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ABSTRACT 

This paper presents a new class of intelligent systems, 
called Evolutionary Ruin and Stochastic Recreate, that 
can learn and adapt to the changing enviroment. It 
improves the original Ruin and Recreate principle’s 
performance by incorporating an Evolutionary Ruin 
step which implements evolution within a single 
solution. In the proposed approach, a cycle of Solution 
Decomposition, Evolutionary Ruin and Stochastic 
Recreate continues until stopping conditions are 
reached. The Solution Decomposition step first uses 
some domain knowledge to break a solution down into 
its components and assign a score to each. The 
Evolutionary Ruin step then applies two operators 
(namely Selection and Mutation) to destroy a certain 
fraction of the entire solution. After the above steps, an 
input solution becomes partial and thus the resulting 
partial solution needs to be repaired. The repair is 
carried out by using the Stochastic Recreate step to 
reintroduce the removed items in a specific way 
(somewhat stochastic in order to have a better chance to 
jump out of the local optima), and then ask the 
underlying improvement heuristic whether this move 
will be accepted. These three steps are executed in 
sequence until a specific stopping condition is reached. 
Therefore, optimisation is achieved by solution 
disruption, iterative improvement and a stochastic 
constructive repair process performed within. 
Encouraging experimental results on exam timetabling 
problems are reported. 
 
1  INTRODUCTION 

Exam timetabling can be considered as the process of 
assigning a set of events (i.e. exams) into a limited 
number of timeslots subject to a set of constraints. The 

problem has attracted a significant level of research 
interest since the 1960’s. The general timetabling 
problem comes in many different guises such as nurse 
rostering (Cheang et al. 2003; Li et al. 2012), sports 
timetabling (Easton et al. 2004), transportation 
timetabling (Kwan 2004) and educational timetabling 
(Carter and Laporte 1996; Schaerf 1999; Petrovic and 
Burke 2004; Qu et al. 2009). Educational timetabling 
problems are prob-ably the most widely studied. 
 
Since exam timetabling problems are general NP-hard 
combinatorial problems which are unlikely to be solved 
optimally in polynomial time, various methods such as 
local search-based heuristics (Casey and Thompson 
2004; Burke et al. 2004; Burke and Newall 2004), 
knowledge-based systems (Burke et al. 2006) and 
hyper-heuristics (Qu and Burke 2009) have been 
studied. Over the past dec-ade, meta-heuristics have 
attracted the most attention, including genetic 
algorithms (Erben 2001; Paquete and Fonseca 2001), 
ant algorithms (Dowsland and Thompson 2005), tabu 
search (Burke et al. 2003; White et al. 2004), simulated 
annealing (Thompson and Dowsland 1998). A number 
of at-tempts have also been made using other meta-
heuristics (Burke et al. 1996; Duong and Lam 2004). 
The methods and techniques that have been used over 
the years to tackle exam timetabling problems have 
tended to draw on problem-specific information and 
particular heuristics. In this paper, we are trying to deal 
with the goal of developing a new class of search 
systems. We use the well-studied exam timetable 
problem as the test bed. 
 
The work that is presented here is based on the 
observation that, in most real world problems, the 
solutions consist of components which are intricately 
woven together. Each solution component may be a 
strong candidate in its own right, but it also has to fit 
well with other components in the enviroment. To deal 
with these components, Schrimpf et al. (2000) proposed 
a technique called Ruin and Recreate (R&R) principal, 
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and claimed it could be a general approach for various 
combinatorial optimisation problems. In this paper, we 
further extend the idea by incorporating some 
evolutionary features into the searching process. We 
term the enhanced version Evolutionary Ruin and 
Stochastic Recreate (ER&SR). Its general idea is to 
break a solution down into its components and assign a 
score to each by an evaluation function working under 
dynamic environments. The scores are employed as 
fitness values which determine the chances for the 
components to survive in the current solution. 
 
2  A GENERAL DESCRIPTION OF THE ER&SR 

The Ruin and Recreate (R&R) method uses the 
concepts of simulated annealing (Kirkpatrick 1983) or 
threshold accepting (Dueck and Scheuer 1990) with 
large moves instead of smaller ones. For simple 
structured problems like the traveling salesman problem, 
the need of using large moves is not obvious, because 
algorithms usually generate near optimal solutions with 
very small moves already. However, for complex 
problems like exam timetabling problems, difficulties 
arise if still using such small moves, because complex 
problems can often be seen as discontinuous: if walking 
one step from a solution to a neighbouring solution, the 
qualities of new solutions may be dramatically different, 
i.e., the landscapes of these problem areas can be very 
rugged. 
 
Solutions of complex problems usually have many soft 
and/or hard constraints, which makes it difficult to get 
just feasible solutions. Neighbouring solutions of 
complex schedules, for instance, are usually infeasible 
solutions. It may be very hard to walk in such a 
complex landscape from one feasible solution to 
another neighboured feasible solution. The common 
method of avoiding the infeasibil-ity problem for many 
forms of the classical algorithms is to impose artificial 
penalty functions, but this method would typically make 
the algorithms get stuck in slightly infeasible solutions 
which might not be allowed at all. 
 
Naturally, one will think in a different paradigm: ruin 
and recreate. We ruin a quite large portion of the 
solution and try to rebuild the solution as best as we can, 
with the hope that the new solution is better than the 
previous one. The R&R approach is just based on the 
above idea which has shown an important advantage: if 
destroying a large part of the previous solution, we have 
more freedom to generate a new one, and thus it is more 
likely to find again a feasible solution in this larger 
solution space.  Hence, it is reasonable to believe that 
problems with many side conditions, or with very 
complex objective functions, are more tractable using 
special large moves. 
 
Based on the general R&R principal, this paper presents 
a more advanced technique called ER&SR which has 
never been reported in the literature before. The new 

technique applies two operators of Selection and 
Mutation as the ruining strategies, trying to mimic the 
evolution on single solutions. Each component in the 
solution has to continuously demonstrate its worthiness 
to stay in the solution. Hence in each iteration, a number 
of components will be deemed not worth keeping. The 
evolutionary strategy adopted may also throw out, with 
a low probability, some worthy components. Any 
destroyed component is then reintroduced by using a 
specific algorithm. Of key importance is that the 
admittance of a new component is determined by a 
dynamic evaluation function, which takes into account 
of how well the prospective component will fit in with 
others already in the solution. The above processes are 
iterated together with the remainder of the classical 
R&R. Thus the global optimisation procedure is based 
on solution disruption and iterative improvement, while 
a reconstructive process is performed within. 
 
As outlined, our proposed ER&SR algorithm consists of 
the following three parts: Solution Decomposition, 
Evolutionary Ruin and Stochastic Recreate. It executes 
these parts in a loop on one solution until a stopping 
condition reached. The first part of Solution 
Decomposition is based on the observation that in most 
real world combinatorial optimization problems, the 
solutions consist of components which are intricately 
woven together in a nonlinear, non-additive fashion. 
Each solution component may be a strong candidate in 
its own right, but it also has to fit well with other 
components. Its general idea is to use some expert’s 
domain knowledge to break a solution down into its 
components and assign a score to each. The higher the 
score, the fitter the related component is. 
 
The second part of Evolutionary Ruin is based on the 
consideration that the incumbent solution must be 
changed not only locally but also over a macroscopic 
scale, depending on the solution composition defined by 
the proceeding Solution Decomposition part. This part 
applies two operators of Selection and Mutation to 
destroy a certain fraction of the entire solution. The 
Selection operator removes some components based on 
Darwin’s survival of the fitness mechanism, while the 
Mutation operator further removes some components in 
a totally random manner. Hence, the destroyed part of 
the solution would sometimes be large enough such that 
the impact of the “bomb” that is thrown on the solution 
will be noticeable not only locally but in the whole 
system. On the other hand, the destroyed part would 
sometimes be small enough so that at least a main 
portion of the solution (i.e. a skeleton) remains to 
facilitate the next solution rebuild. 
 
The third part of Stochastic Recreate follows to 
reintroduce the removed items in a specific way 
(somewhat stochastic in order to have a better chance to 
jump out of the local optima), and then ask the 
underlying improvement heuristic (e.g. hill-climbing, 



 

 

simulated annealing, or great deluge) whether this move 
will be accepted. These three parts are executed in 
sequence until a specific stopping condition is reached. 
 
The above mentioned model is a general framework and 
many well-known search methods belong to its special 
case. For example, assume at each iteration x 
components are removed from an n-component solution, 
and let p be the acceptance criterion. 

• If x = 0, then it is a non-iterative method as only 
one single solution will be generated; 

• If x ≤ 3, then it is a local search method that uses 
small moves to change the configurations; 

• If x = n, then it is a constructive method with 
random starting points; 

• If (no Solution Decomposition) & (no Selection), 
then it equals to the R&R principle. 

• If (p = “hill-climbing”) & (no Solution 
Decomposition) & (no Selection), then is equals to 
the most basic evolutionary algorithm called 
“(1+1)EA”, in which its population is composed by 
two individuals only: one being the parent, the 
other the offspring. 

 
3  EXAM TIMETABLING 

Exam timetabling can be considered to be the process of 
assigning a set of events (i.e. exams) into a limited 
number of timeslots subject to a set of constraints. 
Constraints are usually divided into two types: hard and 
soft. A hard constraint cannot be violated under any 
circumstances. A typical example is two exams with 
common students involved cannot be scheduled into the 
same timeslot. A soft constraint is one that should be 
satisfied if possible but its satisfaction is not essential. A 
typical example is exams taken by common students 
should be spread out over the available timeslots so that 
students do not have to sit two exams that are too close 
to each other. Solutions with no violations of hard 
constraints are called feasible solutions. How much the 
soft constraints are satisfied gives an indication of how 
good the solutions (timetables) are. 
 
In a simplified timetabling problem, if we are only 
concerned with hard constraints, the problem can be 
represented by a graph colouring model. Vertices in the 
graph represent exams in the problem, and edges 
representing the conflicts between exams (i.e. with 
common students). The problem is to minimise the 
colours used to colour all vertices, while avoiding the 
assignment of two adjacent vertices to the same colour. 
Graph colouring problems are among the most 
important problems in graph theory and are known to be 
NP-hard (Karp 1972). 
 
The following objective function is used in (Burke et al. 
2007) and many other papers in the literature to 
calculate the cost of an obtained feasible solution x: 
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where 
skl is the number of students involved in both exams 

ek and el, if i = |tl – tk| < 5; 
wi = 24-i is the cost of assigning two conflicted exams 

ek and el with i timeslots apart, if i = |tl – tk| < 5 
(i.e. w1 = 16, w2 = 8, w3 = 4, w4 = 2, w5 = 1; tl and 
tk as the timeslots of el and ek, respectively); 

m is the number of exams in the problem; 
S is the number of students in the problem. 

 
4  ER&SR FOR EXAM TIMETABLING 

This section presents an ER&SR for exam timetabling. 
Starting from a randomly generated initial timetable, the 
steps described in section 4.1 to 4.3 are executed in 
sequence in a loop until a user specified parameter (e.g. 
CPU-time or solution quality) is reached or no 
improvement has been achieved for a certain number of 
iterations. During each iteration, an unfit portion of the 
working timetable is removed. Broken timetables are 
repaired by the constructing heuristic. Throughout the 
iterations, the best is retained and finally returned as the 
preserved timetable. 
 
4.1  Solution Decomposition 

This step is to evaluate the current arrangement for each 
event },,...,1{ , mkek  in a timetable. In this step, the 

fitness of each event for a generated timetable is 
computed. The purpose of computing this measure is to 
determine which events are in positions that contribute 
more towards the cost reduction for the resulting 
solution. We can formulate a normalized evaluation 
function },,...,1{ ),( mkeF kt  at the t-th iteration as 
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where Ct(ek) is the cost value brought by event ek, and 
wi uses the same definition as in Equation (1). 
 
4.2  Evolutionary Ruin 

This step is to decide whether a component (i.e. an 
event },...,1{ , mkek  ) in a current timetable should be 

retained or discarded. The decision is made by 
implementing two operators of Selection and Mutation. 
The Selection operator compares its fitness value Ft(ek) 

to a random number )(t
sp generated for each iteration t 

in the range [0, 1]. If )()( t
skt peF  , then ek will remain 

in its present allocation, otherwise ek will be removed 
from the current timetable. By using Selection, an event 



 

 

ek with larger fitness value Ft(ek) has a higher 
probability to survive in the current timetable. The 
Mutation operator follows to mutate the retained events 
ek, i.e. randomly discarding them from the partial 

timetable at a small rate )(t
mp . Compared with the 

selection rate )(t
sp which is randomly generated for each 

iteration t, the mutation rate )(t
mp should be much smaller 

to aid convergence. 
 
4.3  Stochastic Recreate 

The Stochastic Recreate task is to rebuild a partial 
timetable by assigning unscheduled events to available 
timeslots. Once a specific event has been determined, 
the following two steps will be executed: Step 1 finds 
all its available timeslots without any conflict exams; 
Step 2 chooses the timeslot with the smallest increase 
on the overall cost defined by Equation (1). 
 
Based on the domain knowledge of timetabling, there 
are many heuristics that can be used to determine the 
order for the events to be rescheduled. Here we use the 
following four graph-based heuristics reported in (Qu 
and Burke 2009): largest degree first (H1), largest 
weighted degree first (H2), largest color degree first (H3) 

and least saturation degree first (H4). Let )(
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The H1 heuristic orders events in descending order by 
the number of conflicts they have with other exams. 
This heuristic aims to schedule first those events which 
have the most conflicts. It first goes through the conflict 
values (which are precalculated) for the unscheduled 
events, and then proceeds to Steps 1 and 2. 
 
The H2 heuristic orders events in descending order by 
the number of conflicts, each of which is weighted by 
the number of students involved. Among events with 
the same degree, this heuristic gives higher priority to 
those with a larger number of students involved. Like 
H1, it first goes through the weighted conflict values for 
the unscheduled exams, and then proceeds to Steps 1 
and 2. 
 
The H3 heuristic orders events in a descending order in 
terms of the number of conflicts with the other events 
that have already been placed in the timetable. The 
degrees of the events not yet scheduled are changed 
according to the situations encountered at each step of 
the solution construction. Unlike H1 and H2, the conflict 
value for each exam needs to be firstly updated before 
scheduling an exam. This involves updating an ancillary 
matrix that contains the conflict values between any 

pairs of an unscheduled exam and a scheduled exam. H3 
then goes through the new conflict values for the 
unscheduled exams, and next proceeds to Steps 1 and 2. 
 
The H4 heuristic orders events in ascending order in 
terms of the number of available timeslots that can be 
selected without violating hard constraints. The 
priorities of events to be ordered and scheduled are 
changed dynamically as the solution is constructed. The 
number of available timeslots for each event needs to be 
firstly calculated before rescheduling an event. This 
process can be regarded as executing Step 1 repeatedly 
for all unscheduled exams. H4 then goes through the 
saturation degree numbers for all the unscheduled 
events, and next proceeds to Steps 1 and 2. 
 
5  EXPERIMENTAL RESULTS 

The exam timetabling problems we tested in this paper 
were first introduced in (Carter et al. 1996), and have 
been widely tested by a number of approaches during 
the last ten years. The dataset consists of 13 problems 
from different institutions, among which 11 have been 
more heavily investigated because of errors in the other 
two problems. A more detailed discussion of those 
datasets (and the difficulties caused by different 
instances circulating under the same name) was given in 
(Qu et al. 2009).Our aim with these experiments is not 
to beat the state-of-the-art approaches in the literature 
(although the results are competitive with the best 
results reported), but to present the potential of this 
more generic methodology to be easily employed and to 
perform adaptively on a range of different timetabling 
or optimisation problems. 
 
Table 1 presents the characteristics of the 11 problems 
in the dataset. Rows 2-5 include the number of exams, 
the number of students, the number of available time 
slots and the problem density. The problem size ranges 
from 81 to 682 exams, from 611 to 18416 students and 
from 10 to 35 time slots. The "density” (ranged from 
0.06 to 0.42) gives the conflict density of elements with 
value 1 in the conflict matrix, where element Cij = 1 if 
events i and j conflict, Cij = 0 otherwise. More details 
about the benchmark dataset can be found at 
http://www.asap.cs.nott.ac.uk/resources/data.shtml. 
 
Table 2 presents the 20 runs’ results on the benchmark 
exam timetabling problems of the original R&R and the 
enhanced ER&SR. For comparison, it also lists the 
results of the state-of-the-art approaches in the literature. 
The best results among all of the approaches are 
highlighted. Both algorithms were coded in C++ and 
implemented on an Intel Core 2 Duo 1.86GHz machine 
with 2.0GB of RAM under Window XP. The stopping 
condition is no improvement has been made after 1000 
iterations. We can see that the ER&SR outperforms the 
R&R over all of the problems in terms of best and 
average results. It is also very consistent on all of the 
runs with distinct random seeds. 



 

 

 
 

Table 1: Characteristics of the Benchmark Problems 
 
 car91 car92 ear83 hec92 kfu93 lse91 sta83 tre92 uta93 ute92 york83 

Exams 682 543 190 81 461 381 139 261 622 184 181 
Students 16925 18419 1125 2823 5349 2726 611 4360 21266 2750 941 
Timeslots 35 32 24 18 20 18 13 23 35 10 21 
Density 0.13 0.14 0.27 0.42 0.06 0.06 0.14 0.18 0.13 0.08 0.29 

 
 

Table 2: Comparison Results on Benchmark Problems. 
 
 car91 car92 ear83 hec92 kfu93 lse91 sta83 tre92 uta93 ute92 york83 

R&R best 5.4 4.9 38.6 12.2 15.3 12.8 161.2 8.8 3.6 30.1 40.7 
R&R avg 6.1 5.3 39.9 12.5 15.6 13.2 163.6 9.2 4.2 31.3 43.2 

ER&SR best 5.3 4.7 29.7 10.1 13.7 10.2 157.3 8.4 3.3 25.3 37.8 
ER&SR avg 5.4 5.2 30.0 11.9 14.1 10.5 157.9 8.7 3.5 26.6 39.0 

Abdullah et al. 2007 5.2 4.4 34.9 10.3 13.5 10.2 159.2 8.7 3.6 26.0 36.2 
Asmuni et al. 2005 5.2 4.5 37.0 11.8 15.8 12.1 160.4 8.7 3.6 27.8 40.7 

Burke & Newall, 2004 4.6 4.0 37.1 11.5 13.9 10.8 168.7 8.4 3.2 25.8 36.8 
Burke et al. 2004 4.8 4.2 35.4 10.8 13.7 10.4 159.1 8.3 3.4 25.7 36.7 

Caramia et al. 1982 6.6 6.0 29.3 9.2 13.8 9.6 158.2 9.4 3.5 24.4 36.2 
Carter et al. 1996 7.1 6.2 36.4 10.8 14.0 10.5 161.5 9.6 3.5 25.8 41.7 

Gaspero & Schaerf 2001 6.2 5.2 45.7 12.4 18.0 15.5 160.8 10.0 4.2 29.0 42.0 
Merlot et al. 2002 5.1 4.3 35.1 10.6 13.5 10.5 157.3 8.4 3.5 25.1 37.4 

 
 
It can be observed that the best results reported in the 
literature were obtained by different approaches over 
the years. Among the 8 approaches compared (which 
have obtained the best results in the literature on the 
benchmarks), our ER&SR obtained competitive results. 
However, the most important point to make here is that 
all of the other approaches were specifically designed 
for the exam timetabling problem. 
 
6  CONCLUSIONS 

This paper presents a new approach to solve timetabling 
problems based on the original idea of R&R, by 
incorporating two operators of Selection and Mutation 
in its Evolutionary Ruin step. In our proposed ERSR, a 
cycle of Solution Decomposition, Evolutionary Ruin 
and Stochastic Recreate continues until stopping 
conditions are reached. Taken as a whole, the ER&SR 
implements evolution within a single solution and 
carries out search by solution disruption, iterative 
improvement and a stochastic constructive process. The 
experiments have demonstrated that the proposed 
approach performs very efficiently and competitively. 
 
The architecture of the ER&SR is innovative, and thus 
there is still some room for further improvement. In the 
Solution Decomposition part, we will study the 
formulation of domain knowledge for different types of 
other problems and the influence of different evaluation 
rules. In the Evolutionary Ruin part, we will study the 
suitable range for the number of components to be 

destroyed and the condition of applying a large move or 
a small move. For the Stochastic Recreate part, we will 
study the types of reconstruction methods that are 
unsuited for generating optimum or near-optimum 
results. Furthermore, we will evaluate the proposed 
algorithm with different operators applied in its three 
parts and the best combination we should try. 
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