulted in the downward force 
being marginally smaller than the upwards force at any given displacement. This reduced 
the designated gravity shear ratio (GSR) by 5-10% at peak moment unlike in the labor-
atory tests where the GSR remained constant throughout the test.  
In total, each specimen was meshed with 1790 linear elements, 1954 tetrahedral elements 
and 36980 solid (brick) elements giving a total of 44882 nodes. The same material inputs 
were used for both monotonic and cyclic loading except two parameters: (1) unloading 
factor; (2) lower bound of compression softening. The unloading factor (UF) controls the 
crack closure stiffness. UF ranges between 0 and 1 with 0 for unloading to the origin 
(default value for backward compatibility) and 1 for unloading parallel to the initial 
elastic stiffness. The value of UF was chosen as 0 which was found to give the best fit 
to the experimental hysteresis shape. The UF was not activated for the monotonic sim-
ulation. Secondly, the lower bound of compression softening was taken as 0.8 for mono-
tonic tests and 0.5 for cyclic tests. This was done because comparative studies on iden-
tical monotonically loaded specimens unexpectedly showed displacement-control with 
Newton-Raphson to produce higher failures loads than force-control with Arc-Length. 
To compensate for this, it was found necessary to reduce the compression softening limit 
𝑟𝑐𝑓𝑐 when simulating the cyclically loaded slabs. The convergence tolerance was set at 
1% for displacement, residual, and absolute residual error and 0.1% for energy error. 

6.2.3. Finite element results 

6.2.3.1. Global behaviour 

Global behaviour was assessed in terms of the unbalanced moment versus relative slab-
column connection rotation response. The slab-column connection rotation, 𝜓𝑠𝑐𝑐, is de-
fined as: 
 

 𝜓𝑠𝑐𝑐 = 𝜓𝑚𝑎𝑥 − 𝜓𝑚𝑖𝑛2 − 𝜓𝑐𝑜𝑙 (177) 
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where 𝜓𝑚𝑎𝑥 is the maximum slab rotation, 𝜓𝑚𝑖𝑛 is the minimum slab rotation and 𝜓𝑐𝑜𝑙 
is the column rotation which was zero for the FE simulations of the PD series since fixed 
restraints were applied to the top and bottom column plates. For slabs with relatively 
small gravity shear ratio and large unbalanced moment, the minimum rotation can be 
upwards in which case the sign of 𝜓𝑚𝑖𝑛 should be taken as negative in Eq. 177.  
In flat slab buildings, inter-storey drift, 𝜓𝑠𝑡, can be related to the slab-column connection 
rotation as follows (Drakatos et al., 2016): 
 
 𝜓𝑠𝑡 = 𝜓𝑠𝑐𝑐 + 𝜓𝑠𝑜+ 𝜓𝑐𝑜𝑙 (178) 

 
where 𝜓𝑠𝑜 is the component of slab rotation due to deformation of the slab outside a 
radius 𝑟𝑠 = 0.22𝐿 of the column centreline. Drakatos et al. (2016), as well as FEA stud-
ies presented in this chapter, suggest that the slab-column connection rotation 𝜓𝑠𝑐𝑐 typ-
ically contributes around 75-80% of the total slab rotation. Typically, the column of 
slab-column specimens tested in the laboratory is sufficiently stiff that 𝜓𝑐𝑜𝑙 can be ne-
glected.  
In the FEA simulations, maximum and minimum rotations were measured at opposite 
edges of the slab parallel to the direction of the unbalanced moment application. Fig. 6-
4 shows the experimental and calculated moment-rotation (𝜓𝑠𝑐𝑐) responses of all the 
modelled slabs. Results of matching pairs of monotonically and cyclically loaded speci-
mens are plotted in the same graph to allow a direct comparison of the influence of cyclic 
degradation.  
Fig. 6-4 shows that the ATENA predictions are reasonable for both monotonically and 
cyclically loaded slabs. However, at low drift levels, ATENA overestimated the stiffness 
of cyclically loaded specimens due to the inability of CC3DNonLinCementitious2 mate-
rial model to realistically simulate the pinching effect. In reality, when loading is reversed 
from tension to compression state, there is a transition phase with almost zero tangent 
stiffness because the crack has not closed (recovered) and thus no compression stress can 
develop. Only upon crack closure, does cracked concrete regain its compressive stiffness 
and strength. The current concrete model in ATENA neglects this transition phase. This 
causes the increases in peak unbalanced moment between successive cycles at the same 
rotation level as shown by the red and yellow dots in Fig. 6-5 for specimen PD2. The 
increase in moment between successive cycles at the same rotation level explains why 
the numerical response in Fig. 6-4 is stiffer for cyclic than monotonic loading at low 
drift levels. At high drift levels, the stiffness of the numerical cyclic response degrades 
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faster than the monotonic response since damage due to accumulation of equivalent 
plastic strain is more dominant than the neglect of pinching effect. The neglect of pinch-
ing also produces unrealistically high energy dissipation capacity compared with the 
actual hysteresis response as clearly seen in Fig. 6-4. Nevertheless, it is interesting to 
observe that, generally, the cyclically loaded specimens failed at lower unbalanced mo-
ment and deformation capacity than their monotonic twin. However, the degree of cyclic 
degradation was not equal for all pairs. For example, specimen PD8 with lowest GSR 
and lower 𝜌ℎ𝑜𝑔 was predicted to experience the most detrimental effect of cyclic degra-

dation whereas specimen PD11 (C) with highest GSR and higher 𝜌ℎ𝑜𝑔 behaved very 

similarly to its monotonic twin PD10 (M). These FEA results are consistent with the 
experimental findings of Drakatos et al. (2016) which show the reduction in unbalanced 
moment capacity and limiting drift to be greatest for cyclically loaded slabs with low 
GSR and/or low hogging reinforcement ratios. Further discussion regarding the ability 
of the FEA to model the influence of cyclic degradation will be presented later. 
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Figure 6-4. Comparison of measured and predicted moment-rotation or moment-

drift relationship with ATENA for both monotonic and cyclic tests. 

Peak unbalanced moment (M) from real test: 
Peak unbalanced moment (C) from real test:

Peak arm-reaction (M) from ATENA: 
Peak arm-reaction (C) from ATENA:
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Figure 6-5. Inability of current concrete model to simulate pinching as shown by 
moment-rotation response of specimen PD2 at 0.1% 𝜓𝑠𝑐𝑐. 

6.2.3.2. Local behaviour 

The ability of FEA to simulate local behaviour was validated in terms of (a) slab-sector 
rotation; (b) crack patterns; (c) principal tensile strain and (d) flexural reinforcement 
strain. Of these (a), (b) and (c) are validated using results from the PD series (Drakatos 
et al., 2016) while  (d) is validated for slab L0.5 of Tian et al. (2008). 

 Slab-sector rotation 

Based on experimental observations, Drakatos et al. (2018) assume that the slab sector 
rotation varies sinusoidally around the column of slabs subjected to unbalanced moment. 
In ATENA, slab-sector rotation was monitored at 7 different locations around the pe-
rimeter of a half circle with 1500 mm radius from the slab centre. The rotations were 
measured at the peak unbalanced moments indicated by yellow and green circles in Fig. 
6-4. The experimental and calculated slab-sector rotations are shown in Fig. 6-6 and 
Fig. 6-7 for monotonic and cyclic tests, respectively. 
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Figure 6-6. Comparison of measured and predicted slab-sector rotation at peak 

unbalanced moment for monotonic tests with FEA (ATENA). 

 
Figure 6-7. Comparison of measured and predicted slab-sector rotation at peak 

unbalanced moment for cyclic tests with FEA (ATENA). 
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Fig. 6-6 and 6-7 show that the FEA predicts the slab-sector rotation reasonably well. 
Furthermore, the variation in rotation is approximately sinusoidal as assumed by Dra-
katos et al. (2018).  

 Crack patterns 

Crack patterns at the onset of failure were used to assess the capability of FEA to 
realistically predict the failure mode. By way of illustration Fig. 6-8 compares experi-
mental and numerical crack (crack width > 0.1 mm) patterns in slabs PD4 and PD8. 
Cracks are shown from the top- and side-view (saw cut). Fig. 6-8 shows that both the 
radial and tangential crack patterns were reasonably reproduced by the FEA. The edge 
views show that the FEA realistically simulates the observed diagonal shear cracks. The 
FEA also captures the relatively steep inclination of the diagonal shear crack observed 
in the cyclically loaded specimen (PD8). This is also reflected in the top-view of the slab 
where the tangential cracks in slab PD8 extend less far from the column face than in 
PD4. 
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Figure 6-8. Experimental vs predicted FEA crack patterns from top- and side-
view of slab: (a) PD4 (monotonic); (b) PD8 (cyclic) (experimental 
crack patterns are reproduced from Drakatos et al., 2016). 
Image reproduced with permission of the rights holder, Elsevier 

See black curve for slab PD4 (monotonic) 
(a) 

See red curve for slab PD8 (cyclic) 
(b) 

PD4 

PD8 

Line connecting tip of the crack 
to the furthermost crack lips 
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 Plot of principal tensile strain 

Fig. 6-9 shows contours of principal tensile strain for specimens PD4 and PD8 at the 
onset of failure (peak unbalanced moment). The views in Fig. 6-9 are the same as shown 
in Fig. 6-8 for crack patterns.  
 

 
Figure 6-9. Principal tensile strain produced by FEA: (a) top-; (b) bottom-; (c) 

side-view of PD4 (monotonic), (d) top-; (e) bottom-; (f) side-view of 
PD8 (cyclic). 

 
Fig. 6-9 shows that tensile strain is concentrated around the column face where the 
punching cone is expected to form. The principal tensile strain distribution in Fig. 6-9a 
for PD4 (monotonic) is non-symmetric with highest tensile strain on the side where shear 
from unbalanced moment is additive to shear from gravity loading (hogging side). This 
explains why the diagonal crack was only observed at one side of the column face. On 
the other hand, the side-view strain distribution is virtually symmetrical in slab PD8 

Top-View Bottom-View 

PD4 

Side-View (Hogging) 

Side-View (Sagging) 

(a) 

Top-View 

PD8 

Side-View (East) 

Side-View (West) Bottom-View 

(e) 

(b) (c) 

(d) (f) 

Hogging Sagging Sagging Hogging 

West East West East 
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(cyclic) with diagonal cracks formed on both east and west sides. Comparison of peak 
tensile strains in slabs PD4 and PD8 shows that strains are around 75% greater in the 
cyclically loaded slab at the onset of failure. This accumulation of tensile (cracking) 
strain explains why punching occurs earlier in slabs subjected to cyclic loading.  
Fig. 6-9(b) shows radial tensile strain developing just before failure in the slab soffit 
around the column. The predicted development of radial tensile strain is consistent with 
experimental observations (e.g. Ferreira et al., 2014). Broms (2016) also refers to the 
development of radial tensile strain around the column at failure in his Tangential Strain 
Theory (TST). The zone of tensile strain shown in the slab soffit in Fig. 6-9(b) is 
continuous around the complete column perimeter. The tension in the slab soffit arises 
from flexural cracking on the sagging face and from the extension of shear (diagonal) 
crack in the hogging face (i.e. flexural cracks propagating downward to the compression 
zone at failure).  

 Flexural reinforcement strain 

To validate further the accuracy of the FEA, comparisons were made with the measure-
ments of flexural reinforcement strain reported by Tian et al. (2008) for slab L0.5. The 
strains were measured at four different positions in the transverse and longitudinal di-
rections. The longitudinal direction is parallel to the loading direction. The strain gauges 
in the transverse direction were positioned at distances of: 101.6; 304.8; 508; and 914.4 
mm from the slab centreline while the gauges in the longitudinal direction were posi-
tioned at distances of: 203.2; 355.6; 508; and 660.4 mm from the slab centreline. Strains 
were reported during the first loading cycle of each lateral drift level. The comparison of 
measured versus predicted reinforcement bar strains for transverse and longitudinal di-
rections is presented in Fig. 6-10(a) and (b), respectively. 
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Figure 6-10. Measured vs predicted flexural reinforcement strain of slab L0.5: (a) 

transverse; (b) longitudinal direction. 
 
Fig. 6-10 shows that the FEA predicted the measured reinforcement strains reasonably 
well, in both the transverse and longitudinal directions. During gravity load application, 
the predicted strain is much lower than measured but the predicted strains become more 

(a) 

(b) 
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accurate at intermediate drift levels. This further shows that FEA can provide useful 
insight into localised behaviour.  

6.2.4. Parametric studies 

Having validated the FEA at both global and local levels, it was used to perform para-
metric studies to gain a better understanding of cyclic degradation. The parametric 
studies investigated the influence of: a) number of loading cycles, b) gravity shear ratio 
and c) flexural reinforcement ratio. For parameters b) and c), both monotonic and cyclic 
simulations were performed for each specimen. The base specimen used for this para-
metric study was slab L0.5 of Tian et al. (2008) with typical North American test setup. 
The objective was to verify whether the findings obtained using the novel test setup of 
Drakatos et al. (2016) are applicable for other test setups. 

6.2.4.1. Influence of number of loading cycles 

In the experimental test protocol, slab L0.5 was subjected to 3 loading cycles per drift 
level as shown in Fig. 6-11. The interval is around 0.25-0.50% between each drift level. 
 

 
Figure 6-11. Loading protocol of slab L0.5 (reproduced from Tian et al., 2008). 

Image reproduced with permission of the rights holder, ACI 
 
To gain insight into the mechanisms of cyclic degradation, three additional slabs were 
simulated each having the same geometry and boundary conditions as slab L0.5 but with 
different loading protocol. Each slab was subjected to: (i) monotonic loading; (ii) 1 load-
ing cycle per drift level and (iii) 5 loading cycles per drift level. The global response was 
assessed in terms of unbalanced moment vs drift while the local response was assessed 
in terms of reinforcement strains which were monitored at the same positions as done in 
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the experimental test. Fig. 6-12 shows the moment-rotation response (backbone curve) 
for all four analysed slabs. 
 

 
Figure 6-12. Moment-rotation response of slab L0.5 subjected to different number 

of loading cycles. 
 
Fig. 6-12 clearly shows that, at lower lateral drift level (< 0.5%), all slabs behaved in a 
very similar fashion with almost no influence of loading protocol. However, deviation of 
the backbone curve starts to take place beyond this drift level. The monotonically loaded 
slab failed at around 2-2.5% drift level. Punching failure occurred at lower drift levels in 
the cyclically loaded slabs. Slabs with 3 and 5 loading cycles suffered earlier punching at 
around 1.0-1.5% drift level with very abrupt loss of strength and stiffness whereas the 
slab with 1 loading cycle behaved more similarly to the monotonically loaded slab. The 
differences in behavior appear are reflected in the differences in reinforcement strains 
shown in Fig. 6-13. Only results for the two strain gauges closest to the slab centreline 
in the longitudinal direction are shown in Fig. 6-13. 
Fig. 6-13 shows that the plastic strain at peak drift increased with the number of loading 
cycles. Interestingly, the deviation of the backbone curve at around 0.5% drift level 
shown in Fig. 6-12 is linked to the yielding of bars shown in Fig. 6-13. This suggests 
that the increased damage caused by cyclic loading is associated with increased plastic 
strain in the reinforcement bars. The increase in plastic strain with cycle number is 
exacerbated by Bauschinger’s effect which reduces the reinforcement yield strength for 
successive cycles. This argument is supported by Drakatos (2016) who reports that “the 
increase in thickness at zero unbalanced moment is larger than zero which indicates that 
the shear crack remains open when loading in the opposite direction”. Consequently, 
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crack opening increases with each cycle which reduces the shear carrying capacity 
through aggregate interlock.  
 

  
Figure 6-13. Predicted reinforcement strain (ATENA) at two closest strain gauges 

to the slab centreline in longitudinal direction of slabs with different 
number of loading cycles.  
Notes: the strains were recorded at peak drift during the first cycle of each lateral drift level 

 
However, it is important to note that degradation of shear resistance along cracks was 
not modelled explicitly in ATENA since a rotating-crack model was used. Despite this, 
the physical effect of cyclic degradation is considered in ATENA through the compres-
sion-tension interaction model. According to the explanation provided in ATENA’s The-
ory Manual (Cervenka et al., 2018), this is achieved by two different treatments: (1) 
relating tensile strength to compression damage; (2) relating compressive strength to 
tension damage. Condition (1) requires the tensile strength to decrease when concrete 
crushes. This condition is resolved in ATENA by adding an equivalent plastic strain to 
the maximal fracturing strain in the fracture model to automatically increase the tensile 
damage resulting from compressive damage such that the fracturing strains satisfy the 
following condition: 
 

 𝜀�̂�𝑘′𝑓 ≥  𝑓𝑡𝑓𝑐 𝜀𝑒𝑞𝑝  (179) 

 
where 𝜀�̂�𝑘′𝑓  is the total value of fracturing strain which corresponds to the maximal frac-
turing strain reached during the loading process, 𝑓𝑡  is the concrete uniaxial tensile 
strength, 𝑓𝑐 is the concrete uniaxial compressive strength, and 𝜀𝑒𝑞𝑝  is the equivalent plas-

tic strain.  
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To consider (2), the compressive strength is decreased when cracking occurs in the per-
pendicular direction. This is based on the work of MCFT by Vecchio and Collins (1986). 
According to this model, the compressive strength gradually decreases as the tensile 
strain (𝜀1) in the crack increases. In ATENA, the largest maximal fracturing strain is 
used for 𝜀1 and the compressive strength reduction is controlled by parameter 𝑟𝑐 as de-
scribed previously in Chapter 3. Consequently, when the tensile strain in the crack 
accumulates due to plastic rebar strain, the concrete compressive strength decreases 
faster which leads to earlier crushing (violation of plasticity yield criterion). This explains 
how the concrete model in ATENA captures cyclic degradation phenomenon where in-
teraction between compression and tension damage plays an important role. 

6.2.4.2. Influence of gravity shear ratio (GSR) 

Three different gravity shear ratio values were simulated: 0.15; 0.17; and 0.29. A GSR 
of 0.15 corresponds to slab self-weight alone. The GSR of 0.17 and 0.29 are +25% and -
25% respectively of the original GSR in slab L0.5 of Tian et al. (2008). To isolate the 
influence of GSR, all other parameters were kept the same as in slab L0.5. For each 
value of GSR, both monotonic and cyclic simulations were performed to quantify the 
severity of cyclic degradation for slabs with varying gravity loading. Comparison of the 
peak moments and corresponding drifts (indicated by yellow circles) for each pair of slab 
is shown in a form of backbone curve in Fig. 6-14. 
 

  
Figure 6-14. Moment-rotation response of cyclically and monotonically loaded slab 

with GSR of: (a) 0.15; (b) 0.17; and (c) 0.29. 
 
Fig. 6-14 shows a general trend where cyclic loading caused a reduction in the peak 
unbalanced moment and limiting drift compared with monotonic loading. However, the 
degree of capacity and ductility reduction is seen not to be equal for all three slabs. 

(a) (b) (c) 
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Comparing slab with GSR = 0.15 and GSR = 0.29, it can be seen that the reduction in 
drift and peak moment is slightly greater for GSR = 0.15. 

6.2.4.3. Influence of top reinforcement ratio ( ) 

The influence of flexural reinforcement ratio on cyclic degradation was investigated by 
modelling three slabs notionally identical to slab L0.5 apart from having 𝜌𝑡𝑜𝑝 of 0.35%, 

1.20%, and 2.0%. All other parameters including the GSR were kept the same as in slab 
L0.5 of Tian et al. (2008). Comparison of peak moments and corresponding drifts for 
each pair of slab is shown in a form of backbone curve in Fig. 6-15. 
 

 
Figure 6-15. Moment-rotation response of cyclically and monotonically loaded slab 

with  of: (a) 0.35%; (b) 1.20%; and (c) 2.0%. 
 
Fig. 6-15 shows that the slabs with 𝜌𝑡𝑜𝑝 of 1.20% and 2.0% experienced similar reduc-

tions in unbalanced moment and drift capacity. There was no significant reduction in 
peak moment capacity under cyclic loading of the slab with 𝜌𝑡𝑜𝑝 of 0.35% since both the 

cyclic and monotonically loaded slabs reached their flexural capacity (upper-bound) prior 
to failure. However, the lateral drift at peak moment reduced significantly under cyclic 
loading in the slab with 𝜌𝑡𝑜𝑝 of 0.35%. This deformation capacity usually plays more 

important role than strength alone in seismic design. 
The parametric studies show that cyclic degradation reduces the unbalanced moment 
and deformation capacity of slab-column connections. The cyclic degradation is associ-
ated with an accumulation of plastic strain in the reinforcement bars. The increase in 
reinforcement strain results in an increase in crack widths in successive loading cycles. 
This leads to a degradation in shear resistance through aggregate interlock which even-
tually triggers earlier punching failure. The severity of the cyclic degradation was found 
to be influenced by the GSR and flexural reinforcement ratio. Slabs with low GSR and/or 

(a) (b) (c) 
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low flexural reinforcement ratio were found to be most prone to cyclic degradation (es-
pecially in terms of the reduction of deformation capacity). These numerical findings are 
consistent with the experimental observations reported by Drakatos et al. (2016). 
 

6.3 Refinement of the JSPM to simulate punching failure of slabs 
subjected to eccentric loading 

6.3.1. Introduction 

This section extends the use of the JSPM (joint-shell punching model) developed in 
Chapter 4 to the simulation of punching in slabs subjected to eccentric loading. For 
future reference, this extended model will be referred as JSPMEcc. Preliminary analyses 
performed using the default (original JSPM) model showed it to significantly overesti-
mate punching resistance under eccentric loading. This is because, by default, global 
failure of the slab-column connection only takes place after all the joint elements have 
failed. For large loading eccentricity, half of the slab is subjected to downward shear 
force (hogging) while the other half experiences upward shear force (sagging). Failure of 
all joint elements, requires shear forces to be redistributed from joints in the hogging 
half of the slab, where punching failure is initiated, to joints in the sagging half. This 
results in an unrealistic shear reversal (upward to downward) in the sagging half. In 
addition, this process also requires unrealistically ductile shear behaviour to allow such 
redistribution. Instead, as proposed by Drakatos et al. (2018), it seems more realistic to 
stop shear redistribution once all joints have failed in the hogging half of the slab for 
monotonically loaded slabs. In cyclically loaded slabs, punching failure is assumed to 
occur simultaneously with failure of the joint element with the maximum slab-sector 
rotation. This assumption is again similar to that of Drakatos et al. (2018) for cyclically 
loaded slabs. 

6.3.2. Proposed adjustment by introducing an additional central joint element 

In order to simulate different limits of shear redistribution, an additional central joint 
element was developed. For ease of reference, this additional joint is referred to as the 
“master joint”. The master joint is positioned at the junction between the column and 
the slab. Rigid links are used to connect the master joint to the surrounding shell ele-
ments at the column face. All DOFs of the master joint are defined as rigid except the 
DOF corresponding to the relative rotation in the direction of the applied unbalanced 
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moment. Thus, the relative rotation of the joint is controlled by the magnitude of un-
balanced moment transferred between the column and the slab. To trigger global con-
nection failure, this master joint is coupled with one of the joint elements positioned 
around the control perimeter. For monotonic loading, the master joint is coupled with 
the punching joint at the axis of applied unbalanced moment whereas for cyclic loading, 
coupling is with the joint element positioned in the slab-sector with maximum rotation, 
(see Fig. 6-16(a)). 
 

 
Figure 6-16. (a) Implementation of master joint to trigger global connection failure 

under eccentric loading scenario in ADAPTIC; (b) moment-rotation 
response of master joint element. 

 
The initial response of the master joint is defined as linear with sufficiently high stiffness 
to represent a rigid slab-column joint. Failure of the master joint is triggered by a dis-
placement threshold in a similar manner to the transition between Stage II and Stage 
III in ordinary punching joints. In the case of the master joint, failure is triggered when 
the displacement of the coupled joint increases beyond a user defined threshold. After 
failure is triggered, unbalanced moment carried by the master joint is assumed to de-
crease linearly to a user defined residual moment capacity as shown in Fig. 6-16(b). 
Failure of the master joint, forces all the ordinary punching joints to unload thus simu-
lating global connection failure. Consequently, introduction of the master joint links the 
degree of shear redistribution contribution, and hence global punching failure, to failure 
of the coupled joint. The effectiveness of the introduction of the master joint was vali-
dated by analysing the following 21 slabs from the literature: 

Unbalanced 
moment 

Joint relative 
rotation 

Initial stiffness (close to rigid state) 

Post-punching moment 
residual resistance 

Failure is triggered by the failure of coupled 
joint (with displacement threshold) 

Post-punching descending 
stiffness 

(a) (b) 
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(a) 11 slabs tested under monotonic loading with constant eccentricity by Hawkins et 
al. (1989) 

(b) 5 slabs tested under monotonic loading with increasing eccentricity but constant 
shear force by Drakatos et al. (2016) 

(c) 5 slabs tested under cyclic loading with increasing eccentricity but constant shear 
force by Drakatos et al. (2016) 

6.3.3. Validation of the proposed adjustment to simulate eccentric punching sce-
nario 

Details of series (a) are given below. The reader is referred to Section 6.2 for details of 
series (b) and (c). 

6.3.3.1. Series (a): Constant eccentricity (monotonic) by Hawkins et al. (1989) 

Constant eccentricity loading arises under gravity loading in non-symmetric bays of flat 
slab buildings and can be simulated in the laboratory tests by applying vertical load at 
a fixed eccentricity. In total, 11 slabs were modelled. The laboratory tests considered 
loading eccentricities (𝑒𝑢) of 130 mm (denoted as L) and 577 mm (denoted as H). The 
simulated slabs were grouped into three series as described below: 
(1) Series A with practical slab dimension (thickness = 153 mm): 4 slabs 
(2) Series B with thinner slab dimension (thickness = 114 mm): 4 slabs 
(3) Series C with higher concrete strength (around 60 MPa): 3 slabs 
 
The specimens represented three-quarter scale isolated internal slab-column connections. 
All the slabs were square in shape measuring 2100 x 2100 mm on plan. The slabs were 
centrally supported by a 305 x 305 mm square column. The column was pre-stressed to 
the laboratory floor with a rod extending down its centre. Unequal vertical forces were 
applied at 610 mm intervals around the free edges of the slab. The bottom of the column 
was restrained laterally while a jack was used to apply the necessary force for moment 
equilibrium at the top of the column. For the validation purpose, only punching re-
sistance (load) is assessed because relative slab-column connection rotation measurement 
was not reported. In ADAPTIC, by utilising symmetry, only half of the slab was mod-
elled. A uniform mesh size of 50 mm was used which provided 17 joint elements around 
the control perimeter. Similarly as used for the simulation of original model, force-con-
trolled procedure with N-R method was used up to around 50% of the measured punch-
ing capacity. Subsequently, the analysis was continued using the Arc-Length method in 
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displacement-control to achieve better post-peak convergence. The slab was connected 
to the column with a master joint as shown in Fig. 6-16.   
The JSPMEcc load-deflection responses of selected slabs are presented in Fig. 6-17 along 
with the analytical predictions of Drakatos et al. (2018) and ATENA results where 
available. JSPMEcc (denoted as “proposed”) results are presented in Fig. 6-17 for joint 
stiffness reduction factors (𝑘𝑟𝑒𝑑) of 𝑘𝑟𝑒𝑑 = 0.1 (adopted), 0.5 and 1.0 (no reduction) (see 
Section 4.2.3 for more information about 𝑘𝑟𝑒𝑑).  
 

 
Figure 6-17. Load versus slab edge deflection response of selected slabs of Hawkins 

et al. (1989): (a) Slab 14AH (𝒆𝒖 = 577 mm); (b) Slab 1.42BL (𝒆𝒖 = 
130 mm); (c) Slab 1.4CH (𝒆𝒖 = 577 mm) of Hawkins et al. (1989). 

 
Fig. 6-17 shows that the predicted failure load of the JSPMEcc is sensitive to 𝑘𝑟𝑒𝑑 with 
punching resistance reducing with increasing 𝑘𝑟𝑒𝑑. This is because increasing 𝑘𝑟𝑒𝑑 in-
creases the proportion of unbalanced moment that is carried by eccentric shear relative 
to flexure and torsion. This causes greater shear forces to develop in the joint elements 
at given unbalanced moment, compared with smaller 𝑘𝑟𝑒𝑑, and hence triggered earlier 
punching failure. Fig. 6-17 shows that taking 𝑘𝑟𝑒𝑑 = 0.1 produces good predictions of 
punching resistance for the considered slabs. The predictions of the analytical model of 
Drakatos et al. (2018) are reasonable but less good than the JSPMEcc.  Only slab 14AH 
was simulated in ATENA which overestimated resistance.  

6.3.3.2. Series (b): increasing eccentricity (monotonic) by Drakatos et al. (2016) 

The reader is referred to Section 6.2.1 for a description of the geometry and test set up 
for slabs PD4, PD5, PD3, PD12 and PD10 of Drakatos et al. (2018). In ADAPTIC, by 

(a) (b) (c) 
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utilising symmetry, only half of the slab was modelled. A uniform mesh size of 100 mm 
was used to model all five slabs. In the actual test, steel plates were used to model the 
column. In the simulation, a short dummy column line element was used in order to 
allow the installation of the master joint element. The dummy column was restrained 
rigidly in all DOFs to represent the clamping forces applied by the post-tensioning pro-
cess in the laboratory test. The steel arms were modelled using the same shell element 
(csl4) as the concrete slab but were assigned with elastic steel material properties.  
Additional threaded bars connecting concrete slab and steel arms were modelled locally 
as smeared reinforcement. Neglecting the presence of these threaded bars was found to 
underestimate the stiffness of the actual slab-column connection. Gravity loads were 
applied prior to unbalanced moment. To simulate the unbalanced moment, equal and 
opposite vertical forces were applied to the ends of the steel arms. The mesh configura-
tion, boundary conditions and load application are shown in Fig. 6-18. 
 

 
Figure 6-18. Slab PD series of Drakatos et al. (2016) modelled in ADAPTIC. 

 
Predicted and measured moment versus slab-column connection rotation of all five slabs 
are shown in Fig. 6-19. The analytical prediction of Drakatos et al. (2018) and ATENA 
predictions are also plotted in the same graph to provide comparison. 
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Figure 6-19. Moment versus slab-column connection rotation and failure point of 

all five slabs in PD series of Drakatos et al. (2016) tested under mon-
otonic loading. 

 
Fig. 6-19 shows that the JSPMEcc gives good predictions for the three slabs with rela-
tively low reinforcement ratios (PD4; PD5; and PD3) but overestimates the measured 
failure load of slabs PD10 and PD12. The predictions of ATENA and Drakatos et al. 
(2018) model were also higher than the measured value for PD10 and PD12. Fig. 6-20 
compares the experimental crack pattern and deformed shape with those obtained with 
the JSPMEcc and ATENA for specimen PD4. Separation of the joint elements in the 
hogging half of the JSPMEcc is seen to correspond to shear deformation resulting from 
diagonal shear cracks in the ATENA analysis as well as the laboratory test. 
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Figure 6-20. Deformed shape and crack patterns at failure of specimen PD4 (crack 

patterns from experimental test is adapted from Drakatos et al., 2016). 
 

6.3.3.3. Series (c): increasing eccentricity (cyclic) by Drakatos et al. (2016) 

In this series, five slabs (PD8, PD6, PD2, PD13, and PD11) of Drakatos et al. (2016) 
that were subjected to reversed-cyclic loading were simulated using the JSPMEcc (exten-
sion of the JSPM for eccentric loading). Only half of the slab was modelled in ADAPTIC 
using 100 mm uniform mesh size. In the actual test, cyclic loading protocols with 2 cycles 
per targeted drift level were applied (see Fig. 6-2). However, concrete model (con11) in 
ADAPTIC does not consider damage due to cyclic loading. Thus, the simulation in this 
series was still performed monotonically. Thus, the main difference between the treat-
ment of JSPMEcc in this series compared to the previous monotonic series was only the 
coupled joint of the master joint. As previously mentioned, for monotonic loading sce-
nario, the failure of master joint is linked to the failure of the standard punching joint 
located at the axis of applied unbalanced moment (i.e. representing shear redistribution 
of the whole hogging half). On the other hand, for cyclic scenario, the master joint is 
linked to the failure of joint with maximum slab sector rotation to further reduce the 
contribution of redistribution due to cyclic degradation.  
Fig. 6-21 shows experimental and predicted moment versus slab-column connection ro-
tation for all five slabs. Predicted results are shown for the JSPMEcc, ATENA, and the 
analytical model of Drakatos et al. (2018) (curves are extracted directly from Drakatos 
(2016)). For clarity, all moment-rotation responses are presented in a form of backbone 
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(skeleton) curve. Fig. 6-21 shows that all the considered approaches gives good predic-
tions of both the moment-rotation response and failure load. There is a small, but notable, 
difference between the failure criteria adopted in the JSPMEcc and by Drakatos et al. 
(2018). In the JSPMEcc, the joint element in the slab-sector with maximum rotation is 
not the first joint to fail. This is because shear concentration is realistically modelled in 
the model and thus failure initially occurs in joints located around the corner of the 
control perimeter. Study of joint shear forces shows that basing global failure on the first 
joint to fail produces unrealistically low failure loads. Therefore, unlike the model of 
Drakatos et al., the JSPMEcc for cyclic loading includes limited shear redistribution 
around the flexural front face of the control perimeter. 
 

 
 
Figure 6-21. Moment versus slab-column connection rotation and failure point of 

all five slabs in PD series of Drakatos et al. (2016) tested under cyclic 
loading. 
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6.3.4. Contribution of each lateral resisting mechanisms 

When subjected to unbalanced moment, slab-column connections resist unbalanced mo-
ment through three different lateral load resisting mechanisms: flexure, torsion, and ec-
centric shear. Codes of practice make differing assumptions about the proportion of un-
balanced moment carried by eccentric shear. For example, for a square column, ACI 
318-14 assumes 40% of the unbalanced moment is carried through eccentric shear while 
EC2 (2004) assumes 60%. The exact proportion is difficult to determine even from ex-
perimental test and thus it is still open for discussion. The JSPMEcc provides useful 
insights into the relative contributions of each of these three mechanisms. By extracting 
internal forces from each joint element, the contribution of each lateral resisting mecha-
nism can be quantified in terms of slab-column connection rotation as shown in Fig. 6-
22. Only slab specimens subjected to monotonic loading are considered here. 
 

 
 
Figure 6-22. Contribution of each lateral resisting mechanism as a function of slab-

column connection rotation of all slabs in PD series of Drakatos et al. 
(2016) tested under monotonic loading. 

 Notes: slab-column connection rotation shown in x-axis is not scaled linearly 
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Fig. 6-22 shows that eccentric shear initially resists around 30-40% of the total 
unbalanced moment which is in good agreement with the assumption of ACI 318-14 
(2014). Subsequently, the proportion slightly reduces due to shear redistribution at 
higher connection rotations. Comparing the behaviour of specimen PD5 vs PD12 and 
PD3 vs PD10, it can be seen that the reinforcement ratio has almost no influence to the 
relative contributions of each lateral resisting mechanism. However, this needs further 
confirmation because, in reality, it is possible that specimen with higher reinforcement 
ratio could maintain higher out-of-plane shear stiffness (higher reinforcement ratio delays 
cracking hence maintain aggregate interlock). This would allow higher proportion of 
unbalanced moment to be carried through eccentric shear mechanism. It is important to 
reiterate here that the proportion of each lateral resisting mechanism in JSPMEcc is 
strongly affected by the chosen joint initial stiffness that is controlled by parameter 𝑘𝑟𝑒𝑑. 
The contribution shown in Fig. 6-22 is valid for chosen 𝑘𝑟𝑒𝑑 = 0.1 which was proved to 
produce the closest prediction to the measured peak unbalanced moment capacity. 
Higher value of 𝑘𝑟𝑒𝑑 would produce higher proportion of unbalanced moment carried by 
eccentric shear which eventually triggers earlier punching failure. 

6.3.5. Verification summary 

Table 6-3 compares ratios of measured to calculated punching resistance for all the slabs 
considered in Section 6.3.3 𝑉𝑡𝑒𝑠𝑡/𝑉𝑐𝑎𝑙𝑐 for Hawkins et al. (1989) series; 𝑀𝑡𝑒𝑠𝑡/𝑀𝑐𝑎𝑙𝑐  for 
Drakatos et al. (2016) series. Results are presented for the JSPMEcc as well as for the 
analytical model of Drakatos et al. (2018) and 3-D solid model in ATENA.  
Consideration of Table 6-3 shows that the JSPMEcc as well as Drakatos et al. give ex-
cellent results with low COV and mean ratio of measured to predicted punching re-
sistance close to 1.0. The ATENA analysis slightly overestimates the measured capacity. 
These results show that limiting shear redistribution through the introduction of the 
master joint leads to realistic predictions of punching resistance for a wide range of slabs. 
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Table 6-3. Summary of predictions of the extended modelling strategy (JSPMEcc), Drakatos et al. (2018) analytical model, and 
ATENA 3-D solid model for slabs subjected to eccentric loading. 

 

No 
Category-

series 
Series identity Slab Source 

Measured / Predicted Punching Resistance 

Proposed method-
ology (JSPMEcc) 

Drakatos et al. 
(2018) analytical 

model 
ATENA 

1 

Series a 
Monotonic constant 

eccentricity 

9.6AH 

Hawkins et al. 
(1989) 

0.995 0.969 - 
2 14AH 0.963 0.908 0.830 
3 9.6AL 0.883 0.911 - 
4 14AL 0.991 0.998 - 
5 9.5BH 0.975 0.918 - 
6 14.2BH 0.959 0.912 - 
7 9.5BL 0.889 0.985 - 
8 14.2BL 0.966 1.152 - 
9 9.6CH 0.988 0.864 - 
10 14CH 0.978 0.918 - 
11 14CL 0.962 0.965 - 
12 

Series b 
Monotonic increasing 

eccentricity 

PD4 

Drakatos et al. 
(2016) 

0.939 1.026 0.985 
13 PD5 1.161 0.979 0.919 
14 PD3 1.070 0.938 0.975 
15 PD12 0.815 0.914 0.872 
16 PD10 0.847 0.855 1.004 
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No 
Category-

series 
Series identity Slab Source 

Measured / Predicted Punching Resistance 

Proposed method-
ology (JSPMEcc) 

Drakatos et al. 
(2018) analytical 

model 
ATENA 

17 

Series c 
Cyclic increasing ec-

centricity 

PD8 

Drakatos et al. 
(2016) 

0.970 1.020 0.846 
18 PD6 1.115 1.030 1.109 
19 PD2 1.052 0.991 0.625 
20 PD13 0.943 0.993 0.771 
21 PD11 1.051 1.078 0.824 

    Mean 0.977 0.968 0.887 

    
Standard devia-

tion 
0.081 0.069 0.125 

    CoV 0.083 0.072 0.141 
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6.4 Proposed analytical method to predict failure of cyclically loaded 
slabs based on CSCT approach 

6.4.1. Limitation of FEA and current design provision 

Numerical analysis with 3-D solid elements is overly complex and computationally de-
manding for practical design. However, it can be used to systematically explore the 
influence and interaction of parameters not fully explored experimentally (e.g. slab depth, 
slab slenderness, column size and shape etc.). For example, the results from 3-D solid 
results presented earlier, both from test series of Drakatos et al. (2016) and from para-
metric studies, suggest that the degree of cyclic degradation is influenced by the magni-
tude of gravity shear and top flexural reinforcement ratio. The proposed JSPMEcc, alt-
hough much more computationally efficient than 3-D solid element modelling, is deemed 
to be more suitable for assessment than design.  
On the other hand, available seismic design guidelines for punching shear like those of 
ACI 318-14 oversimplify the problem by considering only a single variable, GSR. In 
addition, the empirical equation of ACI 318-14 was derived from analysis of scaled-down 
laboratory specimens. The extrapolation of behaviour from reduced scale laboratory tests 
to full scale slabs implicit in ACI 318-14 is questionable due to the well-known “size 
effect”. This section proposes a simplified mechanically based analytical method for the 
design of seismically loaded internal slab-column connections. The method is a simplifi-
cation of the analytical model of Drakatos et al. (2018). The ease of use and accuracy of 
the proposed method is considered equivalent to Level of Approximation II (LoA II) in 
Model Code 2010 (fib, 2013). 

6.4.2. Derivation of the proposed analytical method 

As described in Section 2.6.2, the analytical model of Drakatos et al. (2018) divides the 
slab-column connection into several sector elements along the tangential axis. Each sec-
tor has an individual internal shear and moment forces determined by its slab-sector 
rotation. Slab-sector rotation is assumed to follow a sinusoidal function. Equilibrium is 
formulated firstly at sector level and then at global connection level. At local sector level, 
shear and moment equilibrium is formulated similarly as the original axis-symmetric 
model proposed by Muttoni (2008). At global connection level, a new value of maximum 
slab-sector rotation (𝜓𝑚𝑎𝑥) is selected at each load step and then iteration is performed 
to determine a value of minimum slab-sector rotation (𝜓𝑚𝑖𝑛) which fulfills equilibrium 
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in terms of total shear force and unbalanced moment at the connection. Failure of cycli-
cally loaded slabs is assumed to take place when the sector subjected to the largest slab-
sector rotation reaches the CSCT failure criterion. The formulation of moment-rotation 
relationship and determination of failure point is coupled in this model and must be 
solved simultaneously. Unlike the model of Drakatos et al. (2018), the simplified method 
(analytical) proposed here formulates the moment-rotation and failure criterion inde-
pendently which significantly simplifies the model. Explanations regarding the formula-
tion of moment-rotation relationship and failure criterion are described first in Section 
6.4.2.1 and 6.4.2.2, respectively, and then followed by the description of a step-by-step 
procedure to find the failure point of cyclically loaded slab in Section 6.4.2.3. 

6.4.2.1. Formulation of moment-rotation relationship 

 Component of relative slab-column connection rotation (𝝍𝒔𝒄𝒄) 
Acquiring a sufficiently accurate moment-rotation relationship is crucial for assessment 
based on CSCT approach since it directly relates punching resistance to the relative 
slab-column connection rotation. The proposed method adopts and slightly modifies the 
formulation of load-rotation response provided in LoA II of MC2010. The maximum 
slab-sector rotation (𝜓𝑚𝑎𝑥) is calculated using the following procedure from MC2010: 
 

 𝜓𝑚𝑎𝑥 = 1.5 𝑟𝑠𝑑 . 𝑓𝑦𝐸𝑠(
𝑚𝐸𝑑𝑚𝑎𝑥𝑚𝑅𝑑ℎ𝑜𝑔

)1.5
 (180) 

 

 𝑚𝐸𝑑𝑚𝑎𝑥 = 𝑉𝑔𝑟𝑎𝑣 (18 + |𝑒𝑢|2 𝑏𝑠) (181) 

 
 𝑏𝑠 = 1.5 √𝑟𝑠,𝑥. 𝑟𝑠,𝑦  (182) 

 

 𝑚𝑅𝑑ℎ𝑜𝑔 = 𝜌𝑡𝑜𝑝. 𝑓𝑦. 𝑑2 (1 − 𝜌𝑡𝑜𝑝. 𝑓𝑦2 𝑓𝑐 ) (183) 

 
where 𝑟𝑠 is the distance of the zero radial bending moment at the direction of applied 
moment relative to the slab centreline, 𝑑 is the average effective flexural depth of the 
slab, 𝑓𝑦 is the yield strength of the flexural reinforcement bars, 𝐸𝑠 is the Young’s mod-

ulus of the reinforcement bars, 𝑚𝐸𝑑𝑚𝑎𝑥 is the maximum average moment per unit length 

(hogging) for calculation of the flexural reinforcement in the support strip at the column 
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face, 𝑉𝑔𝑟𝑎𝑣 is the shear force due to gravity load, 𝑒𝑢 is the eccentricity of the resultant 

of shear force with respect to the centroid of the basic control perimeter, 𝑏𝑠 is the width 
of the support strip for calculating the average moment per unit length, 𝑟𝑠,𝑥 and 𝑟𝑠,𝑦 
denote the positions on the x and y axes respectively where the radial bending moment 
is zero measured from the slab centreline, 𝑚𝑅𝑑ℎ𝑜𝑔 is the design average flexural strength 

per unit length in the support strip for hogging moment (with positive sign), 𝜌𝑡𝑜𝑝 is the 

average top flexural reinforcement ratio in the support strip, and 𝑓𝑐 is the specified con-
crete compressive strength. 
Although the punching resistance of cyclically loaded slabs is assumed to depend on the 
maximum rotations as assumed by Drakatos et al. (2018), it is necessary to determine 
the minimum (𝜓𝑚𝑖𝑛) slab rotation in order to calculate relative slab-column connection 
rotation (𝜓𝑠𝑐𝑐). MC2010 gives no guidance on the calculation of minimum slab rotation. 
In the proposed method, a modification is made to Eq. 180 to 183. The modified for-
mulation for 𝜓𝑚𝑖𝑛 depends on the sign of 𝑚𝐸𝑑𝑚𝑖𝑛 (analogous to 𝑚𝐸𝑑𝑚𝑎𝑥 from Eq. 181) 

which determines whether top or bottom reinforcement is activated at the column face 
supporting the slab-sector rotating 𝜓𝑚𝑖𝑛. For positive value of 𝑚𝐸𝑑𝑚𝑖𝑛, 𝜓𝑚𝑖𝑛 (in radians) 

can be calculated as: 
 

 𝜓𝑚𝑖𝑛(+) = 1.5 𝑟𝑠𝑑 . 𝑓𝑦𝐸𝑠(
𝑚𝐸𝑑𝑚𝑖𝑛𝑚𝑅𝑑ℎ𝑜𝑔

)1.5
 (184) 

 
with 

 

 𝑚𝐸𝑑𝑚𝑖𝑛 = 𝑉𝑔𝑟𝑎𝑣 (18 − |𝑒𝑢|2 𝑏𝑠) (185) 

 
The negative sign of 𝑒𝑢 in Eq. 185 indicates that the unbalanced moment induces shear 
forces that are opposite to shear from gravity load (i.e. opposite condition to the sector 
with maximum rotation). For negative value of 𝑚𝐸𝑑𝑚𝑖𝑛, 𝜓𝑚𝑖𝑛 (in radians) is expressed 

as: 
 

 𝜓𝑚𝑖𝑛(−) = −1.5 𝑟𝑠𝑑 . 𝑓𝑦𝐸𝑠(
∣𝑚𝐸𝑑𝑚𝑖𝑛 ∣𝑚𝑅𝑑𝑠𝑎𝑔

)1.5
 (186) 
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where 𝑚𝑅𝑑𝑠𝑎𝑔  is the design average flexural strength per unit length in the support strip 

for sagging moment which is given by: 
 

 𝑚𝑅𝑑𝑠𝑎𝑔 = 𝜌𝑏𝑜𝑡. 𝑓𝑦. 𝑑2 (1 − 𝜌𝑏𝑜𝑡. 𝑓𝑦2 𝑓𝑐 ) (187) 

 
where 𝜌𝑏𝑜𝑡 is the average bottom reinforcement ratio in the support strip. The ratio of 
𝜌𝑏𝑜𝑡 in Eq. 187 should be limited to a minimum value of 0.5𝜌𝑡𝑜𝑝. In addition, based on 

calibration with moment-rotation response from test data, 𝑚𝐸𝑑𝑚𝑖𝑛 in Eq. 186 shall not 

be taken larger than 𝑚𝑅𝑑𝑠𝑎𝑔 . These two conditions are introduced as the limiting criteria 

to prevent unrealistically large value of minimum rotation (𝜓𝑚𝑖𝑛(−)) hence very large 

𝜓𝑠𝑐𝑐. Full response of unbalanced moment (𝑉𝑔𝑟𝑎𝑣. 𝑒𝑢) vs 𝜓𝑠𝑐𝑐 can be acquired by increas-

ing the value of eccentricity (𝑒𝑢) incrementally. 

 Component of slab rotation outside 0.22L (𝝍𝒔𝒐) 

After the 𝜓𝑠𝑐𝑐 is formulated, the next step is to consider the contribution of rotation 
from the slab outside the contraflexure region (outside 0.22𝐿). In the original model of 
Drakatos et al. (2018), this contribution is considered using the so-called Effective Beam 
Method (EBM). The method represents the slab outside a radius of 0.22𝐿 with a beam 
element which connects the perimeter of the considered sector element to the perimeter 
of the sector element of the adjacent slab-column connection as illustrated in Fig. 6-23. 
 

 
Figure 6-23. Illustration of Effective Beam Method (EBM) to consider the contri-

bution of the outer slab part to total deformation (reproduced from 
Drakatos et al., 2018). 
Image reproduced with permission of the rights holder, ACI 
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The presence of the beam element introduces non-zero radial and tangential moments 
at the perimeter of the sector element. The perimeter moment is calculated using the 
elastic solution based on the rotation of the paired sector elements at both ends of the 
beam. This perimeter moment is then projected into radial and tangential components. 
The relative slab-column connection rotation (𝜓𝑠𝑐𝑐) is then recalculated by considering 
this radial and tangential perimeter moment. Details of the mathematical formulation 
and derivation are presented in Drakatos et al. (2018). 
Since individual sector elements are not modelled in the proposed method, it is not 
possible to implement the EBM. Alternatively, the rotation contributed from the outer 
slab region is considered as a proportion of the relative slab-column connection rotation. 
In order to determine a reasonable proportion, three slab-column specimens of Robertson 
and Johnson (2006) were simulated using FEA in ATENA. This test series was chosen 
because the test setup allows the contribution of all three components of deformation 
(𝜓𝑠𝑐𝑐, 𝜓𝑠𝑜, 𝜓𝑐𝑜𝑙) to be explicitly measured. The test specimen represented a half-scale 
model of an internal slab-column connection.  
The slabs were unreinforced in shear as well as having discontinuous bottom bars as 
typically used in older flat slab buildings built prior to 1970. All the specimens were 
subjected to combined gravity and lateral (cyclic) loading. The gravity load applied to 
the control specimen (ND1C) represents the full dead load plus 30% of the floor live 
load. This corresponding GSR is 0.25. Two additional specimens (ND4LL and ND5XL) 
were subjected to GSR of 0.37 and 0.48, respectively. All the slabs measured 2743 x 2743 
mm on plan with 114 mm thickness. The slabs were supported by a 254 mm square 
concrete column. The column extended 629 mm above and below the top and bottom 
slab surfaces. The top reinforcement ratio of all three slabs was around 0.52% at the 
column strip and 0.36% outside of it whereas the bottom reinforcement ratio at mid 
span was around 0.36% at the column strip and 0.28% outside of it, all region with 10 
mm diameter bar. In all specimens, the top slab reinforcement extended to 1/3 of the 
span and was not continuous through the midspan. The bottom slab reinforcement was 
continuous at midspan but discontinuous through the column. Details of the slab rein-
forcement for both top and bottom parts are shown in Fig. 6-24. 
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Figure 6-24. Slab reinforcement details for slabs ND1C, ND4LL, and ND5XL for: 

(a) top; (b) bottom regions (adapted from Robertson and Johnson 
(2006)). 
Image reproduced with permission of the rights holder, ACI 

 
Three pin-ended vertical rods were installed at each slab edge to restrain the vertical 
displacement of the slab but allow free lateral movement and rotation. Initially, gravity 
loads were applied through 20 point loads distributed uniformly around the column as 
shown in Fig. 6-25(a). Lateral cyclic load was applied at the top end of the column 
using a displacement-controlled procedure while pinning the bottom end of the column. 
The actual loading protocol was performed in two phases: Phase I consisted of both 
positive and negative cycles up to 5.0% drift level (limited by the maximum capacity of 
the actuator) followed by Phase II consisted of cycling up to 10% drift, but only in 
positive drift direction due to limited actuator displacement (see Fig. 6-25(b)). However, 
the simulations performed in ATENA were just monotonic protocol because the main 
objective is just to capture the contribution of each deformation component. 
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Figure 6-25. (a) Geometry of test specimens and test setup; (b) Cyclic loading 

protocol (adapted from Robertson and Johnson, 2006). 
Image reproduced with permission of the rights holder, ACI 
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This test setup resembles the boundary condition of mid span conditions in the direction 
of lateral loading. In ATENA, several pairs of monitoring points were used to measure 
the contribution of each component of deformation. One monitoring point was put at 
the top end of the column to measure the total lateral drift (𝜓𝑠𝑡), two monitoring points 
were put at the column face to measure the slab rotation (𝜓𝑠𝑙𝑎𝑏 = 𝜓𝑠𝑐𝑐 + 𝜓𝑠𝑜) and addi-
tional two points at a distance of 0.22𝐿 from the slab centreline to explicitly monitor 
outer slab rotation (𝜓𝑠𝑜). The column rotation was determined from the difference be-
tween 𝜓𝑠𝑡 and 𝜓𝑠𝑙𝑎𝑏 while the relative slab-column connection rotation was established 
from the difference between 𝜓𝑠𝑙𝑎𝑏 and 𝜓𝑠𝑜. Fig. 6-26 shows the contribution of each 
component of slab deformation for all three specimens as a function of lateral drift (%). 
The peak load is also indicated in the graph. 
 

 
Figure 6-26. Contribution of 𝝍𝒄𝒐𝒍, 𝝍𝒔𝒄𝒄, and 𝝍𝒔𝒐 as a function of lateral drift for 

slabs: (a) ND1C; (b) ND4LL; (c) ND5XL from Robertson and Johnson 
(2006) analysed using ATENA. 

 
Fig. 6-26 shows that, in general, the contribution of the outer slab region at peak mo-
ment is around 15-20% of the total lateral drift while the contribution of column rotation 
is negligible. Comparing all three plots, it can be seen that the relative contributions of 
each deformation components are relatively insensitive to GSR but this requires further 
confirmation. However on the basis of these analyses, and those of Drakatos et al. (2018) 
it seems reasonable to assume that 𝜓𝑠𝑜 comprises at least 15% of the total lateral drift. 

6.4.2.2. Formulation of failure criterion 

According to MC2010, the control perimeter length is reduced (𝑏0𝑟𝑒𝑑) due to the presence 
of eccentricity as: 
 
 

(a) (b) (c) 
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 𝑏0𝑟𝑒𝑑 = 𝑘𝑒. 𝑏0 (188) 
 

with 
 

 𝑘𝑒 = 1
1 + 𝑒𝑢𝑏𝑢

 (189)

 
where 𝑏𝑢 is the diameter of a circle with the same surface area as the region inside the 
basic control perimeter. According to Eq. 188 and 189, the punching shear resistance 
degrades as the eccentricity increases since the shear stress concentrates more at one 
side of the control perimeter. Reducing the control perimeter by 𝑘𝑒 is analogous to esti-
mating the maximum shear stress by multiplying the average shear stress by 1/𝑘𝑒. In 
the Drakatos et al. model, shear stress is not only affected by eccentricity but also by 
the geometry of the slab (𝑟𝑐/𝑟𝑠) where 𝑟𝑐 is the radius of the column. As the 𝑟𝑐/𝑟𝑠 
increases, the lever arm shortens (the slab becomes less slender) and thus the proportion 
of out of balance moment resisted by eccentric shear increases. Consequently, slab-sec-
tors fail at lower eccentricity than for more slender slabs.  
To account for this geometric factor, a systematic investigation was performed using the 
original model of Drakatos et al. (2018). It was found necessary to separate 𝑟𝑐/𝑟𝑠 into 
two parameters: 𝑟𝑐/𝑑 and 𝑟𝑠/𝑑 (where 𝑟𝑐/𝑑 is the column radius to slab effective depth 
ratio while 𝑟𝑠/𝑑 is the slab slenderness ratio) since there is an interdependency between 
𝑟𝑐, 𝑟𝑠 and 𝑑. To find a correlation between these two geometric parameters and 𝑘𝑒, two 
series of slabs were developed based on so-called “reference specimen”. The geometry 
and material properties of the reference specimen was taken similarly as slab PD6 of 
Drakatos et al. (2016), except for the slab thickness and effective depth that were in-
creased to 300 mm and 240 mm respectively (giving (𝑟𝑠/𝑑)𝑟𝑒𝑓  = 6.25 and (𝑟𝑐/𝑑)𝑟𝑒𝑓  = 

0.8125 in Eq. 191). This change to the reference specimen was necessary to match the 
𝑘𝑒 vs 𝑒𝑢 relationship acquired using Drakatos et al. analytical model to MC2010 (Eq. 
189). 
The first series varies 𝑟𝑐/𝑑 while keeping 𝑟𝑠/𝑑 the same while the second series varies 
𝑟𝑠/𝑑 by keeping 𝑟𝑐/𝑑 the same. For each slab, the ratio of maximum to average shear 
stress expressed in terms of the gradient of 1/𝑘𝑒 was extracted. Then, curve fitting using 
regression analysis was performed to develop analytical expressions to describe the in-
fluences of 𝑟𝑠/𝑑 and 𝑟𝑐/𝑑 on the gradient of 1/𝑘𝑒 as presented in Fig. 6-27(a) and (b), 
respectively. Fig. 6-27(a) shows that the ratio of maximum to average shear stress is 
inversely proportional to the slenderness of the slab 𝑟𝑠/𝑑. Fig. 6-27(b) shows that the 
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concentration of shear stress is linearly increasing as the column radius to depth ratio 
increases. Based on these regression analyses, the 𝑘𝑒 parameter is modified as follows: 
 

 
𝑘𝑒𝑚𝑜𝑑 = 1

1 + 𝑒𝑢𝑏𝑢 {[(𝑟𝑠/𝑑)𝑟𝑒𝑓(𝑟𝑠/𝑑) ] . [0.7 ( 𝑟𝑐/𝑑(𝑟𝑐/𝑑)𝑟𝑒𝑓) + 0.3]} 
(190) 

 
with 

 
 (𝑟𝑠/𝑑)𝑟𝑒𝑓  = 6.25; (𝑟𝑐/𝑑)𝑟𝑒𝑓  = 0.8125 (191) 

 

 

Figure 6-27. Derivation of modified 𝒌𝒆 parameter based on curve regression for: (a) 
slab slenderness ratio; (b) column radius to slab depth ratio. 

 
The additional expressions within the {brackets} in Eq. 190 consider both the slab 
slenderness and column radius to slab depth ratio.  
In addition, the original formulation of 𝑘𝑒 provided in MC2010 does not consider the 
maximum shear stress (peak) that can develop in the sector with maximum rotation. 
Realistically, yielding of the sector element may limit the increase of shear stress and 
enforce shear redistribution to adjacent sectors. To account for this, a lower-bound limit 
to 𝑘𝑒𝑚𝑜𝑑 is introduced as follows: 

 

 𝑘𝑒𝑚𝑜𝑑 ≥ 𝑘𝑒𝑙𝑖𝑚 = 𝑉𝑔𝑟𝑎𝑣
(2𝜋𝑟𝑠). 𝑚𝑅𝑑ℎ𝑜𝑔 . ( 1𝑟𝑞 − 𝑟𝑐)

 (192) 

(a) (b) 
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where 𝑟𝑞 is the radius of the load introduction at the perimeter which is approximated 

as 𝑟𝑠 in this proposed method. This lower-bound limit ensures that the shear stress con-
centration cannot exceed the state where the slab-sector yields. 

6.4.2.3. Step-by-step procedure to determine the failure point 

The following step-by-step procedure can be used to predict the failure point (both un-
balanced moment and rotation capacity) of cyclically loaded slabs (i.e. with constant 
gravity shear forces and increasing eccentricity) using the proposed method: 

1. Assume a value for the ultimate eccentricity (𝑒𝑢), 
2. Calculate the maximum slab rotation (𝜓𝑚𝑎𝑥) for the chosen 𝑒𝑢 from Step 1 using 

Eqs. 180 - 183, 
3. Calculate 𝑘𝑒𝑚𝑜𝑑 in terms of 𝑒𝑢 with Eqs. 190 - 192 and hence the effective control 

perimeter length 𝑏0𝑟𝑒𝑑 = 𝑘𝑒𝑚𝑜𝑑. 𝑏0, 
4. Calculate shear resistance (𝑉𝑅𝑑𝑐) according to CSCT with 𝑏0𝑟𝑒𝑑 from Step 3 and 

𝜓𝑚𝑎𝑥 from Step 2, 
5. Repeat Steps 1 to 4 by iterating 𝑒𝑢 until 𝑉𝑅𝑑𝑐 = 𝑉𝑔𝑟𝑎𝑣, 
6. Calculate 𝜓𝑚𝑖𝑛 using Eqs. 184 - 187 and hence 𝜓𝑠𝑐𝑐, 
7. For assessment purpose, 𝜓𝑠𝑡 can be estimated as 𝜓𝑠𝑐𝑐/0.85 to consider the contri-

bution of 𝜓𝑠𝑜. 
 

This step-by-step procedure, which can be easily implemented in a spreadsheet, is 
demonstrated schematically in Fig. 6-28 which shows that the shear resistance decreases 
with increasing slab rotation and eccentricity. Failure occurs when the shear resistance 
reduces to the applied gravity load at the eccentricity 𝑒𝑢𝑓𝑎𝑖𝑙 shown in Fig. 6-28.  
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Figure 6-28. Schematic illustration of the proposed analytical method to predict 

punching failure of cyclically loaded slabs. 
 

6.4.3. Validation of the proposed analytical method 

6.4.3.1. Initial validation of the proposed 𝝍𝒎𝒊𝒏 and 𝝍𝒔𝒄𝒄 formula 

The proposed modification of MC2010 LoA II to estimate 𝜓𝑚𝑖𝑛 and 𝜓𝑠𝑐𝑐 was validated 
for the cyclically loaded slabs from the PD series of Drakatos et al. (2016) which provides 
complete information of the slab rotations: 𝜓𝑚𝑖𝑛, 𝜓𝑚𝑎𝑥  and 𝜓𝑠𝑐𝑐. For comparison, the 

predictions of the sector model of Drakatos et al. are also presented. For both analytical 
methods, the reinforcement ratio of the slab was increased to take into account the 
stiffening effect of the D40 threaded bars connecting the slab and steel arms in the actual 
test setup. For slabs PD2, PD6, and PD8, top and bottom reinforcement ratio were 
increased to 1.1% and 0.65%, respectively. For slabs PD11 and PD13, top and bottom 
reinforcement ratio were increased to around 1.9% and 1.0%, respectively. The % 
increase in reinforcement ratio was determined based on NLFEA studies using a 2-D 
shell idealisation in ADAPTIC (without joint element) by comparing the response of 
slabs with and without the threaded bars. Plots of measured and predicted 𝜓𝑚𝑖𝑛 and 
𝜓𝑠𝑐𝑐 of all five PD slabs are compared in Fig. 6-29. The proposed method is seen to 
provide reasonably good predictions of 𝜓𝑚𝑖𝑛 and 𝜓𝑠𝑐𝑐 for all the PD slabs. The results 
obtained with the proposed method are in a good agreeement with those obtained with 
the Drakatos et al. sector model. As mentioned earlier, the main advantage of the 
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proposed method is its ease of use which makes is more suitable for practical design 
purposes. 

6.4.3.2. Validation of proposed method against Drakatos et al. method  

Before using the proposed method to predict the behaviour of slabs in the experimental 
test database, it is necessary to ensure that its predictions are in agreement with the 
predictions of the original method of Drakatos et al. (2018) for different slab geometries 
and reinforcement ratios. For this purpose, systematic parametric studies were performed 
by varying these main parameters: 

(a) Flexural reinforcement ratio (𝜌𝑡𝑜𝑝 and 𝜌𝑏𝑜𝑡) 
(b) Column radius to slab depth ratio (𝑟𝑐/𝑑) 
(c) Slab slenderness (𝑟𝑠/𝑑) 
(d) Combination of 𝑟𝑐/𝑑 and 𝑟𝑠/𝑑 
(e) Slab thickness (to investigate “size effect” phenomenon) 

 
For each series above, the GSR is varied between 0.2 - 0.6 (reasonable range in practice). 
The basic geometry and material properties of the investigated slabs were similar to the 
prototype building used by Drakatos et al. (2016). The control specimen had a thickness 
of 250 mm with effective slab depth of 200 mm, span length (𝐿) of 6800 mm and 390 
mm square column. Top reinforcement ratio is 0.75% and bottom reinforcement ratio is 
0.375%. Specified concrete compressive strength (𝑓𝑐 - cylinder) is 32 MPa with maximum 
aggregate size of 16 mm and flexural bars yield strength (𝑓𝑦) is 550 MPa. These dimen-

sions give 𝑟𝑠/𝑑 of 7.48 and 𝑟𝑐/𝑑 of 0.975. Since the proposed method is intended for 
designing slabs under seismic loading consideration, only the validation in terms of de-
formation capacity (lateral drift) will be presented here. For both the proposed and 
Drakatos et al. methods, lateral drift is consistently taken as 𝜓𝑠𝑐𝑐/0.85. 
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Figure 6-29. Measured and predicted minimum and relative slab-column 

connection rotation using the modification of LoA II MC2010 and 
Drakatos et al. model. 

 

 Flexural reinforcement ratio (𝝆𝒕𝒐𝒑 and 𝝆𝒃𝒐𝒕) 
To compare the simplified method with the original method of Drakatos et al., several 
slabs with varying reinforcement ratio were investigated. Four different top reinforce-
ment ratios were considered: 0.75% (reference); 1.0%; 1.25%; and 1.50%. The bottom 
reinforcement ratio was always kept as half of the corresponding top reinforcement ratio. 
Comparison of the predicted lateral drift limit of both methods is shown in Fig. 6-30 
below. Fig. 6-30(a-d) show that both methods give very similar drift limits for all con-
sidered reinforcement ratios. Additionally, Fig. 6-30(e) shows that increasing the rein-
forcement ratio decreases the drift limit at failure, as stated by Drakatos et al. (2016). 
This arises because when higher reinforcement ratio is used, higher shear force is also 
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induced around the control perimeter which eventually causes earlier punching failure. 
A similar response is found in slabs tested under gravity load. 

 Column radius to depth ratio (𝒓𝒄/𝒅) 

Four different values of 𝑟𝑐/𝑑 were investigated in this series: 0.75; 1.0; 1.25; and 1.50. 
Comparison of the predicted lateral drift limit of both methods is shown in Fig. 6-31 
below. Fig. 6-31(a-d) shows that the prediction of the proposed method is in excellent 
agreement with the Drakatos et al. method for the considered range of column radius to 
slab effective depth ratio. In general, it can be seen from Fig. 6-31(e) that increasing 
the column radius increases the drift capacity. This is because the control perimeter 
becomes longer when larger column is used. However, this influence is more pronounced 
for smaller GSR and becomes less significant as the GSR increases. 

 Slab slenderness (𝒓𝒔/𝒅) 
Four different values of slab slenderness (𝑟𝑠/𝑑) were investigated in this series: 4.4; 5.5; 
6.6; and 7.7. These give the ratio of span length to depth ratio (𝐿/𝑑) of 20; 25; 30; and 
35. Comparison of the predicted lateral drift limit of both methods is shown in Fig. 6-
32. Fig. 6-32(a-d) shows that both methods predicted very similar drift limits for all 
considered slab slenderness ranges. In general, it can be seen from Fig. 6-32(e) that drift 
capacity increases as the slab slenderness increases. This is because when slenderness is 
higher, the lever arm becomes longer and thus the proportion of eccentric shear to the 
total unbalanced moment decreases which leads to more ductile failure.  

 Combination of 𝒓𝒄/𝒅 and 𝒓𝒔/𝒅 

In this series, two main parameters that have been previously proved to strongly influ-
ence the behaviour of cyclically loaded slabs were investigated. Two practical slab slen-
derness of 4.4 and 6.6 were selected and further varied with three variations of column 
radius to depth ratio of: 0.5; 1.0; and 1.50. The predicted lateral drift limit of both 
methods is shown in Fig. 6-33. Fig. 6-33 shows that the predictions of the proposed 
method agree well with those of Drakatos et al. (2018). 

 Slab thickness 

In order to investigate the capability of the proposed (simplified) method to predict the 
failure of slabs with different slab thickness (“size effect”), five different slab thicknesses 
(ℎ) were investigated: 150 mm; 250 mm; 350 mm; 450 mm; and 550 mm. The distance 
from the slab surface to the centroid of the outermost flexural reinforcement bar was 
assumed to be 51 mm. Fig. 6-34 shows the lateral drift limits given by each method. 
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Fig. 6-34 shows that the drift limits predicted using the proposed method are in excellent 
agreement with those obtained with the method of Drakatos et al. (2018). Unlike ACI 
318-14, both methods clearly predict the drift limit to reduce with increasing slab effec-
tive depth.  
 

 
Figure 6-30. Comparison of predicted drift limit of proposed method against Dra-

katos et al. (2018) method for slabs with 𝝆𝒕𝒐𝒑 of: (a) 0.75%; (b) 1.0%; 
(c) 1.25%; (d) 1.50%; (e) combined graph. 

(a) (b) 

(c) (d) 

(e) 
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Figure 6-31. Comparison of predicted drift limit of proposed method against Dra-
katos et al. (2018) method for slabs with 𝒓𝒄/𝒅 of: (a) 0.75; (b) 1.0; (c) 
1.25; (d) 1.50; (e) combined graph. 

  

(a) (b) 

(c) (d) 

(e) 
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Figure 6-32. Comparison of predicted drift limit of proposed method against Dra-

katos et al. (2018) method for slabs with 𝒓𝒔/𝒅 of: (a) 3.3; (b) 4.4; (c) 
5.5; (d) 6.6; (e) combined graph. 

  

(a) (b) 

(c) (d) 

(e) 
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Figure 6-33. Comparison of predicted drift limit of proposed method against Dra-

katos et al. (2018) method for combination of slab slenderness and 
column radius to depth ratio: (a) 𝒓𝒔/𝒅 = 4.4; (b) 𝒓𝒔/𝒅 = 6.6 (𝒓𝒄/𝒅 of 
0.5; 1.0; and 1.5). 

 

 
Figure 6-34. Comparison of predicted drift limit of proposed method against Dra-

katos et al. (2018) method for slabs with various slab thicknesses. 
 

6.4.3.3. Validation of proposed method with slabs from experimental database 

The proposed method was validated with an experimental database consisting of 50 
internal slab-column connections (isolated). All the specimens had square columns and 
were loaded with combined gravity and uniaxial lateral loading. All slabs had no open-
ings and no shear reinforcement. The database included 33 specimens that were compiled 
by Drakatos et al. (2018) and 17 additional specimens collected from other sources. 
Details of the specimen geometry and material properties are given in Appendix B. The 
slabs in the database had a wide variation of slenderness, 𝑟𝑠/𝑑 ranging between 5 and 

(a) (b) 
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18, which makes them suitable for validation of the mechanical model proposed here. 
With the exception of slabs tested by Drakatos et al. (2016) and Almeida et al. (2016), 
the majority of the slabs were tested with test setup C according to the classification of 
Drakatos et al. (2016). In test setup C, the lateral load is applied through the column 
while restraining the slab edges in vertical direction. Gravity load can either be applied 
by jacking up the column from below or by adding lead weights from the top surface of 
the slab. The former treatment gives the length of 𝑟𝑠 equals to the half of the slab width 
(0.5𝐿) whereas the latter is typically adjusted to give 𝑟𝑠 equals to 0.22𝐿. These two 
values of 𝑟𝑠 were consistently used when using both the proposed analytical and Draka-
tos et al. methods.  
The reinforcement ratios used in the analyses were calculated using the average effective 
depth to the reinforcement in the x and y axes. All the slabs were isotropically reinforced. 
Only lateral drift (𝜓𝑠𝑡) was reported in most tests. The exceptions were the tests of 
Drakatos et al. (2016), Emam et al. (1997), and Marzouk et al. (2001) all of whom 
reported the relative slab-column connection rotation (𝜓𝑠𝑐𝑐). Thus, for both Drakatos et 
al. and the proposed method, 𝜓𝑠𝑡 is estimated as 𝜓𝑠𝑐𝑐/0.85 to take into account the 
contribution of outer slab region as discussed earlier.  
Representative plots showing the comparison of measured and predicted unbalanced 
moment - 𝜓𝑠𝑡 (or 𝜓𝑠𝑐𝑐), including the failure point, are shown in Fig. 6-35 along with 
NLFEA results of the 3-D solid model (ATENA) when available. Results are grouped 
according to the setup with: (a) non-standard test setup for Drakatos et al. (2016) and 
Almeida et al. (2016); (b) test setup C with gravity load applied to the column; (c) test 
setup C with gravity load applied to the slab. Fig. 6-35 shows that the proposed method 
predicted the moment-rotation response and failure point of slabs from the database 
with reasonable accuracy. The predictions are, generally, in good agreement with the 
Drakatos et al. (2018) method. These results further confirmed the conclusion of para-
metric studies presented in Section 6.4.3.2.  
Measured to predicted unbalanced moment is plotted as a function of GSR for all 50 
slabs in Fig. 6-36. As well as the proposed method, predictions are given for the methods 
of Drakatos et al. (2018), ACI 318-14, EC2 (2004) and the CSCT with non-modified 𝑘𝑒 
value from MC2010. Strength reduction and material safety factors for design codes are 
set to 1.0 and the aggregate size 𝑑𝑔 was taken as the reported size regardless of the use 

of either high strength or light weight concrete. It can be seen from Fig. 6-36 that the 
average measured/predicted unbalanced moment of all methods are greater than 1.0 
(indicating safe predictions) with ACI 318-14 as the most conservative. Comparing the 
scatter of the predictions from all approaches, it can be seen that the proposed method 
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had the lowest variations (CoV of 0.213). By contrast, ACI 318-14 produced the largest 
scatter and this is mainly due to the influence of reinforcement ratio that is neglected. 
The proposed method is relatively comparable in accuracy to the more complex method 
of Drakatos et al. (2018). Lastly, comparison of the predictions of the proposed method 
against the non-modified 𝑘𝑒 parameter from MC2010 shows that the former is more 
accurate owing to the additional parameters accounting slab slenderness and column 
radius to depth ratio. Statistics for the prediction of unbalanced moment are provided 
in Table 6-4. 
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Figure 6-35. Experimental vs predicted moment - rotation curve and failure point 

according to the proposed analytical method and Drakatos et al. (2018) 
method for: (a) non-standard test setup; (b) gravity load applied to 
the column; (c) gravity load applied to the slab. 

 Notes: number within the bracket [ ] represents specimen index used in Table 6-4 and 6-5 

Failure according 
to Drakatos et al. 

Failure according 
to the proposed an-
alytical method 

(a) 

(b) 

(c) 

PD6 [2] PD8 [3] PD2 [1] PD11 [4] 

PD13 [5] C-30 [35] C-40 [36] C-50 [37] 

S1 [12] H10 [18] CD8 [9] CD1 [7] 

ND4LL [28] ND5XL [29] 1C [32] 
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Figure 6-36. Measured to predicted unbalanced moment at failure according to: (a) 

proposed method; (b) Drakatos et al. (2018); (c) ACI 318-14; (d) EC2 
(2004); (e) CSCT with non-modified 𝒌𝒆 parameter from MC2010. 

 
The most critical test of the proposed analytical method is its ability to predict the drift 
or rotation capacity prior to punching. After this deformation capacity is known, the 
stiffness of the primary lateral resisting system can be designed accordingly to avoid 
drift-induced failure. If not possible, shear reinforcement shall be provided around the 
slab-column region to increase the ductility and delay the failure. Measured/predicted 
drifts or relative slab-column connection rotation at peak are shown in Fig. 6-37 for all 
the considered methods. The drift limit according to the methods of ACI 318-14 (Eq. 
193), Hueste and Wight (1999) (Eqs. 194 - 195) and Megally and Ghali (1994) (Eq. 
196) are expressed as: 
 
 GSR ≥ 0.1 ; 𝐷𝑟𝑖𝑓𝑡 = −0.05𝐺𝑆𝑅 + 0.035 ≥ 0.005 (193) 

 
 0.2 < GSR ≤ 0.4 ; 𝐷𝑟𝑖𝑓𝑡 = −0.125𝐺𝑆𝑅 + 0.065  (194) 

 GSR ≥ 0.4 ; 𝐷𝑟𝑖𝑓𝑡 = −0.0167𝐺𝑆𝑅 + 0.0217 (195) 

 

 𝐷𝑟𝑖𝑓𝑡 = 0.005√𝐺𝑆𝑅0.85  (196) 

(a) (b) (c) 

(d) (e) 
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The calculated drift limit (𝜓𝑠𝑡) for slabs with test setup C and gravity load applied to 
the slab is estimated as 𝜓𝑠𝑐𝑐/0.85.  
 

 
Figure 6-37. Measured to predicted lateral 𝝍𝒔𝒕 or 𝝍𝒔𝒄𝒄 at failure according to: (a) 

proposed method; (b) Drakatos et al. (2018); (c) CSCT with non-
modified 𝒌𝒆 parameter from MC2010; (d) ACI 318-14; (e) Hueste and 
Wight (1999); (f) Megally and Ghali (1994). 

 
Fig. 6-37 shows that the proposed method, Drakatos et al., and CSCT with non-modi-
fied 𝑘𝑒 produced similar predictions with average of measured to predicted around 1.2-
1.3 and CoV of around 0.28-0.30. These results are relatively more accurate than the 
predictions of other models (empirical). This is expected because mechanical models 
consider more parameters which makes the predictions becomes closer to the real physics 
of the problem. However, it is admitted that the scatter is still quite large even when 
using mechanically-based models. Plausibly, the scatter is caused by the variation of test 
setup (boundary conditions) and loading protocol (including the variation of number of 
loading cycles per drift level which was found from 3-D solid results to affect the behav-
iour significantly). ACI 318-14 predictions, as intended, provides a lower-bound rather 
than the average prediction. It is important to remark that the main benefits of the the 
analytical method proposed in this study are its (i) mechanical basis, (ii) accuracy, and 
(iii) simplicity compared with the model of Drakatos et al. (2018). 
In Fig. 6-37(a) and (b), there are three slab specimens that are marked: (1) Control 
from Cho (2009); (2) and (3) AP1 and AP3 from (Pan and Moehle, 1989). It could be 

(a) (b) (c) 

(d) (e) (f) 
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seen that both the proposed and Drakatos et al. (2018) methods overestimate the drift 
capacity of slabs AP1 and AP3 significantly. The reason for this is still unknown. The 
drift predictions for AP1 and AP3 improve significantly if the maximum aggregate size 
is taken as 10 mm as used by Drakatos et al. (2018) rather than 25.4 mm as stated in 
the original test report (Pan and Moehle, 1988). For an assumed aggregate size of 10 
mm, the proposed method gives ratios of experimental to predicted drift of 0.83 and 1.09 
for specimens AP1 and AP3 respectively. In addition, it could be seen that, in general, 
all approaches gives very conservative estimate of the drift capacity of slab Control of 
Cho (2009). The reason for this is unknown but all the design methods give conservative 
drift predictions for this specimen. These three specimens are included in the statistics 
shown in Fig. 6-37 and Table 6-5 even though they are possible only outliers. 
Finally, it is also important to mention that both Drakatos et al. and the proposed 
method here have several limitations. Firstly, both approaches assume simple geometries 
where a square slab supported on a square column with symmetric reinforcement ar-
rangement is used. However, in practical design situations, neither square dimension nor 
symmetric reinforcement arrangement is present. To tackle this situation, it is suggested 
to check the drift capacity for each major axis independently and the smallest drift 
should be taken as the design criterion. Secondly, both models only consider unilateral 
loading scenario where the axis of unbalanced moment coincides with one of the major 
axes of the connection. When bi-directional motions are considered, more refined analysis 
such as solid element NLFEA, as presented earlier in this chapter, is deemed to be more 
suitable.
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Table 6-4. Summary of measured to predicted unbalanced moment from slab database. 
 

No Source Specimen GSR 
Measured peak 

unbalanced 
moment (kN.m) 

Measured/Predicted Peak unbalanced moment 

ACI 318-
14 

EC2 
(2004) 

CSCT with 
original ke 

formulation 

Proposed 
method 

Drakatos et 
al. method 

1 

Drakatos et al. (2016) 

PD2 0.78 196.00 1.861 1.787 1.568 1.524 1.179 
2 PD6 0.53 372.00 1.637 1.375 1.380 1.342 1.116 
3 PD8 0.42 384.00 1.489 1.168 1.193 1.159 1.155 
4 PD11 0.83 286.00 3.874 1.277 1.365 1.321 1.287 
5 PD13 0.56 410.00 2.001 1.036 1.112 1.076 1.111 
6 Tian et al. (2008) L0.5 0.23 128.00 0.808 0.998 1.418 1.222 0.989 
7 

Cao (1993) 
CD1 0.84 50.00 2.878 1.472 1.170 1.127 0.843 

8 CD5 0.64 70.50 2.008 1.137 1.032 0.993 0.803 
9 CD8 0.51 84.60 1.877 1.084 1.024 0.986 0.953 
10 Cho (2009) Control 0.30 111.57 0.994 0.823 0.849 1.080 1.139 
11 Choi et al. (2009) SPB 0.25 150.00 1.350 1.145 1.132 1.274 1.574 
12 

Choi et al. (2007) 
S1 0.30 83.10 1.331 1.322 1.239 1.114 1.086 

13 S2 0.50 74.80 1.511 1.744 1.741 1.568 1.184 
14 S3 0.30 121.50 1.832 1.537 1.371 1.226 1.358 
15 Islam & Park (1976) IP3C 0.25 35.80 1.512 1.430 1.507 0.989 1.099 
16 Kang & Wallace (2008) C0 0.30 111.56 1.175 1.179 1.666 1.338 1.029 
17 

Kanoh & Yoshizaki 
(1975) 

H9 0.31 33.00 1.414 1.267 1.297 1.007 0.984 
18 H10 0.32 36.10 1.572 1.119 1.079 0.929 0.964 
19 H11 0.64 25.20 2.039 1.346 1.332 1.147 0.891 
20 

Morrison et al. (1983) 
S4 0.08 35.50 0.790 0.851 0.981 1.081 1.288 

21 S5 0.16 37.50 0.890 0.975 1.106 1.243 1.344 
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No Source Specimen GSR 
Measured peak 

unbalanced 
moment (kN.m) 

Measured/Predicted Peak unbalanced moment 

ACI 318-
14 

EC2 
(2004) 

CSCT with 
original ke 

formulation 

Proposed 
method 

Drakatos et 
al. method 

22 
Pan & Moehle (1989) 

AP1 0.35 52.06 0.866 0.878 0.763 0.750 0.743 
23 AP3 0.22 86.77 1.236 1.186 1.033 0.718 0.807 
24 

Park et al. (2012) 
RCA 0.44 70.70 1.208 0.898 1.039 0.896 0.800 

25 RCB 0.41 81.25 0.994 0.865 1.031 0.893 0.743 
26 Park et al. (2007) RI-50 0.37 91.64 1.376 1.639 2.041 1.282 1.368 
27 

Robertson & Johnson 
(2006) 

ND1C 0.24 42.39 0.719 0.775 0.927 0.944 0.946 
28 ND4LL 0.35 44.45 0.845 0.996 1.189 1.108 1.154 
29 ND5XL 0.45 32.52 0.852 0.990 1.125 1.116 1.002 
30 ND6HR 0.28 58.58 1.114 0.906 0.980 1.189 1.190 
31 ND7LR 0.33 29.91 0.730 0.871 1.060 0.960 1.038 
32 Robertson et al. (2002) 1C 0.25 58.30 0.999 1.005 1.147 1.223 1.173 
33 Stark et al. (2005) C-02 0.38 44.61 0.935 0.819 0.692 0.612 0.602 
34 Zee & Moehle (1984) INT 0.30 10.27 1.388 1.252 1.027 0.971 1.095 
35 

Almeida et al. (2016) 
C-30 0.28 121.60 1.134 1.007 1.040 1.029 1.043 

36 C-40 0.39 102.80 1.257 1.073 1.083 1.072 0.981 
37 C-50 0.49 74.80 1.102 0.967 0.953 0.943 0.767 
38 

Eman et al. (1997) 

H.H.H.C.0.5 0.25 134.47 1.108 1.374 1.638 1.067 1.677 
39 H.H.H.C.1.0 0.25 162.97 1.385 1.216 1.246 1.219 1.359 
40 N.H.H.C.0.5 0.35 100.48 1.385 1.529 1.681 1.279 1.412 
41 N.H.H.C.1.0 0.36 127.24 1.807 1.347 1.319 1.288 1.355 
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No Source Specimen GSR 
Measured peak 

unbalanced 
moment (kN.m) 

Measured/Predicted Peak unbalanced moment 

ACI 318-
14 

EC2 
(2004) 

CSCT with 
original ke 

formulation 

Proposed 
method 

Drakatos et 
al. method 

42 

Marzouk et al. (2001) 

HSLW0.5C 0.26 135.80 1.180 1.445 1.707 1.128 1.714 
43 HSLW1.0C 0.26 174.00 1.512 1.318 1.347 1.318 1.473 
44 NSLW0.5C 0.36 116.20 1.664 1.821 1.991 1.535 1.639 
45 NSLW1.0C 0.36 151.70 2.172 1.614 1.580 1.543 1.623 
46 NSNW0.5C 0.36 132.37 1.895 2.075 2.268 1.749 1.867 
47 NSNW1.0C 0.36 176.40 2.526 1.877 1.837 1.795 1.889 
48 Robertson (1990) 8I 0.18 60.15 1.010 0.990 0.861 0.998 1.035 
49 Song et al. (2012) RC1 0.40 80.75 0.985 0.859 0.882 0.761 0.660 
50 Wey & Durrani (1992) SC0 0.25 62.03 0.997 0.915 0.796 0.934 0.985 

Mean 1.424 1.212 1.257 1.141 1.150 
Standard deviation 0.583 0.312 0.345 0.243 0.303 

CoV 0.410 0.258 0.274 0.213 0.263 
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Table 6-5. Summary of measured to predicted 𝝍𝒔𝒕 or 𝝍𝒔𝒄𝒄 from slab database. 
 

No Source Specimen GSR 
Measured 

drift or 𝝍𝒔𝒄𝒄 
(%) 

Measured/Predicted drift or 𝝍𝒔𝒄𝒄 (%) at peak unbalanced moment 

ACI 
318-14 

Megally 
and 

Ghali 

Hueste 
and 

Wight 

CSCT with 
original 𝒌𝒆 formulation 

Proposed 
method 

Drakatos 
et al. 

method 

1 

Drakatos et al. 
(2016) 

PD2 0.778 0.36* 0.720 0.487 0.414 0.973 0.946 1.248 
2 PD6 0.535 0.86* 1.040 0.767 0.674 1.375 1.342 1.358 
3 PD8 0.424 1.30* 0.941 0.896 0.890 1.737 1.661 1.596 
4 PD11 0.833 0.43* 0.860 0.628 0.553 1.305 1.264 1.627 
5 PD13 0.559 0.86* 1.218 0.806 0.696 1.841 1.760 1.638 
6 Tian et al. (2008) L0.5 0.230 2.00 0.851 0.699 0.552 0.986 0.802 0.774 
7 

Cao (1993) 
CD1 0.843 0.87 1.748 1.293 1.148 1.381 1.331 1.303 

8 CD5 0.640 1.22 2.430 1.323 1.104 1.490 1.444 1.493 
9 CD8 0.510 1.39 1.466 1.179 1.058 1.423 1.339 1.340 
10 Cho (2009) Control† 0.299 4.44 2.212 2.074 1.604 1.854 2.219 2.013 
11 Choi et al. (2009) SPB† 0.250 3.69 1.640 1.416 1.093 1.135 1.291 1.131 
12 

Choi et al. (2007) 
S1 0.300 3.00 1.501 1.410 1.092 1.207 1.010 1.052 

13 S2 0.500 3.00 3.001 2.485 2.250 1.783 1.614 1.450 
14 S3 0.300 3.00 1.500 1.409 1.091 1.364 1.130 1.127 
15 Islam & Park (1976) IP3C 0.246 3.62 1.596 1.367 1.059 1.631 0.812 0.979 

16 
Kang & Wallace 

(2008) 
C0 0.302 2.80 1.408 1.326 1.029 2.074 1.600 1.468 

17 
Kanoh & Yoshizaki 

(1975) 

H9 0.313 2.00 1.032 0.983 0.771 1.195 0.858 0.799 
18 H10 0.324 2.00 1.063 1.023 0.816 1.593 1.297 1.042 
19 H11 0.639 1.00 2.000 1.088 0.908 1.075 0.932 0.916 
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No Source Specimen GSR 
Measured 

drift or 𝝍𝒔𝒄𝒄 
(%) 

Measured/Predicted drift or 𝝍𝒔𝒄𝒄 (%) at peak unbalanced moment 

ACI 
318-14 

Megally 
and 

Ghali 

Hueste 
and 

Wight 

CSCT with 
original 𝒌𝒆 formulation 

Proposed 
method 

Drakatos 
et al. 

method 

20 Morrison et al. 
(1983) 

S4† 0.081 4.50 1.455 0.496 0.821 0.831 0.930 0.681 
21 S5† 0.159 4.80 1.774 1.114 1.063 0.952 1.076 0.904 
22 Pan & Moehle 

(1989) 
AP1† 0.351 1.60 0.918 0.895 0.758 0.459 0.446 0.491 

23 AP3 0.220 3.17 1.320 1.056 0.845 1.201 0.651 0.654 
24 

Park et al. (2012) 
RCA 0.442 1.34 1.040 0.968 0.937 1.417 1.220 1.195 

25 RCB 0.406 1.44 0.980 0.947 0.967 1.274 1.114 1.101 
26 Park et al. (2007) RI-50† 0.370 3.44 2.086 2.040 1.836 1.524 0.993 1.017 
27 

Robertson & 
Johnson (2006) 

ND1C† 0.237 3.00 1.295 1.084 0.847 0.922 0.934 0.945 
28 ND4LL† 0.348 3.00 1.705 1.663 1.397 1.183 1.066 1.099 
29 ND5XL† 0.452 2.00 1.615 1.482 1.416 1.082 1.071 0.993 
30 ND6HR† 0.278 3.00 1.421 1.293 0.990 1.294 1.741 1.626 
31 ND7LR† 0.335 3.00 1.643 1.591 1.295 1.218 1.066 1.053 

32 
Robertson et al. 

(2002) 
1C† 0.247 3.50 1.544 1.323 1.024 1.136 1.188 1.200 

33 Stark et al. (2005) C-02 0.381 2.44 1.530 1.494 1.404 1.201 0.985 0.987 

34 
Zee & Moehle 

(1984) 
INT† 0.302 3.81 1.911 1.800 1.396 1.058 1.018 1.030 

35 
Almeida et al. 

(2016) 

C-30 0.278 2.00 0.948 0.864 0.661 1.071 1.053 0.929 
36 C-40 0.392 1.50 0.975 0.949 0.940 1.115 1.099 1.085 
37 C-50 0.485 1.10 1.025 0.881 0.810 0.969 0.957 0.963 



360 
 

No Source Specimen GSR 
Measured 

drift or 𝝍𝒔𝒄𝒄 
(%) 

Measured/Predicted drift or 𝝍𝒔𝒄𝒄 (%) at peak unbalanced moment 

ACI 
318-14 

Megally 
and 

Ghali 

Hueste 
and 

Wight 

CSCT with 
original 𝒌𝒆 formulation 

Proposed 
method 

Drakatos 
et al. 

method 

38 

Eman et al. (1997) 

H.H.H.C.0.5 0.245 3.95* 1.737 1.484 1.150 1.220 0.811 0.852 
39 H.H.H.C.1.0 0.251 3.56* 1.586 1.372 1.059 1.360 1.310 1.255 
40 N.H.H.C.0.5 0.352 3.43* 1.972 1.925 1.635 1.726 1.116 1.253 
41 N.H.H.C.1.0 0.359 2.45* 1.437 1.405 1.217 1.501 1.443 1.474 
42 

Marzouk et al. 
(2001) 

HSLW0.5C 0.255 4.70* 2.113 1.845 1.420 1.528 0.999 1.091 
43 HSLW1.0C 0.255 3.20* 1.439 1.256 0.967 1.247 1.201 1.153 
44 NSLW0.5C 0.361 4.60* 2.713 2.653 2.313 2.395 1.588 1.673 
45 NSLW1.0C 0.361 3.30* 1.946 1.903 1.659 2.037 1.958 1.977 
46 NSNW0.5C 0.361 3.70* 2.182 2.134 1.860 1.926 1.277 1.346 
47 NSNW1.0C 0.361 3.50* 2.064 2.018 1.760 2.160 2.077 2.096 
48 Robertson (1990) 8I† 0.178 3.50 1.342 0.922 0.819 0.854 0.952 0.813 
49 Song et al. (2012) RC1 0.400 1.40 0.933 0.905 0.933 1.085 0.911 0.865 

50 
Wey & Durrani 

(1992) 
SC0† 0.247 3.50 1.547 1.328 1.027 0.991 1.102 1.008 

Mean 1.528 1.315 1.121 1.347 1.200 1.183 
Standard deviation 0.495 0.483 0.405 0.380 0.351 0.343 

CoV 0.324 0.367 0.362 0.282 0.292 0.290 

Notes: 
*  indicates specimen where 𝜓𝑠𝑐𝑐 is measured from experimental test 
†  indicates specimen where drift is calculated as 𝜓𝑠𝑐𝑐/0.85 to consider the contribution of slab rotation outside 0.22𝐿 for CSCT based methods 
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6.4.4. Code-like curve: GSR vs lateral drift limit 

A code-like curve which express the drift capacity of slab-column connections as a func-
tion of GSR is proposed based on the previously validated analytical method. Two dif-
ferent effective depths were investigated: 120 and 240 mm. The thinner depth is chosen 
to represent typical slabs that were used to derive the equation in empirical models 
whereas the larger depth represents typical slab dimension used in practice. Two differ-
ent reinforcement ratios were further varied: 0.75% and 1.50% while maintaining the 
ratio of the bottom reinforcement as half of the top reinforcement in all slabs. The 
following parameters were used for all slabs: square column with side length of 2𝑑; 𝑓𝑐 = 
30 MPa, 𝑓𝑦 = 460 MPa, 𝑑𝑔 = 16 mm and slab span, 𝐿 = 35 . The practical GSR range 

was chosen to represent flat slabs without shear reinforcement designed to ACI 318-14 
with gravity load equal to full dead load plus 25% live load. Predictions acquired using 
other approaches (as in Section 6.4.3.3) were also considered. In addition, another 
mechanical model, so-called, Tangential Strain Theory of Broms (2016) discussed in 
Section 2.5.5.2 (Chapter 2) was also used to predict the drift limit of all considered 
slabs here. To ensure a consistent comparison with the drift limits of the empirical 
models, drift calculated with all analytical methods was estimated as 𝜓𝑠𝑐𝑐 /0.85 to 
account for the contribution of outer slab region. Fig. 6-38(c) and (d) also include 
measured failure drifts and ATENA predictions for relevant specimens of Drakatos et al. 
(2016). 
The difference between the limiting drifts given by each method is least in  Fig. 6-38(a). 
This is to be expected because as in Fig. 6-38(a) the majority of slab specimens that 
were used to derive the empirical equations were mostly lie around  = 100-120 mm and 
𝜌𝑡𝑜𝑝 of 0.75 - 1.0%. However, when the reinforcement ratio is doubled as shown in Fig. 

6-38(b), the empirical models, which omit the consideration of reinforcement ratio, 
slightly produced higher drift capacity than the mechanical models. Fig. 6-38(c) and (d) 
show that for thicker slabs with 𝑑 = 240 mm, all the considered analytical methods 
predicted significantly lower drift capacity than the empirical models. The ATENA 
predictions in Fig. 6-38(c) and (d) for slabs PD6, PD8, and PD13 are also consistent 
with the CSCT based predictions. This can be explained by considering the influence 
of ”size effect” that is not considered in the empirical models but is taken into account 
in all the mechanical models. These results suggest that deriving a design equation based 
on regression of scaled-down tests and then extrapolating the behaviour to deal with 
slab dimensions used in practice may lead to unsafe design results. However, it should 
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be noted that ACI 318 gives reasonable drift predictions for the relatively thick (250 
mm) slabs of Drakatos et al. (2016) with GSR in the practical range for slabs without 
shear reinforcement. This arises since ACI 318 should provide a lower bound to the test 
data on which it is based. Consequently, the level of accuracy of ACI 318 is very variable 
as shown in Fig. 6-37(d). Adopting a mechanically based model leads to more consistent, 
and accurate, drift predictions as shown in Fig. 6-37(a-c). 
 

 

Figure 6-38. Code-like curves produced by various approaches for slabs with: (a) 𝒅 
= 120 mm, 𝝆𝒕𝒐𝒑 = 0.75%; (b) 𝒅 = 120 mm, 𝝆𝒕𝒐𝒑 = 1.50%; (c) 𝒅 = 
240 mm, 𝝆𝒕𝒐𝒑 = 0.75%; (d) 𝒅 = 240 mm, 𝝆𝒕𝒐𝒑 = 1.50%. 

 

6.5 Conclusion 

This chapter considers the assessment of internal slab-column connections without shear 
reinforcement subjected to eccentric loading (both monotonic and reversed-cyclic). 
Initially, behaviour is assessed using NLFEA (3-D solid) with ATENA which is shown 
to be capable of broadly capturing the backbone response of internal slab-column 

(a) (b) 

(c) (d) 
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connections subjected to cyclic loading. Cyclic degradation and local behaviour such as 
sector-slab rotations, crack patterns, plot of principal tensile strain, and flexural rebar 
strain were also reproduced with reasonable accuracy. One of identified limitations of 
current concrete model in ATENA is its inability to model pinching behaviour which 
produces small error regarding the tangent stiffness at lower drift level and 
overestimation of energy dissipation capacity (as observed from the shape of hysteresis 
loops). Cyclic degradation in the NLFEA is shown to be associated with accumulation 
of plastic strain in the flexural reinforcement close to the column. This is in agreement 
with experimental observations made by Drakatos et al. (2016). Results acquired from 
the parametric study suggest that the degree of cyclic degradation is not the same for 
all conditions. It was found that subjecting the slab-column connection with higher 
number of loading cycle per drift level causing more premature punching failure. Besides, 
slabs with lower gravity shear ratio and/or lower reinforcement ratio were found to be 
more susceptible to cyclic degradation.  

Although a useful tool for investigating mechanisms of punching failure, NLFEA with 
solid elements is much too time consuming and complex which makes it less suitable to 
model large structures. In this chapter, further adjustment of the previously proposed 2-
D shell with joint model was presented (so-called JSPMEcc). The adjustment requires the 
implementation of a new joint element, so-called master joint, installed at slab-column 
junction to manually limit the contribution of shear redistribution. Failure under 
monotonic and cyclic loading can be simulated differently by pairing the master joint to 
joint located at the slab centreline (side-face) and to joint located at sector with 
maximum slab rotation (front-face), respectively. The adjusted model has been validated 
with 21 slabs selected from the database which include both constant and increasing 
eccentricity scenarios. The adjusted method was proved to predict the failure of 
eccentrically loaded slabs accurately. The predictions are comparable to the predictions 
of 3-D solid model in ATENA while the proposed JSPMEcc requires significantly less 
computation time. 

In the last part of the chapter, an analytical method based on the CSCT is developed 
for predicting the peak unbalanced moment and corresponding drift of cyclically loaded 
slabs. The basic control perimeter (𝑏0) is reduced by a multiple 𝑘𝑒𝑚𝑜𝑑 which now takes 

into account of slab slenderness and column radius to depth ratio. In addition, a simple 
moment-𝜓𝑠𝑐𝑐 relationship was developed based on a simple modification to LoA II in 
MC2010. The contribution of outer slab rotation was estimated as around 15% of the 
total drift based on the results of NLFEA using 3-D solid elements. The main 
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simplification of the proposed method is that it separates the calculation of moment-
rotation response and failure criterion which negates the need to explicitly consider 
equilibrium of individual sector elements as done by Drakatos et al. model. The 
prediction of the proposed method is systematically compared to the predictions of 
Drakatos et al. (2018) method with various flexural reinforcement ratio, slab slenderness, 
column radius to depth, and slab thicknesses. It was found that both methods produced 
very similar drift predictions for all considered ranges. The proposed method was then 
used to predict the peak moment and corresponding drift of 50 cyclically loaded internal 
slab-column connections without shear reinforcement from test database. The proposed 
method is shown to produce safe results with less scatter than available empirically-
based models. Comparisons of the proposed method with the related but much more 
complex model of Drakatos et al. show that the accuracy of both methods is pretty much 
comparable. The simpler formulation of the proposed method makes it more attractive 
as a practical design tool. Code-like curves relating the GSR to the lateral drift limit 
were produced using the proposed analytical method for slabs with two different effective 
depths (120 mm and 240 mm) and reinforcement ratios (0.75% and 1.50%). The resulting 
design curves suggest that available empirical-models, including the seismic provisions 
of ACI 318-14 section 18.14.5.1, may be unsafe for slabs with large effective depths or 
large hogging reinforcement ratios. This is in agreement with previous findings of 
Drakatos et al. (2018) and Broms (2016) and has concerning implications for the safety 
of seismically loaded flat slabs designed to ACI 318-14. Further experimental studies are 
required to confirm the prediction of the analytical model. 
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7 Extension of the proposed JSPM to simulate punching 
failure of slabs with shear reinforcement 

 
In typical design scenarios, punching failure around the support region (column, end or 
corner of walls) usually governs the design of flat slabs. Several methods can be used to 
enhance punching shear capacity, including: (1) locally enlarge the slab thickness or 
supported area by adding drop panels or capitals; (2) utilise high-strength or fiber-rein-
forced concrete to improve the concrete shear resistance; (3) install shear reinforcement 
system (stirrups, studs, bent-up bars etc.). Of these, the installation of shear reinforce-
ment is usually the most practical and economic. Several types of reinforcement system 
have been developed, including: bent-up bars, single- or multiple-leg stirrups, double-
headed studs, and other kind of post-installed reinforcing bars that are usually used for 
strengthening of existing slabs. 
In Section 7.1, two recent studies by Lips et al. (2012) and Einpaul et al. (2016) which 
investigated the behaviour of slabs with various shear reinforcement types are described 
and their main findings are summarised. The study by Lips et al. (2012) was chosen 
because it provides comprehensive information on several parameters: shear reinforce-
ment ratios, slab sizes and column dimensions. The study by Einpaul et al. (2016) pro-
vides information on the performance of wide range of shear reinforcement types. In 
Section 7.2, application of critical shear crack theory (CSCT) for slabs with shear rein-
forcement (Fernandez Ruiz and Muttoni, 2009) is described. “Smoothening” of the CSCT 
prediction for failure within the shear-reinforced region is used in current study based 
on a smeared approach proposed by Lips (2012). The extension of the JSPM algorithm 
to take into account the contribution of shear reinforcement is presented in Section 7.3. 
The extended algorithm considers two possible failure modes: (1) failure within the shear-
reinforced region and (2) crushing of concrete strut near support. The extended JSPM 
was validated against 12 slabs with shear reinforcement found in literature, including: 8 
isolated internal slab-column connections (Section 7.4) and 4 continuous slabs (Section 
7.5). 
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7.1 Previous experimental studies of slabs tested with shear rein-
forcement 

7.1.1. Lips et al. (2012) 
Lips et al. (2012) tested 16 full scale flat slab specimens with and without punching 
shear reinforcement. All the specimens were 3 m square with thickness ranging between 
250 and 400 mm. The slabs were supported by a square steel plate ranging in size be-
tween 130 and 520 mm. The tested shear reinforcement systems included corrugated 
shear studs and cages of continuous stirrups with percentage reinforcement ratio ranging 
from 0.23 to 1.01%. The shear studs were arranged radially with constant radial spacing 
in accordance with common European practice. For slabs complying with typical detail-
ing rules, three potential failure modes govern: (1) punching within the shear-reinforced 
region; (2) punching due to strut failure near the support; (3) punching outside the 
shear-reinforced region (see Fig. 7-1). This chapter focusses on the first and the second 
failure modes (Fig 7-1(a) and (b)).  
After testing, the slabs were saw cut in half to expose the internal shear cracks. The 
critical shear crack was steepest in slabs with high ratios of shear studs. At lower shear 
reinforcement ratios, particularly stirrups, the angle of the failure surface was flatter 
(relatively close to 45°) and intersected two or three rows of shear reinforcement. The 
relative efficiency of shear studs and stirrups can be seen by comparing the strengths of 
PL7 with shear studs and PF2 with stirrups. Both specimens had shear reinforcement 
ratios between 0.8 and 0.9%. The increase in strength relative to the control specimen 
without shear reinforcement, PV1, was 182% for PL7 and 161% for PF2 indicating the 
greater efficiency of shear studs. Generally, it can be stated that the increase in strength 
and rotation capacity depends somewhat on the shear reinforcement system with a better 
performance of shear studs due to better anchorage behaviour. 
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Figure 7-1. Punching failure modes of flat slabs with shear reinforcement and their 

corresponding failure criterion according to the CSCT: (a) failure 
within the shear-reinforced region; (b) failure due to crushing of con-
crete strut; (c) failure outside the shear-reinforced region (adapted 
from Einpaul et al., 2016). 
Image reproduced with permission of the rights holder, ACI 
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Comparison of the failure loads of slabs with different slab thicknesses shows that the 
“size effect” was less pronounced for slabs with shear reinforcement. The increase in 
punching capacity with increasing shear reinforcement ratio was found to be most sig-
nificant at low to intermediate shear reinforcement ratios. The rate of increase reduced 
at high shear reinforcement ratios due to the failure mode shifting from failure within 
the shear-reinforced region to concrete strut failure. Regarding the opening of shear crack 
(measured as the change in slab thickness), slabs without shear reinforcement showed 
an abrupt increase in crack opening at the failure load whereas slabs with shear rein-
forcement showed a more gradual increase of crack opening. This is because the opening 
of the critical shear crack is partly restrained by the straining of the shear reinforcement 
intersected by the crack. Thus, providing sufficient shear reinforcement leads to a more 
stable growth of critical crack which allows the slab to carry higher load before punching 
occurs. 
7.1.2. Einpaul et al. (2016) 
Einpaul et al. (2016) carried out a series of full-scale tests to evaluate the performance 
of 11 different punching shear reinforcement systems. The test set up and range of tested 
slab geometries were similar to those adopted by Lips et al. (2012). The shear reinforce-
ment systems included: (a) double-headed studs with various layouts; (b) individual 
links; (c) bent-up bars; and (d) bonded post-installed shear reinforcement. The failure 
mode targeted in this test campaign was the failure of the concrete strut (maximum 
punching capacity). The aim was to objectively compare the performance of each shear 
reinforcement system, dictated mostly by the detailing and anchorage condition. The 
investigation compared the maximum shear resistance attainable with a variety of shear 
reinforcement systems having different anchorage conditions, inclination of bars, layout, 
and extended length of the shear-reinforced region. The list of specimens within this test 
campaign is briefly described below: 

(1) Slab PV1 is the control specimen with no shear reinforcement (Fig. 7-2(a)); 
(2) Slab PB3 with individual hooked links (Fig. 7-2(b)); 
(3) Slab PB2, the anchorage of individual links was improved by enclosing the end 

hooks in blocks of ultra-high-performance fiber-reinforced concrete (UHPFRC) 
with compressive strength of 150 MPa, tensile strength of 10 MPa, and 3% fiber 
content, with fiber slenderness ratio of 80 (Fig. 7-2(c)); 

(4) PF2 with continuous cages of stirrups (Fig. 7-2(d)); 
(5) PL7 with double-headed studs (deformed shafts) whereas PR1 with smooth shafts 

(Fig. 7-2(e)); 
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(6) PS2 with post-installed shear reinforcement in a form of vertical screws that were 
screwed into pre-drilled holes filled with two-component epoxy adhesive (Fig. 7-
2(f)); 

(7) PM1 with non-continuous bent-up bars with double the number of bars in the first 
perimeter than in the second row (Fig. 7-2(g)); 

(8) PT42 with traditional bent-up bars on one perimeter only (Fig. 7-2(h)); 
(9) PA31 with inclined studs with deformed shafts similar to PL7 (Fig. 7-2(i)); 
(10) PV15 with post-installed inclined deformed bars with threaded ends fixed into 

drilled holes with epoxy adhesive while the bottom end was anchored using a spher-
ical washer and a nut (Fig. 7-2(j)) 
 

Not only the type of detailing and system but also the layout of the shear reinforcement 
was varied, including: 

(a) Specimens PS2, PR1, PL7, PV15, PA31, and PM1 had radial arrangement that is 
typically used in European practice; 

(b) PE1 was reinforced with cruciform pattern according to American practice; 
(c) PB3, PB2, and PF2 had uniform shear reinforcement arrangement around the con-

trol perimeter 
 

After testing, all the specimens were saw-cut along the weak-axis and the cracking pat-
terns were recorded and compared. In most of the slabs with shear reinforcement, the 
failure crack formed in the vicinity of the support. In a few cases (PA31, PM1, and 
PT42), the failure crack formed outside the furthermost perimeter of shear reinforcement. 
In slab PL7 with well-anchored shear reinforcement, the failure surface was very steep 
and concrete at the column proximity was severely crushed indicating compression strut 
failure. All specimens showed similar load-rotation response (similar slope) which sug-
gests that the detail or shear reinforcement type does not affect the flexural behaviour 
of the slab. Although all slabs with shear reinforcement showed higher punching and 
deformation capacity than the control specimen (PV1), the increase in resistance varies 
indicating varying efficiencies of the systems. It was clearly shown that shear reinforce-
ment system with better anchorage condition, for example: specimen PB2 with stirrups 
anchored to the UHPFRC blocks shows superior performance than the ones with poor 
anchorage conditions (post-installed systems). Regarding the orientation of the bars, as 
expected, slabs with inclined shear reinforcement performed better than comparable 
slabs with vertical shear reinforcement, regardless of the shear reinforcement type. Com-
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parison of the behaviour of slabs PE1 and PL7, with cruciform and radial layout respec-
tively, reveals no significant difference in terms of failure load. Slab PS2 with post-
installed shear reinforcement experienced anchorage failure that was clearly shown from 
the low level of strain (ineffective) measured along the screws (far from yielding). The 
results of specimen PS2 was used by Einpaul et al. (2016) to propose a conservative 
lower-bound limit for the threshold of the maximum punching strength for post-installed 
systems. 
An important parameter influencing the maximum strut capacity is the position of the 
first shear reinforcement bars and the anchorage condition. Design codes suggest a limit 
for the distance between the column face and the first shear reinforcement perimeter, for 
example: ACI 318-14 (2014) limits the distance to 0.5𝑑, Eurocode 2 (BSI, 2004) allows 
a specific range between 0.3𝑑 and 0.5𝑑 and Model Code 2010 (fib, 2013) specifies a range 
between 0.35𝑑 and 0.75𝑑 with 𝑑 is the slab flexural effective depth. Comparing slab PR1 
with the first layer positioned at 0.57𝑑 to PL7 at 0.41𝑑, it can be seen that the latter 
had 8% higher punching resistance due to closer confined region (also steeper strut) 
between the column face and the studs. 
The CSCT relates the capacity of slabs failing due to compression strut failure to the 
punching capacity of slabs without transverse reinforcement through a multiplier, de-
picted 𝑘𝑠𝑦𝑠 which depends on the shear reinforcement type. More detailed explanation 

regarding the CSCT model for slabs with shear reinforcement is provided in Section 7.2. 
From this test series (Einpaul et al., 2016), it was found that 𝑘𝑠𝑦𝑠 = 2.6 is appropriate 

for stirrups, whereas for studs, 𝑘𝑠𝑦𝑠 = 3.6 or more dependent on the spacing of shear 

studs and the position of the first shear reinforcement relative to the column face. For 
post-installed type, 𝑘𝑠𝑦𝑠 shall be limited between 2.0 and 2.6 due to premature anchorage 

failure. 
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Figure 7-2. Details of slabs with different shear reinforcement systems (repro-

duced from Einpaul et al., 2016). 
Image reproduced with permission of the rights holder, ACI 

 
7.2 Application of Critical Shear Crack Theory (CSCT) for slabs 

with shear reinforcement (Fernandez Ruiz and Muttoni, 2009) 

As previously explained, the critical shear crack theory (Muttoni, 2008) assumes that 
the opening of the critical shear crack disturbs the force transfer mechanism between 



372 
 

the slab and the support. The remaining resistance of the critical crack to transfer shear 
forces is governed by the crack width opening (𝑤) and roughness of the crack that is 
expressed in terms of maximum aggregate size (𝑑𝑔). The crack width opening is assumed 

to be proportional to slab rotation (𝜓) and effective depth (𝑑). For slabs with shear 
reinforcement, shear reinforcement layers intersected by the diagonal crack increase the 
punching capacity by controlling the opening of the critical crack by carrying a propor-
tion of the load through tensile forces in the bars.  
As mentioned earlier, three different failure modes may develop in slabs with shear re-
inforcement: (1) shear within the shear-reinforced region (𝑉𝑅,𝑖𝑛) (Fig. 7-1(a)); (2) crush-

ing of compressive strut near the column face (𝑉𝑅,𝑐𝑟𝑢𝑠ℎ) (Fig. 7-1(b)); and (3) failure 

outside the shear-reinforced region (𝑉𝑅,𝑜𝑢𝑡) (Fig. 7-1(c)). The governing failure mode is 

the smallest between these three modes. Similarly, CSCT assumes three different failure 
criteria, each representing independent failure mode as described briefly below. 

7.2.1. Failure within the shear-reinforced region 
Within the shear-reinforced region, failure develops when a critical shear crack opens 
localising the strains in the critical shear region. The CSCT assumes that the opening of 
the critical shear crack causes the shear resistance provided by concrete to reduce simi-
larly to slabs without shear reinforcement. Simultaneously, additional resistance is pro-
vided by the tensile forces developing in the shear reinforcement. Thus, the punching 
strength can be written as (Fernandez Ruiz and Muttoni, 2009): 

 
 𝑉𝑅,𝑖𝑛 = 𝑉𝑐 + 𝑉𝑠 (197) 

 
Where 𝑉𝑐 is the concrete contribution calculated as in slabs without shear reinforcement, 
and 𝑉𝑠 is the contribution of shear reinforcement that is assumed to be governed also by 
the opening of the critical shear crack (𝑤). The considered critical shear crack opening 
for calculating 𝑉𝑠 can be written as: 

 
 𝑤 = 𝜅 . 𝜓 . 𝑑 (198) 

 
where 𝜅 is a constant whose value is proposed as 0.5. This parameter indirectly assumes 
that not all of the rotation is performed within a single crack. Thus, the opening of the 
shear crack that activates the shear reinforcement only contributes to 50% of the rotation 
and the other 50% is made by several other smaller cracks. Assuming that the critical 
shear crack forms in a straight manner and the centre of rotation is assumed at its tip, 
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the following expressions can be used to relate the relative displacements of the crack 
lips parallel (𝑤𝑏𝑖) and perpendicular (𝛿𝑏𝑖) to the shear reinforcement (see Fig. 7-3): 

 
 𝑤𝑏𝑖 = 𝜅 . 𝜓 . ℎ𝑖 . cos (𝛼 + 𝛽𝑖 − 𝜋2) (199) 

 
 𝛿𝑏𝑖 = 𝜅 . 𝜓 . ℎ𝑖 . sin (𝛼 + 𝛽𝑖 − 𝜋2) (200) 

 
Where ℎ𝑖 is the vertical distance between the tip of the crack and the point where the 
shear reinforcement crosses the critical shear crack, α is the angle of the critical shear 
crack (assumed to be 45°), and 𝛽𝑖 is the angle between the shear reinforcing bar and the 
slab plane (90° for vertical bars). By knowing the relative displacements parallel to the 
shear reinforcement (𝑤𝑏𝑖) hence the strain (𝜀𝑤𝑖) and stress (𝜎𝑤𝑖) developing at individual 
bar could be determined, depending also on the bond properties of the shear reinforce-
ment. By neglecting the contribution of dowel action, the contribution of shear reinforce-
ment becomes: 

 

 𝑉𝑠 = ∑𝜎𝑤𝑖(𝜓) . 𝐴𝑠𝑖 . sin(𝛽𝑖)𝑛
𝑖=1

 (201) 

 
where 𝐴𝑠𝑖 is the cross-sectional area of the shear reinforcement intersected by the critical 
shear crack. 
Using all the formulations, stresses in each individual layer of shear reinforcement bars, 
within the shear-reinforced region, can be estimated. However, one particular issue iden-
tified by Lips (2012) is the sensitivity of this formulation to the actual position of the 
shear reinforcement. For example, assuming a 45° critical shear crack, the lips of the 
crack close to the tension face of the slab would be around one effective depth away (𝑑) 
from the column face. Assuming that two different scenarios are considered: (1) 2nd layer 
of shear reinforcement located at 0.90 ; (2) 2nd layer of shear reinforcement located at 
1.1  (both have the 1st layer located at 0.5𝑑 from the column face). According to the 
formulation of discrete reinforcement presented earlier, there would be a significant jump 
of 𝑉𝑠 provided by the first and the second scenarios. Although, in reality, Case 1 should 
normally have a higher punching resistance but the actual increase of capacity may not 
be as significant as predicted in the model.  
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Figure 7-3. Contribution of the shear reinforcement: (a) geometrical parameters 
of shear reinforcement and of critical shear crack; (b) opening of crit-
ical shear crack and longitudinal and transverse relative slips at shear 
reinforcement; and (c) contribution of shear reinforcement within the 
punching cone (adapted from Fernandez Ruiz and Muttoni, 2009). 
Image reproduced with permission of the rights holder, ACI 

 
To anticipate this, a smeared representation of the shear reinforcement contribution was 
introduced by Lips (2012). The smeared shear reinforcement ratio calculated at a control 
perimeter set at a distance of 0.5𝑑 from the border of the support is expressed as: 

 

 𝜌𝑤 = 𝑛𝑟 . 𝑑𝑤24  . 𝜋
(𝑏0). 𝑑  .( 𝑑

𝑠0 + 𝑠12) (202) 
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where 𝑛𝑟 is the number of radii of shear reinforcement, 𝑑𝑤 is the shear reinforcement 
diameter, 𝑠0 is the distance between the first row of shear reinforcement and the column 
face, 𝑠1 is the distance between two adjacent reinforcements at the same radius. The 
formula shown within the bracket in Eq. 202 is denoted as the “consideration factor” 
takes into account the influence of shear reinforcement spacing to 𝑉𝑠 in a smeared man-
ner. To calculate the strain of the shear reinforcement, an average value of crack opening 
(𝑤) calculated at the half distance of the critical shear crack is assumed as: 

 

 𝑤 = 𝜅 . 𝜓 . 𝑑2 . cos (𝛼 + 𝛽𝑖 − 𝜋2) (203) 

 
In this study, only vertical shear reinforcement (𝛽𝑖 = 90°) is considered, critical crack is 
assumed consistently as 45°, and 𝜅 is taken as 0.5. Thus Eq. 203 can be rewritten in a 
simpler formulation as: 

 

 𝑤 =  0.5 . 𝜓 . 𝑑2 . cos (𝜋4)  (204) 

 
To determine the stress developing within the bars, two different formulations are pro-
vided for the smeared approach (Lips, 2012): 1) bars with bonds; 2) bars without bonds 
(smooth) as described below: 

7.2.1.1. Deformed shear reinforcement (bars with bonds) 

For deformed shear reinforcement, in general, three types of bond stress distribution 
have to be distinguished depending on the crack opening, the distance between the in-
tersection of the critical shear crack with shear reinforcement and anchorage point (𝑙𝑎𝑖), 
and the bond conditions (Fernandez Ruiz and Muttoni, 2009). However, when smeared 
approach is used and assuming that the average crack opening is calculated at 𝑑/2 from 
the column face, the three cases reduce to two (Lips, 2012) as shown in Fig. 7-4. This 
is because, for a scenario where the critical shear crack intersects the shear reinforcement 
at midheight, the length of 𝑙𝑎𝑖 to top and bottom anchorage points is the same and it 
equals to 𝑙𝑤2  where 𝑙𝑤 is the shear reinforcement length. Thus, the bond stress distribu-
tion will always be symmetric to the midheight of the shear reinforcement. Detail deri-
vation could be consulted to Lips (2012). 
The first case applies while the shear reinforcement is solely activated by bond on each 
side of the crack (see Fig. 7-4(b)). The limit of the crack opening can be determined as: 
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 𝑤𝑙𝑖𝑚 = 4 . 𝜏𝑏𝐸𝑠 . 𝑑𝑤  . (𝑙𝑤2 )2
 (205) 

 
where 𝜏𝑏 is the bond strength, 𝐸𝑠 is the Young’s modulus of the shear reinforcement 
bars and 𝑙𝑤 is the length of shear reinforcement. For crack opening smaller than the 
limit given by Eq. 205 (𝑤 ≤ 𝑤𝑙𝑖𝑚), the stress on the shear reinforcement (𝜎𝑤) can be 
calculated as: 
 

 𝜎𝑤 = √4 . 𝜏𝑏 . 𝐸𝑠 . 𝑤 𝑑𝑤  ≤ 𝑓𝑦𝑤 (206) 

 
where 𝑓𝑦𝑤 is the yield strength of the shear reinforcement. As the load increases, the 

crack opening may grow larger than the limit (𝑤 > 𝑤𝑙𝑖𝑚) as shown in Fig. 7-4(c) and 
in this case, the stress in the bars is calculated as: 
 

 𝜎𝑤 = 𝐸𝑠.𝑤𝑙𝑤 + 2𝜏𝑏𝑑𝑤 . 𝑙𝑤2  ≤ 𝑓𝑦𝑤 (207) 

 

 
Figure 7-4. (a) Opening of the crack assuming smeared shear reinforcement con-

centrated at midheight, (b) stress distribution when 𝒘 ≤ 𝒘𝒍𝒊𝒎, (c) 
stress distribution when 𝒘 > 𝒘𝒍𝒊𝒎 (adapted from Lips, 2012). 

 Notes: this is a special case where the critical shear crack intersects the stud at midheight hence 
the distances from the intersection to both top and bottom anchorage points are equal. 
Image reproduced with permission of the rights holder, ACI 

 
Both the code-like formulation proposed by Fernandez Ruiz and Muttoni (2009) and the 
smeared approach of Lips (2012) calculate the shear reinforcement stress in terms of the 
crack opening at a distance of 𝑑/2 from the column face. As noted by Fernandez Ruiz 
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and Muttoni (2009), this implies that the stress in the shear reinforcement equals “that 
of a shear reinforcement placed at 0.5d from the border of the support region”. In practice, 
the 1st layer of shear reinforcement may not be located at 𝑑/2 from the column face 
which makes the smeared approach approximate.   

7.2.1.2. Smooth shear reinforcement 

When smooth bars are used, it is assumed that no bond between reinforcement and 
concrete occurs and thus the stresses and the strains are constant over the whole length 
of the shear reinforcement. Consequently, the strains can be integrated over the whole 
length to obtain the crack width opening. By using this relationship and assuming a 
linear-elastic material model, the stress developing in the shear reinforcement bars can 
be simply determined as: 
 

 𝜎𝑤 = 𝐸𝑠 . 𝑤𝑙𝑤  ≤ 𝑓𝑦𝑤 (208) 

7.2.2. Failure due to crushing of concrete struts near support region 
Compressive strength of the concrete strut is strongly affected by the transverse strain 
which is influenced by the rotation of the slab as larger rotation causes wider cracks 
along the strut. Fernandez Ruiz and Muttoni (2009) related the concrete strut capacity 
to the punching capacity for concrete contribution alone through a multiplier 𝜆 which 
is equivalent to the parameter 𝑘𝑠𝑦𝑠 used by Einpaul et al. (2016). The value of 𝜆   is 
dictated by the detailing of the shear reinforcement system and the anchorage conditions. 
According to Fernandez Ruiz and Muttoni (2009), 𝜆  is set equal to 3.0 for well-anchored 
shear reinforcement (like headed studs). Otherwise, it should be limited to 2.0. Thus, 
the failure criterion for concrete crushing near support region can be expressed as: 
 

 𝑉𝑅,𝑐𝑟𝑢𝑠ℎ =  𝜆 . 34 . 𝑏0 . 𝑑 . √𝑓𝑐
1 + 15 𝜓 . 𝑑𝑑𝑔0 + 𝑑𝑔

 (209) 

 
where 𝑏0 is the control perimeter defined at 𝑑/2 from the column face, 𝑓𝑐 is specified 
concrete compressive strength, 𝑑𝑔0 is the reference aggregate size equal to 16 mm.  

7.2.3. Failure outside the shear-reinforced region 
Punching outside the shear-reinforced region typically occurs if the extension length of 
the reinforced region is insufficient. In this scenario, diagonal cracks propagate from the 
tension face down to the bottom end of the shear reinforcement at the outermost layer. 
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Fernandez Ruiz and Muttoni (2009) made the conservative assumption that the rotation 
of the slab is concentrated in the shear-critical crack, although a fraction of the total 
rotation, in reality, develops within the shear-reinforced region. The resistance for failure 
outside the shear-reinforced region can be expressed as: 
  

 𝑉𝑅,𝑜𝑢𝑡 = 34 . 𝑏0,𝑜𝑢𝑡 . 𝑑𝑣 . √𝑓𝑐
1 + 15 𝜓 . 𝑑𝑑𝑔0 + 𝑑𝑔

 (210) 

 
where 𝑏0,𝑜𝑢𝑡 is the length of the effective control perimeter measured at 𝑑/2 from the 

position of the outermost shear reinforcement perimeter (calculated with a limit of 4.0𝑑 
on the maximum tangential spacing between adjacent shear reinforcement), 𝑑𝑣 is a re-
duced effective depth which accounts for pullout of shear reinforcement (𝑑𝑣 is measured 
between the average elevation of the flexural reinforcement bars in both orthogonal di-
rections to the elevation where shear reinforcement is anchored).  
 

7.3 Extension of the JSPM algorithm to include the contribution of 
shear reinforcement 

As demonstrated in Chapter 4, 5, and 6, the JSPM produces excellent predictions of 
punching capacity of slabs with different geometries, boundary conditions, and loading 
protocols. However, only slabs without shear reinforcement were considered. This chap-
ter extends the model to include the contribution of shear reinforcement. It is important 
to remark that in this study, only failure within the shear-reinforced region and crushing 
of concrete strut are considered. The JSPM, however, could be extended in the future 
to include failure outside the shear-reinforced region by adding an additional control 
perimeter at 𝑑/2 from the outermost perimeter of shear reinforcement. 
The extension of the JSPM to consider the failure within the shear-reinforced region and 
crushing of concrete strut is relatively straight forward because: (1) both failure modes 
are monitored at the same control perimeter as slabs without shear reinforcement (at 
𝑑/2 distance from the column face); (2) failure criteria for both modes are also related 
to the same monitored slab rotation that is readily available from the original algorithm 
presented in Chapter 4. Thus, only some additional parameters related to the shear 
reinforcement properties are required to be incorporated into the algorithm. Flowchart 
in Fig. 7-5 illustrates the extended algorithm of the JSPM to consider the contribution 
of shear reinforcement. 
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Figure 7-5. Updated JSPM algorithm to include the contribution of shear rein-

forcement according to CSCT (Fernandez Ruiz and Muttoni, 2009). 
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7.4 Verification of the extended JSPM for isolated slabs with shear 
reinforcement (studs and stirrups type) 

To verify the extended algorithm of the JSPM shown in Fig. 7-5, the test series of Lips 
et al. (2012) for slabs with headed studs and of Chana and Desai (1992a) for slabs with 
stirrups were reproduced. Both test series considered isolated slab specimens cut along 
the line of contraflexure as typical laboratory tests. NLFEA using 3-D solid models were 
also performed but only for test series of Lips et al. (2012). In the following sub-section, 
the modelling of shear reinforcement in ATENA is briefly described. This is followed by 
a discussion on the performance of the JSPM compared to ATENA 3-D solid models for 
each test series. 

7.4.1. Modelling of slabs with headed studs using 3-D solid element in ATENA 
For consistency, the input parameters and mesh discretisation of the concrete slab were 
kept the same as for slabs without shear reinforcement. Shear reinforcement was mod-
elled similarly as the flexural reinforcement bars as 1-D line element with embedded 
technique (see Fig. 7-6). Assuming that the anchorages of the headed studs were 
properly installed in the test, perfect-bond model between reinforcement bars and con-
crete was used. This assumption led to a reasonably accurate failure load predictions 
compared to the experimental test results as shown later. Monitoring points, to measure 
rebar stress, were installed on the studs to extract the contribution of shear reinforce-
ment from each individual layer at different load stages. These data are used to investi-
gate the proportion of shear forces resisted by the concrete and by the shear studs at 
different load stages. 
 

 
Figure 7-6. 3-D solid models in ATENA for typical slabs with headed studs. 
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7.4.2. Isolated slabs with headed studs of Lips et al. (2012) 

 Verification of load-rotation response and failure load 

From this test series, three slabs with headed studs were selected: 1) PL11 (𝜌𝑡 = 0.23%); 
2) PL12 (𝜌𝑡 = 0.47%); 3) PL7 (𝜌𝑡 = 0.93%) where 𝜌𝑡 is the transverse reinforcement 
ratio determined as: 
 

 𝜌𝑡 = 𝑛𝑟 . 𝜋4 . 𝑑𝑤2𝑠1. (4𝑐 + 𝜋𝑑) (211) 

 
where 𝑛𝑟 is the number of radii of shear reinforcement, 𝑑𝑤 is the shear reinforcement 
diameter, 𝑠1 is the distance between two adjacent shear reinforcements at the same ra-
dius, 𝑐 is the side length of the column, and 𝑑 is the effective depth of the slab. According 
to experimental test results reported by Lips et al. (2012), the first two specimens, PL11 
and PL12, failed within the shear-reinforced region whereas PL7 failed due to crushing 
of concrete strut indicated with a very steep failure crack near the column. Verification 
was made in order to check two aspects, first is the capability of the CSCT within the 
JSPM algorithm to predict accurately the failure load and secondly is to check whether 
it is capable of predicting the correct failure mode.  
All three slabs measured 3000 mm x 3000 mm x 250 mm with around 1.5% flexural 
reinforcement in each orthogonal direction. The effective depth of the slab was around 
200 mm. In each slab, the central support measured 260 mm square.  The shear studs 
were deformed with bond-strength assumed equal to 2𝑓𝑡 (Lips, 2012) where 𝑓𝑡 is the 
concrete tensile strength calculated as: 
 
 𝑓𝑡 = 0.3 (𝑓𝑐)23 (212) 

 
All three slabs had a radial stud arrangement with constant spacing as typically used in 
European practice. Shear reinforcement in all three slabs was extended till the 7th layers 
of perimeters to avoid punching outside the shear-reinforced region. The first spacing of 
shear reinforcement was positioned at 80 mm from the column face (0.4𝑑) and the con-
secutive spacing is 160 mm (0.8𝑑). The studs consisted of hot-rolled steel with an average 
yield strength ranging between 516 and 591 MPa. Diameter and number of radii for each 
specimen is described below: 

(1) PL11 had 8 radii per layer with 10 mm diameter 
(2) PL12 had 16 radii per layer with 10 mm diameter 
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(3) PL7 had 16 radii per layer with 14 mm diameter 
 

In ADAPTIC, only quarter of the slab was modelled. A uniform mesh size of 50 mm x 
50 mm was used giving a total number of 900 elements. This mesh arrangement requires 
11 joint elements to be installed around the rectangular control perimeter. Fig. 7-7 
shows the load-rotation response and the failure load of these three slabs acquired from 
experimental test, extended JSPM and ATENA 3-D solid model. Failure criteria for 
𝑉𝑐, 𝑉𝑅,𝑖𝑛, and 𝑉𝑅,𝑐𝑟𝑢𝑠ℎ are also plotted along in the graph to identify the governing fail-

ure mode (𝜆 = 3 for all slabs). It can be seen that slabs PL11 and PL12 shown in Fig. 
7-7(a) and (b) failed within the shear-reinforced region (i.e. governed by 𝑉𝑅,𝑖𝑛) whereas 

slab PL7 in Fig. 7-7(c) reached its maximum punching capacity due to strut failure (i.e. 
governed by 𝑉𝑅,𝑐𝑟𝑢𝑠ℎ) as observed in the experimental test. This suggests that CSCT 

predicts the failure mode of all three slabs correctly. Comparing the predicted failure 
load with the measured one, it could be seen that the extended JSPM (denoted as “pro-
posed”) produces very accurate predictions with margin of error below 5% whereas the 
ATENA 3-D solid model slightly overestimates the capacity. In general, the predictions 
acquired using both the JSPM and ATENA are reasonable but the former has the ad-
vantage of requiring significantly less computation time. However, the 3-D solid model 
provides useful additional data, including crack pattern, plots of principal tensile strain, 
principal compressive stress and relative contributions of concrete and shear studs to 
shear resistance, which complement the experimental data. The following sub-sections 
provide a brief summary of these local measurements and their relationship to the as-
sumptions made by CSCT is discussed.
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Figure 7-7. Load rotation response and failure load of isolated slabs reinforced with headed studs: (a) PL11; (b) PL12; and (c) 

PL7 of Lips et al. (2012). 

(b) (a) (c) 
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7.4.2.1. Local measurements extracted from ATENA 3-D solid model and their re-
lationship with CSCT assumptions 

This section presents crack patterns (crack width > 0.1 mm), plots of principal tensile 
strain, principal compressive stress in concrete and stress-strain of headed studs (focusing 
only on the first 3 layers). Comparisons are made of experimental and predicted crack 
patterns. Shear stud stresses from the NLFEA are compared with experimentally derived 
values and checks are made on whether yielding is correctly predicted at failure. Fig. 7-
8 shows these data for slabs PL12 (𝜌𝑡 = 0.47%) and PL7 (𝜌𝑡 = 0.93%). Both the exper-
imental and predicted inclination of the critical shear crack is slightly steeper for slab 
PL7 than PL12 with damage concentrated nearer the support in PL7. This is also in 
agreement with the plots of principal tensile strain and principal compressive stress, both 
at peak load and subsequently (post-peak). The post-peak load was extracted from 
NLFEA results when the load has dropped to around 80-90% of the peak load. Compar-
ing the measured strain of the headed studs with the predicted stress at failure load, it 
can be seen that for slab PL12, ATENA correctly predicts the yielding of region at the 
top of the 2nd layer. However, ATENA does not predict yielding at the bottom end of 
the 2nd layer as measured experimentally. For slab PL7, ATENA accurately predicts the 
concentration of stress at both ends of the 1st and 2nd layer of studs and much lower 
stress on the 3rd layer, as measured. Thus, it can be concluded that the 3-D solid model 
adequately captures the failure mode with crushing of strut for slab PL7 (i.e. with dam-
ages concentrated near the support only) and failure within the shear-reinforced region 
for slab Pl12 (i.e. with diagonal crack extends to a distance that is slightly farther from 
the support).
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Figure 7-8. Measured vs predicted crack pattern (crack width > 0.1 mm), stress-strain of shear studs, minimum principal stress 

and maximum principal strain of slab: (a) PL12; (b) PL7 of Lips et al. (2012). 
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The second parameter that is verified with the measured data is the individual contri-
bution of concrete 𝑉𝑐, shear studs in the 1st (𝑉𝑤,1 𝑏𝑜𝑡) and 2nd layer (𝑉𝑤,2 𝑡𝑜𝑝) at transfer-

ring load from the slab to the support. According to Lips (2012), it is assumed that only 
the force in the first two rows of studs is transferred directly to the column. Lips (2012) 
assumes that the force in the studs is proportional to the strains so prior to yield the 
force in one stud can be estimated by multiplying the strain by the Young’s modulus 
and the cross sectional area of a single stud. Additionally, by assuming that the slab 
behaves in a perfectly symmetric manner, the total shear force (𝑉𝑤,1 𝑏𝑜𝑡 plus 𝑉𝑤,2 𝑡𝑜𝑝) can 

be simply calculated by multiplying the force for single stud with the number of studs 
per perimeter. The force in the first radial layer 𝑉𝑤,1 𝑏𝑜𝑡 is calculated based on the strain 

measured at the bottom end of the stud whereas the force in the second radial layer 
𝑉𝑤,2 𝑡𝑜𝑝 is based on the strain measured at the top end. The contribution of concrete 𝑉𝑐 
is simply calculated by subtracting the total applied load  with 𝑉𝑤,1 𝑏𝑜𝑡 + 𝑉𝑤,2 𝑡𝑜𝑝 (ver-

tical force equilibrium). For the NLFEA results acquired using ATENA, the same pro-
cedure was used except that the strains used to calculate 𝑉𝑤,1 𝑏𝑜𝑡 and 𝑉𝑤,2 𝑡𝑜𝑝 are the 

maximum strain along the stud (i.e. not a strain measured locally as in the experimental 
test). Fig. 7-9 shows the individual contribution of concrete, forces in the 1st and 2nd 
layer of slabs PL12 and PL7. The y-axis is expressed in terms of normalised shear stress 
calculated as: 
 

 𝑣𝑛𝑜𝑟𝑚 = 𝑉𝑏0 . 𝑑 . √𝑓𝑐
 (213) 

 
where 𝑉  is the total vertical load applied to the slab. The x-axis is expressed in terms 
of normalised slab rotation calculated as: 
 

 𝜓𝑛𝑜𝑟𝑚 = 𝜓 . 𝑑𝑑𝑔0 + 𝑑𝑔 
(214) 
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Figure 7-9. Individual contribution of concrete, 1st and 2nd layer of shear studs of 

slabs: (a) PL12; (b) PL7 of Lips et al. (2012). 
 
In Fig. 7-9(a), it could be seen that ATENA predicted the individual contribution rel-
atively well. However, the predicted headed stud contribution is slightly higher than  
measured. This may arise because in ATENA, only maximum strain was measured along 
the studs whereas in the actual test, strain was only measured at a local region around 
the bottom and top ends. The same possibility also applies for slab PL7 shown in Fig. 
7-9(b) where the predicted contribution of studs is higher than reported. Nevertheless, 
ATENA is capable of capturing the main trends from the test, including: (1) the contri-
bution of concrete is dominant at smaller slab rotation and then gradually decreases at 
higher load followed by simultaneous increase of stress developed in the studs; (2) com-
paring slab PL12 and PL7, it can be seen that the contribution of concrete reduces more 
gradually (less steep) for slab PL12 which suggests that the contribution of concrete 
reduces with increasing shear reinforcement ratio. Lastly, as clearly seen in Fig. 7-9(a) 
and (b), the contributions of concrete and shear reinforcement depend on the slab rota-
tion which is in agreement with the main hypotheses of the CSCT. 
The last parameter extracted from ATENA is the activation of shear studs at each 
individual layer, from the 1st layer closest to the column face to the outermost layer (7th 
layer). This information provides an insight into the influence of distance from the sup-
port on the effectiveness of the shear studs. Fig. 7-10 shows the activation of studs for 
individual layer for slabs PL11, PL12, and PL7. The x-axis shows the ratio of predicted 
peak load (𝑃𝑢) whereas the y-axis shows the ratio of maximum stress along the studs to 
yield strength of the bars (i.e. 100% indicates yielding state). 

(a) (b) 
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Figure 7-10. NLFEA activation of shear studs in individual layers for slabs: (a) PL11; (b) PL12; (c) PL7 of Lips et al. (2012).

(a) (b) (c) 
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Fig. 7-10(a) shows that in slab PL11, with the lowest shear reinforcement ratio, the 
first two rows of studs fully yielded at failure, the 3rd row reached 80% of yield strength 
and the 4th row reached up to 60% yield strength. A similar pattern is observed in slab 
PL12 (see Fig. 7-10(b)), but with lower stress developing in the 3rd and 4th rows (70% 
and 45% respectively). On the other hand, for slab PL7 where failure was due to crushing 
of the concrete strut, only studs in the 1st row yielded and relatively small stresses de-
veloped in the 2nd, 3rd, and 4th rows compared to the previous two slabs (see Fig. 7-
10(c)). This trend supports further the previous conclusion about the influence of failure 
mode to the activation of shear reinforcement. Slabs PL11 and PL12 which failed within 
the shear-reinforced region activates more rows due to shallower inclination of the critical 
crack whereas slab PL7 had the highest stress only at the 1st row, consistent with the 
observed steep critical crack at failure. For all three slabs, the stress in the 5th - 7th rows 
was relatively negligible. 

7.4.3. Isolated slabs with stirrups of Chana and Desai (1992a) 
Five slabs from Chana and Desai (1992a) were modelled, including specimen no: 2, 4, 5, 
8, and 9. All five slabs had the same plan dimension of 3000 mm x 3000 mm with varying 
slab thicknesses and column sizes: 

(1) Specimens no. 2 and 4 were 240 mm thick, with  = 200 mm and square column 
dimension of 300 mm x 300 mm.  

(2) Specimens no. 5 and 8 were 250 mm thick, with  = 210 mm and square column 
dimension of 400 x 400 mm 

(3) Specimen no. 9 was 228 thick, with  = 188 mm and column dimension of 300 x 
300 mm.  
 

The flexural reinforcement ratio was around 0.8-0.85% in all the slabs. In all five slabs, 
stirrups were installed according to CIRIA Report 110 (CIRIA, 1985) detail where the 
links pass round the inner layers of both the top and bottom longitudinal reinforcement 
(see Fig. 7-11). The stirrup diameter was 8 mm except for specimen no. 5 with 10 mm 
stirrup diameter. Regarding the layout, all these selected five slabs had similar stirrup 
arrangements with the first stirrups installed at 0.5𝑑 from the column face and they were 
extended to another three rows located at 1.25𝑑, 2.0𝑑, and 2.75𝑑, hence giving 𝑠0 = 0.5𝑑 
and 𝑠1 = 0.75𝑑.  
The number of stirrups per layer was varied as (only the information regarding the first 
two rows was presented): 
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(1) Specimen no. 2: 1st layer = 12; 2nd layer = 12 
(2) Specimen no. 4: 1st layer = 24; 2nd layer = 24 
(3) Specimen no. 5: 1st layer = 12; 2nd layer = 20 
(4) Specimen no. 8: 1st layer = 12; 2nd layer = 20 
(5) Specimen no. 9: 1st layer = 20; 2nd layer = 28 

 

 
Figure 7-11. Shear reinforcement (stirrups) installment in slabs of Chana and Desai 

(1992a) (adapted from Chana and Desai, 1992a). 
Image reproduced with permission of the rights holder, Chana and Desai 

 
The effective area of shear reinforcement within 𝑏0 was determined as: 
 
 𝐴𝑠𝑡𝑜𝑡𝑎𝑙 = 𝐴𝑠1 + 𝐴𝑠2 (215) 

 
with 

 

 𝐴𝑠1 = (𝑛𝑟1. 𝜋. 𝑑𝑤24 ) (216) 

 

 𝐴𝑠2 = (𝑛𝑟2. 𝜋. 𝑑𝑤24 ) .( 𝑑
𝑠0 + 𝑠12 − 1) (217) 

 
Where 𝐴𝑠1 and 𝐴𝑠2 are the total areas of shear reinforcement within the 1st and 2nd 

layers respectively, 𝑛𝑟1  and 𝑛𝑟2  are the numbers of links in the 1st and 2nd layers 
respectively. Eq. 215 - 217 were proposed based on a private correspondence with Dr. 
Stefan Lips. The mean yield strength of the stirrups was reported as 520 MPa and the 
maximum aggregate size of 20 mm was used. The loading was applied by means of 
hydraulic jacks at points equally spaced along a circumference of a circle of 2.4 m 
diameter. The load was generally applied in 10 equal increments where the crack pattern 
and deflections were measured at each interval. After failure, crack pattern was 

Stirrups 
Main flexural 
steel 

Extra T12  
hanger bars 
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investigated and it was reported that the failure plan passing through the links in the 
slab. 
In ADAPTIC, only quarter of the slab was modelled with uniform mesh size of 50 mm 
x 50 mm giving total number of 900 elements. Specimens no. 2, 4, and 9 had 11 joint 
elements, specimens no. 5 and 8 had 13 joint elements along the control perimeter. Load-
deflection or rotation response was not reported from the test so only the measured 
failure load will be verified against the proposed JSPM. Fig. 7-12 shows the predicted 
load-rotation response of all fives slabs along with the measured failure load and CSCT 
failure criteria for 𝑉𝑐, 𝑉𝑅,𝑖𝑛, and 𝑉𝑅,𝑐𝑟𝑢𝑠ℎ.  JSPM prediction of specimen no. 1 (control 

specimen) is also plotted in Fig. 7-12. 
Fig. 7-12 shows that the failure load of all the slabs with shear reinforcement (excluding 
Specimen no. 1) was predicted reasonably well. The accuracy of prediction is mostly 
within 5% error, except for specimen no. 5 where the predicted load is around 8% higher 
than the measured one. According to the CSCT, specimens no. 2, 5, and 8 failed within 
the shear-reinforced region whereas specimens no. 4 and 9 failed due to crushing of strut 
(𝜆 = 2 for all five slabs). Unfortunately, these predicted failure modes cannot be con-
firmed because the slabs were not saw cut after testing. Nevertheless, once again the 
CSCT is shown to produce excellent predictions and the extended algorithm of the JSPM 
worked as intended. 
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Figure 7-12. Load rotation response and failure load of isolated slabs reinforced with stirrups, slab no: (a) 2; (b) 4; (c) 5; (d) 8; 

(e) 9; (f) 1 (control specimen without stirrups) of Chana and Desai (1992a).

(a) (b) (c) 

(d) (e) (f) 
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7.5 Verification of the extended JSPM for continuous slabs with 
shear reinforcement (stirrups type) 

In this section, a final verification of the extended JSPM was carried out using test 
results of Chana and Desai (1992b) where four continuous slabs (FPS2 - 5) with stirrups 
were tested. All four slabs had the same dimension of 9000 mm x 9000 mm x 250 mm 
with a slab effective depth of 210 mm and supported on square column with a dimension 
of 400 mm x 400 mm. All slabs had the same flexural reinforcement ratio of 0.86%. 
Diameter of the stirrups was 10 mm for all slabs except slab FPS3 with diameter of 8 
mm. The position of the stirrups were exactly the same as the isolated slabs presented 
in Section 7.4.3. Number of stirrups in the 1st and 2nd layers for each slab is described 
below: 

(1) Specimen FPS2: 1st layer = 12; 2nd layer = 12 
(2) Specimen FPS3: 1st layer =  8; 2nd layer = 12 
(3) Specimen FPS4: 1st layer = 16; 2nd layer = 24 
(4) Specimen FPS5: 1st layer = 20; 2nd layer = 28 

 
Stirrups were installed according to CIRIA 110 detail where the links pass round the 
inner layers of both the top and bottom longitudinal reinforcement (see Fig. 7-11). Mean 
yield strength of the bars was reported as 506 MPa and maximum aggregate size for 
concrete mix was 20 mm. The test setup was exactly the same as specimen FPS1 
presented earlier in Section 4.3.3 (Chapter 4) so only very brief review is presented 
here. The edges of the specimen were simply supported on a slip membrane on four sides 
on the blockwork. The slabs were cast on a 400 mm square stub column resting on three 
75 ton load cells to give an estimate of the proportion of vertical load carried by the 
central column. Load was applied by means of hydraulic jacks at eight locations in the 
middle of the slab with a circular diameter of 2.4 m from the slab centre point.  
In ADAPTIC, only one quarter of the slab was modelled with a uniform mesh size of 
100 mm x 100 mm giving a total number of 2025 elements. For all slabs, 7 joint elements 
were installed along the control perimeter. Fig. 7-13 shows the predicted load-rotation 
response of all slabs along with the measured failure load from test and CSCT failure 
criteria. It can be seen in Fig. 7-13 that the extended JSPM produces reasonably accu-
rate predictions with slightly lower capacity than the measured value, except for speci-
men FPS2. The error of the prediction is within the range of 10-12%. Comparing Fig. 
7-13 and 7-12, it can be clearly observed that the contribution of shear reinforcement 
(𝑉𝑠) is much more significant for the isolated slabs due to the larger slab rotation at 



394 
 

failure. In order to provide more effective strengthening method for continuous slabs, 
some initial prestressing forces could be introduced to the shear reinforcement. However, 
this is outside of the context of current study. Once again, the main benefit of the CSCT 
is its capability to consider many different modifications to the model, thanks to its 
mechanical formulation. 
 

7.6 Verification summary 

In total, the extended JSPM to include the shear reinforcement contribution was verified 
with 12 slabs: 8 isolated and 4 continuous forms. The ratio of measured/predicted punch-
ing capacity is presented in Table 7-1 along with the ATENA 3-D solid predictions for 
slab PL11, PL12, and PL7 of Lips et al. (2012).  
For the three slabs simulated with ATENA, all of them were overly predicted (unsafe) 
but the size of the sample population is too small to derive any conclusion from these 
results. Future study is required to more properly model the shear reinforcement within 
the slabs using 3-D solid model to achieve better prediction. One possibility is to include 
the bond-slip model to takes into account imperfection of the actual anchorage and bond-
interface between the bars and concrete.  
The proposed JSPM is shown to produce reasonably accurate predictions with the aver-
age of measured to predicted punching capacity of 1.006 and CoV of 7.30%. It can be 
concluded that the proposed algorithm to extend the use of JSPM to consider the con-
tribution of shear reinforcement is successfully achieved. 
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Figure 7-13. Load rotation response and failure load of continuous slabs: (a) FPS2; (b) FPS3; (c) FPS4; (d) FPS5 of Chana 

and Desai (1992b). 

(a) (b) (c) 

(d) 
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Table 7-1. Summary of the predictions of the extended JSPM for slabs with shear 
reinforcement and ATENA 3-D solid model. 

 

No Category Slab Source 

Measured / Predicted Punching 
Resistance 

Proposed methodol-
ogy (JSPM) 

ATENA 

1 

Isolated 

PL11 
Lips et al. (2012) 

1.018 0.858 
2 PL12 1.042 0.910 
3 PL7 1.022 0.911 
4 2 

Chana and Desai 
(1992a) 

0.949 - 
5 4 0.986 - 
6 5 0.923 - 
7 8 0.952 - 
8 9 0.944 - 
9 

Continuous 

FPS2 
Chana and Desai 

(1992b) 

0.898 - 
10 FPS3 1.098 - 
11 FPS4 1.120 - 
12 FPS5 1.118 - 

   Mean 1.006 0.893 
Standard deviation 0.073 0.025 

CoV 0.073 0.028 



7.7 Conclusion 

The chapter extends the proposed JSPM to incorporate the contribution of shear rein-
forcement according to the CSCT formulation of Fernandez Ruiz and Muttoni (2009). 
The current model: (1) failure within the shear-reinforced region and (2) failure due to 
strut crushing near the support. The extension of the algorithm was relatively straight 
forward because the positions of the control perimeter and monitored rotation are the 
same as considered for slabs without shear reinforcement. The additional input parame-
ters only relate to the properties of the shear reinforcement system. For failure within 
the shear-reinforced region, the contribution of shear reinforcement is formulated in 
terms of smeared approach as proposed by Lips (2012). Two different bond models are 
considered: (a) deformed bars with bond (the stress depends on the state of the crack 
opening relative to the crack opening limit); (b) smooth bars with uniform stress and 
strain along the bar. For crushing of strut, a multiplier factor (𝜆) was used. The param-
eter 𝜆 was taken as 2.0 for slabs with stirrups and 3.0 for slabs with headed studs as 
proposed by Fernandez Ruiz and Muttoni (2009). 
The extended JSPM was verified against 12 slabs, including 8 isolated slabs and 4 con-
tinuous one. In general, the proposed model correctly predicted the failure modes and 
provided a good estimate of the punching capacity of all slabs with measured/predicted 
of 1.006 and CoV of 7.30%. Thus, it can be concluded that the extension of the JSPM 
for slabs with shear reinforcement was successfully carried out. The predictions of 
ATENA 3-D solid model for slabs PL11, PL12, and PL7 of Lips et al. (2012) were slightly 
unsafe but the size of the sample population is too small to derive any further conclusion. 
Nevertheless, some local measurements that were extracted from 3-D solid model reveal 
useful insights into some important phenomena. For example, the 3-D solid model pre-
dicted different crack inclination of slabs with different failure mode and correctly cap-
tures the sequence of activation of shear reinforcement rows for each individual modes. 
In addition, the 3-D solid model also reasonably captures the decrease of concrete con-
tribution (𝑉𝑐) followed by a simultaneous increase of shear reinforcement contribution 
(𝑉𝑠) as the slab rotation increases, exactly as stipulated by the CSCT. 
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8 Conclusions 

8.1 Recapitulation 

This thesis develops a novel modelling strategy depicted JSPM (joint-shell punching 
model) for simulating punching failure of reinforced concrete (RC) slabs in which non-
linear joint elements are combined with nonlinear 2-D shell elements. Punching failure 
of the nonlinear joint is governed by the failure criterion of the critical shear crack theory 
(CSCT) of Muttoni (2008). A notable feature of the JSPM is that joint punching re-
sistance is continually updated during the analysis in terms of the slab sector rotation 
calculated at the previous load step. This feature enables the JSPM to accurately simu-
late the slab-column connection behaviour from the initial load stage, occurrence of 
punching (peak), followed by a transition to post-punching stage without the need of 
post-processing. The JSPM is validated in the thesis against numerous isolated internal 
slab-column tests with various loading and reinforcement arrangements, boundary con-
ditions, support shapes and sizes. The JSPM is shown to produce accurate predictions 
of the measured slab-column connection behaviour while requiring significantly less com-
putation time than NLFEA with solid elements. 
Chapter 2 provides a comprehensive review of previous research into punching, including: 
crack kinematics, shear transfer actions, as well as an overview of the main parameters 
affecting punching behaviour. Several mechanical models are described and their main 
features are discussed. Emphasis is placed on the CSCT which is adopted in the JSPM. 
This review chapter concludes with a description of the punching provisions in ACI 318-
14, EC2 (2004) and fib Model Code 2010. 
Chapter 3 describes the basis of the finite element analysis (FEA) and the constitutive 
models adopted for concrete and reinforcement, shape of finite elements, and the adopted 
nonlinear FEA solution procedures. Emphasis is placed on the concrete constitutive 
model, including the treatment of plasticity in compression and the crack model in ten-
sion. This chapter covers both the FEA modelling using 3-D solid element in ATENA 
and 2-D shell element in ADAPTIC. A sensitivity study is presented which demonstrates 
the importance of model calibration to acquire reliable FEA results. 
Chapter 4 describes the development and validation of the JSPM. The underlying con-
cept of the JSPM is that it uses 2-D shell elements to simulate flexural (bending) be-
haviour and nonlinear joint elements to simulate shear failure along the control perimeter. 
The chapter provides a detailed description of the joint element which includes two 
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additional nodes to monitor slab and chord rotation independently. The model is vali-
dated in this chapter for concentric loading in slabs without shear reinforcement using 
33 slabs from the literature.  
Chapter 5 investigates punching in slabs having large supports, including elongated 
columns and walls. The chapter starts by presenting the results of 3-D solid analysis 
with ATENA of internal column punching tests from the literature with elongated sup-
ports. A parametric study is presented of punching in notionally identical slabs with 
increasing support length. The study shows that the contribution of linear shear (one-
way) to total shear resistance increases linearly with support length. Consequently, the 
relative contribution of one-way shear becomes increasingly significant as the support 
length increases. Refinements are made to the JSPM by distinguishing between the con-
tribution of one- and two-way shear mechanisms. The extended JSPM was validated 
against 24 slabs with elongated support. An extension of the CSCT assessment is pro-
posed based on shear-field method to assess the punching capacity of slabs supported on 
either wall-end or wall-corner. 
Chapter 6 considers the assessment of internal slab-column connections without shear 
reinforcement subjected to both monotonic and reversed-cyclic eccentric loading. The 
chapter starts by simulating a recent test campaign of Drakatos et al. (2016) using 3-D 
solid elements in ATENA. The JSPM was further refined in order to realistically simu-
late punching failure under eccentric loading scenario. This refinement, so-called JSPMEcc, 
includes the addition of a “master joint” which is used to realistically limit the extent of 
shear redistribution. This extended model is validated against 21 slabs selected from a 
database of internal slab-column punching failures under both constant and increasing 
eccentricity. The chapter concludes by proposing a simplified analytical method for 
estimating punching failure of slab-column connections without shear reinforcement 
subjected to reversed-cyclic loading. The proposed method was then used to predict the 
peak moment and corresponding drift of 50 cyclically loaded internal slab-column 
connections without shear reinforcement from a test database. 
Chapter 7 describes the extension of JSPM to incorporate the contribution of shear 
reinforcement according to the CSCT formulation of Fernandez Ruiz and Muttoni (2009). 
The extension includes the determination of failure due to: (1) punching within the 
shear-reinforced zone and (2) punching due to strut crushing near the support. The 
extended JSPM for slabs with shear reinforcement was verified against 12 slabs, 
including 8 isolated slabs and 4 continuous ones. 
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8.2 Detailed conclusions 

Detailed conclusions related to three major aspects of the thesis are presented here: (1) 
development of the JSPM and its extension; (2) FEA using 3-D solid elements; (3) 
proposed simplified design method. 

8.2.1. Development of the JSPM and its extension 

8.2.1.1. JSPM (basic) 
The JSPM (joint-shell punching model) combines the use of nonlinear 2-D shell elements 
with nonlinear joint elements. Flexural behaviour of the slab is simulated with shell 
elements while punching failure is simulated using nonlinear joints. The joint elements 
incorporate the failure criterion of the CSCT (Muttoni, 2008). Joint element jel3 (Iz-
zuddin 1991, Izzuddin 2016) is used in the JSPM. It has six independent degrees of 
freedom and consists of two coincident nodes (nodes 1 and 2). Punching failure is repre-
sented by relative vertical displacement (separation) in the out-of-plane direction be-
tween nodes 1 and 2. In this thesis, an innovative joint pairing system was developed by 
utilising two additional nodes (depicted node 3 and 4) to provide slab and chord rota-
tions respectively. The rotation required to calculate the punching resistance according 
to the CSCT is calculated as the difference between the rotations monitored at node 3 
and node 4 (relative slab-column rotation).  
The constitutive behaviour of the joint element consists of three main phases: (1) linear-
elastic; (2) redistribution; (3) post-punching. Transition between phase 1 and 2 is dic-
tated by the CSCT resistance curve. After this local failure is detected, resistance pro-
vided by the joint decreases following the shape of the CSCT curve. This allows redis-
tribution of shear forces from the failing joint to adjacent joints yet to fail hence delaying 
the connection (global) failure, as stipulated by Sagaseta et al. (2011). Transition be-
tween phase 2 and 3 is triggered by a relative vertical displacement threshold of 1 mm 
between node 1 and 2. This simulates a global connection failure indicated with an 
abrupt drop of resistance till reaching the post-peak capacity provided mainly by the 
integrity reinforcement. In the JSPM, the post-punching capacity is determined accord-
ing to the mechanical model of Fernandez Ruiz et al. (2013). 

The basic formulation of the JSPM has been validated against 33 isolated internal slab-
column connections without transverse reinforcement. The tests were grouped into three 
categories namely: (I) axisymmetric; (II) non-axisymmetric; (III) non-standard edge 
boundary conditions. Analysis of these slabs shows that the proposed modelling strategy 
is capable of capturing the load-rotation response, failure point and the post-punching 
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behaviour accurately. The ratio of measured to predicted punching capacity is 1.033 
with coefficient of variation of 0.094. The modelling of shear redistribution is shown to 
produce more realistic predictions for non-axisymmetric specimens in Series II. Analysis 
of Series III, shows that the proposed modelling strategy is capable of accurately captur-
ing the response and failure load of slabs with complex boundary conditions. 

8.2.1.2. Extended JSPM for elongated column scenario 
Refinements were made to the JSPM to simulate punching of slabs supported on elon-
gated column by distinguishing the contribution of one- and two-way shear mechanisms. 
According to the variation of shear force per unit length extracted from 3-D solid anal-
yses in ATENA, it was found that punching failure is triggered locally around the corner 
region with lesser mobilisation of shear resistance along the longer side of the control 
perimeter. In addition, the transition between one- and two-way shear regions can be 
reasonably represented by the border of the MC2010 control perimeter (1.5𝑑 from the 
end of the column with 𝑑 is the average flexural effective depth of the slab). To represent 
these observed phenomena, in the extended JSPM, two-way joints are installed only 
within the MC2010 effective control perimeter region (𝑏0,3𝑑) while one-way joints are 

installed elsewhere but not closer than 1.5𝑑 to the two-way joints. A gap of 1.5𝑑 is 
required between the two-way and one-way joints to reasonably limit the contribution 
of one way-shear. Effectively, the extended JSPM accounts for one-way shear in slabs 
with 𝑐𝑚𝑎𝑥/𝑑 ≥ 6.0 where 𝑐𝑚𝑎𝑥 is the longer side of the support. One-way joint capacity 
is limited to the minimum one-way shear resistance assuming the yielding of flexural 
reinforcement bars according to Cavagnis et al. (2018). Validation of this extension was 
performed against 24 slabs with 𝑐𝑚𝑎𝑥/𝑑 ranging between 3 and 9 and 4 additional slabs 
from the parametric study. It was found that the extended model produced reasonably 
good and consistent predictions for all considered support lengths. The ratio of measured 
to predicted punching capacity is 0.995 with coefficient of variation of 0.112 (no reduc-
tion factor was applied for one-way loaded specimens). 

8.2.1.3. Extended JSPM for eccentric punching scenario (JSPMEcc) 
The basic formulation of the JSPM requires the failure of all joints to occur so that 
global failure can be triggered. Although the assumption is reasonable for concentric 
punching with 𝑐𝑚𝑎𝑥/𝑑 ≤ 3.0, this is not applicable for eccentric punching scenario where 
connection failure is expected to occur only on half side of the control perimeter where 
shear stress is higher (hogging side). To circumvent this, a so-called master joint can be  
installed at the slab-column junction to limit the contribution of shear redistribution. 
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For monotonic loading, the master joint is coupled with the punching joint at the axis 
of applied unbalanced moment whereas for cyclic loading, coupling is with the joint 
element positioned in the slab-sector with maximum rotation. The JSPMEcc has been 
validated against 21 slabs selected from the database which include both constant and 
increasing eccentricity scenarios. This model is shown to predict the failure of 
eccentrically loaded slabs accurately. For the considered database, the ratio of measured 
to predicted punching capacity is 0.977 with coefficient of variation of 0.083. The 
predictions are comparable to the predictions of 3-D solid model in ATENA while the 
proposed JSPMEcc requires significantly less computation time. In addition, the JSPMEcc 
also provides useful information regarding the contribution of each lateral resisting 
mechanisms: flexure, torsion and eccentric shear.  

8.2.1.4. Extended JSPM for slabs with shear reinforcement 
The JSPM was also extended to incorporate the contribution of shear reinforcement 
according to the CSCT formulation of Fernandez Ruiz and Muttoni (2009). The ex-
tended JSPM considers two possible failure modes: (1) failure within the shear-reinforced 
region; (2) failure due to strut crushing near the support. The extension of the algorithm 
was relatively straight forward because the positions of the control perimeter and mon-
itored rotation are the same as considered for slabs without shear reinforcement. Failure 
outside the shear-reinforced zone was outside of the scope of this study but can be added 
in the future by defining a new control perimeter at 𝑑/2 from the last row of shear 
reinforcement. To consider the contribution of shear reinforcement, a smeared approach 
proposed by Lips (2012) was used which also considers the influence of bond (deformed 
vs smooth bars). Regarding the crushing of strut near the support, 𝜆 = 2.0 was adopted 
for stirrups whereas 𝜆 = 3.0 for shear (headed) studs according to Fernandez Ruiz and 
Muttoni (2009). This extended model was verified against 12 slabs, including 8 isolated 
slabs and 4 continuous one. The model correctly predicted the failure modes and pro-
vided good estimate of the punching capacity of all considered slabs. The ratio of meas-
ured to predicted punching capacity is 1.006 with coefficient of variation of 0.137. 

8.2.2. FEA using 3-D solid elements 

8.2.2.1. Sensitivity study and material calibration 
It is important to mention here that all 3-D solid analyses reported in this thesis were 
performed using ATENA but the conclusions presented here should be generally appli-
cable. In general, it could be concluded that sensitivity analysis and material calibration 
are essential in order to acquire reliable FEA results. The sensitivity analysis may include: 
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(1) mesh shape; (2) mesh size; and (3) mesh interpolation order (shape function). Con-
sidering the same mesh size, it was found that hexahedral (cubic) shape generally per-
forms better than the tetrahedral mesh that was found to overestimate the measured 
stiffness. However, meshing with tetrahedral element is beneficial for a scenario where 
the shape of the volume is irregular. Regarding the mesh size, it was found that 10 
elements throughout the slab thickness is sufficient to capture the bending behaviour 
accurately. Finer mesh size can be concentrated only in a region within the 2.0𝑑 from 
the column face and coarser mesh size elsewhere. Linear order element was found to 
produce sufficiently good results. It also requires significantly less computation time than 
quadratic order but this conclusion may need to be further verified for modelling different 
scenarios. Regarding the concrete material model, several parameters have been evalu-
ated, including: (1) crack model (fixed vs rotating); (2) critical compressive displacement 
(compression softening regime); (3) Limit of compressive strength reduction factor. The 
sensitivity of the fixed crack prediction to the adopted shear factor assumption makes it 
less preferable hence rotating crack model is recommended. Regarding the limit of critical 
compressive displacement, it was found that the default value of 0.5 mm based on pre-
vious experimental study by Van Mier (1986) works reasonably well. Increasing the 
critical compressive displacement beyond 0.5 mm (i.e. analogous to increasing the 
amount of plastic energy) was found to overestimate the measured punching capacity. 
Lastly, the limit of compressive strength reduction due to cracking on perpendicular 
direction can be normally taken between 0.5 and 0.8. 

8.2.2.2. Influence of elongated support 
Although producing reasonably accurate predictions for slabs with small square column, 
3-D solid model in ATENA was not able to simulate a distinct failure of slabs with 
elongated support. It seems that the model overestimates the contribution of shear re-
distribution which preventing the global softening to take place after local failure was 
triggered. To circumvent this, a strain based criterion was used to manually determine 
the peak load. This criterion assumes that punching failure occurs when the radial com-
pressive strain in the slab soffit drops to zero at a distance of 0.5𝑑 from the support face.  
Local measurements extracted from the 3-D solid analyses provide useful information to 
get a better understanding of punching with elongated column, including: crack patterns, 
variation in shear force per unit length, ratio of tangential to radial concrete (T/R) 
strain and support/spring reaction. Crack patterns and variation of shear force per unit 
length showed that punching failure of slabs with elongated column is triggered locally 
around the shorter-side of the column. When failure happens, the magnitude of shear 
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force per unit length is much lower along the longer parts of the control perimeter which 
suggests that the failure is local and brittle, with very limited mobilisation of shear 
resistance outside the corner. The variation of T/R along the control perimeter and 
support/spring reaction showed that there is a clear transition between one- and two-
way shear mechanisms that lies around 1.5𝑑 from the corner of the support. A paramet-
ric study on notionally identical slabs with increasing support length shows that the 
contribution of one-way (linear) shear to peak resistance increases linearly with support 
length, reaching 13.4% for longest support with 𝑐𝑚𝑎𝑥/𝑑 = 10 but can be reasonably 
neglected for 𝑐𝑚𝑎𝑥/𝑑 ≤ 6.0. 

8.2.2.3. Influence of reversed-cyclic loading 
Cyclic degradation and local behaviour such as sector-slab rotation, crack patterns, and 
flexural rebar strain were reproduced realistically using 3-D solid analysis. A limitation 
of the adopted concrete model in ATENA is its inability to model pinching behavior. 
This produces small errors in the tangent stiffness at lower drift levels and overestimates 
energy dissipation capacity. Cyclic degradation in ATENA is shown to be associated 
with accumulation of plastic strain in the flexural reinforcement close to the column. 
This accumulation of plastic strain in the bars (tension) interacts directly with the re-
duction of concrete crushing strength in compression. Therefore, if the plastic strain 
accumulates and increases faster, concrete compressive strength decreases faster which 
resulting in earlier crushing (i.e. earlier violation of plasticity yield criterion). Results 
acquired from the parametric study where gravity shear and flexural reinforcement ratios 
were varied suggest that the degree of cyclic degradation is not the same for all specimens. 
It was found that slabs with lower gravity shear ratio and/or lower reinforcement ratio 
were found to be more susceptible to cyclic degradation, as experimentally confirmed by 
Drakatos et al. (2016).  
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8.2.2.4. Contribution of shear reinforcement 
ATENA predictions for slabs with shear reinforcement were slightly unsafe probably 
because the simplification made regarding the perfect bond and anchorage condition 
between the shear studs and the concrete. However, the size of the sample population 
(only 3 specimens were simulated) is too small to derive any firm conclusions. Neverthe-
less, some local measurements that were extracted from 3-D solid analyses reveal useful 
insights into some important phenomena. For example, the 3-D solid analyses predicted 
different crack inclination of slabs with different failure mode and correctly captures the 
sequence of activation of shear reinforcement rows for each individual modes. In addition, 
the 3-D solid analyses also reasonably capture the decrease of concrete contribution (𝑉𝑐) 
followed by a simultaneous increase of shear reinforcement contribution (𝑉𝑠) as the slab 
rotation increases, as stipulated by the CSCT. 

8.2.3. Proposed simplified design method based on CSCT 

8.2.3.1. Shear-field method for assessing failure of elongated column and designing 
slabs supported on wall-corner 

The proposed shear-field method explicitly considers the contribution of one-way (par-
allel) shear on reducing the shear stress demand within the effective punching region 
(𝑏0,3𝑑). This method determines the demand shear for punching check by averaging the 

perpendicular shear force per unit length along 𝑏0,3𝑑. In order to reasonably estimate the 

actual variation of shear force per unit length from nonlinear analysis, out-of-plane shear 
stiffness were modified when performing linear finite element analysis (LFEA). From 
calibration study presented earlier, it was found that a modifier equal to 0.2 should 
reasonably estimate the contribution of one-way shear from nonlinear analyses. The 
proposed shear-field method has been validated against three slabs from an experimental 
database and 4 additional slabs from parametric studies with 𝑐𝑚𝑎𝑥/𝑑 ≥ 6. It was found 
that the method produced closer estimate to the measured punching capacity than the 
approach proposed by MC2010 which completely neglects the contribution of one-way 
shear.  
The shear-field method was applied to the design scenario of a slab supported on a wall-
corner. Two level of approaches are presented: (1) refined method using LFEA; (2) sim-
plified method using hand calculation. The refined method involves averaging the shear 
force per unit length obtained with LFEA along the 𝑏0,3𝑑 whereas the simplified method 

conservatively estimates the demand (peak) shear force based on the proportion of load 
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resisted by a disturbed length (DLw) derived from a systematic parametric study per-
formed in this thesis. The refined method produces very similar predictions of shear 
resistance to the extended JSPM for wall-corner and 3-D solid analysis using ATENA. 
The simplified method produces around 30-35% lower predictions than the refined 
method making it suitable for preliminary design. 

8.2.3.2. Simplified CSCT method for slabs without shear reinforcement subjected 
to reversed-cyclic loading 

The simplified method uncouples the need to solve the moment-rotation and failure 
criterion simultaneously, as required by the original method of Drakatos et al. (2018). 
The proposed method adopts and slightly modifies the parabolic formulation of load-
rotation response provided in LoA II of MC2010 in order to acquire both maximum and 
minimum slab rotations. Regarding the CSCT failure criterion, the simplified method 
modifies the parameter 𝑘𝑒 of MC2010 to take into account the geometry of the slab-
column connection, including the slab slenderness and the ratio of column cross section 
to slab depth, all of which were found to affect the proportion of unbalanced moment 
transferred through eccentric shear. The modifiers were derived using regression analysis 
of results acquired using the original Drakatos et al. (2018) method. In addition, a lower-
bound limit of 𝑘𝑒 was also derived based on the yielding of the sector element. The 
predictions of the proposed method were systematically compared with ones obtained 
using the model of Drakatos et al. (2018) for various flexural reinforcement ratio, slab 
slenderness, column radius to depth, and slab thicknesses. Both methods were found to 
produce very similar drift predictions for all considered ranges. The proposed method 
was then used to predict the peak moment and corresponding drift of 50 cyclically loaded 
internal slab-column connections without shear reinforcement from test database. The 
proposed method was shown to produce safe results with less scatter than available 
empirically-based models. Comparisons of the proposed method with the related but 
much more complex model of Drakatos et al. showed that the accuracy of both methods 
is very comparable. The simpler formulation of the proposed method makes it more 
attractive as a practical design tool. 
 

8.3 Recommendations for future work 

8.3.1. Specific recommendations for future development of JSPM 

 Before the JSPM can be readily used to simulate global behaviour of flat slab 
buildings, the model needs to be firstly extended to edge and corner connections. 
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Simulating failure of edge and corner connections may require further adjustment 
of the control perimeter length to take into account stress concentration due to the 
presence of unbalanced moment. 

 In the current JSPM, transition from Stage II to III is controlled by a relative 
vertical displacement threshold of 1 mm. When assessing single connections, this 
displacement threshold does not affect the predicted punching capacity. However, 
when global flat slab buildings with multiple connections are simulated, this dis-
placement threshold could sensitively affect the redistribution between failed con-
nections to surrounding connections yet to fail. Consequently, defining too large a 
vertical displacement threshold would delay the redistribution hence unrealistically 
simulate a ductile progressive failure. Future investigation should be conducted in 
order to objectively find a reasonable displacement threshold to trigger this tran-
sition, without delaying the progression of failure between multiple slab-column 
connections.  

8.3.2. General recommendations 

 More punching tests on slabs with longer support 𝒄𝒎𝒂𝒙/𝒅 ≥ 10 are required. The 
current slab database has limited maximum support length which makes it hard 
to clearly investigate the substantial contribution of one-way shear. Results from 
these tests can be used to gain useful insight into the behaviour of slabs supported 
on a wall-end or wall-corner. 

 More punching tests are required on slabs with elongated column subjected to 
one-way loading. Based on results presented in Chapter 5, it was found that both 
the extended JSPM (with no reduction factor) and CSCT (𝜓𝑥−𝑦) overestimate the 

failure of slabs supported on elongated column subjected to one-way load from the 
database. More investigation is required to understand whether the concept of 
shear redistribution is still applicable for a scenario with significant non-uniform 
stress distribution. 

 More numerical studies are required to investigate the capability of 3-D solid 
model to simulate punching failure of slabs supported on long column. From 
limited investigation performed in this study, unrealistic shear redistribution causes 
3-D solid model to incorrectly predict the actual failure point. 

 More punching tests on full-scale slabs subjected to reversed-cyclic loading are 
required. From database of slabs compiled in Chapter 6, it was observed that the 
majority of specimens are down-scaled. This is worrying because results of analyt-
ical study presented in Chapter 6 suggest that the size effect may significantly 
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affect the ductility of the slab-column connection. Hence, available empirically-
based models that were derived based on these down-scaled slabs may produce 
unsafe results when used for designing practical slab dimensions in practice. 

 More punching tests on continuous specimen subjected to reversed-cyclic load-
ing are required. For slabs subjected to gravity load, it has been generally acknowl-
edged that the influence of slab continuity and compressive membrane action are 
beneficial. However, this “beneficial” term is evaluated in terms of punching ca-
pacity while the deformation capacity for continuous slab is lower than the isolated 
form. Consequently, from seismic design perspective, the reduction of deformation 
capacity is actually disadvantageous. Thus, future study is required to investigate 
this phenomenon further. 
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Appendix A: FORTRAN script of JSPM algorithm 
SUBROUTINE jfst21 
 
(PROP, & !material input parameters to calculate CSCT resistance curve 
rsold,rcold,cxold,cyold, & !slab and column chord rotation components (including both scalar and vector components) 
dis0,dis, & !displacement or strain parameters 
SVARS0,SVARS, & !strain/stress and deformation/force parameters (updated within the subroutine and sent back to the main program) 
V0,V,& !stress or force parameters (updated within the subroutine and sent back to the main program) 
ktangent) !stiffness parameter (updated within the subroutine and sent back to the main program) 
                                     
REAL, INTENT(IN) :: PROP(10),& 
                       rsold(3),rcold(3),cxold(3),cyold(3),&  
                       dis0,dis,& 

                         SVARS0(4),& 
                        V0 
                  
REAL, INTENT(OUT) :: V,SVARS(4),ktangent 
 
REAL    :: deltadis,rot,vcsct,deltaV !additional variables that are only used within the subroutine 
REAL    :: czold(3) 
 
REAL    :: b0,d,sqrtfc,dg0,dg,kinc,kdegneg,kdegpos,vresneg,vrespos 
REAL    :: disneg0,dispos0,vlimneg0,vlimpos0 
REAL    :: disneg,dispos,vlimneg,vlimpos 
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!INITIALISATION 
 
!PROP parameters that are acquired from the input file (as user's defined parameters) 
b0        = PROP(1) 
d         = PROP(2) 
sqrtfc    = PROP(3) 
dg0       = PROP(4) 
dg        = PROP(5) 
kinc      = PROP(6) 
kdegneg   = PROP(7) 
kdegpos   = PROP(8) 
vresneg   = PROP(9) 
vrespos   = PROP(10) 
 
!EXECUTION 
 
deltadis  = dis - dis0 
!Calculation of unit vector of local z-direction using cross product of unit vector of x and y 
 
czold(1)  = (cxold(2) * cyold(3)) - (cxold(3) * cyold(2)) 
czold(2)  = -1*((cxold(1) * cyold(3)) - (cxold(3) * cyold(1))) 
 
!Calculation of relative slab rotation (without rigid-body deformation) = slab global rotation - column chord global rotation -> pro-
jected to acquire the radial rotation component 
rot       = czold(1)*(-1*(rsold(2)+rcold(1))) + & 
               czold(2)*((rsold(1)-rcold(2)))      
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!Calculation of maximum force based on (relative) slab-column rotation at previous step i-1                
vcsct     = (b0*d*sqrtfc*(0.75/(1+15*(abs(rot)*d)/(dg0+dg)))) 
   
!Main calculation of force-deformation component of the joint element 
 
!Positive load-deformation branch 
 
        IF (V0>=0.AND.dis0<dispos0) THEN 
            ktangent=(vlimpos0-V0)/(dispos0-dis0) 
            deltaV=ktangent*deltadis 
            V=V0+deltaV 
 
    IF (deltadis<0) THEN 
    ktangent=kinc 
    deltaV=ktangent*deltadis 
    V=V0+deltaV 
 
    vlimpos=vlimpos0 
    dispos=dispos0 
    vlimneg=vlimneg0 
    disneg=disneg0 
               
    ELSEIF (V>=vcsct.AND.ktangent>=kinc.AND.deltadis>=0) THEN 
 
    vlimpos=V 
    dispos=dis 
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    vlimneg=-V 
    disneg=-dis 
               
    ELSE              
    vlimpos=vlimpos0 
    dispos=dispos0 
    vlimneg=vlimneg0 
    disneg=disneg0 
             
    ENDIF 
  
        ELSEIF (V0>=0.AND.dis0>=dispos0.AND.deltadis>=0) THEN 
  V=vcsct 
  ktangent=0 
         
    IF(dis >= 1.0) THEN 
      ktangent=kdegpos 
      deltaV=ktangent*deltadis 
      V=V0+deltaV 
     
       IF (V<=vrespos) THEN 
       V=vrespos 
       ktangent=0 
       ENDIF 
 
    ENDIF  
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          vlimpos=V 
        dispos=dis 
        vlimneg=vlimneg0 
        disneg=disneg0 
   
!Negative load-deformation branch  
  
        ELSEIF (V0<=0.AND.dis0>disneg0) THEN 
        ktangent=(vlimneg0-V0)/(disneg0-dis0) 
        deltaV=ktangent*deltadis 
        V=V0+deltaV 
 
    IF (deltadis>0) THEN 
    ktangent=kinc 
    deltaV=ktangent*deltadis 
    V=V0+deltaV 
 
    vlimpos=vlimpos0 
    dispos=dispos0 
    vlimneg=vlimneg0 
    disneg=disneg0 
 
    ELSEIF (V<=-vcsct.AND.ktangent>=kinc.AND.deltadis<=0) THEN 
 
    vlimpos=-V 
    dispos=-dis 
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    vlimneg=V 
    disneg=dis 
 
    ELSE        
 
    vlimpos=vlimpos0 
    dispos=dispos0 
    vlimneg=vlimneg0 
    disneg=disneg0 
 
    ENDIF 
             
        ELSEIF (V0<=0.AND.dis0<=disneg0.AND.deltadis<=0) THEN 
  v=-vcsct 
  ktangent=0 
    
    IF (dis <= -1.0) THEN 
    ktangent=kdegneg 
    deltaV=ktangent*deltadis 
    V=V0+deltaV 
     
     IF (V>=-vresneg) THEN 
     V=-vresneg 
     ktangent=0 
     ENDIF 
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                ENDIF 
                 
        vlimpos=vlimpos0 
        dispos=dispos0 
        vlimneg=V 
        disneg=dis 
 
        ELSE 
            ktangent=kinc 
            deltaV=ktangent*deltadis 
            V=V0+deltaV 
 
            vlimpos=vlimpos0 
            dispos=dispos0 
            vlimneg=vlimneg0 
            disneg=disneg0 
        ENDIF 
 
!Updating the material stress strain parameters for the next step 
 SVARS(1) = disneg 
 SVARS(2) = dispos 
 SVARS(3) = vlimneg 
 SVARS(4) = vlimpos  
 
RETURN 
END SUBROUTINE jfst21 
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===================== EXPLANATION ========================================== 
 
Explanation for the material parameters (PROP) that are read from the input file: 

 b0 indicates the length of the control perimeter at d/2 distance from the column face according to Model Code 2010 (rounded 
corner) 

 d indicates the average effective depth of the slab 
 sqrtfc indicates the square root of the specified concrete compressive strength 
 dg0 indicates the reference aggregate size equal to 16 mm 
 dg indicates the maximum aggregate size used 
 kinc indicates the stiffness for the ascending branch: same value for positive and negative branches 
 kdegneg indicates the stiffness for the descending branch for negative branches  
 kdegpos indicates the stiffness for the descending branch for positive branches  
 vresneg indicates the residual force after the descending branch for negative branches  
 vrespos indicates the residual force after the descending branch for positive branches  

   
Explanation for the strain or deformation component that is calculated in the main program:                    

 rsold(3) indicates three component of rotations (vector) at slab edge monitored at 3rd node  
 rcold(3) indicates three component of rotations (vector) at column chord monitored at 4th node  
 cxold(3) indicates a unit vector in local x-direction 
 cyold(3) indicates a unit vector in local y-direction 
 deltadis indicates the increment of joint displacement at current step i 
 dis0 indicates joint final displacement at previous step i-1 
 dis indicates displacement of the joint at the end of current step i  
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Explanation for the material stress strain parameters (SVARS0) at previous step: 

 disneg0 indicates the limit of joint displacement for negative branch from previous step i-1 (used to calculate reloading secant 
stiffness) 

 dispos0 indicates the limit of joint displacement for positive branch from previous step i-1 (used to calculate reloading secant 
stiffness) 

 vlimneg0 indicates limit of the joint force (negative) at the end of previous step i-1  
 vlimpos0 indicates limit of the joint force (positive) at the end of previous step i-1 

 
Explanation for the material stress strain parameters (SVARS) at current step: 

 disneg is the updated value of disneg0 at the end of current step i  
 dispos is the updated value of dispos0 at the end of current step i  
 vlimneg indicates limit of the joint force (negative) at the end of current step i  
 vlimpos indicates limit of the joint force (positive) at the end of current step i 

 
Explanation for the stress or force component that is calculated in the main program: 

 V0 indicates force on the joint at the end of previous step i-1  
 V indicates force on the joint at the end of current step i  

 
Explanation for the stiffness component: 

 ktangent indicates the derivative of force component to the displacement component at current step i 
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Explanation of additional parameter that is used just within the subroutine: 

 rot indicates the relative slab-column rotation (without rigid body deformation) to calculate the failure criterion acquired from 
previous step i-1 

 vcsct indicates the calculated force limit based on failure criterion from slab rotation at previous step i-1 
 deltaV indicates the increment of force at the joint at current step i  
 czold(3) indicates a unit vector in local z-direction 

 
==================== END================================================== 
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Appendix B: Database of slab-column connections subjected to reversed-cyclic loading 

No Source Specimen 

Gravity 
load 

applied 
to 

GSR 
(ACI 

318-14) 

Specimen geometry and loading parameter Drift or 𝝍𝒔𝒄𝒄 
(%) if 
known 

Peak 
moment  

 
kN.m 

𝒄  
 

mm 

𝒉  
 

mm 

𝒅  
 

mm 

Slab 
width 
(mm) 

𝒓𝒔  
 

mm 

𝒇𝒄  

 

MPa 

𝒅𝒈  
 

mm 

𝒇𝒚  

 

MPa 

𝝆𝒕𝒐𝒑  
 

% 

𝝆𝒃𝒐𝒕  

 

% 

1 
Drakatos 

et al. 
(2016) 

PD2 

Other† 

0.778 390 250 198.0 3000 1500.0 36.9 16 558 1.13* 0.66* 0.36 196.00 
2 PD6 0.535 390 250 199.0 3000 1500.0 38.3 16 507 1.16* 0.65* 0.86 372.00 
3 PD8 0.424 390 250 198.0 3000 1500.0 32.7 16 575 1.12* 0.60* 1.30 384.00 
4 PD11 0.833 390 250 196.0 3000 1500.0 33.1 16 593 1.91* 1.02* 0.43 286.00 
5 PD13 0.559 390 250 196.0 3000 1500.0 36.5 16 546 1.94* 1.05* 0.86 410.00 

6 
Tian et al. 

(2008) 
L0.5 Column 0.230 406 152 127.0 3657 1828.5 25.6 10 469 0.50 0.30 2.00 128.00 

7 
Cao 

(1993) 

CD1 
Column 

0.843 250 150 115.0 1900 950.0 40.4 20 395 1.34 0.45 0.87 50.00 
8 CD5 0.640 250 150 115.0 1900 950.0 31.2 20 395 1.34 0.45 1.22 70.50 
9 CD8 0.510 250 150 116.0 1900 950.0 27.0 20 395 1.34 0.45 1.39 84.60 

10 
Cho 

(2009) 
Control 

Column 
+ slab** 

0.299 300 150 130.0 2800 616.0 34.3 25 392 0.90 0.25 4.44 111.57 

11 
Choi et al. 

(2009) 
SPB Slab 0.250 355 152 106.0 4200 924.0 34.1 16 440 1.40 0.25 3.69 150.00 

12 
Choi et al. 

(2007) 

S1 
Column 

0.300 300 120 90.0 2400 1200.0 33.5 16 458 1.00 0.50 3.00 83.10 
13 S2 0.500 300 120 90.0 2400 1200.0 41.3 16 458 1.00 0.50 3.00 74.80 
14 S3 0.300 300 120 90.0 2400 1200.0 37.8 16 458 1.50 0.75 3.00 121.50 

15 
Islam & 
Park 

(1976) 
IP3C Column 0.246 200 89 70.0 2240 1120.0 29.7 6 316 0.83 0.43 3.62 35.80 

16 
Kang & 
Wallace 
(2008) 

C0 Column 0.302 254 150 130.0 2896 1447.8 38.6 10 452 0.52 0.20 2.80 111.56 
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No Source Specimen 

Gravity 
load 

applied 
to 

GSR 
(ACI 

318-14) 

Specimen geometry and loading parameter Drift or 𝝍𝒔𝒄𝒄 
(%) if 
known 

Peak 
moment  

 
kN.m 

𝒄  
 

mm 

𝒉  
 

mm 

𝒅  
 

mm 

Slab 
width 
(mm) 

𝒓𝒔  
 

mm 

𝒇𝒄  

 

MPa 

𝒅𝒈  
 

mm 

𝒇𝒚  

 

MPa 

𝝆𝒕𝒐𝒑  
 

% 

𝝆𝒃𝒐𝒕  

 

% 

17 Kanoh & 
Yoshizaki 

(1975) 

H9 
Column 

0.313 200 100 80.0 1800 900.0 22.8 10 361 0.70 0.70 2.00 33.00 
18 H10 0.324 200 100 80.0 1800 900.0 22.8 10 361 1.12 1.12 2.00 36.10 
19 H11 0.639 200 100 80.0 1800 900.0 23.2 10 361 1.12 1.12 1.00 25.20 
20 Morrison 

et al. 
(1983) 

S4 
Slab 

0.081 305 76 61.0 1829 402.4 34.9 10 320 0.98 0.98 4.50 35.50 

21 S5 0.159 305 76 62.0 1829 402.4 35.2 10 340 0.98 0.98 4.80 37.50 

22 Pan & 
Moehle 
(1989) 

AP1 
Column 
+ slab** 

0.351 274 122 101.0 3660 805.2 33.3 25 472 0.76 0.25 1.60 52.06 

23 AP3 Column 0.220 274 122 101.0 3660 1830.0 31.4 25 472 0.76 0.25 3.17 86.77 
24 Park et 

al. (2012) 
RCA 

Column 
0.442 300 135 114.0 2700 1350.0 22.5 10 430 1.06 0.79 1.34 70.70 

25 RCB 0.406 300 135 114.0 2700 1350.0 38.7 10 430 1.06 0.79 1.44 81.25 

26 
Park et 

al. (2007) 
RI-50 

Column 
+ slab** 

0.370 300 132 102.0 3400 1700.0 32.3 16 392 0.64 0.27 3.44 91.64 

27 
Robertson 
& Johnson 

(2006) 

ND1C 

Slab 

0.237 254 114 100.0 2743 603.5 29.6 10 441 0.53 0.36 3.00 42.39 
28 ND4LL 0.348 254 114 100.0 2743 603.5 32.3 10 441 0.53 0.36 3.00 44.45 
29 ND5XL 0.452 254 114 100.0 2743 603.5 24.1 10 441 0.53 0.36 2.00 32.52 
30 ND6HR 0.278 254 114 100.0 2743 603.5 26.3 10 441 0.93 0.67 3.00 58.58 
31 ND7LR 0.335 254 114 100.0 2743 603.5 18.8 10 441 0.39 0.36 3.00 29.91 

32 
Robertson 

et al. 
(2002) 

1C Slab 0.247 250 115 96.0 2743 603.5 35.4 10 420 0.70 0.42 3.50 58.30 

33 
Stark et 

al. (2005) 
C-02 Column 0.381 305 115 82.3 2440 1220.0 30.9 19 454 1.42 0.51 2.44 44.61 

34 
Zee & 
Moehle 
(1984) 

INT Slab 0.302 137 61 51.5 1828 402.2 26.2 10 434 0.80 0.34 3.81 10.27 
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No Source Specimen 

Gravity 
load 

applied 
to 

GSR 
(ACI 

318-14) 

Specimen geometry and loading parameter Drift or 𝝍𝒔𝒄𝒄 
(%) if 
known 

Peak 
moment  

 
kN.m 

𝒄  
 

mm 

𝒉  
 

mm 

𝒅  
 

mm 

Slab 
width 
(mm) 

𝒓𝒔  
 

mm 

𝒇𝒄  

 

MPa 

𝒅𝒈  
 

mm 

𝒇𝒚  

 

MPa 

𝝆𝒕𝒐𝒑  
 

% 

𝝆𝒃𝒐𝒕  

 

% 

35 Almeida 
et al. 
(2016) 

C-30 
Other† 

0.278 250 150 118.0 4150 913.0 66.5 16 526 0.96 0.67 2.00 121.60 
36 C-40 0.392 250 150 119.0 4150 913.0 53.1 16 526 0.96 0.67 1.50 102.80 
37 C-50 0.485 250 150 118.0 4150 913.0 52.4 16 526 0.96 0.67 1.10 74.80 

38 

Eman et 
al. (1997) 

H.H.H.C.0
.5 

Column 

0.245 250 150 119.0 1870 935.0 75.8 19 460 0.50 0.26 3.95 134.47 

39 
H.H.H.C.1

.0 
0.251 250 150 119.0 1870 935.0 72.3 19 460 1.00 0.26 3.56 162.97 

40 
N.H.H.C.0

.5 
0.352 250 150 119.0 1870 935.0 36.8 19 460 0.50 0.26 3.43 100.48 

41 
N.H.H.C.1

.0 
0.359 250 150 119.0 1870 935.0 35.4 19 460 1.00 0.26 2.45 127.24 

42 

Marzouk 
et al. 
(2001) 

HSLW0.5
C 

Column 

0.255 250 150 119.0 1870 935.0 70.0 19 460 0.50 0.26 4.70 135.80 

43 
HSLW1.0

C 
0.255 250 150 119.0 1870 935.0 70.0 19 460 1.00 0.26 3.20 174.00 

44 
NSLW0.5

C 
0.361 250 150 119.0 1870 935.0 35.0 19 460 0.50 0.26 4.60 116.20 

45 
NSLW1.0

C 
0.361 250 150 119.0 1870 935.0 35.0 19 460 1.00 0.26 3.30 151.70 

46 
NSNW0.5

C 
0.361 250 150 119.0 1870 935.0 35.0 19 460 0.50 0.26 3.70 132.37 

47 
NSNW1.0

C 
0.361 250 150 119.0 1870 935.0 35.0 19 460 1.00 0.26 3.50 176.40 

48 
Robertson 

(1990) 
8I Slab 0.178 250 114 89.0 2896 637.0 39.3 25 525 0.83 0.36 3.50 60.15 
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No Source Specimen 

Gravity 
load 

applied 
to 

GSR 
(ACI 

318-14) 

Specimen geometry and loading parameter Drift or 𝝍𝒔𝒄𝒄 
(%) if 
known 

Peak 
moment  

 
kN.m 

𝒄  
 

mm 

𝒉  
 

mm 

𝒅  
 

mm 

Slab 
width 
(mm) 

𝒓𝒔  
 

mm 

𝒇𝒄  

 

MPa 

𝒅𝒈  
 

mm 

𝒇𝒚  

 

MPa 

𝝆𝒕𝒐𝒑  
 

% 

𝝆𝒃𝒐𝒕  

 

% 

49 
Song et 

al. (2012) 
RC1 Column 0.400 300 135 113.5 2700 1350.0 38.7 16 449 1.06 0.79 1.40 80.75 

50 
Wey & 
Durrani 
(1992) 

SC0 Slab 0.247 250 114 96.8 2896 637.0 39.3 25 525 0.89 0.32 3.50 62.03 

Notes: 
*  indicates an equivalent amount of flexural reinforcement ratio (considering the additional threaded bars) for CSCT-based methods, whereas EC2 (2004) calculation used 

the value of 𝜌𝑡𝑜𝑝 and 𝜌𝑏𝑜𝑡 as given in Table 6-1 
**  for test setup with gravity load applied partly through the column and to the slab, the 𝑟𝑠 value chosen is either 0.22𝐿 or 0.5𝐿 which gives most accurate moment-rotation 

response compared to the measured data 
† test setup with unusual boundary conditions: 

a. Drakatos et al. (2016) : gravity load is applied through steel plate at 0.22𝐿 and unbalanced moment is applied through steel arm at 0.5𝐿 
b. Almeida et al. (2016)  : gravity load is applied through steel plate at 0.22𝐿, unbalanced moment applied through the column while allowing equal rotation and 

vertical displacement at both slab edges (allowing the movement of the zero radial moment line) 
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Appendix C: Permission to reuse figures from other publications 

Page 
no. 

Type of 
work 

Identitity of 
reproduced 

work in 
this thesis 

Identity 
of origi-

nal 
work 

Source of work 

Copyright 
holder 

and con-
tact 

Permis-
sion re-
quested 

on 

I have 
permis-

sion 
Permis-

sion note 
Yes / No 

48 Photograph Figure 1-1(a) - Wikipedia.org Wikipedia 30/08/2019 Yes Open access 

48 Photograph Figure 1-1(b) - Wikipedia.org Wikipedia 30/08/2019 Yes Open access  

49 Figure Figure 1-2(a) Figure 1.2 
Einpaul, J. 2016. Punching strength of continuous 
flat slabs. Thèse No 6928, École Polytechnique 
Fédérale de Lausanne. 

Individual 30/08/2019 Yes 

 Written per-
mission by the 
author (individ-

ual) 

54 Figure Figure 2-1 Figure 3 

Einpaul, J., Fernández Ruiz, M. and Muttoni, A. 
2018. Measurements of internal cracking in 
punching test slabs without shear reinforcement. 
Magazine of Concrete Research, 70(15): pp.798–
810. 

Magazine of 
Concrete Re-
search (ICE 
Publishing) 

30/08/2019 Yes 
 Written per-

mission by the 
publisher 

56 Figure Figure 2-2 Figure 3 

Simoes, J.T., Fernández Ruiz, M. and Muttoni, A. 
2018. Validation of the critical shear crack theory 
for punching of slabs without transverse reinforce-
ment by means of a refined mechanical model. 
Structural Concrete, 19: pp.191–216. 

Structural 
Concrete 
(Wiley) 

30/08/2019 Yes 
Written per-

mission by the 
publisher 
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58 Figure Figure 2-3 Figure 4 

Simoes, J.T., Fernández Ruiz, M. and Muttoni, A. 
2018. Validation of the critical shear crack theory 
for punching of slabs without transverse reinforce-
ment by means of a refined mechanical model. 
Structural Concrete, 19: pp.191–216. 

Structural 
Concrete 
(Wiley) 

30/08/2019 Yes 
Written per-

mission by the 
publisher 

59 Figure Figure 2-4 Figure 7 
Kani, G.N.J. 1964. The riddle of shear failure and 
its solution. ACI J Proc, 61(4): pp. 441–468. 

ACI Structural 
Journal (ACI) 

30/08/2019 Yes 
Written per-

mission by the 
publisher  

60 Figure Figure 2-5 Figure 10 
Kani, G.N.J. 1964. The riddle of shear failure and 
its solution. ACI J Proc, 61(4): pp. 441–468. 

ACI Structural 
Journal (ACI) 

30/08/2019 Yes 
Written per-

mission by the 
publisher  

61 Figure Figure 2-6 Figure 1 

Sagaseta, J. and Vollum, R. L. 2011. Influence of 
aggregate fracture on shear transfer through 
cracks in reinforced concrete. Magazine of Con-
crete Research, 63: pp. 119-137. 

Magazine of 
Concrete Re-
search (ICE 
Publishing) 

30/08/2019 Yes 
Written per-

mission by the 
publisher  

62 Figure Figure 2-7 Figure 7 

Cavagnis, F., Fernández Ruiz, M. and Muttoni, A. 
2017. An analysis of the shear-transfer actions in 
reinforced concrete members without transverse 
reinforcement based on refined experimental 
measurements. Structural Concrete, 1-16. 

Structural 
Concrete 
(Wiley) 

30/08/2019 Yes 
Written per-

mission by the 
publisher  

63 Figure Figure 2-8 
Figure 18 

& 19 

Walraven, J. C. and Reinhardt, H. W. 1981. The-
ory and experiments on the mechanical behaviour 
of cracks in plain and reinforced concrete sub-
jected to shear loading. Heron, Concrete Mechan-
ics, Part A (Delft University of Technology), 
26(1A): pp. 1–680. 

HERON 30/08/2019 Yes Open access 
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64 Figure Figure 2-9 Figure 2.10 

Cavagnis, F. 2017. Shear in reinforced concrete 
without transverse reinforcement: from refined ex-
perimental measurements to mechanical models. 
Thèse No 8216, École Polytechnique Fédérale de 
Lausanne. 

Individual 30/08/2019 Yes 

Written per-
mission by the 
author (individ-

ual) 

65 Figure Figure 2-10 Figure 2.12 

Cavagnis, F. 2017. Shear in reinforced concrete 
without transverse reinforcement: from refined ex-
perimental measurements to mechanical models. 
Thèse No 8216, École Polytechnique Fédérale de 
Lausanne. 

Individual 30/08/2019 Yes 

Written per-
mission by the 
author (individ-

ual) 

66 Figure Figure 2-11 Figure 2.14 

Cavagnis, F. 2017. Shear in reinforced concrete 
without transverse reinforcement: from refined ex-
perimental measurements to mechanical models. 
Thèse No 8216, École Polytechnique Fédérale de 
Lausanne. 

Individual 30/08/2019 Yes 

Written per-
mission by the 
author (individ-

ual) 

68 Figure Figure 2-12 Figure 1 

Mari, A., Bairan, J., Cladera, A., Oller, E. and 
Ribas, C. 2014. Shear-flexural strength mechani-
cal model for the design and assessment of rein-
forced concrete beams. Structure and Infrastruc-
ture Engineering: Maintenance, Management, 
Life-Cycle and Performance, DOI: 
10.1080/15732479.2014.964735 

Structure and 
Infrastructure 
Engineering 
(Taylor and 

Francis) 

30/08/2019 Yes Open access 

70 Figure Figure 2-13 Figure 3 

Muttoni, A. and Fernández Ruiz, M. 2008. Shear 
strength of members without transverse reinforce-
ment as function of critical shear crack width. ACI 
Structural Journal, 105 (2): pp. 163–172. 

ACI Structural 
Journal (ACI) 

30/08/2019 Yes 
Written per-

mission by the 
publisher   

74 Figure Figure 2-14 Figure 1 

Fernández Ruiz, M. and Muttoni, A. 2017. Size ef-
fect in shear and punching shear failures of con-
crete members without transverse reinforcement: 
Differences between statically determinate mem-
bers and redundant structures. Structural Con-
crete, 19: pp. 65-75. 

Structural 
Concrete 
(Wiley) 

30/08/2019 Yes 
Written per-

mission by the 
publisher  
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81 Figure Figure 2-15 
Figure 4 & 

5 

Pan, A. A. and Moehle, J. P. 1989. Lateral dis-
placement ductility of reinforced concrete flat 
plates. ACI Structural Journal, Vol. 86, No. 3: pp. 
250-258. 

ACI Structural 
Journal (ACI) 

30/08/2019 Yes 
Written per-

mission by the 
publisher   

86 Figure Figure 2-16 
Figure 2 & 

3 

Hoang, L. C. and Pop, A. 2015. Punching shear 
capacity of reinforced concrete slabs with headed 
shear studs. Magazine of Concrete Research, Vol. 
68(3): pp. 118-126. 

Magazine of 
Concrete Re-
search (ICE 
Publishing) 

30/08/2019 Yes 
Written per-

mission by the 
publisher  

86 Figure Figure 2-17 Figure 4 

Hoang, L. C. and Pop, A. 2015. Punching shear 
capacity of reinforced concrete slabs with headed 
shear studs. Magazine of Concrete Research, Vol. 
68(3): pp. 118-126. 

Magazine of 
Concrete Re-
search (ICE 
Publishing) 

30/08/2019 Yes 
Written per-

mission by the 
publisher  

89 Figure Figure 2-18 Figure 2.3 
Einpaul, J. 2016. Punching strength of continuous 
flat slabs. Thèse No 6928, École Polytechnique 
Fédérale de Lausanne. 

Individual 30/08/2019 Yes 

Written per-
mission by the 
author (individ-

ual) 

90 Figure Figure 2-19 
Figure 3.2-

1 

CEB-FIB Task Group, “Punching of Structural 
Concrete Slabs,”. 2001. CEB-FIP Technical Re-
port, Bulletin 12. International Federation for 
Structural Concrete (fib), Lausanne, Switzerland: 
307 p. 

fib (the Inter-
national Fed-

eration for 
Structure 
Concrete) 

30/08/2019 Yes 

Written per-
mission by the 
author (organi-

sation)   

91 Figure Figure 2-20 Figure 6 
Broms, C. E. 2016. Tangential strain theory for 
punching failure of flat slabs. ACI Structural Jour-
nal, Vol. 113: pp. 95-104. 

ACI Structural 
Journal (ACI) 

30/08/2019 Yes 
Written per-

mission by the 
publisher   



438 
 

Page 
no. 

Type of 
work 

Identitity of 
reproduced 

work in 
this thesis 

Identity 
of origi-

nal 
work 

Source of work 

Copyright 
holder 

and con-
tact 

Permis-
sion re-
quested 

on 

I have 
permis-

sion 
Permis-

sion note 
Yes / No 

93 Figure Figure 2-21 Figure 16 
Broms, C. E. 2016. Tangential strain theory for 
punching failure of flat slabs. ACI Structural Jour-
nal, Vol. 113: pp. 95-104. 

ACI Structural 
Journal (ACI) 

30/08/2019 Yes 
Written per-

mission by the 
publisher   

95 Figure Figure 2-22 Figure 2 

Muttoni, A. 2008. Punching shear strength of rein-
forced concrete slabs without transverse reinforce-
ment. ACI Structural Journal, V. 105, No. 4: pp. 
440-450. 

ACI Structural 
Journal (ACI) 

30/08/2019 Yes 
Written per-

mission by the 
publisher   

95 Figure Figure 2-23 Figure 5 

Muttoni, A. 2008. Punching shear strength of rein-
forced concrete slabs without transverse reinforce-
ment. ACI Structural Journal, V. 105, No. 4: pp. 
440-450. 

ACI Structural 
Journal (ACI) 

30/08/2019 Yes 
Written per-

mission by the 
publisher   

97 Figure Figure 2-24 Figure 2 

Simoes, J.T., Fernández Ruiz, M. and Muttoni, A. 
2018. Validation of the critical shear crack theory 
for punching of slabs without transverse reinforce-
ment by means of a refined mechanical model. 
Structural Concrete, 19: pp.191–216. 

Structural 
Concrete 
(Wiley) 

30/08/2019 Yes 
Written per-

mission by the 
publisher  

99 Figure Figure 2-25 Figure 8 

Simoes, J.T., Fernández Ruiz, M. and Muttoni, A. 
2018. Validation of the critical shear crack theory 
for punching of slabs without transverse reinforce-
ment by means of a refined mechanical model. 
Structural Concrete, 19: pp.191–216. 

Structural 
Concrete 
(Wiley) 

30/08/2019 Yes 
Written per-

mission by the 
publisher  

99 Figure Figure 2-26 Figure 9 

Simoes, J.T., Fernández Ruiz, M. and Muttoni, A. 
2018. Validation of the critical shear crack theory 
for punching of slabs without transverse reinforce-
ment by means of a refined mechanical model. 
Structural Concrete, 19: pp.191–216. 

Structural 
Concrete 
(Wiley) 

30/08/2019 Yes 
Written per-
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publisher  
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100 Figure Figure 2-27 Figure 10 

Simoes, J.T., Fernández Ruiz, M. and Muttoni, A. 
2018. Validation of the critical shear crack theory 
for punching of slabs without transverse reinforce-
ment by means of a refined mechanical model. 
Structural Concrete, 19: pp.191–216. 

Structural 
Concrete 
(Wiley) 

30/08/2019 Yes 
Written per-

mission by the 
publisher  

103 Figure Figure 2-28 Figure 20 

Simoes, J.T., Fernández Ruiz, M. and Muttoni, A. 
2018. Validation of the critical shear crack theory 
for punching of slabs without transverse reinforce-
ment by means of a refined mechanical model. 
Structural Concrete, 19: pp.191–216. 

Structural 
Concrete 
(Wiley) 

30/08/2019 Yes 
Written per-

mission by the 
publisher  

105 Figure Figure 2-29 Figure 10 

Sagaseta, J., Muttoni, A., Fernández Ruiz, M. and 
Tassinari, L. 2011. Non-axis-symmetrical punch-
ing shear around internal columns of RC slabs 
without transverse reinforcement. Magazine of 
Concrete Research, 63(6), pp.441–457. 

Magazine of 
Concrete Re-
search (ICE 
Publishing) 

30/08/2019 Yes 
Written per-

mission by the 
publisher  

106 Figure Figure 2-30 Figure 12 

Sagaseta, J., Muttoni, A., Fernández Ruiz, M. and 
Tassinari, L. 2011. Non-axis-symmetrical punch-
ing shear around internal columns of RC slabs 
without transverse reinforcement. Magazine of 
Concrete Research, 63(6), pp.441–457. 

Magazine of 
Concrete Re-
search (ICE 
Publishing) 

30/08/2019 Yes 
Written per-

mission by the 
publisher  

108 Figure Figure 2-31 Figure 5 

Drakatos, I. S., Muttoni, A. and Beyer, K. 2018. 
Mechanical model for drift-induced punching of 
slab-column connections without transverse rein-
forcement. ACI Structural Journal, 115(2). 

ACI Structural 
Journal (ACI) 

30/08/2019 Yes 
Written per-

mission by the 
publisher 

127 Figure Figure 3-1 Figure 3-9 
Cervenka, V., Jendele, L. and Cervenka, J. 2018. 
ATENA Program Documentation, Part 1, Theory. 
Cervenka Consulting, Prague: p. 324. 

Cervenka 
Consulting 

30/08/2019 Yes 

Written per-
mission by the 
author (organi-

sation)    



440 
 

Page 
no. 

Type of 
work 

Identitity of 
reproduced 

work in 
this thesis 

Identity 
of origi-

nal 
work 

Source of work 

Copyright 
holder 

and con-
tact 

Permis-
sion re-
quested 

on 

I have 
permis-

sion 
Permis-

sion note 
Yes / No 

128 Figure Figure 3-2 
Figure 5-

12 

Rots, J. G. and Blaauwendraad, J. 1989. Crack 
models for concrete: discrete or smeared? fixed, 
multi-directional or rotating. HERON, V. 34, No. 1. 

HERON 30/08/2019 Yes Open access 

130 Figure Figure 3-3 
Figure 2-
16 & 2-17 

Cervenka, V., Jendele, L. and Cervenka, J. 2018. 
ATENA Program Documentation, Part 1, Theory. 
Cervenka Consulting, Prague: p. 324. 

Cervenka 
Consulting 

30/08/2019 Yes 

Written per-
mission by the 
author (organi-

sation) 

131 Figure Figure 3-4 
Figure 2-

13 

Cervenka, V., Jendele, L. and Cervenka, J. 2018. 
ATENA Program Documentation, Part 1, Theory. 
Cervenka Consulting, Prague: p. 324. 

Cervenka 
Consulting 

30/08/2019 Yes 

Written per-
mission by the 
author (organi-

sation) 

132 Figure Figure 3-5 
Figure 2-

20 

Cervenka, V., Jendele, L. and Cervenka, J. 2018. 
ATENA Program Documentation, Part 1, Theory. 
Cervenka Consulting, Prague: p. 324. 

Cervenka 
Consulting 

30/08/2019 Yes 

Written per-
mission by the 
author (organi-

sation) 

134 Figure Figure 3-6 Figure 1 
Menetrey, P. and Willam, K. J. 1995. Triaxial fail-
ure criterion for concrete and its generalization. 
ACI Structural Journal, 92(3): pp.311–318. 

ACI Structural 
Journal (ACI) 

30/08/2019 Yes 
 Written per-

mission by the 
publisher  

135 Figure Figure 3-7 
Figure 2-

21 

Cervenka, V., Jendele, L. and Cervenka, J. 2018. 
ATENA Program Documentation, Part 1, Theory. 
Cervenka Consulting, Prague: p. 324. 

Cervenka 
Consulting 

30/08/2019 Yes 

Written per-
mission by the 
author (organi-

sation) 



441 
 

Page 
no. 

Type of 
work 

Identitity of 
reproduced 

work in 
this thesis 

Identity 
of origi-

nal 
work 

Source of work 

Copyright 
holder 

and con-
tact 

Permis-
sion re-
quested 

on 

I have 
permis-

sion 
Permis-

sion note 
Yes / No 

136 Figure Figure 3-8 
Figure 2-

19 

Cervenka, V., Jendele, L. and Cervenka, J. 2018. 
ATENA Program Documentation, Part 1, Theory. 
Cervenka Consulting, Prague: p. 324. 

Cervenka 
Consulting 

30/08/2019 Yes 

Written per-
mission by the 
author (organi-

sation) 

137 Figure Figure 3-9 
Figure 2-
41 & 2-42 

Cervenka, V., Jendele, L. and Cervenka, J. 2018. 
ATENA Program Documentation, Part 1, Theory. 
Cervenka Consulting, Prague: p. 324. 

Cervenka 
Consulting 

30/08/2019 Yes 

Written per-
mission by the 
author (organi-

sation) 

138 Figure Figure 3-10 
Figure 4-1 

& 4-2 

Cervenka, V., Jendele, L. and Cervenka, J. 2018. 
ATENA Program Documentation, Part 1, Theory. 
Cervenka Consulting, Prague: p. 324. 

Cervenka 
Consulting 

30/08/2019 Yes 

Written per-
mission by the 
author (organi-

sation) 

139 Figure Figure 3-11 Figure 4-3 
Cervenka, V., Jendele, L. and Cervenka, J. 2018. 
ATENA Program Documentation, Part 1, Theory. 
Cervenka Consulting, Prague: p. 324. 

Cervenka 
Consulting 

30/08/2019 Yes 

Written per-
mission by the 
author (organi-

sation) 

149 Figure Figure 3-17 Figure 9 

Izzuddin, B. A. , Tao, X. Y. and Elghazouli, A.Y. 
2004. Realistic modeling of composite and rein-
forced concrete floor slabs under extreme loading. 
Part I: Analytical method. Journal of Structural En-
gineering, 130(12): pp. 1972–1984. 

Journal of 
Structural En-

gineering 
(ASCE) 

30/08/2019 Yes 
Written per-

mission by the 
publisher  

149 Figure Figure 3-18 Figure 10 

Izzuddin, B. A. , Tao, X. Y. and Elghazouli, A.Y. 
2004. Realistic modeling of composite and rein-
forced concrete floor slabs under extreme loading. 
Part I: Analytical method. Journal of Structural En-
gineering, 130(12): pp. 1972–1984. 

Journal of 
Structural En-

gineering 
(ASCE) 

30/08/2019 Yes 
Written per-

mission by the 
publisher  



442 
 

Page 
no. 

Type of 
work 

Identitity of 
reproduced 

work in 
this thesis 

Identity 
of origi-

nal 
work 

Source of work 

Copyright 
holder 

and con-
tact 

Permis-
sion re-
quested 

on 

I have 
permis-

sion 
Permis-

sion note 
Yes / No 

151 Figure Figure 3-19 Figure 8 

Izzuddin, B. A. , Tao, X. Y. and Elghazouli, A.Y. 
2004. Realistic modeling of composite and rein-
forced concrete floor slabs under extreme loading. 
Part I: Analytical method. Journal of Structural En-
gineering, 130(12): pp. 1972–1984. 

Journal of 
Structural En-

gineering 
(ASCE) 

30/08/2019 Yes 
Written per-

mission by the 
publisher  

164 Figure Figure 3-28 Figure 1 

Krueger, G., Burdet, O. and Favre, R. 2000. 
Punching strength of R.C. flat slabs with moment 
transfer. International Workshop on Punching 
Shear, Stockholm, Sweden. 

Individual 30/08/2019 Yes 

Written per-
mission by the 
author (individ-

ual) 

170 Figure Figure 4-1 Figure 5 

Hrynyk, T. D. and Vecchio, F. J. 2015. Capturing 
out-of-plane shear failures in the analysis of rein-
forced concrete shells. Journal of Structural Engi-
neering, 141(12): 04015058. 

Journal of 
Structural En-

gineering 
(ASCE) 

30/08/2019 Yes 
Written per-

mission by the 
publisher   

186 Figure Figure 4-8 Figure 4 

Clément, T., Ramos, A. P., Fernández Ruiz, M. 
and Muttoni, A., 2014. Influence of prestressing on 
the punching strength of post-tensioned slabs. En-
gineering Structures, 72, pp. 56–69. 

Engineering 
Structures 
(Elsevier) 

30/08/2019 Yes 
Written per-

mission by the 
publisher   

188 Figure Figure 4-10 Figure 3 
Fernández Ruiz, M., Mirzaei, Y. and Muttoni, A. 
2013. Post-punching behavior of flat slabs. ACI 
Structural Journal, 110(5): pp.801–811. 

ACI Structural 
Journal (ACI) 

30/08/2019 Yes 
Written per-

mission by the 
publisher   

196 Figure Figure 4-15 Figure 2 

Peng, Z., Orton, S. L., Liu, J. and Tian, Y. 2017. 
Effects of in-plane restraint on progression of col-
lapse in flat-plate structures. J. Perform. Constr. 
Facil. 31 (3): 04016112. 
https://doi.org/10.1061/(ASCE)CF.1943-
5509.0000984 

Journal of 
Performance 

of Con-
structed Facil-
ities (ASCE) 

30/08/2019 Yes 
Written per-

mission by the 
publisher    



443 
 

Page 
no. 

Type of 
work 

Identitity of 
reproduced 

work in 
this thesis 

Identity 
of origi-

nal 
work 

Source of work 

Copyright 
holder 

and con-
tact 

Permis-
sion re-
quested 

on 

I have 
permis-

sion 
Permis-

sion note 
Yes / No 

199 Figure Figure 4-17 Figure 4 

Choi, J. W. and Kim, J. H. J. 2012. Experimental 
investigations on moment redistribution and 
punching shear of flat plates. ACI Structural Jour-
nal, 109(3): pp. 329–337. 

ACI Structural 
Journal (ACI) 

30/08/2019 Yes 
 Written per-

mission by the 
publisher   

204 Figure Figure 4-21 Figure 3 
Chana, P. S. and Desai, S. B. 1992b. Membrane 
action, and design against punching shear. The 
Structural Engineer, 70(19): pp. 339–343. 

Individual 30/08/2019 Yes 

Written per-
mission by the 
author (individ-

ual)  

213 Figure Figure 5-1 Figure 4 

Sagaseta, J., Tassinari, L., Fernández Ruiz, M. 
and Muttoni, A. 2014. Punching of flat slabs sup-
ported on rectangular columns. Engineering Struc-
tures, 77: pp.17–33. 

Engineering 
Structures 
(Elsevier) 

30/08/2019 Yes 
Written per-

mission by the 
publisher 

217 Figure Figure 5-5(a) Figure 4 

Oliveira, D. R. C., Regan, P. E. and Melo, G. S. S. 
A. 2004. Punching resistance of RC slabs with 
rectangular columns. Magazine of Concrete Re-
search, (3): pp.123–138. 

Magazine of 
Concrete Re-
search (ICE 
Publishing) 

30/08/2019 Yes 
Written per-

mission by the 
publisher 

217 Figure Figure 5-5(b) 
Figure 3 & 

4 

Teng, S., Cheong, H.K., Kuang, K.L. and Geng, 
J.Z. 2004. Punching shear strength of slabs with 
openings and supported on rectangular columns. 
ACI Struct Journal 2004; 101(5): pp. 678–87. 

ACI Structural 
Journal (ACI) 

30/08/2019 Yes 
Written per-

mission by the 
publisher 

231 Figure Figure 5-14 Figure 6 

Sagaseta, J., Tassinari, L., Fernández Ruiz, M. 
and Muttoni, A. 2014. Punching of flat slabs sup-
ported on rectangular columns. Engineering Struc-
tures, 77: pp.17–33. 

Engineering 
Structures 
(Elsevier) 

30/08/2019 Yes 
Written per-

mission by the 
publisher 



444 
 

Page 
no. 

Type of 
work 

Identitity of 
reproduced 

work in 
this thesis 

Identity 
of origi-

nal 
work 

Source of work 

Copyright 
holder 

and con-
tact 

Permis-
sion re-
quested 

on 

I have 
permis-

sion 
Permis-

sion note 
Yes / No 

262 Figure Figure 5-27(c) Figure 10 

Schwaighofer, J. and Collins, M. P. 1977. Experi-
mental study of the behaviour of reinforced con-
crete coupling slabs. Journal Proceedings, 74(3): 
pp. 123-127. 

ACI Structural 
Journal (ACI) 

30/08/2019 Yes 
Written per-

mission by the 
publisher  

262 Figure Figure 5-27(d) Figure 13 
Coull, A. and Chee, W. 1983. Design of floor slabs 
coupling shear walls. Journal of Structural Engi-
neering, 109(1): pp. 109-125. 

Journal of 
Structural En-

gineering 
(ASCE) 

30/08/2019 Yes 
Written per-

mission by the 
publisher 

298 Figure Figure 6-1(a) Figure 3 

Drakatos, I. S., Muttoni, A. and Beyer, K. 2016. In-
ternal slab-column connections under monotonic 
and cyclic imposed rotations. Engineering Struc-
tures, 123: pp. 501–516. 

Engineering 
Structures 
(Elsevier) 

30/08/2019 Yes 
Written per-

mission by the 
publisher 

298 Figure Figure 6-1(b) Figure 3 

Tian, Y., Jirsa, J. O., Bayrak, O., Widianto and Ar-
gudo, J. F. 2008. Behavior of slab-column connec-
tions of existing flat-plate structures. ACI Struc-
tural Journal 105(5). 

ACI Structural 
Journal (ACI) 

30/08/2019 Yes 
Written per-

mission by the 
publisher  

298 Figure Figure 6-2 Figure 10 

Drakatos, I. S., Muttoni, A. and Beyer, K. 2016. In-
ternal slab-column connections under monotonic 
and cyclic imposed rotations. Engineering Struc-
tures, 123: pp. 501–516. 

Engineering 
Structures 
(Elsevier) 

30/08/2019 Yes 
Written per-

mission by the 
publisher 

309 Figure Figure 6-8 
Figure 15 

& 18 

Drakatos, I. S., Muttoni, A. and Beyer, K. 2016. In-
ternal slab-column connections under monotonic 
and cyclic imposed rotations. Engineering Struc-
tures, 123: pp. 501–516. 

Engineering 
Structures 
(Elsevier) 

30/08/2019 Yes 
Written per-

mission by the 
publisher 



445 
 

Page 
no. 

Type of 
work 

Identitity of 
reproduced 

work in 
this thesis 

Identity 
of origi-

nal 
work 

Source of work 

Copyright 
holder 

and con-
tact 

Permis-
sion re-
quested 

on 

I have 
permis-

sion 
Permis-

sion note 
Yes / No 

313 Figure Figure 6-11 Figure 5 

Tian, Y., Jirsa, J. O., Bayrak, O., Widianto and Ar-
gudo, J. F. 2008. Behavior of slab-column connec-
tions of existing flat-plate structures. ACI Struc-
tural Journal 105(5). 

ACI Structural 
Journal (ACI) 

30/08/2019 Yes 
 Written per-

mission by the 
publisher 

333 Figure Figure 6-23 Figure 7 

Drakatos, I. S., Muttoni, A. and Beyer, K. 2018. 
Mechanical model for drift-induced punching of 
slab-column connections without transverse rein-
forcement. ACI Structural Journal, 115(2). 

ACI Structural 
Journal (ACI) 

30/08/2019 Yes 
Written per-

mission by the 
publisher 

335 Figure Figure 6-24 Figure 2 

Robertson, I. N. and Johnson G. 2006. Cyclic lat-
eral loading of non-ductile slab-column connec-
tions. ACI Structural Journal, Vol. 103, No. 3: pp. 
356-364. 

ACI Structural 
Journal (ACI) 

30/08/2019 Yes 
Written per-

mission by the 
publisher 

336 Figure Figure 6-25 
Figure 1, 6 

& 7 

Robertson, I. N. and Johnson G. 2006. Cyclic lat-
eral loading of non-ductile slab-column connec-
tions. ACI Structural Journal, Vol. 103, No. 3: pp. 
356-364. 

ACI Structural 
Journal (ACI) 

30/08/2019 Yes 
Written per-

mission by the 
publisher 

367 Figure Figure 7-1 Figure 2 

Einpaul, J., Brantschen, F., Fernández Ruiz, M. 
and Muttoni, A. 2016. Performance of punching 
shear reinforcement under gravity loading: Influ-
ence of type and detailing. ACI Structural Journal, 
V. 113, No. 4: pp. 827-838. 

ACI Structural 
Journal (ACI) 

30/08/2019 Yes 
Written per-

mission by the 
publisher 

371 Figure Figure 7-2 Figure 5 

Einpaul, J., Brantschen, F., Fernández Ruiz, M. 
and Muttoni, A. 2016. Performance of punching 
shear reinforcement under gravity loading: Influ-
ence of type and detailing. ACI Structural Journal, 
V. 113, No. 4: pp. 827-838. 

ACI Structural 
Journal (ACI) 

30/08/2019 Yes 
Written per-

mission by the 
publisher 



446 
 

Page 
no. 

Type of 
work 

Identitity of 
reproduced 

work in 
this thesis 

Identity 
of origi-

nal 
work 

Source of work 

Copyright 
holder 

and con-
tact 

Permis-
sion re-
quested 

on 

I have 
permis-

sion 
Permis-

sion note 
Yes / No 

374 Figure Figure 7-3 Figure 4 

Fernández Ruiz, M. and Muttoni, A. 2009. Applica-
tions of the critical shear crack theory to punching 
of reinforced concrete slabs with transverse rein-
forcement. ACI Structural Journal, Vol. 106, No. 4: 
pp. 485-494. 

ACI Structural 
Journal (ACI) 

30/08/2019 Yes 
Written per-

mission by the 
publisher 

376 Figure Figure 7-4 Figure 2.17 
Lips, S. 2012. Punching of flat slabs with large 
amounts of shear reinforcement. Thèse No 5409, 
École Polytechnique Fédérale de Lausanne. 

Individual 30/08/2019 Yes 

Written per-
mission by the 
author (individ-

ual)  

385 Figure Figure 7-8 
Figure 3.16 

& 3.18 

Lips, S. 2012. Punching of flat slabs with large 
amounts of shear reinforcement. Thèse No 5409, 
École Polytechnique Fédérale de Lausanne. 

Individual 30/08/2019 Yes 

 Written per-
mission by the 
author (individ-

ual)  

390 Figure Figure 7-11 Figure 2 
Chana, P. S. and Desai, S. B. 1992a. Design of 
shear reinforcement against punching. The Struc-
tural Engineer, 70(9): pp. 159–164. 

Individual 30/08/2019 Yes 

Written per-
mission by the 
author (individ-

ual)   

 

 
 
 
 
 


