

EVOLUTIONARY RUIN AND STOCHASTIC RECREATE: A CASE STUDY
ON THE EXAM TIMETABLING PROBLEM

Jingpeng Li Rong Qu

Division of Computer Science School of Computer Science
The University of Nottingham Ningbo

China
The University of Nottingham

Ningbo 315100, China Nottingham NG8 1BB, United Kingdom
E-mail: Jingpeng.Li@nottingham.edu.cn E-mail: rxq@cs.nott.ac.uk

Yindong Shen

Department of Control Science & Engineering
Huazhong University of Science & Technology

Wuhan 430074, China
E-mail: yindong@mail.hust.edu.cn

KEYWORDS

Evolutionary algorithm, Intelligent machine learning
system, Combinatorial optimisation, Educational
timetabling.

ABSTRACT

This paper presents a new class of intelligent systems,
called Evolutionary Ruin and Stochastic Recreate, that
can learn and adapt to the changing enviroment. It
improves the original Ruin and Recreate principle’s
performance by incorporating an Evolutionary Ruin
step which implements evolution within a single
solution. In the proposed approach, a cycle of Solution
Decomposition, Evolutionary Ruin and Stochastic
Recreate continues until stopping conditions are
reached. The Solution Decomposition step first uses
some domain knowledge to break a solution down into
its components and assign a score to each. The
Evolutionary Ruin step then applies two operators
(namely Selection and Mutation) to destroy a certain
fraction of the entire solution. After the above steps, an
input solution becomes partial and thus the resulting
partial solution needs to be repaired. The repair is
carried out by using the Stochastic Recreate step to
reintroduce the removed items in a specific way
(somewhat stochastic in order to have a better chance to
jump out of the local optima), and then ask the
underlying improvement heuristic whether this move
will be accepted. These three steps are executed in
sequence until a specific stopping condition is reached.
Therefore, optimisation is achieved by solution
disruption, iterative improvement and a stochastic
constructive repair process performed within.
Encouraging experimental results on exam timetabling
problems are reported.

1 INTRODUCTION

Exam timetabling can be considered as the process of
assigning a set of events (i.e. exams) into a limited
number of timeslots subject to a set of constraints. The

problem has attracted a significant level of research
interest since the 1960’s. The general timetabling
problem comes in many different guises such as nurse
rostering (Cheang et al. 2003; Li et al. 2012), sports
timetabling (Easton et al. 2004), transportation
timetabling (Kwan 2004) and educational timetabling
(Carter and Laporte 1996; Schaerf 1999; Petrovic and
Burke 2004; Qu et al. 2009). Educational timetabling
problems are prob-ably the most widely studied.

Since exam timetabling problems are general NP-hard
combinatorial problems which are unlikely to be solved
optimally in polynomial time, various methods such as
local search-based heuristics (Casey and Thompson
2004; Burke et al. 2004; Burke and Newall 2004),
knowledge-based systems (Burke et al. 2006) and
hyper-heuristics (Qu and Burke 2009) have been
studied. Over the past dec-ade, meta-heuristics have
attracted the most attention, including genetic
algorithms (Erben 2001; Paquete and Fonseca 2001),
ant algorithms (Dowsland and Thompson 2005), tabu
search (Burke et al. 2003; White et al. 2004), simulated
annealing (Thompson and Dowsland 1998). A number
of at-tempts have also been made using other meta-
heuristics (Burke et al. 1996; Duong and Lam 2004).
The methods and techniques that have been used over
the years to tackle exam timetabling problems have
tended to draw on problem-specific information and
particular heuristics. In this paper, we are trying to deal
with the goal of developing a new class of search
systems. We use the well-studied exam timetable
problem as the test bed.

The work that is presented here is based on the
observation that, in most real world problems, the
solutions consist of components which are intricately
woven together. Each solution component may be a
strong candidate in its own right, but it also has to fit
well with other components in the enviroment. To deal
with these components, Schrimpf et al. (2000) proposed
a technique called Ruin and Recreate (R&R) principal,

Proceedings 26th European Conference on Modelling and
Simulation ©ECMS Klaus G. Troitzsch, Michael Möhring,
Ulf Lotzmann (Editors)
ISBN: 978-0-9564944-4-3 / ISBN: 978-0-9564944-5-0 (CD)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Stirling Online Research Repository

https://core.ac.uk/display/326245278?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

and claimed it could be a general approach for various
combinatorial optimisation problems. In this paper, we
further extend the idea by incorporating some
evolutionary features into the searching process. We
term the enhanced version Evolutionary Ruin and
Stochastic Recreate (ER&SR). Its general idea is to
break a solution down into its components and assign a
score to each by an evaluation function working under
dynamic environments. The scores are employed as
fitness values which determine the chances for the
components to survive in the current solution.

2 A GENERAL DESCRIPTION OF THE ER&SR

The Ruin and Recreate (R&R) method uses the
concepts of simulated annealing (Kirkpatrick 1983) or
threshold accepting (Dueck and Scheuer 1990) with
large moves instead of smaller ones. For simple
structured problems like the traveling salesman problem,
the need of using large moves is not obvious, because
algorithms usually generate near optimal solutions with
very small moves already. However, for complex
problems like exam timetabling problems, difficulties
arise if still using such small moves, because complex
problems can often be seen as discontinuous: if walking
one step from a solution to a neighbouring solution, the
qualities of new solutions may be dramatically different,
i.e., the landscapes of these problem areas can be very
rugged.

Solutions of complex problems usually have many soft
and/or hard constraints, which makes it difficult to get
just feasible solutions. Neighbouring solutions of
complex schedules, for instance, are usually infeasible
solutions. It may be very hard to walk in such a
complex landscape from one feasible solution to
another neighboured feasible solution. The common
method of avoiding the infeasibil-ity problem for many
forms of the classical algorithms is to impose artificial
penalty functions, but this method would typically make
the algorithms get stuck in slightly infeasible solutions
which might not be allowed at all.

Naturally, one will think in a different paradigm: ruin
and recreate. We ruin a quite large portion of the
solution and try to rebuild the solution as best as we can,
with the hope that the new solution is better than the
previous one. The R&R approach is just based on the
above idea which has shown an important advantage: if
destroying a large part of the previous solution, we have
more freedom to generate a new one, and thus it is more
likely to find again a feasible solution in this larger
solution space. Hence, it is reasonable to believe that
problems with many side conditions, or with very
complex objective functions, are more tractable using
special large moves.

Based on the general R&R principal, this paper presents
a more advanced technique called ER&SR which has
never been reported in the literature before. The new

technique applies two operators of Selection and
Mutation as the ruining strategies, trying to mimic the
evolution on single solutions. Each component in the
solution has to continuously demonstrate its worthiness
to stay in the solution. Hence in each iteration, a number
of components will be deemed not worth keeping. The
evolutionary strategy adopted may also throw out, with
a low probability, some worthy components. Any
destroyed component is then reintroduced by using a
specific algorithm. Of key importance is that the
admittance of a new component is determined by a
dynamic evaluation function, which takes into account
of how well the prospective component will fit in with
others already in the solution. The above processes are
iterated together with the remainder of the classical
R&R. Thus the global optimisation procedure is based
on solution disruption and iterative improvement, while
a reconstructive process is performed within.

As outlined, our proposed ER&SR algorithm consists of
the following three parts: Solution Decomposition,
Evolutionary Ruin and Stochastic Recreate. It executes
these parts in a loop on one solution until a stopping
condition reached. The first part of Solution
Decomposition is based on the observation that in most
real world combinatorial optimization problems, the
solutions consist of components which are intricately
woven together in a nonlinear, non-additive fashion.
Each solution component may be a strong candidate in
its own right, but it also has to fit well with other
components. Its general idea is to use some expert’s
domain knowledge to break a solution down into its
components and assign a score to each. The higher the
score, the fitter the related component is.

The second part of Evolutionary Ruin is based on the
consideration that the incumbent solution must be
changed not only locally but also over a macroscopic
scale, depending on the solution composition defined by
the proceeding Solution Decomposition part. This part
applies two operators of Selection and Mutation to
destroy a certain fraction of the entire solution. The
Selection operator removes some components based on
Darwin’s survival of the fitness mechanism, while the
Mutation operator further removes some components in
a totally random manner. Hence, the destroyed part of
the solution would sometimes be large enough such that
the impact of the “bomb” that is thrown on the solution
will be noticeable not only locally but in the whole
system. On the other hand, the destroyed part would
sometimes be small enough so that at least a main
portion of the solution (i.e. a skeleton) remains to
facilitate the next solution rebuild.

The third part of Stochastic Recreate follows to
reintroduce the removed items in a specific way
(somewhat stochastic in order to have a better chance to
jump out of the local optima), and then ask the
underlying improvement heuristic (e.g. hill-climbing,

simulated annealing, or great deluge) whether this move
will be accepted. These three parts are executed in
sequence until a specific stopping condition is reached.

The above mentioned model is a general framework and
many well-known search methods belong to its special
case. For example, assume at each iteration x
components are removed from an n-component solution,
and let p be the acceptance criterion.

• If x = 0, then it is a non-iterative method as only
one single solution will be generated;

• If x ≤ 3, then it is a local search method that uses
small moves to change the configurations;

• If x = n, then it is a constructive method with
random starting points;

• If (no Solution Decomposition) & (no Selection),
then it equals to the R&R principle.

• If (p = “hill-climbing”) & (no Solution
Decomposition) & (no Selection), then is equals to
the most basic evolutionary algorithm called
“(1+1)EA”, in which its population is composed by
two individuals only: one being the parent, the
other the offspring.

3 EXAM TIMETABLING

Exam timetabling can be considered to be the process of
assigning a set of events (i.e. exams) into a limited
number of timeslots subject to a set of constraints.
Constraints are usually divided into two types: hard and
soft. A hard constraint cannot be violated under any
circumstances. A typical example is two exams with
common students involved cannot be scheduled into the
same timeslot. A soft constraint is one that should be
satisfied if possible but its satisfaction is not essential. A
typical example is exams taken by common students
should be spread out over the available timeslots so that
students do not have to sit two exams that are too close
to each other. Solutions with no violations of hard
constraints are called feasible solutions. How much the
soft constraints are satisfied gives an indication of how
good the solutions (timetables) are.

In a simplified timetabling problem, if we are only
concerned with hard constraints, the problem can be
represented by a graph colouring model. Vertices in the
graph represent exams in the problem, and edges
representing the conflicts between exams (i.e. with
common students). The problem is to minimise the
colours used to colour all vertices, while avoiding the
assignment of two adjacent vertices to the same colour.
Graph colouring problems are among the most
important problems in graph theory and are known to be
NP-hard (Karp 1972).

The following objective function is used in (Burke et al.
2007) and many other papers in the literature to
calculate the cost of an obtained feasible solution x:

Min }4,3,2,1,0{ ,)()(
1

1 1




 

iSswxf
m

k

m

kl
kli , (1)

where
skl is the number of students involved in both exams

ek and el, if i = |tl – tk| < 5;
wi = 24-i is the cost of assigning two conflicted exams

ek and el with i timeslots apart, if i = |tl – tk| < 5
(i.e. w1 = 16, w2 = 8, w3 = 4, w4 = 2, w5 = 1; tl and
tk as the timeslots of el and ek, respectively);

m is the number of exams in the problem;
S is the number of students in the problem.

4 ER&SR FOR EXAM TIMETABLING

This section presents an ER&SR for exam timetabling.
Starting from a randomly generated initial timetable, the
steps described in section 4.1 to 4.3 are executed in
sequence in a loop until a user specified parameter (e.g.
CPU-time or solution quality) is reached or no
improvement has been achieved for a certain number of
iterations. During each iteration, an unfit portion of the
working timetable is removed. Broken timetables are
repaired by the constructing heuristic. Throughout the
iterations, the best is retained and finally returned as the
preserved timetable.

4.1 Solution Decomposition

This step is to evaluate the current arrangement for each
event },,...,1{ , mkek  in a timetable. In this step, the

fitness of each event for a generated timetable is
computed. The purpose of computing this measure is to
determine which events are in positions that contribute
more towards the cost reduction for the resulting
solution. We can formulate a normalized evaluation
function },,...,1{),(mkeF kt  at the t-th iteration as

 ,
))(),...,(min())(),...,(max(

)())(),...,(max(
)(

11

1

mttmtt

ktmtt
kt eCeCeCeC

eCeCeC
eF




 (2)

and

}4,3,2,1,0{ ,)()()(
1

1

1

 






iswsweC
m

kl
kli

k

l
klikt , (3)

where Ct(ek) is the cost value brought by event ek, and
wi uses the same definition as in Equation (1).

4.2 Evolutionary Ruin

This step is to decide whether a component (i.e. an
event },...,1{ , mkek ) in a current timetable should be

retained or discarded. The decision is made by
implementing two operators of Selection and Mutation.
The Selection operator compares its fitness value Ft(ek)

to a random number)(t
sp generated for each iteration t

in the range [0, 1]. If)()(t
skt peF  , then ek will remain

in its present allocation, otherwise ek will be removed
from the current timetable. By using Selection, an event

ek with larger fitness value Ft(ek) has a higher
probability to survive in the current timetable. The
Mutation operator follows to mutate the retained events
ek, i.e. randomly discarding them from the partial

timetable at a small rate)(t
mp . Compared with the

selection rate)(t
sp which is randomly generated for each

iteration t, the mutation rate)(t
mp should be much smaller

to aid convergence.

4.3 Stochastic Recreate

The Stochastic Recreate task is to rebuild a partial
timetable by assigning unscheduled events to available
timeslots. Once a specific event has been determined,
the following two steps will be executed: Step 1 finds
all its available timeslots without any conflict exams;
Step 2 chooses the timeslot with the smallest increase
on the overall cost defined by Equation (1).

Based on the domain knowledge of timetabling, there
are many heuristics that can be used to determine the
order for the events to be rescheduled. Here we use the
following four graph-based heuristics reported in (Qu
and Burke 2009): largest degree first (H1), largest
weighted degree first (H2), largest color degree first (H3)

and least saturation degree first (H4). Let)(
1

kp ,)(
2

kp ,
)(

3
kp and)(

4
kp be the probabilities of using heuristics H1,

H2, H3 and H4 respectively for the rescheduling of event
ek. These heuristics are alternatively used in each step of

recreate, satisfying



4

1

)(1
j

k
jp .

The H1 heuristic orders events in descending order by
the number of conflicts they have with other exams.
This heuristic aims to schedule first those events which
have the most conflicts. It first goes through the conflict
values (which are precalculated) for the unscheduled
events, and then proceeds to Steps 1 and 2.

The H2 heuristic orders events in descending order by
the number of conflicts, each of which is weighted by
the number of students involved. Among events with
the same degree, this heuristic gives higher priority to
those with a larger number of students involved. Like
H1, it first goes through the weighted conflict values for
the unscheduled exams, and then proceeds to Steps 1
and 2.

The H3 heuristic orders events in a descending order in
terms of the number of conflicts with the other events
that have already been placed in the timetable. The
degrees of the events not yet scheduled are changed
according to the situations encountered at each step of
the solution construction. Unlike H1 and H2, the conflict
value for each exam needs to be firstly updated before
scheduling an exam. This involves updating an ancillary
matrix that contains the conflict values between any

pairs of an unscheduled exam and a scheduled exam. H3
then goes through the new conflict values for the
unscheduled exams, and next proceeds to Steps 1 and 2.

The H4 heuristic orders events in ascending order in
terms of the number of available timeslots that can be
selected without violating hard constraints. The
priorities of events to be ordered and scheduled are
changed dynamically as the solution is constructed. The
number of available timeslots for each event needs to be
firstly calculated before rescheduling an event. This
process can be regarded as executing Step 1 repeatedly
for all unscheduled exams. H4 then goes through the
saturation degree numbers for all the unscheduled
events, and next proceeds to Steps 1 and 2.

5 EXPERIMENTAL RESULTS

The exam timetabling problems we tested in this paper
were first introduced in (Carter et al. 1996), and have
been widely tested by a number of approaches during
the last ten years. The dataset consists of 13 problems
from different institutions, among which 11 have been
more heavily investigated because of errors in the other
two problems. A more detailed discussion of those
datasets (and the difficulties caused by different
instances circulating under the same name) was given in
(Qu et al. 2009).Our aim with these experiments is not
to beat the state-of-the-art approaches in the literature
(although the results are competitive with the best
results reported), but to present the potential of this
more generic methodology to be easily employed and to
perform adaptively on a range of different timetabling
or optimisation problems.

Table 1 presents the characteristics of the 11 problems
in the dataset. Rows 2-5 include the number of exams,
the number of students, the number of available time
slots and the problem density. The problem size ranges
from 81 to 682 exams, from 611 to 18416 students and
from 10 to 35 time slots. The "density” (ranged from
0.06 to 0.42) gives the conflict density of elements with
value 1 in the conflict matrix, where element Cij = 1 if
events i and j conflict, Cij = 0 otherwise. More details
about the benchmark dataset can be found at
http://www.asap.cs.nott.ac.uk/resources/data.shtml.

Table 2 presents the 20 runs’ results on the benchmark
exam timetabling problems of the original R&R and the
enhanced ER&SR. For comparison, it also lists the
results of the state-of-the-art approaches in the literature.
The best results among all of the approaches are
highlighted. Both algorithms were coded in C++ and
implemented on an Intel Core 2 Duo 1.86GHz machine
with 2.0GB of RAM under Window XP. The stopping
condition is no improvement has been made after 1000
iterations. We can see that the ER&SR outperforms the
R&R over all of the problems in terms of best and
average results. It is also very consistent on all of the
runs with distinct random seeds.

Table 1: Characteristics of the Benchmark Problems

 car91 car92 ear83 hec92 kfu93 lse91 sta83 tre92 uta93 ute92 york83

Exams 682 543 190 81 461 381 139 261 622 184 181
Students 16925 18419 1125 2823 5349 2726 611 4360 21266 2750 941
Timeslots 35 32 24 18 20 18 13 23 35 10 21
Density 0.13 0.14 0.27 0.42 0.06 0.06 0.14 0.18 0.13 0.08 0.29

Table 2: Comparison Results on Benchmark Problems.

 car91 car92 ear83 hec92 kfu93 lse91 sta83 tre92 uta93 ute92 york83

R&R best 5.4 4.9 38.6 12.2 15.3 12.8 161.2 8.8 3.6 30.1 40.7
R&R avg 6.1 5.3 39.9 12.5 15.6 13.2 163.6 9.2 4.2 31.3 43.2

ER&SR best 5.3 4.7 29.7 10.1 13.7 10.2 157.3 8.4 3.3 25.3 37.8
ER&SR avg 5.4 5.2 30.0 11.9 14.1 10.5 157.9 8.7 3.5 26.6 39.0

Abdullah et al. 2007 5.2 4.4 34.9 10.3 13.5 10.2 159.2 8.7 3.6 26.0 36.2
Asmuni et al. 2005 5.2 4.5 37.0 11.8 15.8 12.1 160.4 8.7 3.6 27.8 40.7

Burke & Newall, 2004 4.6 4.0 37.1 11.5 13.9 10.8 168.7 8.4 3.2 25.8 36.8
Burke et al. 2004 4.8 4.2 35.4 10.8 13.7 10.4 159.1 8.3 3.4 25.7 36.7

Caramia et al. 1982 6.6 6.0 29.3 9.2 13.8 9.6 158.2 9.4 3.5 24.4 36.2
Carter et al. 1996 7.1 6.2 36.4 10.8 14.0 10.5 161.5 9.6 3.5 25.8 41.7

Gaspero & Schaerf 2001 6.2 5.2 45.7 12.4 18.0 15.5 160.8 10.0 4.2 29.0 42.0
Merlot et al. 2002 5.1 4.3 35.1 10.6 13.5 10.5 157.3 8.4 3.5 25.1 37.4

It can be observed that the best results reported in the
literature were obtained by different approaches over
the years. Among the 8 approaches compared (which
have obtained the best results in the literature on the
benchmarks), our ER&SR obtained competitive results.
However, the most important point to make here is that
all of the other approaches were specifically designed
for the exam timetabling problem.

6 CONCLUSIONS

This paper presents a new approach to solve timetabling
problems based on the original idea of R&R, by
incorporating two operators of Selection and Mutation
in its Evolutionary Ruin step. In our proposed ERSR, a
cycle of Solution Decomposition, Evolutionary Ruin
and Stochastic Recreate continues until stopping
conditions are reached. Taken as a whole, the ER&SR
implements evolution within a single solution and
carries out search by solution disruption, iterative
improvement and a stochastic constructive process. The
experiments have demonstrated that the proposed
approach performs very efficiently and competitively.

The architecture of the ER&SR is innovative, and thus
there is still some room for further improvement. In the
Solution Decomposition part, we will study the
formulation of domain knowledge for different types of
other problems and the influence of different evaluation
rules. In the Evolutionary Ruin part, we will study the
suitable range for the number of components to be

destroyed and the condition of applying a large move or
a small move. For the Stochastic Recreate part, we will
study the types of reconstruction methods that are
unsuited for generating optimum or near-optimum
results. Furthermore, we will evaluate the proposed
algorithm with different operators applied in its three
parts and the best combination we should try.

REFERENCES

Abdullah S.; S. Ahmadi; E.K. Burke; and M. Dror. 2007.
“Investigating Ahuja-Orlin's Large Neighbourhood Search
for Examination Timetabling.” OR Spectrum 29, 351-372.

Asmuni H.; E.K. Burke; and J. Garibaldi. 2005. “Fuzzy
Multiple Ordering Criteria for Examination Timetabling.”
Practice and Theory of Automated Timetabling. Springer
Lecture Notes in Computer Science 3616, 334-353.

Burke E.K.; Y. Bykov; J.P. Newall; and S. Petrovic. 2004. “A
Time-Predefined Local Search Approach to Exam
Timetabling Problems.” IIE Transactions 36, 509-528.

Burke E.K.; G. Kendall; and E. Soubeiga. 2003. “A Tabu-
search Hyperheuristic for Timetabling and Rostering.”
Journal of Heuristics 9, 451-470.

Burke E.K.; B. McCollum; A. Meisel; S. Petrovic; and R. Qu.
2007. “A Graph-based Hyper-heuristic for Educational
Timetabling Problems.” European Journal of Operational
Research 176, 177-192.

Burke E.K. and J.P. Newall. 2004. “Enhancing Timetable
Solutions with Local Search Methods.” Practice and
Theory of Automated Timetabling. Springer Lecture Notes
in Computer Science 2740, 195-206.

Burke E.K. and J. Newall. 2004. “Solving Examination
Timetabling Problems through Adaptation of Heuristic
Orderings.” Annals of operations Research 129, 107-134.

Burke E.K.; J.P. Newalland R.F. Weare. 1996. “A Memetic
Algorithm for University Exam Timetabling.” Practice
and Theory of Automated Timetabling. Springer Lecture
Notes in Computer Science 1153, 241-250.

Burke E.K.; S. Petrovic; and R. Qu. 2006. “Case Based
Heuristic Selection for Timetabling Problems,” Journal of
Scheduling 9, 115-132.

Carter M.; G. Laporte; and S. Lee. 1996. “Examination
Timetabling: Algorithmic Strategies and Applications.”
Journal of Operations Research Society 47, 373-383.

Caramia M.; P. DellOlmo; and G. Italiano. 2001. “New
Algorithms for Examination Timetabling.” Algorithm
Engineering. Springer Lecture Notes in Computer Science
1982, 230-241.

Casey S. and J. Thompson. 2004. “GRASPing the
Examination Scheduling Problem.” Practice and Theory
of Automated Timetabling. Springer Lecture Notes in
Computer Science 2740, 232-244.

Cheang B.; H. Li; A. Lim; and B. Rodrigues. 2003. “Nurse
Rostering Problems: a Bibliographic Survey.” European
Journal of Operational Research 151, 447-460.

Dueck G. and T. Scheuer. 1990. “Threshold Accepting: a
General Purpose Optimization Algorithm Appearing
Superior to Simulated Annealing.” Journal of
Computational Physics 90, 161-175.

Duong T.A. and K.H. Lam. 2004. “Combining Constraint
Programming and Simulated Annealing on University
Exam Timetabling.” In Proceedings of RIVF 2004
Conference, 205-210.

Dowsland K. and J. Thompson. 2005. “Ant Colony
Optimization for the Examination Scheduling Problem."
Journal of Operations Research Society 56, 426-438.

Easton K.; G. Nemhauser; and M. Trick. 2004. “Sports
Scheduling,” In Handbook of Scheduling: Algorithms,
Models, and Performance Analysis, J. Leung (ed.).
Chapter 52, CRC Press.

Erben W. 2001. “A Grouping Genetic Algorithm for Graph
Colouring and Exam Timetabling.” Practice and Theory
of Automated Timetabling. Springer Lecture Notes in
Computer Science 2079, 132-156.

Di Gaspero L. and A. Schaerf. 2001. “Tabu Search
Techniques for Examination Timetabling.” Practice and
Theory of Automated Timetabling. Springer Lecture Notes
in Computer Science 2079, 104-117.

Karp R.M. 1983. “Reducibility Among Combinatorial
Problems.” Complexity of Computer Computations 4, 85-
103.

Kirkpatrick S.; C.D. Gelatt; and M.P. Vecchi. 1983.
“Optimization by Simulated Annealing.” Science 220,
671-680.

Kwan R.S.K. 2004. “Bus and Train Driver Scheduling.”
Handbook of scheduling: Algorithms, Models, and
Performance Analysis, Chapter 51. CRC Press.

Li J.; E.K. Burke; T. Curtois; S. Petrovic; and R. Qu. 2012.
“The Falling Tide Algorithm: a New Multi-objective
Approach for Complex Workforce Scheduling.” OMEGA
– The International Journal of Management Science 40,
283-293.

Merlot L.; N. Boland; B. Hughes; and P. Stuckey. 2002. “A
Hybrid Algorithm for the Examination Timetabling
Problem.” Practice and Theory of Automated Timetabling.
Springer Lecture Notes in Computer Science 2740, 207-
231.

Paquete L. and C.M. Fonseca. 2001. “A Study of Examination
Timetabling with Multiobjective Evolutionary
Algorithm.” In Proceedings of the 4th Meta-heuristics
International Conference (MIC 2001), 149-154.

Petrovic S. and E.K. Burke. 2004. “University Timetabling.”
Handbook of Scheduling: Algorithms, Models, and
Performance Analysis. Chapter 45, CRC Press.

Qu R.; E.K. Burke; B. McCollum; L.T.G. Merlot; and S.Y
Lee. 2009. “A Survey of Search Methodologies and
Automated System Development for Examination
Timetabling.” Journal of Scheduling12, 5-89.

Qu R. and E.K. Burke. 2009. “Hybridizations Within a Graph
based Hyper-heuristic Framework for University
Timetabling Problems.” Journal of the Operational
Research Society 60, 1273-1285.

Schaerf A. 1999. “A Survey of Automated Timetabling.”
Artificial Intelligence Review 13, 87-127.

Schrimpf G.; J. Schneider; H. Stamm-Wilbrand; and G.
Dueck. 2000. “Record Breaking Optimization Results
using the Ruin and Recreate Principle.” Journal of
Computational Physics 159, 139-171.

Thompson J. and K. Dowsland, 1998. “A Robust Simulated
Annealing based Examination Timetabling System.”
Computer & Operations Research 25, 637-648.

White G.M.; B.S. Xie; and S. Zonjic. 2004. “Using Tabu
Search with Longer-Term Memory and Relaxation to
Create Examination Timetables.” European Journal of
Operational Research 153, 80-91.

ACKNOWLEDGEMENTS

The work was supported by Natural Science Foundation
of China (NSFC), under grands 70971044 and
71171087.

AUTHOR BIOGRAPHIES

JINGPENG LI received the M.Sc. degree in
computational mathematics from
Huazhong University of Science and
Technology, China, in 1998, and the Ph.D.
degree in computer science from
University of Leeds, Leeds, U.K., in 2002.
He joined the School of Informatics,

University of Bradford, U.K., as a Research Associate
in 2003. Since 2004, he has been with the School of
Computer Science, University of Nottingham (UK
campus) as a Research Fellow initially, a permanent
Senior Research Fellow later, and currently an Assistant
Professor at the University's China campus. His
research areas include Intelligent Transport Scheduling,
Metaheuristics, Multi-Objective Decision Making,
Optimization & Search Methodologies, Machine
Learning, Data Mining, Markov Chain Analysis, Fuzzy
Logic, and Image Process. He has published over 30
peer-reviewed research papers in a wide variety of
world’s leading journals and conference proceedings.
Dr. Li has worked on five U.K. government-funded
EPSRC projects and three Chinese government-funded
NSFC research projects covering the topics of human
scheduling, next generation decision support, novel
research directions in personnel rostering, general
optimization systems, theoretical understanding of

heuristics, ands public transport scheduling. He is a
member of the Editorial Board of Wireless Sensor
Network. In addition,.he is acting as a referee for more
than 20 leading journals, and has served on the program
committees for many international conferences. His e-
mail address is: Jingpeng.Li@nottingham.edu.cn
and his Web-page can be found at
http://www.nott.ac.uk/~jpl.

 RONG QU received the BSc degree in
computer science from XiDian University,
Xi’an, China, in 1996, and the Ph.D.
degree in computer science from
University of Nottingham, Nottingham,
U.K., in 2002. She has been working in

the School of Computer Science, University of
Nottingham as a Lecturer since 2005. Her research
areas include Metaheuristics, Constraint Programming,
Integer Programming, Data Mining, and Knowledge
Based Systems. She has published over 60 peer-
reviewed research papers in a wide variety of world’s
leading journals and conference proceedings. Her e-
mail address is: rxq@cs.nott.ac.uk and her Web-
page can be found at http://www.nott.ac.uk/~rxq.

YINDONG SHEN received the M.Sc.
degree in computer science from Wuhan
University, China, in 1989, and the Ph.D.

degree in operations research & artificial intelligence
from University of Leeds, Leeds, U.K., in 2001. She has
been working as a professor at Department of Control
Science and Engineering, Huazhong University of
Science and Technology, China, since 2006. She is also
acting as a council person of Operations Research
Society of China (ORSC) and secretary-general and
vice-presiding officer of Operations Research Society
of Hubei Province. Her major research interests include
Modeling and Applications of Operations Research,
Optimization in Public Transport Systems, Transit
Planning, Vehicle and Crew Scheduling. She was
awarded with Runner-Up in the IFORS 2005 OR in
Development Prize Competition for her work on
scheduling buses and their crew for Beijing Bus Group.
Since she returned to China after her productive visit
from September 2009 to April 2010 in Massachusetts
Institute of Technology (MIT), she has developed a new
public transit planning method, which enhances the
Chinese traditional one and has been successfully
applied in three cities of China. Her e-mail address is:
yindong@mail.hust.edu.cn and her Web-page can
be found at http://cse.hust.edu.cn/viewnews-
666.

